
MCJoin: A Memory-Constrained Join for Column-Store
Main-Memory Databases.

Steven Begley
Department of Computer
Science and Computer

Engineering
La Trobe University

Melbourne, Victoria, Australia
s.begley@latrobe.edu.au

Zhen He
Department of Computer
Science and Computer

Engineering
La Trobe University

Melbourne, Victoria, Australia
z.he@latrobe.edu.au

Yi-Ping Phoebe Chen
Department of Computer
Science and Computer

Engineering
La Trobe University

Melbourne, Victoria, Australia
phoebe.chen@latrobe.edu.au

ABSTRACT
There exists a need for high performance, read-only main-
memory database systems for OLAP-style application sce-
narios. Most of the existing works in this area are centered
around the domain of column-store databases, which are
particularly well suited to OLAP-style scenarios and have
been shown to overcome the memory bottleneck issues that
have been found to hinder the more traditional row-store
database systems. One of the main database operations
these systems are focused on optimizing is the JOIN opera-
tion. However, all these existing systems use join algorithms
that are designed with the unrealistic assumption that there
is unlimited temporary memory available to perform the
join. In contrast, we propose a Memory Constrained Join
algorithm (MCJoin) which is both high performing and also
performs all of its operations within a tight given mem-
ory constraint. Extensive experimental results show that
MCJoin outperforms a naive memory constrained version of
the state-of-the-art Radix-Clustered Hash Join algorithm in
all of the situations tested, with margins of up to almost
500%.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing, Relational Database

General Terms
Algorithms, Performance

Keywords
Hash Join, Main Memory, Column Store

1. INTRODUCTION
There exists particular application domains for which there

is a growing need for high-performance, read-only database
systems. Scenarios include online analytical processing (OLAP)
and scientific databases, which strongly favor database read
operations over write operations. OLAP encompasses fields

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

such as marketing, budgeting, management and financial
reporting, and other business intelligence activities where
the ability to rapidly explore vast volumes of historical data
while looking for trends and patterns can be of critical ad-
vantage. So too, scientific databases may need huge amounts
of collected data to be analyzed in an expeditious manner.

The continued increases in RAM density, coupled with
reductions of RAM prices, have resulted in main-memory
databases becoming more common for OLAP scenarios. Con-
sequently, there has been much research towards developing
main-memory databases, resulting in such systems as Mon-
etDB [6] and C-Store [18]. These systems have been tai-
lored for such main memory operations by employing novel
techniques (such as storing tables column-wise instead of
row-wise) to overcome the “Memory Wall” [5, 6]. This term
was coined when database researchers noted that approxi-
mately half of database query execution time was spent on
memory stalls during read operations [4] - the CPU was be-
ing starved of data and this was due to the inadequacies
of the traditional row-store layout. Column-store layouts
have demonstrated an ability to outperform row-store lay-
outs by an order of magnitude (or more) during read op-
erations due to their cache-friendly data structures, which
minimize memory stalls.

The relational join, being one of the most important database
operators, can also be one of the most processor and mem-
ory resource intensive operations. A popular state-of-the-art
approach to performing relational join operations on main-
memory column-store databases is through the use of the
Radix-Clustered Hash Join [6], due to its ability to overcome
memory access stalls by using cache-friendly data structures.
However, existing join algorithms make an assumption that
there is an unlimited reserve of temporary memory available,
which can prove problematic in situations where there is in-
sufficient free temporary memory to fully partition the input
relations of the join operation. For example, the Radix-
Clustered Hash Join fully partitions the input relations be-
fore executing the join phase, therefore needing temporary
memory at least the size of the input relations themselves.
To compound this situation, multiple joins can be performed
at the same time in a pipelined manner, and thereby requir-
ing their aggregate temporary memory space. When main
memory is exhausted the virtual memory system pages data
to disk, significantly lowering the performance of the join
operation.

An existing join algorithm that requires virtually no tem-
porary memory resources is the Nested Loops Join, which
compares every tuple in the outer relation with every tu-
ple in the inner relation. However, contrary to the Radix-
Clustered Hash Join, the Nested Loops Join does not at-
tempt to prune the number of comparisons, and therefore

Figure 1: Join algorithm temporary memory usage and
performance comparison.

typically gives poor performance. Ideally, we desire a join
algorithm that can offer the performance benefits of a Radix-
Clustered Hash Join, but with the ability to constrain the
temporary memory overheads as needed, even to a level ap-
proaching that of the Nested Loops Join.

Figure 1 shows the performance achieved by the Mem-
ory Constrained Join (MCJoin) proposed by this paper. It
demonstrates that MCJoin can achieve performance similar
to the ideal mentioned above, namely being able to largely
retain the performance of the Radix-Clustered Hash Join
with very tight memory constraints. Even at a very small
limit of 16MB (approx. 6% of the total memory used by
the input relations), MCJoin outperforms the Nested Loops
Join by six orders of magnitude. Note that the particular
Sort-Merge Join and Radix-Clustered Hash Join algorithm
implementations used for this comparison were by He et al.
[10]. The temporary memory usage by the Sort-Merge Join
algorithm was derived based on the fact the two relations
need to be sorted out-of-place. In the experiment both re-
lations had 16M tuples, and each tuple is a key/value pair
totaling 8 bytes in size.

A simple and intuitive way to impose a memory limit on
the Radix-Clustered Hash Join is to process the input rela-
tions in chunks (consecutive groups of tuples). However, this
approach leads to an increased total number of partitioning
and comparison operations because one pass through the
entire inner relation is required for each chunk of the outer
relation.

Our aim is to process larger chunks of the outer relation
at one time while still obeying a memory limitation and re-
taining the performance benefits of a Radix-Clustered Hash
Join. We have achieved this by designing and implement-
ing the Memory Constrained Join (MCJoin) algorithm, a
variation of the Radix-Clustered Hash Join. The results
show that in a memory constrained environment, MCJoin
can outperform a naive memory constrained version of the
Radix-Clustered Hash Join algorithm (pioneered by Boncz
et al. [6]) in all situations tested by margins of up to 500%.

MCJoin achieves this outstanding result by introducing
flexible, lightweight, lossless data compression, memory con-
strained multi-level bit radix clustering, and a multi-purpose
histogram.

MCJoin uses these features to achieve our objectives, as
follows. Firstly, during the partitioning phase, MCJoin uses
compression to reduce the size of partitioned tuples of the
outer relation and therefore allowing larger chunks of the
outer relation to be stored in temporary memory. This leads
to fewer passes through the inner relation, thereby reducing
the overall join cost. The compression algorithm exploits
the nature of the hash partition process itself to get the
compression and decompression almost for free.

Secondly, MCJoin restricts the size of the temporary mem-
ory used during radix clustering to a minimum while sacri-
ficing almost no performance penalty, and reuses this mem-

ory space in an efficient manner throughout the join process.
The extra space saved allows larger chunks of the outer rela-
tions to be processed at a time, thereby reducing the overall
join cost.

Finally, much like other state-of-the-art Hash Join algo-
rithms [10, 13], MCJoin employs a histogram to manage its
partitioning needs. MCJoin improves upon the efficiency
of this histogram by allocating the memory just once dur-
ing the join process, and reusing the space allocated for the
histogram for multiple purposes.

In summary this paper makes the following key contribu-
tions:

1. Identifies the importance of making join algorithms for
main-memory databases memory constrained. This is
in contrast to all existing literature which assumes un-
limited available temporary memory.

2. Proposes a highly efficient memory constrained join al-
gorithm called MCJoin. The algorithm has the follow-
ing features: lightweight, lossless compression; high-
speed multi-level radix clustering; and a multi-purpose
histogram.

3. Finally, a very detailed empirical study of the perfor-
mance of MCJoin versus a naive memory constrained
version of the highly competitive state-of-the art Radix-
Clustered Hash Join algorithm was conducted. The
results conclusively show the superiority of MCJoin in
a variety of situations.

The rest of this paper is organized as follows: Section
2 examines the related works in the field of main-memory
database joins, focusing on column-based storage and hash
joins. Section 3 presents our problem definition. Section 4
analyzes a naive solution to our problem. Section 5 presents
the MCJoin algorithm. Section 6 evaluates the performance
of MCJoin and contrasts it against an implementation of a
Radix-Clustered Hash Join. Section 7 concludes and pro-
vides direction for future work.

2. RELATED WORKS
In this section we will present existing work in the area

of column-based main memory relational databases. Our
particular areas of focus will be on column-stores, join algo-
rithms for column-stores, and data compression for column-
stores.

2.1 Column-Store Databases
Since their inception in 1970 [8], relational database man-

agement systems have undergone extensive research to op-
timize performance. Much of this research has been focused
on minimizing disk I/O latencies and stalls due to memory
hierarchy. However, researchers in the late 1990s found that
memory stalls were becoming a bigger bottleneck than disk
I/O.

Ailamaki et al. [4] showed that approximately half of
query execution time was spent on memory stalls, and fur-
thermore, that 90% of these stalls were due to data misses
in level 2 cache. Boncz et al. [6] proposed the use of column-
store data layouts (i.e. decomposition storage model [9, 12])
and cache-aware algorithms to overcome these shortcomings,
and developed MonetDB, an open-source DBMS particu-
larly well suited for main-memory databases and displaying
performance an order of magnitude greater than that of con-
temporary systems.

Empirical evidence has shown that column-store databases
can offer performance advantages in orders of magnitude
over traditional row-store databases in read-only scenarios,
such as OLAP and querying scientific databases [2, 18]. The
idea behind column-wise storage is that queries which use

only a very few columns from a table can load just the
columns needed and therefore avoid loading irrelevant data
from non-sought columns. This results is much more effi-
cient CPU cache usage. Based on a similar design philoso-
phy, Stonebraker et al. [18] developed C-Store, which added
a number of features to column-stores such as various types
of compression, storing overlapping column-oriented projec-
tions, etc. Zukowski et al. [14] developed a new execution
engine for MonetDB, named MonetDB/X100. The perfor-
mance of MonetDB/X100 was an order of magnitude better
than even MonetDB. This was achieved mainly through a
highly efficient use of compression in the system so that data
can fit better in the CPU caches and thereby reduce the
number of times data needs to be fetched from main mem-
ory. Numerous other papers [1, 2, 3, 11] on column-store
databases have improved and explored the performance trade-
off of various aspects of column-store databases.

2.2 Join Algorithms for Column-Stores
We first review the work by Boncz et al. [6] who developed

the state-of-the-art Radix-Clustered Hash Join algorithm for
column-store databases in Section 2.2.1. We devote a large
section on this work since it forms the foundation of the
join algorithm proposed in this paper. Next we review more
recent work in the area by Kim et al. [13] in Section 2.2.2.

2.2.1 Radix Clustering
During the research of the MonetDB project, the authors

referenced the design behind a main-memory implementa-
tion of the Grace Join by Shatdal et al. [17], which had
a partitioning system designed to be level 2 cache friendly.
Analyzing in detail the memory access patterns of the join
algorithm on a variety of host systems, the authors noted
that in some scenarios, the cost of a Translation Lookaside
Buffer (or TLB) miss was more costly than that of a level 2
cache miss.

The TLB is used to speedup the translation of virtual
memory addresses to physical memory addresses. The TLB
acts as a kind of cache for these translations, keeping a small
buffer of recent memory page translations (on the Intel i7
processor this buffer is in two levels, containing 64 addresses
in the first level and 512 at the second level). Whenever a
request to a logical memory address is made, the TLB is
checked to see if this translation has already been cached. If
the translation is present, the physical address is retrieved
at very low cost. If it is not present, then the Memory
Management Unit must resolve this translation, which can
be costly (especially if many repeated requests are made to
disjoint memory addresses).

Recognizing the importance of the role played by the TLB
within a hash join scenario, the MonetDB team proposed the
Radix-Cluster Algorithm [6, 15, 5]. This algorithm describes
a TLB-friendly means of partitioning data prior to a hash
join. In its simplest form, the algorithm seeks to partition
the input relations into H clusters. For each tuple in a
relation, it considers the lower B bits representing an integer
hash value, and inserts that tuple into the corresponding
cluster with a hash value matching that described by the
lower B bits of the key.

Two detrimental effects may occur if H grows too large.
Firstly, if H exceeds the size of the TLB cache, then each
memory access into a cluster becomes a TLB miss. Sec-
ondly, if H exceeds the available cache lines of level 1 or
level 2 cache, then cache thrashing occurs, forcing the cache
to become polluted and the number of cache misses to rise.

The strength of the Radix-Cluster Algorithm is its ability
to perform clustering over multiple passes. The lower B bits
of the hash key can be clustered in P passes, where each pass

43 1 0 1 0 1 1

9 0 0 1 0 0 1

61 1 1 1 1 0 1

4 0 0 0 1 0 0

24 0 1 1 0 0 0

18 0 1 0 0 1 0

55 1 1 0 1 1 1

38 1 0 0 1 1 0

13 0 0 1 1 0 1

2 0 0 0 0 1 0

41 1 0 1 0 0 1

29 0 1 1 1 0 1

24 0 1 1 0 0 0 0 0 0

9 0 0 1 0 0 1 0 0 1

41 1 0 1 0 0 1

18 0 1 0 0 1 0 0 1 0

2 0 0 0 0 1 0

43 1 0 1 0 1 1 0 1 1

4 0 0 0 1 0 0 1 0 0

61 1 1 1 1 0 1 1 0 1

13 0 0 1 1 0 1

29 0 1 1 1 0 1

38 1 0 0 1 1 0 1 1 0

55 1 1 0 1 1 1 1 1 1

2 0 0 0 0 1 0 0 0

4 0 0 0 1 0 0

38 1 0 0 1 1 0

9 0 0 1 0 0 1 0 1

41 1 0 1 0 0 1

43 1 0 1 0 1 1

13 0 0 1 1 0 1

18 0 1 0 0 1 0 1 0

55 1 1 0 1 1 1

24 0 1 1 0 0 0 1 1

61 1 1 1 1 0 1

29 0 1 1 1 0 1

2 0 0 0 0 1 0 0

4 0 0 0 1 0 0

9 0 0 1 0 0 1

13 0 0 1 1 0 1

18 0 1 0 0 1 0

24 0 1 1 0 0 0

29 0 1 1 1 0 1

38 1 0 0 1 1 0 1

41 1 0 1 0 0 1

43 1 0 1 0 1 1

55 1 1 0 1 1 1

61 1 1 1 1 0 1

Pass 1: 3 bits Pass 2: 2 bits Pass 3: 1 bits

Figure 2: Radix Clustering Example

clusters the tuples on BP bits, starting with the lowest bits
(i.e. the right-most bits on little-endian CPUs such as the

Intel x86 and x64 series), such that
∑P

1 BP = B. For each

pass, the algorithm subdivides every cluster into HP = 2BP

new clusters, giving a total H =
∏P

1 HP clusters.
By controlling the size of BP each pass, the number of

clusters (HP) generated can be kept to be under the count
of TLB entries and cache lines available on that CPU, and
therefore completely avoid the cache miss and TLB miss
penalties.

Figure 2 demonstrates the hash values of tuples in a rela-
tion being clustered in three passes. Note that in this exam-
ple, we represent our values with six bits, and the right-most
bit is the least-significant bit. We will consider all six bits
(B = 6) for clustering - however, in practice we would not
cluster using all bits (e.g. we may only cluster on three bits,
stopping after pass 1). In the first pass, BP = 3, produc-
ing 2BP = 23 = 8 clusters. Therefore, for each tuple, the
lowest three bits are used to determine which cluster that
tuple belongs to. In the second pass, BP = 2 producing
2BP = 22 = 4 sub-clusters for every cluster produced in the
first pass. For each cluster, every tuple is placed into the cor-
responding sub-cluster based on the two bits starting from
the fourth bit from the right. The third pass clusters on
the last remaining bit, so BP = 1 producing 2BP = 21 = 2
sub-clusters. Our tuples are now clustered according to a
six bit hash value.

The Radix-Cluster Algorithm demonstrates an extremely
fast method of partitioning data by observing and working
within the technical limitations of the host CPU. However,
one downside of the algorithm is that there can be a signifi-
cant memory overhead cost. The clustering is not performed
“in-place” for the input relation, and therefore an entire copy
of the whole relation is required for partitioning, with ad-
ditional memory overheads per clustering pass (subject to
implementation). Furthermore, an examination of the radix
clustering algorithm implementation provided by Boncz et
al. shows that their implementation dynamically allocates
memory for each cluster on an as-needed basis. Repeated
requests for memory allocation and de-allocation can ac-
cumulate into a significant performance overhead, and can
also lead to memory fragmentation. In contrast, MCJoin
pre-allocates all memory required for each radix cluster pass
and thus does not incur the overhead of dynamic memory
allocation.

2.2.2 Sort vs. Hash Join, and Histograms
When conducting research to create the fastest published

join implementation for a main-memory database, Kim et
al. [13] compared the performance characteristics of the
Sort-Merge Join and Hash Join. Both implementations were
heavily optimized for the target platform (Intel i7 965), fea-
turing hand-crafted SSE and assembly language tweaks to
fine tune the performance of the algorithms. Their empirical
results indicated that the popular Hash Join algorithm still
held the absolute performance crown (being 2× faster over

128 million tuples), but the Sort-Merge Join was gaining
ground rapidly and it was suggested that features contained
in the next-generation Intel CPUs may tip the favor towards
Sort-Merge.

The Hash Join implementation described by Kim et al.
contained some notable features. It shared much in common
with the overall design philosophy of MonetDB, being built
around a column-store layout and featuring tuples consist-
ing of two 32-bit key / value pairs. During the partitioning
phase of the Hash Join implementation, Kim et al. used a
layered Radix-Cluster algorithm that was functionally simi-
lar in intent to that described by Boncz et al. [6]. However,
rather than dynamically allocating memory to partitions on
an “as-needed” basis, Kim et al. instead pre-scanned the in-
put relations and built a histogram of the partition contents.
Using this method, the authors were able to pre-allocate the
destination memory for the partitioning, avoiding the over-
heads of repeated memory allocation requests and memory
fragmentation. A prefix sum scan of the histogram would
yield the starting offsets of each partition from the base ad-
dress of the pre-allocated memory.

2.3 Compression Algorithms for Column-Stores
There are many compression techniques [1, 14, 18] used

in column-store databases. The aim of the compression is
to save storage space and also improve performance by re-
ducing I/O costs and CPU cache misses. The compression
techniques used by these works are typically lightweight in
terms of computation. The techniques include run-length
encoding, dictionary encoding, delta (or differential) encod-
ing, bit-vector encoding, etc. These compression techniques
differ from the compression algorithm used in MCJoin in
two respects. First, MCJoin exploits the nature of the hash
partition process itself to get the compression and decom-
pression almost for free. Second, MCJoin does not assume
the input relations are stored in compressed form but rather
only compresses/decompresses the input data in temporary
memory during the processing of the join itself. MCJoin can
be used in conjunction with existing compression schemes
which work with existing hash join algorithms. Note, com-
pression techniques such as run-length encoding and delta
encoding, in which later values depend on earlier values, will
not work in compressed format with existing hash join algo-
rithms. In contrast, compression schemes that do not have
dependencies between values, such as dictionary encoding,
will work.

3. PROBLEM DEFINITION
In a main-memory database scenario, we seek to perform a

relational join operation while minimizing computation time
and obeying a memory constraint. We assume the source
data is stored column-wise, consisting of tuples closely styled
after the Binary Units (or BUNs) of MonetDB [6] (which was
also used by [13]), and that the source columns are currently
held in entirety in main-memory. In this paper we work
with tuples consisting of a 32-bit key attribute, and a 32-bit
payload attribute. The key attribute represent the join key.
The payload attribute is an index into a row of a relation.
This index can be used to retrieve the value of one or more
columns of the relation. 32 bits is enough to represent both
the key and payload attributes because typically there are
less than 232 rows in a relation which in turn means there is
less than 232 unique values in a column.

Given two input relations R and S, we wish to perform
an equijoin where R is the outer relation and S is the inner
relation, R �R.key=S.key S.

4. ANALYSIS OF A NAIVE MEMORY CON-
STRAINED JOIN

In this section we first analyze the memory usage of a non-
memory constrained Radix-Clustered Hash Join algorithm.
Next, a naive memory constrained version of the join algo-
rithm is analyzed. Finally we briefly outline how MCJoin
improves upon this naive join.

In a main-memory database scenario, a conventional Radix-
Clustered Hash Join algorithms fully partitions the input re-
lations into temporary radix buffers (TRB). In this case the
temporary memory usage equals the size of the entire input
relations. Furthermore, if the radix clustering is performed
over multiple stages (e.g. the algorithm is translation look-
aside buffer (TLB) aware), we may find peak temporary
memory usage increasing with each stage. Such a scenario
is shown in Figure 3a.

A straightforward approach to constraining the memory
usage is to only partition a consecutive group of tuples (or
“chunk”) of relation R at a time, and thus iterate over the
entirety of R on a chunk-by-chunk basis. This approach is
demonstrated in Figure 3b, where relation R is divided into
n equally-sized chunks (RC), such that

∑n
i=1 |RCi | = |R|.

By processing R in chunks, we can use a smaller buffer for
the radix cluster partitioning. Using this approach, we find
that the memory required to host each TRB is the same
as that utilized by RC , and therefore the peak temporary
memory usage is now twice RC (i.e. 2×RC instead of 2×R).
Using a chunking approach, whilst more economical in its

memory usage, does come at an increased processing cost.
This is due to the the fact that the entire relation S needs to
be partitioned per chunk of R. Therefore, the more chunks
that R is broken up into, the more times S needs to be
partitioned. This can be seen in the following simplified
equation of joining R and S:

CTotal = CPart(R)+

⌈ |R|
|RC |

⌉
×CPart(S)+

⌈ |R|
|RC |

⌉
×CJoin(S,RC)

(1)

Where CTotal is the total processing cost, CPart(x) is the
processing cost to partition relation x, CJoin(x, y) is the pro-
cessing cost to perform a join operation between all tuples
in relations x and y, |R| is the cardinality of relation R, |S|
is the cardinality of relation S, and |RC | is the cardinality
of relation chunk RC .
Equation 1 is the sum of the costs of three the major

MCJoin processing phases: (i) the cost of partitioning R;
(ii) the cost of partitioning S ; and (iii) the cost of joining
the chunks of R with S. Hence, Formula 1 can be stated as:
CTotal = cost of (i) + cost of (ii) + cost of (iii).
As R is the outer relation of the join, we only incur the

partitioning cost once. Thus, the cost of (i) is just CPart(R).
We are processing R in chunks of RC . For each RC of R,

we partition all of S. Therefore, the cost of (ii) is
⌈

|R|
|RC |

⌉
×

CPart(S) (where
⌈

|R|
|RC |

⌉
is the total number of chunks of R).

For each chunk RC of R, we join all the tuples in RC with

those of S. Thus, the cost of (iii) is
⌈

|R|
|RC |

⌉
×CJoin(S,RC).

Equation 1 assumes that |RC | is constant, and that the
size of the chunks of S has negligible impact on performance
(this assumption is made on the basis that partitioning costs
are calculated per-tuple with no additional overheads). Once
given the join algorithm and the input relations R and S,
the only part of Equation 1 that is variable is |RC |. From
the equation we can see that a larger |RC | results in lower
total processing cost. However, in a situation where memory
is constrained maximizing |RC | is a non-trivial task.

TRB R
(K1, V1)
(K2, V2)
(K7, V7)
(K9, V9)

(K11, V11)
(K3, V3)
(K5, V5)
(K8, V8)
(K0, V0)
(K4, V4)
(K6, V6)

(K10, V10)

RP
(K0, V0)
(K1, V1)
(K2, V2)
(K3, V3)
(K4, V4)
(K5, V5)
(K6, V6)
(K7, V7)
(K8, V8)
(K9, V9)

(K10, V10)
(K11, V11)

(K2, V2)
(K1, V1)

(K11, V11)
(K9, V9)
(K7, V7)
(K3, V3)
(K8, V8)
(K5, V5)
(K4, V4)
(K0, V0)
(K6, V6)

(K10, V10)

(a) Conventional Radix Cluster-
ing

TRB R
(K0, V0)
(K1, V1)
(K2, V2)
(K3, V3)
(K4, V4)
(K5, V5)
(K6, V6)
(K7, V7)
(K8, V8)
(K9, V9)

(K10, V10)
(K11, V11)

RP

RC
(K1, V1)
(K2, V2)
(K3, V3)
(K5, V5)
(K0, V0)
(K4, V4)

(K2, V2)
(K1, V1)
(K3, V3)
(K5, V5)
(K4, V4)
(K0, V0)

(b) Constrained Radix Clustering

R
(K0, V0)
(K1, V1)
(K2, V2)
(K3, V3)
(K4, V4)
(K5, V5)
(K6, V6)
(K7, V7)
(K8, V8)
(K9, V9)

(K10, V10)
(K11, V11)

RP

RC

Flip-Flop Buffer
(K1, V1)
(K2, V2)
(K0, V0)

(K2, V2)
(K1, V1)
(K0, V0)

K2
K1
.
.
.

K0

V2
V1
.
.
.

V0

(c) MCJoin Partitioning

Figure 3: Partitioning examples

MCJoin maximizes |RC |, by restricting the TRB to a
small fixed size and minimizing the size of the partitioned
data via compression. A simplified overview of the MCJoin
partitioning process is shown in Figure 3c. Firstly, we can
see the TRB, which we refer to as a Flip-Flop buffer, is re-
stricted in size. The Flip-Flop buffer (named due to the
way it flips data between static buffers during clustering -
see Section 5.3 for more information) may have a cardinal-
ity much lower than |RC |. In such a case, the Flip-Flop
buffer iterates over RC piece-by-piece (without performance
penalty) until all of RC has been scattered into our parti-
tioned buffer (right part of Figure 3c), RP . The data in the
partitioned buffer is stored in compressed form.

5. MCJOIN
We start by giving an overview of MCJoin, describing the

key stages performed. Later in this section we describe each
stage in more detail.

MCJoin is a variation of a Radix-Clustered Hash Join,
where the input relations R and S are partitioned into“hash-
buckets” (via high-performance Radix Clustering) to reduce
the number of join comparisons made and therefore mini-
mizing computational costs. MCJoin operates in two major
phases: the Partitioning phase, and the Join phase. The
Partitioning phase is responsible for partitioning tuples from
relation R and storing them in a compressed format within
Packed Partition Memory (RP). The Join phase probes for
join candidates within RP for each tuple in S, and stores
join matches in output set Q. As stated earlier in Section 4,
in order to cope with a tight memory constraint we need to
join relations R and S by parts. MCJoin does this by chunk-
ing R into smaller segments (RC) and therefore restricting
the memory needed for RP (as shown in Figure 4a). To
probe for join candidates in RP , we take a similar chunking
approach with relation S, subdividing it into smaller chunks
(SC) (see Figure 4b).
MCJoin introduces a“Flip-Flop Buffer”, a high-performance,

double-buffered, statically-allocated Radix Clustering mech-
anism that uses a fixed amount of memory. This Flip-Flop
buffer is an important facet in MCJoin’s approach to op-
erating in a constrained memory environment, and is used
in both the Partitioning and Joining phases. The Flip-Flop
buffer is explained in further detail in Section 5.3.

Algorithm 1 shows a high-level overview of the operations
of MCJoin. We define a number of functions, as follows. Dy-
namicallyAllocateMemory allocates the constrained memory
(denoted as M) between competing resources of MCJoin in
such a manner that ensures fastest overall join execution
time (see Section 5.4). BuildHistogram iterates over the
current chunk RC of relation R and builds a histogram of
hash keys. This histogram is used for a number of purposes
during both the partition and join phases (see Section 5.5).
Flip-Flop radix clusters the input relations (see Section 5.3).

R RP

RC N Fl
ip

-F
lo

p
 B

uff
er

F

FF
(a) Partitioning Phase

S RP

SC
F

Q FF

Fl
ip

-F
lo

p
 B

uff
er

(b) Joining Phase

Figure 4: Partitioning and Joining phases of MCJoin

PartitionUsingFlipFlopAndHistogram utilizes the histogram
and Flip-Flop buffer to scatter the current chunk RC into
Packed Partition Memory, RP (see Section 5.2). Join in-
vokes the join probing procedure between S′

C (i.e. the radix
clustered representation of SC) and RP (see Section 5.6).

Algorithm 1: High-Level MCJoin Algorithm
input : M = Memory Constraint, in bytes.
input : B = Hash Bit Length.
input : R = Input relation (outer).
input : S = Input relation (inner).
output: Q = output set containing joined tuples of R and S.

1 begin
2 DynamicallyAllocateMemory (M, B);
3 foreach RC in R do
4 H ← BuildHistogram(RC);
5 RP ← PartitionUsingFlipFlopAndHistogram(RC,H);
6 foreach SC in S do

7 S′C ← FlipFlop(SC); // S′C is radix clustered version of SC

8 Q ← Q ∪ Join(S′C,RP);

9 end

10 end

11 end

5.1 MCJoin Hash Key and Partitioning
As described in the overview, MCJoin operates in a sim-

ilar manner to the conventional Hash Join, where tuples
from input relations are scattered (based on a hash func-
tion applied to a key attribute) into hash table partitions.
The matching hash partitions of each of the input relations
would then be probed for join candidates. In a manner sim-
ilar to most existing Radix-Clustered Hash Joins[6, 10, 13],
MCJoin uses the least-significant B bits of the key attribute
in the tuple as a hash key. This simple technique has two
advantages - firstly, it is fast, and secondly it forms the ba-
sis of our compression technique described in Section 5.2.1.
The high performance is possible due to the use of a singu-
lar bitwise AND operation (with an appropriate bitmask)
to calculate the hash key. We also find that as each hash
bucket now contains items with identical least-significant B
bits (matching the hash bucket key), we are able to remove
this redundant data from the stored items, forming the basis
of our compression technique.

While this approach may be considered susceptible to data
skew, we evaluate MCJoin against skewed data in Section 6.2
and have found that there was no performance degradation
due to using this hash function.

payload key

1 12

2 4

3 109

4 19

5 115

6 7

... …

R
Binary Hash Key

00001100 100

00000100 100

01101101 101

00010011 011

01110011 011

00000111 111

000

001

010

011

00010011

01110011

100

00001100

00000100

101

01101101

110

111

00000111

Partitions of R
Hash

partition
key

Data
entry

Figure 5: Simplified MCJoin partitioning example

000

001

010

011

00010

01110

100

00001

00000

101

01101

110

111

00000

Compressed par ons of R
000

001

010

011

00010011

01110011

100

00001100

00000100

101

01101101

110

111

00000111

Par ons of R

Figure 6: Compressed partitioning example

The number of hash partitions produced from this hash
function is 2B . An example of the simplified MCJoin par-
titioning system is shown in Figure 5. For simplicity, we
assume that the tuple attributes in R are only 8-bit values,
and we set B = 3. Therefore, the three least significant bits
of the hash key (in this case, the value attribute) are used to
determine what partition the value scatters into (note that
we assume little endian architecture). As B = 3, we have
2B = 23 = 8 partitions for our hash table.

5.2 Data Compression
So far, we have examined how MCJoin builds the hash

partitions by treating the compression algorithm as a black
box. In this section, we will describe the MCJoin compres-
sion algorithm.

There are two kinds of compression utilized by MCJoin -
hash key compression, and payload compression. Both are
utilized simultaneously, but operate on different tuple at-
tributes. The hash key compression system is applied to the
join attribute. For the example shown in Figure 5, we are
using R.key. Payload compression applies to the non-join
attribute that will be needed to produce part of a joined
output tuple. From Figure 5, this would be R.payload.

Regardless of the compression employed, we shall refer to
the region of compressed memory holding the hash partitions
as “Packed Partition Memory”.

5.2.1 Hash Key Compression
Our first stage of data compression removes redundant

data from the hash key. As demonstrated in Figure 6, the
right-most (i.e. least significant) B bits of every data entry
in each hash partition is redundant (as it is the same as the
hash partition key). By stripping off the redundant bits of
each item stored in the hash table, we are able to express the
input data while using less bits than the original relations.
In the example shown in Figure 6, we are able to represent
an 8-bit value using only 5-bits. This represents a memory
savings of ∼ 38% compared to a conventional hash bucketing
method.

Whilst we are able to calculate a shortened bit-wise rep-
resentation of the data entries, it is not a trivial matter to
simply store these values verbatim into RAM. Instead, we
must write values into memory at a wider grain - typically in
words of 8, 16, 32, or 64 bits. Normally, this would be done
at the processor’s native word bit-width (our experimental
system uses a word length of 64-bits). To take advantage of
our condensed representation of values, we must sequentially
bit-pack these shortened values into native-width words. We
pack these shortened bits into native words through a com-
bination of bitwise SHIFT and OR operations.

It is possible that a condensed value will “stride” two
native-width words in memory. This will occur when B does
not cleanly divide into the native-word format. To deal with
such situations, two memory reads and two memory writes
will be required.

Using the Histogram (described in Section 5.5), we are
able to convert the ordinal position for any item of interest
within Packed Partition Memory into a word and bit offset
for retrieval.

Performance Analysis. Given the number of bit ma-
nipulations required to insert a value into packed partition
memory, it may initially appear that the memory writing
performance may be slower than a traditional Hash Join
method of partitioning, which requires no bit manipulation
for storage. However, an analysis of MCJoin’s compression
based partitioning strategy reveals that the extra costs of
bitwise operations to store compressed data is largely offset
by the cache-friendly nature of the data access patterns, and
the low CPU-cycle costs of bitwise operators. This results in
only a slightly higher overall partitioning time for MCJoin.

When accessing RAM, modern CPUs read a cluster of
memory around the item of interest. A copy of this cluster
(or more correctly, a“cache line”) is kept in local cache mem-
ory. Subsequent requests to nearby memory addresses can
be retrieved from the fast cache memory instead of slower
RAM. The Intel i7 has a cache line width of 64 bytes, and
as such read requests to RAM will retrieve 64 bytes of data
localized around the address of interest. Therefore, in ideal
circumstances, we can get 8 × 64-bit values from the cache
line with one RAM access. By packing more data into this
space, we maximize the amount of useful data transferred
per memory request.

Furthermore, it is far less expensive (in terms of CPU cy-
cles) to shift and mask out bits of interest from cache mem-
ory when compared to the cost of reading from RAM. On
the Intel i7 CPU, the bit-shifting operators (SHL / SHR)
and the bitwise AND instructions have a throughput of 0.5
and 0.33 respectively. That is, we can have two bit-shift
or three bitwise AND operations running concurrently per
clock cycle. This compares favorably against memory trans-
fers from RAM, which may take hundreds of clock cycles to
complete.

5.2.2 Payload Compression
By removing redundant information from the key attributes

within packed partition memory, we were able to realize sav-
ings in storage space for the key attributes. However, the
same technique is not possible for the payload attribute, as
the contents of these attributes bears no commonality with
the container partitions themselves.

One naive technique to store the payload attribute would
be to simply include this data along with the compressed
key attributes in a manner somewhat similar to how a con-
ventional Hash Join would operate. However, we can see
two immediate shortcomings from this technique:

1. The naive technique not saving any storage, and end
up polluting the contiguous packed partition memory
with data unrelated to the key attribute. This results
in less efficient bandwidth utilization.

2. Given a join with low selectivity, much of this pay-
load data will remain unused, and therefore consumes
memory for no immediate gain.

Therefore, rather than store the payload data directly into
packed partition memory, we will instead store an offset vec-
tor to the parent tuple. This vector will act as a relative off-
set from the base address of the current chunk of the input
relation. The bit width of each offset vector entry can be
minimized based on |RC |.

Figure 7 demonstrates the offset vector calculation. For a
given input chunk RC , we determine the base address to the
first tuple of RC . Therefore, for any given ith tuple RC , we
derive its offset to be i. The minimum number of bits needed

0
(tuple RC)

R
RC

Chunk Rc base address

N 1(tuple RC)

i(tuple RC)
O set = i

Figure 7: MCJoin Offset Vector

Figure 8: Packed Partition Memory

to represent the offset value for |RC | tuples is �log2(|RC |)�
bits.

With the offset vector stored in a compressed format, we
can use a bit shifting system identical to that used by the
hash key to store the offset into a separate packed partition
memory space allocated for offset vectors only.

Therefore, we have two separate packed partition memory
spaces: one for compressed keys, and another for compressed
payload offset vectors (see Figure 8). Matching key and off-
set vectors can be found in the corresponding ordinal po-
sitions in each memory space. Partition starting locations,
and item ordinal positions, can be calculated via the His-
togram as described in Section 5.5. The offset vectors can
be utilized to re-stitch matched candidate tuples during the
joining phase of the MCJoin algorithm - this is described in
Section 5.6.

5.3 Flip-Flop Buffer
As mentioned earlier MCJoin takes the radix clustering

approach to partition relations in order to reduce the per-
formance penalties associated with random memory access.
However, unlike existing work, MCJoin does not continu-
ously dynamically allocate memory to perform the cluster-
ing, but instead pre-allocates up to two buffers (for situ-
ations where two or more passes are required to complete
radix clustering) of a pre-determined size, and “flips” the
data being clustered between these two buffers (hence the
name, Flip-Flop Buffer). The pre-allocation of the buffers
avoids the costs of dynamic memory allocation, and to fur-
ther increase this efficiency, the Flip-Flop Buffer is only cre-
ated once and then reused throughout the MCJoin process.
We allow the Flip-Flop buffer to be of any size between |RC |
and |RC |

32
(where 32 is a value particular to our experimen-

tal system - please see Section 5.4 for its relevance). This is
because we break up RC into smaller subdivisions and radix
cluster each subdivision separately.

Determining the correct size of the Flip-Flop buffers is of
critical importance because Equation 1 in Section 4 implies
that significant processing cost savings come from maximiz-
ing |RC |. As both RC and the Flip-Flop buffer compete
for the same limited memory resources, we aim to lower the
capacity of the Flip-Flop buffer in order to maximize |RC |.
Taking this approach, a given chunk RC of relation R may
itself be processed by parts, with each part being individu-
ally radix clustered by the Flip-Flop buffer in turn.

This approach of lowering the capacity of the Flip-Flop
buffer not only grants overall performance gains by maximiz-
ing |RC |, it also grants higher Radix Clustering throughput
when the Flip-Flop buffer capacities are of a size that can
fit into the processor’s cache memory. This is demonstrated
in Figure 9, where our experimental system (as described in
Section 6.1) is tasked with radix clustering a relation of 16
million tuples. We vary the size of the Flip-Flop buffer from

0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9

1 10 100 1000 10000 100000

To
ta

l C
lu

st
er

in
g

Ti
m

e
(s

)

Relation chunks Flip-Flopped
Figure 9: Flip-Flop Clustering Performance vs. Iterations

a capacity that can service the entire relation in one pass,
down to a size that requires the relation to be divided into
100,000 parts for the Flip-Flop buffer to process. We find
that smaller Flip-Flop buffers correlate to increased parti-
tioning performance, with peak performance found at ap-
proximately the 1,000 iteration mark. At this size, we find
that the Flip-Flop buffer fits entirely into the L2 cache of
our i7 CPU (i.e. 256KB), yielding maximum performance.
It is important to note that a Flip-Flop buffer that is too
small can incur performance penalties, due to the execution
overheads becoming a significant cost.

The results shown in Figure 9 imply that smaller Flip-Flop
buffers do not increase clustering time, as long as care is
taken not to choose a buffer size that is so small that overall
performance will be penalized. Therefore, we can choose a
small flip-flop buffer size in order to maximize |RC |.

This same Flip-Flop buffer radix clusters chunks of both
the outer (RC) and inner relations (SC).

Whilst our analysis of the Flip-Flop buffer shows that
smaller-sized buffers are capable of yielding increased radix
clustering performance, it does not take into account the
amortized costs of invoking the Flip-Flop clustering mecha-
nism during the execution of MCJoin. All invocations of the
Flip-Flop buffer are followed by either a scatter operation
(during the partitioning phase) or a join operation (during
the join phase), which incur their own overheads. Therefore,
choosing the best-sized Flip-Flop buffer based solely on the
data presented in Figure 9 may not yield the expected re-
sults. Our computational cost model (see Equation 1) sug-
gest that the dominant factor in join execution cost is |RC |,
and the analysis shown in Section 5.4 verifies this model.
Our analysis of the Flip-Flop buffer’s performance there-
fore demonstrates the reasons why it is acceptable for the
Dynamic Memory Allocation system to choose smaller-sized
Flip-Flop buffers while attempting to maximize |RC |.

5.4 Dynamic Memory Allocation
Given a memory limit and a hash bit length, we describe

how MCJoin allocates memory between its three competing
data structures of histogram, packed partition memory for
RC and the Flip-Flop buffer. The size of the histogram is
fixed, once the hash bit length is set. The key concern is
how to allocate the remaining memory between the packed
partition memory for RC , and the Flip-Flop buffer. As men-
tioned in Section 4 larger |RC | results in lower total cost,
because it results in less passes through the inner relation,
as explained by Equation 1. We have developed a simple
yet effective approach towards dynamic memory allocation.

The idea behind Algorithm 2 is that we first look at how
many chunks we would partition R into if we assigned all of
MCRemain to the Packed Partition Memory. We do this us-
ing Lines 2 and 3 of the algorithm. RLBNC gives us a lower
bound on the number chunks of R for a given MCRemain.
Then in Line 3 we compute the number of tuples per chunk
of R (RTPC) if we evenly distributed the tuples in R into

Algorithm 2: Dynamic Memory Allocation
input : MCRemain, Memory Constraint after subtracting the memory

used by the histogram, in bytes
input : B, Hash Bit Length.
output: MPackedPartitionMemory , size of Packed Partition Memory,

in bytes.
output: MFlipFlop, size of the Flip-Flop buffer, in bytes.

1 begin
/* NumberOfPackedTuples returns the number of tuples that fits into Packed

Partition Memory of a given size */
2 RMaxTuples ← NumberOfPackedTuples(MCRemain,B);

3 RLBNC ←
⌈ |R|
RMaxTuples

⌉
;

4 RTPC ←
⌈ |R|
RLBNC

⌉
;

/* GetPackedMemoryAllocated returns the Packed Partition Memory size in bytes
that fits a given number of tuples */

5 MPackedPartitionMemory ← GetPackedMemoryAllocated(RTPC,B);

6 while MPackedPartitionMemory < α do

7 RLBNC ← RLBNC + 1;

8 RTPC ←
⌈ |R|
RLBNC

⌉
;

9 MPackedPartitionMemory ← GetPackedMemoryAllocated(B,RLB);

10 end
11 MFlipFlop ← MCRemain −MPackedPartitionMemory ;

12 end

RLBNC . Note that RTPC �= RMaxTuples because of the ceil-
ing function used in Lines 3 and 4. We use this difference
between RTPC and RMaxTuples to fit the Flip-Flop buffer.
As mentioned in Section 5.3 the Flip-Flop buffer may ac-
tually perform better when it is small (up to a point). We
introduce a parameter α that prevents the Flip-Flop buffer
from being too small. In our experiments we found setting
α = |RTPC |/32 works well. If MPackedPartitionMemory is
below α we lower |RTPC | to be a lower multiple of |R| until
MPackedPartitionMemory becomes larger or equal to α. (Lines
6 - 10). Finally we assign the Flip-Flop buffer the portion
of MCRemain that is not used by MPackedPartitionMemory in
Line 11.

We evaluate the performance of our memory allocation al-
gorithm by first measuring the performance under two sce-
narios: where we keep total memory limit Mtotal fixed and
vary B (as shown in Figure 10a), and fix B and vary Mtotal

(as shown in Figure 10b). For each combination of Mtotal

and B, we manually search for the best memory allocation
between Packed Partition Memory and the Flip-Flop buffer,
by varying the ratio by 5% increments. We compare this
performance range against our algorithm and note that our
algorithm meets the best recorded time in all cases. The
results show our dynamic memory allocation algorithm can
find the best manually found memory allocation in all cases
tested.

5.5 MCJoin Reusable Histogram
In this section we describe how MCJoin utilizes a his-

togram to manage partitioning, whilst being mindful about
operating under a constrained memory environment. To
avoid the overheads of dynamic memory allocation, MCJoin
statically allocates a pre-defined region of memory just once
to store a histogram, and then reuses this histogram to per-
form a number of different functions.

Specifically, MCJoin utilizes the histogram for two major
phases of operation: partitioning, and join probing. During
the partitioning phase, MCJoin requires the ability to deter-
mine the initial location of all partitions, and to track the
current end of each partition as the partitions progressively
fill up during the scatter process. During the join phase,
MCJoin is able to use the histogram to find the number of
join candidates for a given partition.

The life cycle of the MCJoin histogram is as follows. Prior
to the partitioning phase, the capacity of the histogram is
determined. The number of partitions utilized by MCJoin
is directly related to B, and as we wish to have one 32-bit
entry in the histogram for each partition, we find the total

(a) Example histogram values (b) Prefix sum values

(c) Post-scatter values (d) Post-reset values

Figure 11: Example histogram values, before and after
prefix sum

capacity to be that of 2B entries, and sufficient memory is
therefore allocated to host the histogram.

We initially populate the histogram by counting the num-
ber of tuples in RC that reside in each partition (see Fig-
ure 11a). Therefore each entry in Figure 11a represents the
number of tuples residing in the corresponding partition of
RC .
Next, we perform a prefix sum upon the histogram values

(see Figure 11b). Each entry of the histogram now repre-
sents the offset value (measured as a number of items from
a base point in memory) of each partition.

After the prefix sum has been performed, we scan through
RC (via the Flip-Flop Buffer), and for each tuple encoun-
tered, determine the matching partition that it belongs to.
We scatter this tuple to the packed partition memory ad-
dress calculated from the offset contained in the correspond-
ing partition entry in histogram, and increment the his-
togram entry. At any moment in time during this process
the current histogram value represents the current end po-
sition of the corresponding partition of RC . Once we have
completed our sweep through RC , the histogram will look
like the example shown in Figure 11c.

After the scatter process, we need to reset the histogram
to the original prefix-sum state because during the join phase
we need to know where each partition of RC starts. We
need to effectively reset the histogram. This is performed
by shifting every element into the successive position in the
histogram, while discarding the last value and placing 0 into
the first element (see Figure 11d). This simple and cost
effective way of resetting the histogram works because at
the end of the scatter process the end location of partition
i is the same as the beginning of partition i + 1, since the
partitions are stored contiguously.

The histogram is maintained during the join probing phase
of MCJoin. This is further described in Section 5.6.1.

To locate the J th item from partition P in packed parti-
tion memory, we perform the steps as shown in Algorithm
3.

Algorithm 3: Locating items in Packed Partition Mem-
ory
input : P = partition number.
input : J = ordinal item number within position.
output: Word = word offset from the beginning of packed partition

memory (hash key, or vector offset).
output: Offset = bit offset within word.

1 begin
2 Z ← GetHistogramValue(P);
3 Z ← Z + J;

4 Word =
⌊
Z×C
64

⌋
;

5 Offset = (Z × C) mod 64;

6 end

Where C is the number of bits written per entry. Note
that as divisions are costly instructions for the CPU to per-
form, we can replace the division with a bitshift 6 positions
to the right. Similarly, the mod instruction can be re-
placed by performing a bitwise AND with the value of 63.

5.6 Joining
Having completed the scattering and compression of a

given chunk RC of input relation R, the MCJoin algorithm
will iterate over input relation S and probe for join candi-

0

20

40

60

80

100

120

16 18 20 22 24

Ti
m

e
(s

)

Hash Bits

From algorithm

Best from manual search

Worst from manual search

(a) MCJoin Fixed 128MB Constraint

0

20

40

60

80

100

120

140

160

180

32 64 96 128 160 192 224 256

Ti
m

e
(s

)

Memory Constraint (MB)

From algorithm

Best from manual search

Worst from manual search

(b) MCJoin Fixed 22-bit Hash

Figure 10: Dynamic Memory Allocation

dates in packed partition space RP . As the tuples in S may
be unordered, we incur the risk of random memory access
patterns if we probe for join candidates on a“first come, first
served” basis. Therefore, we wish to restructure the tuples
in S to allow for cache-friendly memory access patterns.

We have already defined a “Flip-Flop” buffer during the
partitioning phase, with a capacity of F tuples. The Flip-
Flop utilizes our Multi-Level Radix Clustering technique to
cluster tuples based on a key attribute of bit radix length
B. We will utilize the input buffer to read one chunk SC

of S at a time, where the cardinality of SC will be defined
as F . We copy the chunk SC into the input buffer, and
perform radix clustering on the S.key attribute using a bit
radix length of B, producing the modified chunk S′

C . Once
clustering is completed, we iterate over the clustered tuples
of S′

C and probe for matches in RP . The overall strategy is
to progressively iterate through the chunks RC of relation
R as an outer loop and the chunks SC of S as an inner loop.
Given relations of unequal cardinality, the smaller relation
would be represented as R as this would simplify maximizing
|RC |.

5.6.1 Probing Sub-Phase
The probing sub-phase is performed in two distinct steps.

In step one, for a given tuple S′
Ci
, we mask out the least-

significant B bits of the key attribute (i.e. S.key) to de-
termine which partition in RP will contain join candidates.
We then examine the histogram entry for this partition to
see if there is a non-zero quantity of join candidates. Note
that as the histogram contains prefix sum values, for a given
partition P in histogram H, we find the number of join can-
didates X to be X = H[P + 1] − H[P]. If X = 0 then
we have no join candidates and move on to the next tuple
S′
Ci+1

. If X �= 0 then we proceed to step two.
For step two, we calculate the beginning address of candi-

date partition P in RP using the method described in Sec-
tion 5.5. We then iterate over the X packed keys in RP and
continue probing for matches. Should a match be found, in-
voke the Join Matching Sub-Phase. Once we finish scanning
all X items in RP , we return to step one.
Performance Considerations. Our approach to prob-

ing favors the architecture of modern CPUs, such as the Intel
i7, and exhibits memory access patterns that maximise data
throughput. Due to S′

Ci
being radix clustered, as we iterate

over it linearly the probes into the histogram are also linear.
As both S′

Ci
and the histogram are stored in contiguous-

memory data structures, we take full advantage of cache
coherency and due to the restricted range of memory ad-
dresses being probed, we also gain the advantage of having
full TLB backing.

5.6.2 Join Matching Sub-Phase
When a join match is located, we fetch the matching vec-

tor offset V (from the packed partition area for offsets) and
write a tuple consisting of (V, S.payload) into an output set
Q. If Q has reached a predefined maximum cardinality of
QMAX (i.e. the capacity of the pre-allocated output buffer)
then we proceed to the Tuple Stitching Sub-Phase, otherwise
we return to the previous phase.

Performance Considerations. To maintain high out-
put performance, we pre-allocate a contiguous output buffer
of a pre-defined size. Pre-allocating the output Q buffer
avoids subsequent dynamic memory allocation requests be-
ing made to the operating system for each matched tuple.
The contiguous memory layout also aids the tuple stitch-
ing sub-phase by being cache-friendly and encouraging read-
ahead behavior in the CPU.

5.6.3 Tuple Stitching Sub-Phase
There are two conditions that can invoke the Tuple Stitch-

ing Sub-Phase - the cardinality of output set Q has reached
a predefined value QMAX , or we have processed every tu-
ple of set S′

C . If the cardinality of Q is non-zero, we iter-
ate over every tuple of Q and read the offset vector, Q.V .
By adding this vector to the base address of RC , we can
find the address of the source tuple Ri. We replace the
value Q.V with R.payload, finally yielding the joined tuple
(R.payload, S.payload). We save this result back into Q and
continue processing the remaining tuples of Q in the same
fashion.

Performance Considerations. We chose to implement
the tuple stitching in batches (as a separate phase) for per-
formance reasons. During the join matching sub-phase we
seek to minimize working set size and maximize cache effi-
ciency by observing locality of data. When a join match is
found, if we immediately resolve the vector offset by fetch-
ing the corresponding tuple in R, we are likely to polute the
CPU cache and thus have a detrimental effect on the overall
performance of the join phase.

6. EXPERIMENTAL EVALUATION
In this section, we will conduct a series of experiments to

compare MCJoin against a naive memory constrained ver-
sion of the state-of-the-art MonetDB-styled Radix-Clustered
Hash Join (RCHJoin) algorithm by He et al. [10]. Although
the paper by He et al. is focused on joins using the graphics
processing unit, they also provided a highly optimized imple-
mentation of a MonetDB-styled Radix-Clustered Hash Join.
It is this implementation that we call RCHJoin.

We have modified RCHJoin in such a way that it is ca-
pable of running within a constrained memory environment.
Firstly, we modified RCHJoin to process the input relations
in chunks. Secondly, we used a dynamic memory allocation
system similar to that described in Section 5.4 for RCHJoin.
We verified that this dynamic memory allocation system
allocated resources in a fashion that produced the fastest

join execution times, by using a testing procedure similar to
those described in Section 5.4.

6.1 Experimental Setup
Our host platform is equipped with an Intel i7 860 CPU

running at 2.8GHz on an Asus P7P55LX motherboard. It
has 4GB of dual-channel DDR3 memory. The host platform
runs under Windows 7 x64 Enterprise Edition. Our devel-
opment environment is Microsoft Visual Studio 2010, using
Intel C++ Compiler v12.0. The configuration setting for
the compiler is “Maximize Speed plus High Level Optimiza-
tions”. We restrict the database joining algorithms to run
on a single processor core running at a fixed frequency. We
use a single core since the focus of our work is on making
join memory constrained instead of utilizing multiple cores.
It should be possible to parallelize our implementation to
take advantage of multiple cores like the existing work in
this area[10, 13]. We leave this as future work.

Our primary focus when taking performance-based met-
rics is to measure the elapsed time a particular task takes
to complete under experimental conditions. We will use the
high-resolution performance counters found in most mod-
ern PCs for this purpose. All results reported represent an
average of six sample runs.

Unless specified otherwise, the default parameters shown
in Table 1 are used.

Parameter Value

Cardinality of input relation R (|R|) 16000000

Cardinality of input relation S (|S|) 16000000

Column width (OID + value) 8 bytes

Number of hash partitions in bits B 24

Table 1: Default Parameters

We use the Boost C++ Libraries v1.44 [7] to generate
randomized data. Specifically, we utilize the mt19937 gen-
erator, which is a specialization of the Mersenne Twister
pseudo-random number generator [16]. We use a static ran-
dom number seed for all experiments.

We generate both uniform and skewed distributed data.
For uniform distribution we generate tuples of R and S
which have key value uniformly distributed between 1 and
|R| and |S|, respectively. For skewed distribution we keep
S uniformally distributed but the values in R are generated
using a Gaussian distribution with a default sigma of 1 and
mean of |S|/2. This means the values in R will match pre-
dominately on a small range of S values.

Controlling selectivity. For the uniformally distributed
data we control selectivity by varying the fraction of tuples
in R finding a match in S, we call this term β. This is done
by keeping the value range of S fixed between 1 and |S| and
varying the value range of R between |S| and |S|/β.

For skewed distributed data we again keep the range of
S fixed and vary the range of R. When generating each
value of R we first decide if it should match any tuple in S
by generating a uniformally random number between 0 and
1 and comparing it against β. If we decide to not match
anything in S we assign the tuple in R a value greater than
|S| (therefore outside the value range of S) otherwise we use
the same skewed distribution method as explained above to
pick a value within the value range of S.

6.2 Experimental Results
We conduct five experiments comparing MCJoin against

RCHJoin. First, we compare the scalability of MCJoin against
RHCJoin under no memory constraints. Second, we com-
pare MCJoin against RCHJoin under varying memory con-
straints. Third, we compare MCJoin against RCHJoin while

0

2

4

6

8

10

12

0 8 16 24 32 40 48 56 64

Jo
in

 E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Relation cardinalities (millions)

MCJoin

RCHJoin

Figure 12: MCJoin vs. RCHJoin - Scalability Under No
Memory Constraints

varying the selectivity of the data β. Fourth, we analyze the
ability of MCJoin at handling data skew. Lastly, we analyze
the performance of the join phase of MCJoin.

6.2.1 Scalability Under No Memory Constraints
We wish to establish a baseline performance benchmark

for MCJoin in an unconstrained-memory environment. We
varied the cardinality of input relations R and S to deter-
mine the scalability of MCJoin. For comparative purposes,
we measured the performance of RCHJoin under the same
scenario and contrast the performance against MCJoin.

Due to the initial setup costs of the MCJoin algorithm,
we expected that MCJoin would incur a small performance
penalty to RCHJoin but as we were able to make better use
of data compression for larger input relations, our expec-
tation was that MCJoin will make up any lost ground to
RCHJoin.

Our results (as shown in Figure 12) show that in an un-
constrained memory environment, the overall performance
of RCHJoin and MCJoin is quite similar, with a marginal
advantage going to MCJoin. The elapsed time measurement
scales quite linearly with relation size for both algorithms,
suggesting efficient use of the available processing power and
memory bandwidth. The results show MCJoin marginally
outperforms RCHJoin despite the fact that MCJoin needs to
perform compression whereas RCHJoin does not. The rea-
son for this is two fold. First, MCJoin has a very efficient
compression algorithm which incurs minimal compression
and decompression overheads. Second, the multi-level radix
clustering and multi-purpose histogram of MCJoin results
in reduced CPU stall times due to memory latency.

6.2.2 Varying Memory Constraint
Figure 13 contrasts the performance levels of MCJoin and

RCHJoin whilst operating in a constrained-memory environ-
ment. Both algorithms were granted the restricted memory
spaces of 128MB, 256MB, 384MB, and 512MB, and for each
restricted memory setting we varied the cardinality of the
input relations. We increased these cardinalities up to a
size where neither relation could be copied fully into the
restricted memory space.

MCJoin’s fast compression allows it to effectively get more
tuples of R into RC compared to RCHJoin, resulting in lower
total passes through inner relation S (see Figure 13c). This
performance difference is quite marked, as shown in Fig-
ure 13. Under the worst memory constraint MCJoin still
outperforms the best times recorded for RCHJoin. For the
majority of tests, MCJoin performed between 300%− 400%
faster than RCHJoin. Of particular note for MCJoin is that
the 384MB and 512MB constraint result times are almost
identical. Even though more processing work was required
for the 384MB test run, the results indicate that MCJoin had
reached maximum saturation point for the available memory
bandwidth of our experimental system.

0

100

200

300

400

500

600

700

32 64 96 128 160 192

Ex
ec

ut
io

n
Ti

m
e

(s
)

Relation cardinalities (millions)

MCJoin - 128MB
MCJoin - 256MB
RCHJoin - 128MB
RCHJoin - 256MB

(a) 128MB and 256MB Memory Constraints

0

50

100

150

200

250

32 64 96 128 160 192

Ex
ec

ut
io

n
Ti

m
e

(s
)

Relation cardinalities (millions)

MCJoin - 384MB
MCJoin - 512MB
RCHJoin - 384MB
RCHJoin - 512MB

(b) 384MB and 512MB Memory Constraints

0

2

4

6

8

10

12

14

16

32 64 96 128 160 192 224 256

To
ta

l P
as

se
s T

hr
ou

gh
 In

ne
r

Re
la

tio
n

S

Memory Constraint (MB)

MCJoin

RCHJoin

(c) Total Passes Through Inner Relation S

Figure 13: MCJoin vs. RCHJoin - Constrained Memory

6.2.3 Varying selectivity (β)
In this experiment we vary the selectivity of the default

data set under no memory constraints. We vary selectiv-
ity using the β term described in Section 6.1. β effectively
represents the fraction of tuples in R matching at least one
tuple in S.

The results shown in Figure 14a indicate that both MCJoin
and RCHJoin respond in a similar manner (i.e. a gradual
decrease in performance) to higher values of β when data
is uniformly distributed. This matches our expectations, as
both algorithms will find more join candidates in all hash
partitions probed that must be resolved. However, close
inspection of the results shown in Figure 14b suggest that
MCJoin suffers a lesser penalty for higher values of β when
the data is skewed. This would be a result of the join can-
didate probing method used by MCJoin, and we will take a
closer examination of how this behaves in Section 6.2.4.

6.2.4 MCJoin Skew Analysis
The results shown in Section 14b give an indication that

MCJoin exhibits a tolerance to skewed data. To examine
this further, we set β = 1, and then we forced the skew to
become progressively narrower by varying the σ parameter
of the Gaussian distribution. We again conduct this experi-
ment in a non-memory constrained environment.

We expected MCJoin to respond well to skew due to the
way it probes for join candidates. As is shown by Algo-
rithm 1 in Section 5, we iterate over the tuples in S′

C (the
radix clustered copy of SC) in a sequential manner and lin-
early probe the Histogram (H) for join candidates. This
process is very cache friendly as all memory access is con-
tiguous in nature, therefore being cache friendly and will
also lend well to speculative execution on the CPU. In heav-
ily skewed data, we will find that a very small subset of the
tuples in S′

C find join candidates in a very small subset of
H. When these probes continue into packed partition mem-
ory, the join phase will find all candidate matches linearly
arranged in partition memory. This will allow for a very
efficient resolution of joins.

The results shown in Figure 14c confirm our expectations.
Whilst partitioning times gain little advantage from the in-
crease in skew, the join phase finds such a data layout fa-
vorable and therefore takes less time to complete.

6.2.5 MCJoin Join-Phase Analysis
A Hash Join gains performance advantages over a Nested-

Loops Join by partitioning the relational data in such a way
that less comparisons are needed between the tuples of R
and S to resolve the join. Therefore, the number of parti-
tions used by the Hash Join should be directly related to
the overall join performance. To examine this further, we
varied the value of B, increasing the number of partitions
used by MCJoin. We measured the time it took to scatter
the data into these partitions, and also time it took for the

joining phase to complete. We again conduct these exper-
iments in a non memory constrained experiment. In these
experiments we reduced the size of the data to |R| = 1M
and |S| = 1M because for small values of B it took a long
time to execute the default data set (starting to approach
Nested-Loops Join performance).

Figure 14d quickly highlights the inadequacies of having
too few partitions for MCJoin. Whilst not as slow as a
Nested-Loops Join (our experimental system took 2213 sec-
onds to resolve this join using Nested-Loops), a setting of
B = 4 does not yield a timely join result when compared
to higher values of B. For values of B < 16, the join phase
accounts for the bulk of overall join processing time. For
this smaller sized data a setting of B = 20 yields optimal
results. While the join phase time continues to improve for
larger values of B, the partitioning costs start to become
significant and overall performance drops off.

We expect that the partitioning costs will play a more
significant role for relations of higher cardinalities, but we
note as future work the ability to automatically tune B to
the best value suited for given input relations.

7. CONCLUSIONS
The main contribution of this paper is to propose a mem-

ory constrained join algorithm called MCJoin. The algo-
rithm uses a combination of lightweight, lossless compres-
sion, high-speed multi-level radix clustering, and a multi-
purpose histogram to offer very high join performance in a
memory constrained environment. This contrasts with all
existing work in this area which assumes unlimited available
temporary memory to perform the join.

Extensive experimental results show that MCJoin out-
performs the a naive version of the current state-of-the-
art Radix-Clustered Hash Join algorithm (RCHJoin) in a
variety of situations. It is very encouraging to see that
even in the unfavorable unconstrained memory environment
MCJoin can still marginally outperform RCHJoin. This can
be attributed to the highly-efficient compression algorithm
of MCJoin and the efficient utilization of memory bandwidth
by MCJoin. In a constrained memory environment, MCJoin
can vastly outperform RCHJoin by almost 500%. MCJoin
was shown to perform well under skewed data distributions.

Recently, Graphics Processing Units (GPU) have become
easier to program for general purpose applications through
such interfaces as NVIDIA’s CUDA. The packed partition
memory of MCJoin is particularly well suited for maximizing
bandwidth efficiency of the bus between CPU RAM and
GPU RAM. For future work we would like to pursue a GPU-
enabled variant of MCJoin. Another direction of future work
is to extend the MCJoin to handle multi-way joins. Finally,
developing a memory constrained version of the Sort-Merge
Join is another interesting direction of further work.

1.5

1.7

1.9

2.1

2.3

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
ec

ut
io

n
Ti

m
e

(s
)

 β (fraction of matching tuples)

MCJoin
RCHJoin

(a) Varying β (Uniform Data) (b) Varying β (Skewed Data)

0
0.2
0.4
0.6
0.8

1
1.2

Co
m

bi
ne

d
pa

rt
iti

on
in

g
an

d
jo

in
in

g
tim

e
fo

r R
 (s

)

Sigma

Joining
Partitioning

(c) MCJoin Skewed Analysis

0.01

0.1

1

10

100

1000

4 6 8 10 12 14 16 18 20 22 24 26

Ex
ec

ut
io

n
Ti

m
e

(s
)

B (number of bits)

Other Time

Joining Time

Partitioning Time

(d) MCJoin Varying B

Figure 14: MCJoin vs. RCHJoin (Varying β), and MCJoin Analysis

8. REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented
database systems. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of
data, SIGMOD ’06, pages 671–682, New York, NY,
USA, 2006. ACM.

[2] D. J. Abadi, S. R. Madden, and N. Hachem.
Column-stores vs. row-stores: how different are they
really? In SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, pages 967–980, New York, NY,
USA, 2008. ACM.

[3] D. J. Abadi, D. S. Myers, D. J. DeWitt, and
S. Madden. Materialization strategies in a
column-oriented dbms. In Proceedings of ICDE, pages
466–475, 2007.

[4] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. DBMSs on a Modern Processor: Where Does
Time Go? In VLDB ’99: Proceedings of the 25th
International Conference on Very Large Data Bases,
pages 266–277, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[5] P. A. Boncz, M. L. Kersten, and S. Manegold.
Breaking the memory wall in MonetDB. Commun.
ACM, 51(12):77–85, 2008.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten.
Database Architecture Optimized for the New
Bottleneck: Memory Access. In VLDB ’99:
Proceedings of the 25th International Conference on
Very Large Data Bases, pages 54–65, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[7] boost.org. Boost c++ libraries.
http://www.boost.org/, 2010.

[8] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, 1970.

[9] G. P. Copeland and S. N. Khoshafian. A
decomposition storage model. In SIGMOD ’85:
Proceedings of the 1985 ACM SIGMOD international
conference on Management of data, pages 268–279,
New York, NY, USA, 1985. ACM.

[10] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,

Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4):1–39, 2009.

[11] A. L. Holloway and D. J. DeWitt. Read-optimized
databases, in depth. Proc. VLDB Endow., 1:502–513,
2008.

[12] S. N. Khoshafian, G. P. Copeland, T. Jagodis,
H. Boral, and P. Valduriez. A Query Processing
Strategy for the Decomposed Storage Model. In
Proceedings of the Third International Conference on
Data Engineering, pages 636 – 643, Washington, DC,
USA, 1987. IEEE Computer Society.

[13] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D.
Nguyen, N. Satish, J. Chhugani, A. Di Blas, and
P. Dubey. Sort vs. hash revisited: fast join
implementation on modern multi-core cpus. Proc.
VLDB Endow., 2(2):1378–1389, 2009.

[14] M. Zukowski, P. A. Boncz, N. Nes, and S. Heman.
MonetDB/X100 - A DBMS In The CPU Cache. IEEE
Data Engineering Bulletin, 28(2):17–22, 2005.

[15] Manegold, S.; Boncz, P.; Kersten, M.;. Optimizing
main-memory join on modern hardware. Knowledge
and Data Engineering, IEEE Transactions on,
14:709–730, 2002.

[16] M. Matsumoto and T. Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans.
Model. Comput. Simul., 8(1):3–30, 1998.

[17] A. Shatdal, C. Kant, and J. F. Naughton. Cache
conscious algorithms for relational query processing.
In VLDB ’94: Proceedings of the 20th International
Conference on Very Large Data Bases, pages 510–521,
San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[18] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: a column-oriented DBMS. In
VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 553–564.
VLDB Endowment, 2005.

