
Noname manuscript No.
(will be inserted by the editor)

Path and Cache Conscious Prefetching (PCCP)

Zhen He1, Alonso Marquez2

1 Department of Computer Science and Computer Engineering
La Trobe University
Bundoora, VIC 3086
Australia
e-mail: z.he@latrobe.edu.au

2 Department of Computer Science
The Australian National University
Canberra, ACT 0200
Australia
e-mail: alonsomarquezes@yahoo.es

Abstract Main memory cache performance continues
to play an important role in determining the overall per-
formance of object-oriented, object-relational and XML
databases. An effective method of improving main mem-
ory cache performance is to prefetch or pre-load pages in
advance to their usage, in anticipation of main memory
cache misses. In this paper we describe a framework for
creating prefetching algorithms with the novel features of
path and cache consciousness. Path consciousness refers
to the use of short sequences of object references at key
points in the reference trace to identify paths of naviga-
tion. Cache consciousness refers to the use of historical
page access knowledge to guess which pages are likely
to be main memory cache resident most of the time and
then assumes these pages do not exist in the context
of prefetching. We have conducted a number of experi-
ments comparing our approach against four highly com-
petitive prefetching algorithms. The results shows our
approach outperforms existing prefetching techniques in
some situations while performing worse in others. We
provide guidelines as to when our algorithm should be
used and when others maybe more desirable.

Keywords: prefetching, clustering, caching, databases.

1 Introduction

The current rate of performance improvement for CPUs
is much higher than that for memory or disk IO. CPU
performance doubles every 18 months while disk IO im-
proves at only 5-8% per year. In addition, cheap disks
mean databases will become bigger as database designers
realise that more data can be stored [1]. A consequence

of this is that disk IO is likely to be a bottleneck in an in-
creasing number of database applications. It should also
be noted, memory is also becoming a more prevalent
source of bottleneck on modern DBMSs [2]. This paper
is focused on reducing disk IO stalls rather than level 1
(L1) and level 2 (L2) cache misses. However, it is impor-
tant to note that the methods described in this paper
can be used in conjuction with prefetching techniques
designed for L1 and L2 caches.

Throughout the rest of this paper we will use the
word cache to denote the main memory cache. The IO
bottleneck occurs when an application requests a page
which is not cache resident. The result is the requested
page must be loaded from disk while the application
waits. This method of fetching pages into cache is re-
ferred to as demand fetching. However, if the Object
Database Management System (ODBMS)1 can predict
which disk resident page is likely to be requested next,
it can load that page in advance. This method of pre-
loading user’s requested pages in the background is re-
ferred to as prefetching. Prefetching allows disk IO to be
overlapped with CPU, thus reducing disk IO stall time.
In this paper the word prefetching refers to prefetches
from disk.

Central to the design of prefetching algorithms is the
design of the prediction engine. Most existing prefetch-
ing algorithms for ODBMSs use a context-model-based
prediction engine [3–5]. Context-model-based prediction
engines use historical access information to make future
prefetching decisions. There are two problems with ex-
isting context-model-based prediction engines:

1 From this point on, we will use the term ‘ODBMS’ to
collectively refer to object oriented, object relational, and
XML database management systems.

– The high storage cost of storing object-grained access
statistics.

– The small time gap between prediction and reference
of the next prefetched page.

Storing access statistics at the object-grain [4–8] can
provide prediction engines with more precise statistical
information of access patterns. However, the high stor-
age cost of object-grained prefetching algorithms often
limit their applicability. Large storage overheads leads
to a reduced cache size for the data objects themselves.
This in turn leads to reduced time between disk page re-
quests. The consequence is less time is available for the
prefetch algorithm to overlap CPU and disk IO.

Another problem with existing prediction engines for
ODBMSs is the small time gap between prediction and
reference of the next prefetched page. The consequence
is that there is little potential overlap between IO and
CPU. Existing prediction engines can only predict the
next disk page request a few object references ahead of
time. This limitation is becoming a bigger problem, since
the rate of CPU improvement is much greater than that
of disk IO. Therefore the CPU time it takes to process
each object becomes much smaller relative to one disk
IO2. This in turn leads to a smaller amount of over-
lap between CPU and disk IO for prefetchs started the
same number of object references in advance. The path
and cache conscious prefetching framework (PCCP) ad-
dresses both of these deficiencies in existing prefetching
algorithms designed for ODBMSs.

During prediction engine training, PCCP minimizes
statistics storage by storing short sequences of object
references at key points (which we term ‘feature points’)
in the reference trace. When these feature points are
later encountered at prefetch time, the stored statistics
are used to decide if a prefetch should be started. These
feature points are selected to be sparsely spaced and
early in terms of when the next prefetched page will be
referenced.

There are two key concepts in PCCP, path and cache
consciousness. Path consciousness refers to the careful
selection of feature points so that the current path of
navigation can be identified early and cheaply. In cache
conscious prefetching, historical page access knowledge
is used to guess which pages are likely to be cache resi-
dent most of the time (we term these pages ‘resident’
pages) and these pages are then ignored in the con-
text of prefetching. Therefore cache conscious prefetch-
ing reduces the number of feature points to only those
that occur during traversal of pages deemed to be ‘non-
resident’, thereby reducing the total volume of statis-
tics stored. An even more important result of cache con-
sciousness is that only ‘non-resident’ pages are candi-
dates for prefetching. The implication of this property

2 Assuming the amount of computation per object remains
the same.

is that prefetches can be started earlier (section 4.2 ex-
plains the reason for this behavior).

Two complementary techniques for addressing the
disk IO bottleneck in ODBMSs are clustering and buffer
replacement. Clustering is the arrangement of objects
into pages so that objects accessed close to each other
temporally are placed into the same page. This in turn
reduces the total volume of IO generated. Buffer replace-
ment involves the selection of a page to be evicted when
the cache is full. Selection of the correct page for evic-
tion results in a reduction in the total volume of IO
generated by the system. In this paper we focus on de-
veloping new prefetching techniques. However, PCCP
can use clustering and buffer replacement information
to help make more informed prefetching decisions. We
demonstrate the usefulness of this approach by creating
and benchmarking the integrated prefetching algorithm
(IP), an instance of PCCP.

We have conducted an extensive performance evalua-
tion of six different prefetching algorithms: four existing
prefetching algorithms PPM-1 [3], PPM-3 [3], PMC [4]
and EPCM [9]; and two new algorithms created from
PCCP. The results show PCCP algorithms outperforms
PPM-1, PPM-3, and PMC in most situations. When
compared to EPCM each algorithm has its own mer-
its. PCCP algorithms are more robust to variations in
prefetch threshold settings and use upto 20 times less
storage overheads. However, EPCM produces less stall
time than PCCP when EPCM is fine tuned to its opti-
mal prefetch threshold and the cache size is large.

This paper makes the following contributions: it de-
fines the PCCP prefetching framework which allows the
creation of a new family of prefetching algorithms; val-
idates the utility of PCCP by creating two new prefetch-
ing algorithms; and conducts an experimental study com-
paring the performance of the new prefetching algorithms
with four existing prefetching algorithms.

The remainder of this paper is organised as follows.
Section 2 provides a brief description of existing prefetch-
ing algorithms. A formal problem statement is stated
in section 3. The PCCP framework and its benefits are
described in section 4. Two new prefetching algorithms
created using the PCCP framework are described in sec-
tion 5. The experimental setup used to evaluate the
prefetching algorithms are detailed in section 6. Experi-
mental results comparing the two PCCP algorithms with
four existing algorithms are reported in section 7. Lastly
section 8 concludes the paper and indicates directions
for future research.

2 Related Work

Gerlhof et. al. [10] identify two dimensions along which
prefetching algorithms can be classified: prediction en-
gine used; and granularity of prediction.

2

Prediction engines are typically divided into four types:
strategy-based; structure-based; hint-based; and context-
model-based.

Strategy-based prefetching algorithms use explicitly
programmed strategies to decide which objects to prefetch.
The simplest example is the one block lookahead algo-
rithm (OBL) [11], which upon a demand fetch3, prefetches
the next adjacent block. Another example is Thor’s
prefetching policy [12]. Thor divides objects into prefetch
groups and whenever an object in a prefetch group is re-
quested, all the objects in the group are fetched. More
recently, Bernstein et al. [6] proposed a new strategy-
based prefetching algorithm that fetches all objects in
the structure context of the requested object. Exam-
ples of structure context include query results and col-
lections. The general problem with strategy-based pre-
diction engines is their lack of flexibility in catering for
different paths of object graph navigation.

Structure-based prefetching algorithms obtain infor-
mation from object structure. In Chang and Katz’s [7]
approach, objects are linked via three types of struc-
tural relationships: inheritance; configuration; and ver-
sion history. The user specifies which type of relationship
he/she is currently navigating under and this informa-
tion is used in combination with the structural hierar-
chy graph to decide which objects to prefetch next. The
problem with this approach is its reliance on user pro-
vided information. Knafla [8] proposes an approach in
which different possible paths of navigation are first iden-
tified using the object graph alone and then as client nav-
igation proceeds, the prefetch algorithm uses the current
navigational context to determine which path is likely to
be taken. All structure-based approaches assume objects
will always be accessed by navigating references defined
in the object graph, however, ad hoc queries do not nav-
igate the object graph. Thus structure-based approaches
perform poorly when ad hoc queries are used.

Hint-based prefetching algorithms [13] uses hints from
applications to make prefetching decisions. Patterson et
al. in [13] show how to use application disclosed access
patterns (hints) to prefetch disk blocks in a file sys-
tem setting. They also dynammically allocate file buffers
among the three competiting demands of prefetching
hinted blocks, caching hinted blocks for reuse and caching
of recently used data for unhinted accesses. The draw-
back of hint-based approaches is the reliance on applica-
tion provided hints. In the real world these hints often
do not exist.

Context-model-based prefetching algorithms uses pre-
ceding events to model the next event. Examples algo-
rithms include the Fido[5], PMC[4], PPM[3,14], type-
level-based prefetching[15], PCM[16] and EPCM[9].

The Fido algorithm [5] prefetches by identifying and
matching sequences of object accesses and storing them
as patterns in pattern memory. However, their pattern

3 When a page is loaded upon request and no sooner.

memory mechanism of storing access sequences is pro-
hibitively expensive. The PMC prefetching algorithm [4]
uses discrete-time Markov chains (DTMC) to model ob-
ject level access patterns. Since DTMC only allow the
prediction of future accesses based on the current state,
they only incorporate path information of length one.
This approach is expensive in terms of statistics stor-
age cost (using DTMC to model object-level transitions)
and makes predictions late (short time between predic-
tion and when the next prefetched page is referenced).

The algorithms in [3,14] use the principles of data
compression for training and prediction. The intuition
is that data compressors typically operate by predict-
ing the dynamic probability distribution of the data to
be compressed. If the data compressor successfully com-
presses the data, then its predicted probability distribu-
tion must be correct and can then be used for prediction
in prefetching. One such algorithm is the predicition-
by-partial-match (PPM) prefetching algorithm [3]. PPM
uses a predictor-based on the higher order Markov chains
(HMC) model. Curewitz et al. [3] found that PPM-3
(HMC model of order 3) gave the best performance among
PPM and Fido. The problem with PPM is the coarse-
grain (page-grain) at which statistics are stored. This
coarse granularity of prediction produces less accurate
prediction engines when compared to PCCP algorithms
(which uses a hybrid object/page grain prediction en-
gine).

Vitter et al. in [14] prove that compression-based al-
gorithms are optimal under the assumption that there
is sufficient time between page requests to prefetch as
many pages as needed and the cache size is the only
constraint. However, in the real world this assumption
is rarely valid.

Han et al. [15] proposed a type-level-based prefetching
algorithm for ORDBMSs. In their algorithm, recurring
access patterns at the type-level are first identified and
then used for prediction. Type-level access patterns are
patterns of attributes that are referenced when access-
ing the objects. The drawback of this approach is its
dependency on type-level access locality. Many ODBMS
applications issue short ad hoc queries to the database,
these queries do not exhibit type-level access locality.

Kroeger et al. in [16] proposed an approach for prefetch-
ing files in a files system based on a partitioned context
model(PCM). In this approach a context model uses a
trie (tree based data structure) to store sequences of
events efficiently. The storage cost is bound by O(nm),
where m is the highest order tracked and n is the num-
ber of unique files. If the number of files is large this
approach uses too much storage space. To overcome this
drawback the trie is partitioned, so that each partition
consists of a first order node and all of its descendants.
The number of nodes in each partition is limited to a
static number that is a parameter of the model. The
effect is that space requirements become O(n).

3

Kroeger et al. in [9] identified that the PCM ap-
proach started prefetches too late and thus causing there
to be only a small amount of overlap between disk IO
and CPU. Kroeger et al. in [9] improves on PCM by
proposing the extended PCM(EPCM) algorithm, which
extends the model’s maximum order to between 75%
and 85% of the partition size. PCM restricts how the
model grows by only allowing one node to be created
for each instance of a specific pattern. In addition, if the
predicted nodes has a child that has a high likelihood
of access, we can also predict that file. The result is an
algorithm that is both storage efficient and allows pre-
dictions to start early. However, the work is done in the
context of prefetching files in file systems. This differs
from our aim of prefetching pages in ODBMSs. However,
in the experimental part of this paper we have adapted
EPCM to prefetch pages for ODBMSs. In this paper we
adapt EPCM to prefetch at the page-grain instead of the
object-grain due to the fact EPCM is most effective if it
is configured to store long sequences of references, but
long sequences of object references would be prohibitively
large to store in an OODBMS. Although EPCM allows
memory usage to be limited (by limiting partition size),
this comes at the expense of not being able to store long
sequences of references. Our experiment in Section 7.3
shows that the page-grained EPCM already uses upto
20 times the storage space of the PCCP algorithms.

The second dimension of prefetching algorithm classi-
fication is granularity of prediction. There are three typ-
ical grains of prediction: object-grain; page-grain; and
attribute-grain. object-grained techniques [4–8] make pre-
dictions using object-level information. page-grained al-
gorithms [3,11] observe access patterns that occur at the
page-level (popular in file systems research). Attribute-
grained algorithms use patterns of attributes to make
predictions, eg. Han et al. [15] type-level-based prefetch-
ing algorithm.

Cao Pei et al. in [17] study the implications of in-
tegrating prefetching and buffer replacement when pre-
fect knowledge of future access sequence is known. They
argued that prefetching too early maybe harmful since
early prefetching results in early buffer replacement if
the cache is full. Early buffer replacement can be harm-
ful since new and better replacement opportunities may
open up as the program proceeds. Using this observation
they develop two new integrated prefetching and buffer
replacement algorithms called aggressive and conserva-
tive. These strategies were found to reduce application
running time by up to 50% compared to no prefetch-
ing. However, their research is not applicable to our
work since we do not assume perfect knowledge of fu-
ture access patterns. In addition, their study was done
within the context of file systems whereas we focus on
ODBMSs.

Cao Pei et al. in [18] improve on their work in [17]
by presenting the design and implementation of inte-
grating application-controlled caching, prefetching, and

disk scheduling in the multiprocess environment. They
improve disk access latency by submitting prefetches in
batches so that the requests can be scheduled to optimize
disk access performance. Another improvement is that
they no longer assume perfect future knowledge. They
also show the proposed approach leads to significant per-
formance improvement on real applications. However,
like their previous study it is done in the context of files
systems instead of ODBMSs.

Kraiss et al. in [19] consider an integrated approach
to vertical file migration between tertiary, secondary,
and primary storage. One of their sub-problems is the
prefetching of documents from tertiary storage to sec-
ondary storage. They use a continuous Markov chain
model for prediction purposes. The reason they are able
to use the computationally expensive continuous Markov
chain model is that they are optimizing for the high la-
tency of the tertiary storage. However, in our problem
we are optimizing for the relatively lower latency of sec-
ondary storage and thus can not afford the overhead of
a maintaining a continuous Markov chain model.

3 Problem Statement

Given an object base, a set of workloads that operate
on the object base, a buffer replacement algorithm, an
object to page mapping (maybe created by a static clus-
tering algorithm4), we are interested in improving the
throughput5 of the system by reducing the total stall
time. The system can either load a page in response to
a cache miss (demand fetch), or it can load a page be-
fore it is referenced in anticipation of a miss (prefetch).
Let us assume it takes F time units to load a page into
memory. When a program tries to access a page that is
not available in the cache, it stalls until the page arrives
in the cache. The stall time is: F if the page is loaded
on-demand; F − i if the load was started i time units
ago; or F + (F − i) if the currently loading page (load
initiated i time units ago) is not the requested page. The
F + (F − i) stall time is derived from F − i time units
spent blocked loading the wrong page (not the next re-
quested page), plus the F time units spent loading the
correct page.

In our problem we assume disk IO can only be pro-
cessed sequentially, and therefore, concurrent disk IO is
not considered. We leave the concurrent disk IO prob-
lem for future work. We also assume a single user en-
vironment. Therefore, we do not consider multiple user
transactions.

To reduce stall time, the prefetching algorithms at-
tempt to accomplish the following goals:

– Increase prefetch accuracy: Correctly predicting
and loading the next disk page request. Frequent

4 Static clustering algorithms, recluster the database of-
fline.

5 Long term average performance.

4

wrong prefetches may cause system performance with
prefetching to drop below that of demand fetching.

– Earlier prefetching: Earlier anticipation and prefetch-
ing of the next disk page request results in more over-
lap between IO and CPU.

– Low overheads: CPU and storage costs for both
prediction and prefetching need to be kept low in
order to make prefetching profitable.

Note the first and second goals are often in conflict. In
general the earlier the prefetching is started the greater
the number of possible candidate pages to prefetch. Since
only one of these pages is the correct page, more candi-
date pages usually results in lower prefetch accuracy.

4 Path and Cache Conscious Prefetching
(PCCP)

In this section we first describe the concept of path and
cache conscious prefetching (PCCP). We then demon-
strate the benefits of PCCP via a concrete example.
Lastly we define the PCCP framework.

4.1 The Concept

This section introduces the two key concepts, path and
cache conscious prefetching. Both concepts rely on his-
torical training data to gain insight into how the database
is being used. The training data is then used during
prefetching.

In path conscious prefetching, features in the object
trace are remembered during training and used to iden-
tify the current path of navigation during prefetching.
The current navigational path information can then be
used to determine the next non-memory resident page
to be prefetched. The goal of path conscious prefetching
is to identify the current path of navigation as early and
accurately as possible.

Cache conscious prefetching uses training data to di-
vide the pages of the database into two types: ‘resident’;
and ‘non-resident’. ‘Resident’ pages are deemed to be
always memory resident (however, in practice they will
sometimes be non-memory resident but this should occur
rarely). In contrast, ‘non-resident’ pages are deemed to
be always non-memory resident (again in practice these
pages are sometimes in memory). Having divided the
database into ‘resident’ and ‘non-resident’ pages, cache
conscious prefetching is only interested in prefetching the
‘non-resident’ pages. Since ‘resident’ pages are almost al-
ways in memory, avoiding them completely will cost only
a small number of prefetch opportunities. The benefits of
such an approach are that prefetching can be started ear-
lier and prefetching storage overheads are lowered (only
storing statistics for ‘non-resident’ pages). The reasons
this approach allows prefetching to be started earlier are
described in section 4.2.

Path and cache conscious prefetching can be used in a
complementary fashion. First, cache conscious prefetch-
ing is used to classify pages as either ‘resident’ or ‘non-
resident’. Then path conscious prefetching gathers prefetch-
ing statistics using a limited scope (‘non-resident’ pages
only). This approach provides the benefits of both path
and cache conscious prefetching.

4.2 The Benefits of PCCP

In this section we describe the benefits of PCCP via
a concrete example. In the example, PCCP is compared
against three existing highly competitive context-model-
based prefetching algorithms, PPM-2, PMC and a page-
grained EPCM (see section 2 for a description).

Figure 1 contrasts the statistics collected by the prefetch-
ing algorithms, PMC, PPM-2, PCCP, and EPCM, given
the same example object base navigations.

Figure 1(a) conveys both the illustration of two paths
of navigation (path 1 and path 2) and PMC’s object
transition statistics. PMC uses an object level Discrete-
Time Markov chains (DTMC) model to make predic-
tions. This means PMC only stores object transition
statistics between consecutive pairs of object references.6

These statistics are stored in an object transition graph
in which nodes represent objects and weights on edges
represent probability of traversal. In order to avoid clut-
tering the figure, transition probabilities are not depicted.
However, for the purposes of this example it is sufficient
to assume that all probabilities are some number greater
than zero but less than one. Now assume navigations
starting from object O1 always either follow path 1 or
path 2. It should be possible to prefetch either page P4 or
P6 depending on which object is referenced after object
O1. Page P4 should be prefetched if the access sequence
is O1, O2. Similarly the access sequence O1, O3 should
predict page P6. The problem with using PMC is that
the statistics collected only capture the probability of
transiting from one object to the next. This means that
using PMC’s statistics we can not prefetch with total
confidence until we observe which path starting from O4

is taken (from object O4 there are three different possi-
ble objects to reference next). Therefore in this example
PMC can not perform any prefetching if we need to have
total confidence before prefetching a page. However, it
is important to note that prefetching can be configured
so that the pages with the highest probability of being
referenced is prefetched, even if the confidence that the
page will be referenced in less than 100%. In this case
predictions can be made further into the future. How-
ever, in our example the page that would ultimately be
prefetched by PMC would depend on the relative fre-
quency of the following reference sequences O4, O5; O4,
O6; and O4, O7 and not depend on whether the traversal

6 Prefetching algorithms generally do not store longer se-
quences, due to high storage overheads.

5

P6

P5 P7

P4

P2P1 P3

Path 2

Object O1

3Object O

Object O2

Memory Resident Page Non−memory Resident Page

Object O4

Object O5

Object O6

Object O7

Path 1

(a) PMC Prefetching

P7P2P1 P3

P4

P5

P6

(b) PPM-2 Prefetching

P7P2P1 P3

P4

P5

P6

(c) Page-grained EPCM Prefetching

P7
P2P1 P3

P6

P5

P4

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

PCCP labeled "Resident"

PCCP labeled "Non−Resident"

Object O2

Object O3

Object O1

(d) PCCP Prefetching

Fig. 1 Illustration of the statistics collected for each prefetching algorithm, given the same example object base navigations.

has gone through O1, O2 or O1, O3. The result would
be many wrong predictions. The reason is PMC uses
only 1st order Markov Chain model. Using a higher or-
der model at this fine-grain (object-grain) would be pro-
hibitively expensive in terms of storage costs.

The same problem is encountered for PPM-2 prefetch-
ing (shown in figure 1(b)). PPM-2 prefetching collects
only page level transition statistics. At page P5 there are
three possible next pages, P4, P6 and P7. Therefore none
of the pages can be prefetched with complete confidence.
Again we can use a policy of prefetching the page with
highest probability of being referenced. In this case the
page prefetched would be the one with highest reference
frequency from P5. However, the traversal information
that allows path 1 and path 2 to be distinguished is
whether the object reference sequence O1, O2 or O1, O3

has been used. The reason this algorithm can not use
this information is it does not consider object-grained
access patterns.

The same problem is encountered for the page-grained
EPCM prefetching algorithm (shown in figure 1(c)). Al-

though the page-grained EPCM collections page transi-
tion information for a longer sequence of pages, it is still
unable to predict the next page to be referenced until af-
ter page P5 has been referenced. This is because it does
not use object-grained access information to distingush
whether the object reference sequence O1, O2 or O1, O3

has been used. It is important to note that this analysis is
only valid for our page-grained adaptation of the EPCM
prefetching algorithm. If an object-grained adaptation is
chosen instead then EPCM can be prefetched after O2 is
accessed, since an object-grained EPCM can be config-
ured to store long sequences of object references. Please
see Section 2 for the reason we have adapted EPCM at
the page-grain instead of object-grain.

Figure 1 (d) depicts the statistics that can be col-
lected by PCCP algorithms. Assume in the case the
cache conscious prefetching algorithm, PCCP has deemed
pages P2, P3 and P5 as memory resident and therefore
are ignored for prefetching purposes. Then combining
this knowledge and path conscious prefetching (where
features in the object trace are used to distinguish be-

6

tween different paths), the statistics shown on Figure 1
(d) can be collected. In this example we define feature
point as the first two objects referenced in each page.
Using these statistics we can start the prefetch of page
P4 as soon as O2 is referenced, since the statistics col-
lected captures the knowledge that the sequence O1, O2

predicts page P4. Similarly the prefetch of page P6 can
be started once O3 is referenced.

This example demonstrates how PCCP can start a
prefetch much earlier than PMC, PPM-2 and page-grained
EPCM. In our simulation study (section 7) we found
that situations similar to this example occur often. Fre-
quently, many consecutive ‘resident’ pages references oc-
cur before a ‘non-resident’ page is referenced; and the
first object referenced in a page can uniquely identify
the next disk page referenced.

4.3 The PCCP Framework

In this section we describe the PCCP framework. The
PCCP framework allows the definition of a family of
prefetching algorithms which all possess path and cache
consciousness. PCCP prefetching algorithms use context-
model-based prediction engines and store statistics at
both the page and object-grains. page-grained statistics
are used to classify database pages as either memory ‘res-
ident’ or ‘non-resident’. object-grained statistics used for
feature point selection are only stored for ‘non-resident’
pages. This approach uses less memory than existing
object-grained algorithms that store statistics for both
‘resident’ and ‘non-resident’ pages. When compared to
the page-grained prefetching algorithms, the inclusion of
object-grained feature points for ‘non-resident’ pages re-
sults in the earlier identification of high probable paths
of navigation.

In order to define a PCCP prefetching algorithm, the
following steps must be followed:

– Define ‘resident’ / ‘non-resident’ page metric:
Cache conscious prefetching requires the classifica-
tion of database pages as either memory ‘resident’ or
‘non-resident’. In this step, a metric is used to rank
pages in terms of likelihood of being memory resident
at any moment in time. Example metrics include:
frequency of page references; sum of past memory
residency durations; and hot/cold page classification
information given by the C3 clustering algorithms
(see section 5 for a PCCP prefetching algorithm that
uses this metric). Database pages are sorted accord-
ing to this metric in descending order and the first
MEM RES PAGES pages are classified as memory
‘resident’, the remaining pages are classified as mem-
ory ‘non-resident’. A possible basis for choosing
MEM RES PAGES is via physical memory size, e.g.
MEM RES PAGES multiplied by page size should
equal 90% of physical memory.

– Define feature point selection algorithm: In this
step, an algorithm is defined for finding feature points
in the trace. Feature points are object sequences oc-
curring at special points in the trace. A feature point
can span one or more pages. During prediction engine
training, feature points are identified and stored, to-
gether with the page that the feature point predicts.
For example, a feature point selection algorithm that
picks the first two object references occurring in a
page as a feature point stores the following statistics:
at every page reference, the object ID of the first two
objects referenced is stored (in sequential reference
order) together with the page ID of the next page
reference.

– Define prefetch threshold: If the probability of
next navigating to a particular ‘non-resident’ page is
greater than the prefetch threshold
(PREF THRESHOLD), that page is prefetched. The
prefetch threshold is user defined.

At prefetch time the prediction engine looks for fea-
ture points occurring in ‘non-resident’ pages. When one
is found, the corresponding training data is loaded and
used to find the next ‘non-resident’ page with the largest
probability of being referenced. If that page’s probabil-
ity of reference is greater than PREF THRESHOLD, the
page is prefetched.

5 Two New Concrete PCCP Algorithms

In this section we describe two new prefetching algo-
rithms created from the PCCP framework called heat-
based prefetching(HP) (where ‘heat’ is simply a measure
of access frequency7) and integrated prefetching (IP).
The IP algorithm integrates clustering information into
prefetching statistics. These two algorithms are derived
from the following PCCP design decisions:

– ‘resident’ / ‘non-resident’ page metric: We de-
fine two alternative ‘resident’ / ‘non-resident’ page
metrics.

– Heat-based (HB): In this approach we use page
heat as the ‘resident’ / ‘non-resident’ page met-
ric. This is based on the observation that in gen-
eral, frequently referenced pages are less likely to
be evicted at buffer replacement time. The HP
prefetching algorithm uses this ‘resident’ / ‘non-
resident’ page metric. Figure 2 shows the algo-
rithm used by HP to label pages as ‘resident’ or
‘non-resident’.

– Clustering-based (CB): In this approach we use
clustering information to determine whether a page
is ‘resident’ or ‘non-resident’. More specifically,
clustering information from the C3-GP [22] clus-
tering algorithm is used. C3-GP first divides the

7 This term has been extensively used in the existing liter-
ature[20,21].

7

Determine Resident Pages HP(LP : list of pages)

1. Sort pages in LP in decreasing order of heat.
2. Label first MEM RES PAGES pages of LP as

“resident pages” and label the remaining pages
as “non-resident”.

Fig. 2 Alogrithm used by the HP prefetching algorithm for
labeling pages.

Determine Resident Pages IP(LP : list of pages)

1. Label C3-GP clustering algorithm’s hot pages as
“resident pages”.
2. MEM RES PAGES = number of hot pages created
by the C3-GP clustering algorithm.

Fig. 3 Alogrithm used by the IP prefetching algorithm for
labeling pages.

database into hot and cold regions, then clusters
objects of each region into pages separately. In
this approach we classify all pages in C3-GP’s hot
region as ‘resident’ pages and the remaining pages
as ‘non-resident’. The IP prefetching algorithm
uses this ‘resident’ / ‘non-resident’ page metric.
Figure 3 shows the algorithm used by IP to label
pages as ‘resident’ or ‘non-resident’.

– Feature point selection algorithm: We have used
the following criteria to choose a feature point selec-
tion algorithm: the feature points should identify a
high probable path navigation as early as possible;
and there should be a minimum amount of informa-
tion stored per page in order to decrease memory
usage. In order to accomplish this we define a se-
quence of N consecutive entry objects as a feature
point. Where, ‘entry object’ refers to the first ob-
ject referenced in each page. During prediction en-
gine training, the object IDs of N consecutive entry
objects are stored (in sequential reference order), to-
gether with the probabilities of navigating to the next
‘non-resident’ page. This effectively means we use a
higher order Markov chain model, in which the cur-
rent state is defined by N consecutive entry objects
of ‘non-resident’ pages and the next state is defined
as a set of ‘non-resident’ pages and their probability
of reference.

Figure 4 shows the algorithm used by both HP and
IP to train the prediction engine. Figure 5 shows the
algorithm used by both HP and IP to determine when
and which to pages to prefetch.

Train Prediction Engine(S: sequence of object
references, N : number of
consecutive entry objects
needed to define a feature point)

1. Initialise an N th-order Markov Chain MC.
2. For each object reference r in S begin
3. If r is an entry object in a “non-resident” page then
4. Use r to incrementally train MC

5. End if.
6. End for.
7. return MC.

Fig. 4 Algorithm used to train the prediction engine. The
same algorithm is used for both HP and IP prefetching algo-
rithms.

Prefetch Pages(S: sequence of object references,
P : prediction engine)

1. For each object reference r in S begin
2. If r is an entry object of a “non-resident” page then
3. Given r as input to P , predict next “non-resident”

page reference np with highest probability.
4. If np is currently not in memory and probability

of referencing np > PREF THRESHOLD then
5. Prefetch np.
6. End if.
7. End if.
8. End for.

Fig. 5 Algorithm used by both HP and IP to prefetch pages.

5.1 Algorithm Analysis

In this section we analyze the time and space complexity
of the HP and IP prefetching algorithms. The time com-
plexity of HP for the page labeling algorithm (Figure 2)
is O(n) for a sequence of n object references, since the
heat of a page is incremented every time an object is ref-
erenced. The time complexity of IP for the page labeling
algorithm (Figure 3) is O(m), where m is the number
of pages in the database. This is because we need to la-
bel each page according to label assigned by the GP-C3
clustering algorithm.

The following time complexities apply to both HP
and IP prefetching algorithms since they both use the
same techniques. The time complexity of the prediction
engine training algorithm (Figure 4) is O(eN), where e

is the number of objects in the database and N is the
order of the Markov Chain used. This is due to the space
needed to update the N th-order Markov Chain. In prac-
tice the time complexity is much lower than eN since
many objects are not entry objects and only entry ob-
jects in ‘non-resident’ pages are considered. In our exper-
iments in Section 7 we show small N values (i.e. 1 and 3)
provides good results. The time complexity of the page

8

prefetching algorithm (Figure 5) is O(n) for a sequence
of n object references. This is because it takes a constant
time computation to find the next “non-resident” page
reference np with highest probability (line 3) for each
new object referenced.

Both HP and IP prefetching algorithms have a space
complexity of O(eN). This is due to the space needed to
store the N th-order Markov Chain. In practice the space
complexity is much lower than eN since many objects are
not entry objects and only entry objects in ‘non-resident’
pages are considered when growing the Markov Chain.

6 Experimental Setup

In this section we report the experiemtal setup used to
evaluate the performance of the prefetching algorithms.
The prefetching algorithms are benchmarked with the
Object Clustering Benchmark (OCB) [23] using the Vir-
tual Object Oriented Database simulator, (VOODB) [24].

6.1 Simulator Setup

VOODB is based on a generic discrete-event simulation
framework. Its purpose is to allow performance evalu-
ations of OODBs in general, and optimisation meth-
ods such as clustering in particular. VOODB simulates
all of the traditional OODBMS components such as,
the transaction manager, object manager, buffer man-
ager, IO subsystem, etc. The correctness of VOODB has
been validated for two real-world OODBs, O2 [25] and
Texas [26].

VOODB is implemented on top of the discrete-event
simulation package for C++ (DESP-C++) [27]. DESP-
C++ is a validated simulation package which performs
20 to 1000 times faster than competing simulation pack-
ages like the ‘queuing network analysis package 2nd gen-
eration’ (QNAP2). The high performance of DESP-C++
allows us to test more complex workloads and system
settings.

VOODB’s prefetching simulation framework was not
fully developed. Consequently we extended the simulator
to allow full support for our prefetching algorithms. The
extended simulator is validated against example traces
we created and computed the IO stall time for. The
VOODB parameters used for the experiments in this
chapter are shown on table 1. The parameters used are
based on typical system settings and hardware charac-
teristics, eg. disk speeds.

6.2 Benchmark Environment

This paper uses the OCB benchmark to evaluate prefetch-
ing performance. The OCB benchmark is initially de-
signed for benchmarking clustering algorithms but its
rich schema and realistic workloads makes it particularly

Parameter Description Value

System class Centralised

Disk page size 4096 bytes

Buffer size varies

Buffer replacement strategy LRU

Pre-fetching policy varies

Object initial placement Optimised sequential

Object think time 1 ms

Disk seek time 6.5 ms

Disk latency 4.3 ms

Disk transfer time 0.5 ms

Table 1 VOODB parameters.

suitable for benchmarking prefetching algorithms too.
The OCB database has a variety of parameters which
makes it very user-tunable. A database is generated by
setting parameters such as total number of objects, max-
imum number of references per class, base instance size,
number of classes, etc. Once these parameters are set,
a database conforming to these parameters is randomly
generated. The database consists of objects of varying
sizes. In the experiments reported in this chapter, a to-
tal of 100, 000 objects are generated. The objects varied
in size from 50 to 1600 bytes and the average object size
is 232 bytes. The total database size is 23 MB. Although
this is a small database size, we also use small cache sizes
(1MB and 11MB) to keep the database to cache size ra-
tio large. Since we are interested in the caching behavior
of the system, the database to cache size ratio is a more
important parameter than database size alone. The OCB
database parameters used are shown on table 2 (a).

In the experiments we start with an empty cache
which fills up quickly due to the small cache size ra-
tio and the large number of transactions run (10000).
Thus, in our experiments many page evictions occur.
The buffer replacement algorithm we have used is the
popular least recently used(LRU) algorithm.

The OCB workload used in this study included sim-
ple, hierarchical and stochastic traversals [23]. The sim-
ple traversal performs a depth first search starting from
a randomly selected root object. The hierarchical traver-
sal picks a random root object and a random reference
type and then always follows the same reference type
up to a pre-specified depth. The stochastic traversal se-
lects the next link to cross at random. At each step,
the probability of following reference number N is p(N)
= 1

2N . Stochastic traversals approach Markov chains,
which are known to simulate real query access patterns
well [28]. Each transaction involved execution of one of
the three traversals. The OCB workload parameters used
are shown on table 2 (b).

We introduce skew into the way traversal roots are
selected. Roots are partitioned into hot and cold regions.
In all experiments the hot region is set to 3% of the size

9

Parameter Description Value

Number of classes in the database. 50

Maximum number of references, per class. 10

Instances base size, per class. 50

Total number of objects. 100000

Number of reference types. 4

Reference types random distribution. Uniform

Class reference random distribution. Uniform

Objects in classes random distribution. Uniform

Objects references random distribution. Uniform

(a) OCB database parameters

Parameter Description Value

Simple traversal depth. 2

Hierarchy traversal depth. 4

Stochastic traversal depth. 4

Transaction root selection distribution. Hot/Cold

Simple traversal selection probability. 0.3

Hierarchical traversal selection probability. 0.35

Stochastic traversal selection probability. 0.35

Number of transactions. 100000

(b) OCB workload parameters

Table 2 Parameters used for OCB.

of database and has an 80% probability of access.8 These
settings are similar to those used in related work. Gray
and Putzolu [29] cites statistics from a real videotext
application in which 3% of the records got 80% of the
references. Carey et al. [30] used a hot region size of 4%
with a 80% probability of being referenced in the HOT-
COLD workload used to measure data caching tradeoffs
in client/server OODBMSs. Franklin et al.[21] used a hot
region size of 2% with a 80% probability of being refer-
enced in the HOTCOLD workload used to measure the
effects of local disk caching for client/server OODBMSs.

6.3 Result Generation

The results are generated via four steps. The first clus-
tering training step runs the database and collects clus-
tering statistical data. The second clustering step uses
the training data with the clustering algorithm to rear-
range objects. The third prefetching training step runs
the newly clustered database to collect prefetching sta-
tistical data. The fourth evaluation step runs the prefetch-
ing algorithm with the newly clustered database to mea-
sure the performance of the system. In the experiments
we generate different random traces for the third and
fourth steps, using the same hot region and query type.

6.4 Clustering Algorithms Used

Most of the experiments in this chapter include two sets
of results, one set uses the C3-GP [22] clustering algo-
rithm and the other set uses a combination of three clus-
tering policies, greedy graph partitioning (GGP) [31],
Wisconsin greedy graph partitioning WGGP [32], and
no clustering.

C3-GP is a member of the C3 [22] family of cache
conscious clustering algorithms. The C3-GP clustering

8 That is, there is a 80% probability that the root of a
traversal is from the hot region.

algorithm works in two phases [22]. In the first phase
objects are sorted into decreasing order via heat, then
cut to produce a ‘hot’ and ‘cold’ region. The hot region
is almost equal to the size of memory. In our experiments
we set a C3-GP hot region size of 90% size of memory9.
In the second phase objects of each region are further
partitioned into pages by the greedy graph partitioning
clustering algorithm (GGP). C3-GP has been shown to
outperform the highly competitive GGP in many situa-
tions [22].

GGP [31] and WGGP [32] are both members of the
graph partitioning family of clustering algorithms. Be-
fore the appearance of the C3 family of clustering algo-
rithms, graph partitioning algorithms [32] were widely
accepted as the best performing existing clustering al-
gorithms [31,32]. GGP and WGGP both use the simple
Markov chain model (SMC) to cluster objects accessed
frequently together in time into the same page. GGP and
WGGP both operate greedyly, the way they differ is the
way they form partitions. GGP starts by placing each
object into a different partition and then iteratively joins
partitions. In contrast, WGGP starts with an empty par-
tition and then iteratively fills it up before moving onto
the next partition, where the process is restarted with
the remaining un-partitioned objects.

6.5 Prefetch Algorithms

The prefetching algorithms shown in the result graphs
of this chapter are labeled as follows:

9 This settings has been found to produce the best C3-GP
clustering performance [22].

10

– DM: demand fetching;
– PPM-1: 1st order PPM prefetching algorithm [3];
– PMC: Knafla’s [4] object-grained statistical prefetching;
– PPM-3: 3rd order PPM prefetching algorithm [3];
– PCCP-IP1: 1st order IP prefetching, see section 5;
– PCCP-IP3: 3rd order IP prefetching, see section 5;
– EPCM: page-grained enhanced PCM algorithm [9];
– PCCP-HP1: 1st order HP prefetching, see section 5;
– PCCP-HP3: 3rd order HP prefetching, see section 5;

The reason we report the results for 3rd order PCCP
algorithms is that in our experiments we have found HP3
and IP3 give best results among the PCCP variants. This
is similar to the conclusions made by Curewitz et al.[3],
in which they found the third order PPM-3 gives best
performance among the PPM variants.

The IP1 and IP3 algorithms require the use of clus-
tering information from the C3-GP clustering algorithm,
to classify pages as ‘resident’ and ‘non-resident’. IP1 and
IP3 classify pages occurring in C3-GP’s hot region as
‘resident’ and the remaining pages as ‘non-resident’. HP1
and HP3 rank database pages in terms of frequency of
page reference. Once ranked, HP1 and HP3 classify the
first MEM RES PAGES pages as being ‘resident’, where
MEM RES PAGES multiplied by page size equals 50%
of the memory size. HP1 and HP3 classify the remaining
pages as being ‘non-resident’.

We have configured the PPM algorithms to prefetch
only one page at each step. This is for two reasons: we
do not assume there is concurrent disk IO (see the prob-
lem statement in Section 3); and the time between disk
page requests is normally quite small and the cache size
/workload size ratio is small (a very common case in real
systems).

In each experiment10 the prefetch threshold11 is set
to 0.9 for every prefetch algorithm other than EPCM.
The prefetch threshold for EPCM is set to 0.4. We have
tested different settings (at 0.1 increments) for each prefetch-
ing algorithm and found that the best setting is 0.4 for
EPCM and 0.9 for the other prefetching algorithms.

For EPCM we have set the maximum order to 45 and
the partition size to 64. These settings have given best
results for the experiments in [9] and we have found the
same is true for our experimental setup.

6.6 Performance Metric

The results reported are in terms of ratio of prefetch-
ing stall time over demand fetching stall time, i.e. the
amount of time the system is idle waiting for a page to
load when using prefetching over when using demand

10 Except for the experiment where the prefetch threshold
is varied.
11 The minimum probability of being the next disk-resident
page to be referenced.

fetching. This metric provides the reader with an idea
of how much stall time is reduced by using prefetching
instead of just demand fetching.

7 Experimental Results

In this section we report the results of experiments con-
ducted to compare the performance of four existing prefetch-
ing algorithms designed for ODBMSs and four new al-
gorithms produced using the PCCP framework.

7.1 Varying Cache Size

In this experiment we measure the effect of varying cache
size on the performance of the prefetching algorithms.
Two sets of results are collected for this experiment, the
first set uses the C3-GP clustering algorithm and the
second set reports an average of the results from us-
ing three different clustering policies GGP, WGGP and
no clustering. The effects of the three clustering algo-
rithms are also individually reported in the appendix.
Note PCCP-IP1 and PCCP-IP3 results are only shown
for C3-GP results (figure 6 (a)) since PCCP-IP1 and
PCCP-IP3 require clustering information from C3-GP
to classify ‘resident’ and ‘non-resident’ pages.

The prefetching results shown on figure 6 (a) depict
the PCCP algorithms performing better than the other
algorithms when cache size is small when the C3 clus-
tering algorithm is used. When the cache size is large
(at beyond 6 MB), almost the entire working set fits
in memory. Thus almost all the pages in the working set
are classified as ‘resident’ by the PCCP algorithms. Since
PCCP algorithms only prefetch ‘non-resident’ pages and
there are none of them in the working set, no prefetch-
ing is performed. Hence, the performance of PCCP al-
gorithms rapidly degrades to that of demand fetching at
these large cache sizes.

The results for using the GGP, WGGP and no clus-
tering algorithms shown on figure 6 (b). The results show
that EPCM begins outperforming PCCP algorithms af-
ter a cache size of 1 MB. The reason for this is that unlike
the C3 clustering algoirthm the clustering algorithms
used for this experiment do not separate pages into hot
and cold pages. This means that the PCCP algorithms
which works best when resident and non-resident pages
are very distinct can not perform at its peak. The result
is EPCM which does not need to distinguish between res-
ident and non-resident pages performs relatively better
than PCCP algorithms in this experiment rather than
when the C3 clustering algorithm is used.

There are two main observations that can be made
from figure 6 (b). First, at large cache sizes the PCCP
algorithms in figure 6 (b) exhibit a milder rate of per-
formance degradation than figure 6 (a). The cause lies
in the way the clustering policies work. The clustering
policies GGP, WGGP and no clustering (used for 6 (b)),

11

are not designed to produce pages of homogeneous heat
whereas C3-GP is designed to produce pages of homo-
geneous heat. The result is that the clustering policies
GGP, WGGP and no clustering need a larger cache size
to fit the entire working set in memory (the working
set is spread across more pages). Hence, given the same
cache size, in figure 6 (b) PCCP classifies more pages
that contain objects of the working set as ’non-resident’.
Since PCCP algorithms only attempt to prefetch ‘non-
resident’ pages, figure 6 (b) gives PCCP algorithms more
opportunities for prefetching.

Second, in figure 6 (b) PCCP-HP3 outperforms PCCP-
HP1 consistently by a large margin. This contrasts with
figure 6 (a) in which the two PCCP algorithms perform
about the same after cache size of 6.5 MB. Unlike C3-
GP, the clustering policies GGP, WGGP and no clus-
tering do not extract hot objects from cold pages. The
result is that ’non-resident’ pages may contain hot ob-
jects (which often have a large fan out). In these condi-
tions a ’non-resident’ page (used by PCCP algorithms for
prefetch prediction purposes) may contain many differ-
ent paths of navigation. Hence, under these conditions,
PCCP-HP3, which identifies navigational paths based
on more historical reference information, can more ac-
curately identify the current path of navigation when
compared to PCCP-HP1.

The reason for the poor performance of PPM-1 is
that it only uses the current state to predict the next
state (SMC model). Furthermore, it stores prediction in-
formation at the page-grain. The combination of the two
drawbacks makes it very difficult to accurately distin-
guish between different paths of navigation early enough
for prefetching. This problem is compounded by the rich
schema and workloads (creating many different paths of
navigation intersecting in a multitude of places) used in
our experiments.

7.2 Varying Clustering Algorithm

In this experiment, we examine the effect that vary-
ing clustering algorithms has on prefetching algorithm
performance. The results are shown on figure 7. The
cache size was set to 6 MB. For each prefetching al-
gorithm, the results of no clustering and three different
clustering algorithms are reported in the following or-
der: no clustering; the Wisconsin greedy graph partition
algorithm (WGGP) [32]; the greedy graph partitioning
algorithm (GGP) [31]; and the C3-GP clustering algo-
rithm. PCCP-IP1 and PCCP-IP3 prefetching algorithms
are used when the C3-GP clustering algorithm is used.
PCCP-HP1 and PCCP-HP3 are used for the remaining
clustering policies.

The results show that the PCCP-IP3/HP3 algorithms
shows similar or better performance than all existing
prefetching algorithms (except for EPCM) for all clus-
tering algorithms tested, including no clustering. The

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Cache size (MB)

PPM-1
PMC

PPM-3
EPCM

PCCP-IP1
PCCP-IP3

(a) Using C3-GP clustering

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Cache size (MB)

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(b) Using GGP, WGGP and no clustering

Fig. 6 Results of varying cache size. The results on the right
report an average of the results from using three different
clustering policies GGP, WGGP and no clustering. The ap-
pendix shows the results of using the clustering policies indi-
vidually.

reason that EPCM outperforms PCCP is that it stores
very long page transition information, but that comes at
a large storage cost (this will be demonstrated in Section
7.3).

7.3 Statistics Storage Costs

In this experiment we have examined the statistics stor-
age requirements of the prefetching algorithms. The re-
sults show the number of statistics data values stored
instead of the size of the data structures needed. We de-
fine a data value as a statistic that needs to be stored
(e.g. the heat of an object). The reason for measuring
the number of data values instead of storage size is that
there are many different existing data structures which
have various speed to space trade-offs12, including some

12 Data structures used for the prefetching algorithms tested
will require the index key to be a combination of a pair of IDs,
and thus simple data structures like arrays are precluded.

12

������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�������
�������
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!

"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"

#
#
#
#
#
#
#
#
#
#

$
$
$
$
$
$
$
$
$
$

%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%

&
&
&
&
&
&
&
&
&
&
&
&

'
'
'
'
'
'
'
'
'

(
(
(
(
(
(
(
(
(

)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)

�
�
�
�
�
�
�
�
�

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

PMC PPM−1 PCCP−IP1/HP1 EPCM PPM−3 PCCP−IP3/HP3

St
al

l t
im

e
ra

tio
 (

Pr
ef

/D
M

)

Prefetch algorithm

NC
WGGP

GGP
C3−GP

Fig. 7 The impact of varying clustering algorithm. Each prefetching algorithm is tested against no clustering and three
different clustering algorithms. The results are shown in the following order: NC (no clustering); WGGP; GGP; and C3-GP.

that limit statistics space consumption by flushing and
rebuilding the data structures once a size limit has been
reached. However, all of the data structures will offer
better speed and storage size performances when the
number of data values stored is smaller.

The results are shown on figure 8. The cache size
used in this experiment is 6 MB. PCCP algorithms re-
quire the least space for storing data values. PCCP de-
rives its cost savings mainly from restricting the stor-
age of statistics to only ‘non-resident’ pages. In addition,
the low statistics storage requirements of path conscious
prefetching (storing short feature points) also helps to
reduce the storage costs of the PCCP algorithms. These
results show that path and cache conscious information
(used by PCCP algorithms) can be stored efficiently.

The results show PCCP algorithms stores upto 20
times less statistics than EPCM. The reason for this
is EPCM stores long chains of page transitions statis-
tics. Whereas PCCP algorithms only stores transition
statistics of upto length of 3 (for PCCP-IP3 and PCCP-
HP3) and that is further restricted to only ‘non-resident’
pages.

A surprising result is that PCCP-IP3 and PCCP-
HP3 store around the same number of data values as
their single page counterparts (PCCP-IP1 and PCCP-
HP1). For the purposes of explaining this behavior let
us assume n navigations passing through an entry object
(first object in a page to be referenced) goes to n differ-
ent target pages (next page referenced). Further assume
the n navigations each originate from different previous
page entry objects. Under these conditions, PCCP-IP3
and PCCP-HP3 store the same number of data values
as their single page counterparts. We now explain why
this type of navigational pattern occurs often in our ex-
periments. It is due to a combination of the cache con-
scious feature of PCCP algorithms and trace characteris-
tics. PCCP’s cache conscious feature excludes ’resident’
pages (pages more likely to contain hot objects) from

prefetching statistics. Due to trace characteristics it is
often the hot objects that have high fan outs. Thus the
effect is hot objects that have high fan out (which pro-
duces large number of diverging paths of navigation) are
excluded from prefetching statistics.

7.4 Varying Prefetch Threshold

In this experiment we vary the prefetch threshold of each
prefetching algorithm. The prefetch threshold is a user
defined parameter that specifies the minimum probabil-
ity required before a prefetch is allowed to occur. The
cache size is set to 6 MB.

The results are shown on figure 9. EPCM shows the
greatest sensitivity to prefetching threshold. This is un-
desirable since it means EPCM’s prefetch threshold needs
to be fine tuned before it can yield optimal performance.
PPM-1 and PMC are also sensitive to changes in the
prefetch threshold, especially at low threshold values. In
contrast, the PCCP algorithms and PPM-3 are not sen-
sitive to the prefetch threshold.

8 Conclusion

This paper proposes PCCP, a new ODBMS prefetch-
ing framework. The framework allows the definition of
a family of prefetching algorithms which possesses the
properties of path and cache consciousness. In order to
demonstrate the usefulness of the PCCP framework, we
have used it to create four new prefetching algorithms.
We have conducted an extensive experimental study com-
paring the four new prefetching algorithms with four ex-
isting prefetching algorithms.

The results show that PCCP algorithms outperforms
the existing prefetching algorithms PPM-1, PPM-3, and
PCM in a variety of situations. When comparing PCCP

13

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 30000 60000 90000 120000 150000S
ta

tis
tic

s
si

ze
 (

nu
m

be
r

of
 d

at
a

va
lu

es
)

Database size (number of objects)

PPM-1
PMC

PPM-3
EPCM

PCCP-IP1
PCCP-IP3

(a) Using C3-GP clustering

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 30000 60000 90000 120000 150000S
ta

tis
tic

s
si

ze
 (

nu
m

be
r

of
 d

at
a

va
lu

es
)

Database size (number of objects)

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(b) Using GGP, WGGP and no clustering

Fig. 8 Statistics storage cost results. The results on the right
report an average of the results from using three different
clustering policies GGP, WGGP and no clustering. The ap-
pendix shows the results of using the clustering policies indi-
vidually.

against EPCM, we found PCCP is better in terms of pro-
ducing less stall time for small buffer sizes, uses less stor-
age overheads and is more robust to prefetch threshold
settings. However, EPCM produces less stall time than
PCCP when EPCM’s prefetch threshold is fine tuned to
its optimal setting and the cache size is large.

When choosing between EPCM and PCCP we rec-
ommend that PCCP be used if memory space is very
constrained, since PCCP stores less statistics and pro-
duces less stall time when cache size is small. EPCM
should be used if memory size is large, since EPCM pro-
duces less stall time for this situation.

We identify four directions of future work. First, is
to develop and test new PCCP algorithms. Second, is a
more in depth investigation of how clustering statistics
can be used by the prefetching algorithm to improve per-
formance. Third, heat may not be the ideal ‘resident’ /
‘non-resident’ metric for database scenarios such as long
running transactions (customer account history prepa-
ration transaction), where a page maybe needed in the

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.2 0.4 0.6 0.8 1

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Prefetch threshold

PPM-1
PMC

PPM-3
EPCM

PCCP-IP1
PCCP-IP3

(a) Using C3-GP clustering

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.2 0.4 0.6 0.8 1

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Prefetch threshold

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(b) Using GGP, WGGP and no clustering

Fig. 9 Results of varying the prefetch threshold. The results
on the right report an average of the results from using three
different clustering policies GGP, WGGP and no clustering.
The appendix shows the results of using the clustering poli-
cies individually.

cache for quite a long time but is not frequently refer-
enced. A direction of future work is to try other methods
to define the ‘resident’ / ‘non-resident’ metric such as to-
tal duration of references for such scenarios.

Acknowledgment

We would firstly like to thank Stephen Blackburn for his
careful proof reading of this paper, he made numerous
grammatical corrections. We would also like to thank
Jerome Darmont for making the sources of VOODB and
OCB freely available. These tools have helped our ex-
perimental work tremendously.

References

1. Knafla, N. (1999) Prefetching Techniques for
Client/Server, Object-Oriented Database Systems.
Ph.D. thesis, University of Edinburgh.

14

2. Ailamaki, A., Dewitt, D. J., Hill, M. D., and Wood, D. A.
(1999) DBMSs on a modern processor: Where does time
go? The 25th VLDB conference, September, pp. 266–277.

3. Curewitz, K. M., Krishnan, P., and Vitter, J. S. (1993)
Proceedings of practical prefetching via data compres-
sion. ACM SIGMOD Conf. on Management of Data, 26-
28 May, pp. 43–53.

4. Knafla, N. (1998) Analysing object relationships to pre-
dict page access for prefetching. Proceedings of Eighth
Int. Workshop on Persistent Object Systems: Design, Im-
plementation and Use (POS-8), pp. 160–170.

5. Palmer, M. and Zdonik, S. B. (1991) Fido: A cache that
learns to fetch. Proc. of the 17th Int. Conf. on Very Large
Data Bases, Septmeber, pp. 255–264.

6. Bernstein, P. A., Pal, S., and Shutt, D. (1999) Context-
based prefetching for implementing objects on rela-
tions. 25th International Conference on Very Large Data
Bases, Sept, pp. 327–338, Morgan Kaufmann.

7. Chang, E. E. and Katz, R. H. (1989) Exploiting inher-
itance and structure semantics for effective clustering
and buffering in an object-oriented DBMS. Clifford, J.,
Lindsay, B. G., and Maier, D. (eds.), Proceedings of the
1989 ACM SIGMOD International Conference on Man-
agement of Data, Portland, Oregon, May 31 - June 2,
1989 , pp. 348–357.

8. Knafla, N. (1997) A prefetching technique for object-
oriented databases. Advances in Databases, 15th British
National Conf. on Databases, pp. 154–168.

9. Kroeger, T. M. and Long, D. D. E. (2001) Design and
implementation of a predictive file prefetching algorithm.
Proceedings of the 2001 USENIX Annual Technical Con-
ference, pp. 105–118.

10. Gerlhof, C. A. and Kemper, A. (1994) A multi-threaded
architecture for prefetching in object bases. International
Conference on Extended Database Technology (EDBT),
pp. 351–364.

11. Joseph, M. (1970) An analysis of paging and program
behaviour. The Computer Journal , 13, 48–54.

12. Liskov, B., Adya, A., Castro, M., Day, M., Ghemawat,
S., Gruber, R., Maheshwari, U., Myers, A., and Shira, L.
(1996) Safe and efficient sharing of persistent objects in
thor. Proc. of the ACM SIGMOD/PODS96 Joint Conf.
on Management of Data, pp. 318–329.

13. Patterson, R. H., Gibson, G. A., Ginting, E., Stodol-
sky, D., and Zelenka, J. (1995) Informed prefetching and
caching. Proceedings of the fifteenth ACM symposium on
Operating systems principles, pp. 79–95.

14. Vitter, J. S. and Krishnan, P. (1996) Optimal prefetching
via data compression. Journal of the ACM , 43, 771–793.

15. Han, W., Whang, K., Moon, Y., and Song, I. (2001)
Prefetching based on the type-level access patterns in
object-relational DBMSs. Proceedings of IEEE interna-
tional Conference on Data Engineering (ICDE 2001),
pp. 651–660.

16. Kroeger, T. M. and Long, D. D. E. (1999) The case for
efficient file access pattern modeling. Proceedings of the
7th workshop on hot topics in operating systems (HotOS-
VII).

17. Cao, P., Felten, E. W., Karlin, A. R., and Li, K. (1995)
A study of integrated prefetching and caching strategies.
ACM SIGMETRICS , pp. 188–197.

18. Cao, P., Felten, E. W., Karlin, A. R., and Li, K.
(1996) Implementation and performance of integrated

application-controlled file caching, prefetching, and disk
scheduling. ACM Transactions on Computer Systems,
14, 311–343.

19. Kraiss, A. and Weikum, G. (1998) Integrated document
caching and prefetching in storage hierarchies based on
markov-chain predictions. The VLDB Journal , 7, 141–
162.

20. Carey, M. J., Franklin, M. J., and Zaharioudakis, M.
(1994) Fine-grained sharing in a page server OODBMS.
In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 359–370.

21. Franklin, M. J., Carey, M. J., and Livny, M. (1993) Local
disk caching for client-server database systems. Agrawal,
R., Baker, S., and Bell, D. A. (eds.), Proceedings of the
VLDB Conference, pp. 641–655.

22. He, Z. and Marquez, A. (2001) Cache conscious cluster-
ing C3. 12th International Database and Expert Systems
Applications Conference (DEXA 2001), September, pp.
815–825.

23. Darmont, J., Petit, B., and Schneider, M. (1998) OCB:
A generic benchmark to evaluate the performances of
object-oriented database systems. International Confer-
ence on Extending Database Technology (EDBT), March,
pp. 326–340, LNCS Vol. 1377 (Springer).

24. Darmont, J. and Schneider, M. (1999) VOODB: A
generic discrete-event random simulation model to eval-
uate the performances of oodbs. The 25th VLDB confer-
ence, September, pp. 254–265.

25. Deux, O. (1991) The O2 system. Communications of
ACM , 34, 34–48.

26. Singhal, V., Kakkad, S. V., and Wilson, P. R. (1992)
Texas: An efficient, portable persistent store. 5th Inter-
national Workshop on Persistent Object Systems, pp. 11–
33.

27. Darmont, J. (2000) DESP-c++:a discrete-event simula-
tion package for c++. Software Practice and Experience,
30, 37–60.

28. Tsangaris, M. M. and Naughton, J. F. (1992) On the
performance of object clustering techniques. In Proceed-
ings of the ACM SIGMOD conference on Management
of Data, pp. 144–153.

29. Gray, J. and Putzolu, G. R. (1987) The 5 minute rule for
trading memory for disk accesses and the 10 byte rule
for trading memory for CPU time. In Proceedings of the
ACM SIGMOD conference on Management of Data, pp.
395–398.

30. Carey, M. J., Franklin, M. J., Livny, M., and Shekita,
E. J. (1991) Data caching tradeoffs in client-server
DBMS architectures. Clifford, J. and King, R. (eds.), In
Proceedings of the ACM SIGMOD conference on Man-
agement of Data, pp. 357–366.

31. Gerlhof, C., Kemper, A., Kilger, C., and Moerkotte, G.
(1993) Partition-based clustering in object bases: From
theory to practice. In Proceedings of the International
Conference on Foundations of Data Organisation and Al-
gorithms (FODO), pp. 301–316.

32. Tsangaris, E.-M. M. (1992) Principles of Static Cluster-
ing For Object Oriented Databases. Ph.D. thesis, Univer-
sity of Wisconsin-Madison.

15

Appendix

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Cache size (MB)

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(a) Using GGP clustering

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Cache size (MB)

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(b) Using WGGP clustering

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Cache size (MB)

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(c) Using no clustering

Fig. 10 Varying cache size results.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 30000 60000 90000 120000 150000

S
ta

tis
tic

s
si

ze
 (

nu
m

be
r

of
 d

at
a

va
lu

es
)

Database size (number of objects)

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(a) Using GGP clustering

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 30000 60000 90000 120000 150000S
ta

tis
tic

s
si

ze
 (

nu
m

be
r

of
 d

at
a

va
lu

es
)

Database size (number of objects)

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(b) Using WGGP clustering

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 30000 60000 90000 120000 150000S
ta

tis
tic

s
si

ze
 (

nu
m

be
r

of
 d

at
a

va
lu

es
)

Database size (number of objects)

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(c) Using no clustering

Fig. 11 Statistics storage size results.

16

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Prefetch threshold

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(a) Using GGP clustering

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Prefetch threshold

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(b) Using WGGP clustering

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1

S
ta

ll
tim

e
ra

tio
 (

P
re

f/D
M

)

Prefetch threshold

PPM-1
PMC

PPM-3
EPCM

PCCP-HP1
PCCP-HP3

(c) Using no clustering

Fig. 12 Varying prefetch threshold results.

17

