
1

Trajic: An Effective Compression System for
Trajectory Data

Aiden Nibali and Zhen He

Abstract—The need to store vast amounts of trajectory data becomes more problematic as GPS-based tracking devices
become increasingly prevalent. There are two commonly used approaches for compressing trajectory data. The first is the line
generalisation approach which aims to fit the trajectory using a series of line segments. The second is to store the initial data point
and then store the remaining data points as a sequence of successive deltas. The line generalisation approach is only effective
when given a large error margin, and existing delta compression algorithms do not permit lossy compression. Consequently there
is an uncovered gap in which users expect a good compression ratio by giving away only a small error margin. This paper fills this
gap by extending the delta compression approach to allow users to trade a small maximum error margin for large improvements
to the compression ratio. In addition, alternative techniques are extensively studied for the following two key components of any
delta-based approach: predicting the value of the next data point and encoding leading zeros. We propose a new trajectory
compression system called Trajic based on the results of the study. Experimental results show that Trajic produces 1.5 times
smaller compressed data than a straight-forward delta compression algorithm for lossless compression and produces 9.4 times
smaller compressed data than a state-of-the-art line generalisation algorithm when using a small maximum error bound of 1
meter.

Index Terms—Trajectory compression, spatial databases

F

1 INTRODUCTION

As GPS-based tracking devices become more popular
more trajectory data need to be stored. A trajec-
tory comprises of a sequence of timestamped sample
points, each containing a time, latitude and longitude.
Using this representation a fleet of one thousand cars
each recording a sample per second requires close to
2 GB of storage space per day. Often a backlog of
such trajectory data need to be stored in a databases.
Data compression algorithms can be applied to reduce
storage requirements. Two contrasting state-of-the-art
approaches for compressing trajectory data are line
generalisation and delta compression.

There are a large number of algorithms that take the
line generalisation approach to compressing trajecto-
ries [4], [11], [10], [15]. Line generalisation represents
a trajectory using a series of linear segments created
by joining selected trajectory points. Compression is
achieved by discarding unselected trajectory points.
A maximum error threshold is enforced by ensuring
that the points discarded are within range of the
line segments covering the points. The main problem
with this approach is that it can only achieve a good
compression ratio when successive data points are
close to being linear. However, real-life trajectories
can contain a lot of curvature and noise, sometimes
accompanied by low sampling rates which amplify
the negative effect of curves. The only way to improve
compression in these situations is for the user to
specify a large error margin (such as over 20 meters),
but many users require higher precision.

Delta compression achieves lossless compression by
storing the difference between successive data points

• Aiden Nibali and Zhen He are with the Department of Computer
Science and Computer Engineering, La Trobe University, Bundoora,
VIC, Australia.
E-mail: dismaldenizen@gmail.com, z.he@latrobe.edu.au

in a trajectory rather than the points themselves. Since
these deltas are typically small, they may be encoded
to save space. In contrast to line generalisation, delta
compression is still able to achieve reasonable com-
pression ratios despite any noise or curvature because
it only requires successive points to be close to each
other rather than to lie within a straight line. Fur-
thermore, line generalisation achieves no compression
for a point that lies only a little outside the maxi-
mum error bound, whereas delta compression is able
to smoothly degrade its compression ratio if points
become further apart.

Figure 1 illustrates the tradeoff between compres-
sion ratio and maximum error for line generalisation,
delta compression, and line generalisation enhanced
by delta compression. As we can see on the graph,
delta compression (the single point labeled as Delta)
has a zero error but a relatively poor compression
ratio. In contrast line generalisation can achieve a
good compression ratio but only after the maximum
error is relatively high. Even a combination of line
generalisation and delta compression does not show
any improvement in the compression ratio until the
maximum error is relatively high. Therefore from the
figure we can see that there is currently an unfilled
gap in which the user is willing to tolerate only a
small error in exchange for large improvements in the
compression ratio.

We have designed an algorithm called “Trajic”
which can fill the above mentioned gap. Figure 1
shows Trajic can achieve a good compression ratio
in situations where the user is willing to give up
only a small amount of precision. In fact, even at
zero error Trajic is able to achieve a relatively good
compression ratio. Trajic has two core components: a
predictor and a method for encoding residuals. The
predictor guesses the value of the next data point and
then generates small residuals representing the dif-
ference between the predicted and actual values. The
residual encoding scheme attempts to use as few bits

2

C
o
m

p
re

ss
io

n
 r

a
ti

o

Maximum error

good

poor

low high

Ideal

Delta Trajic

Line generalisation
+ Delta

Line generalisation
1

Figure 1. An abstract view of compression algorithms
with respect to a theoretical ideal (produced based on
results shown in Figure 15)

as possible to encode the number of leading zeros in
the residuals, and is able to achieve lossy compression
by discarding a number of least significant bits. We
limit the number of bits discarded to stay within the
maximum user defined error margin.

Our Trajic compression algorithm is developed by
extensively studying alternative algorithms for pre-
dictors and leading zero encoding schemes. A com-
parison was made between five different prediction
algorithms ranging from the simple “constant pre-
dictor” (used in existing delta compression) to the
more conceptually complicated cubic spline predictor.
It was found that a simple and fast predictor, the
“temporally-aware linear predictor”, results in the
most accurate predictions. Hence Trajic utilises this
predictor.

We found different existing leading zero encoding
schemes to be optimal for different actual residual
lengths (the length of a residual without counting
leading zeros). Furthermore, we discovered that in
real data sets residual lengths have a skewed distri-
bution. This led to our novel method for encoding
leading zeros which adapts to the distribution of
residual lengths by incorporating a simple pre-pass
frequency analysis step.

Finally, Trajic has linear run-time complexity (O(N))
which is the same as simple delta compression. In
contrast line generalisation algorithms range in com-
plexity from O(N log(N)) to O(N2).

Extensive experiments using real data sets show
that Trajic can produce 1.5 times smaller compressed
data than a straightforward delta compression algo-
rithm (used in systems such as TrajStore [5]) for loss-
less compression and 9.4 times smaller compressed
data than a state-of-the-art line generalisation algo-
rithm when using a 1 meter error bound.

In summary, this paper makes the following three
main contributions.
• We identify that neither of the existing methods

of line generalisation or delta compression, nor
a combination of the two, allow users to trade a
small amount of accuracy for large gains in the
compression ratio. This is a result of a systematic
analysis and experimentation of existing state-of-
the-art line generalisation algorithms and existing

delta compression algorithms.
• We develop the Trajic system to fill this important

gap in the existing literature. Within the Trajic
system our main claim to novelty is the creation
of a very effective and novel residual encoding
scheme. A related contribution is making the
delta compression scheme span the spectrum be-
tween lossless and lossy compression.

• We conduct extensive experiments demonstrat-
ing the effectiveness of Trajic when applied to
real-world data sets. We systematically compare
the different algorithm across the three impor-
tant metrics of compression/decompression time,
compression ratio and error margin.

This paper begins by briefly discussing existing re-
lated work and their shortcomings in Section 2.
Section 3 describes the Trajic system, starting with
the predictor then continuing with the generation
of residuals, leading zero encoding and finally the
method for storing residuals. Section 4 presents the
experimental results and finally Section 5 concludes
the paper.

2 RELATED WORK
As mentioned in the introduction there are two main
approaches to compressing trajectories: line general-
isation and delta compression. We will review the
existing work in both areas in addition to some other
methods that require knowledge of a road network.

2.1 Line generalisation
One of the most common trajectory compression
schemes is line generalisation [4], [11], [10], [6], [13],
[21]. The line generalisation method originated from
cartographers wanting to use computers to extract
features from detailed data and represent them us-
ing simple and readable maps. An important part
of representing linear features is to solve the line
generalisation problem.

The line generalisation problem can be de-
fined as follows. Given an ordered set of n + 1
points in the plane, V0, V1, ...Vn, let C, containing
V0V1, ..., ViV i+ 1, ..., Vn−1Vn, be a chain with n line
segments. The problem is to find a modified C ′ con-
taining less segments which approximates C within
an acceptable error margin, where the error margin
is usually defined as the maximum perpendicular
distance from C ′ to C.

One of the most popular line generalisation algo-
rithms is the top-down Douglas-Peucker (DP) algo-
rithm [6], illustrated in Figure 2. At the beginning the
entire set of points is approximated using a one line
segment connecting the first and last points of the set.
Next the single long line segment is replaced by two
shorter line segments in which the end of the first
line segment and the start of the second line segment
correspond to the point that is the furthest (highest
perpendicular distance) from the original single long
line segment. This is recursively repeated until there
are no points whose maximum perpendicular distance
is higher than a user-defined threshold from the line
segment covering the point. The original DP algo-
rithm has O(N2) time complexity, however, various

3

Selected point Unselected point

Max distance point

Max distance point

(a) After first line split (b) After second line split

Figure 2. Example illustrating the Douglas Peucker top-down line generalisation algorithm.

improvements have been proposed, including the one
by Hershberger et al. [8], which has a time complexity
of O(N log(N)).

Another approach for solving the line generalisa-
tion problem is the opening window approach [11].
The opening window approach is an incremental
algorithm that starts with a window that contains the
first three points of the trajectory and then progres-
sively “opens” the window until a single line segment
can no longer represent all of the contained points
accurately enough. Once this happens, a single line
segment from the first point of the window to the sec-
ond last point in the window is used to approximate
the current window and the second last point in the
current window becomes the start of the next window.
This is repeated until the entire set of points have been
connected by line segments. The opening window
algorithm has O(N2) worst case time complexity.

When line generalisation methods are applied to
achieve trajectory compression, the time dimension
must be incorporated into the error metric. One way
of incorporating time is to use the synchronised eu-
clidean distance (SED) [18]. SED measures the dis-
tance from the original point to the approximated
point adjusted to the same timestamp. Another met-
ric is the Meratnia-By time-distance ratio [11] where
spatial and temporal information are both used sepa-
rately to decide whether a point is kept or discarded.
For the temporal component, the ratio of the time
taken to travel the original versus approximated tra-
jectory is used. For the spatial component, the position
of the original point is compared to its approximated
position within the compressed trajectory.

The main limitation with the line generalisation
approach stems from the fact that it uses straight lines
to approximate trajectories. Therefore, it works best
when trajectories are mostly linear. But in real life
there are a lot of non-linear segments in trajectories
due to turning, noise and low sampling rates. Line
generalisation requires very large error margins to
achieve a good compression ratio in these scenarios.

2.2 Delta compression
The standard simple delta compression algorithm
stores a delta for each timestamp in the trajectory. The
delta di for the ith timestamp equals pi - pi−1 where pi
and pi−1 are the trajectory point values at timestamp i
and i−1 respectively. The above is typically performed
separately for each of the three components of time,
longitude and latitude of the trajectory.

Existing literature in trajectory compression has al-
most exclusively focused on line generalisation meth-
ods, hence delta compression has been largely ig-
nored in the past. However, the TrajStore [5] state-of-
the-art trajectory database system only employs the
standard simple delta compression method defined
above. This simple method suffers from the following
three shortcomings: it 1) employs a constant predic-
tion policy; 2) uses a static leading zero encoding
scheme; and 3) only performs lossless compression.
The first shortcoming means TrajStore’s delta com-
pression scheme essentially predicts the next data
point to be exactly the same as the current point
and stores the difference as a delta. In contrast, this
paper explores a number of different prediction mod-
els and conclude a temporally-aware linear predictor
gives smaller deltas and hence better compression
ratios. The second shortcoming of TrajStore’s delta
compression scheme is that it uses a static scheme to
encode leading zeros. In contrast, this paper analyzes
a number of different possible leading zero encod-
ing schemes and concludes that our novel dynamic
scheme gives the best performance. Finally, TrajStore’s
delta compression scheme only does lossless compres-
sion. In contrast our Trajic performs both lossless and
lossy compressing and hence can directly compete
against the popular line generalisation methods which
are all lossy compression methods.

In addition to delta compression, TrajStore also
compresses trajectories by clustering similar trajecto-
ries together and storing only one representative tra-
jectory per cluster. This is a complementary technique
that may also be used in conjunction with our Trajic
algorithm.

2.3 Other methods
There are other systems which use knowledge of
predefined road networks and tracks to minimise
the space required when storing trajectories [3], [2].
However, such systems are not very useful when the
network data is not available, or the moving objects
are not confined to well-defined tracks. The Trajic
compression scheme does not require such additional
network information to compress trajectories.

Mahrsi et al. [7] proposed a one pass sampling
based method for trajectory compression which selec-
tively decides if individual points should be discarded
based on whether the point can be predicted within
a user defined error. They claim this method is more
computationally efficient compared to the line gen-
eralisation methods but at the same time allows an

4

Predictor
Residual

Maker

Leading Zero

Encoder

Generator

ResidualPredicted point
Trajectory

Collect

Residuals

Entire

Residuals

Trajectory

Residuals

Approximate Point

Approximate points

Input: Original points

Encoded
Output:

Figure 3. The system architecture used to generate the encoded residuals (compressed data).

upper error bound to be set for compression error. In
the paper they propose the use of a predictor which is
the same as the temporally-aware linear predictor (See
Section 3.2.3) that we found provides best prediction
performance. However, Mahrsi et al. use the predictor
to decide if the next sample point should be dropped
or not. The next sample point is dropped if the
predicted point is within a user-defined maximum
error margin of the actual point. In contrast, we use
the predictor to create residuals (difference between
actual and predicted value). Therefore, the system
proposed by Mahrsi et al. can be thought of as using
the temporally-aware linear predictor to create a one
pass line generalisation algorithm, whereas Trajic uses
the temporally-aware linear predictor in the context
of delta compression. In addition we perform a com-
prehensive study comparing five different predictors
whereas Mahrsi et al. do not compare their predictor
against any other predictor.

Muckell et al. [14] proposed SQUISH, a one pass
trajectory compression algorithm that is based on the
line generalisation approach of discarding data points
while minimizing the increase in compression error.
They consider a current buffer worth of points and
prioritize to keep points within that buffer that are
extreme points based on the local estimation of the
error. SQUISH improves on line generalisation tech-
niques by incurring much lower execution time due
to the fact it takes only a single pass through all the
data. However, it still offers similar compression ratios
and compression error behavior when compared to
line generalisation algorithms such as the Douglas-
Peucker (DP) algorithm [6]. Therefore it still does not
fill the gap of a good compression ratio and low
compression error.

3 THE TRAJIC SYSTEM
3.1 Overview
The Trajic system takes as input the original trajectory
consisting of a sequence of sample points p1, p2, p3, ...,
with each point consisting of a timestamp, latitude
and longitude. During compression, Trajic generates
an approximate trajectory consisting of the approxi-
mate points p′1, p

′
2, p
′
3, ..., whose error is within user

defined bounds. In the case where the user requests
lossless compression the approximate trajectory will
be identical to the original trajectory. A sequence of
residuals r1, r2, r3, ... is incrementally produced by
Trajic during the compression process. These resid-
uals are stored and used to reconstruct the trajectory
during later decompression.

Figure 3 shows the system architecture including all
the components used to generate the residuals from
the original points. The system consists of the follow-
ing four key components: the predictor; the approx-
imate point generator; the residual maker; and the
leading zero encoder. The predictor takes the previous
sequence of approximate points (p′1, p′2, p′3, ...p′i−1) to
generate the next predicted point (α). The residual
maker stores the difference between the actual origi-
nal point (pi) and the corresponding predicted point
(α) to create the residual (ri). The residual (ri) is fed
back to the approximate point generator and com-
bined with the predicted point (α) to generate the ith
approximate point (p′i). The reason that the ith original
point (pi) is different from the approximate point (p′i)
is that the residual (ri) may contain inaccuracies when
using lossy compression. Algorithm 1 summarises
this compression process in high-level pseudocode.
Decompression follows logically from compression
and is described in algorithm 2.

We have engineered our system so that errors do
not propagate at all between successive points. This
is achieved by creating approximate points, just as the
decompressor would, and using these as feedback in
the compression process so that inaccuracies may be
compensated for. For example, assume we are using
the constant predictor and the original values are
p1 = 3, p2 = 3, but due to losses in the residual the
approximate value p′1 is 2 instead. When we run the
constant predictor, we will predict the next value to
be α = 2 (based on p′1) rather than 3 (based on p1).
Since the next residual generated will be based on the
difference between our predicted point (α = 2) and
the actual point (p2 = 3), we will end up with a larger
residual to compensate for the fact we lost precision
earlier on. This effectively prevents the errors from
propagating.

As shown in Figure 3, once all of the residuals
for a trajectory have been calculated, a leading zero
encoding algorithm is used to compact the leading ze-
ros. The reason we collect the entire trajectory before
encoding the leading zeros is that our leading zero
encoding algorithm uses the statistics of the entire
sequence of residuals to find the optimal encoding
scheme for a particular trajectory. Each set of residuals
(time, latitude and longitude) are encoded separately
and then interleaved during writing. These residuals,
along with any initial reference points required by the
predictor, contain enough data to recreate the entire
trajectory.

Query processing. Normally, the delta-based com-
pression techniques including Trajic need to decom-

5

press the entire trajectory before query processing can
occur. This is because each residual value depends
on successive previous residual values. However, par-
tial decompression is possible if we store the actual
uncompressed point at regular intervals in the com-
pressed trajectory. This allows decompression to start
at the uncompressed points. The line generalisation
based compression methods can be partially decom-
pressed by just decompressing the data points around
the query interval.

Algorithm 1: High-level compression pseudocode
Input: A sequence of timestamped points
Output: A compressed representation of the

trajectory
Function Compress(p0, p1, . . . , pn) begin

for i ← 0 to n do
α← PredictNext(p′0, p′1, . . . , p′i−1)
ri ← CalculateResidual(α, pi)
// Discard bits from residual

for lossy compression
ri ← DiscardBits(ri)
p′i ← RestoreResidual(α, ri)

return Encode(r0, r1, . . . , rn)

Algorithm 2: High-level decompression pseu-
docode

Input: A compressed representation of the
trajectory

Output: A sequence of timestamped points
Function Decompress(data) begin

r0, r1, . . . , rn ← Decode(data)
for i ← 0 to n do

α← PredictNext(p′0, p′1, . . . , p′i−1)
p′i ← RestoreResidual(α, ri)

return p′0, p
′
1, . . . , p

′
n

3.2 Predicting points
In this section, we present a range of predictors,
starting with the simple constant predictor and ending
with our temporally-aware linear predictor. Although
the predictor is a fairly rudimentary part of the Trajic
system, it is necessary to select an algorithm which
forms a good basis for the novel leading zero encod-
ing scheme proposed in Section 3.3. To design a good
predictor, two important factors must be taken into
consideration: accuracy and efficiency. An accurate
predictor produces predicted points which are close
to the actual future points, thus minimizing residual
sizes and reducing the final storage space required.
An efficient predictor predicts points quickly. Given
that a trajectory consists of a sequence of points
containing time, latitude and longitude, a predictor
is composed of separate functions for predicting the
temporal and spatial elements of each point.

To keep the total compressor complexity at O(N),
only predictors which run in constant time are con-
sidered.

#1
#2

#3

#4

#3

#4
Predicted point

Actual point

Figure 4. Visual demonstration of basic linear spatial
prediction

3.2.1 Constant predictor
The constant predictor simply predicts the next point
to be the same as the current one. This essentially
corresponds to delta compression, as the result is
storing residuals between each pair of adjacent points
in the trajectory (the “deltas”).

Such a predictor is very simple to implement, and
works best when samples are taken frequently with
small changes between them. Realistically this is not
often the case due to the costs associated with mea-
suring and storing high-resolution data on portable
GPS devices. Hence constant predictors can perform
poorly in real-life data where sample rates may be
low.

3.2.2 Basic linear predictor
The basic linear predictor functions by considering the
previous two points and calculating the displacement
between them. It then adds this displacement to the
last point, thus forming a prediction. In general this
performs better than the constant predictor because it
takes advantage of the tendency of moving objects to
have inertia. However, when points are not recorded
at a constant sample rate the simple displacement-
based algorithm begins to lose some of its accuracy.
For example, if the previous two points were sampled
five seconds apart, but the next point was sampled
only one second afterwards, this predictor will tend
to overestimate the next point by four seconds’ worth
of displacement.

Figure 4 demonstrates the spatial prediction process
of the linear predictor, with actual and approximate
points labelled with a number indicating order. The
displacement between actual points #1 and #2 is calcu-
lated, shown here as a dashed line. This displacement
is then added to actual point #2 to find the location
of predicted point #3.

3.2.3 Temporally-aware linear predictor
We have found examples in the real data where the
sample intervals are not uniform. For example the
following is an example of a sequence of timestamps
for a trajectory in the Illinois data set [17] (trajectory
01-07-01): 01-0: 15:16:24, 15:16:33, 15:16:35, 15:16:38,
15:16:39, 15:16:41, 15:16:42, etc. As you can see the time
gap between the timestamps are far from uniform.
We also found similar examples in the Geolife data
set [12] (such as trajectory 200907011110728). Possible
sources of non-uniform sampling include patchy GPS
signal coverage caused by weather or buildings, soft-
ware related issues on the mobile device, etc.

In this section we present a temporally-aware lin-
ear predictor which takes non-uniform timestamp
samples into consideration when predicting the next
location. We do this by making predictions based on
velocity rather than displacement, thus eliminating

6

the loss of spatial accuracy caused by a variable
sample rate. In other words, using displacement only
would result in poor prediction accuracy when the
sampling rate has high variance. This is because an
object moving at constant velocity would move twice
as far if it was sampled at time tc+2∆t versus tc+∆t,
where tc is the time of the current sample.

Timestamps are predicted by assuming a constant
sample rate.

Time Actual
latitude

Linear
prediction

Temporally-aware
linear prediction

0 0 - -

5 10 - -

6 12 20 12

8 16 14 16

Table 1
Temporal awareness has a considerable impact on

the accuracy of predicted points when sample rate is
not fixed

Table 1 contains a sample set of trajectory points for
an object moving with constant velocity but recording
positions with a variable sample rate. The basic linear
predictor ignores time and assumes that the displace-
ment between the second and third points will be the
same as that between the first and second. This results
in a predicted latitude of 20, which is a considerable
overestimation of the actual latitude, 12. However,
the temporally-aware linear predictor calculates the
velocity between the first and second points, assumes
constant velocity and hence accurately predicts the
next latitude to be 12. This example shows the im-
portance of giving time special consideration when
forming predictions.

3.2.4 Complex predictors
There are more complex prediction algorithms that
attempt to fit smooth curves to a group of sample
points, including Lagrange extrapolation and natural
cubic spline extrapolation [1]. In order for the entire
prediction process to run in linear time it is necessary
to only perform these more complicated predictions
based on a fixed number of past points.

3.3 Generating residuals
A residual is typically a small number representing the
difference between two similar values. Given either
value, the other may be restored by using the residual.
Although in our case the two values are the predicted
and actual coordinates in the form of double-precision
floating-point numbers, the algorithms presented in
this section can be easily extended to compress values
represented in other formats. Residuals are calculated
by XORing the binary representation of these values.
This works because the most important parts of a
double, the sign and exponent, are stored in the most
significant of the 64 bits (Figure 5). Therefore, since
similar numbers tend to share a sign, exponent, and a
few significant bits of the mantissa, residuals will tend
to have many leading zeroes. An example residual
calculation is demonstrated in Table 2.

Algorithm 3: Spatial prediction function for the
temporally-aware linear predictor
Input: pastLocs: list of locations at which

previous sample points were found, time:
time of the point we wish to find the
location of

Output: nextLoc: predicted location of the next
sample point

Function PredictLocation(pastLocs, time) begin
// Displacement between last two

points
dx ← pastLocs.last − pastLocs.secondLast
// Time interval between last two

points
dt ← pastLocs.last.time -
pastLocs.secondLast.time
// Calculate velocity
velocity ← dx ÷ dt
// Assume constant velocity to

predict the displacement to the
next point

ndx ← velocity × (time − pastLocs.last.time)
// Calculate predicted location
nextLoc ← pastLocs.last + ndx
return nextLoc

Exponent
(11 bit)Sign

Mantissa
(52 bit)

63 52 0
Significance

LowHigh

Figure 5. The relationship between bit position and
significance in the IEEE 754 binary representation of
a double floating-point number is monotonic

3.3.1 Lossy compression
In this section we introduce lossy compression by
using approximate residuals which, when restored,
are within a known error margin of the original value.
This enables the creation of much smaller residuals
through bit-shifting, effectively discarding the D least
significant bits from each residual. Ultimately, smaller
residuals require less storage space and are desirable.
It is ideal to use a different value of D for spatial and
temporal residuals as the range of values and error
requirements for each are usually different.

Here we perform error calculations based on

Value How it’s stored

Value 1 27.34212484801 40 3b 57 95 7e 79 5a 17

Value 2 27.34212484972 40 3b 57 95 7e 80 b2 42

Residual Val. 1 XOR Val. 2 00 00 00 00 00 f9 e8 55

Table 2
Residuals calculated between similar numbers tend to

have many leading zeros

7

Actual
residualPaddingHeader

l bits

p(l) bits

EO(l) bits

h bits

Figure 6. A general encoding scheme with important
bit-lengths labelled

the IEEE 754 standard for storing double-precision
floating-point numbers, but the formulae presented
should apply to other representations of doubles with
slight modification.

It is important to ensure that the error induced
from the lossy compression stays within the user
defined maximum error. The maximum error possible
when discarding D bits from a double’s mantissa is
errormax = (2D−52 − 2−52)× 2q , where q is the value
of the double’s exponent (which in the case of the
IEEE 754 standard is the number stored in the 11-bit
exponent field minus an offset of 1023). In order to
calculate a safe value of D which will not exceed the
specified error bounds for the entire trajectory, it is
necessary to know the maximum exponent possible
for values in that particular trajectory, qmax. By rear-
ranging the formula we get D = blog2(errorbound ×
252−qmax + 1)c
qmax may be established by determining the maxi-

mum absolute value in the trajectory and performing
bitwise manipulation to extract the exponent (Algo-
rithm 4).

Algorithm 4: Function for calculating D from
a specified error bound, assuming doubles are
stored using the IEEE 754 standard

Input: error: user-specified error bound, maxV al:
maximum value in the trajectory

Output: D: number of bits which are safe to
discard from residuals

Function calculateDiscard(error, maxVal) begin
// Extract exponent value
q ← (maxVal >> 52) & 0x7ff − 1023
// Calculate safe number of bits

to discard
D ← blog2(error × 252−q + 1)c
return D

3.4 Compressing residuals
Although each residual is typically a small number,
they are still technically 64-bit longs. To actually
achieve compression, the leading zeros of the resid-
uals must be compactly encoded.

In general, a number stored with a leading zero
encoding scheme has three sections, shown in Figure
6: a header indicating how many bits are to follow, a
small amount of zeros for padding (when the header
indicates more bits than the actual residual length),
and the actual data representing the residual value.
Let l be the length of the actual residual in bits
(l ∈ [0, 64]). Let p(l) be the padded residual length

0...000010010101010010011

0...0 0001 0010 1010 1001 0011

0100 000 10010101010010011

Place a divider after every fourth bit

Remove as many zeros as possible, starting at
the most significant bit and ending at a divider

Store the number of remaining dividers
followed by the truncated residual

Header Padding Actual residual

0...0 0001 0010 1010 1001 0011

(value=4)

Figure 8. The process for encoding residuals with the
half-byte count scheme is typical of all static encoding
schemes.

in bits (p(l) ≥ l). Let h be the length of the header in
bits (the header indicates the value of p(l)). The aim of
such an encoding scheme is to minimise the combined
size of the header and padding for each l, which we
will call the encoding overhead (EO(l)). Using the
previously defined terms, the encoding overhead for a
given residual length is EO(l) = h+p(l)− l. A perfect
encoding scheme would always have EO(l) = 0,
implying a header size of zero (h = 0) and no
padding (p(l) = l). In reality this is not possible as
the decoder must have some way of knowing where
one number ends and the next begins. So to devise
a good encoder one must reduce the header size, h,
whilst still keeping the amount of required padding,
p(l)− l, to a minimum.

3.4.1 Static leading zero encoding
Most of the current popular leading zero encoding
schemes may be classified as being “static”. That is,
the scheme does not adapt to the particular residuals
to be encoded. These schemes can be thought of as
placing “dividers” at regular intervals, then removing
as many leading zeros as possible up to a divider.
The number of dividers remaining in the residual are
then stored in a header before the residual. Figure 8
demonstrates these steps with the half-byte encoding
scheme. Using the concept of dividers, each possible
value of p(l) (each possible padded length) corre-
sponds to a divider position. Here we describe three
such static leading zero encoding schemes.

Bit count. A very basic, yet popular approach to
encoding leading zeros is to use a six-bit header
(h = 6) to store the length of the actual residual.
This corresponds to placing a divider between every
single bit in the residual. Since the actual length of the
residual, l, is encoded in the header there is no need
for padding (p(l) = l). Figure 9 contains an example
of the bit count encoding scheme. Although having
no padding was one of the requirements for an ideal
encoding scheme, the constantly large header size
results in a suboptimal complete encoding overhead
(EO(l) = h+ p(l)− l = 6).

Half-byte count. The half-byte count scheme ad-
dresses the large header issue by allowing some
padding as a trade-off to reduce the header size. More

8

E
n
co

d
in

g

o
v
e
rh

e
a
d

,
E
O
(l
)

Actual residual length, l

4

8

12

40 8 12

Bit count
Half-byte count

Byte count

16 20 24 28 32 36 40 44 48 52 56 60 64

Figure 7. Different encoding schemes perform better for different l values.

001011 10101101110

Header
(value=11)

Actual residual

Figure 9. A common encoding scheme uses h = 6 bits
to store a count of the following data bits. In this exam-
ple the header contains the number 11, which indicates
that the next 11 bits contain the actual residual.

specifically, the header stores the number of half-bytes
required to store the actual residual rather than the
precise number of bits. This information takes less
space to store, resulting in a header size of 4 bits
(h = 4). However, p(l) = dl÷ 4e as a result of needing
to pad residuals to the nearest half-byte. Assuming
an even distribution of residual lengths, this scheme
yields an average encoding overhead of 5.54 which is
an improvement over the bit count scheme. The half-
byte encoding process is shown in Figure 8.

Byte count. The byte count scheme is very similar to
the half-byte scheme, but counts bytes instead of half-
bytes. This results in a smaller header size (h = 3),
but demonstrates that introducing too much padding
has a detrimental impact on the encoding overhead.
The average EO(l) is 6.57 for an even distribution of
residual lengths.

Analysis. The problem with each of the above
three encoding schemes is that they are optimal for
different actual residual lengths (l). Figure 7 shows the
encoding overhead for varying actual residual lengths
for all three encoding schemes. Notice the sawtooth
pattern on the graph - this is a visual manifestation of
the encoding overhead varying for different residual
lengths.

In practice a sequence of residuals will have a vari-
ety of different actual lengths. Therefore none of the
above three simple encoding schemes will be optimal
for all residuals within the sequence of residuals. For
example, whilst byte-counting has the highest average
number of excess bits, if the majority of residuals have
l = 32 then it will actually perform best for that
particular data. This motivates our dynamic scheme
for encoding leading zeros.

It is important to note that prior research [16] has
shown that representing the compressed data at the
byte level results in faster decompression compared to
bit level storage. This is because decompressing data
stored at the byte level allows data to be aligned to
cache lines and better fits the pipelined architecture
of modern CPUs. Decompressing data at the bit level
requires more CPU instructions to shift the bits to

Latitude

Longitude

Actual residual length, l

F
re

q
u

e
n

c
y

0.150

0.125

0.100

0.075

0.050

0.025

0.000
0 10 20 30 40 50 60

Figure 10. Distribution of latitudinal and longitudinal
residuals for the Illinois data set, obtained via the
temporally-aware linear predictor

become byte aligned. In this paper, we emphasis
achieving a better compression ratio while incurring
small error as opposed to extremely optimised decom-
pression performance. Hence we have adopted a bit
level compression algorithm because it gives a better
compression ratio. However, for future work, it would
be interesting to compare our algorithm to some byte
level compression algorithms for all four metrics of
decompression time, compression time, compression
ratio, and compression error.

3.4.2 Dynamic leading zero encoding
The motivation for our dynamic leading zero encod-
ing scheme is derived from our observation that real
trajectories have skew in the frequency distribution of
actual residual lengths. See Figure 10 for the frequency
distribution of actual residual lengths of a trajectory
in the Illinois data set used in our experiments. Notice
the clear skew in the distribution.

The idea behind our dynamic leading zero encoding
scheme is to use the frequency distribution infor-
mation to dynamically create an encoding scheme
which aims to minimise the encoding overhead for
the most frequent residual lengths. That is, we intel-
ligently place dividers where they are needed most,
as illustrated by Figure 11. The figure shows that
the static encoding schemes, which are oblivious to
the frequency distribution of residual lengths, have
many wasted dividers (dividers in areas with low
value frequency) and/or large padding (long distance
from high frequency values to nearest higher divider).
In contrast, the dynamic scheme does not have any
wasted dividers and does not require many padding
bits.

The system for encoding leading zeros proposed
here dynamically generates a padded length function
p(l) based on the frequency distribution of l values in

9

0 4 8 12 16 20 24 28 32

Frequency
distribution

Bit count

Half-byte count

Byte count

Dynamic

= Wasted divider = Useful divider

Actual residual length, l

Figure 11. The dynamic encoding scheme uses knowl-
edge of the residual length frequency distribution to
avoid unnecessary encoding overhead present in static
encoding schemes

the sequence of residuals. To ensure an optimal func-
tion is obtained, a variation of the linear partitioning
algorithm [19] is employed. This results in values of
p(l) that are close to l for the most frequently occur-
ring l values. Finally, Huffman coding [9] is applied to
minimize the header length for most frequently used
values of p(l).

Given a residual length frequency distribution we
aim to find the padded length function p(l) which
produces the lowest average number of encoding
overhead bits EO(l) for the trajectory. This is achieved
by partitioning the frequencies using a varying num-
ber of dividers and defining p(l) as a function which
simply rounds l up to the next divider. Since the
algorithm aims to minimise the average number of
excess bits used to store residuals, the total cost of a
particular partitioning must approximate the average
amount of encoding overhead. We define the cost
of a partitioning as the average encoding overhead of
the partitioning which is expressed mathematically as
follows.

cost(d1, ..., dn) =

64∑
l=0

(fl × (p(l)− l)) + log2(n) (1)

where {d1, d2, ..., dn} is a set of n dividers, fl is the
frequency with which residuals of length l occurs and

p(l) =

d1 l ≤ d1
d2 d1 < l ≤ d2
...

dn dn−1 < l ≤ dn
∞ l > dn

Figure 12 shows an example of calculating the cost
presented in Equation 1. In Equation 1 the header
length is computed as log2(n), which effectively as-
sumes all dividers are represented using the same
code word length. However, this is just an approxima-
tion since we actually use Huffman coding (See Sec-
tion 3.4.3) to implement variable length code words.

By finding the number and arrangement of dividers
with the lowest total cost, we find an efficient function

Algorithm 5: Partitioning Algorithm

Function Partition(freqs) begin
// The maximum number of dividers
maxDivs ← 32
// 2D array of minimum cost
costs ← Array[length(freqs)][maxDivs]
// 2D array of divider positions

corresponding to minimum cost
path = Array[length(freqs)][maxDivs]
// Boundry case for no dividers
for i ← 0 to length(freqs) - 1 do

costs[i][0] ← 0
for y ← 0 to i - 1 do

costs[i][0] ← costs[i][0] + (i - y) ×
freqs[y]

// Boundry case for segments of
length zero

for j ← 1 to maxDivs - 1 do
costs[0][j] ← 0

// Populate ‘costs‘ and ‘path‘
for i ← 1 to length(freqs) - 1 do

for j ← 1 to maxDivs - 1 do
costs[i][j] ←∞
for x ← j - 1 to i - 1 do

cost ← costs[x][j - 1]
for y ← x + 1 to i - 1 do

cost ← cost + (i - y) * freqs[y]

if cost < costs[i][j] then
costs[i][j] ← cost
path[i][j] ← x

// Find the partitioning with
lowest cost across varying
numbers of dividers

dividers ← Null
minCost ←∞
for n ← 2 to maxDivs do

// Find the position of the last
divider

lastDiv ← length(freqs) - 1
while lastDiv > n do

if freqs[lastDiv] > 0 then
break

else
−−lastDiv

cost ← costs[lastDiv][n − 1] + log2(n)
if cost < minCost then

minCost ← cost
dividers ← Array[n]
dividers[n - 1] ← lastDiv
for j ← n− 2 downto 0 do

dividers[j] ← path[dividers[j + 1]][j
+ 1]

return dividers

10

d

l

fl

cost

0 1 2 3

0 1 2 3

0.1 0.2 0.1 0.6

2×0.1 1×0.2 0×0.1 0×0.6+ log2(2) = 1.4+ + +

d1 d2

p(l) =
l ≤ 2

2 < l ≤ 3
l > 3

2
3
∞

Figure 12. The cost of a particular partitioning is calculated by multiplying each frequency with its distance from
the next divider, then adding these products to the base 2 log of the number of dividers.

p(l) which can be used to compactly encode the set
of residuals. This is achieved by adapting the solution
to the well-known partition problem [19].

The following is an example to illustrate the par-
tition problem. Suppose four scholars are asked to
search through every page of every book in a book
shelf for some important information. Further, sup-
pose the scholars are not allowed to rearrange the
order of the books and each scholar can only work
with a single contiguous sequence of books. How
should the books be divided so that the reading work-
load is most evenly spread amongst the scholars? The
problem of finding the optimal divisions is known as
the “partition problem”.

Our problem of finding the optimal set of dividers
can be mapped to the above partition problem as
follows. Each residual length maps to a book, the
frequency of a residual length maps to the number
of pages in that particular book, and finally the num-
ber of dividers maps to the number scholars minus
1. Instead of spreading the workload as evenly as
possible we are instead interested in minimizing the
cost defined in Equation 1.

Although the partition problem is NP-complete,
there exists a dynamic programming solution which
runs in pseudo-polynomial time [19]. A variation of
this particular solution (Algorithm 5) is used to solve
our problem of finding an efficient function p(l).
The algorithm works by constructing a matrix where
row i, column j contains the minimum average
encoding overhead for residuals with length ≤ i
using j dividers. This matrix is labeled as cost in
algorithm 5. The algorithm also keep track of the
divider positions corresponding to the minimum cost
using the path matrix. Specifically, path[i][j] contains
the position of the next lowest divider for optimal
partitioning with a divider placed after element i
and j more dividers available. Populating the first
row and column of the cost and path arrays is trivial,
and this forms a basis for calculating the rest of the
entries. The optimal number of dividers is found by
looking up the average encoding overhead for each
number of dividers in the matrix and selecting the
best one.

Complexity analysis. Although our partitioning
algorithm (Algorithm 5) runs in pseudo-polynomial
time in terms of the maximum residual length, it still
allows Trajic to perform compression in linear time
in terms of the number of sample points in each
trajectory. This is because the partitioning algorithm
only takes the frequency distribution of residual
lengths as input and therefore is independent of
the number of sample points in the trajectory.
This effectively means the partitioning algorithm

only imposes a constant overhead on the overall
compression algorithm complexity, when complexity
is measured in terms of the number sample points in
the trajectories.

A more detailed analysis is as follows. The al-
gorithm is dominated by the complexity of the 4
nested for loops. The complexity of this nested for
loop only depends on the constants length of the freq
array (maximum residual length) and maxDivs which
are 64 and 32 in our experiments, respectively. We
computed the number of times the inner most part
of the loop is executed to be 559705 times. A modern
computer can easily do 2 GFLOPS, which works out
to be around 0.28 ms to process the entire inner loop.
We conducted an experiment, described in Section
4.2.3, which shows that the time taken to execute the
partitioning algorithm (place dividers) is only 1% of
the total compression time (Figure 14).

3.4.3 Storing the codewords and data using Huffman
coding

The previous section focused on finding the optimal
dividers to reduce encoding overhead. We can further
reduce the encoding overhead by assigning optimal
length codewords to each divider based on the fre-
quency distribution of the actual residual lengths. To
do this we use Huffman coding [9] to assign the
optimal length codewords to dividers as headers.

A Huffman codeword is assigned to each possible
divider/output value of p(l), with a divider’s fre-
quency (for the purposes of Huffman coding) being
the sum of all frequencies for l values between it
and the next smallest divider. Once the codebooks
for time, latitude and longitude are written, residuals
may be stored by writing the appropriate codeword as
the header, followed by p(l) bits containing the actual
residual data.

Consider a set of four-bit residuals where the fre-
quency distribution of l values is found to be fo =
0.1, f1 = 0.4, f2 = 0.1, f3 = 0.1, f4 = 0.3. Assume the
following definition for function p(l):

p(l) =

1 l ≤ 1

3 1 < l ≤ 3

4 3 < l ≤ 4
Since there are three possible output values of

p(l), three Huffman codewords are created. Observe
that the most frequently used value of p(l) has the
smallest codeword length:

p(l) frequency codeword h

1 f0 + f1 = 0.5 0 1
3 f2 + f3 = 0.2 10 2
4 f3 = 0.3 11 2

11

Now, to store a 2-bit residual, a header containing
“10” is written out followed by 3 bits containing the
2-bit residual padded with a leading zero.

4 EXPERIMENTS

4.1 Experimental setup
4.1.1 Implementation and hardware
The Trajic system and other existing compression
schemes were implemented and tested via C++11
code compiled with GCC version 4.7.2 using the -O3
optimization flag. Results were produced on an AMD
Phenom II X4 965 processor clocked at 3.4 GHz with
4 gigabytes of RAM, running Ubuntu Linux.

4.1.2 Algorithms implemented
Delta compression. A simple delta compression al-
gorithm was implemented with a bit-count leading
zero encoding scheme. This is the delta compression
method used in TrajStore [5].

TD-SED. TD-SED is a top-down line generalisation
algorithm based on the Douglas-Peucker algorithm
[6] described in Section 2.1. It utilises the synchro-
nised Euclidean distance (SED) as an error metric
to incorporate the time dimension (as described in
Section 2.1).TD-SED was used in our experiments to
represent the line generalisation approach to trajectory
compression. The reason we chose to compare against
the Douglas-Peucker algorithm instead of others was
due to the thorough set of experiments conducted
by Muckell et al. [13]. Muckell et al. [13] compared
seven different state-of-the-art trajectory compression
algorithms using several real data sets. The results
showed that Douglas-Peucker offered the best perfor-
mance in terms of both low execution time and low
synchronized Euclidean distance error.

TD-SED + Delta. TD-SED and delta compression
were combined by first applying the line general-
isation method to remove points, then storing the
remaining points as a sequence of deltas.

Trajic. The Trajic system described in this paper
was implemented with the temporally-aware linear
predictor and dynamic leading zero encoding.

SQUISH. The one pass trajectory compression al-
gorithm proposed by Muckell et al. [14].

Clustering compression. The clustering trajectory
compression algorithm from TrajStore[5]. The clus-
tering algorithm is designed to work on partitioned
regions of the 2D space. We therefore first partition
the space into 20 x 20 grid cells of uniform width and
length. We then run the clustering algorithm on each
cell separately.

4.1.3 Data sets
The two main data sets used for the experiments
were a set of trajectories recorded by the University
of Illinois [17] and data from the Microsoft GeoLife
project [12].

The GeoLife data contains 17,621 trajectories (aver-
age sample rate of 1 per 3 seconds and 1343 average
samples per trajectory) taken with a variety of GPS
devices, and the set includes many modes of transport
including walking, cycling and driving. Over 48,000

Constant Linear Temporally-
aware

Mean prediction
time (ms)

0.076
(0.135)

0.064
(0.109)

0.084
(0.138)

Mean overall
residual length

30.0 (29.7) 22.4(19.1) 22.4 (19.0)

Mean spatial
residual length

32.4 (32.0) 31.3 (27.9) 31.3 (27.8)

Mean temporal
residual length

25.4 (25.0) 4.31 (1.27) 4.30 (1.27)

Table 3
The mean prediction time and mean residual lengths by

different predictors over all trajectories for both the Geolife
and Illinois data sets. The results for the Geolife data set are
not in brackets and the Illinois data set results are enclosed

in the brackets.

hours of data taken from April 2007 to October 2011
is contained in the complete data set.

There are 213 trajectories (average sample rate of 1
per second and 1671 average samples per trajectory)
in the University of Illinois data set. The data cor-
responds to the movements of two people over a 6
month period.

Since both data sets provide positions in terms of
a longitude and latitude, the haversine formula [20]
was used to convert distances into kilometers.

4.2 Results
Comparisons for Trajic were made with simple delta
compression, the TD-SED line generalisation method,
TD-SED + Delta (a combination of TD-SED and delta
compression), SQUISH and clustering compression of
Trajstore.

4.2.1 Comparison of predictors
In this section we compare the effectiveness and effi-
ciency of different predictors. Each predictor was run
over the entire set of trajectories from both Geolife [12]
and the Illinois [17] datasets. We report both the mean
prediction time and the mean residual length in Table
3. The results for the Illinois data set are shown in the
table is in brackets. For residual length, we report the
mean overall residual length and also the mean resid-
ual length for the spatial and temporal components
separately. The results show all the predictors are very
fast for prediction. The linear and temporally-aware
linear predictors are significantly more accurate than
the constant predictor (used by Trajstore for their delta
compression), this is evidenced by the much smaller
mean residual lengths. For these two data sets the
linear and temporally-aware linear predictor results
in similar residual lengths. This is because for most
of the trajectories the time interval between samples
is constant. We did notice that the Illinois data set
has a slightly larger number of non-uniform sample
time intervals, hence we can see the temporally-aware
predictor produces a slightly lower residual length
than the linear predictor for the Illinois data set. We
also tested the complex Lagrange extrapolation and

12

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

C
om

pr
es

si
on

 ti
m

e
(m

s)

Compression ratio

Trajic
TD-SED + Delta

TD-SED

Figure 13. Compression time was plotted against com-
pression ratio to compare the behaviours of trajectory
compression algorithms

spline extrapolation predictors but do not report their
results due to space constraints. The results showed
that these more complex predictors resulted in longer
mean residual lengths and also much longer mean
prediction times than the linear and temporally-aware
linear predictors. This is likely due to noise in real
data sets causing attempts to fit mathematical func-
tions to yield poor results.

4.2.2 Compression ratio
Table 4 shows the compression ratio results for the
various algorithms. Compression ratio was measured
by dividing the total size of compressed data by the
amount of space which would be required if each
sample point were to be stored in 24 bytes (a 64-
bit double for each of time, latitude and longitude).
Hence a smaller compression ratio is desirable, as
it corresponds to greater savings in storage space.
Reasonably strict error bounds of 1 second temporally
and 1 meter spatially (approximately 1 meter) were
used for the lossy Trajic compression.

It is evident that the storage gains from Trajic are
significant, with as much as 93% of space being saved
with minimal impact on data integrity (less than 1
meter of maximum error). Both the lossless and a
lossy version of the Trajic compression system achieve
significantly better compression ratios than line gener-
alisation and delta compression for small to medium
error bounds. In particular, with 1 meter of error Trajic
produces 5.3 times smaller compressed data than TD-
SED + Delta. This shows that Trajic is able to fill
the gap where users expect high compression whilst
giving away only a small amount of precision, as was
expected.

4.2.3 Running time
Table 4 compares the running time results for the var-
ious algorithms. In order to test the time performance
of the compression algorithm presented in this paper,
the average time taken to compress/decompress a tra-
jectory was measured. Once again, the error bounds
for lossy compression were set to 1 second temporally
and 1 meter spatially. For both Trajic and TD-SED, it
was found that allowing for greater maximum error
resulted in a faster decompression time. This was

26/04/2014 2:18 pm

Page 1 of 1file:///Users/zhenhe/Dropbox/TrajStore%20new/Aiden/Paper-TKDE%20revision/time_breakdown%20files/time_breakdown.svg

7%

1%

71%

4%

Calculate residualsCalculate residuals
Find residualFind residual
frequenciesfrequencies
Place dividersPlace dividers
Encode and writeEncode and write
OtherOther

16%

Figure 14. The compression time breakdown was
measured for the largest trajectory in the GeoLife data
set

expected as when either system stores less data in
compressed form, it takes less time to restore the
trajectory. Delta compression is significantly faster
than the other compression algorithms in terms of
compression time, but is slower for decompression.
If compression time is more important than both
compression ratio and decompression time then using
delta compression may be preferred. However, in all
other cases the lossless and 1m error bound variants
of Trajic yield preferable results.

Compression ratio versus compression time. We
used 100 points from the GeoLife data set to perform
a micro benchmark comparing compression time with
ratio for the Trajic, TD-SED and TD-SED + Delta
algorithms. Figure 13 was created by varying the
error bounds from 0 to 100 meters and calculating the
average compression time and ratio for each bound.
The graph shows that better compression speed is
achieved at better compression ratios (larger error
bounds) for each of the algorithms tested. This is due
to the nature of these algorithms: lower compression
ratios are achieved by dropping parts of the data,
which means that there is less data to process. Ob-
serve that Trajic is able to compress trajectories much
quicker than the TD-SED variants for all ratios in the
graph.

Trajic compression time breakdown. Additional
timers were added to the compression code as a way
of breaking down compression time for various stages
of the process. We selected the largest trajectory in
the GeoLife data set for this experiment to better
distinguish linear time procedures from large constant
time procedures. Figure 14 shows that compression
time is dominated by linear time operations such as
calculating residuals (this includes predicting), find-
ing residual frequencies, encoding, and writing to
disk. A key observation is that the pseudo-polynomial
time algorithm for placing dividers (partitioning al-
gorithm) occupies only 1% of the total compression
time. This result supports our earlier observation that
although the algorithm has a high time complexity
with respect to its constant inputs, it is acceptable due
to its independence from trajectory size.

4.2.4 Overall performance
Considering compression ratio and decompression
time simultaneously it becomes obvious that Trajic
compression is fast as well as effective, and should
not have a detrimental impact on the speed of a larger

13

Algorithm
Compression ratio Compression time (ms) Decompression time (ms)

GeoLife Illinois GeoLife Illinois GeoLife Illinois

Delta 0.55 0.39 0.7 0.3 0.8 0.4

Trajic (lossless) 0.37 0.18 5.2 2.8 0.6 0.2

TD-SED (1m error) 0.66 0.90 4.5 2.5 0.6 0.4

TD-SED + Delta (1m error) 0.37 0.36 4.3 2.5 0.6 0.3

Trajic (1m error) 0.07 0.08 1.9 1.2 0.3 0.2

TD-SED (31m error) 0.12 0.75 3.4 2.5 0.1 0.4

TD-SED + Delta (31m error) 0.07 0.31 3.0 2.6 0.1 0.3

Table 4
The compression ratios and average compression/decompression times per trajectory

Figure 15. Compression ratio was plotted against
spatial error bound to compare Trajic with TD-SED
(line generalisation) and TD-SED enhanced by delta
compression over the GeoLife data set

database system. The line generalisation system can
only match Trajic’s effectiveness if large error bounds
are permitted (31 meters as opposed to 1 meter).

Furthermore, multiple scatter plots were con-
structed to compare compression/decompression
time with trajectory length. These confirmed the time
complexity analysis, revealing a linear time complex-
ity for Trajic.

4.2.5 Error bounds
The relationship between specified error bounds and
compression ratio was tested by keeping the temporal
error constant whilst the varying the spatial error. The
results across 1000 trajectories are shown in Figure 15.
Note that the x-axis uses a log to base 10 scale. This
graph clearly illustrates the ability of Trajic to fill the
gap left by existing algorithms which is achieving a
good (low) compression ratio while sacrificing small
error margins. In particular, at the extremely small
maximum error of 0.001 meters, Trajic produces 5
times smaller compressed data than TD-SED and 2.8
times smaller compressed data compared to TD-SED
+ Delta.

Figure 15 shows an interesting property:
compression ratio ∝ log(error bound) for small
error bounds in the Trajic system. This is because the
number of discarded bits (referred to as D earlier)
is proportional to the logarithm of the error bound.

While the number of discarded bits is less than
most of the residual lengths (l values), discarding
an extra bit effectively means removing one bit
from the storage space required for each of the
majority of residuals. Therefore, compression ratio is
proportional to the logarithm of the user-specified
error bound until the number of discarded bits
exceeds the bulk of residual lengths, as at this stage
most residuals are zero and discarding further bits
will not reduce their storage requirements.

In contrast, the line generalisation algorithm and
SQUISH degrades very quickly as maximum error is
reduced, with Trajic becoming the superior system for
errors less than approximately 25 meters. At less than
0.2 meters it becomes impossible for line generalisa-
tion to improve the compression ratio any further.

The results in Figure 15 shows that SQUISH ex-
hibited worse compression ratios than TD-SED for all
tested error bounds. This is likely the required trade-
off for other advantages of the algorithm, such as
the ability to specify the desired compression ratio
as an input parameter and the ability to compress
trajectories in an online fashion with low memory
requirements. Furthermore, we can also clearly see
that SQUISH does not satisfy the situation where
one wishes to trade a small amount of error (say,
less than 5 m) for large storage improvements, which
is the gap that Trajic aims to fill. This observation
is reinforced by the original SQUISH experimental
results performed by its creators, where the error
maximum error used was on the scale of 10s of meters.

4.2.6 Clustering Compression
Figure 16 shows the results of just using Trajstore’s
clustering compression, clustering followed by delta
compression and clustering followed by lossless Trajic
compression. The data set used was the Illinois data
set. We measured the compression ratio achieved
while varying the maximum error bound of the clus-
tering compression. The results show compressing the
cluster compressed data further with lossless Trajic
gives significantly better compression ratio than us-
ing clustering followed by delta compression. This is
because when compared to delta compression, Trajic
uses a superior prediction method and leading zero
encoding method.

5 CONCLUSION
Trajic is an effective, efficient and flexible compression
system for the reduction of storage space required for

14

Figure 16. Compression ratio was plotted against clus-
tering maximum spatial error bound, for just Trajstore
clustering compression[5], clustering followed by delta
compression and clustering followed by lossless Trajic
compression.

trajectory data. It takes advantage of the inertia of
objects to predict where future points in a trajectory
will lie, and then stores the residuals between the
actual and predicted points using a novel dynamic
leading zero encoding scheme. Both the compressor
and decompressor run in linear time, making the sys-
tem feasible for database applications. In addition, the
compressor works for any reasonable user-specified
error bound, achieving good ratios for both lossless
and varying levels of lossy compression. Trajic fills a
gap existing amongst current systems, as it is able to
achieve better compression ratios than delta and line
generalisation for low maximum error bounds.

The compressor proposed here is independent in
that it can compress and decompress trajectories with-
out any additional requirements, such as knowledge
of a road map or historical data. Consequently it is
not difficult to integrate the Trajic system into a full
trajectory database ensemble. For example, the delta
compression step described in TrajStore [5] can be
replaced with the system proposed here, whilst still
maintaining the functionality of the rest of the system
as described in the paper; including the clustering
algorithm for greater compression across multiple
similar trajectories. Our results show that TrajStore is
able to achieve significantly better compression ratio
compared to delta compression when used following
clustering compression.

The source code for a working implementation of
Trajic may be found at https://github.com/anibali/
trajic.

REFERENCES
[1] R. H. Bartels, J. C. Beatty, and B. A. Barsky. An introduction to

splines for use in computer graphics & geometric modeling. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1987.

[2] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-
matching vehicle tracking data. In VLDB, pages 853–864, 2005.

[3] H. Cao and O. Wolfson. Nonmaterialized motion information
in transport networks. In Proceedings of the 10th International
Conference on Database Theory (ICDT), pages 173–188, Berlin,
Heidelberg, 2005. Springer-Verlag.

[4] M. Chen, M. Xu, and P. Fränti. Compression of gps trajectories.
In Data Compression Conference (DCC), pages 62–71, 2012.

[5] P. Cudré-Mauroux, E. Wu, and S. Madden. Trajstore: An
adaptive storage system for very large trajectory data sets. In
Proceedings of the 26th International Conference on Data Engineer-
ing, (ICDE), pages 109–120, 2010.

[6] D. Douglas and T. Peucker. Algorithms for the reduction of the
number of points required to represent a line or its caricature.
The Canadian Cartographer, 10(2):112 –122, 1973.

[7] M. K. El Mahrsi, C. Potier, G. Hébrail, and F. Rossi. Spa-
tiotemporal sampling for trajectory streams. In Proceedings of
the 2010 ACM Symposium on Applied Computing (SAC), pages
1627–1628, New York, NY, USA, 2010. ACM.

[8] J. Hershberger and J. Snoeyink. Speeding up the Douglas-
Peucker line-simplification algorithm. In Proc. 5th Intl. Symp.
on Spatial Data Handling, pages 134–143, 1992.

[9] D. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098 –1101,
sept. 1952.

[10] R. Lange, F. Dürr, and K. Rothermel. Efficient real-time
trajectory tracking. VLDB Journal, 20(5):671–694, 2011.

[11] N. Meratnia and R. A. de By. Spatiotemporal compression
techniques for moving point objects. In Advances in Database
Technology (EDBT), pages 765–782, 2004.

[12] Microsoft. GeoLife GPS Trajectories. http:
//research.microsoft.com/en-us/downloads/
b16d359d-d164-469e-9fd4-daa38f2b2e13/, 2011.

[13] J. Muckell, J.-H. Hwang, C. T. Lawson, and S. S. Ravi. Al-
gorithms for compressing gps trajectory data: an empirical
evaluation. In Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS
’10, pages 402–405, New York, NY, USA, 2010. ACM.

[14] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and
S. S. Ravi. SQUISH: An Online Approach for GPS Trajectory
Compression. In Proceedings of the 2Nd International Confer-
ence on Computing for Geospatial Research &Amp; Applications,
COM.Geo ’11, pages 13:1–13:8, New York, NY, USA, 2011.
ACM.

[15] N. Meratnia and R. de By. A New Perspective on Trajectory
Compression Techniques, 2003.

[16] T. Neumann and G. Weikum. Rdf-3x: A risc-style engine for
rdf. Proc. VLDB Endow., 1(1):647–659, Aug. 2008.

[17] U. of Illinois at Chicago. Real Trajectory Data. http://www.
cs.uic.edu/∼boxu/mp2p/gps data.html, 2006.

[18] M. Potamias, K. Patroumpas, and T. Sellis. Sampling trajectory
streams with spatiotemporal criteria. In Proceedings of the
18th International Conference on Scientific and Statistical Database
Management, SSDBM ’06, pages 275–284, Washington, DC,
USA, 2006. IEEE Computer Society.

[19] S. Skiena. The Algorithm Design Manual. Springer, 2nd edition,
2008.

[20] W. M. Smart. Textbook on Spherical Astronomy. Cambridge
University Press, sixth edition, 1977.

[21] Z. Xie, H. Wang, and L. Wu. The improved douglas-peucker
algorithm based on the contour character. In Geoinformatics,
2011 19th International Conference on, pages 1 –5, june 2011.

Aiden Nibali is an undergraduate scholar-
ship student in Computer Science and Elec-
tronic Engineering at La Trobe University
Australia. His interests include big data an-
alytics, data compression, audio processing
and programming language design.

Zhen He is an Associate Professor in the
Department of Computer Science in La Trobe
University Australia. He obtained his un-
dergraduate and PhD degrees in computer
science from the Australian National Uni-
versity. His research interests include big
data analytics, moving object databases, re-
lational database optimization and parallel
databases.

