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Abstract

Significant research has been devoted to aggregation in sensor networks with a view to optimize its

performance. Existing research has mostly concentrated on maximizing network lifetime within a user-given

error bound. In general, the greater the error bound, the longer the lifetime. However, in some situations, it

may not be realistic for the user to provide an error bound. Instead, the user may want to provide a Quality

of Service (QoS) goal that has a combined objective of lifetime and error. Indeed, the error tolerable by the

user may depend on how long the sensor network can last. This paper presents an aggregation protocol and

related algorithms for reaching such a QoS goal. The key idea is to periodically modify a filter threshold for

each sensor in a way that is optimal within the user objective, the key technical method being to translate

the problem into a mathematical programming formulation with constraints coming from various sources,

such as the user, the sensor network, and the data characteristics. Extensive experiments demonstrate the

high accuracy, high flexibility and low overhead of our QoS-based optimization approach.
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1 Introduction

Recently, a large amount of active research has been conducted on data aggregation in wireless sensor

networks. Two performance factors have been considered: sensor network lifetime and aggregation preci-

sion (or error). Although the approaches vary, existing work is mostly concerned with maximizing lifetime

under certain error tolerance. (The existing work will be discussed in Section 2.) Some users, however, may

have a more flexible objective. For instance, they may want the opposite, that is, to minimize error under

certain lifetime constraints. This may be necessary in a situation where precision of data is important and

there is limited useful lifetime. Furthermore, users may want to achieve a more complex objective, such as

to maximize lifetime and minimize error under certain constraints on both error and lifetime. This may be

necessary in a situation where users’ error tolerance depends on the possible lifetime. We refer to the above

performance objectives as a Quality of Service (QoS) goal.

In the framework of this paper, we allow users to provide an objective function (also called a “ satisfaction

function”) with lifetime and error as the variables, together with constraints in the form of lifetime and error

bounds. The performance goal of the sensor network, then, is to maximize the user’s “ satisfaction” within

the user-provided constraints.1

In order to maximize user satisfaction, the trade-off between lifetime and error needs to be controlled.

The basic mechanism we use is to adjust a filter threshold for each sensor and have each sensor operate as

follows: if the value read (gathered, collected, or sensed) by a sensor is within the filter threshold given to

the sensor, the sensor does not send data, thus saving battery power needed for transmission. (This is the

same as the “filter approach” described in Olson et al. [19].) The aggregation error is aggregated from the

filter thresholds of the non-sending sensors.

With the above mechanism, in order to reach the performance goal, the filter thresholds need to be ad-

justed toward maximizing user satisfaction. Here, we assume that the lifetime of a sensor is solely dependent

on how much data it has to transmit. The more data it has to send, the shorter the life, and vice versa. There-

fore, the larger the filter thresholds, the longer the lifetimes of the sensors, but the higher the aggregation

error.

Our approach is to develop a mathematical formulation of an optimization problem whose solution gives

the best filter thresholds to sensors. In this formulation, in addition to the above user-provided constraints,
1If the error and lifetime bounds are found to be too restrictive to be feasible, the system may go back to the user for more

relaxed constraints.
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there are also system-induced constraints from the sensor network system, due to its configuration and

operation strategy (including a cluster head rotation policy). Furthermore, the amount of transmission energy

which can be saved (hence lifetime gained) by a particular filter threshold also depends on the characteristics

of the data. In this paper, we use historical data to predict the impact on future energy savings by specific

filter thresholds. We refer to the corresponding constraints as the data-dependent constraints.

Once we know the user-provided, system-induced and data-dependent constraints, we have an optimiza-

tion problem in which the optimization parameters are the filter thresholds for the sensors. Since the data

characteristics and network status (e.g., actual battery consumption) may change over time, we need to per-

form the above optimization periodically, to reflect precisely the current status of the sensor network. For

the purpose of such periodic adjustments, we use a general protocol that allows the system to collect the

parameters for all the relevant constraints and to disseminate the optimized filter thresholds.

We demonstrate our method through a detailed algorithm design, based on the above framework, by

assuming a commonly-used sensor network configuration. In the implementation of algorithms, we consider

SUM as the aggregation function. We also show results from extensive experiments with real data sets. The

experiment results show that the optimization computation using our method is very accurate, despite the

approximations made in our implementations and can flexibly adjust to different performance objectives

(expressed as satisfaction functions). Additionally, we compare our algorithm with the most comparable

existing method in which the user-provided objective is simply to maximize lifetime (subject to an error

bound). The results show that our method produces almost the same optimal solutions (e.g., similar lifetime

for the same error bound) despite the overhead inherent in making our method more flexible and versatile in

handling general QoS goals.

The main contributions of this paper include: (1) the introduction of the concept of flexible user-provided

QoS goals; (2) the optimization formulation of the problem of meeting the QoS goals; (3) the aggrega-

tion query processing protocol supporting the optimization formulation; and (4) an implementation of the

protocol under realistic assumptions.

The remainder of the paper is organized as follows: Section 2 discusses related work; Section 3 introduces

an aggregation protocol for our optimization problem; Section 3.3 presents generic algorithms based on the

protocol; Section 4 describes a specific instantiation of the generic algorithms; Section 5 evaluates the

instantiated algorithms and Section 6 concludes the paper.
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2 Related Work

The existing work on sensor network aggregations aims to maximize lifetime. We classify the existing

methods into three categories, based on the error tolerance type: zero-error [13, 14, 23, 24] user-defined-

error [7, 19, 21], and low-error [6, 12, 16, 18, 22]. It should be noted that some research has focused on

ensuring certain QoS constraints (where QoS is defined in terms of the latency of delivering aggregates from

source to sink nodes) are met [27, 29, 28]. However, our work is more focused on the quality of the collected

data, rather than the speed of delivery of the data.

In the zero-error category, Madden et al. [14] and Yao et al. [24] provide methods to maximize lifetime

by performing in-network aggregation while using a tree-based routing model. Kalpakis et al. [13] study

a problem in which, given a collection of sensors and a sink, as well as their locations and the energy of

each sensor. They find a data collection schedule that maximizes lifetime. Tan et al. [23] develop a routing

scheme that maximizes lifetime for a given set of sensors. Fan et al. [8] develop a structure-free aggregation

algorithm that maximizes lifetime for a given set of sensors. These studies differ from ours in that they do

not allow any imprecision in the aggregation so, therefore, they do not allow users to trade accuracy for

extended lifetime.

In the user-defined-error category, Olston et al. [19] propose an adaptive filter-based approach for a single-

hop network. The filters adapt to changing conditions to minimize the data sent, while ensuring that the

user-defined error bound is not violated. Deligiannakis et al. [7] adapt the method by Olston et al. [19]

to work with a tree-based routing model. Sharaf et al. [21] maximize lifetime by influencing the routing

tree construction to reduce the transmitted data and imposing a hierarchy of output filters on the sensor

network. This previously mentioned work allows users to trade accuracy for extended lifetime (within the

error bound) but, unlike our work, does not allow users to specify a combined lifetime and error goal. Work

by Ren and Liang [20] probabilistically (not deterministically) guarantees the user-defined error bound,

given a confidence interval on the accuracy, while reducing the energy consumption to lengthen the lifetime.

In the low-error category, Considine et al. [6] and Nath et al. [18] provide duplicate-insensitive sketches

and synopses, respectively, to perform approximate in-network aggregation. Their methods are designed to

work with a ring-based, multi-path routing model, which means errors caused by communication failures are

greatly minimized. Amit et al. [16] combine the advantages of tree routing and multi-path routing by running

them simultaneously in different regions of the network. Their method reduced error caused by packet loss
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by up to 3 times more than all previous methods. Sharifzadeh et al. [22] aggregate sensor readings while

taking spatial distribution of the sensor nodes into consideration. Kapalpkis et al. [12] maximize lifetime for

aggregate range queries using linear sketches. However, this previously mentioned work, unlike ours does

not allow users to control how accuracy should be traded for extended lifetime. Instead, they use various

heuristics and probabilistic mechanisms to keep the error low, while maximizing lifetime.

In contrast with the research above, Madden et al. [15] allow users to specify the minimum lifetime

constraint. The sampling rate is then estimated so the lifetime constraint is satisfied. The sampling rate

directly influences the data precision. This work differs from ours in two respects: firstly, our work adjusts

the transmission of sampled data, not the sampling itself; and secondly, we allow the user to set a more

flexible QoS goal.

3 Aggregation Protocols

In this section, we describe the aggregation protocols in a generic way, that is, the presented protocols are

not specific to any particular routing strategy or aggregation hierarchy. We also provide generic algorithms

for key steps of the protocol. (In Section 4, we will present specific algorithms designed for a cluster-based

routing strategy and a corresponding aggregation hierarchy.)

3.1 An overview

Underlying the optimization performed in our aggregation protocol is the use of filter thresholds. A filter

threshold is defined as the range between the lower bound and upper bound on sensor readings so that a

sensor sends a reading only if it falls outside the range. The optimization is to periodically adjust the filter

thresholds of individual sensors, in order to achieve certain user-requested QoS goals under system-induced

and data-dependent constraints globally at the network level. By adjusting the filter thresholds, we can

adjust the balance between the aggregation error and the network lifetime.

A sensor assumes one or more of the following roles for aggregation query processing: a reading point

(RP), an aggregation point (AP), and a query point (QP). Sensors in these roles configure an aggregation

hierarchy as shown in Figure 1. Note that this aggregation hierarchy is generic in the sense that it is inde-

pendent of the routing model. That is, the same hierarchy can be placed on top of any routing model, such as

tree-based routing, cluster-based routing, etc. For instance, an AP may be a non-leaf node of the tree in the
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(b) Update mode operation.

Figure 1. Aggregation hierarchy and protocol.

tree-based routing or a cluster head in the cluster-based routing. There can be multiple QPs, thus multiple

aggregation hierarchies, in the same network.

The protocol has two operation modes: a normal mode and an update mode. In the normal mode, aggre-

gations of readings are done. The protocol is summarized below. (See Figure 1(a).) We assume the readings

from different sensors are synchronized. (Synchronization in itself is a research issue and is beyond the

scope of this paper.)

Step 1: An RP sends readings, if outside the filter threshold, to its AP. Each time a reading is sent, the filter

threshold is centered on the reading. This centering is done to increase the probability that the next reading

will be within the filter threshold, assuming that sensor readings do not change abruptly. (See Example 1

below.)
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Step 2: The AP generates a partial aggregation of the readings and sends it to the next level in the hierarchy.

For a reading not sent by an RP, a first-level AP assumes the reading is the same as the last reading; for a

reading sent by an RP, it uses the reading sent.

Step 3: The QP generates a total aggregation of the readings and reports it to the user.

3.2 Update mode protocol

One of the key challenges in the update mode is to devise a way of capturing the characteristics of the

data being collected at each RP. This information allows the RP to determine the number of readings that

need to be sent to the QP for a given filter threshold. To accomplish this, we use what we call a filter

Threshold-Reading fraction (T-R) curve. A T-R curve is generated by each RP and characterizes the number

of readings to be sent, given a particular setting of the filter threshold.

Definition 1 (T-R curve) Consider a set of pairs 〈εj , rj〉 in the space T × R, where εj ∈ T (εj ≥ 0) is a

filter threshold and rj ∈ R (rj > 0) is the fraction of the readings that, given the value of T , would be sent

out of all readings made by an RP during the previous update interval. Then, a T-R curve is defined as a

function in a family of functions from T to R such that
∑

j(rj − f(εj))2 is minimized.

The example below shows how a T-R curve is generated.

Example 1 Suppose the 13 readings shown at the top of Figure 2a were made by an RP. Then, the RP counts

the number of readings that would be sent for each of the filter thresholds from 0.0 with an increment of 1.0,

and finds that 13 points, 5 points, 3 points, 3 points, and 1 point would be sent if the filter thresholds were

0.0, 1.0, 2.0, 3.0, and 4.0, respectively. The iteration stops when the number of readings to be sent becomes

1 (which is the smallest number that renders the reading fraction (rj in Definition 1) greater than zero). As a

result, the RP collects a set of five data points, {(0.0, 13/13), (1.0, 5/13), (2.0, 3/13), (3.0, 3/13), (4.0, 1/13)}.

Then, a T-R curve may be generated from these data points through regression. Figure 2b shows the case of

using linear regression.

In the update mode, optimal filter thresholds are computed by QP and used as the new filter thresholds

of each RP. This is done at a predefined update interval. The protocol can be summarized as follows: (see
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This example shows that when the filter threshold is 1.0, the RP will need to send the
readings 3.0, 3.7, 4.5, 3.8, and 3.1, while re-centering the filter threshold after sending each
reading. The readings to be sent are underlined in the figure.

(a) Generating a set of T-R data points.
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This example shows generating a T-R curve through linear regression of the data points
generated in (a). In this example the T-R curve is a straight line fitting the five data points
with the least sum of squares errors (see Section 4.2).

(b) Fitting a T-R curve to T-R data points.

Figure 2. An example of generating a T-R curve.
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Figure 1(b).)

Step 1: An RP generates a T-R curve (using the stored sample readings acquired during the update interval)

and sends it to its AP.

Step 2: The AP forwards the T-R curves to the next level in the hierarchy.

Step 3: The QP computes optimal filter thresholds for each RP based on all the T-R curves received, the

objective function, and the user-provided and system-induced constraints.

Step 4: The QP sends the filter thresholds to the RPs (through APs).

3.3 Generic Protocol Algorithms

The algorithms for the normal mode steps are straightforward. Thus, here we provide the algorithms for

the update mode protocol only, specifically generating T-R curves and computing optimal filter thresholds.

Figure 3 shows the generic algorithm Generate TR curve for each RP to generate a T-R curve. The basic

idea is for each RP to store the sampled readings for the current update interval. Then, at the filter threshold

update time, the sampled readings are used to generate a T-R curve. This approach reduces the amount of

data sent from the RPs to the QP by sending only a curve that describes the relevant characteristics of the

data, instead of the individual readings. In this algorithm, we assume that the sampling rate (ρ) is constant

during an update interval (U ). The output is a T-R curve, defined in Definition 1.

Figure 4 shows the generic algorithm Compute T. The basic idea is to produce a set of constraints com-

prising of data-dependent (i.e., T-R) constraints (in Step 1) and system-induced constraints (in Step 2),

combined with user-provided objective function and any additional user-provided constraints. Using these

functions and constraints compute the optimal lifetime and aggregation error as well as the optimal filter

thresholds to be sent to the individual RPs.

In Step 1, the new T-R curve generated by an RP for the last update interval is used to update the running

average of the T-R curves for the RP. This is done separately for each RP. Using a running average instead

of only the new T-R curve will allow the long term pattern of readings to be reflected. In Step 2, the system

parameters include the costs of sampling, sending and receiving a reading, the remaining battery power, etc.

Some of these parameters are static (e.g. costs of sampling) and some are dynamic (e.g., battery power).

In Step 3, if the user-provided constraints turn out to be infeasible (i.e., no solution possible), then the user

should be consulted to relax the constraints.
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Algorithm Generate TR curve
// Executed by each RP.
Inputs:

• U : update interval.
• ρ: sampling rate of the RP.
• S: a sequence of readings measured by the RP during the previous U .

Output:

• mapping f : T → R, where R is the fraction of the readings that need to be sent per sample
interval for a given filter threshold T .

Procedure:
begin

1. Generate a set of pairs 〈εj , rj〉 where εj is a filter threshold and rj is a fraction of the readings in
S that would have been sent, given εj . Here, the fraction is computed relative to length(U) ∗ ρ,
i.e., the number of readings during U .

2. Find a mapping from T to R as a function R = f(T ), such that
∑

j(rj−f(εj))2 is the minimum,
where 〈εj , rj〉 is the jth pair collected in Step 1.

end

Figure 3. Algorithm Generate TR curve.

Algorithm Compute T
// Executed by QP.
Inputs:

• objective function h(L, E), where L is network lifetime and E is aggregation error.
• user-provided constraints.
• system parameters.
• T-R curves from all RPs (generated during the last update interval).

Output:

• new filter threshold Ti for each reading point RPi.

Procedure:
begin

1. For each RPi (i = 1, 2, . . . ,m), update its running average T-R curve with the input T-R curve,
and use the updated curve to produce T-R constraints.

2. Generate system-induced constraints using the input system parameters.

3. Find the pair of Lopt and Eopt that maximizes h(L,E) while satisfying the user-provided con-
straints (input), the system-induced constraints (Step 2), and the T-R constraints (Step 1). Then,
for each RPi (i = 1, 2, . . . , m), return the Ti that corresponds to Lopt and Eopt.

end

Figure 4. Algorithm Compute T.
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Figure 5. Cluster-based routing.

4 Algorithm Instantiation

4.1 Setup for the instantiation

In our instantiation, we consider cluster-based routing, illustrated in Figure 5, in a multi-hop network

configuration. This routing approach has been widely studied in the networking community [1, 2, 3, 4, 9,

10, 17, 25, 26]. In this approach, nodes with geographical proximity form a cluster, after which one node

is elected to be the cluster head in each cluster. Each node (other than the sink) will be an RP, while the

cluster head assumes the dual roles of AP and RP. A cluster head forwards packets sent by RPs toward the

destination sink node, namely QP. In order to balance the load for data transmission among the sensors, a

new cluster head is selected periodically. We assume that each sensor is selected as a cluster head with an

equal frequency which results in all sensors consuming the same battery power.

Additionally, we assume sensor readings (i.e., samples) are synchronized, as mentioned in Section 3, and

the lifetime of the sensor network is the time until the first sensor runs out of battery power.

We use linear programming as the optimization technique for its computational efficiency. For this pur-

pose, we use a linear function to approximate a T-R constraint using a T-R curve. Additionally, we use a

linear function to compute the aggregation error. This is done by computing it as the sum of all the filter

thresholds, that is, as the aggregation error (upper) bound.2 Determining the filter thresholds of only the

non-sending sensors requires taking a T-R curve into consideration for computing the aggregation error and,

as a result, makes the function non-linear.

Furthermore, we require the objective function h(L,E) (of the network lifetime L and the aggregation

error E) to be monotonic. That is, h(L,E) should be monotonically non-increasing when E increases with

2The aggregation error computed in [19], which is compared against our method in Section 5, is also an upper bound.
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1. Compute the total number (N ) of readings during U as length(U) ∗ ρ.
2. Initialize Dset to an empty set.
3. For each εj from 0.0 at the increment of dT

(a) Count the number (cj) of readings that would be sent given εj .

(b) Compute the ratio rj as rj = cj/N .

(c) Insert 〈εj , rj〉 into Dset.

} until cj ≤ 1.
4. Return Dset.

Figure 6. T-R data set generation step (Step 1) of Generate TR curve (instantiation).

a fixed L, and monotonically non-decreasing when L increases with a fixed E. This property fits the premise

that a user is more satisfied if the error is lower and/or the lifetime is longer. For instance, any function of

the form c f(L) − g(E) or c f(L)/g(E), where f(L) is monotonically non-decreasing with L and g(E) is

monotonically non-increasing with E (and c is a calibration coefficient), will flexibly do as h(L,E). All

of the following example functions have this monotonicity property and are suitable as h(L,E): c L − E,

c log L − E, cL/E, L, −E, 1/E. The optimization step (Step 3 of Compute T) will take advantage of

this monotonicity property.

4.2 Instantiation of Generate TR curve

A key design decision in the instantiation of the generic algorithm is the use of linear regression to

produce the T-R curve. We use linear regression for the following reasons: 1) it is computationally efficient;

2) the resulting equation requires very small storage space (only two regression coefficients), thus can be

sent up the aggregation hierarchy at little cost; and (3) it facilitates the linear programming approach used

for optimization in Compute T.

Figure 6 shows an instantiation of Step 1 of the algorithm Generate TR curve. In the algorithm, we use

an additional input dT , the increment of a filter threshold, so that Step 3 of Figure 6 iterates for εi from 0.0

at the increment of dT . The iteration stops once the number of readings to be sent (cj) drops to equal to or

less than 1.
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4.3 Instantiation of Compute T

In Step 1 of the algorithm Compute T (see Figure 4), the T-R curve generated by RPi (i = 1, 2, ..., m) is

Ri = fi(Ti) = ai + bi × Ti. To generate a running average of the T-R curves for each RPi, QP only needs

to obtain the average values āi and b̄i from all the ai and bi values sent by RPi in the past. This can be done

incrementally by QP with negligible overhead.

Using the running average T-R curve, we generate a T-R constraint for RPi as follows:

Ti = (Ri − āi)/b̄i (1)

where Ti and Ri are the filter threshold and reading fraction of RPi, respectively. Note that the constant b̄i is

a negative number for all reading points RPi (i = 1, 2, · · · ,m). This is intuitive because the filter threshold

Ti should decrease as Ri increases, i.e., as more readings are sent by RPi.

As mentioned earlier, we use the aggregation error bound, E, for our computation of an aggregation

error:

E =
m∑

i=1

Ti (2)

where T1, T2, . . . , Tm are all the RPs. Accordingly, in Step 3 (the optimization step described below) we

aim to minimize the aggregation error bound E by adjusting the filter thresholds while satisfying certain

system-induced, data-dependent and user-provided constraints. As mentioned earlier, we accomplish this

by using linear programming.

In Step 2 of the algorithm Compute T, given a sensor network with m reading points (RPi, i = 1, 2, · · · ,m),

the system-induced constraints are:

Ri = g(L, i)−
∑

k∈C(i)

(wikRik) for i = 1, 2, · · · ,m (3)

where L is the lifetime of the sensor network, g(L, i) is a system-dependent function of L, and wik and Rik

are, respectively, the weight and the fraction of readings sent to RPi by RPk that is in the same cluster as

RPi, denoted as C(i). Here, C(i) does not include RPi because, as shown in the appendix, the weight wik

is derived from the battery power consumed by RPi while it is a cluster head, thus receiving messages from

its member nodes RPk (k 6= i). The specific g and wik depend on such factors as the cost of sending and
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1. Repeat from L = dL at the increment of dL until L > Lmax {
(a) Use the simplex algorithm to find the minimum E, Emin, given user-provided constraints,

T-R constraints (Equation 1), and system-induced constraints (Equation 3).
(b) Evaluate h(L,Emin).

} while keeping track of the pair of L and Emin that gives the highest value of h(L,Emin).

2. Set 〈Lopt, Eopt〉 to 〈L, Emin〉 resulting from the previous step, and return the values of
E1, E2, · · · , Em corresponding to Eopt.

Figure 7. Optimization step (Step 3) of Compute T (instantiation).

receiving a reading, the routing model, etc. We show the details of deriving Equation 3 in the appendix.

Figure 7 shows our instantiation of Step 3 of the algorithm Compute T. We use two additional inputs in

our instantiation. One input is dL, the increment of a lifetime L at each iteration; the other is Lmax, the

maximum value of L used in the iteration. In the algorithm, we compute the optimization for each value

of L during the iteration. The reason for fixing the value of L is that g(L, i) of Equation 3 is not a linear

function of L; it becomes linear (with Rik’s) once L is fixed, which in turn makes Equation 3 applicable to

linear programming as a linear constraint.

The initial value of L in the iteration is dL, which we regard as the minimum possible lifetime with respect

to the increment unit dL. (The value of L cannot be zero in our optimization, as g(L, i) is infinity when

L equals zero (see Equation 9).) The iteration then runs at the increment of dL and stops once L becomes

greater than Lmax. At each iteration, the minimum E (Emin) is found for the current value of L, as the

objective is to minimize E for the given L due to the monotonicity property required of h(L,E). We use

the classic linear programming algorithm, simplex, for this. The resulting pair of L and Emin at the end of

the iterations gives the optimal pair 〈Lopt, Eopt〉.
The procedure for finding Lopt and Eopt also gives the filter thresholds for the individual RPs. Indeed,

when solving the linear programming problem for each value of L, the value Ei for each RPi is computed

as well. The set of Ei computed for Lopt is the set of filter thresholds assigned to individual RPs.

5 Performance Evaluations

We conduct three sets of experiments with the objectives of evaluating the accuracy, flexibility, and

overhead of the optimization computations of our method. The accuracy experiments aim to determine the

impact of approximations made in order to use linear programming as the optimization technique in the
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Table 1. Simulation parameter settings.

Parameter Setting
Eelec 5 nJ/bit
εamp 100 pJ/bit/m2

Sensor placement area 500 x 500 meters
Sampling interval 10 seconds
Cluster rotation interval 200 seconds
Initial energy of a sensor 0.5 Joules

implementations (see Equations 1, 2, and 3). The flexibility experiments aim to determine how flexibly our

method behaves according to the user’s QoS goal. The overhead experiments aim to determine how our

method compares to existing methods, with the overhead of sending T-R curves and newly optimized filter

thresholds between RPs and QP.

5.1 Simulation setup

We conduct our experiments on the Sensor Network Simulator and Emulator (SENSE) [5]. The simu-

lated network has four layers: application, networking, MAC, and physical. We built our algorithms into

the application layer and also performed the routing inside the application layer rather than the network

layer, which is the traditional approach as the behaviors of our algorithms are highly dependent on routing

decisions.

The routing algorithm simulated is the simple cluster-based routing (see Figure 5). For this, we firstly

create the cluster heads randomly and then assign randomly created sensors to the closest cluster head. All

sensors transmit to the sink via one cluster head. The simulated network has 50 sensors, 10 clusters, and 1

sink in all experiments.

We use a simple MAC layer which places the packets onto the physical layer, and assume there is no

packet loss. We, therefore, do not send acknowledgment packets. At the physical layer, we implement

the same energy consumption model (for sending and receiving packets) as that used in the experiments

described in [10].

Table 1 summarizes the simulation parameter settings used. Eelec is the energy consumed by the trans-

mitter electronics per bit sent or received, and εamp is the energy consumed by the transmitter amplifier. The

values used for Eelec and εamp are the same as those used in [26].
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Given these settings, energy used to send a packet from one node to another, ETX , is computed as:

ETX(b, d) = Eelec × b + εamp × b× d2 (4)

where b is the number of bits of the message, and d is the distance between the source and destination nodes.

Energy used by a node to receive a message, ERX , is computed as:

ERX(b) = Eelec × b (5)

5.2 Algorithm setup

Parameters used in our algorithms are set as follows: the update interval 200 seconds, dT (in Figure 6)

0.01, and dL (in Figure 7) 50.0. Other parameters whose settings vary depending on the experiment; will

be mentioned when the experiments are presented. In the Filter method, the filter threshold is increased

periodically. For a fair comparison, we have set the interval between successive increases to 200 seconds,

which is the same as the update interval used in our QoS method.

5.3 Data sets

In our experiments, we use three time series data sets, shown in Figure 8. We downscale the time in the

data sets so that one day is mapped to 10 seconds. Then, for each original time-series data set, we generate

49 additional data sets by adding small variations to the data values using two different methods: fixed offset

method and random offset method. A fixed offset method simulates a situation in which a sensor at one

location always reads a value as either slightly larger or slightly smaller than a sensor at another location,

as might happen if, for example, one sensor is a bit closer to a heat source. This is implemented by adding

a constant increment to the previous reading. That is, given the original readings v1, v2, · · · , vn, the ith

(i = 1, 2, . . . , 49) data set has readings of v1+0.1×i, v2+0.1×i, · · · , vn+0.1×i.

A random offset method simulates a situation in which the sensor location determines the variance of

readings, for example, as might happen if one temperature sensor is in the shadow of a tree, while another

is fully exposed, with the temperature reading affected by volatile wind conditions. The ith data set is

generated as v1 + rand[0, 0.1× i], v2 + rand[0, 0.1× i], · · · , vn + rand[0, 0.1× i] where rand[0, 0.1× i]

generates a random number between 0.0 and 0.1×i each time it is called. The resulting 50 time-series are
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Melb-max: daily maximum temperature in Melbourne, Australia (1981-1984). Melb-min:
daily minimum temperature in Melbourne, Australia (1981-1984). Fisher: daily mean
water flow in Fisher river, Dallas, Texas (1988-1991) [11].

Figure 8. The original time-series data sets used in the experiments.

17



used as the readings from 50 different sensors. Due to space limitations, only the experimental results for

random offset data sets are presented. All results obtained using fixed offset data sets show similar trends.

5.4 Experiments and the results

5.4.1 Accuracy of the optimization computations

To evaluate the accuracy, we compare the projected lifetime and actual lifetime at each iteration of the

optimization computation. The projected lifetime is recomputed (by the QP) at each iteration. We measure

a lifetime as the time until the first node in the network dies. We set up our method to maximize the lifetime

and minimize the aggregation error under both an error bound and a lifetime bound. Specifically, we use

the satisfaction function h(L,E) = 0.001L − E, the error (upper) bound (Emax) of 10.0 and the lifetime

(lower) bound (Lmin) of 11200 seconds.

Figure 9 shows the results of this experiment. The results show that overall the projected lifetime and the

actual lifetime are overall close, differing by less than 5% at the beginning and then converging towards the

end of the iterations. This indicates that our optimization computations are quite accurate and, particularly,

that our use of linear T-R curves is adequate for these data sets.

We have also tried varying parameters such as the update interval, the area of sensor field and the number

of clusters. The results show that the accuracy does not vary much with these parameters. In all the cases

we examined, the difference between the projected lifetime and the achieved lifetime is no more than 10%.

All the performance graphs show two flat lines, as in Figure 9. Thus, we have omitted these graphs.

5.4.2 Flexibility of the optimization computations

We set up our method with three different satisfaction functions and the same set of user-provided con-

straints. Specifically, we use the following three cases of satisfaction functions: h(L,E) = −E, h(L,E) =

L, and h(L,E) = 0.01L − E. Also, we use the following user-provided constraints: error (upper) bound

(Emax) of 10.0 and the lifetime (lower) bound (Lmin) of 10500 seconds.3 The achieved network lifetime is

the time until the first node dies. The achieved aggregation error bound is computed as a temporal average

of the sum of the filter thresholds of all sensors.
3We set Lmin lower than 11200, used in the accuracy experiments, because it increases the optimization search space. A larger

search space allows us to see the effect of using different satisfaction functions more clearly.
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Projected refers to projected lifetime and actual refers to the achieved lifetime.

Figure 9. Accuracy of optimization computation.
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Figure 10 shows the resulting pairs of the achieved lifetime and the achieved error for each satisfaction

function. With h(L,E) = −E, the achieved lifetime is compromised as much as possible toward the

minimum allowed lifetime (Lmin) in order to minimize the achieved error. (The achieved lifetime is lower

than Lmin by about 2.4%; this is due to slight inaccuracy in the optimization computations (see Figure 9).)

The converse is true with h(L,E) = L. The achieved error is compromised as much as possible toward the

maximum allowed aggregation error (Emax) in order to maximize the achieved lifetime. With h(L,E) =

0.01L− E, the result falls in between. Both the achieved lifetime and the achieved error are compromised

to a certain extent, in order to maximize the satisfaction function.

We make some interesting observations in light of a difference in the pattern of the change of data values

between the Melb data sets and the Fisher data set. (As shown in Figure 8, the value changes quite linearly

in Melb, but remains almost constant with occasional spikes in Fisher.) With h(L,E) = −E, the pair

of achieved lifetime and achieved error is almost the same between Melb and Fisher. This is because the

sensors send their readings frequently in order to minimize the aggregation error. With h(L,E) = L, the

aggregation error is significantly lower for Fisher than for Melb. This is because the filter thresholds of the

sensors can be smaller for Fisher, as the magnitude of the change in data values is smaller most of the time

(as shown in Figure 8). With h(L, E) = 0.01L− E, the result shows both phenomena to a lesser extent.

5.4.3 Comparison with other methods

To our knowledge, there is no existing method designed to minimize the aggregation error given a lifetime

constraint, nor a method designed to optimize a combination of the aggregation error and the lifetime. The

only existing methods which can be used for comparison purposes are those that maximize the lifetime

given an error constraint [7, 19, 21]. We have chosen Olston et al.’s [19] method for comparison, because it

is designed for a single-hop network and, hence, can be easily adapted to cluster-based routing, while other

methods [7, 21], based on tree-based routing, cannot. In this comparison, we refer to our method as QoS

and Olston et al.’s method as Filter. We set up QoS with the same goal as Filter by using the satisfaction

function h(L,E) = L and a user-provided constraint E ≤ Emax. Then, we compare the achieved lifetimes

(until the first node dies) between QoS and Filter.

There are three major differences between QoS and Filter. Firstly, QoS optimizes the filter thresholds

for a combined lifetime and error goal, whereas Filter does so only to maximize the lifetime while staying

within an error bound. In fact, the optimization objective of Filter is only a special case of the optimization

20



 0

 2

 4

 6

 8

 10

 10000 10200 10400 10600 10800 11000 11200 11400 11600

A
ch

ie
ve

d 
ag

gr
eg

at
io

n 
er

ro
r 

bo
un

d

Lifetime achieved (sec) 

h(L,E) = -E
h(L,E) = L

h(L,E) = 0.01L - E

(a) Melb-max

 0

 2

 4

 6

 8

 10

 10000 10200 10400 10600 10800 11000 11200 11400 11600

A
ch

ie
ve

d 
ag

gr
eg

at
io

n 
er

ro
r 

bo
un

d

Lifetime achieved (sec) 

h(L,E) = -E
h(L,E) = L

h(L,E) = 0.01L - E

(b) Melb-min

 0

 2

 4

 6

 8

 10

 10000 10200 10400 10600 10800 11000 11200 11400 11600

A
ch

ie
ve

d 
ag

gr
eg

at
io

n 
er

ro
r 

bo
un

d

Lifetime achieved (sec) 

h(L,E) = -E
h(L,E) = L

h(L,E) = 0.01L - E

(c) Fisher

Figure 10. Optimization computations with different satisfaction functions.
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objective of QoS. In other words, the objective of QoS is more general, allowing the user to specify a

goal like “I am happy if the system can reduce the error by 0.01 for a 1 day reduction in lifetime, while

prolonging the lifetime to at least 1 month and keeping the error to 0.5.” Secondly, with this difference in

the optimization objective, the linear equations QoS generates (at the QP) are different from those Filter

generates. As a result, QoS is required to use linear programming to solve the equations, whereas Filter uses

its own iterative linear solver. Thirdly, there is also a difference in the data the QP receives. In QoS, the

QP receives T-R curves (from RPs) whereas in Filter, the QP receives none. Specifically, the QP in Filter

only observes the number of readings falling outside the filter threshold (which is continuously shrunken

automatically) to determine whether the thresholds should be increased. On the surface, it may seem that

QoS is less efficient as it consumes more energy in sending the T-R curves. However, as the experiments

in this section show, the T-R curves help the QP compute so much more optimal filter thresholds that the

overall energy usage is generally lower for QoS.

We tried different cases of varying parameters such as those mentioned in the accuracy experiments. The

resulting performance graph varies depending on the case, but all the results consistently show that QoS

performs better than Filter. This is a very encouraging result, considering that QoS carries the inherent

overhead of sending data (i.e., T-R curves, optimized filter thresholds) at each update interval. In Filter,

there is no data sent between RPs and the QP (or the sink) at all, except for an instruction from the QP to

selected RPs to expand their filter thresholds during the filter adjustment. These results show that, in QoS,

the benefit of using T-R curves to compute optimal filter thresholds outweighes the overhead.

We now present other experiments comparing QoS with Filter and discuss our observations on the results.

Figure 11 shows the result for varying error bound. In both methods, the lifetime increases as the error

bound increases, which is obvious. The performance of the two methods is very similar for all the error

bound values and for all three data sets.

Figure 12 shows the results of varying the update interval. The update interval is the interval between

optimization computations in QoS and the interval between filter threshold expansions in Filter. This figure

shows that QoS begins to outperform Filter as the update interval increases. This is due to the fact that, in

QoS, a larger update interval leads to less frequent sending of T-R curves, hence longer lifetime, but in Filter,

this does not apply since Filter does not send T-R curves. It is true that, in Filter, a larger update interval

also leads to less frequent sending of an instruction for the filter threshold expansion, however, the resulting

increase of achieved lifetime is very small compared with that in QoS. This is because, as mentioned above,
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Figure 11. Achieved lifetime for varying error bound.
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there is no data (except for the small amount of instruction) sent by the sink during the update interval in

Filter.

Figure 13 shows the results of varying sensor field area. This figure shows that the lifetimes of both

methods decrease as the area increases. This is obvious, since the average distance between nodes increases

as the area increases. Sending data across a longer distance increases the frequency of data retransmission

and, consequently, the nodes on average consume more battery power.

Figure 14 shows the results of varying the number of clusters (among the 50 nodes). This figure shows

that QoS outperforms Filter when the number of clusters is smaller than 10, but performs approximately the

same for a larger number of clusters. This can be explained as follows: when the number of clusters is large,

the size of each cluster is small, since the number of nodes is fixed. A smaller cluster means each node

acts as the cluster head for a longer duration. When a node acts as a cluster head, it sends the aggregated

sample reading to the sink at every sample interval. This is the main cause of energy consumption for

cluster heads. Since both methods do the same thing for this part of the normal mode, their performances

are approximately the same when the number of clusters is large.

6 Conclusion

Allowing users to specify QoS goals relieves them from the unrealistic expectation of knowing a priori

the lifetime of the sensor network for a given error tolerance. To achieve user-provided QoS goals, we

translated the problem into a mathematical programming formulation. The formulation used in this paper

is generic, so it can be customized for different factors such as different network routing models, different

configurations for aggregation hierarchy, and so on.

To demonstrate the feasibility of our approach, we instantiated it for a particular system setup and pro-

vided concrete mathematical formulations and algorithms for solving the problem. To demonstrate the high

accuracy, high flexibility, and low overhead of our solution, we conducted extensive experiments using real

data sets on a simulator.

In this paper, we showed the algorithms for SUM only, but other aggregation functions such as COUNT,

AVG, MIN and MAX can be supported by modifying the appropriate parts of the optimization equations. We

leave this as the future work. Further future work will be to build a probabilistic model into our optimization

equations to model varying probability of packet loss and unexpected sensor deaths.
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Figure 12. Achieved lifetime for varying update interval.
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Figure 13. Achieved lifetime for varying sensor field area.
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Figure 14. Achieved lifetime for varying number of clusters.
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A Derivations of g and wik

Here we derive the function g(L, i) and the weight wik in the system-induced constraints expressed as

Equation 3 of Section 4.3. Table 2 and Table 3 respectively show the constants and variables used in the

derivation. We assume sensors within a cluster are numbered, and refer to the ith sensor as “sensor i.”

Additionally, we make the following assumptions on the cluster-based routing. First, given the assumption

of synchronized sensor readings (i.e., sampling), we assume that time duration is measured as sampling

ticks, i.e., the number of readings made. Second, as all sensors are equally likely to be selected as a cluster

head, we assume that all the sensors in the same cluster take turns to be selected once and only once in each

round of turns.

Given these assumptions, for each sensor i in the network lasting lifetime L, Ri (i.e., the fraction of the

readings sent by the sensor) is expressed as follows:

Ri =
Bi −Bhi(L)−Bni(L)

BsiL
(6)

The reasoning behind this equation is as follows: the numerator is the battery power that would remain

available for sensor i to send readings after consuming the battery power Bhi
(L) while being a cluster head

and the battery power (Bni(L)) while not being a cluster head. Here, the latter is due to an overhead inherent
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Table 2. Constants used to derive the expressions of g(L, i) and wik in Equation 3.

Symbol Description
Bi battery power currently left in sensor i.
Bsi average battery power consumed by sensor i to send one reading (to its cluster head).
Brik

battery power consumed by sensor i to receive a reading from sensor k.
C(i) set of sensors in the same cluster as, but excluding, sensor i.
Di duration of a sensor i being a cluster head each time it is selected.
Ni number of sensors in the cluster to which sensor i belongs.
Pi duration for one round of turns of selecting a cluster head in the cluster to which sensor

i belongs. (Pi = DiNi)
Ohi

overhead on a sensor i while being a cluster head during Di.
Oni overhead on a sensor i while not being a cluster head during Di.

Table 3. Variables used to derive the expressions of g(L, i) and wik in Equation 3.

Symbol Description
Ri fraction of the number of readings sent (to the cluster head) over the number of readings

sampled by sensor i.
L lifetime of the sensor network, measured as the number of sampling ticks.
Rik fraction of readings sent to sensor i by sensor k that belongs to cluster C(i).
Bhi(L) battery power consumed by a sensor i while being a cluster head in a network lasting

lifetime L.
Bni(L) battery power consumed by a sensor i while not being a cluster head in a network

lasting lifetime L.
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in a sensor, even when no reading is sent or received. Then, the numerator divided by Bsi is the number of

readings sent (to a cluster head) during the lifetime. (Note that, while a sensor is a cluster head, its readings

are not sent to a cluster head (i.e., itself) and, therefore, Bsi is the average power consumed per sending.)

Since time duration is measured as sampling ticks, L is the total number of samples that would be taken

during the lifetime (clock time) of the sensor network. Hence, further dividing the result (of division by

Bsi) by L results in the fraction Ri during the lifetime.

Next, the two variables in Equation 6, Bhi
(L) and Bni(L), are expressed as:

Bhi(L) =
L

Pi
(Di(

∑

k∈C(i)

RikBrik
) + Ohi) (7)

Bni(L) =
(Ni − 1)L

Pi
Oni (8)

The reasoning behind Equation 7 is as follows: during the time sensor i is the cluster head, for each sensor

k in the cluster C(i), the fraction of readings sent to sensor i is Rik (see Section 4.3). Thus, the number of

readings received by sensor i from sensor k each time it is a cluster head is DiRik, and the battery power

consumed by sensor i to receive that many readings is DiRikBrik
. Considering all sensors in C(i), we sum

the above term for all k ∈ C(i). Then, we add the overhead of being a cluster head Ohi and multiply the

result by the number of times sensor i is a cluster head, i.e., the number of the rounds of cluster head turns

(L/Pi). The reasoning behind Equation 8 is as follows: sensor i is not selected as a cluster head Ni − 1

times during Pi (for one round of turns). Since there are L/Pi rounds of turns during the sensor networks’

lifetime L, the number of times sensor i is not a cluster head during L equals (Ni−1)L/Pi. By multiplying

this to the overhead Oni , we obtain Equation 8.

Now, by substituting Equations 7 and 8 into Equation 6, we obtain the following expressions for g(L, i)

and wik.

g(L, i) =
Bi

BsiL
− Ohi

BsiPi
− (Ni − 1)Oni

BsiPi
(9)

wik =
Brik

BsiNi
(10)
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