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Abstract

There has been much interest in answering top-k queries on probabilistic data in various applications such as market analysis,
personalised services, and decision making. In probabilistic relational databases, the most common problem in answering top-k
queries (ranking queries) is selecting the top-k result based on scores and top-k probabilities. In this paper, we firstly propose
novel answers to top-k best probability queries by selecting the probabilistic tuples which have not only the best top-k scores but
also the best top-k probabilities. An efficient algorithm for top-k best probability queries is introduced without requiring users to
define a threshold. The top-k best probability approach is a more efficient and effective than the probability threshold approach
(PT-k) [1, 2]. Second, we add the “k-best ranking score” into the set of semantic properties for ranking queries on uncertain data
proposed by [3, 4]. Then, our proposed method is analysed, which meets the semantic ranking properties on uncertain data. In
addition, it proves that the answers to the top-k best probability queries overcome drawbacks of previous definitions of the top-k
queries on probabilistic data in terms of semantic ranking properties. Lastly, we conduct an extensive experimental study verifying
the effectiveness of answers to the top-k best probability queries compared to PT-k queries on uncertain data and the efficiency of
our algorithm against the state-of-the-art execution of the PT-k algorithm using both real and synthetic data sets.

c⃝ 2011 Published by Elsevier Ltd.
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1. Introduction

Uncertain data has arisen in some important applications such as personalized services, market analysis and de-
cision making, because data sources of these applications are collected from data integration, data analysis, data
statistics, data classification, and results prediction. These data are usually inconsistent [5] or contain likelihood in-
formation [6]. Thus, selecting the best choice from various alternatives of uncertain data is an important challenge
facing these applications. The top-k queries that return the k best answers according to a user’s function score are
essential for exploring uncertain data on these applications [6]. Uncertain data have been studied extensively by many
researchers in areas such as modelling uncertain data [7, 8], managing uncertain data [9], and mining uncertain data
[10, 11].

1.1. Motivation

In business, investors often make decisions about their products based on analysis, statistical data and mining data
[11], which provide predictions relating to successful and unsuccessful projects. To analyse the market, investors
firstly collect the historical statistical data, and then use the data to predict future market trends with probabilistic
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prediction. This is known as probabilistic data. For example, assume that the data in Table 1 have been collected and
analysed statistically, according to historical data resources [12]. Each tuple represents an investment project of USD
$100 to produce a specific product (Product ID). Investing in products based on their probabilities (Probability) will
result in an estimated amount of profit. In tuple t1, a businessman invests USD $100 on product A, and it has a 0.29
chance of obtaining a profit of USD $25.

Tuple Product ID Profit of USD $100 investment Probabilistic
t1 A 25 0.29
t2 B 18 0.3
t3 E 17 0.8
t4 B 13 0.4
t5 C 12 1.0
t6 E 11 0.2

Table 1. Predicted Profits of USD $100 investment on Products

In the real world, when analysing historical data, predictions on future market trends return two or more values per
product with probabilities that the predictions are correct. Therefore, some tuples in Table 1 have the same product
ID with different profit. In the probabilistic data model, these tuples are mutually exclusive, and controlled by a set
of rules (generation rule) [1, 2, 6, 13]. For example, tuples t2 and t4 as project that invest in product B have a 0.3
probability of producing a USD $18 profit and 0.4 probability of producing a USD $13 profit. In this case, if the
prediction for tuple t2 is true, then the prediction for tuple t4 will not be true. It is impossible for both profits to be true
for the same product ID. They are mutually exclusive predictions. In Table 1, the probabilistic data are restricted by
the exclusive rules R1 = t2 ⊕ t4 and R2 = t3 ⊕ t6.

Top-k queries can be used to help investors make business decisions such as choosing projects which have the
top-2 highest profits. On probabilistic databases, top-k queries can be answered by using the probability space that
enumerates the list of all possible worlds [1, 2, 7, 14, 15, 16]. A possible world contains a number of tuples in the
probabilistic data set. Each possible world has a non-zero probability for existence and can contain k tuples with
highest profits. Different possible worlds can contain different sets of k tuple answers. Therefore, it is necessary to list
all possible worlds of Table 1 to find the top-2 answers for the top-2 query of the probabilistic database. Thus, Table
2 lists three dimensions: the possible world, the probability of existence, and the top-2 tuples in each possible world.

Possible world Probability of existence Top-2 tuples in possible world
W1 = {t1, t2, t3, t5} 0.0696 t1, t2
W2 = {t1, t2, t5, t6} 0.0174 t1, t2
W3 = {t1, t3, t4, t5} 0.0928 t1, t3
W4 = {t1, t4, t5, t6} 0.0232 t1, t4
W5 = {t1, t3, t5} 0.0696 t1, t3
W6 = {t1, t5, t6} 0.0174 t1, t5
W7 = {t2, t3, t5} 0.1704 t2, t3
W8 = {t2, t5, t6} 0.0426 t2, t5
W9 = {t3, t4, t5} 0.2272 t3, t4
W10 = {t4, t5, t6} 0.0568 t4, t5
W11 = {t3, t5} 0.01704 t3, t5
W12 = {t5, t6} 0.0426 t5, t6

Table 2. List of all possible worlds and top-2 tuples

According to Table 2, any tuple has a probability of being in the top-2. Therefore, Table 3 lists the tuples, profit,
probability, and top-2 probability to analyse the top-2 answers of probabilistic databases. The top-2 probability of a
tuple is aggregated by the sum of its probabilities of existence in the top-2 in Table 2.

In previous research [1, 2], the top-k answers are found using the probability threshold approach called PT-k. The
PT-k queries return a set of tuples with top-k probabilities greater than the users’ threshold value. For example the
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Tuple Profit Probability Top-2 probability
t1 25 0.29 0.29
t2 18 0.3 0.3
t3 17 0.8 0.7304
t4 13 0.4 0.3072
t5 12 1.0 0.3298
t6 11 0.2 0.0426

Table 3. Top-2 probabilities

answer to the PT-2 query with threshold 0.3 in the example listed in Table 3 is the set containing 4 tuples {t2, t3, t4, t5}.
We have identified three drawbacks with PT-k queries. These are listed below:

- The PT-k queries may lose some important results. According to PT-2 query, tuple t1(25, 0.29) is eliminated
by the PT-2 algorithm because its top-2 probability is less than threshold 0.3. In this case, we recommend that
tuple t1 should be in the result, the reason being that tuple t1(25, 0.29) is not worse than tuple t4(13, 0.3072),
when comparing both attributes of profit and top-2 probability. That is, t1.profit (25) is significantly greater
than t4.profit (13) and t1.top-2 probability (0.29) is slightly less than t2.top-2 probability (0.3072). In business,
investors may like to choose project t1 because they can earn nearly double the profit compared to project t4,
while project t1 is only slightly riskier than project t4 with a top-2 probability of 0.0172. Therefore, t1 should
be acceptable in the top-k answers.

- The PT-k answers may contain some redundant tuples which should be eliminated earlier in the top-k results.
Referring to Table 3 again, tuples t4 and t5 should be eliminated immediately from the answer because the
values of both attributes, profit and top-2 probability in t4(13, 0.3072) and t5(12, 0.3298), are less than those in
t3(18, 0.7304). It is obvious that investors will choose project t3 which is more dominant than projects t4 and t5
in both profit and top-k probability.

- It is difficult for users to choose a threshold for the PT-k method. The threshold is a crucial factor used for
efficiency and effectiveness in PT-k queries [1, 2]. Users may not know much about the probabilistic values and
probabilistic databases. Therefore, it may be difficult for users to find the most suitable threshold initially. This,
in turn, means they may need to waste time using trial and error to find the most suitable threshold value.

In addition, almost all previous top-k approaches such as U-top-k [14] and u-popk [16] focus on the highest
probabilities relevant to some specific possible worlds as semantics of probabilistic databases [6] in order to select
the top-k answers. With the aforementioned observations, there is a need to study the top-k query answers for a
better solution. It is necessary to develop new answer to top-k query which will take both top-k profit and top-k
probability on all possible worlds into account to select the best top-k answer. To address this concern, we propose
new approach of the “top-k best probability query”. The results of top-k best probability queries have the following
desirable properties:

1. Inclusion of important tuples: users are usually interested in the highest profits of projects. Therefore, the k-
tuples with the highest profits (scores) should be in the answer set of the top-k queries on probabilistic data. For
example, in Table 1, tuples t1 and t2 have the top-2 best profits and therefore should be in the top-2 answer.

2. Elimination of redundant tuples: the dominating concept on score and top-k probability of tuples is used to
eliminate redundant tuples. The non-top-k score tuples are processed by the dominating concept to select the
non-dominated tuples on score and top-k probability, which are added into the answer set of top-k queries. The
non-dominated tuples will have “the best top-k probabilities”. For example, tuple t3 is a non-dominated tuple
which is added into the result because it has greater top-2 probability than a tuple in the top-2-highest scoring
tuples. Then, the rest of the tuples t4, t5, t6 in the data set are eliminated because they are dominated by tuple t3
in both profit and top-2 probability.

3. Removal of the unclear threshold: The new effective method which combines the two previous techniques will
remove the need for the threshold for processing the top-k queries on probabilistic databases.
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Therefore, the set {t1, t2, t3} is an answer to the top-2 query on Table 1. The top-2 best probability query returns
not only the tuples with the best top-2 ranking scores but also the top-2 highest probabilities to the users.

To create a new method of the top-k best probability query, which require more efficient and effective than previous
work, is challenging because the answer must include the k-highest ranking scores tuples and eliminate redundant
tuples without a threshold. In this paper, we will propose a new method for the top-k best probability query including
definition, formulas, and algorithm to overcome these challenges. We also introduce a new property “k-best ranking
scores” and add that into the semantic ranking properties on uncertain data. Those properties has been proposed to
evaluate the semantics of ranking queries on uncertain data [3, 4]. Then, we prove whether the answers to top-k best
probability queries and previous top-k queries satisfy these properties or not. It can be clearly seen that the results of
the top-k best probability queries satisfy more semantic ranking properties than other existing top-k queries.

1.2. Contributions
Our contributions are summarized as follows:

- We introduce the new definition of the top-k best probability query on probabilistic databases, based on tradi-
tional top-k answers and a dominating concept, in which the dominating concept takes both the ranking score
and top-k probability into account for selecting the top-k best probability tuples. We also develop formulas to
calculate the top-k probability and handle the inclusive and exclusive rules (generation rule) on probabilistic
databases.

- To improve the effectiveness of the algorithm of top-k best probability queries, some pruning rules are intro-
duced. Their correctness is mathematically proven. These rules will be used to reduce the computation cost of
top-k probabilities of tuples and allowing early stopping conditions to be defined. Then, the top-k best probabil-
ity algorithm demonstrates that the answers to top-k best probability queries are more efficient than the answers
to PT-k under various probabilistic data sources.

- We prove that our top-k best probability queries cover the existing semantic properties from [3, 4] and also
covers a new property proposed in this paper called “k-best ranking scores”. This property is introduced
according to the users’ expectations.

- Both real and synthetic data sets are used in our extensive experimental study to evaluate the proposed approach.
The PT-k method is compared with the top-k best probability method in terms of effectiveness and efficiency.

This paper is an extended version of our earlier paper [17], in which we proposed the top-k best probability query
to improve efficiency of algorithm and effectiveness of the answers. In this paper, we extend the top-k best probability
query on probabilistic data model containing inclusive rules and add a new pruning rule to improve the efficiency
of the top-k best probability algorithm. As a result, answers to the top-k best probability queries also cover more
semantic ranking properties than other answers to top-k queries. We have performed additional experiments which
show the effectiveness and efficiency of our proposed method.

The rest of the paper is organized as follows. Section 2 presents the preliminaries in which we review the prob-
abilistic database model, definition, its components, and computations of top-k probability of tuples to support our
approach. In Section 3, we introduce the dominating concept on score and top-k probability of tuple, and propose
the novel approach of the top-k best probability query on probabilistic data including a formal definition, pruning
rules, and an efficient algorithm. The next section formulates the previous properties of semantic ranking queries, and
proposes the new property k-best ranking scores, which are then used to evaluate whether the semantics of ranking
queries on probabilistic data have been satisfied or not. In Section 5, extensive experiments using real and synthetic
data are conducted to show the effectiveness and efficiency of the top-k best probability method. Finally, section 6
briefly concludes our contributions and outlines future research.

2. Preliminary of probabilistic databases and top-k queries

In this section, several definitions and models for probabilistic data processing on probabilistic databases are
presented formally, which are similar to papers [18, 1, 2, 9, 19, 10, 20, 21, 22, 16, 23]. We review notions and the
foundation of the probabilistic database model. In this model, the process of calculating the top-k probability tuples
is also addressed for our proposal.
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2.1. Probabilistic database model

Generally, the probabilistic database D = {t1, ..., tn} is assumed to be a single probabilistic table, which is a finite
set of probabilistic tuples, where each probabilistic tuple is a tuple associated with probability to denote the uncertainty
of the data, and almost all probabilistic tuples in probabilistic databases are independent.

Definition 1. Probability of a tuple is the likelihood of a tuple appearing in the data set D. The probability p(ti) of
tuple ti can be presented as a new dimension in the table with values of 0 < p(ti) ≤ 1.

Example: In Table 1, tuple t1 has a 0.29 probability of obtaining a USD$ 25 profit.

Based on the probability theory, if the probability of tuple ti is p(ti), the probability 1− p(ti) is the unlikelihood of
ti in the data.

A simple way to study probabilistic data is listing sets of tuples, in which each tuple is present or absent corre-
sponding to specific probabilities which are called possible worlds. It is interesting to view all possible worlds and
study various solutions on probabilistic data.

Definition 2. A possible world represents the semantics of a probabilistic database. Each possible world W j =

{t1, ..., tk} contains a number of tuples which are members of probabilistic database D. Each possible world is asso-
ciated with a probability to indicate its existence. The probability of the existence of possible world W j is calculated
by multiplying the probabilities of the tuples, which are the likelihood and unlikelihood of tuples in the possible world
W j. All possible worldsW = {W1, ...,Wm} is called the possible world space.

Example: Table 2 is the possible world space that lists all possible worlds of Table 1.
For realistic situations, probabilistic tuples on probabilistic data can be independent or dependent on each others.

Several probabilistic tuples can be present together or restrict each other’s presence in the possible worlds. On the
probabilistic database model, they are grouped as a generation rule.

Definition 3. In probabilistic data, a generation rule is a set of exclusive or inclusive rules. Each rule contains special
tuples, which can be mutually exclusive or inclusive in the possible world space.

- The exclusive rule is in the form of R+h = th1 ⊕ th2 ⊕ ... ⊕ thq , where ⊕ is an exclusive operator, and th1 , th2 , ..., thq

are members of probabilistic data, which indicates that, at most, one tuple can appear in the same possible
world. The sum of all probabilities of tuples in the same exclusive rule must be less than or equal to 1, p(R+h ) =
q∑

i=1
p(thi ) ≤ 1.

- The inclusive rule is in the form of R∗h′ = th′1 ∧ th′2 ∧ ... ∧ th′q′ . where ∧ is an inclusive operator, and th′1 , th′2 , ..., th′q′
are members of probabilistic data, which indicates that non-tuple or all tuples appear in the same possible
world. Tuples in R∗h′ have the same probability p(R∗h′ ) = p(th′1 ) = p(th′2 ) = ... = p(th′q′ ) {0 < p(R∗h′) ≤ 1}.

Example: In Table 1, the generation rule contains two exclusive rules and zero inclusive rule. Exclusive rules
R+1 = t2 ⊕ t4 and R+2 = t3 ⊕ t6. R+1 indicates that tuples t2 and t4 never appear together in the same possible world. This
is the same for tuples t3 and t6 in R+2 .

2.2. Calculation of top-k probability

In this subsection, we discuss and formulate the calculation of top-k probabilities of tuples in the possible world
space.

Definition 4. The top-k probability of a tuple prk
top(ti) is the likelihood of tuple ti appearing in the top-k in all possible

worlds. Mathematically, the top-k probability of a tuple prk
top(ti) is the sum of the probabilities of the existence of

possible worlds in which the tuple is in the top-k.
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Example: In Table 2, since t2 is one of the top-2 tuples in possible worlds (W1,W2,W7,W8), the top-2 probability
of tuple t2 is the sum of the probabilities of the existence of these possible worlds. That is, pr2

top(t2) = 0.0696 +
0.0174 + 0.1704 + 0.0426 = 0.3.

In the probabilistic data, when the number of tuples is increasing, it is impossible to list all the possible worlds
and calculate every probability of the existence of possible worlds at a limited time, because the number of all the
possible worlds is 2n and the computation cost of all probabilities of its existence is very expensive. It is impractical
to calculate the top-k probability based on listing the possible world space. Therefore, formulas to calculate the top-k
probability of tuples are required. The formulas for this problem have already been solved in mathematics, so we will
adapt these formulas to this research.

Let probabilistic data D be a ranked sequence (t1, t2, ..., tn) with t1.score ≼ t2.score ≼ ... ≼ tn.score, and S ti =

(t1, t2, ..., ti) (1 ≤ i ≤ n) be a subsequence from t1 to ti.
In the possible world space, the top-k probability of tuple ti is the sum of all probabilities of ti being ranked from

1 to k. When tuple ti is ranked at the ( j + 1)th position, there are also j tuples in the subsequence set S ti = (t1, t2, ..., ti)
appearing in possible worlds.

Theorem 1. Given a ranked sequence S ti = (t1, t2, ..., ti), pr(S ti , j) is the probability of any j tuples (0 < j ≤ i < n)
appearing in the sequence S ti . pr(S ti , j) is calculated as follows:

pr(S ti , j) = pr(S ti−1 , j − 1) × p(ti) + pr(S ti−1 , j) × (1 − p(ti))

In special cases
◦ pr(ϕ, 0) = 1
◦ pr(ϕ, j) = 0

◦ pr(S ti−1 , 0) =
i∏

j=1
(1 − p(t j))

This Poisson binomial recurrence has been proven in [24].
Example: Given the data set in Table 1, pr(S t1 , 1), the probability of any one tuple appearing in the sequence

S t1 = {t1} and pr(S t2 , 1), the probability of any one tuple appearing in the sequence S t2 = {t1, t2} are computed as
follows:

pr(S t1 , 1) = pr(ϕ, 0) × p(t1) + pr(ϕ, 1) × (1 − p(t1))
= 1 × 0.29 + 0 × (1 − 0.29) = 0.29

pr(S t2 , 1) = pr(S t1 , 0) × p(t2) + pr(S t1 , 1) × (1 − p(t2))
= (1 − 0.29) × 0.3 + 0.29 × (1 − 0.3) = 0.416

Based on Theorem 1, the probability of a tuple being ranked at the exact position is represented by the follow
theorem.

Theorem 2. Suppose that tuple ti and the subsequence S ti−1 , pr(ti, j) is the probability of tuple ti which is ranked at
the exact jth position (n > i ≥ j > 0). pr(ti, j) is calculated as follows:

pr(ti, j) = p(ti) × pr(S ti−1 , j − 1)

This Poisson binomial recurrence has been proven in [24].
Example: Given the data set in Table 1, the 1st and 2nd rank probabilities of tuple t3 are computed as follows:

pr(t3, 1) = p(t3) × pr(S t2 , 0)
= 0.8 × (1 − 0.29) × (1 − 0.3) = 0.3976

pr(t3, 2) = p(t3) × pr(S t2 , 1)
= 0.8 × 0.416 = 0.3328

To calculate the top-k probability of tuple ti, Theorem 3 is extended from Theorem 2, that is, a sum of ranked
positions from 1st to kth probabilities of tuple ti.
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Theorem 3. Given a tuple ti, prk
top(ti) is the top-k probability of ti in the possible world space, then prk

top(ti) is
calculated as follows:

prk
top(ti) =

k∑
j=1

pr(ti, j) = p(ti) ×
k∑

j=1

pr(S ti−1 , j − 1)

If i ≤ k then prk
top(ti) = p(ti)

Example: Given the data set in Table 1, the top-2 probability of tuple t3 is computed as follows:

pr2
top(t3) =

2∑
j=1

pr(t3, j)

= pr(t3, 1) + pr(t3, 2)
= 0.3976 + 0.3328 = 0.7304

In general, the above three theorems are used to directly calculate the top-k probability of all tuples without listing
any possible worlds.

2.3. Calculation of top-k probability with a generation rule

Generally, we can use the above theorems to calculate the top-k probability of each tuple. However, the probabilis-
tic data model involves mutually exclusive and inclusive rules which have to be mentioned when calculating the top-k
probability of tuple formulas. Therefore, the calculations of top-k probabilities have to take these rules into account.

Let a probabilistic database D = (t1, t2, ..., tn) with t1.score ≼ t2.score ≼ ... ≼ tn.score be ranked as the se-
quence, we follow paper [1, 2] for processing the exclusive rules and inclusive rules in formulas to calculate the top-k
probabilities of tuple ti.

2.3.1. Exclusive rules
Tuples in the same rule are mutually exclusive R+h = th1 ⊕ ... ⊕ thm , which indicates that, at most, one tuple can

appear in the same possible worlds. Therefore, an exclusive rule can be produced as a tuple. Then, the previous
formulas are modified to calculate the top-k probability.

To compute the top-k probability prk
top(ti) of tuple ti ∈ D (1 ≤ i ≤ n), ti divides the generation rule R+h = th1⊕...⊕thm

into two parts R+hLe f t = th1 ⊕ ...⊕ th j and R+hRight = th j+1 ⊕ ...⊕ thm . The tuples involved in R+hLe f t are ranked higher than or
equal to tuple ti. The tuples involved in R+hRight are ranked lower than tuple ti. According to this division, the following
cases demonstrate the exclusive rule produced as a tuple into the formulas to calculate the top-k probability of tuple ti.
- Case 1: R+hLe f t = ϕ, i.e. all the tuples in rule R+h are ranked lower than tuple ti. Therefore, all tuples in R+h are not
considered when calculating the top-k probability of tuple ti. Consequently, all tuples in R+h are ignored.
- Case 2: R+hLe f t , ϕ, i.e. all tuples in R+hRight can be ignored, and the tuples in R+hLe f t have been changed when
calculating the top-k probability of ti. There are two sub-cases for these changes.
+ sub-case 1: ti ∈ R+hLe f t, i.e. ti has already appeared in the possible world space. The other tuples in R+hLe f t can

not appear, so these tuples will be removed from subsequence S ti−1 when calculating prk
top(ti).

+ sub-case 2: ti < R+hLe f t, i.e. all tuples in R+hLe f t will be produced and considered as a tuple tR+hLe f t
with their sum

probabilities p(tR+hLe f t
) =
∑

R+hLe f t

p(thLe f t).

After all the exclusive rules are produced, the formulas for calculating the top-k probability in the previously
mentioned theorems are used normally.

Example: In Table 1, the top-2 probability of tuples t6 pr2
top(t6) will be calculated by applying two exclusive rules

R+1 = t2 ⊕ t4 and R+2 = t3 ⊕ t6. The subsequence S t6 contains the tuples {t1, t2, t3, t4, t5, t6} with their probabilities
{0.29, 0.3, 0.8, 0.4, 1.0, 0.2}, respectively.

The exclusive rules are produced in subsequence S t6 .
- In exclusive rule R+2 , t3 is removed because t3 and t6 are in the same exclusive rule (sub-case 1 of exclusive rule)

7



/ Procedia Computer Science 00 (2012) 1–21 8

- In exclusive rule R+1 , t2 ⊕ t4 are produced as t2⊕4. The probability of t2⊕4 is 0.7 (sub-case 2 of exclusive rule)
The subsequence S t6 is produced by the exclusive rule {t1, t2⊕4, t5, t6} with their probabilities {0.29, 0.7, 1.0, 0.2}.

pr2
top(t6) with the set S t5 {t1, t2⊕4, t5} is calculated as follows:

pr2
top(t6) = p(t6) ×

2∑
j=1

(S t5 , j − 1)

pr2
top(t6) = p(t6) × (pr(S t5 , 0) + pr(S t5 , 1)), where

pr(S t5 , 0) = (1 − 0.29) × (1 − 0.7) × (1 − 1) = 0
pr(S t5 , 1) = (1 − 0.29) × (1 − 0.7) = 0.213

pr2
top(t6) = 0.2 × (0 + 0.213) = 0.0426

2.3.2. Inclusive rules
Tuples in the same rule are mutually inclusive R∗h′ = th′1 ∧ th′2 ∧ ... ∧ th′q′ , which indicates that no tuple or all tuples

appear in possible worlds. To compute the top-k probability prk
top(ti) of tuple ti ∈ D(1 ≤ i ≤ n), tuple ti can be in an

inclusive rule or not in the following cases.
- Case 1: All the tuples in rule R∗h′ are ranked lower than tuple ti. All tuples in R∗h′ are ignored.
- Case 2: At least one tuple in inclusive rule R∗h′ is ranked higher than or equal to tuple ti. There are two sub-cases.
+ sub-case 1: ti ∈ R∗h′ , i.e. ti has already appeared in the possible world space, and there are z tuples ranked higher

than ti in R∗h′ (z < k), which also appeared with ti in the same possible worlds. Therefore, the top-k probability prk
top(ti)

of tuple ti of Theorem 3 is modified as follows:

prk
top(ti) = p(ti) ×

k−z∑
j=1

pr(S ti−1 r R∗h, j − 1)

+ sub-case 2: ti < R∗h′ , i.e. there are z tuples ranked higher than ti in R∗h′ (z < k), and these tuples are considered
as a tuple tR∗h′ with probability p(tR∗h′ ) = p(th′1 ) = p(th′2 ) = ... = p(th′q′ ). The sequence S ti now is S ′ti ∪ {tR∗h′ }, where

S ′ti =
{
{t1, t2, ..., ti}r {t′ | t′ ∈ R∗h′ }

}
, then a probability of any j tuples (0 < j ≤ i < n) appearing in the set S ti is

modified as follows:
◦ pr(S ti , 0) = pr(S ′ti , 0) × (1 − p(tR∗h′ ))
◦ pr(S ti , j) = pr(S ′ti , j) × (1 − p(tR∗h′ )) (for 0 < j < z)
◦ pr(S ti , j) = pr(S ′ti , j − z) × p(tR∗h′ ) + pr(S ′ti , j) × (1 − p(tR∗h′ )) (for j ≥ z)
Example: Assuming two inclusive rules R∗1 = t3∧ t5 and R∗2 = t4∧ t6 with probabilities p(R∗1) = p(t3) = p(t5) = 0.7

and p(R∗2) = p(t4) = p(t6) = 0.4 are in probabilistic databaseD = (t1, t2, ..., t10) in ranking order. To compute pr4
top(t6),

the inclusive rules are produced in subsequence S t5 .
- In inclusive rule R∗2 = t4 ∧ t6, t6 ∈ R∗2, sub-case 1 of the inclusive rule is applied. The subsequence S t5 r R∗2 is

{t1, t2, t3, t5}, and z=1 because t4 has a higher rank than t6. We compute the top-4 probability of tuple t6

pr4
top(t6) = p(t6) ×

4−1∑
j=1

pr({t1, t2, t3, t5}, j − 1)

- In inclusive rule R∗1 = t3 ∧ t5, tuples t3, t5 are ranked higher than tuple t6. We produced inclusive rule R∗1 into t3,5
with probability p(t3,5) = p(R∗1) = 0.7. The set S t5 is {t1, t2, t3,5}, and the set S ′t5 = {S t5 r t3,5} is {t1, t2} or S ′t5 = S t2 .
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Then, sub-case 2 of the inclusive rule is applied to calculate the top-4 probability of tuple t6.

pr4
top(t6) = p(t6) ×

3∑
j=1

pr({t1, t2, t3,5}, j − 1)

pr4
top(t6) = p(t6) × (pr({t1, t2, t3,5}, 0) + pr({t1, t2, t3,5}, 1) + pr({t1, t2, t3,5}, 2)

)
pr({t1, t2, t3,5}, 0) = pr(S t2 , 0) × (1 − p(t3,5))
pr({t1, t2, t3,5}, 1) = pr(S t2 , 1) × (1 − p(t3,5))
pr({t1, t2, t3,5}, 2) = pr(S t2 , 0) × p(t3,5) + pr(S t2 , 2) × (1 − p(t3,5))

3. The top-k best probability queries

This section presents the proposed method for finding and computing the answer to the top-k best probability
query. First, we create a new definition of the top-k best probability query which is based on the rationale described
in the introduction. Secondly, we present the significance of our proposed method. Then, we introduce the process to
select an answer to the top-k best probabilistic queries, and several pruning rules for an effective algorithm. Lastly,
we describe the algorithm for computing the top-k best probability query.

3.1. Definition of the top-k best probability

Tuples which are the result of probabilistic top-k queries must consider not only the ranking score but also the
top-k probability [25, 21]. In the area of probabilistic data, significant research is being conducted on the semantics
of top-k queries. However, the semantics between high scoring tuples and high top-k probabilities of tuples is inter-
preted differently by various researchers. Our ranking approach considers both dimensions of ranking score and top-k
probability independently, in which the ranking score cannot be considered more important than the top-k probability
and vice versa.

To answer a probabilistic query, every tuple has two associated dimensions: the top-k probability and its ranking
score. These two dimensions are crucial for choosing the answer to the top-k query on probabilistic data. They are also
independent of real world applications. In this research, we introduce the concept of dominating tuples to select the
full meaning of top-k tuples which are non-dominated tuples. This concept is widely used for multiple independent
dimensions for skyline queries in many papers [26, 22, 27, 28, 29, 30]. In this paper, the domination concept for top-k
queries is used to compare top-k tuples in the two dimensions of score and top-k probability.

Definition 5. (domination of top-k probability tuples) For any tuples ti and t j in probabilistic data, ti dominates t j

(ti ≺ t j), if and only if ti has been ranked higher than t j and the top-k probability of ti is greater than the top-k
probability of t j (prk

top(ti) > prk
top(t j)), else ti does not dominate t j (ti ⊀ t j).

Example: in Table 3, tuple t3 dominates t5, because t3 has a higher rank than t5 (rank(t3.score) = 3, rank(t5.score) =
5) and top-2 probability (0.7304) of t3 is greater than top-2 probability (0.3072) of t5.

Definition 6. (non-dominated tuple) a tuple which is not dominated by all the other tuples on score and top-k proba-
bility is the non-dominated tuple.

Example: in Table 3, tuples t1 and t3 are the non-dominated tuples in the set {t1, t3, t4, t5, t6}.

In previous research, the answer to PT-k is based on the top-k probabilities and the threshold. The resultant set,
which is analyzed in the introduction, may exclude some highest ranking score tuples or include some redundant
tuples. Therefore, we have to create new top-k queries which overcome these problems. Definition 7 is introduced
to select the best tuples on score and top-k probability using the domination concept to improve the quality of the
top-k answers. That is, we are looking at tuples which are in both the top-k best ranking scores and the best top-k
probabilities.
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Definition 7. (top-k best probability query) The answer to the top-k best probability query Qk
top consists of two

sets Qscore and Qpro where Qscore contains the top-k ranking score tuples in the data without considering the top-k
probabilities, and Qpro contains non-dominated tuples on score and top-k probability in the set {{D\Qscore}∪ {tpmin}},
where tpmin is the tuple with the lowest top-k probability in Qscore.

The top-k best probability query can overcome the problems by selecting all the tuples with the highest ranking
score for set Qscore, and remove the redundant tuples based on the non-dominated tuples concept for set Qpro. The set
Qscore contains the top-k highest scores tuples, therefore tpmin is selected as the lowest top-k probability in Qscore to
find the non-dominated tuples which have better top-k probabilities in the rest of tuples {D \ Qscore}.

For example, in Table 1, the process to obtain the final answer to top-2 best probability query is described in
Definition 7. The answer set to the top-2 best probability query is Q2

top = {t1, t2, t3}, in which Qscore {t1, t2} is the top-2
highest ranked profit tuples without considering the top-2 probabilities (the common result), and Qpro {t1, t3} contains
the non-dominated tuples on score and top-k probability in {t1, t3, t4, t5, t6}, where t1 is tpmin.

3.2. Significance of top-k best probability query
We now discuss the top-k best probability query, matching the proposed requirements, then compare our results

to the previous proposals.

3.2.1. k-highest ranking score tuples and dominating concept for semantic answers
Generally, traditional top-k queries on databases return the k-highest ranking score tuples. However, almost all

previous papers on top-k queries on probabilistic data selected top-k tuples based on some specific possible worlds
with scores such as U-top-k [14], U-k-ranks [31], and U-popk [16], or tuples with high values combining scores and
probabilities such as E-score [3] and E-rank [3]. However, these previous approaches lose some important top-k rank-
ing score tuples. Therefore, the top-k best probability query must firstly select the k-best ranking score tuples of the
database, ignoring its probability. This property allows the top-k best probability query to overcome the information
loss problem which is inherent in traditional top-k queries.

The dominating concept is used to find the non-dominated tuples for the best top-k probability value. This is
the key to our proposal which has solved almost all the limitations of the previous approaches. The dominating
concept also takes both top-k ranking score and top-k probability into account. A number of papers have discussed
probabilistic data queries. The semantics of answering a query can have different meanings in various applications
[10, 32, 33]. The U-top-k [14], C-Typical-top-k [18], and E-rank [3] tried to create relations between the ranking
scores and top-k probabilities on probabilistic data in different domains. These approaches are suitable in their specific
situations, because these relations have different meanings semantically. However, the real semantics of top-k answers
are mainly based on the users’ decisions on both top-k ranking scores and top-k probabilities. It is appropriate to use
the non-dominated concept for selecting answers to users.

3.2.2. Threshold vs. bestPr
A threshold plays an important role in the PT-k algorithm in paper [1, 2]. The authors used the user define static

threshold to prune irrelevant answers. Hence, the PT-k algorithm of top-k queries seem to be more effective and
efficient for processing the top-k answers. However, it could be ineffective and inefficient for users, because the
problem is the selecting a threshold which is set by users. The users randomly select the threshold from 0 to 1 several
times until obtaining a satisfactory answer. If the users choose a lower threshold than the top-k probabilities of tuples,
the computation cost of the PT-k algorithm to the top-k queries will be expensive due to the need to calculate almost all
the top-k probabilities of tuples. Otherwise, if the users choose a higher threshold than top-k probabilities, the result
set of the PT-k algorithm will be empty due to pruning all top-k probability tuples by the higher threshold. Moreover,
users sometimes do not have enough information to set the threshold for the probabilistic data. Therefore, it is not
easy to choose a suitable threshold value as the threshold is an unclear value for the users. Therefore, based on the
observation, our proposed algorithm does not require users to provide a threshold. Our algorithm uses bestPr which
is automatically initialized and updated during execution for effective pruning.

3.3. Finding top-k best probability and pruning rules
We now describe a technique for selecting the top-k best probability answers, and present effective pruning rules

for the top-k best probability algorithm.
10
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a. Selecting the answer to the top-k best probability queries

Suppose that the probabilistic data set has been ranked by score, we have divided n probabilistic tuples of prob-
abilistic data set D into two sets Qscore = {t1, t2, ..., tk} and D \ Qscore = {tk+1, tk+2, ..., tn}. Qscore contains the first
k-highest ranking score tuples.

To select all non-dominated tuples for Qpro, we first pick the tuple tpmin which has the lowest top-k probability in
Qscore. This lowest top-k probability tuple is always the first non-dominated tuple in {Qpro ∪ {tpmin}}, because tpmin has
a higher rank than all other tuples in D \ Qscore. This means that all tuples in D \ Qscore do not dominate tpmin. As
we already have the tuples ranking order, the rest of the non-dominated tuples are selected by only considering their

top-k probabilities. The initial value bestPr is assigned bestPr =
k

min
i=1

(prk
top(ti)). To select the non-dominated tuples

from {tk+1, tk+2, ..., tn}, the top-k probability of each tuple from tk+1 to tn is calculated in succession. In each tuple, the
top-k probability will be compared to bestPr. If it is greater than bestPr, the tuple will be inserted into Qpro, and
bestPr is assigned a new value which is the greater top-k probability. The inserted tuple is non-dominated in Qpro

because its top-k probability is greater than all top-k probabilities of tuples in Qpro. When all tuples are executed,
all the non-dominated tuples of Qpro are found. The answer set Qk

top = Qscore ∪ Qpro is returned for the top-k best
probability query.

The value of bestPr will be increased while selecting the non-dominated tuples, which have higher top-k proba-
bilities in the answer Lpro, therefore bestPr is called the best top-k probability. The bestPr is also the key value to
improve the effectiveness and efficiency of our proposed algorithm because it is used to eliminate all tuples with low
top-k probabilities without the need to conduct calculations by following the pruning rules.

b. Pruning rules

In this subsection, we introduce and prove several theorems to minimize the calculation of the top-k probability of
tuples and activate the stopping condition which negates the need to calculate the remaining tuples.

The first pruning rule is presented as Theorem 4 which uses the bestPr value to eliminate the current tuple without
calculating its top-k probability.

Theorem 4. Given any tuple ti and bestPr, if p(ti) ≤ bestPr then prk
top(ti) ≤ bestPr

Proof. The top-k probability of ti is calculated by Theorem 3

prk
top(ti) = p(ti) ×

k∑
j=1

pr(S ti−1 , j − 1)

with p(ti) ≤ bestPr, and
k∑

j=1
pr(S ti−1 , j − 1) ≤ 1 then

prk
top(ti) = p(ti) ×

k∑
j=1

pr(S ti−1 , j − 1) ≤ bestPr

Theorem 5 is a pruning rule which uses probability and top-k probabilities of previous tuples to eliminate the
current tuple without the need to perform top-k probability calculation

Theorem 5. Given any ti−m, ti and bestPr, if p(ti−m) ≥ p(ti) and prk
top(ti−m) ≤ bestPr then prk

top(ti) < bestPr for any
1 ≤ m < i

Proof. The top-k probability of ti−m is calculated by Theorem 3

prk
top(ti−m) = p(ti−m) ×

k∑
j=1

pr(S ti−m−1 , j − 1)

11
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For any 1 ≤ m < i, we have sequence S ti−m ⊂ S ti , it is also true when S contains generation rules.

k∑
j=1

pr(S ti−m−1 , j − 1) ≥
k∑

j=1

pr(S ti−1 , j − 1)

with prk
top(ti−m) ≤ bestPr, and p(ti−m) > p(ti) then

prk
top(ti) = p(ti) ×

k∑
j=1

pr(S ti−1 , j − 1) ≤ prk
top(ti−m) ≤ bestPr

We note that Theorem 5 is used in our algorithm, in which only the p(ti−m) ≥ p(ti) condition must be considered for
eliminating the current tuple, because the other prk

top(ti−m) ≤ bestPr condition is always true. The reason is because
bestPr is assigned the best top-k probability value among tuples tk+1 to ti−1 during algorithm processing.

The following Theorem 6 is the most important rule in our algorithm. It is used to stop the algorithm processing
and return the answer. The algorithm can stop early, before it calculates the top-k probabilities of the other lower
ranking score tuples.

Theorem 6. For any ti and bestPr, if bestPr ≥
k∑

j=1
pr(S ti\{tLmax }, j − 1) then bestPr ≥ prk

top(ti+m) for any m ≥ 1 where

- S ti = (t1, t2, ..., ti) is the ranked sequence.
- tLmax is the produced tuple of the generation rule which has the highest produced probability than the other

produced probabilities in the generation rules.

Proof. The top-k probability of ti+m is calculated by Theorem 3

prk
top(ti+m) = p(ti+m) ×

k∑
j=1

pr(S ti+m−1 , j − 1)

In the worst case, ti+m is in exclusive rule Rh.

prk
top(ti+m) ≤ p(ti+m) ×

k∑
j=1

pr(S ti+m−1\tRhLe f t , j − 1)

For any m > 1, we have sequence S ti ⊆ S ti+m−1 , It is also true when calculating the prk
top(ti) with S ′ti containing an

inclusive rule.

prk
top(ti+m) ≤ p(ti+m) ×

k∑
j=1

pr(S ti\tRhLe f t , j − 1)

In exclusive rules, we have tRhLe f t ≤ tLmax for any produced tuples

prk
top(ti+m) ≤ p(ti+m) ×

k∑
j=1

pr(S ti\tLmax , j − 1)

For the probability of any tuple, we have 0 < p(ti+m) ≤ 1

prk
top(ti+m) ≤

k∑
j=1

pr(S ti\tLmax , j − 1)

Hence, if bestPr ≥
k∑

j=1
pr(S ti\tLmax , j − 1), then bestPr ≥ prk

top(ti+m)
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Input: probabilistic dataD in ranking order, generation rules R.
Output: Qk

top answer set to top-k best probability query
1 foreach (tuple ti {i=1 to n}) do
2 if (i ≤ k) then
3 prk

top(ti)← p(ti) {special case in theorem 3};
4 Qk

top ← Qk
top ∪ (ti, prk

top(ti));
5 bestPr ← min(prk

top(ti));
6 pprev ← bestPr;

7 else
8 if (p(ti) > bestPr) {Theorem 4} ∩ (p(ti) > pprev) {Theorem 5} then
9 prk

top(ti)← calculating top-k probability with generation rules R in Section 2 ;
10 if (prk

top(ti) > bestPr) then
11 bestPr ← prk

top(ti);
12 Qk

top ← Qk
top ∪ (ti, prk

top(ti));
13 pprev ← p(ti);

14 if (bestPr satisfies Theorem 6) then
15 Exit;

Algorithm 1: The top-k best probability algorithm

3.4. The top-k best probability algorithm

We now propose the algorithm for selecting the answers to the top-k best probability queries on probabilistic data.
Algorithm 1 finds the top-k best probability answer Qk

top = Qscore ∪ Qpro.
- The set Qscore, which contains tuples with the top-k highest score, is found from lines 2 to line 6 . As seen in the

ranking order on score of the probability data set, the first k tuples {t1..tk} have the best-k score which is added into
the answer set Qscore (line 4), and their top-k probabilities are equal to their probabilities as proven in Theorem 3 (line
3). Then, bestPr is initialised with the minimum top-k probabilities from t1 to tk (line 5) and the first value of pprev is
assigned the probability of the tuple having minimum prk

top which equals the bestPr (line 6).
- The set Qpro containing non-dominated tuples is selected from lines 8 to 13. A current tuple ti is determined to be

dominated or not as follows. Firstly, the top-k probability must be calculated with generation rules R (line 9). These
complex computation formulas are formally presented in section 2. After this, the top-k probability of the current
tuple is compared with bestPr. If the top-k probability is greater than bestPr, the current tuple is a non-dominated
tuple (line 10). Then, it is added into the answer set Qk

top (line 12). The new values of bestPr and pprev are next
considered in lines 11 and 13.

- For effectiveness, the pruning rules and stopping rule are applied at lines 8 and 14, respectively. The first
condition (p(ti) > bestPr) is presented for Theorem 4, and the second condition (p(ti) > pprev) is presented for
Theorem 5 (line 8). Theorems 4 and 5 are applied to directly prune the current tuple without the need to calculate
top-k probability. Therefore, the algorithm does not calculate the top-k probability, and jumps to the next tuple being
considered. In addition, the stopping condition on the top-k best probability process is activated as outlined in Theorem
6 (line 14), which means there are no more non-dominated tuples in the rest of the tuples.

- Overall, the top-k best probability algorithm returns the answer Qk
top = Qscore ∪ Qpro.

4. Semantics of top-k best probability queries and other top-k queries

This section first discusses the previous semantic ranking properties proposed in papers [3, 4] and proposes the new
property “k-best ranking scores” based on users’ expectations. Secondly, we examine which properties our approach
and previous approaches possess.
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4.1. Semantics of ranking properties

On probabilistic data, ranking queries have been studied in relation to their semantics. As the semantics of pos-
sible worlds is based on the relationship between probability and score, the answers to the ranking query have to be
discussed to meet the static and dynamic postulates. The previous work [3, 4] formally defined the key properties of
ranking query semantics on probabilistic data, based on the users’ natural expectations. Five properties are presented
and serve as benchmarks to evaluate and categorize the different semantics of ranking queries.

Let set Qk
top(D) be the answer to the top-k query on probabilistic dataD:

The first property is “Exact-k” being the users’ natural expectations, which has k tuples in the answer set.
• Exact-k: If |D| ≥ k then |Qk

top(D)| = k. When |Qk
top(D)| ≥ k, it is weakly satisfied.

The second property is “Containment” for capturing the intuition of users on results returned.
• Containment: For any k, the set Qk

top(D) ⊂ Qk+1
top (D). When replacing ⊂ with ⊆, it is weakly satisfied.

The third property illustrates that the ranking answer should be unique.
• Unique ranking: If probabilistic dataD , D′, then the result Qk

top(D) , Qk
top(D′).

The fourth property stipulates the limitation of score values on probabilistic databases.
• Value invariance: Let D be score set (t1.score ≼ t2.score ≼ ... ≼ tn.score), which is replaced by another score

set (t1.score′ ≼ t2.score′ ≼ ... ≼ tn.score′) namelyDr. For any k, the set Qk
top(D) = Qk

top(Dr).
The fifth property shows the dynamic postulate of ranking queries.
• Stability: Given a tuple ti = (vi, p(ti)) ∈ D, D′ is a new probabilistic data set where ti is replaced by following

t↑i = (v↑i , p
↑(ti)) where v↑i is better than vi, and p↑(ti) ≥ p(ti). If ti ∈ Qk

top(D), then t↑i ∈ Qk
top(D′).

However, it is desirable that users always expect the results of top-k queries to contain the k-best ranking score
tuples, because the traditional top-k query always returns the set of k tuples which have the highest scores. Therefore,
the extension of top-k queries to the probabilistic situation must return the answer set which includes the top-k tuples
with the best ranking scores in order to satisfy the inheritance property. We propose the capability of providing these
k-best scoring tuples as a property of top-k query semantics on probabilistic data. We name the sixth property as
“k-best ranking scores”.
• k-best ranking scores: Let probabilistic data D = (Dc, p), where Dc is the database without the probability

dimension, and p is the set of probabilities. For any k, Qk
top(Dc) ⊂ Qk

top(D).
In the next section, all the above six properties are used to analyse and discuss the semantics which satisfy the

top-k queries on probabilistic databases between our approach and previous approaches.

4.2. Top-k queries satisfying semantic properties

We now investigate whether the existing top-k methods and our approach satisfy the semantic properties or not.
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U-top-k [14] Fail Fail Fail Satisfied Satisfied Satisfied
U-k-ranks [14, 31] Fail Satisfied Satisfied Fail Satisfied Fail
Global-top-k [4] Fail Satisfied Fail Satisfied Satisfied Satisfied
E-Score [3] Fail Satisfied Satisfied Satisfied Fail Satisfied
E-Rank [3] Fail Satisfied Satisfied Satisfied Satisfied Satisfied
PT-k [1, 2] Weak Fail Weak Satisfied Satisfied Satisfied
U-popk [16] Fail Satisfied Satisfied Satisfied Satisfied Satisfied
Top-k bestPr Satisfied Weak Weak Satisfied Satisfied Satisfied

Table 4. Summary of top-k methods on the semantics of ranking query properties
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Overall, Table 4 illustrates that our proposed approach covers the six properties of semantic ranking while the
previous studies all fail in at least one of these properties. Hence, the answers to the top-k best probability query is
better and meet the expectation of the users when compared to other existing work.
∗ U-top-k [14]: Uncertain-top-k approach returns a set of top-k tuples, namely, a tuple vector. This vector has the

highest aggregated probabilities in all possible worlds. The k-tuples in the tuple vector appear restrictively together in
the same possible worlds. The U-top-k answers satisfy the Unique ranking, Value invariance, and Value invariance
properties of ranking query semantics. However, it could not satisfy the Exact-k attribute when applied to small
probabilistic databaseD. The tuple vector with the highest aggregated probabilities has tuples less than k. It also fails
on the Containment property. The answer to U-top-k is not a subset of U-top-(k+ 1) due to complete disjunction from
the top-(k + 1) as point out in [3, 4]. Moreover, the U-top-k answers violate the k-best ranking scores property. Given
the example of the probabilistic data in Table 1, the U-top-2 answer is the vector (t3, t4) which has the highest top-2
probability vector 0.2272 in the possible world space. The answer to the U-top-2 query does not contain the top-2
highest score tuples t1 and t2. As a results, the answer to the U-top-2 query failed to satisfy the k-best ranking scores
property.
∗ U-k-ranks [14, 31]: Uncertain-k-ranks query returned a set of tuples, each of which is the maximum aggregated

probabilities of all possible worlds ranked from 1 to k, therefore, each tuple in U-k-ranks results is the highest aggre-
gated probability in its rank in the possible world space. The U-k-ranks answers satisfy the Exact-k, Containment, and
Value invariance properties on semantics. However, it fails on the unique ranking, Stability and k-best ranking scores
properties. For an example of U-3-ranks on the probabilistic data of Table 1, the answer set is {t1, t3} due to tuple t3
having maximum probability with k = 2 and k = 3. U-3-ranks fails on unique ranking. Moreover, it violates the Sta-
bility property because increasing the score or probability of tuples could change the consequence of ranks in possible
worlds. The fact that it fails the Stability property is also pointed out in [3, 4]. The answer returned by U-3-rank does
not contain tuple t2 the second highest scoring tuple, and it also fails on the k-best ranking scores property.
∗ Global-top-k [4]: The answer to the Global-top-k queries is a set of k tuples with the k-highest probabilities

being the top-k answers in the possible world space. Global-top-k satisfies properties Exact-k, Unique ranking, Value
invariance, and Stability. Global-top-k fails the two properties of Containment and k-best ranking scores. Running
a Global-top-1 query and Global-top-2 query on Table 1 returns answer sets {t1} and {t3, t5}, respectively. It fails on
the Containment property due to set {t1} not being a subset of set {t3, t5}. Moreover, Global-top-2 answers may not
contain tuples t1 and t2, the top-2 best scores, therefore, Global-top-k also violates the k-best ranking scores property.
∗ E-score [3]: Expected-score is a simple approach to multiply score and probability together as an expected-value

of each tuple, then the E-score query returns the set of k-tuples having the highest expected-value. It is clear to see
that the E-score method satisfies the properties Exact-k, Containment, Unique ranking, and Stability. However, it fails
on properties Value invariance and k-best ranking scores. The magnitude of score and probability is a limitation of
the E-score method. The magnitude of the normal expected score is a tuple having the low top-k probability and a
high score, giving it the highest expected score. If the score has been adjusted to be just greater than the next highest
score, it will fall down the ranking. Therefore, it fails on the Value invariance property. Moreover, the answer to the
E-score query with k = 2 in Table 1 is a set {t3, t1} which does not contain tuple {t2}. Hence, it fails on the k-best
ranking scores property.
∗ E-rank [3]: A new Expected-ranking is produced by the Expected-score to select the top-k ranking query for

probabilistic data. The authors used the ranking formula to calculate the new expected score for their proposal to
remove the magnitude of normal expected score limitations. This method overcomes the shortcomings of E-score and
satisfies almost all of the properties Exact-k, Containment, Unique ranking, Value invariance, and Stability as proven
in paper [3]. However, it still fails on the k-best ranking scores property. Applying E-rank on the probabilistic data
in Table 1, the final expected score is ranked (t1, t3, t2, t5, t4, t6). The E-rank top-2 query answer is (t1, t3) which does
not contain the top-2 highest score tuple t2. Hence, the E-rank query answer fails to reach the k-best ranking scores
property.
∗ PT-k [1, 2]: M. Hue and J. Pei proposed the PT-k queries on probabilistic data using a user-specified probability

threshold to cut off irrelevant candidate tuples having lower top-k probability. PT-k satisfies three properties Unique
ranking, Value invariance, and Stability, as pointed out in paper [3]. Based on the description of the containment
property, the PT-k method weakly satisfies this property since the same answer set can be returned from different k
{k, k+1} with a fixed threshold. For instance, in Table 1, when we set the threshold to 0.4 for PT-2 and PT-3, the
answer is the same set t3. This also violates the exact-k property. The tuples in the answer are based on the users’
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specified probability threshold. The PT-k method is greatly affected by the result threshold. This was analysed in the
introduction. Furthermore, the answer to the PT-2 query also does not contain the top-2 highest score tuples t1, t2.
However, if the threshold is assigned a value less than or equal to 0.29, the PT-2 query answer {t1, t2, t3, t4, t5} contains
the top-2 highest score tuples {t1, t2}. Therefore, the k-best ranking scores’ property is weakly satisfied.
∗ U-popk [16]: U-popk approach selects k tuples in order, in which, tuple top − (i + 1)th is a U-1-ranks after

removing the top − i tuples. The U-popk approach satisfies the Exact-k, Unique ranking, Value invariance, Stability
,and Containment properties of semantic ranking. However, U-popk violates the k-best ranking scores property. The
U-popk query returns {t1, t3} which excludes tuples t2 from the top-2 highest score for the probabilistic data in Table
1.
∗ Top-k bestPr: To analyse these properties for our top-k best probability queries, the four properties Containment,

Unique ranking, Value invariance, and Stability proved similar to the PT-k method in paper [3]. The Exact-k property
is defined as “the top-k answer that contains exactly k tuples”. The top-k best probability query is fairly satisfied
with this property, because the top-k best probability queries always return at least k tuples as the answer, which
is a set of the top-k highest score tuples (Qscore). The answer to the top-k best probability query contains the top-k
highest ranked score tuples Qscore and non-dominated tuples Qpro. In the worst case, Qpro can contain only one tuple
tpmin in Qscore. Hence, the Exact-k property also is reasonably acceptable in the top-k best probability approach. The
last property k-best ranking score is also obtained by the top-k best probability result because it contains Qscore, the
k-highest ranking tuples.

5. Experimental study

In this section, we report an extensive empirical study over a real and synthetic data set to examine our proposed
approach which is more effective and efficient than the PT-k [1, 2]. All the experiments were conducted on a PC with
a 2.33GHz Intel Core 2 Duo, 3 GB RAM, and 350GB HDD, running Windows XP Professional Operating system.
An algorithm were implemented in C++.

5.1. Real data
We use the International Ice Patrol Iceberg Sighting database for our real data set1. This data set was used in

previous work on ranking and skyline queries in probabilistic databases [1, 19, 34]. The IIP’s mission is to survey, plot
and predict iceberg drift to prevent icebergs threatening ships. The information in the database is iceberg activity in the
North Atlantic in the area of 40 to 65 degrees north latitude and 39 to 57 degrees west longitude. The database in the IIP
collection is structured in ASCII text files. The database contains a set of iceberg sightings represented by tuples, each
tuple (ti) including the important attributes (Sighting Source, Position, Date/Time, Iceberg Description, Drifted days).
This information is very important to detect icebergs to prevent them threatening ships. Conducting top-k queries using
the number of days of iceberg drift as a ranking score is considered an important tool for predicting icebergs’ travel.
Moreover, six types of observation equipments are used as sighting sources: R/V (Radar and Visual), VIS (VISual
only), RAD (RADar only), SAT-LOW (LOW earth orbit SATellite), SAT-MED (MEDium earth orbit SATellite), and
SAT-HIGH (HIGH earth orbit SATellite). Equipments used to observe icebergs can be unreliable due to the unstable
environment or bad weather, therefore, erroneous information may be collected. These sighting sources are classified
by differences in confidence levels as probabilities, which are R/V(0.7)p(ti1 ), VIS(0.6)p(ti2 ), RAD(0.5)p(ti3 ), SAT-
LOW(0.4)p(ti4 ), SAT-MED (0.3)p(ti5 ), and SAT-HIGH(0.2)p(ti6 ). These numbers are also considered as probabilities
of independent tuples in IIP data.

In the IIP database, some tuples from different sighting sources could detect the same iceberg at the same time.
In this situation, based on latitude and longitude, we calculated the distance of between two tuples (icebergs). If the
distance is less than 0.1 mile, they are considered to be two tuples of the same iceberg collected from different sources.
Therefore, these tuples are mutually exclusive, as only one tuple can be correct. These tuples are recorded on the IIP
probabilistic database which is controlled by exclusive rules Rr = tr1 ⊕ tr2 ⊕ ... ⊕ trq , and probabilities of these tuples
are adjusted by the following formula:

1ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G00807
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p(tr j ) =
p(tr j )

m∑
i=1

p(tri )
× max(p(tr1 ), ..., p(trm ))

where p(tr j ) is the probability of sighting sources of tuple tr j .
After reprocessing all tuples in the IIP database 2009, the IIP probabilistic database D = {t1, t2, ..tn} contains

13,039 tuples and 2,137 exclusive rules. One of the exclusive rules is Rr = t7 ⊕ t8 ⊕ t9 ⊕ t10. The proposed algo-
rithm is executed on this IIP probabilistic database for the top-10 best probability query, the answer to this query
being (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) as shown in Table 5. Tuple t1 has the highest value in the Drifted Days at-
tribute, t2 is the other tuple which has the same value or the second highest value in the Drifted Days attribute,
and so on. The answer to the top-10 best probability query contains the 10 highest scoring tuples in the data set
(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10). Tuple t11 is in the answer due to the fact that it has a top-10 probability which is better
than a tuple with a minimum top-k probability in (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10). t11 is a non-dominated tuple. More-
over, tuples (t12, t13, t14, t15, . . .) are not in the answer because they are dominated by t11 on both ranking score and
top-k probability.

Tuple Drifted days Pro. of tuples Top-10 pro.
t1 500.0 0.2917 0.2917
t2 500.0 0.2333 0.2333
t3 495.8 0.7 0.7
t4 488.7 0.35 0.35
t5 455.5 0.6 0.6
t6 439.5 0.7 0.7
t7 435.2 0.15 0.15
t8 431.6 0.15 0.15
t9 431.0 0.15 0.15

t10 430.9 0.15 0.15
t11 427.6 0.7 0.7
t12 423.5 0.7 0.7
t13 416.2 0.6 0.7
t14 414.5 0.3 0.299
t15 408.8 0.2 0.198
t16 408.2 0.2 0.198

Table 5. highest scores of tuples in IIP (2009)

On this IIP probabilistic database, we also applied PT-10 query [1] by setting different thresholds, as shown in
Figure 1. This illustrates that the number of tuples in the answers to PT-10 are dependent on the threshold. Firstly, the
answers to the PT-10 query are required to contain the 10 best ranking score tuples. For this requirement, the threshold
has to be set to less than or equal to the minimum value of the top-10 probability from t1 to t10 in Table 5 which is
less than or equal to 0.15. In this range, the number of tuples in the answer set of the PT-10 query is greater than
21, and these sets always contain tuples {t12, t13, t14} due to their top-10 probabilities being greater than 0.15, hence
these tuples are redundant tuples as explained in the introduction. Moreover, if the threshold which is assigned from
ranges greater than 0.15 to less than or equal to 0.7, the number of tuples in the PT-10 answer set are from 0 to 21.
These results lost some important tuples in the 10 highest ranking score tuples, which are tuples {t7, t8, t9, t10} because
their probabilities are equal to 0.15. Lastly, the answer set of the PT-10 query is empty if users assigned a threshold
value greater than 0.7. This is meaningless for the PT-10 query. Therefore, threshold plays a crucial role in selecting
answers to the PT-k query. It is not easy for the users to choose a threshold to obtain suitable answers to PT-k queries.
In our proposal, the users do not need to choose the threshold. The best answer of top-k queries will be returned
without losing any important tuples or containing any redundant tuples in terms of the k best ranking score tuples and
the non-dominated sets, whereupon the users can receive the best answers to the top-k best probability queries in both
ranking score and top-k probability.
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Figure 1. the answer to the PT-10 vs. thresholds.

We now compare the PT-k algorithm (PT-k) and our proposed algorithm (top-k best probability), based on the top-k
traditional algorithm (top-k normal) to evaluate which is the most effective calculation and the most efficient answers.
The top-k traditional algorithm simply returns the k-highest ranking scores in the data set. The top-k traditional
algorithm has been widely used on certain databases, but has not been used on probabilistic databases. We mention
this method as the axis for comparison of the PT-k results and top-k best probability results. For the PT-k algorithm,
we assigned a minimum probability threshold of 0.15 to tuples t1 to t15 of Table 5. This value was selected due to
the fact that the PT-k has to satisfy the “k-best ranking score” attribute of Table 4 for comparison. It means that all
answers to the PT-k will contain the top-k highest scoring tuples when k is run from 1 to 15. For these settings, we
execute programs to obtain the results shown in Figures 2 and 3.
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Figure 2. Accessed tuples vs. k
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Figure 3. Tuples in answer vs. k

The effectiveness of the top-k best probability algorithm can be verified by counting the number of tuples which are
accessed during the algorithm execution. The lower the number of tuples accessed, the more effective the algorithm.
Figure 2 shows that the top-k best algorithm accesses fewer tuples than the PT-k algorithm for all k value. The top-
k normal algorithm has the best performance in accessing the number of tuples. However, this algorithm has only
been executed on certain data. Figure 3 shows the number of tuples in the answers to the PT-k queries, the top-k
best probability queries, and the normal queries. The users always expect that the answers to the top-k queries on
probabilistic data are concise. Figure 3 shows that all the answers to the top-k best probability queries contain less
tuples than the answers to PT-k in all k. Also, they are closer to the top-k normal answers. This can explain why
the PT-k answers can contain redundant tuples which are not non-dominated tuples, and the answers to top-k best
probability queries have less tuples than PT-k, which is more meaning for users in terms of both ranking score and
top-k probability. Hence, the answers to the top-k best probability queries are more efficient and concise than the
answers to PT-k queries.
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The results of the real data set clearly show that the top-k best probability algorithm removes the difficult of setting
threshold value and reduces the number of accessed tuples compared to the PT-k algorithm. This makes the top-k best
probability algorithm more effective. Moreover, the answers to the top-k best probability queries are concise and more
efficient.

5.2. Synthetic data

In this section, we generated six data sets, which contain 5,000 tuples and have 500 generation rules. Various
synthetic data sets are generated following normal distribution. Each generation rule contains the normal distribution
N(10, 2). Probabilities of tuples in the six data sets are generated following normal distribution N(0.5, 0.0), N(0.6,
0.1), N(0.7, 0.2), N(0.8, 0.3), N(0.9, 0.4), and N(1, 0.5). We use these data sets to provide a deeper analysis of
the comparative effectiveness and efficiency of the PT-k approach and our approach. We leave the threshold value
unchanged at 0.5 which is a mean of range (0,1]. Then, the PT-50 algorithm and the top-50 best probability algorithm
are executed on these generated probabilistic data sets. We obtained the results shown in Figure 4 and Figure 5.
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Figure 4. Accessed tuples vs. data sets

0

15

37

54
63 66

57 54 54 53 53 53

0

25

50

75

100

125

150

175

200

0.0-0.5 0.1-0.6 0.2-0.7 0.3-0.8 0.4-0.9 0.5-1.0

data set

n
u
m
b
er
 t
u
p
le
s 
in
 a
n
sw
er

PT-k

top-k best pro.

Figure 5. Tuples in answer vs. data sets

Figure 4 shows the number of tuples accessed by the PT-50 algorithm and the top-50 best probability algorithm
in all generated data sets. The accessed tuples are the tuples accessed while computing the results of the query, even
if the tuples are not included in the result set. Figure 4 shows that the top-50 best probability algorithm accessed less
tuples than the PT-50 algorithm in all the different probabilistic data sets. Figure 5 illustrates the number of tuples in
the results returned by the PT-50 algorithm and the top-50 best probability algorithm in six generated data sets. The
number of tuples in answers to the top-50 best probability queries are more stable than the tuples in the answers to the
PT-50 algorithm. The number of tuples in the answers to the top-50 best probability queries is from 53 to 57 while
the number of tuples in the answers to the PT-50 queries is from 0 to 67. On data set (0.0, 0.5), the answer to PT-50
query is empty. This answer can be meaningless to users. In addition, the number of tuples in the PT-50 queries result
on data sets (0.1,0.6) and (0.2,0.7) is 15 and 37 less than 50. These results are clearly losing some important answers
of top-50 best ranking tuples. We choose to fix the value for the threshold of the PT-50 query, so the number of tuples
in the result is not stable. Therefore, it would be very difficult for the users to set the right threshold value because
different probability ranges produce a vastly different number of tuples in the results. In columns (0.4, 0.9), (0.5 1.0),
the PT-50 results contain more tuples than the top-50 best probability results, because some tuples in the answer to the
PT-50 can be redundant tuples, as previously discussed. Thirdly, when we combine Figures 4 and 5, the top-50 best
probability approach is more effective than the PT-50 approach, the reason being the difference between the number
of answer tuples and access tuples is smaller for the top-k best probability algorithm than PT-k for all probabilistic
data sets.

For the synthetic probabilistic data, the experiment verified that the top-k best probability approach is more effec-
tive and efficient when compared to the PT-k for all probability ranges tested. The top-k best probability covers almost
all the limitations of PT-k.
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6. Conclusions

In this paper, we proposed a novel top-k best probability query for probabilistic databases, which selects the top-k
best ranking score and the non-dominated tuples for users. The proposed method also satisfied the semantic ranking
properties, which was better than other approaches in terms of semantic ranking queries. Firstly, several concepts and
theorems from previous studies were formally defined and discussed in relation to the probabilistic database model.
Secondly, we created a new definition for the top-k best probability query based on the top-k best ranking score and
dominating concept. The algorithm was built with some proven pruning rules. Then, five semantic ranking properties
and a new “k-best ranking scores” property were introduced to describe the semantic answer to top-k best probability
queries. This proposed approach is an improvement on the previous state-of-the-art algorithms. The answers to the
top-k best probability queries not only contain the top-k best score but also the top-k best probability tuples. Finally,
the experimental results verified the efficiency and effectiveness of our approach on both real and synthetic data sets.
The proposed approach has been shown to outperform the algorithm designed for the PT-k query in both efficiency
and effectiveness.

In many real life domains, uncertain data is inherent in many applications and modern equipment. Therefore,
discovering semantic answers to queries is a critical issue in relation to uncertain data. The proposed approach can be
applied to modelling, managing, mining, and cleaning uncertain data.
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