
Efficient Updates for OLAP Range
Queries on Flash Memory

Mitzi McCarthy and Zhen He

Department of Computer Science and Computer Engineering, La Trobe University, VIC
3086, Australia

Email: m.mccarthy@latrobe.edu.au; z.he@latrobe.edu.au

This paper explores efficient ways to use flash memory to store OLAP data.
The particular type of queries considered are range queries using the aggregate
functions SUM, COUNT and AVG. The asymmetric cost of reads and writes
for flash memory gives higher importance to how updates are handled in a flash
memory environment. A popular data structure used for answering OLAP range-
sum queries is the prefix sum cube. It allows the range-sum query to be answered
in constant time. However, updating the prefix sum cube is very expensive. To
overcome this the ∆-tree was proposed by Chun et al. [1]. The ∆-tree stores
all updates to the prefix sum cube in a separate r-tree. This approach worked
well for the hard disk where in-place updates are relatively cheap. However, for
flash memory where in-place updates are very expensive the ∆-tree performs
very poorly. We take a four pronged approach to overcome the problem of
expensive in-place updates. The first is efficient caching of updates in RAM.
The second is writing out whole trees from RAM to flash memory instead of
incrementally updating a disk resident tree. The third is we allow users to trade
bounded amounts of accuracy for less updates via lossy compression. Finally, we
use a quadtree index structure instead of the R-tree. We prove the quadtree
compression problem is NP complete. A greedy heuristic is proposed to find near
optimal solutions in polynomial time. Various experiments were conducted to
compare the proposed algorithms against the existing ∆-tree. The results show
that our algorithms consistently outperformed ∆-tree by factors of between 10
and 100. This demonstrates the importance of designing flash memory customised
algorithms for OLAP range queries. In addition, among our algorithms, the error
bound solutions with a small error bound setting significantly outperform the
accurate solution in terms of performance for a variety of parameter settings.
This indicates the error bound algorithms offer users an effective trade off between

execution time and accuracy.

Keywords: Relational Databases; OLAP; range queries; flash memory

1. INTRODUCTION

Decision support systems are used in many different
industries to help inform the users of useful information
for making business decisions. Online Analytical
Processing (OLAP) applications and data warehouses
are important parts of decision support systems. OLAP
applications allow users to analyse multi-dimensional
aggregates of data from data warehouses. The data
is often stored in the form of multi-dimensional data
cubes. To build a data cube, a certain subset of the
attributes is selected. Some of the selected attributes
are called measure attributes which are the metrics of
interest, e.g. price, revenue, etc. The remainder of the
selected attributes are called the functional attributes.
The records which have the same functional attribute
values are aggregated over the measure attributes.
Aggregated data are stored as a data cube. For

example, assume a data cube on salary with the
following functional attributes: age, gender and job.
Age is between 1 and 100, gender is male or female and
job is {teacher, manager, clerk, none}. The data cube
will have 100 × 2 × 4 cells, with each cell containing
the total salary for the corresponding combination of
age, gender and job. In this paper, we considered
range queries over these data cubes that use any of the
following as the aggregation function: SUM, COUNT
and AVG.

Summary structures have been proposed by many
researchers [1, 2, 3, 4, 5, 6, 7, 8] for answering OLAP
queries. These structures can greatly reduce the read
cost of queries. However, due to the large amount of
pre-computation needed to create these data structures,
they are very expensive to keep up-to-date. However,
keeping data warehouses up-to-date, is an important

, Vol. ??, No. ??, ????

2 M. McCarthy and Z. He

Device Seq. Read (ms) Random Read (ms) Seq. Write (ms) Random Write (ms)

Memoright MR25.2-032S 0.3 0.4 0.3 5
Mtron SATA7035-016 0.4 0.5 0.4 9

Samsung MCBQE32G5MPP 0.5 0.5 0.6 18

TABLE 1. Time costs for NAND Flash

problem which has been extensively studied in the
past [1, 9, 10, 11, 12, 13, 14, 15]. An example of a
need for efficient data warehouse updates is tracking
current sales data which requires frequent updates in an
increasingly competitive environment. This highlights
the importance of efficiently handling updates to data
warehouses and OLAP data structures. However, these
papers assume hard disk drives are the storage medium
instead of flash memory.

Flash memory in the form of solid state drives
(SSD) is becoming more prevalent. SSDs are secondary
storage devices that have the same physical size as hard
disk drives (HDD) but are made from flash memory
and therefore have the same performance characteristics
as flash memory. SSDs are designed to replace HDDs
in the same sized slots. However, flash memory can
be found in smaller sizes such as compact flash and
USB sticks. Flash memory is very fast non-volatile
RAM which has much lower read latency than HDDs.
Table 1 [16] shows the cost of 32 KB IO operations
on some typical SSDs. As shown in the table random
writes are much more expensive compared to random or
sequential reads due to the SSD’s need to erase entire
blocks of data before writing. Therefore if we can tap
into the SSD’s fast read performance while at the same
time minimise the amount of writes we can potentially
answer OLAP range queries much faster by storing data
on the SSD.

In this paper we study the problem of OLAP range
SUM, COUNT and AVERAGE queries. Ho et al. [8]
proposed the prefix sum cube which allows range SUM,
COUNT and AVERAGE queries to be answered very
fast. However, keeping the data structure up-to-date
is very expensive in terms of both IO and CPU costs.
This led Chun et al. [1] to propose the use of a modified
R∗-tree, called the ∆-tree, to store the changes separate
from the prefix sum cube. This was found to be effective
at reducing update costs for a hard disk based system.
However, updating the ∆-tree involves a lot of random
writes. For flash memory where random writes are
much more expensive than random reads we can do
better. Our idea is to trade more random reads to
drastically reduce random writes. We cache random
writes in an in-RAM quadtree which is written out
sequentially to flash when the buffer is full. Using
this approach we produce a number of small quadtrees
(we call these ∆-quadtrees) instead of one large ∆-
tree. The downside of this approach is that reading
becomes more expensive since it involves searching all
∆-quadtrees in order to answer queries. However, we

take two approaches to keep reading costs low.
First, we use a cost based approach to decide the

optimal merging of ∆-quadtrees to keep the total
number of ∆-quadtrees low in order to minimise the
overall reading and writing costs. Second, we compress
the ∆-quadtrees to produce smaller trees so that both
reading and writing costs are lowered. We propose a
lossy compression approach. In order to give users more
control on the error resultant from the compression, we
allow users to bound the maximum amount of error they
are willing to tolerate. Our approach for compression
is to remove nodes from the tree until a minimum
compression ratio has been reached. The nodes which
can be removed are limited to those for which storing an
average update value instead can be guaranteed to be
within the error bound set. The compression problem
is proven to be NP complete and as such, an optimal
solution to the problem has exponential complexity.
Therefore, we propose a greedy heuristic approach to
finding a near optimal solution in polynomial time. We
call our approach Quadtree Based Storage for Updates
of OLAP (QUO).

There has been much recent work on building
databases for flash memory [17, 18, 19, 20, 21, 22, 23].
However, none of the existing work targets OLAP
applications which store data in the form of data cubes.
The structure of data cubes and the way they are
queried and updated is fundamentally different from
relational tables. Hence, the existing solutions for flash
memory databases are not applicable to this research.

We have conducted extensive experiments to com-
pare our proposed algorithms against the ∆-tree by
Chun et al. [1]. The results show that our algorithms
consistently outperformed ∆-tree by factors of 10 and
100. The experiments also show that among our al-
gorithms, the error bound solutions outperform the
accurate solution for a variety of parameter settings.
This indicates that if the users are willing to com-
promise accuracy to within a small error bound, then
much performance can be gained.

This paper makes the following key contributions:

• It proposes a quadtree based storage algorithm
for efficient handling updates to OLAP summary
data structures for flash memory. The algorithm
prevents random writes to flash memory by caching
random writes in a RAM-resident ∆-quadtree and
then writing the entire ∆-quadtree sequentially to
flash when RAM is full. In order to minimise
the reading costs of a potentially large number of

, Vol. ??, No. ??, ????

Efficient Updates for OLAP Range Queries on Flash Memory 3

flash resident ∆-quadtrees we propose cost-based
strategies to merge the trees.

• It further reduces read and write IO costs by giving
users the option of trading a small bounded amount
of accuracy for improved performance by way of
lossy compression of the ∆-quadtrees.

• It performs a thorough experimental study
comparing our algorithms against the existing
state-of-the-art ∆-tree algorithm by Chun et al.
[1]. In addition, the experiments also shed light on
how much performance can be gained when users
are willing to trade a small amount of accuracy for
efficiency.

The paper is organised as follows: Section 2 describes
the unique characteristics of NAND flash memory;
Section 3 surveys the body of related work; Section
4 describes our quadtree-based storage algorithms for
handling updates in OLAP applications running on
flash memory; Section 5 describes the experimental
setup used to conduct our experiments; Section 6
provides the experimental results and analysis of our
experiments; and finally Section 7 concludes the paper
and provides directions for future work.

2. FLASH MEMORY

There are two different types of flash memory, NAND
and NOR. The fundamental difference between the two
is the layout of the memory cells. In NOR flash, each
cell is located at the intersection of one word line and
one bit line, allowing for random access, whereas NAND
cells must be sequentially accessed within a block of
cells. The main use of NOR flash is for execution-
in-place applications. Storing data in blocks allows
data on NAND flash to be more compactly stored
than for NOR flash, which is an important advantage
for portable devices. Storing the data in blocks also
gives NAND faster sequential write and erase speeds
over NOR. NOR flash is also more expensive and has
a lower storage capacity than NAND flash. Another
advantage of NAND over NOR is the higher number
of writes and erases that can be made before the cells
become unreliable. Given these advantages of NAND
over NOR flash and its suitability to our application
scenario, we will concentrate on NAND flash memory
and its characteristics in this paper.
NAND flash is organised into blocks with each block

containing multiple pages. The typical size of pages is
4 KB, with 64 pages contained within each block. A
limitation of flash memory is that data cells can not
be overwritten. To erase a cell on flash memory, the
entire block must be erased. Due to the limited number
of times cells can be erased before they are unusable,
erasing an entire block for each update is undesirable.
This means that when an update needs to be performed,
new values are written to free areas of the memory and
the locations of the old values are then considered dirty.
Invalid areas of memory must be reclaimed later so that

the space can be reused.
A flash translation layer is needed to map logical read

and write operations to the physical read, write and
erase operations. This involves maintaining a mapping
from the logical to physical addresses and assigning free
space for update operations to avoid the need to erase.
Some research [24, 25, 26] has been done in finding
effective ways to use the flash translation layer. Wu et
al. [27] propose an additional layer on top of the existing
flash translation layer to improve the performance of
applications using index structures. Kim et al. [25]
propose a flash translation layer which provides a buffer
to store writes to minimise the need to perform erases.
Lee et al. [26] extend the work by Kim et al. [25] to
better utilise the space within the buffer.

Research by Bourganim et al. [16] found that the
flash device is best considered as a black box when
modeling its read and write performance. The reason
is the flash translation layer plays a large part in
determining the performance of the device and details
of the flash translation layer for commercial devices
are not published. Extensive experiments done by
Bourganim et al. on many different flash devices
reveal that sequential writes cost much less than
random writes. This fact is shown in Table 1. Our
system is designed to take advantage of the fact that
sequential writes are much cheaper than random writes
by converting random writes to sequential writes via
clever caching and writing a series of small ∆-quadtrees
to flash rather than continuously updating a single large
∆-quadtree. In should be noted that although
the figures in Table 1 are typical for a wide
range of SSDs, some high-end SSDs exist which
provide similar performance for random reads
and random writes.

Other research [27, 28, 29] has been done on how to
implement a garbage collector to reclaim the space lost
by updating out of place. These garbage collectors aim
to reduce the number of erase operations needed and
to evenly distribute the wear associated with erasing
blocks. Wu et al. [27] use a greedy method for garbage
collection which chooses sections of data to reclaim,
based on the amount of invalid data. Chiang et al.
[28] proposed a method to group data together which
has similar write frequencies during garbage collection.
Chiang et al. [29] propose a method for garbage collec-
tion which takes three things into account: the cost to
clean the data, the age of the data and the number of
erases that have been performed on that block.

3. RELATED WORK

In this section we survey the literature in two areas
which are the most similar to our work. The first
is efficient range query processing for OLAP data
cubes and the second is log based approaches to index
updates.

, Vol. ??, No. ??, ????

4 M. McCarthy and Z. He

3.1. Efficient range query processing for OLAP
data cubes

In this section we describe the existing work on efficient
computation of queries in OLAP applications. None
of the existing pieces of work in this area use flash
memory as the storage medium, they all use the hard
disk instead. One category of existing work focuses
on selecting which queries to pre-compute. Deciding
which and how many queries to pre-compute in order
to get the most benefit has been explored by many
researchers [2, 3, 4, 5, 6]. Another category of existing
work concentrates on how best to pre-compute queries.
Reducing the cost of computing and materalising high
dimensional data cubes with large data sets by pre-
computing aggregates has been explored by many
researchers [3, 4, 7]. Some existing work [1, 4, 14, 15]
focuses on providing estimated answers to queries.
Much existing work [9, 10, 11, 12, 13] explores how to
efficiently update materialised views.
In contrast to the above existing work, we are

interested in data structures and algorithms that focus
on efficient range query computation for a given set
of dimensions rather than deciding which dimensions
to pre-compute. Substantial theoretical research
exists on the development of efficient data
structures for computing range SUM queries [8,
30, 31, 32]. Similarly, research exists for range
MIN and MAX queries [8, 32, 33, 34, 35]. These
papers are focused on reducing the amount of
data access when executing queries and updates
in a system independent way. In contrast, our
paper is focused on reducing flash memory I/O
update costs by making best use of a RAM
buffer.
We have chosen to build our algorithms on the

prefix sum cube data structure proposed by Ho et al.
[8] because of its simplicity and popularity. Ho et
al. [8] propose two data structures for increasing the
efficiency of range queries for OLAP data cubes. The
first is the prefix sum cube which is used for SUM
aggregation queries over ranges of dimensional values
of data cubes. The second is a tree structure used for
MAX aggregation queries. The space needed for storage
of these data structures is also considered. Updates to
the data structures are done as batch updates offline.
In considering range queries for SUM and MAX,

the following five main SQL aggregation functions are
covered: SUM, AVG, COUNT, MIN and MAX. A
tree-based algorithm is proposed for the aggregation
function MAX and similarly for MIN. The tree structure
is constructed by having a root node which contains the
maximum value of all cells of the data cube. Subsequent
levels of the tree are constructed by dividing each parent
node into disjoint subsets of similar size, each of these
child nodes containing the maximum value of their
subset of the data cube. Queries can then be answered
by searching this tree for the related sections of the data

cube.
The data structure for answering SUM range queries

is called the prefix sum cube. This cube is the same
size as the original data cube. It is constructed by each
cell containing the sum of its value and all values with
a lower index in all of the dimensions. An example
of a two dimensional data cube and its corresponding
prefix sum cube can be seen in Figure 1. Note that
the prefix sum cube can be constructed for any n ∈ N+

dimensions.

2

3

6

3

2

1

2

2

1

5

3

4

5

3

2

5

4

2

8

3

0

3

7

2

0

1

2

2D Data Cube

Index

(a) Data Cube

0

1

2

Index 0 1 2 3 4 5

3 8 9

10

12

18

24

21

29

11

29

40

2D Prefix Sum Cube

13

39

53

16

44

63

(b) Prefix Sum Cube

FIGURE 1. Example 2D data cube and associated prefix
sum cube

Queries are computed from the prefix sum cube by
retrieving the value from the prefix sum cube of the
highest index in each dimension. From this value,
the indexes which should not have been included in
the sum are subtracted. Any cells whose values were
subtracted more than once are added back on. For
example, a query on the data cube of Figure 1 could
be to sum the values of the original data cube A from
column 3 to 5 and row 1 to 2. This would be calculated
using the prefix sum cube P as follows:
A[1 : 2, 3 : 5] = P [2, 5] − P [2, 2] − P [0, 5] + P [0, 2] =
63− 29− 16 + 9 = 27.

The storage needs can be minimised by deleting the
original data cube once the prefix sum cube has been
computed. The problem with this is the difficulty it
creates in answering queries which involve the MAX and
MIN aggregation functions. The other way discussed is
to keep the original data cube and construct a blocked
prefix sum cube where the prefix sum is only stored
for a fraction of the cells. This saves storage space but
means that queries are less time efficient.

Chun et al. [1] proposed a new algorithm and data
structure to improve the efficiency of updates for range-
sum queries. The aim of the algorithm is to find an
efficient method to reflect updates to the data cube and
the prefix sum cube proposed by Ho et al. [8].

Chun et al. [1] improved the work by Ho et al. [8]

, Vol. ??, No. ??, ????

Efficient Updates for OLAP Range Queries on Flash Memory 5

by reducing the update time without jeopardising the
search performance. To this end, they proposed the ∆-
tree. This tree structure contains the change in values
which have been updated from the original data cube.
The idea behind having a separate structure is that the
prefix sum cube is very costly to update, more so than
the original data cube. The ∆-tree is used together with
the prefix sum cube to answer queries with updated
values without the need to update the prefix sum cube.
The performance results in Chun et al. [1] show that
updates to the ∆-tree are much more efficient than to
the prefix sum cube. The number of pages accessed to
perform updates is O(log(Nu)) where Nu is the number
of changed cells. This compares well to the prefix sum
cube where updates have time complexity O(nd) where
n is the number of cells in each dimension and d is
the number of dimensions. The drawback of the ∆-
tree approach for flash memory is that insertions and
deletions to the ∆-tree involve splitting and updating
tree nodes which are very costly to perform in flash
memory because it causes many random page writes. In
contrast, our approach converts the many random flash
page writes into in-cache updates followed by sequential
writes when the cache is full. The results show our
algorithms greatly outperform the ∆-tree approach.
An example set of updates to the data cube shown

in Figure 1(a) can be seen in Figure 2(a) and the
corresponding ∆-tree in Figure 2(b). In Figure 2(b), the
leaf nodes of the ∆-tree contain the individual updates
from the update cube. The root node of the ∆-tree
stores the sum of the updates for each of its child nodes
(i.e. the leaf nodes). The same query as before would
now be calculated using the prefix sum cube and the
∆-tree as follows:

Σ(A[1 : 2, 3 : 5]) = P [2, 5]− P [2, 2]− P [0, 5] + P [0, 2]

+ Σ(∆-[1 : 2, 3 : 5])

= (63− 29− 16 + 9) + (3 + 2) = 32

where Σ(∆-[1 : 2, 3 : 5]) is the sum of values inside the
∆-tree which cover the following range: columns 3 to 5
and rows 1 to 2.

3.2. Log based approaches to index updates

There has been widespread work in using a log based
approach to handle frequent updates to primary index
structures [21, 36, 37, 38, 39, 40]. The first of these
is the Log-structured Merge (LSM) tree by O’Neil et
al. [36]. The LSM-tree uses a primary index structure
in memory as well as one or more index structures on
disk to reduce the need to write to disk structures. The
memory and disk structures are merged once enough
updates or inserts have occurred. The LSM-tree, like
other log based index structures [21, 37, 38, 39], is
designed for variants of the B-tree.
Although the LSM-tree appears to be using a similar

approach to our work, there are a number of key

0

1

2

Index

2D Dynamic Update Cube

0 1 2 3 4 5

2

2

3

−3 −1

(a) Update Cube

−1 4

−1 3 2−3 2

(b) ∆-tree

FIGURE 2. Example of data cube updates and associated
∆-tree

differences. Firstly, the LSM-tree is designed for an
environment where updates occur much more often
than queries. This is not the norm for OLAP. Secondly,
the LSM-tree is designed for hard drives rather than
SSDs therefore it considers random reads to be much
more expensive than sequential reads. Thirdly, our
merge is fundamentally different from the LSM-tree
because of the type of data stored. The LSM-tree
merges trees of discrete rows of data which cannot be
combined whereas we can combine the data stored in
our trees because it is aggregation data. Lastly, we
support lossy compression which would not be suitable
for the LSM-tree given that it stores transactional rows
of data.

There are several other works which are similar
[21, 37, 40] to the LSM-tree or build on [38, 39] the
LSM-tree. The work presented by Jagadish et al. [37]
is similar to the LSM-tree (although it was developed
independently). It differs from the LSM-tree in that it
aims to reduce the number of I/O operations rather
than LSM-tree’s aim of reducing the dollar cost for
supporting a given load by determining optimal amount
of memory and disk to use. The work by Jagadish
et al. [37] also differs from the LSM-tree by making
optimised concurrency control schemes as one area of
focus. The work in [38, 39] addresses the LSM-tree
assumption that there is a steady rate of arrival of
incoming data. The work by Li et al. [21] is similar
to the both LSM-trees and the work by Jagadish et al.
[37]. The difference being that Li et al. [21] is designed
for flash memory. Although this is similar to our aim
of using flash memory as the storage medium, the other
differences listed between our work and the LSM-tree
still hold with regard to the work by Li et al. [21]. The
work in [40] is also similar to [36] and [37]. It differs in
that it stores updates in a quadtree since it is designed
for a dynamic spatial database. Although [40] uses a
quadtree to store updates as our work does, it still
has a number of differences: lossy compression is not

, Vol. ??, No. ??, ????

6 M. McCarthy and Z. He

appropriate; no merge of aggregation data; designed for
hard disk drives; target scenario has frequent updates.

4. QUADTREE-BASED STORAGE FOR UP-
DATES OF OLAP (QUO)

This section gives the details of the methodology
proposed in this paper for storing and querying an
OLAP cube in flash memory in the presence of updates.
A high level view of the QUO system is given in

Figure 3. The system consists of a RAM-based read
buffer, a RAM-resident ∆-quadtree (∆-RAM), a flash-
resident prefix sum cube and a sequence of flash-resident
∆-quadtrees (∆-Flashes). The idea is to satisfy as much
of the queries and updates as possible within RAM and
go to flash only if necessary. The read buffer is used
to cache read requests to both the prefix sum cube and
the ∆-Flashes. The ∆-RAM is used to cache updates
by incrementally building a RAM-resident ∆-quadtree
until its RAM allocation has been exhausted. Once ∆-
RAM is full, it is either flushed directly to flash memory
or merged with an existing ∆-Flash or discarded with
a new prefix sum cube being built. We use a cost
model to decide which option to take. An intermediate
step of compressing ∆-RAM is carried out if the user
can tolerate an error bound (and ∆-RAM is not being
discarded).
Our system dynamically adjusts the ratio of RAM

allocated to the read buffer versus the ∆-RAM so that
when RAM sizes are large and updates are infrequent
more RAM can be allocated for the read buffer instead
of ∆-RAM. This is done using the following simple yet
effective mechanism. Allow the read buffer to grow
beyond its pre-allocated size if the ∆-RAM has not fully
utilised its pre-allocated size. If the read buffer has
encroached on the ∆-RAM pre-allocated RAM space
and the ∆-RAM needs to grow, then allow the ∆-RAM
to grow up to its pre-allocated size by evicting from the
read buffer.

−
Sum
Cube

Read Buffer

Flash Memory

RAM

. . . .
Flash 0

∆
Flash 1

∆
Flash p

−RAM∆

∆ − −Prefix

FIGURE 3. QUO System Diagram

QUO can be used to obtain both precise and
imprecise answers to queries. Imprecise query answers
allow the user to trade precision for query response time
since it reduces the sizes of the ∆-Flashes and therefore
less reads are required to answer a query. These answers
are within some set bound for the maximum absolute
error from the precise answer. The error is introduced
by compressing each ∆-RAM before it is moved to flash.
Each compression is done with a minimum compression
ratio but with a maximum amount of error that can be
introduced. These two conditions allow for more query
answering while giving users confidence by guaranteeing
that answers will be within the set error bound. The
precise option is useful for users who are not willing to
compromise accuracy for efficiency.

Throughout this section, the focus is on the process
of compressing ∆-RAM, storing data updates and
selecting the best option for storing ∆-RAM on flash.
These are the components which are designed to
accommodate the characteristics of flash memory.

4.1. ∆-Quadtree Structure

The ∆-quadtree is a tree structure which is used to store
the updates that occur in the prefix sum cube. A tree
structure is used for similar reasons as in Chun et al.
[1]. An advantage of using the quadtree over the R*-tree
used by Chun et al. [1] is that the quadtree can divide
the space more efficiently since it assumes a fixed range
of values. We assume a fixed range of values because
typically, once the ranges of each dimension are set in
the prefix sum cube, this remains constant. Another
advantage of the quadtree over the R*-tree is that
quadtrees can be merged more efficiently since many
nodes of the trees may cover the same area, whereas
R*-trees have no set of ranges for nodes. The problem
of trying to minimise node overlap for R*-trees does
not exist in quadtrees, as ranges between siblings never
overlap.

Each node in the ∆-quadtree has either no children
or 2d children where d is the number of dimensions in
the data. The individual updates (∆s) are stored on
the leaf nodes. Each node in the tree contains the sum
of the ∆s for the area of the prefix sum cube that it
covers. The ∆-quadtrees have a maximum size for each
node as well as a maximum depth.

Figure 4 shows an example 2D ∆-quadtree and
its associated updates in the prefix sum cube. In
this section, we assume the aggregation function is
SUM, however the technique will work equally well for
COUNT and AVG since COUNT is simply SUM with
each value equal to one and AVG is SUM divided by
COUNT.

4.2. Insertion Into ∆-Quadtree

The ∆-quadtree initially has one node which covers all
cells of the prefix sum cube. As updates occur, they

, Vol. ??, No. ??, ????

Efficient Updates for OLAP Range Queries on Flash Memory 7

sum = 15

{0,1} = 2
{2,0} = −1

sum = 1
elements:

sum = 7
elements:
{7,3} = 7

sum = 3
elements:
{4,0} = 6
{5,0} = −3

sum = −9
elements:
{2,3} = −3
{3,3} = −6

{0,3} = −4
{1,3} = 7

sum = 3
elements:

sum = 9
elements:
{2,2} = 8
{3,2} = 1

sum = 12

{0,2} = 10
elements:

{1,2} = 2

−QUADTREE:∆

UPDATES TO PREFIX SUM CUBE:

7

6

1

−1

−4

8

−3

2

2

7 −3 −6

10

sum = 26

FIGURE 4. ∆-quadtree example

are added to the node of the tree whose range of cells
includes the cell of the update. When data is inserted
into a node that has reached its maximum size, the node
is allocated 2d children. The ranges of cells covered
by this new parent is split into two even sections in
each dimension and assigned to the children. Once the
children’s ranges are set, all the elements of the parent
are assigned to the relevant child. Each update can have
either a positive or negative value and is amalgamated
with any existing update in the tree which is for the
same cell. For each update, the sum of ∆s is updated in
every ancestor of the leaf node that the element belongs
to, as well as the leaf node.
Figure 4 shows the updates to the prefix sum cube

and corresponding updates to the ∆-quadtree. The
root node of the tree covers the whole prefix sum cube.
The cube is divided into four quarters by splitting each
dimension down the middle. A child of the root node
is created for each of these quarters. The bottom left
quarter of the cube is further drilled down to create four
child nodes in the ∆-quadtree because the maximum
size of a node had been reached. Figure 4 also shows
the sum of ∆s for each node, as well as the elements
for each node. The element {4,0} = 6 means that the
cell with index 4 in the horizontal dimension and with
index 0 in the vertical dimension has an update with a
positive ∆ of size 6.
Figure 5 shows the algorithm for inserting these

updates. In lines 4 - 16 of the algorithm, we navigate
down to the leaf node into which the update record
maps. In lines 17 - 23, we look for an existing update
in the leaf node for the same coordinates as the current
update record. If an existing update for the coordinates
is found, the sum of the existing and current updates

is stored as the new ∆. In lines 24 - 26, if a matching
existing update is not found, the current update record
is inserted into the leaf node. Finally, in lines 27 -
30, if the leaf node is now greater than the maximum
allowable size, 2d children are created for the node.

Insert Update Record(u: update record to insert,
T : ∆-quadtree,
m: the max size for a quadtree node,
d: number of dimensions in data cube)

1. Let C be the current node in the traversal
2. Let CC be the set of children of C
3. Initialise C to be the root node of T
4. while (leaf node not found)
5. CC = children of C
6. if (CC is empty)
7. exit while
8. else
9. For each c ∈ CC do
10. Let R store the ranges of c
11. if (u ∈ R)
12. C = c
13. end if
14. end for
15. end if
16. end while
17. while (previous update in C with same coordinates

not found)
18. Let p be the current update record in C
19. if (coordinates of p = coordinates of u)
20. ∆ of p = ∆ of p + ∆ of u
21. exit while
22. end if
23. end while
24. if (no match in C for u)
25 Insert u into C
26. end if
27. if (size of C > m)
28. Let CN be 2d new children of C
29. Move the elements of C to the appropriate cn ∈ CN
30. end if

FIGURE 5. Insertion of an Element into a ∆-quadtree

4.3. Range Queries For ∆-Quadtree

When answering a range query on a ∆-quadtree, the
tree is traversed starting from the root node. When
traversing each node, the ranges that the node covers
are compared to the ranges of the query. If the cells
the node covers are a subset (not necessarily a strict
subset) of the cells of the query, the sum of the ∆s for
the node is added to the query answer. Otherwise, the
children of the node whose ranges intersect the query
ranges are traversed. If the node is a leaf node, each
element needs to be checked to see if its ∆ should be
added to the answer. Once the relevant nodes have been
traversed, the sum for the tree is added to the sum for
all the other trees, as well as the sum for the prefix sum
cube. This gives the final answer to the query.

, Vol. ??, No. ??, ????

8 M. McCarthy and Z. He

Figure 6 gives an example range query for a ∆-
quadtree. The range query in the example is {2−3, 0−
2} which means the sum of the values whose indexes are
between 2 and 3 (inclusive) in dimension 1 and between
0 and 2 (inclusive) in dimension 2. The range query is
calculated as the sum of the element {2, 0} = −1 plus
the sum for node G. So, the answer for the range query
of the ∆-quadtree would be −1 + 9 = 8. The entire
sum of node G is added since the ranges of node G are
within the ranges of the query.

I

{2,0} = −1

sum = 1
elements:

sum = 7
elements:
{7,3} = 7

sum = 3
elements:
{4,0} = 6
{5,0} = −3

sum = −9
elements:
{2,3} = −3
{3,3} = −6

{0,3} = −4
{1,3} = 7

sum = 3
elements:

sum = 9
elements:
{2,2} = 8
{3,2} = 1

sum = 12

{0,2} = 10
elements:

{1,2} = 2

sum = 26

sum = 15

Range Query: { 2−3, 0−2}

A

B C D E

F G H

{0,1} = 2

FIGURE 6. ∆-quadtree range query example

Figure 7 shows the range query algorithm. In lines
6 - 17 of the algorithm, we iterate through the set of
nodes to traverse. Initially, the set only contains the
root node. In lines 10 - 11, for each node we traverse, if
the node’s ranges are within the query ranges then the
sum of the ∆s of the node is added to the sum. In lines
12 - 13, if the node is a leaf node, the ∆s of the node
which reside inside R are added to the sum. Otherwise,
in line 15, the children of the node which overlap the
query are added to the set to traverse. Once the nodes
have been traversed, the sum is returned.

4.4. ∆-Quadtree Compression

If the error bound solution is being used, ∆-RAM is
compressed before it is flushed to flash or merged with
a ∆-Flash. The compression algorithm guarantees that
the accumulated error from all previous compressions
and the current compression for each cell does not
exceed the error bound. Under this constraint,
the compression algorithm also ensures the minimum
compression ratio is reached at the end of each
compression. Compression is performed by removing
nodes from ∆-RAM until the minimum compression
ratio has been reached. The minimum compression
ratio is used to ensure that the tree is compressed to
a sufficiently small size. When a node is removed, the
average value of the elements covered by the node is
stored instead. A node can only be compressed if the
error bound can be guaranteed. We do this by ensuring
that for each cell of the prefix sum cube (PSC), the

Range Query Quadtree(R: ranges of read query,
T : ∆-quadtree)

1. Let C be the current node in the traversal
2. Let NT be the set of nodes to traverse
3. Let s be the sum
4. Initialise C to be the root node of T
5. Add C to NT
6. Initialise s to 0
7. while (NT is not empty)
8. Let CR be the ranges of C
9. Let CD be the sum of ∆s of C
10. if (CR ⊆ R)
11. add CD to s
12. else if (C is a leaf node)
13. add ∆s of elements of C which are inside R to s
14. else
15. add children of C which overlap with R into NT
16. end if
17. remove C from NT
18. end while
19. return s

FIGURE 7. Range Query for a ∆-quadtree

difference between the average value which would be
used for answering queries and the actual value of the
update is within the absolute error bound. The amount
of the error bound which has been used by compression
of all previous ∆-quadtrees is remembered to ensure the
error bound is preserved.

The ∆-quadtree compression problem is NP com-
plete. Before this is proven, we give a formal definition
of the problem. Property 1 below defines the property
that for each cell, the accumulated error must be less
than the error bound.

Property 1. After every compression
Σp

i=1error(c, i) ≤ EB for every c ∈ C, where C
is the set of all cells, p is the number of previous
compressions and error(c, i) is the amount of error
introduced on cell c by the ith previous compres-
sion. Where error is defined as the absolute difference
between the sum computed from non-compressed
∆-quadtree versus the compressed ∆-quadtree.

Below is a description of the problem of deciding how
to best compress the ∆-RAM as well as two heuristic
solutions and a proof that the problem is NP-complete.

Let EB be the total error bound, sizeb(a) be the size
in bytes for storing node a, MEL(a) be the smallest
error left for any cell covered by node a (this is equal to
the minimum EB − Σp

i=1error(c, i) where c is a cell of
a that gives the minimum value), NC(a) be the num-
ber of prefix sum cube cells covered by a, CC(a) be
the area covered by the prefix sum cells covered by a,
ML be the memory limit for the ∆-quadtree in RAM,
TSD(S) be the total size after deleting the nodes
contained in S and c be the minimum compression

, Vol. ??, No. ??, ????

Efficient Updates for OLAP Range Queries on Flash Memory 9

ratio defined as the total size of the quadtree before
compression divided by the total size after compression.

∆-quadtree compression problem
Given a set A of possible nodes to delete, find S ⊆
A such that the error bound consumed EBC(S) =
Σs∈S(EB − MEL(s))NC(s) is minimised and the
following constraints are satisfied:

(∀a, b ∈ S)(CC(a) ∩ CC(b)) = ∅, ML
TSD(S) ≥ c and

MEL(s) ≥ 0 for each s ∈ S

If the constraints are met, then the set S is returned,
otherwise the null set is returned, where returning
the null set means the compression ratio cannot be
achieved by selecting any subset of nodes of A.

The above metric aims to minimise the total
error bound which is consumed by all the nodes being
deleted from the tree while ensuring the tree has been
compressed enough so that the compression results in
a significant efficiency gain. The set of nodes to delete
does not contain any ancestors or descendants of each
other. For each node to be deleted, the MEL must be
greater than or equal to 0 after the compression (the
third constraint). This ensures that Property 1 is met
because if the minimum error left for a node is greater
than 0, then the error for each cell of that node must
be less than the error bound.

Figure 8 shows an example prefix sum cube and
a ∆-RAM before and after compression. In the figure,
node D is selected to be compressed since compressing
only node D gives the solution with the minimum
amount of error bound consumed while meeting the
compression ratio constraint. In the example, an error
bound of 3 is used. Once node D has been compressed,
the new MEL is 0.375. Node D can be compressed
because for each cell covered by the node, the total error
stays within the bound.

Theorem 4.1. The ∆-quadtree compression problem
is NP complete.

To prove Theorem 4.1, we restrict the quadtree
compression problem to only deleting leaf nodes and the
domain of integers instead of the real numbers. The
restricted problem is mapped to an equivalent node
retention problem. The retention problem is mapped
to the knapsack problem. Knapsack is known to be NP
complete and therefore, so is the quadtree compression
problem. A formal proof can be found in the Appendix.

The fact ∆-quadtree compression is NP complete
means finding an optimal solution has exponential
time complexity. Therefore, in the next subsection,
we propose a greedy heuristic solution to find a near
optimal solution in polynomial time.

A

−RAM:∆

..

.

..

.
{1,1} = −6
{0,0} = 2

sum = −4
elements:

{1,1} = −6
{0,0} = 2

sum = −4
elements:

sum = 10

{7,1} = 3
{6,1} = 7
elements:

sum = 10

{7,1} = 3
{6,1} = 7
elements:

{7,4} = 6

{5,6} = −1

elements:
sum = 6

{7,7} = 1

{7,4} = 6

{5,6} = −1

elements:
sum = 6

{7,7} = 1

−RAM COMPRESSED:∆

1

sum = 34

sum = 22

1

1

−1

1

4

1

1 3

1

2

1

11

1

1

1 6

1

7−6

2

3

UPDATES TO THE PREFIX SUM CUBE:

elements:

{3,7} = 3

{2,5} = 4
{1,5} = 2

{0,4} = 1

MEL = 0.375
average for D = 22/16
sum = 34

A

B C D E

B C E

FIGURE 8. ∆-Quadtree compression example

4.4.1. Greedy Heuristic
The greedy heuristic works by ranking all the nodes
in the tree from lowest to highest by the error bound
consumed per byte freed. The first node in the ranking
is chosen to be deleted. These two steps are repeated
until the minimum compression ratio has been reached.
Note that whenever a non-leaf node is chosen to be
deleted, all descendants of the node contained in either
the set of nodes to keep or delete are removed from the
relevant set. The advantage of this heuristic is that the
nodes deleted are those that give the best compression
amount while introducing relatively small error. The
run time complexity of this heuristic is O(n2), where n
is the number of nodes in the ∆-RAM.

Let EBCF (a) = (EB−MEL(a))NC(a)

min(size(a),ML−ML
c −Σa∈CSsize(a))

denote the error bound consumed by node a per byte
freed. This metric is used by the greedy heuristic
to incorporate the fact that deleting larger nodes

, Vol. ??, No. ??, ????

10 M. McCarthy and Z. He

while incurring the minimum amount of error is more
desirable.

Figure 9 shows the algorithm for compressing the
tree using the greedy heuristic. In lines 1 - 6 of the
algorithm, the sets to retain and delete are initialised.
In lines 7 - 9, the nodes are selected to be deleted
one at a time in sorted order until the compression
ratio is met. The set of nodes to retain is then
returned. Selecting the nodes to be deleted is done by
passing the sets to retain and delete by reference to
the Move Node To Delete Set function which is called
on line 8. The Move Node To Delete Set function is
given in Figure 10. The function deletes the node which
minimises EBCF and updates the sets to reflect this.

Greedy Heuristic(T : RAM-resident ∆-quadtree)
1. Let RS be the set of nodes to retain
2. Let CS be the set of nodes chosen to be deleted
3. Let DRS(a) be the set of descendants of node a

contained in the set RS
4. Let DCS(a) be the set of descendants of node a

contained in the set CS
5. Initialise RS to be the set of all nodes in T
6. Initialise CS to be the empty set
7. Begin repeat
8. call Move Node To Delete Set(RS,CS)
9. Repeat from 7 if Σa∈RSsize(a) >

ML
c

10. return RS

FIGURE 9. Algorithm for Greedy Heuristic

Move Node To Delete Set(RS: current set of nodes to
retain passed by reference,
CS: current set of nodes to
delete passed by reference)

1. Let m be the node a ∈ RS which minimises EBCF (a)
2. RS = RS −m−DRS(m)
3. CS = CS ∪m−DCS(m)

FIGURE 10. Function for moving a node to delete set

4.5. Range Queries

When a range query occurs, the answer needs to be
constructed by obtaining the answer to the query for
each of the ∆-Flashes, the ∆-RAM and the prefix sum
cube. Once we have these answers for each of the
components, they are added together to give the final
answer to the query. Each flash page which contains
a prefix sum cube cell needed for the query is loaded
into the read buffer. Similarly, each flash page which
contains a node traversed for a ∆-Flash is also loaded
into the buffer. The buffer is not needed for ∆-RAM as
the RAM-resident quadtree remains in RAM until the
whole tree is moved to flash.

4.6. Cost-Based Eviction For ∆-Quadtree

Whenever the ∆-quadtree stored in RAM (∆-RAM)
becomes full, a decision needs to be made about where
to store the information it contains. This section
describes how this decision is made. Note that the
cost-based eviction is the same for both the accurate
and error bound solutions; the only difference is the
size of the ∆-quadtree evicted. The error bound solu-
tion evicts smaller ∆-quadtrees since it first compresses
the ∆-quadtrees before evicting them.

The following lists the three choices that can be made
upon eviction of ∆-RAM:
1. Merge ∆-RAM with the ∆-Flash (where each
∆-Flash can have a different merge count) that has
the lowest expected cost per operation, where ties are
broken based on some heuristic (eg. degree of overlap).
2. Flush ∆-RAM directly to flash.
3. Discard the ∆-RAM and ∆-Flashes and rebuild the
prefix sum cube.

The option which is selected depends on which
has the lowest expected cost per operation. The cost
per operation of the first option is calculated based on
the cost of writing the merged tree to flash and the
cost of reading the merged tree as well as all the other
∆-Flashes. The cost per operation of the second option
is calculated based on the cost of writing ∆-RAM to
flash and the cost of reading all ∆-Flashes. The cost
per operation of the third option is based on the cost
of reading the underlying updated data cube and then
producing the prefix sum cube and writing it to flash
memory to replace the old prefix sum cube. The cost of
reading the prefix sum cube and updating the under-
lying data cube is not included in the formulas for any
of the options because it is the same cost for all of them.

Let pr(write) be the probability of a write operation,
pr(read) be the probability of a read operation. These
two probabilities are calculated using tallies of the
number of reads and writes during the online work-
load. Let CPW (t) = cost of writing ∆-quadtree t into
flash memory, CPR(t) = cost of reading ∆-quadtree
t from flash memory, NoWB(∆ − RAM) = number
of writes operations since the beginning of ∆-RAM,
CPRMC(c) = cost per read for merge count c, CR(t)
= cost of reading ∆-quadtree t, CW (t) = cost of
writing ∆-quadtree t, CM(t1, t2) = cost of merging
∆-quadtree t1 with ∆-quadtree t2, NoWPSCU =
number of writes since prefix sum cube was last rebuilt,
MC(t) = merge count for ∆-quadtree t, CRDC = cost
of reading updated data cube and CWPSC = cost of
writing new prefix sum cube.

The expected cost of each of the options is described
as follows:

, Vol. ??, No. ??, ????

Efficient Updates for OLAP Range Queries on Flash Memory 11

1. Expected cost per operation for merging ∆-RAM
and ∆-Flashi

= pr(write)× CPW (merged(∆−RAM,∆− Flashi))

+pr(read)× CPR(merged(∆−RAM,∆− Flashi))

= pr(write)× CM(∆−RAM,∆− Flashi)

NoWB(∆−RAM)

+pr(read)× (CPRMC(MC(∆− Flashi) + 1)

+CR(all(∆− Flash)− (∆− Flashi)))

2. Expected cost per operation of flushing ∆-RAM
directly to flash

= pr(write)× CW (∆−RAM)

NoWB(∆−RAM)

+pr(read)× (CPRMC(1) + CR(all(∆− Flash)))

3. Expected cost per operation of rebuilding the prefix
sum cube.

= pr(write)× CWPSC + CRDC

NoWPSCU

Offline training is used to obtain the values of CM
and CPRMC for different merge counts. This is done
by running the algorithm offline, using a representative
workload and forcing all evicted ∆-quadtrees to be
merged progressively into one large ∆-quadtree. This
way we get read and write costs for ∆-quadtree that
have been merged 0 to n times, where n is the maximum
merge count. The size of each of the resultant trees is
used to calculate CM . Read queries are performed on
merged trees and CPRMC is calculated by using the
number of pages loaded into RAM to obtain answers
to these queries. Once we have these two values for the
different merge counts, the expected costs per operation
can be calculated during the online algorithm for the
online workload.

It should be noted that the offline training
can be avoided. This can be done by mimicking
the eviction decisions of the offline training
at the beginning of the online algorithm.
Doing this would mean slightly lower online
performance during the online training phase.
However, once the online training is finished,
the performance would be the same as if offline
training were used.

5. EXPERIMENTAL SETUP

This section gives the details of the various aspects of
the experimental setup.

5.1. Simulation Setup

The experiments were carried out on a simulation of
NAND flash memory written in C++. The parameters
used in the simulation are given in Table 2. The
read and write costs are the same as those taken from

Parameter Default Value

Sequential read cost per page 0.0375 ms
Random read cost per page 0.05 ms

Sequential write cost per page 0.0375 ms
Random write cost per page 0.625 ms

Flash page size 4KB
Number of pages per block [41] 64

Number of queries 100,000
Error bound 10

Maximum size for each quadtree 1KB
Maximum Depth of a quadtree 6

Updates percentage of total queries 50%
Size of prefix sum cube 5000KB

Size of RAM 100KB
Percentage of RAM used for ∆-RAM 75%

Minimum compression ratio for ∆-RAM 4
Number of dimensions 4

TABLE 2. Parameters Used For Simulation

Table 1 for the Memoright SSD. These are the default
parameters used in the experiments.

A real data set was used in the experiments. This
is a data set constructed from a subset of US census data
for the year 2000 [42]. The dimensions used are age,
salary, social security salary and travel time. The data
is normalised based on the number of dimensions used
for the experiment and the amount of space available
for storing the prefix sum cube. Once the data is
normalised, each person whose data is in the subset is
assigned to the relevant data cube cell. The number of
data points generated is 220.

A data-centred query set was used in the
experiments. This is a query set generated by selecting
the centre of the query based on the magnitude of
the underlying data. The probability of any one cell
being chosen as the centre equals the proportion of the
data that belongs to that cell. The span of the query
is generated using the Gaussian distribution in each
dimension in both directions. The standard deviation
of the span is a quarter of the maximum range.

A data-centred update set was used in the
experiments. This is a set of updates with the cell to be
updated generated in the same way as the data-centred
query set. The update amount is generated based on
the value in the data cube for the selected cell. This is
done by using the Gaussian distribution with the mean
as the current value and the standard deviation as one
hundredth of the current amount.

5.2. Algorithm Setup

The experiments compared the results of three
algorithms which are described as follows:

Accurate Merge Algorithm (Accurate) When ∆-
RAM is full, no compression occurs. The ∆-RAM
is either merged with an existing ∆-Flash, flushed
directly to flash or discarded in the case that the

, Vol. ??, No. ??, ????

12 M. McCarthy and Z. He

prefix sum cube is rebuilt.

Error Bound Greedy Heuristic (EBGreedy)
The greedy heuristic is used to compress ∆-RAM
before it is flushed or merged with a ∆-Flash.
This is the greedy heuristic as presented in Section
4.4.1.

∆-tree algorithm [1] (∆-tree) The ∆-tree al-
gorithm was proposed by Chun et al. [1]. This
algorithm uses an R∗-tree [43] to store the updates.
For this we used the R∗-tree implementation from
the spatial index library [44].

For the first two algorithms above, a RAM cache
was split into a read buffer and an area reserved for
the ∆-RAM. This is our system as depicted in Figure
3. The read buffer cached both the ∆-Flashes and the
prefix sum cube at the page grain and used the least
recently used (LRU) algorithm for buffer replacement.
The ∆-tree algorithm used the entire RAM cache as one
buffer which cached both read and writes to the ∆-tree
and the prefix sum cube at the page grain.

6. EXPERIMENTAL RESULTS

Four experiments were performed in order to compare
the total execution time of the algorithms Accurate,
EBGreedy and ∆-tree. The first experiment compares
the four algorithms for varying RAM size. The second
experiment compares the algorithms for varying prefix
sum cube size. The third experiment compares the
algorithms for varying error bound. Finally, the
fourth experiment compares the algorithms for varying
probability of update versus read queries.

6.1. Varying RAM Size Experiment

This experiment compares the different algorithms for
varying RAM size. The RAM sizes varies from 20KB
up to 380KB in increments of 40KB. The default values
are used for all other parameters.

Figures 11 show the results of this experiment.
The graphs show the results of the number of page
loads from flash, the number of page writes to flash and
the total execution time. The cost of erasing blocks of
flash memory is also included in the total execution time
metric. Note the y-axis of the graphs use log scales.

The results show that both of our algorithms
outperform ∆-tree by a large margin (up to a factor
of 10) for total execution time when RAM size is small
(140 KB or less). This is because of the large number
of writes incurred when the ∆-tree updates its R∗-tree
which is stored on flash memory. Insertions into the
R∗-tree can cause many node updates and splits which
requires the concerned pages to be updated and new
pages may also be inserted. The high cost of updates
on flash memory makes ∆-tree much less efficient than
our algorithms. When RAM size is large (above 220KB)
all the algorithms perform about the same, since at that

 100

 1000

 10000

 100000

 1e+06

 0 40 80 120 160 200 240 280 320 360 400

to
ta

l e
xe

cu
tio

n
tim

e
(m

s)
 lo

g
sc

al
e

RAM Size (KB)

∆-tree
Accurate

EBGreedy

(a) Total Execution Time

 1000

 10000

 100000

 1e+06

 0 40 80 120 160 200 240 280 320 360 400

nu
m

be
r

of
 p

ag
e

lo
ad

s
(lo

g
sc

al
e)

RAM Size (KB)

∆-tree
Accurate

EBGreedy

(b) Number of Page Loads

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 40 80 120 160 200 240 280 320 360 400

nu
m

be
r

of
 p

ag
e

w
rit

es
 (

lo
g

sc
al

e)

RAM Size (KB)

∆-tree
Accurate

EBGreedy

(c) Number of Page Writes

FIGURE 11. Varying RAM size results for data centred
updates

size, all popular pages can fit into the RAM buffer.
The results show that EBGreedy generates less page
loads than the accurate algorithm between RAM sizes
of 20KB and 180KB. The reason EBGreedy generates
less page loads is because it generates smaller ∆-Flashes
which can be cached better in the read buffer. The
smaller ∆-Flashes are created from compressing the ∆-
RAM before flushing or merging it with previous ∆-
Flashes. When the RAM size is large (220KB or above),
the read buffer is able to fit almost all commonly used
pages in the ∆-Flashes for both our algorithms, hence
they perform about the same.

The results show that the number of writes goes
to zero for our algorithms when the RAM size goes
beyond 180 KB. The reason is when at these larger
RAM sizes the ∆-RAM is large enough to fit all updates
and therefore the ∆-RAM never needs to be flushed.

, Vol. ??, No. ??, ????

Efficient Updates for OLAP Range Queries on Flash Memory 13

6.2. Varying Prefix Sum Cube Size Experiment

 100

 1000

 10000

 100000

 1e+06

 0 2000 4000 6000 8000 10000

to
ta

l e
xe

cu
tio

n
tim

e
(m

s)
 lo

g
sc

al
e

PSC Size (KB)

∆-tree
Accurate

EBGreedy

(a) Total Execution Time

 1000

 10000

 100000

 1e+06

 0 2000 4000 6000 8000 10000

nu
m

be
r

of
 p

ag
e

lo
ad

s
(lo

g
sc

al
e)

PSC Size (KB)

∆-tree
Accurate

EBGreedy

(b) Number of Page Loads

 10

 100

 1000

 10000

 100000

 1e+06

 0 2000 4000 6000 8000 10000

nu
m

be
r

of
 p

ag
e

w
rit

es
 (

lo
g

sc
al

e)

PSC Size (KB)

∆-tree
Accurate

EBGreedy

(c) Number of Page Writes

FIGURE 12. Varying prefix sum cube size results for data
centred updates

This experiment compares the different algorithms
for different prefix sum cube sizes. Therefore, this
experiment compares the scalability of the algorithms
by increasing data set size. The prefix sum cube
size is varied from 1000KB to 10000KB in increments
of 1000KB. The other parameters all use the default
values.

The results are shown in Figure 12. Note the
y-axis of the graphs use log scales. The results
show that the total execution time of our algorithms
scale well as the prefix sum cube grows in size. In
addition, our algorithms consistently outperform the
∆-tree throughout the whole range of PSC size values.
This is again due to the fact that our algorithms are
much more efficient at handling updates.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 2 4 6 8 10 12 14 16 18 20 22

to
ta

l e
xe

cu
tio

n
tim

e
(m

s)

Error Bound

∆-tree
Accurate

EBGreedy

(a) Total Execution Time

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 2 4 6 8 10 12 14 16 18 20 22

nu
m

be
r

of
 p

ag
e

lo
ad

s

Error Bound

∆-tree
Accurate

EBGreedy

(b) Number of Page Loads

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16 18 20 22

nu
m

be
r

of
 p

ag
e

w
rit

es
 (

lo
g

sc
al

e)

Error Bound

∆-tree
Accurate

EBGreedy

(c) Number of Page Writes

FIGURE 13. Varying error bound for data centred
updates

6.3. Varying Error Bound Experiment

This experiment compares the algorithms for different
error bounds. In line with our problem definition,
this is the absolute error not the percentage
of error. The error bound was varied from 2 to 20
in increments of 2. The other parameters all use the
default values.

Figure 13 shows the results of the experiment.
The results show that even with a low error bound
of 2, EBGreedy outperforms Accurate. The results
show the reason EBGreedy outperforms Accurate is
because EBGreedy performs much less reads than Ac-
curate. The lower number of reads is due to the smaller
compressed ∆-RAMs that are flushed or merged by
EBGreedy when ∆-RAM has reached its pre-allocated
size limit.

, Vol. ??, No. ??, ????

14 M. McCarthy and Z. He

6.4. Varying Update Probability

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

to
ta

l e
xe

cu
tio

n
tim

e
(m

s)

Update Probability

∆-tree
Accurate

EBGreedy

(a) Total Execution Time

 0

 50000

 100000

 150000

 200000

 250000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 P

ag
e

Lo
ad

s

Update Probability

∆-tree
Accurate

EBGreedy

(b) Number of Page Loads

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 P

ag
e

W
rit

es
 (

lo
g

sc
al

e)

Update Probability

∆-tree
Accurate

EBGreedy

(c) Number of Page Writes

FIGURE 14. Varying Update Probability results for data
centered updates

This experiment compares the algorithms for
different percentages of updates of the total queries.
The other parameters used are set to the default values.

Figure 14 shows the results of the experiment.
The results show that our algorithms outperform ∆-
tree by a larger margin for total execution time as
the update probability increases. The reason for this
is that the ∆-tree is more efficient for reading than
updating. When the percentage of updates increases,
the high update cost weakness of ∆-tree becomes more
pronounced, although ∆-tree is more efficient for reads
that gets dwarfed by the high update costs due to the
asymmetric read versus write cost for flash memory. It
is encouraging to note that our algorithms outperform
∆-tree when update probability is only 0.2 which means
80% of queries are reads.

The results show that for our algorithms, when

the probability is either high or low, the total execution
time decreases. This is because if the probability of an
update is low, then not many trees will be constructed,
causing the cost of reading and writing the trees to be
reduced. When the probability of an update is high, the
probability of a read query is low and hence not many
pages are loaded into RAM.

7. CONCLUSION

The aim of this paper was to find efficient algorithms
and data structures for OLAP applications on flash
memory. We achieve this by exploiting the fast random
read characteristic of flash memory while minimising
slow random writes. To do this we build quadtrees
to store updates in RAM and write whole trees
sequentially to flash memory once the RAM limit is
reached. Each of these trees is either merged with
an existing tree stored on flash memory or flushed
as an additional tree. This approach minimises
random writes by caching the writes in RAM and then
converting them to sequential writes when RAM is full
by writing whole trees. The cost of this approach is
that we end up producing a large number of quadtrees
which increases read time when answering queries. Here
is where we leverage the fast random read performance
of flash memory to produce lower overall execution time.
In addition we try to minimise the amount of read by
merging the quadtrees and compressing the quadtrees
to produce smaller trees.

An error bound solution was also proposed.
This solution gave a trade-off between efficiency and
accuracy. Answers to queries are given within a user-
defined error bound. The increased efficiency came
from compressing the trees by deleting nodes before
moving the trees to flash memory. A greedy heuristic
was proposed to compress the trees, as this compression
problem was proven to be NP complete.

A variety of experiments were conducted to
compare our algorithms against the ∆-tree algorithm
proposed by Chun et al. [1]. The results show our
algorithms outperformed ∆-tree for total execution
time for a wide variety of situations by orders of
magnitude. Among our algorithms, the error bound
solution was shown to outperform the accurate solution
for total execution time and could therefore be used to
trade-off accuracy for efficiency.

Possible future work includes exploring effective
ways of answering range queries for the aggregate
functions MIN and MAX. Another area of future work
is to alter the error bound problem so that answers to
range queries are within a percentage of error rather
than absolute error.

8. ACKNOWLEDGEMENTS

This work is supported under the Australian Research
Council’s Discovery funding scheme (project number

, Vol. ??, No. ??, ????

Efficient Updates for OLAP Range Queries on Flash Memory 15

DP0985451). We would also like to thank Michele
Mooney for her careful proof reading of this paper.

REFERENCES

[1] Chun, S.-J., Chung, C.-W., Lee, J.-H., and Lee, S.-
L. (2001) Dynamic update cube for range-sum queries.
Proceedings of International Conference on Very Large
Data Bases, San Francisco, CA, USA, pp. 521–530.
Morgan Kaufmann Publishers Inc.

[2] Shukla, A., Deshpande, P., and Naughton, J. F.
(1998) Materialized view selection for multidimensional
datasets. Proceedings of the International Conference
on Very Large Data Bases, San Francisco, CA, USA,
pp. 488–499. Morgan Kaufmann Publishers Inc.

[3] Han, J., Pei, J., Dong, G., and Wang, K. (2001)
Efficient computation of iceberg cubes with complex
measures. SIGMOD Record, 30, 1–12.

[4] Beyer, K. and Ramakrishnan, R. (1999) Bottom-up
computation of sparse and Iceberg CUBE. SIGMOD
Record, 28, 359–370.

[5] Harinarayan, V., Rajaraman, A., and Ullman, J. D.
(1996) Implementing data cubes efficiently. SIGMOD
Record, 25, 205–216.

[6] Baralis, E., Paraboschi, S., and Teniente, E. (1997)
Materalized view selection in a multidimensional
database. Proceedings of International Conference on
Very Large Data Bases, San Francisco, CA, USA, pp.
98–112. Morgan Kaufmann Publishers Inc.

[7] Ross, K. A. and Srivastava, D. (1997) Fast computation
of sparse datacubes. Proceedings of International
Conference on Very Large Data Bases, San Francisco,
CA, USA, pp. 116–125. Morgan Kaufmann Publishers
Inc.

[8] Ho, C.-T., Agrawal, R., Megiddo, N., and Srikant, R.
(1997) Range queries in OLAP data cubes. SIGMOD
Record, 26, 73–88.

[9] Gupta, A., Mumick, I. S., and Subrahmanian, V. S.
(1993) Maintaining views incrementally. Proceedings
of SIGMOD International Conference on Management
of Data, New York, NY, USA, pp. 157–166. ACM.

[10] Griffin, T. and Libkin, L. (1995) Incremental
maintenance of views with duplicates. Proceedings of
SIGMOD International Conference on Management of
Data, New York, NY, USA, pp. 328–339. ACM.

[11] Mumick, I. S., Quass, D., and Mumick, B. S. (1997)
Maintenance of data cubes and summary tables in a
warehouse. SIGMOD Record, 26, 100–111.

[12] Labio, W., Yang, J., Cui, Y., Garcia-Molina, H., and
Widom, J. (2000) Performance issues in incremental
warehouse maintenance. Proceedings of International
Conference on Very Large Data Bases, San Francisco,
CA, USA, pp. 461–472. Morgan Kaufmann Publishers
Inc.

[13] Folkert, N., Gupta, A., Witkowski, A., Subramanian,
S., Bellamkonda, S., Shankar, S., Bozkaya, T.,
and Sheng, L. (2005) Optimizing refresh of a set
of materialized views. Proceedings of International
Conference on Very Large Data Bases, New York, NY,
USA, pp. 1043–1054. ACM.

[14] Burdick, D., Deshpande, P. M., Jayram, T. S.,
Ramakrishnan, R., and Vaithyanathan., S. (2005)

OLAP over Uncertain and Imprecise Data. Proceedings
of International Conference on Very Large Data Bases,
New York, NY, USA, pp. 970–981. ACM.

[15] Burdick, D., Deshpande, P. M., Jayram, T. S., Ra-
makrishnan, R., and Vaithyanathan., S. (2006) Efficient
Allocation Algorithms for OLAP over Imprecise Data.
Proceedings of International Conference on Very Large
Data Bases, New York, NY, USA, pp. 391–402. ACM.

[16] Bourganim, L., Jonsson, B., and Bonnet, P. (2009)
uFLIP: understanding flash IO patterns. Fourth
Biennial Conference on Innovative Data Systems
Research (CIDR). Online Proceedings www.crdrdb.org.

[17] Nath, S. and Kansal, A. (2007) FlashDB: dynamic
self-tuning database for NAND flash. Proceedings of
International Conference on Information Processing in
Sensor Networks, New York, NY, USA, pp. 410–419.
ACM.

[18] Kim, G.-J., Baek, S.-C., Lee, H.-S., Lee, H.-D., and
Joe, M. J. (2006) LGeDBMS: a small DBMS for
embedded systems with flash memory. Proceedings of
International Conference on Very Large Data Bases,
New York, NY, USA, pp. 1255–1258. ACM.

[19] Lee, S.-W. and Moon, B. (2007) Design of flash-based
DBMS: an in-page logging approach. Proceedings of
SIGMOD International Conference on Management of
Data, New York, NY, USA, pp. 55–66. ACM.

[20] Tsirogiannis, D., Harizopoulos, S., Shah, M. A.,
Wiener, J. L., and Graefe, G. (2009) Query processing
techniques for solid state drives. Proceedings of
SIGMOD International Conference on Management of
Data, New York, NY, USA, pp. 59–72. ACM.

[21] Li, Y., He, B., Luo, Q., and Yi, K. (2009) Tree indexing
on flash disks. Proceedings of International Conference
on Data Engineering, pp. 1303–1306. IEEE.

[22] Shah, M. A., Harizonpoulos, S., Wiener, J. L.,
and Graefe, G. (2008) Fast scans and joins using
flash drives. Proceedings of the Fourth International
Workshop on Database Management on New Hardware,
New York, NY, USA, pp. 17–24. ACM.

[23] Koltsidas, I. and Viglas, S. D. (2008) Flashing up the
storage layer. Proceedings of the VLDB Endowment, 1,
514–525.

[24] Wu, C.-H., Kuo, T.-W., and Chang, L. P. (2007) An
efficient B-tree layer implementation for flash-memory
storage systems. ACM Transactions on Embedded
Computing Systems (TECS), 6, 19.

[25] Kim, J., Kim, J. M., Noh, S. H., Min, S. L., and
Cho, Y. (2002) A space-efficient flash translation layer
for compact flash systems. IEEE Transactions on
Consumer Electronics, 48, 366–375.

[26] Lee, S.-W., Park, D.-J., Chung, T.-S., Lee, D.-
H., Park, S., and Song, H.-J. (2007) A log buffer-
based flash translation layer using fully-associative
sector translation. ACM Transactions on Embedded
Computing Systems (TECS), 6, 18.

[27] Wu, M. and Zwaenepoel, W. (1994) eNVy: a non-
volatile, main memory storage system. ASPLOS-VI:
Proceedings of the sixth International Conference on
Architectural support for programming languages and
operating systems, New York, NY, USA, pp. 86–97.
ACM.

, Vol. ??, No. ??, ????

16 M. McCarthy and Z. He

[28] Chiang, M.-L., Lee, P. C. H., and Chang, R.-C. (1999)
Using data clustering to improve cleaning performance
for flash memory. Software: Practice and Experience,
29, 267–290.

[29] Chiang, M.-L., Lee, P. C. H., and Chang, R.-C. (1997)
Managing flash memory in personal communication
devices. Proceedings of International Symposium on
Consumer Electronics, pp. 177–182. IEEE.

[30] Yao, A. (1985) On the complexity of maintaining
partial sums. SIAM Journal on Computing, 14, 277–
288.

[31] Chazelle, B. and Rosenberg, B. (1989) Computing
partial sums in multidimensional arrays. Proceedings of
the fifth annual symposium on computational geometry,
New York, NY, USA, pp. 131–139. ACM.

[32] Poon, C. (2003) Dynamic orthogonal range queries in
OLAP. Theoretical Computer Science, 296, 487–510.

[33] Gabow, H., Bentley, J., and Tarjan, R. (1984)
Scaling and related techniques for geometry problems.
Proceedings of the sixteenth annual symposium on
theory of computing, New York, NY, USA, pp. 135–143.
ACM.

[34] Lee, S., Ling, T., and Li, H. (2000) Hierarchical
compact cube for range-max queries. Proceedings
of International Conference on Very Large Data
Bases, San Francisco, CA, USA, pp. 232–241. Morgan
Kaufmann Publishers Inc.

[35] Yuan, H. and Atallah, M. (2010) Data Structures
for Range Minimum Queries in Multidimensional
Arrays. Twenty-First ACM-SIAM Symposium on
Discrete Algorithms, New York, NY, USA, pp. 150–160.
ACM.

[36] O’Neil, P., Cheng, E., Gawlick, D., and O’Neil, E.
(1996) The log-structured merge-tree (LSM-tree). Acta
Informatica, 33, 351–385.

[37] Jagadish, H., Narayan, P. P. S., Seshadri, S.,
Sudarshan, S., and Kanneganti, R. (1997) Incremental
organization for data recording and warehousing.
Proceedings of International Conference on Very Large
Data Bases, San Francisco, CA, USA, pp. 16–25.
Morgan Kaufmann Publishers Inc.

[38] Muth, P., O’Neil, P., Pick, A., and Weikum, G.
(1998) Design, implementation, and performance of
the LHAM log-structured history data access method.
Proceedings of International Conference on Very Large
Data Bases, San Francisco, CA, USA, pp. 452–463.
Morgan Kaufmann Publishers Inc.

[39] Muth, P., O’Neil, P., Pick, A., and Weikum, G. (2000)
The LHAM log-structured history data access method.
The VLDB Journal, 8, 199–221.

[40] Hjaltason, G. and Samet, H. (2002) Speeding up
construction of PMR quadtree-based spatial indexes.
The VLDB Journal, 11, 109–137.

[41] Park, S.-Y., Jung, D., Kang, J.-U., Kim, J.-S., and
Lee, J. (2006) CFLRU: a replacement algorithm for
flash memory. Proceedings of International Conference
on Compilers, architecture and synthesis for embedded
systems, New York, NY, USA, pp. 234–241. ACM.

[42] United States of America 2000 census data.
http://www2.census.gov/census 2000/datasets
/PUMS/FivePercent.

[43] Beckmann, N., Kriegel, H., Schneider, R., and Seeger,
B. (1990) The R*-tree: an efficient and robust access
method for points and rectangles. SIGMOD Record,
19, 322–331.

[44] Hadjieleftheriou, M. (Downloaded: August 2008).
Spatial index library. http://www2.research.att.com/˜
marioh/spatialindex/.

APPENDIX A. NP COMPLETENESS
PROOF

We prove by restriction that the quadtree compression
problem is NP complete. We first define a restricted
version of the quadtree compression problem to aid in
proving that the quadtree compression problem is NP
complete. We can prove that our problem is NP com-
plete by showing that we can restrict our problem, and
that this restricted problem is equivalent to a known
NP complete problem.

Restricted ∆-quadtree compression problem
Given a set A of possible nodes to delete, find
S ⊆ A such that the error bound consumed
EBC(S) = Σs∈S(EB − MEL(s))NC(s) is min-
imised and the following constraint is satisfied:

ML
TSD(S) ≥ c

We make two restrictions. The first is restricting
our problem to only leaf nodes. The second is restruc-
turing the problem to compressing quadtrees which
only include nodes where MEL(s) ≥ 0. We make
another restriction that EBC(s) (which is mapped to
the value metric in the knapsack problem) is restricted
from the domain of real numbers to the integers.
These are valid restrictions for proving NP complete-
ness because they represent possible instances of the
∆-quadtree compression problem and therefore can be
used to prove NP completeness.

We next define the ∆-quadtree nodes retension
problem which is equivalent to the restricted quadtree
compression problem of selecting the nodes to retain.
By showing a restricted version of our problem is
equivalent to the knapsack problem, which is known
to be NP complete, we can prove that the ∆-quadtree
compression problem is NP complete.

∆-quadtree nodes retension problem
Given a set A of possible nodes to keep, find T ⊆ A
such that Σt∈T (EB − MEL(t))NC(t) is maximised
and the following constraint is met:
Σt∈T sizeb(t) ≤ ML

c

To prove that the ∆-quadtree compression prob-
lem is NP complete using knapsack, we first have to
prove that the restricted version of the quadtree com-
pression and quadtree node retension problems are
equivalent. In order to do this, we define and prove the
following two lemmas, which are then used to prove

, Vol. ??, No. ??, ????

Efficient Updates for OLAP Range Queries on Flash Memory 17

that the two problems are equivalent.

Lemma A.1.: ML
TSD(S) ≥ c is equivalent to Σt∈T ≤

ML
c

Proof: ML
TSD(S) ≥ c ⇔ TSD(S) ≤ ML

c

So Lemma A.1 is true iff TSD(S) = Σt∈T sizeb(t)
and TSD(S) = Σa∈Asizeb(a) − Σs∈Ssizeb(s) =
Σt∈T sizeb(t)
Therefore, Lemma A.1 is true.

Lemma A.2.: Minimising Σs∈S(EB −
MEL(s))NC(s) is equivalent to maximising
Σt∈T (EB −MEL(t))NC(t)

Proof: Each node in the ∆-quadtree has an as-
sociated value (EB − MEL(a))NC(a), so we
have Σa∈A(EB − MEL(a))NC(a) = Σs∈S(EB −
MEL(s))NC(s) + Σt∈T (EB − MEL(t))NC(t). So,
minimising Σs∈S(EB−MEL(s))NC(s) is equivalent to
minimising Σa∈A(EB−MEL(a))NC(a)−Σt∈T (EB−
MEL(t))NC(t). Now because EB, A, MEL(a)
and NC(a) are all constant for any given ∆-quadtree,
Σa∈A(EB−MEL(a))NC(a) is just some constant q. So
minimising Σs∈S(EB − MEL(s))NC(s) is equivalent
to minimising q−Σt∈T (EB−MEL(t))NC(t) which is
equivalent to maximising Σt∈T (EB −MEL(t))NC(t).
Therefore, Lemma A.2 is true.

Theorem A.1. The restricted quadtree compression
problem and quadtree nodes retension problem are
equivalent.

Proof: By Lemma A.1, we have that the constraint
of the quadtree nodes retension problem is equivalent
to the constraint of the quadtree compression problem.
By Lemma A.2, we have that the metrics of the two
problems are also equivalent. Therefore, Theorem A.1
is true.

Theorem A.2.: The ∆-quadtree compression
problem is NP complete.

Proof: We prove that the ∆-quadtree compression
problem is NP complete by restricting our problem
and mapping an equivalent converse problem to the
knapsack problem which is known to be NP complete.
In order to find a mapping between knapsack and our
problem, by Theorem A.1, we can state the restricted
problem as its equivalent corresponding problem of
finding the set of nodes to keep rather than delete.

We map the quadtree nodes retension problem to the
knapsack problem as follows:
t is equivalent to the kth item in the knapsack problem,
EBC(t) is equivalent to the value of the kth item,
where t is the selected non-compressed node and k is
the selected item in the knapsack problem,

sizeb(t) is equivalent to the size of the kth item in the
knapsack problem and
size limit in the knapsack problem is equivalent to ML

c .

We have proven by restriction that the ∆-quadtree
compression problem is NP complete using the above
mappings and restricitions.

, Vol. ??, No. ??, ????

