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Abstract

Accurate prediction of the trajectory of Alzheimer’s disease (AD) from an early stage is of substantial

value for treatment and planning to delay the onset of AD. We propose a novel attention transfer

method to train a 3D convolutional neural network to predict which patients with mild cognitive

impairment (MCI) will progress to AD within 3 years. A model is first trained on a separate but

related source task to automatically learn regions of interest (ROI) from a given image. Next we

train a model to simultaneously classify pMCI and sMCI (our target task) and the ROIs learnt

from the source task. The predicted ROIs are then used to focus the model’s attention on certain

areas of the brain when classifying pMCI versus sMCI. Thus, in contrast to traditional transfer

learning, we transfer attention maps instead of transferring model weights from a source task to

the target classification task. Our Method outperformed all methods tested including traditional

transfer learning and methods that used expert knowledge to define ROI. Furthermore, the attention

map transferred from the source task highlights known Alzheimer’s pathology.
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1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease in the elderly [1]. It

is characterized by the progressive decline of memory functions and significant difficulties with re-

taining independence in simple daily activities [2], [3]. In this paper we focus our research on Mild

Cognitive Impairment (MCI). MCI is known as an intermediate stage for individuals between the

normal cognitive change of aging and early dementia. It is reported that 12% to 15% of patients

who have MCI will progress to AD annually[4]. However, AD is very challenging to diagnose as

the symptoms can be similar to other diseases and the cause of AD is not well understood [3], [5].

Unfortunately, AD is not curable and the decline of cognitive impairment is irreversible [6].

Accurately predicting whether an MCI patient will convert to AD is of significant importance.

This information is critical for clinical trials, decisions for early interventions, and to maximise the

chances of delaying onset. It also gives patients and their families time to draw a plan in advance

for the management of treatment, care, and cost.

Magnetic Resonance Imaging (MRI) is a valuable and complementary tool for assessing and mon-

itoring brain changes such as volume and tissue characteristics. MRI imaging can help to detect

brain abnormality during the conversion to AD from MCI [7]. For example, in the early stage of

AD, the brain areas associated with MCI may look normal [8].

In this paper, we are focused on predicting progressive MCI (pMCI) versus stable MCI (sMCI)

trajectories from MRI images. pMCI (sMCI) is defined as (not) being diagnosed with AD following

a previous MCI diagnosis. Specifically, our goal is to take a single MRI image of a patient diagnosed

with MCI at a given time and accurately predict whether they will be diagnosed with AD within 3

years. This is a very challenging task since the brain may undergo a lot of change within the 3 year

period. So taking an MRI image at the baseline time to predict what will happen in 3 years time is

very difficult.

We use convolutional neural networks (CNN) to solve this problem in a data efficient way. We

use the Alzheimer’s disease neuroimaging initiative (ADNI) dataset 1 and 2 where there are a total

of 1587 subjects but only 593 subjects are classified as MCI at the baseline. Therefore only images

from the 593 subjects are directly applicable to our task. An interesting research question is how
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can we best use the images from the entire 1587 subjects? A traditional method for achieving this

is to use transfer learning [9], [10], where model weights learnt from a source classification task

(e.g AD/CN , high/low ADAS-cog score, high/low CDR-SB score) are transferred to the target

classification task (pMCI/sMCI). We propose a novel alternative method where an attention map

from the source task is transferred to the target task instead of model weights. This mimics how

a radiologist would transfer their knowledge of the important regions of interest (ROI) learnt from

previous tasks to a new task. Existing ROI based pMCI versus sMCI classification approaches [11],

[9] directly identify ROI from prior expert knowledge. In contrast, our method automatically learns

the ROI via attention maps derived from the source task. Furthermore we found our way of learning

ROI from the source task outperforms methods that assign ROI based on prior expert knowledge.

This may be attributable to the fact that the attention maps generated by our model are tailored

to each image rather than the same ROI assigned to all images as is the case for traditional ROI

based solution that use expert knowledge.

We propose a novel method called Class Activation Attention Transfer (CAAT) to solve the pro-

gressive MCI (pMCI) versus stable MCI (sMCI) problem using only baseline MRI images. CAAT

classifies between pMCI and sMCI by transferring attention from a related source classification task

to our target classification task. It learns the discriminative brain areas created from a source task

via the output of class activation maps (CAMs) [12] without using prior expert knowledge to de-

termine the ROIs. The CAMs identify parts of the brain that were salient for a related task, such

as descriminating AD from CN and predicting cognitive performance, and uses this information to

inform our model of which brain regions to pay particular attention to. We then train a 3D CNN

model to simultaneously predict the source CAM for the target task images and use the predicted

CAM as an attention map for solving the target classification task of pMCI and sMCI. Visualiza-

tions of the attention maps predicted by our CAAT approach show that the model is able to place

attention on parts of the brain that are known to be important for diagnosing Alzheimer’s disease.

The highlighted areas are also coherent with cognitive test scores.

Experimental results on the ADNI dataset show that CAAT achieves state-of-the-art accuracy of

74.61 for classifying between pMCI and sMCI using only whole 3D images of the brain and no other

ancillary information. Traditional transfer learning performs worse than CAAT by achieving 73.03

classification accuracy. Finally, a baseline method [13] that only uses whole 3D brain scans without
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using transfer learning or attention only achieved an accuracy of 70.84. Furthermore, compared to

the other methods, our CAAT ensemble method achieves more balanced results of F1 score, the sen-

sitivity, and specificity of 0.75, 0.75, and 0.75 respectively. Our innovations and major contributions

include:

1. We developed a novel method called CAAT for transferring attention information from a source

task to a target task that provides an alternative to traditional transfer learning. This general

methodology can be applied to any existing task where the source and target tasks share similar

regions of interest.

2. We applied CAAT to the problem of pMCI versus sMCI classification using the three different

source classification tasks of CN versus AD, high versus low ADAS-cog score, high versus low

CDR-SB score.

3. Experimental results for the ADNI dataset show CAAT achieves state-of-the-art performance for

pMCSI versus sMCI classification. Even outperforming ROI methods which require prior human

expert knowledge to identify areas of interest.

2. Related Works

As mentioned in the introduction this paper is focused on solving the problem of sMCI ver-

sus pMCI classification. The most common methods for solving this problem use biomarkers in

combination with machine-learning [14], [10]. Mathotaarachchi et al. [14] employed a voxel-wise

logistic regression method to extract the most discriminative features (dimensionality reduction)

from amyloid PET images and matching T1-weighted MRI imaging. They also used demographic

and APOE4 genotype data. Finally, MMSE scores and CDR values were also used. These features

were fed into a random forest classifier. In the works of B. Cheng et al. [10], each subject image

had 93 manually-labeled regions-of-interest (ROIs) (a 93- dimensional feature vector) based on the

GM tissue volume. These features were concatenated with the baseline MRI and cerebrospinal fluid

(CSF) data. First, they were trained via SVMs to get a list of source domain labels (AD vs. CN,

MCI vs. CN, AD vs. MCI, and pMCI vs. sMCI). Secondly, they combined these labels and created

a multi-source domain feature matrix. The similarity was measured between the residual vectors

to get an estimated domain label. Finally, after using dimensionality reduction on the selected fea-

tures, they fed the most informative features to an SVM for classification. This method required

prior knowledge about brain structure as it needs to define ROIs as the first step. Our proposed
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CAAT method automatically learns the important ROI from the source task.

There are many methods that have used CNNs to help solve the sMCI versus pMCI classifica-

tion problem. Liu and Cheng et al. [15] proposed a 3D patch-level CNN model. They used a 3D

CNN model to extract features from MRI and PET images and then concatenated the features to

feed into 2D CNN layers for classification. Lin et al. [9] designed an ROI-based approach that first

used 2.5D patch-based CNNs to extract features while performing AD and CN classification. They

then used the pre-trained AD/CN feature extractor to extract features for pMCI/sMCI classifica-

tion. After that, a 2.5D image was created from transverse, coronal, and sagittal plane centered at

the same point. These features were combined with the features obtained from FreeSurfer. Both

feature vectors used PCA for dimensionality reduction and then were concatenated into one feature

vector. Finally, the feature representations were fed into an extreme learning machine (ELM) to

perform the classification. In contrast to [15] we only use the MRI images and do not use PET

images. In contrast to [9] we transfer attention from the source to the target task instead of the

weights of the neural network.

Basaia et al. [16] used data augmentation techniques like flips, rotations, cropping to increase

training set size and trained the data using a VGG-like network. Lian et al. [17] first divided the

3D brain images into patches and then used location proposals to select the patches at the most

discriminative locations. The final classification result was obtained by feeding those ROI-based

patches to a patch-level subnetwork. In contrast to [16] our method transfers attention from a

source task instead of performing data augmentation to improve performance. In contrast to [17]

our method uses CAM heatmaps from the source task to determine where to focus attention instead

of ROI-based patch selection.

3. Materials and Methods

In this section, we first introduce how we set up the experimental datasets. We show and explain

the predicted heatmaps (CAM images) generated from the different pretraining datasets such as AD

versus CN, high versus low ADAS-cog, and high versus low CDR-SB. We then describe in detail our

class activation attention transfer method.
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Table 1: The Demographic and clinical characteristics of the subjects included in this study. SD: Standard Deviation.

sMCI(298) pMCI(295)

Female/male 123/175 119/176

Age (SD) 72.3 (7.4) [55-88.4] 73.78 (6.9) [55.1-88.3]

MMSE (SD) 28.0 (1.7) [23-30] 26.8 (1.8) [19-30]

ADAS11 (SD) 8.5 (3.5) [2-21.3] 13.0 (4.5) [0-27.67]

CDRSB (SD) 1.2 (0.6) [0.5-3.5] 2.0 (1.0) [0.5-5]

3.1. Subjects and data acquisition

This paper uses the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset 2. The pri-

mary goal of ADNI is to detect AD at the earliest possible stage and track the data trajectory of

AD via studying patients’ clinical, imaging, genetic, and biochemical biomarkers. To evaluate the

performance, we performed 5-fold cross-validation of the dataset.

In this study, the subjects used were categorized into two groups: progressive MCI (pMCI) and

stable MCI (sMCI), based on the diagnosis of their follow-up visits within 36 months. At the start

(baseline time), all selected subjects were diagnosed with MCI, early MCI (EMCI), or late MCI

(LMCI). However, if a subject was diagnosed with Dementia within the following 36 months, he/she

was grouped into pMCI; and if the patient’s diagnosis remained as MCI, we categorized him/her as

sMCI.

Wen et al.’s review paper [13] reimplemented most of the best performing Alzheimer’s Disease

classification methods and benchmarked their sMCI and pMCI classification performance using the

ADNI dataset. This allowed the different methods to be compared using the same dataset and same

experimental setup. Hence we have based our sMCI versus pMCI classification study on the same

data splits as that used in [13]. It includes 298 sMCI and 295 pMCI participants retrieved from

datasets ANDI1 and ADNI2. Each subject had one structural T1 weighted MRI scan taken at the

baseline. The corresponding neuropsychological data such as MMSE, CDR-SB, and ADAS-cog were

also recorded in the dataset. The demographic information of the participants used in this paper is

summarised in Table 1.

2[http://adni.loni.usc.edu]
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In our experiments we performed pre-training on three tasks using ADNI1 and ADNI2 datasets.

The first task was AD versus CN classification with 508 AD versus 508 CN images. The second

and third tasks were high versus low CDR-SB and ADAS11 cognitive score classification using 1243

training images of which 382, 460, 401 were classified as MCI, CN and AD respectively and 310

testing images comprising 93 MCI, 109 CN and 108 AD.

3.2. Image preprocessing

All the brain MR images acquired from ADNI1 and ADNI2 had undergone some steps of pre-

processing such as N3 Intensity non-uniformity correction, B1 non-uniformity correction, and 3D

Gradwarp correction for gradient nonlinearity if necessary. For better differentiating MRI im-

ages among subjects, a further preprocess was performed. First, N4ITK was used for intensity

non-uniformity correction by the ANTS N4 BiasField Correction pipeline. The toolkit is avail-

able on the website 3. Then, we performed an affine registration to standardize MRI data by

nonlinearly aligning image data onto the template MNI125. Finally, all nonlinearly registered

images were cropped to an identical size of 169×208×179 with 1 mm3 isotropic voxels for com-

putational efficiency. The tool FSL for brain extraction and registration can be acquired on the

website (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) 4. We found the class activation map (CAM) [12] for

a classifier trained to classify between AD versus CN classification contained a lot of highly useful

information. Since the trained model needed to focus its attention on the discriminative parts of the

brain for separating the classes. We pretrained a 5-layer CNN model for the classification of AD and

CN subjects. Figure 1 shows examples of CAM heatmaps for the AD class. The CAM heatmaps

show highlighting of the following brain regions: hippocampus, entorhinal cortex, and ventricles,

etc. These are consistent with traditional analysis of the brain anatomy of AD disease [18].

3.3. Class Activation Maps (CAM)

Here we explain how classification activation maps (CAM) developed by B Zhou et al. [12] can

be obtained from a trained classification model. Zhou et al. [12] showed pretraining a CNN with

a global average pooling (GAP) layer inserted between the final convolution layer and the output

layer, can produce generic regional deep features for a particular class. Moreover, by using heatmaps,

3[http://stnava.github.io/ANTs/]
4[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki]
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Figure 1: The generated CAMs associated with the AD category, for four different AD examples from the ADNI1 and

ADNI2 datasets: the highlighted regions of the brain correspond to the known regions of the brain: hippocampus,

entorhinal cortex.

Figure 2: The CAM results of the binary classification of CDR-SB scores, created on a 5-layer 3D CNN model. The

CDR-SB scores for these four examples are 2, 3, 3, and 2.5 respectively. From the CAM images, we can see all

examples have some memory problems as the parts related to processing long-term memory have been highlighted,

such as the hippocampus, entorhinal cortex, and prefrontal cortex, etc. Moreover, all these examples have some parts

of their frontal lobe highlighted, which are associated with judgment and problem planning problems. We can also

see the part of the parietal lobe in some examples is highlighted. The parietal lobe is related to attention, body

awareness, sensations, and movement coordination, etc.
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Figure 3: The CAM results of the binary classification of ADAS-Cog scores, created on a 5-layer 3D CNN model.

The ADAS-Cog scores reflect subject-completed tests and observer-based assessments. Note that higher score means

more diseased. The scores for the four examples shown in this figure are 14.67, 17.67, 21.33, and 49.67. All these

four examples have above zero scores on the questions of Word Recall and Word Recognition. From their CAM

images, we can see the parts related to short-term memory has been highlighted, such as the hippocampus, entorhinal

cortex, and prefrontal cortex, etc. Examples 2 and 3 have got above zero score for Question Constructional Praxis

and Orientation meaning these examples performed poorly in this task. Accordingly, the part of the brain involved in

processing information (parietal lobe) and the part associated with short-memory tasks (frontal lobe) such as planning

and motivation are highlighted.

CAM allows us to visualise the discriminative object areas associated with a particular predicted

class. By simply upsampling the CAM to the given image size, those areas associated with a partic-

ular class can be visualized by overlaying the acquired heatmaps on the given images. The process

of generating CAMs can be described as follows:

For a given image, after training on a typical CNN, we get the feature maps fm(x, y, z) at spa-

tial location (x, y, z) in the last convolutional layer, where m indicates the number of filters. The

output CAM Mc(x, y, z) is defined as:

Mc(x, y, z) =
∑
m

wcfm(x, y, z) (1)

where, wc is the weight matrix of the m-th filter associated with class c. By stacking up all m

outputs, the most discriminative regions can be highlighted via a heatmap.

We found similar results when we visualized the class activation maps for CDR-SB binary clas-
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Figure 4: Illustration showing our proposed Class Activation Attention Transfer Network architecture consisting of

two parts: the target task used to predict pMCI vs. sMCI, and the source task used for producing the predicted CAM

attention for the target task. The input 3D image size is [c=1, w=169, h=208, d=179], c is the channel size. w is

the CAM weight matrix which is the spatial average of the Conv5 feature map produced by global average pooling

(GAP). A is the network attetion which calibrates the predicted heatmap. Note that the resized CAM outputs the

3D heatmap R with size [c=1, w=11, h=13, d=11]. The detailed model specifications for the target task and source

task are presented in table 2

sification (high versus low CDR-SB score) and ADAS-cog binary classification (high versus low

ADAS-cog classification). We use the median score as the threshold used to separate the low and

high score classes for both ADAS-cog and CDR-SB. For ADAS-cog, the median is 10.33, and the

median for CDR-SB is 1.5. Figure 2 and figure 3 show CAM images for CDR-SB and ADAS-cog

binary classification. The MMSE scores are not used as their value distribution is highly skewed.

3.4. Class Activation Attention Transfer (CAAT)

Our aim is to use the information from the source task class activation maps described in the

previous section to improve the accuracy of models trained for our target task of pMCI versus sMCI

classification. Our model predicts the CAM produced by a model trained on the source task and

use the resultant heatmap as an attention map when predicting pMCI versus sMCI.
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In the rest of this section, we introduce our proposed Class Activation Attention Transfer (CAAT).

As shown in figure 4, the proposed model consists of two parts: the source task and the target task.

We employed the best performing subject-level architecture in [13], a five-layer 3D CNN network,

for the target task of our model. Table 2 displays a precise description of the CNN architecture

used in the target and source task phases. The source task CNN architecture is similar to the target

task except for the last two FC layers (group 6) are replaced by a global average pooling (GAP) layer.

The source task was to output the CAM for the three binary classification tasks of AD vs CN,

high versus low ADAS-cog and high versus low CDR-SB. We first train a model to perform each of

these three binary classification tasks. We then extracted the weight matrices wc of the associated

more diseased classes c (AD, high ADAS-cog, and high CDR-SB). Then each pMCI or sMCI image

Ii was fed into the 5-layer CNN to extract the feature maps fi of the last CNN layer. Using the

formula 1, we got the output that was the predicted CAM M c
i for subject i. To use the predicted

CAM M c
i as attention for the target task, M c

i need to be upsampled to the size of the predicted

heatmap Pi in the target task and denoted it as Ri = fn(M c
i (x, y, z)), where fn is an upsampling

function (in our study, fn = 1 as the source task and the target task use the same CNN layer

structure), Ri ∈ RW×H×L (W × H × L is the size of the predicted heatmaps). We call Ri the

predicted CAM. Note that Ri represents a voxel-based vector, each element of the vector has its

value constrained between [0, 1].

In the target task, each MRI image Ii was fed into the CNN model, the feature maps fm(x, y, z) of

the extraction layer e (layer Conv4 in our experiments) were extracted. Here, m indicates the num-

ber of filters. To reduce the dimensionality and increase the nonlinearity of the predicted heatmap

feature representation, the obtained feature maps fm(x, y, z) were then squeezed by using 3 Conv

layers with 1x1x1 convolutions to create the predicted heatmap P for Ii. So the size of fm(x, y, z)

was reduced to Pi(x, y, z). Pi(x, y, z) represents the voxel-wise feature vector. In order to make

the output CAM Ri from the source task match with Pi and work as the attention for the whole

network, we used MSE loss, which is formulated as:

L(P,R) = MSE(Pi −Ri) (2)

where Ri is the upsampled CAM for the subject i. Pi is the squeezed feature representation

(heatmap) from the extraction layer of the image for subject i. Both Pi and Ri are voxel-wise

features with all values constrained within the range of [0,1].
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We replicated P m times to create P̂ and then performed element wise multiply with fm to produce

Prd = P̂ ⊗ fm. We concatenated Prd with fm in order to pass both the original CNN features fm

and the features with attention Prd to the later classification layers. fm acted like a skip connection

to allow the later layers to directly use the original CNN features. The loss for the whole network

was the sum of the loss from the target task network, and the loss between the predicted and target

heatmap mentioned above 2. It can be formulated as:

L(Yi, di, Pi, Ri) = aL(Yi, di) + bL(Pi, Ri) (3)

where L(Yi, di) is the Cross-Entropy Loss between Yi and di. Yi is the predicted diagnosis for

subject i by the target task CNN, di is the true diagnosis for subject i. L(Pi, Ri) is explained in 2.

Ri indicated the output CAM by the source task network for subject i. Pi is the predicted heatmap

from the extraction layer from the target task network. a and b were the coefficients for balancing

the loss (in our experiment, a = 0.8, b = 1.0). We used three types of pretrained CAM outputs (AD,

high ADAS-cog, and high-CDR-SB) as the attention for our proposed model. We also ensembled

the predictions made by the three CAAT models (CAM of AD, high ADAS-cog and high CDR-SB)

using majority voting to help reduce the effects of overfitting.

4. Experiments and Results

In this section, we explain how we set up the evaluation datasets of the experiment. We compare

our proposed network against rival methods in terms of classification performance. We have also

conducted an ablation study to determine how the attention part of CAAT contribute to the overall

performance.

4.1. Experimental Setup

We performed all the experiments by using the stochastic gradient descent (SGD) optimiser for

65 epochs with the initial learning rate of 8e − 4 and a batch size of 4. The learning rate was

decreased by 0.5 after every 20 epochs. We trained our models on a GeForce RTX 2080 Ti GPU.

We used the Pytorch deep learning framework to implement and train our CNN models.
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Group Target Task Layers Source Task Layers

1

3x3x3 kennels, 8 output channels

3×3×3 max pool, 1 stride

4 BatchNorm

Relu activation

2

2x2x2 kennels, 16 output channels

2×2×2 max pool, 2 stride

4 BatchNorm

Relu activation

3

2x2x2 kennels, 32 output channels

2×2×2 max pool, 2 stride

4 BatchNorm

Relu activation

4

2x2x2 kennels, 64 output channels

2×2×2 max pool, 2 stride

4 BatchNorm

Relu activation

5

2x2x2 kennels, 128 output channels

2×2×2 max pool, 2 stride

4 BatchNorm

Relu activation

6

nn.Linear (128 * 5 * 6 * 5, 1300), Relu global average pooling

nn.Linear (1300, 256), Relu

Softmax activation Softmax activation

Table 2: 5-layer CNN architecture used for the source task and the target task for predicting pMCI vs. sMCI. The

number of the channels from Conv1 to Conv5 are 8, 16, 32, 64, and 128 respectively. The stride used from Conv2 to

Conv5, for the 2x2x2 kennels, is set as 2 and padding of 1, except the kennel (3x3x3) for the Conv1 is set as 1. All

convolutions had 3x3x3 kernels, a stride of 1 and padding of 1. All convolutions had a padding of 1x1x1. The 2nd

max pooling layers had a padding of (1, 0, 0). The 3rd max pooling layers had a padding of (1, 1, 0). The input

image to the model is [c=1, w=169, h=208, d=179], here c is the channel size. Note that the difference between the

source task and the target CNN architecture is the last two FC layers (group 6) in the target task are replaced by a

global average pooling (GAP) layer in the source task.

13



4.2. Evaluation measures and comparison methods

Our dataset consists of 593 MRI images, consisting of 298 sMCIs and 295 pMCIs images. We

performed 5 fold cross validation using the same data splits as that used in [13] 5. In order to gain

a comprehensive view of the performance of the algorithms, we used the following four evaluation

metrics for the model performance include sensitivity (SEN), specificity (SPC), F1 score (F1) and

accuracy (ACC).

Our experimental study included the following methods:

• Baseline 3D CNN: To evaluate the classification performance of our model, the 5-layer 3D

CNN model used in [13] was implemented as the baseline model.

• Transfer learning AD/CN, CDR-SB, ADAS: We applied the traditional transfer learn-

ing on the Baseline 3D CNN model by using the pretrained network weights obtained from

three different classification tasks: CN vs. AD, high versus low ADAS-cog score, and high vs.

low CDR-SB score, respectively.

• 6-Conv Transfer learning AD/CN, CDR-SB, ADAS: We added one more convolu-

tional layer on the Baseline 3D CNN model and made a 6-layer 3D CNN model in order to

provide a fairer comparison with CAAT in terms of the number of the network parameters

and model depth. We also applied the traditional transfer learning method (pre-training on

CN vs. AD, high vs. low ADAS-cog score, and high vs. low CDR-SB score) on this 6-layer

3D CNN model.

• 6-Conv Transfer learning ensemble: The three predictions of 6-Conv Transfer learning

AD/CN, 6-Conv Transfer learning CDR-SB, 6-Conv Transfer learning ADAS were ensembled

and the final result was decided by a majority voting method.

• CAAT AD, CAAT CDR-SB, CAAT ADAS: We report the results of three implemen-

tations of our CAAT model, each with one of the following source tasks: AD versus CN

classification; high versus low ADAS cog score classification and; high versus low CDR SB

Score classification.

5[https://github.com/aramis-lab/AD-DL/tree/master/data/ADNI]
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• CAAT ensemble: In order to reduce the effects of overfitting, the prediction results of CAAT

AD, CAAT CDR-SB, CAAT ADAS were ensembled using majority voting.

• Transfer Learning AD/CN + CAAT AD, Transfer Learning CDR-SB + CAAT

AD, Transfer Learning ADAS + CAAT AD: We applied the traditional transfer learn-

ing method for the target network part on Conv1, Con2, and Conv3 layers by using pretrained

weights of classification tasks for CN versus AD, high versus low ADAS-cog score, and high

versus low CDR-SB score, respectively. Meanwhile, we passed the predicted CAM associated

with AD from the source task to the target task network working with the predicted heatmap

as the transferred attention as well. Hence these methods use both traditional transfer learning

and also CAAT to transfer attention maps from the source task of AD versus CN classification.

• Transfer Learning + CAAT AD ensemble: This is similar to CAAT ensemble, we

ensembled the three predictions of Transfer Learning AD/CN + CAAT AD, Transfer Learning

CDR-SB + CAAT AD, Transfer Learning ADAS + CAAT AD using majority voting.

4.3. Results comparing CAAT with existing methods

Experimental results in Table 3 indicate that our proposed CAAT ensemble method has the

highest accuracy among all methods tested. Compared with 3D ROI-based CNN, the CAAT ensem-

ble model archives slightly higher accuracy without requiring expert knowledge. The results show

that the source task in our CAAT method is able to detect the important brain areas via generating

CAM and the attention mechanism enable the network focus on the important brain information,

which are helpful for classifying pMCI and sMCI in the target task.

4.4. Impact of Tansfer learning

We further conducted a series of experiments to investigate the impact of the traditional transfer

learning methods. Experiments results are reported in Table 4. We make the following observations

from the experimental results. The results show traditional transfer learning consistently outper-

forms the baseline solution. This is likely due to transfer learning’s ability to leverage the larger

dataset used for the source tasks ( AD versus CN, high versus low ADAS-cog and high versus low

CDR-SB classification) to learn useful features for the target task in pMCI versus sMCI classification.

The results show traditional transfer learning using 6 Conv Layers generally perform better than tra-

ditional transfer learning using just 5 Conv layers. It verifies that using a deeper model can produce
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pMCI vs. sMCI

Model SEN SPE F1 ACC(%)

Baseline 3D CNN 0.71 0.71 0.71 70.84

3D ROI-based CNN [9] - - - 74.00

3D patch-level CNN [15] - - - 70.00

CAAT AD 0.70 0.75 0.72 73.03

CAAT CDR-SB 0.75 0.71 0.73 72.70

CAAT ADAS 0.73 0.74 0.73 73.03

CAAT ensemble 0.75 0.75 0.75 74.61

Table 3: Experimental results comparing existing CNN-based methods for pMCI versus sMCI classification against

variants of our CAAT method. For fair comparison, all the existing methods reported in this table were trained and

tested using the same train/validation splits as reported on the review paper [13]. The best results for each evaluation

metric is highlighted in bold text font. SEN, SPE, F1 and ACC refer to the sensitivity, specificity, F1 score and

accuracy metrics respectively.

better results. This maybe due to the extra hidden layer creating more abstract and discriminative

features than a shallower model.

Compared to the other models, our proposed CAAT ensemble model achieves the highest per-

formance for all metrics with the exception of specificity where it only performs 0.01 worse than the

best performer. In contrast, none of the traditional transfer learning solutions consistently performs

near the best for all metrics. This demonstrates that the prediction ability of the CAAT model is

improved by using the attention mechanism. The heatmap from CAM (AD, high ADAS-cog, and

high CDR-SB) helps the model to focus on the parts of the brain that was most discriminative for

the source task. Since both the source and target tasks are very related, these attention heatmaps

when applied to the target task helps the model to ignore unimportant regions of the brain and

thereby help CAAT reduce the amount of overfitting. The results also show combining traditional

transfer learning and CAAT performs slightly worse than using CAAT by itself.

4.5. Ablation Study

We performed an ablation study to gain insights into our CAAT. The results are reported in

table 5.
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pMCI vs. sMCI

Model SEN SPE F1 ACC(%)

Baseline 3D CNN 0.71 0.71 0.71 70.84

Transfer Learning AD/CN 0.71 0.71 0.71 71.35

Transfer Learning CDR-SB 0.67 0.75 0.70 71.00

Transfer Learning ADAS 0.74 0.67 0.72 70.50

Transfer learning ensemble 0.73 0.72 0.72 72.18

6-Conv Transfer Learning AD/CN 0.71 0.76 0.73 73.03

6-Conv Transfer Learning CDR-SB 0.72 0.71 0.72 71.85

6-Conv Transfer Learning ADAS 0.70 0.72 0.71 71.34

6-Conv Transfer learning ensemble 0.72 0.75 0.73 73.37

CAAT AD 0.70 0.75 0.72 73.03

CAAT CDR-SB 0.75 0.71 0.73 72.70

CAAT ADAS 0.73 0.74 0.73 73.03

CAAT ensemble 0.75 0.75 0.75 74.61

Transfer Learning AD/CN + CAAT AD 0.72 0.74 0.73 73.03

Transfer Learning CDR-SB + CAAT AD 0.72 0.75 0.73 73.52

Transfer Learning ADAS + CAAT AD 0.75 0.71 0.73 72.86

Transfer Learning + CAAT AD ensemble 0.75 0.73 0.74 74.04

Table 4: Experimental results comparing traditional transfer learning against our CAAT variants. The best results

for each evaluation metric is highlighted in bold text font. SEN, SPE, F1 and ACC refer to the sensitivity, specificity,

F1 score and accuracy metrics respectively.
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pMCI vs. sMCI

Model SEN SPE F1 ACC(%)

CAAT AD-attention on Layer Conv3 0.705 0.715 0.710 71.01

CAAT AD-intra-task attention 0.709 0.715 0.709 70.68

CAAT AD-no signal 0.705 0.722 0.711 71.34

CAAT AD 0.705 0.753 0.723 73.03

Table 5: Results of an ablation study of our CAAT AD method. The best results for each evaluation metric is

highlighted in bold text font. SEN, SPE, F1 and ACC refer to the sensitivity, specificity, F1 score and accuracy

metrics respectively.

We observed that adding the attention on the layer Conv4 of the CAAT model performs better

than on the layer Con3. This is likely due to the fact the latter convolutional layer (Conv4) learn

more high level features and patterns than the earlier layer (Conv3). The attention derived from the

higher level features is more likely to highlight larger areas of importance than very detailed small

regions. This coarser grained attention will be less likely cause overfitting.

We perform the following tests to determine how the attention impacts the performance of our

proposed model. First, we turned off the loss function between the predicted heatmap P and the

predicted CAM R, we describe this model as CAAT AD-intra-task attention because this means

the model was no longer trying to train the attention to mimic the attention from the source task.

Additionally, we stopped the model from using any attention by fixing each voxel value of the pre-

dicted heatmap P to a constant value of 1 / (11 x 13 x 11), where the denominator is the heatmap

size. We denote this model as CAAT AD-no signal.

The results show that both CAAT AD-intra-task attention and CAAT AD-no signal perform worse

that our normal CAAT AD model. This shows that attention learnt only from the target task is not

as effective as attention transferred from the source task. Second, not using any attention is worse

than using transferred attention.

The ablation study experiments show that the attention transfer mechanism in our proposed CAAT

method is critical to the good performance of CAAT AD. The output CAM from the source task

passed to callibrate the predicted attention heatmap enables the network to focus on the highly
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predictive parts of the brain based on knowledge gained from performing the source task.

5. Conclusion

In this paper, we presented our Class Activation Attention Transfer (CAAT) method which offers

an alternative way of leveraging labeled data from a source classification task to enhance the classi-

fication accuracy of a target task. CAAT transfers attention from the source task to the target task

instead of transferring the weights. Our experiments show transferring attention works better than

transferring weights for the pMCI versus sMCI classification task. In addition, when we visualized

the attention heatmaps (CAMs) that are transferred to the target task, we found the regions high-

lighted by the heatmap match known important regions for diagnosing Alzheimer’s disease. Results

also show that CAAT can outperform the previous state-of-the-art region of interest-based solutions

that required expert domain knowledge to manually select regions of interest. In contrast, CAAT

automatically selects the regions of interest via the CAM heatmaps.

For future work, we would like to explore predicting, ADAS, MMSE, CDR scores, or predicting

brain age as the target task and using a source task such as AD versus CN classification.

Acknowledgement

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI

contributed to the design and implementation of ADNI and/or provided data but did not partici-

pate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:

http://adni.loni.usc.edu/wpcontent/uploads/how to apply/ADNI Acknowledgement List.pdf

References

[1] G. Moya-Alvarado, N. Gershoni-Emek, E. Perlson, F. C. Bronfman, Neurodegeneration and

alzheimer’s disease (ad). what can proteomics tell us about the alzheimer’s brain?, Molecular

& cellular proteomics 15 (2) (2016) 409–425. doi:https://doi:10.1074/mcp.R115.053330.

URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739664/

[2] J. L. Cummings, C. Back, The cholinergic hypothesis of neuropsychiatric symptoms in

alzheimer’s disease, The American Journal of Geriatric Psychiatry 6 (2, Supplement 1) (1998)

19

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739664/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739664/
https://doi.org/https://doi: 10.1074/mcp.R115.053330
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739664/
https://www.sciencedirect.com/science/article/pii/S106474811261063X
https://www.sciencedirect.com/science/article/pii/S106474811261063X


S64–S78. doi:https://doi.org/10.1097/00019442-199821001-00009.

URL https://www.sciencedirect.com/science/article/pii/S106474811261063X

[3] S. Karantzoulis, J. E. Galvin, Distinguishing alzheimer’s disease from other major forms of

dementia, Expert Rev Neurother 11 (11) (2011) 1579–1591. doi:https://doi:10.1586/ern.

11.155.

URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225285/

[4] M. H. Tabert, J. J. Manly, X. Liu, G. H. Pelton, S. Rosenblum, M. Jacobs, D. Zamora,

M. Goodkind, K. Bell, Y. Stern, D. P. Devanand, Neuropsychological prediction of conversion

to alzheimer disease in patients with mild cognitive impairment, Archives of General Psychi-

atry 63 (8) (2006) 916–924. arXiv:https://jamanetwork.com/journals/jamapsychiatry/

articlepdf/668194/yoa60002.pdf, doi:10.1001/archpsyc.63.8.916.

URL https://doi.org/10.1001/archpsyc.63.8.916

[5] M. A. DeTure, D. W. Dickson, The neuropathological diagnosis of alzheimer’s disease, Molecular

Neurodegeneration 14 (32) (2019). doi:https://doi.org/10.1186/s13024-019-0333-5.

[6] G. K. Bhatti, A. P. Reddy, P. H. Reddy, J. S. Bhatti, Lifestyle modifications and nutritional

interventions in aging-associated cognitive decline and alzheimer’s disease, Frontiers in Aging

Neuroscience 11 (2020) 369. doi:10.3389/fnagi.2019.00369.

URL https://www.frontiersin.org/article/10.3389/fnagi.2019.00369

[7] M. J. Knight, B. McCann, R. A. Kauppinen, E. J. Coulthard, Magnetic resonance imaging to

detect early molecular and cellular changes in alzheimer’s disease, Frontiers in Aging Neuro-

science 8 (2016) 139. doi:10.3389/fnagi.2016.00139.

URL https://www.frontiersin.org/article/10.3389/fnagi.2016.00139

[8] C. N. Harada, M. C. N. Love, K. Triebel, Normal cognitive aging, Clin Geriatr Med 29 (4)

(2013) 737–52. doi:https://doi:10.1016/j.cger.2013.07.002.

URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015335/

[9] W. Lin, T. Tong, Q. Gao, D. Guo, X. Du, Y. Yang, G. Guo, M. Xiao, M. Du, X. Qu, T. A.

D. N. I. , Convolutional neural networks-based MRI image analysis for the alzheimer’s disease

prediction from mild cognitive impairment, Frontiers in Neuroscience 12 (2018) 777. doi:

10.3389/fnins.2018.00777.

URL https://www.frontiersin.org/article/10.3389/fnins.2018.00777

20

https://doi.org/https://doi.org/10.1097/00019442-199821001-00009
https://www.sciencedirect.com/science/article/pii/S106474811261063X
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225285/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225285/
https://doi.org/https://doi: 10.1586/ern.11.155
https://doi.org/https://doi: 10.1586/ern.11.155
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225285/
https://doi.org/10.1001/archpsyc.63.8.916
https://doi.org/10.1001/archpsyc.63.8.916
http://arxiv.org/abs/https://jamanetwork.com/journals/jamapsychiatry/articlepdf/668194/yoa60002.pdf
http://arxiv.org/abs/https://jamanetwork.com/journals/jamapsychiatry/articlepdf/668194/yoa60002.pdf
https://doi.org/10.1001/archpsyc.63.8.916
https://doi.org/10.1001/archpsyc.63.8.916
https://doi.org/https://doi.org/10.1186/s13024-019-0333-5
https://www.frontiersin.org/article/10.3389/fnagi.2019.00369
https://www.frontiersin.org/article/10.3389/fnagi.2019.00369
https://doi.org/10.3389/fnagi.2019.00369
https://www.frontiersin.org/article/10.3389/fnagi.2019.00369
https://www.frontiersin.org/article/10.3389/fnagi.2016.00139
https://www.frontiersin.org/article/10.3389/fnagi.2016.00139
https://doi.org/10.3389/fnagi.2016.00139
https://www.frontiersin.org/article/10.3389/fnagi.2016.00139
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015335/
https://doi.org/https://doi: 10.1016/j.cger.2013.07.002
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015335/
https://www.frontiersin.org/article/10.3389/fnins.2018.00777
https://www.frontiersin.org/article/10.3389/fnins.2018.00777
https://doi.org/10.3389/fnins.2018.00777
https://doi.org/10.3389/fnins.2018.00777
https://www.frontiersin.org/article/10.3389/fnins.2018.00777


[10] B. Cheng, M. Liu, D. Zhang, D. Shen, Robust multi-label transfer feature learning for early

diagnosis of alzheimer’s disease, Brain Imaging and Behavior 63 (2019) 138–153. doi:10.1007/

s11682-018-9846-8.

URL https://doi.org/10.1007/s11682-018-9846-8

[11] K. Aderghal, A. Khvostikov, A. Krylov, J. Benois-Pineau, K. Afdel, G. Catheline, Classification

of alzheimer disease on imaging modalities with deep cnns using cross-modal transfer learning,

in: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS),

2018, pp. 345–350. doi:10.1109/CBMS.2018.00067.

[12] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discrimi-

native localization, in: Computer Vision and Pattern Recognition, 2016.
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