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Abstract

This thesis explores the issue of object placement in the context of parallel object ori-
ented databases. The particular parallel hardware architecture targeted is the shared
nothing architecture where each node has its own processor, memory and disk. The
particular query parallelisation method employed is intra-operator parallelism where
each node works on the portion of the data set which resides on its own local disk.
In such an environment the object placement algorithm must balance two conflicting
objectives. The first is to minimise the number of internode object traversals and the
second is to maximise the degree of computational parallelism.

This thesis proposes a new similarity-based two phased approach to object place-
ment for the particular situation outlined above. The first phase is an adaptation of
existing similarity based declustering algorithms developed for uniprocessor multiple
disk systems. The objective of the first phase is to balance the two conflicting objec-
tives outlined above. The second phase is an optimisation step in which objects are
clustered into pages for optimal use of page grain caching. The objective of the second
phase is to minimise the number of remote page loads.

The performance of the two phased approach was investigated experimentally.
The results show that the two phase approach was able to reduce the number of in-
ternode object references and remote page loads while preserving a high degree of
parallelism.
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Chapter 1

Introduction

This thesis explores the issue of object placement in the context of parallel object ori-
ented databases (OODBMS). There are many parallel architectures on which paral-
lel OODBMS are run. The particular parallel architecture explored in this thesis is
the ‘shared nothing’ architecture where each node has its own processor, memory
and disk. Communication is performed via explicit message passing. There also are
many different ways queries can be parallelised in a parallel OODBMS. The particular
method explored in this thesis is termed ‘intra-operator’ parallelism. In intra-operator
parallelism each processor works on the portion of the data set which resides on its
own local disk. The object placement strategy in such a situation should attempt to
minimise the number of remote page loads and maximise the degree of parallelism.

We have adopted an offline approach to the placement of objects. In offline object
placement the placement is determined offline with the use of dynamic or static fre-
quency counts. Dynamic frequency counts record the frequency with which an object
references another and static reference count records the presence or absence of object
references between two objects. The placement determined by the object placement
algorithm is achieved by rearranging the objects offline. This is in contrast to the on-
line approach to object placement, in which object placement is determined when the
database is in operation and objects are rearranged dynamically.

The focus of this thesis is to develop new object placement strategies for the par-
ticular situation outlined above. In addition the performance of the various object
placement strategies developed in this thesis is investigated with different query ac-
cess patterns.

1.1 Motivation

OODBMS provide rich facilities for the modelling and processing of structural as
well as behavioural semantics associated with complex objects in many applications
[Zdonik and Maier 1990]. Some of these applications include Computer-Aided De-
sign (CAD), office information systems, spatial information systems, etc. In most cases
query facilities which support retrieval of objects over large data sets are required. Re-
search into parallel object-oriented database systems demonstrates that parallelism is
a highly effective tool for providing high performance systems in large object oriented
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2 Introduction

data bases [Thakore and Su 1994; DeWitt et al. 1996; Imasaki et al. 1997]. Similar re-
search into parallel relational database systems (RDBMS) has also proved successful
in extracting performance [Ghandeharizadeh 1990; Mehta and DeWitt 1995; Copeland
et al. 1988].

Effective data placement is crucial to the performance of any parallel database
system since it is an important lever for load balancing [Ghandeharizadeh 1990; Pad-
manadhan and Baru 92; Mehta and DeWitt 1995; Copeland et al. 1988].

1.2 Overview of Important Concepts

Object placement in parallel OODBMS consists of two important concepts: decluster-
ing and clustering. Declustering in the context of parallel OODBMS corresponds to
the partitioning of the graph representing the object base across the disks of a par-
allel computer. The way the graph is partitioned depends on the parallel hardware
architecture used. For a uniprocessor, multiple disk hardware architecture, the aim of
declustering is to load objects involved in the same query in parallel.

However for a shared nothing architecture, where each node has its own processor,
disk and memory, the objective is to:

a) reduce the number of internode object references

b) maximise parallelism.

These objectives are in conflict because a) argues for assigning objects to a few nodes
in order to group the relevant objects together, while b) advocates the distribution of
the objects across as many nodes as possible.

The degree of declustering is a measure of the number of nodes the object base is
declustered across.

Clustering in the context of parallel OODBMS is the grouping together in pages of
objects that are required by remote nodes. This process reduces the number of remote
page loads incurred during parallel query processing.

1.3 Approach

This thesis explores a new two phased similarity graph partitioning approach to object
placement in a shared nothing system, using intra-operator parallelism.

The first phase is the declustering phase which attempts to reduce internode object
references while attempting to maximise parallelism. This is accomplished by first
assigning objects to nodes either in order of decreasing frequency counts or in order of
reachability. The decision as to which node an object oi is assigned to is determined as
follows: object oi is assigned to the node N j which has the largest measure of similarity
between the objects in N j and oi. We have chosen a similarity measure which states
two objects are more similar to each other when they are accessed in a navigational
manner but less similar when they can be accessed in a parallel manner.



�
1.4 Contribution 3

The second phase is the clustering phase, which attempts to cluster objects together
in order to reduce the number of remote page loads. This is accomplished by grouping
together objects which are often referenced by a remote node together. Therefore in
this phase objects are not moved from one node to another but rather are grouped
into pages within the node which was assigned to it by the declustering phase. Again
we use the similarity concept to determine which node an object should be clustered
for. However the measure of similarity is redefined for this phase by dropping the
requirement to place apart objects that can be accessed in a parallel manner. This is
intuitively explained by the fact grouping objects in pages within a node does not
effect the degree of parallelism to which objects can be accessed by a query.

1.4 Contribution

The key contribution of this thesis is the application of the similarity approach to ob-
ject placement in a shared nothing OODBMS, using intra-operator parallelism which
has previously not been tried. Two phases were identified to be necessary when ap-
plying the similarity approach to the shared nothing systems. The first phase termed
the declustering phase is an adaptation of the similarity-based declustering approach
applied by Liu and Shekhar [1996] to the problem of data placement in uniprocessor,
multiple disk hardware architectures. The second phase termed the clustering phase
was identified by the work done in this thesis to be a necessary second step in reduc-
ing remote page loads. The combination of the two phases to the placement of objects
in a shared nothing parallel OODBMS is introduced for the first time in this thesis.

1.5 A Theoretical Framework

We consider an object base as a directed graph. Each node represents an object and
an edge � oi � o j � represents a reference from oi to o j. The weights of edges can be as-
signed either by dynamic reference counts or static reference counts. Dynamic ref-
erence counts are determined by the frequency of traversal of references of the object
base. Static reference counts assign a weight to the edge joining an object with another
object a value of 1 if a reference exists otherwise it assigns a value of 0 [Tsangaris and
Naughton 1991]. This makes object placement in an object oriented database a graph
partitioning problem. For this study we use dynamic reference counts to represent
weights on the edges of the graph.

Consider a shared nothing architecture with N nodes, and a set of queries Q1 � Q2 ��������� Qm.
Also assume the queries are processed via intra-operator parallelism. We seek an ob-
ject placement which will make ∑m

i � 1 Cost � Qi � minimum where Cost � Qi � is the cost to
execute query Qi on the N node shared-nothing architecture.

The main issue here is how to balance the two conflicting goals as mentioned in
Ghandeharizadeh, Wilhite, Lin, and Zhao [1994].

� The object placement strategy should assign all the relevant traversals by a query
to a single node in order to minimise the number of internode object references
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� It should distribute the workload of an application evenly across the nodes in
order to maximise the processing capability of the system.

1.6 Organisation

The remainder of this thesis is organised as follows:
Chapter 2 provides a background of the related concepts and work done in both

data placement in parallel RDBMS and clustering in uniprocessor OODBMS. The
ideas present in this chapter were instrumental in the design of the two phased ap-
proach to object placement.

Chapter 3 describes an existing similarity approach to data declustering in an
uniprocessor multiple disk environment. Then the chapter presents a new similarity-
based two phased approach to object placement in a shared nothing parallel OODBMS.

Chapter 4 presents the results of running two experiments. The first was designed
to investigate the scalability of the various object placement methods developed and
the second investigates the ability for the various placement methods to adapt to non-
favourable training conditions.

Chapter 5 introduces the concept of ‘parsets’, a way of parallelising set operations.
Some issues relating to object placement in parsets are discussed and a new way of
determining the optimal degree of declustering is described.

Chapter 6 concludes this thesis by summarising the findings made during this
project and also outlines directions for further work.



Chapter 2

Background

The previous chapter identified the particular parallel architecture and parallel query
execution method investigated in this thesis. In addition our approach to object place-
ment in parallel OODBMS was also explained. However the broader context from
which these ideas originated was not presented.

This chapter aims to place the concepts and ideas identified in the previous chapter
in context.

The different parallel architectures and parallel query execution methods avaliable
are outlined. In addition this chapter outlines how ideas from uniprocessor OODBMS
and parallel RDBMS relate to object placement in parallel OODBMS.

2.1 Parallel Architectures

The objective of object placement algorithms differs vastly depending on the particu-
lar parallel architecture used. There are three main architectures for building a parallel
object oriented database. They comprise of shared memory, shared disk and shared noth-
ing systems.

Shared memory computers comprise of computers which share both memory and
disks across all processors. They do not require message passing and are relatively
easy to load balance. However adding additional processor, memory and disk may
cause increased contention of memory and disk usage.

Shared disk computers consists of multiple nodes, each with own processor and
memory. All nodes share a parallel file system on which files are fragmented across
multiple disks. Files can be loaded in parallel. Object placement in the context of
shared disk systems require objects which are likely to be accessed together to be
placed on distinct node. Objects placed in this way are more likely to be loaded in par-
allel. The motivation for using a parallel file system is to reduce IO costs by allowing
nodes to read and write fragments of a file in parallel across the shared disks. How-
ever when many processors attempt to read or write concurrently there is potential
for disk contention. In general a parallel file system creates an opaque layer between
the OODBMS and the storage device employed. Therefore an OODBMS built on top
of a parallel file system can not rearrange the placement of objects in order to reduce
disk contention. However in some shared disk systems the parallel file system can

5
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be bypassed by writing to particular locations of the file on which the object base is
stored. Once this is accomplished the shared disk system can be treated as a shared
nothing system. This is in fact the approach taken in the experiments conducted in
this thesis.

Shared nothing computers consists of multiple nodes, each with own processor,
memory and disks. Communication is achieved via message passing across a com-
mon interconnection network. Object placement in a shared nothing system attempt
to minimise remote page loads and maximise parallelism by placing objects which
are accessed together in a navigational manner together and placing apart objects that
can be accessed in a parallel manner. Many existing parallel relational databases are
built on shared nothing systems. They include DBC/1012, Gamma, Bubba and Tan-
dem. The shared nothing architecture may be viewed as being more scalable when
compared to the other parallel architectures due to the transparency it provides with
respect to placement. Therefore as the number of nodes increases, disk contention
can be kept low by intelligent placement of objects on the private disks of the shared
nothing nodes. The shared nothing architecture was chosen as the parallel architec-
ture investigated in this thesis due to its popularity in the parallel database world and
its scalable nature.

2.2 Parallel Query Processing Methods

There are three primary methods of processing queries in parallel on shared nothing
systems: inter-query, inter-operator, and intra-operator parallelism.

inter-query parallelism Multiple queries are executed concurrently.

inter-operator parallelism The operators1 involved in one query are processed in a
pipelined manner whereby the results of one operator form part of the input
to another. Load balancing is difficult, if not impossible, using this method as
each processor is loaded proportionally to the amount of data it has to process.
This amount cannot be chosen by the implementor or the query optimiser, and
cannot be predicted very well [Goetz 1993].

intra-operator parallelism In intra-operator parallelism, one operator is processed
across all the nodes of the parallel system. Typically, each node works on its
own disjoint subset of the problem and its own data set. Parallelism is depen-
dent on the way data items are positioned.

We have chosen intra-operator parallelism as the method used to process queries in
this thesis since it is the most sensitive to object placement.

1Operations involved in processing sets of objects or tuples of records (eg. join, select, etc.)
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2.3 Parallel relational databases

A large amount of work has been done on data placement for parallel RDBMS. Two
important problems identified from this previous work include data partitioning and
partial decluster. This section outlines previously developed solutions to these two
problems.

2.3.1 Data partitioning

Data partitioning in shared nothing parallel relational databases is dominated by three
main methods: round robin, hash and range partitioning.

Round robin partitioning places tuples of a relation across the nodes of a shared
nothing parallel RDBMS in a round robin fashion. This partitioning approach is ideal
for a sequential scan of an entire relation, since it balances the number of tuples each
node considers in a most optimal manner. For this reason round robin partitioning
is also sometimes used to place objects in a parallel OODBMS. However, round robin
object placement should only be used in a parallel OODBMS context when the queries
accessing the objects partitioned contain no navigational component. The reason be-
ing that round robin partitioning, like all data partitioning methods used in parallel
RDBMS, do not consider object references.

Hash partitioning for RDBMS involves assigning tuples of a relation to nodes
based on the hash value of a particular attribute chosen by the user. This method
of data partitioning is ideal for exact match queries where the join attribute is the hash
attribute. However, the hash function may not place data items evenly across the
nodes of the shared nothing system. Therefore, a full table scan on a relation which
has been partitioned via hash partitioning may result in low performance due to the
low degree of parallelism.

Range partitioning in parallel RDBMS involves assigning tuples of a relation to
nodes based on the value of an attribute falling within a range of values assigned to
each node of the parallel system. This data partitioning method allows the execu-
tion of range queries to be localised to a subset of nodes of the parallel system. The
limitation of this method is that the range attribute must be pre-determined by the
user.

All the methods described above maybe applied to OODBMS as was indicated by
DeWitt, Naughton, Shafer, and Venkataraman [1996] on their ‘parset’ paper. However
all the above partitioning strategies are only ideal for particular types of queries run
and thus require a high level of user interaction. Further, the above partition strategies
when applied to parallel OODBMS suffer from a lack of consideration of internode
object references.

2.3.2 Partial declustering

Much work in data placement in parallel relational databases has centered around
the problem of partial declustering. Partial declustering in shared nothing parallel
relational databases consists of two steps: determining the degree of declustering;
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and determining the subset of nodes to which fragments of the declustered relation is
to be assigned to.

The degree of declustering is a measure of the number of nodes the object base
is to be declustered across. The startup and termination costs of parallel query pro-
cessing increases as the degree of declustering increases. However, as the degree of
declustering increases, the computation time of each processor decreases due to a
higher degree of parallelism. Therefore, to extract optimal performance, the degree
of declustering must be chosen so that the benefits derived from the higher degree of
parallelism outweighs the penalty incurred from the startup and termination cost of
running the parallel query.

In this thesis we outline a method of partial declustering for parallel OODBMS
which borrows ideas from partial declustering of parallel RDBMS presented in this
section.

Ghandeharizadeh [1990] developed a partitioning strategy for parallel relational
databases called multidimensional partitioning strategy (MDPS). He concluded that
the execution of queries with minimal resource requirements should be localised to a
few processors in order to avoid the communication overhead associated with paral-
lelism. In addition he concluded that for queries with a greater demand for resources,
a higher degree of parallelism is required. It was to accomplish this balance between
localisation and parallelism he proposed MDPS.

MDPS partitioned the relation based on the requirements of queries which consti-
tute the workload and the processing capability of the system. Using this information
he construct a grid directory.

More precisely the grid directory construction requires the following input param-
eters:

1. the cardinality of each fragment.

2. the splitting strategy.

3. the relation to be declustered.

4. the partitioning attributes.

Given these inputs, the algorithm constructs a grid directory which records the pro-
cessor to which each fragment of the relation is assigned. A query optimiser can po-
tentially use this information to localise the execution of a query to only the processors
which contain the desired tuples of a relation. MDPS was demonstrated to be superior
when compared to range and hash partitioning strategies. It is a variation on MDPS
that we proposed as a new way of determining the optimal degree of declustering in
a parallel OODBMS.

2.4 Clustering for uniprocessor OODBMS

A considerable amount of work has been done on clustering of objects into pages in
uniprocessor OODBMS. The algorithms proposed in this thesis have their roots in
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uniprocessor clustering algorithms.

2.4.1 Similarity between clustering for uniprocessor OODBMS and declus-
tering in parallel OODBMS

Clustering for uniprocessor OODBMS attempts to place objects onto pages such that
for a given application the number of page faults becomes minimal. Uniprocessor
clustering algorithms are divided into two categories — sequence based and partition
based — both of which treat the object base as a clustering graph (CG) [Gerlhof et al.
1993].

The vertices and edges of the graph are labelled with weights. Vertex weights
represent object size and edge weights represent frequency of traversal of one object
to another (dynamic object reference counts) or presence of reference between objects
(static reference counts).

The first category of uniprocessor clustering algorithm is sequence based map-
ping algorithms which first sorts the objects in the CG to some criteria (eg. order by
decreasing reference count). Once sorted, the CG is traversed according to a traversal
algorithm which produces a sequence that is used to order the storage of objects onto
pages.

The second type of uniprocessor algorithm is partition based clustering algorithms
which considers the object placement problem as a graph partitioning problem in
which the min-cut criteria is to be satisfied for page boundaries. This second method
is analagous to the approach proposed in this thesis to decluster the object base for a
parallel OODBMS. For declustering in parallel OODBMS the object base is also consid-
ered as a graph partitioning problem but the min-cut criteria is to be satisfied between
node boundaries instead of page boundaries. In the uniprocessor case, satisfying the
min-cut criteria results in a reduction in the number of page faults, which is analagous
to the parallel case in which a reduction in the number of remote page loads results.

There are two types of partition based algorithms for clustering in uniprocessor
OODBMS: iterative improvement and constructive partitioning. Iterative improvement
algorithms such as the Kernighan-Lin Heuristic (KL) [Kernighan and Lin 1970], it-
eratively improve partitions by swapping objects between partitions attempting to
satisfy the min-cut criteria. Constructive algorithms such as greedy graph partition-
ing (GGP) [Gerlhof et al. 1993] attempt to satisfy the min-cut criteria by first assigning
only one object to a partition and then combine partitions in a greedy manner.

In a study done by Gerlhof, Kemper, Kilger, and Moerkotte [1993] a number of
existing uniprocessor clustering algorithms were compared and a new greedy graph
partitioning algorithm with look ahead (GGPla) was proposed. They also conclude
that constructive partitioning algorithms were considerably faster than iterative im-
provement algorithms since they ran in linear time and the iterative improvement
algorithms involved a large amount of useless swaps which had to be discarded.
The constructive algorithms only produced clustering results which were of slightly
poorer quality when compared to their iterative counterparts. Therefore they recom-
mended that for large databases the greedy constructive approach should be taken for
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clustering the object base is a uniprocessor OODBMS. This supports our choice of a
greedy algorithm for the purpose of declustering a parallel OODBMS, given the analo-
gies outlined previously between clustering for uniprocessor OODBMS and decluster-
ing for parallel OODBMS.

2.4.2 Dynamic vs Static Frequency Counts

The weights assigned to the edges of the clustering graph (CG) as stated in the previ-
ous section can either be dynamic reference counts or static reference counts. Dynamic
reference counts contain historical information on query access patterns which can be
used to predict the likely pattern in which the object base will be traversed. Static
reference counts, on the other hand, only contain information on the structure of the
object references present in the object base and hence does not contain information of
query access patterns.

This thesis uses dynamic frequency counts to assign weights to the CG graph2.

2.5 Summary

Methods developed for data partitioning in parallel RDBMS can be applied to place
objects in a parallel OODBMS. However they are desirable only for particular types
of queries and thus require a high level of user interaction. In addition methods de-
veloped for RDBMS when used to place objects involved in a query where navigation
is present suffer from a lack of consideration of internode object references.

The application of the graph partitioning approach to place objects in a parallel
OODBMS can be seen to be analogous to the application of the same approach to
cluster objects of a uniprocessor OODBMS.

2In this thesis dynamic reference weights are used to determine object placement offline



Chapter 3

Our Approach

The background material presented in the previous chapter placed into context the
particular problem this thesis is attempting to solve. However, the similarity approach
upon which we based our object placement algorithms were omitted.

In this chapter we address this ommission by first presenting the way in which
the similarity based approach has previously been used to solve the problem of data
declustering in a uniprocessor, multiple disk environment. We then present a new
similarity based two phased approach for solving the different problem of object
placement in a shared nothing parallel OODBMS using intra-operator parallelism.

3.1 Similarity-Based Declustering

Fang, Lee, and Chang [1986] introduced similarity graph partitioning to decluster data
across multiple disks of a uniprocessor, multiple disk system.

Fang, Lee, and Chang [1986] considered two groups of data items Gi and G j similar
if, for every point pk in Gi there exists a point pl in G j in which pk is a nearest neighbour
of pl , or pl is a nearest neighbour of pk. Minimal spanning trees and shortest spanning
paths where proposed to divide a set of objects into two ‘similar groups’.

Liu and Shekhar [1996] proposed a variation of this approach in which query fre-
quency distribution information was used to define similarity. Again they were at-
tempting to solve the problem of declustering in a uniprocessor, multiple disk envi-
ronment. They proposed a general approach to declustering which they applied to
grid files of a spatial database. Their aim was to maximise the chances that a pair
of atomic data-items that are frequently accessed together by queries are allocated to
distinct disks, they termed this the max-cut criteria. They defined similarity between
two items as the weight of the edge joining two data items. The weight is assigned as
the likelihood that the pair of data-items will be accessed together by queries in the
query set of interest.

Liu and Shekhar [1996] proposed two heuristic techniques to perform the similar-
ity based declustering. The first is a incremental technique which is is faster than the
second global max-cut graph partitioning technique.

The incremental method selects an unallocated data item and then retrieves all the
data items that are in a window around the selected data item. The window around

11
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a data-item ou is a set of data items which are likely to be accessed together with the
data-item ou. The algorithm iterates through the unallocated objects in the window in
a greedy manner placing the data-items into disks based on the max-cut criteria.

The global max-cut graph partitioning technique initially partitions the data-items
by some less optimal method like the incremental method and then repeatedly com-
pares and swaps pairs of data items for possible improvements. This is analogous
to iterative improvement algorithms used in uniprocessor clustering as described in
Section 2.4.1.

Liu and Shekhar [1996] concluded that the first method provides the best trade-
off between the parallel response time for queries and the cost of declustering. This
supports the conclusion given by Gerlhof, Kemper, Kilger, and Moerkotte [1993] for
clustering in uniprocessor OODBMS (see Section 2.4.1). It is a variation on the first
method that we have adopted to decluster our database. However, instead of declus-
tering with the aim of parallelising IO, this chapter explores declustering with the aim
of minimising internode object references and maximising computational parallelism.

3.2 Two Phased Approach to Object Placement

The object placement algorithm outlined in this chapter consists of two phases. The
first phase is a declustering phase in which a greedy similarity graph partitioning al-
gorithm is used to assign objects into nodes of the shared-nothing system. The aim
of the first phase is to minimise internode traversals and maximise parallelism. Once
assigned to nodes, the second phase attempts to cluster objects residing at each node
into pages with the aim of reducing the occurrence of remote page requests. There-
fore, objects that are likely to be accessed by another remote node are clustered to-
gether. Both phases use query frequency distribution information stored in dynamic
frequency counts to decide the placement of objects.

3.2.1 Declustering

We use a variation of the similarity based approach proposed by [Liu and Shekhar
1996] to decluster the objects in the data set. Unlike [Liu and Shekhar 1996] who
considered data placement in a uniprocessor, multiple disk environment, we target
a share-nothing architecture. Our algorithm differs from [Liu and Shekhar 1996] in
that we attempt to place objects that have a higher degree of similarity together in the
disk of the same node in contrast to their goal of placing similar data items on different
disks.

3.2.1.1 Definition of Declustering Similarity, Sd

The goal of the declustering similarity equation presented in this section is to balance
the two conflicting objectives: minimised number of internode object references and
maximised operation parallelism as discussed in Section 1.2.



�
3.2 Two Phased Approach to Object Placement 13

Our definition of declustering similarity states that two objects are more similar if
they are accessed together in a navigational manner but less similar if the two objects
can be accessed together in a parallel manner. This enables the algorithm to preserve a
degree of parallelism while decreasing internode object references.

The declustering similarity equation between objects oi and o j is defined as follows:

Sd � oi � o j ��� α
�
wlink � oi � o j ��� wlink � o j � oi ����� � 1 � α � wp � oi � o j � (3.1)

where α is a user defined weight that allows the user to balance the relative impor-
tance of reducing internode object references as compared to maximising execution
parallelism. A higher value of α corresponds to placing higher importance on reduc-
ing internode object references. A possible reason for doing so is the fact that in an
environment where the communication overhead is very high it may be appropriate
to place higher importance on reducing internode object references. A lower α value
may be appropriate for situations where most queries run contain complex computa-
tions on objects processed. In such a situation balancing computation workload may
be more important when compared to reducing internode object references.

The term wlink(oi, o j) is used to denote the frequency of traversal of the pointer link
from oi to o j. wp(oi, o j) denotes the frequency with which the two objects oi and o j

can be processed on different nodes in parallel. Two objects are said to be accessed
in parallel when the placement of the two objects determine the parallelism of query
processing. In other words, in this study, wp � oi � o j � will be n if both oi and o j belong to
the same set which is accessed n times. Otherwise, wp � oi � o j � will be treated as zero.

The declustering similarity equation of an object oi with a partition Pj of objects is
defined as follows:

Sd � oi � Pj ��� α ∑
ok 	 Pj

�
wlink � oi � ok ��� wlink � ok � oi � � � � 1 � α � ∑

ok 	 Pj

wp � oi � ok � (3.2)

The declustering algorithm proposed in the next section considers each object in the
object base with a frequency count greater than zero and places the object in the par-
tition, Pj, that results in the largest value for Sd � oi � Pj � .

3.2.1.2 Declustering Heuristic and Determination of Declustering Similarity

The heuristic used in the declustering phase is a greedy approach. Objects are first
sorted into an array based on non-increasing frequency of reference. Then each object
oi is placed, one at a time, into the partition Pj which has the largest declustering
similarity value with the object oi. In the case where a tie occurs, the object is placed in
the partition to which the least number of ties have been assigned. The reason for this
is that if objects involved in ties are distributed randomly or to a particular partition
then there is potential for an imbalance, which may lead to a bottle neck, since nodes
with abnormally large number of tied objects may receive abnormally large number
of remote page requests.

A simple method of determining the declustering similarity of an object with re-
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Figure 3.1: Illustration of the two hash table technique

spect to a partition is to add the declustering similarity between each object in the
partition and the currently considered object. Such an approach would not be feasible
for large numbers of objects. We have developed a faster method that uses two hash
tables to accumulate the information required to calculate the first summation in the
declustering similarity partition equation 3.2. See Figure 3.1, where object O5 is the
object that is currently being considered for placement, while the other objects have
been partitioned.

Both hash tables hash object identifier and partition number pairs. The first hash
table indicates whether an object exists in a partition. For each object o i being consid-
ered the presence in partition Pj of each of the objects ok referenced by oi is determined
by checking for the existence of an entry (ok , Pj) in the first hash table. If the entry ex-
ists, then Sd (oi, Pj) is incremented by wlink(oi, ok). The first term in the first summation
of the declustering similarity equation 3.2 is thus calculated.

The second hash table contains the set of object identifiers which is being refer-
enced by objects already in the partition. The value field in this hash table is the accu-
mulated frequencies of all objects ok in the partition Pj which reference the object oi.
This is the second term in the first summation of the declustering similarity equation
defined in the previous section.
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Algorithm 1 A declustering algorithm

let N be the number of nodes;
let Pj and oi be a partition and an object;
let set � oi � be the set that object oi belongs to;
let load � Pi � S j � be the load balancing factor for the node Pj

for objects of set S j;
sort all objects with frequency greater than zero into non-increasing order
of frequency
for each object ou in sorted order do

for each partition Pj, where 1 � j � N do
for each object ov that ou references to do

if (ov, Pj) exists in hash table 1 then
Sd � ou � Pj ��� Sd � ou � Pj � � α � wlink � ou � ov � ;

endif
endfor
Sd � ou � Pj ��� Sd � ou � Pj � � α � value in hash table 2 for � ou � Pj � ;
Sd � ou � Pj ��� Sd � ou � Pj � � � 1 � α � � load � Pj � set � ou ��� ;

endfor
if no ties occurs then

let Pk be the partition that has max1 � i � N � Sd � ou � Pi ��� ;
else

let Pk be the partition that has received least number of ties;
endif
Pk � Pk ��� ou � ;
update hash tables;
update load balancing factors;

endfor

Pseudo code for the two hash table method of determining declustering similarity
is presented in Algorithm 1.

3.2.2 Clustering

The second phase termed the clustering phase was identified by the work done in this
thesis to be a necessary second step in reducing remote page loads.

The clustering phase is composed of two steps. The first step clusters objects of the
same type together. This benefits intra-operator parallelism since each node iterates
through the portion of objects that reside in its own disk. Once clustered together
based on type, the second step reduces remote page loads by clustering objects which
are likely to be accessed by another node together.

While the implementation of the first step is straight forward, the second is not as
obvious. Our approach is to partition the objects to be clustered at a particular node
into N partitions where each partition is reserved for a node. Each object is assigned
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to the partition which has the largest similarity value with respect to the node that the
partition is clustered for. This requires a slightly different definition of similarity.

3.2.2.1 Definition of Clustering Similarity, Sc

The clustering similarity equation between objects oi and o j is defined as follows:

Sc � oi � o j ��� wlink � oi � o j � � wlink � o j � oi � (3.3)

The term wlink is defined in the same way as in Equations 3.1 and 3.2. Note the term w p

present in Equations 3.1 and 3.2 is not required in this equation since clustering does
not effect parallelism in the query processing techniques used in this document.

The clustering similarity equation between object oi and partition Pj is defined as
follows:

Sc � oi � Pj ��� ∑
ok 	 Pj

�
wlink � oi � ok � � wlink � ok � oi ��� (3.4)

The clustering algorithm proposed in the next section use the clustering equation
3.4 to determine the partition Pj which contains the most number of objects that ref-
erence object oi or objects which is referenced by oi. Each partition contains a set of
objects which is clustered for a particular node. Therefore partition P j contains a set
of objects which will be stored together in pages with the aim of reducing the number
of remote page requests by node N j.

3.2.2.2 Clustering Algorithm

The algorithm for clustering is given in Algorithm 2. In this step we simply reuse the
information in the two hash tables to calculate clustering similarity as defined in equa-
tion 3.4 and place the objects in the partition that returns the largest similarity. Note
since the clustering process follows declustering, the hash tables will have already
been constructed.

Note we do not need to break ties since placing objects involved in ties together in
one partition is not necessarily worse than evenly distributing ties. Tied objects occur
when more than one partition contain objects that either reference it or is referenced
by it. One partition may reference many tied objects in which case loosely grouping
the tied objects together may be superior to evenly distributing the ties.

Once all the objects are clustered into partitions, the objects are stored into the
database one partition at a time. If the similarity value of an object with respect to all
other nodes is zero, then the object is placed in the partition reserved for the node that
the object is on.
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Algorithm 2 A clustering algorithm

let N be the number of nodes;
let n j be node number j;
let Pj be the partition for the j-th node;
for each node n j for 1 � j � N do

for each object ou � n j do
for each partition Pk where Pk

�� Pj do
for each object ov that ou references to do

if (ov, Pk) exists in hash table 1 then
Sc � ou � Pk � � Sc � ou � Pk ��� wlink � ou � ov �

endif
Sc � ou � Pk � � Sc � ou � Pk � + value of the hash table 2 for � ou � Pj �

endfor
endfor
if maxPk �� Pj � Sc � ou � Pk ��� � 0 then

Pj � Pj � � ou � ;
else

let Pk be the partition that has maxPk �� Pj � Sc � ou � Pk ��� ;
Pk � Pk � � ou � ;

endif
endfor

endfor
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3.2.3 A Point of Failure

.......................

Composite Part Objects

Atomic Part Objects

Connection Objects

Figure 3.2: Parallelised atomic part graph traversal

The clustering and declustering phases proposed in Section 3.2.1 and 3.2.2 were
found to fail for a query involving traversal of a complex graph of objects.

The query was run on the objects of the medium size OO7 benchmark [Carey
et al. 1993]. Firstly the assembly hierarchy is traversed. At the completion of the
assembly hierarchy traversal, a set of composite part objects are selected. This set
of composite part objects are then distributed to the different nodes of the parallel
OODBMS. Each node operates on the composite objects that reside on its disk and
performs a depth first search on its atomic part graph. Each composite part object has
a graph of 200 atomic parts with 600 connection objects arranged in a random way.
The parallelisation of the atomic graph traversal is shown diagrammatically on Figure
3.2.

Figure 3.3 depicts the results of running the various object placement methods on
this type of query. The following is a explanation of the labels given to the various
object placement algorithms presented in Figure 3.3:

� RND: Random partitioning

� RR : Round robin partitioning

� DN : Similarity declustering with no page clustering (Algorithm 1).

� DC : Similarity declustering with page clustering (Algorithm 1 and Algorithm
2).
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Figure 3.3: Place of failure

The two phased approach with both declustering and clustering can be seen to
perform worst in both response time and the number of remote pages loaded. To ex-
plain this result, the order with which the objects are considered for placement in this
query needs to be analysed. The atomic part objects are referenced the most often in
this query and thus atomic part objects are considered first for placement. Consider-
ing all atomic part objects for placement before the connection objects joining them
handicaps the declustering algorithm. This may be explained by the fact that in such
a case the declustering algorithm does no know to group atomic part objects that ref-
erence each other via connection objects together in one node. Hence the declustering
process tends to produce random placements for this query.

The clustering algorithm only clusters for objects which are one reference away
from the object being considered. However here we need to cluster the atomic part
and connection objects for the composite part object which may be up to 200 references
away for some of the atomic parts. Therefore the clustering process tends to add an
additional random process to the object placement. The poor performance of DC is
thus explained.

3.2.3.1 Improved Declustering Heuristic

The solution to the problem outlined in the previous section is simple. The order
in which objects are considered for placement in the declustering phase needs to be
changed. The improved heuristic considers objects for placement in order of reacha-
bility. This is analogous to the window concept in similarity based declustering pro-
posed by Liu and Shekhar [1996] and explained in section 3.1. We define the window
of objects around object oi as the objects which references oi or are referenced by oi.

This new heuristic was tested and the results are shown in Figure 3.4. Where WIN
corresponds to the improved two phased approach with the improved declustering
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Figure 3.4: Results with Improved Heuristic WIN

heuristic and the unchanged clustering heuristic.
The new results show WIN as the best performer with zero remote page loads

and the lowest response time. Zero remote page loads is achieved for this small ex-
periment since only one query is involved in the experiment and therefore there is
no potential for conflict between maximising parallelism and minimising internode
object references. More complex experiments will be presented in the next chapter
where conflict exists between maximising parallelism and minimising internode ob-
ject references.

3.3 Summary

This chapter proposed a new similarity based approach to object placement in shared
nothing parallel OODBMS. The approach is an adaptation of the similarity based
declustering approach proposed by [Liu and Shekhar 1996] for the problem of declus-
tering in a uniprocessor multiple disk environment. The change in environment re-
quired a new definition of similarity and the inclusion of a second phase termed the
clustering phase. The two phased approach appears to not have been tried before.



Chapter 4

Experiments

The primary purpose of this chapter is to investigate the performance of the new al-
gorithms proposed in the previous chapter. To achieve this purpose two experiments
were conducted. The first experiment investigates the scalability of the various place-
ment algorithms. The second experiment investigates the ability for the various algo-
rithms to adapt to varying training and execution conditions.

The focus of the discussion for the two experiments will be centered around the
comparative performance of the various placement algorithms employed.

4.1 Experimental Methodology

The methodology used to conduct the experiments described in this chapter consists
of three steps. The first step is termed the training step. In the training step a set of
queries are run to determine the frequency distribution of object references. This in-
formation is stored in dynamic frequency counts. The training step may use either
the complete set of queries to be used in the subsequent execution step or a subset of
those queries. Once this step completes the second step termed the placement step uses
information stored in the dynamic frequency counts to run the various object place-
ment algorithms. The output of the placement step is the objects arranged and stored
in the way determined by the particular object placement algorithm used. The third
step called the execution step, where the queries used by the training step is executed
to obtain performance results.

4.1.1 Test-bed

The hardware device used to conduct the experiments presented in this thesis is the
AP1000. Firstly the properties of the AP1000 is presented and then our approach to
modifying the AP1000 to delivering the appropriate test-bed is presented.

4.1.1.1 Properties of AP1000

The hardware platform used is the 128 node Fujitsu AP1000 [Ishihata et al. 1990]. Each
node has a 25 MHz SPARC CPU with 16MB of memory and 128 KB of direct-mapped
cache memory. There are 16 disks in the system.

21
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Figure 4.1: Parallel architecture used

Communication is achieved via message passing. The message passing interface
MPI [Sitsky et al. 1994] has been implemented on the AP1000 and may be called via C
function calls to achieve communication.

The disks of the AP1000 are managed by the HiDIOS parallel file-system. This
allows fragments of one file to be loaded in parallel across the multiple disks.

The AP1000 uses a lightweight operating system called CellOS which does not
provide multiple threads. Therefore programs running on the AP1000 can only oper-
ate within a single thread.

The AP1000 has a short lived kernel meaning the system is rebooted when a new
program is executed.

4.1.1.2 Approach to Delivering Appropriate Test-bed Using AP1000

We have simulated a shared-nothing system on the hardware architecture of the AP1000.
The first limitation to be overcome when simulating a shared nothing system on the
AP1000 is the disk contention caused by the HiDIOS parallel file system when mul-
tiple nodes read at once. This was overcome by de-stripping the disk. De-stripping
involves writing fragments of the file for each node into particular positions in a file.
The positions chosen cause the reading of a file for a node to be free from contention
when the file is loaded onto the parallel file system.

A second limitation of the AP1000 was the fact it has only 16 disks and our ex-
periments involve running on 128 shared nothing nodes. This second limitation was
overcome by the adoption of an ‘air-disk’. The air-disk simulates reading from disk by
pre-loading the entire file into a block of memory and then copying requested pages
from the block into the application buffer on request. When a page is to be read from
the air-disk, the system delays for the amount of time equivalent to the disk IO cost
incurred when loading a page from disk. The disk IO cost is derived by first run-
ning an experiment in which a set of queries (the same as queries used to conduct the
experiments) are run on the disk de-stripped and recording response times of page
loads. The response times are then used to arrive at a model of the IO costs involved
in loading a page from disk into memory. To simulate the variability in the IO cost
incurred in reading a page, a small random factor was included in the model.
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The client-peer architecture was simulated on the AP1000 to allow queries to be
processed in parallel. The clients process the queries and the server is responsible for
satisfying page requests. When a client requires a page from another node it sends a
request and the server on the remote node replies with the requested page. This setup
is depicted on Figure 4.1, where the grey disks depict air-disks. It is important to note
this setup calls for the server and client to be operating on different threads. In this
way the server can wait for remote page requests to arrive in one thread as the client
processes the query in a different thread.

Due to the inability of the operating system to support multiple threads, the server
had to be implemented in the same thread as the client. This means the execution step
had to balance client and server workload so that the server can service remote page
requests as close as possible to their arrival time. This was accomplished by using a
non blocking receive [Sitsky et al. 1994]. When a page request message arrives it is
buffered and at frequent intervals the receive buffer is checked. For the application
we are running the receive buffer is checked between the processing of only a small
number of objects. In addition each object involves only a very small amount of com-
putation. For these reasons the receive buffer is checked very often. When a request
message is found to have arrived it is serviced immediately. This way a client-peer
architecture is simulated for our experiments.

4.1.2 Query Processing

Intra-operator parallelism is used to process queries for all experiments presented in
this thesis. Each node works on the objects which reside on its own disk. Thus for
the experiments presented in this thesis the distribution of objects across the nodes
defines the degree of parallelism.

Four queries were used to conduct the experiments in this chapter. The queries
were chosen to conflict with each other in terms of placement requirements. In addi-
tion the queries were chosen to represent the type of queries likely to be encountered
in a typical parallel OODBMS. However, some of them maybe encountered more of-
ten than others in a typical parallel OODBMS.

The queries were run on the objects of the OO7 benchmark [Carey et al. 1993]. The
actual size of the OO7 benchmark used varies according to the experiment run and
thus will be explained in more detail in the relevant sections. However, subsequent
descriptions of the database used for the two experiments will be presented in terms
of a slightly, modified, medium sized, OO7 benchmark, hence in this section we will
outline the modifications we made to the medium sized OO7 benchmark. In addi-
tion, the individual queries used in both experiments are also described in point form
below and diagrammatically on Figure 4.2. The OO7 benchmark schema used in this
thesis is included in appendix D.

Query-1 (a range query) The first query iterates through a set of atomic part objects
and counts the number of atomic part objects with build date greater than 1500.

Query-2 (a value-based join query) The second query is based on query 8 of the OO7
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Figure 4.2: Queries represented diagrammatically
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benchmark. The query involves finding all pairs of documents and atomic parts
where the document ID in the atomic part matches the ID of the document
[Carey et al. 1993]. The query is processed by performing a parallel value-based
hash join. The objects in two sets which are to be joined are first hashed on
their join attribute and sent to nodes based on the value of the hashed attribute,
this phase may be named the distribution phase. Note the distribution phase
involves all-to-all communication and synchronisation. Once all objects have
been distributed the probing phase starts. The probing phase receives the ob-
jects sent in the distribution phase and joins the two sets locally.

Query-3 (a navigational query with sharing) The third query is based on query 5 of
the OO7 benchmark. Query 5 of the OO7 benchmark involves finding all base
assemblies that use a composite part with a build date later than the build date
of the base assembly. This query involves accessing shared objects. The OO7
benchmark is slightly modified for this query. The number of composite parts
is increased from 500 (in original medium size OO7 benchmark) to 5000 and
the size of the composite parts is enlarged. The reason for this is that testing
with only 500 small composite parts on 32 nodes with a 4 KB page size results
in all composite parts fitting in 1 page per node. Given that the objects are first
clustered by type, if at least one composite part object is needed from every
node then all the pages in the system which contain composite parts end up
being loaded. This is likely to happen when both the degree of sharing is high
and a large proportion of the objects are selected by the query. Such a scenario
would be difficult to optimise. We did test such a case (original medium sized
OO7 benchmark) and the results showed our two phased approach did not offer
any improvement in speed.

Query-4 (a navigational query without sharing) The final query involves finding all
composite parts with a build date earlier than its atomic part build date. It is
a navigational query which does not share objects. The OO7 benchmark was
slightly changed here as well. The number of atomic parts per composite part
was changed from 100 to 20. The reason for this change was the number of
composite parts was increased 10-fold thus the number of atomic parts needs to
be decreased 10-fold to keep the size of the database at near the same size as the
medium sized OO7 benchmark.

We call Query-1 and Query-2 set queries, and call Query-3 and Query-4 naviga-
tional queries. The distinction between set queries and navigational queries is that in
set queries a set of objects are iterated through but no object references are traversed
whereas navigational queries involve reference traversals. This is depicted diagram-
matically in Figure 4.3.

It is important to note that there exist conflicts between maximising parallelism
and minimising internode object references between the different queries. For Query-
1 and Query-2, atomic parts need to be evenly placed on the nodes to allow a higher
degree of parallelism, however Query-4 requires atomic parts to be placed together in
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Set Queries Navigational  Queries
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Figure 4.3: Set versus Navigational Queries

order to decrease the number of internode object traversals. Similarly, optimal place-
ment of objects for Query-3 requires composite part objects to be placed together but
composite part objects in Query-4 should be spread apart.

4.1.3 Startup and Termination

To simulate a more realistic query processing environment we have included a startup
and termination cost to every query. At the start of every query a startup process is
performed in which one server node sends a startup message to every client node. At
the completion of every query a termination process is initiated in which every node
sends a message to the server reporting the results of executing the query.

4.1.4 Cold Times

To allow better comparison of the effects of the various object placement methods
on individual queries, the cache is flushed between query executions. Therefore the
timing measurements presented in this chapter are derived from cold runs.

4.2 Measures of object placement quality

The response time and average time observed from running queries gives a good
overall view of the performance of the various object placement methods. However
there are other measures of object placement quality, including: number of internode
object references; number of remote page loads; degree of client workload imbalance;
and degree of server workload imbalance.

Response time Response time is taken as the total time taken to execute a query. A
query does not complete until all clients have communicated there results in the
termination processes. Therefore the slowest node determines the response time
taken to execute a query.

Average Time Average running time is an average of the completion times of all the
nodes processing the query.
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Number of internode object references The number of internode object references is
the number of objects requested by a particular client which does not reside on
the same node as the client. This is a measure of the ability of the object place-
ment methods to group objects which are accessed in a navigational manner
together on one server.

Number of remote page loads The number of remote page loads determines the bulk
of the communication costs between the client and server during the execution
of a query. The other communication costs include the startup and termination
costs. The clustering phase of the algorithm proposed in this thesis attempts to
minimise this measure of object placement quality.

Degree of server workload imbalance The degree of server workload imbalance is a
measure of the imbalance in remote page requests serviced at a particular server.
Therefore, a high server workload imbalance means a disproportional number
of remote page requests are targeted at one or only a few servers.

We define server workload imbalance as:

server workload imbalance � max1 � i � N � server work � Pi ��� � min1 � i � N � server work � Pi ���
max1 � i � N � server work � Pi ���

where server work � Pi � is the total number of remote pages requested from the
server residing on node Pi and N is the number of nodes in the shared nothing
system.

Note set queries do not contain a navigational component and thus do not re-
quest pages from remote servers. Hence server workload imbalance for set
queries are always zero.

Degree of client workload imbalance Client workload imbalance is a measure of the
degree of query execution parallelism for the clients. Therefore, a client work-
load imbalance of zero means every client processes the same number of root
objects. The term root object is given to objects that are at the root of a graph
traversal when the query being processed contains navigational components.
Therefore, for set queries which do not contain a navigational component, the
objects belonging to the set of objects iterated form the set of root objects.

We define client workload imbalance as:

client workload imbalance � max1 � i � N � client work � Pi ��� � min1 � i � N � client work � Pi ���
max1 � i � N � client work � Pi ���

where client work � Pi � is the number of objects in the set of root objects processed
by the client residing on node Pi and N is the number of nodes in the shared
nothing system.
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4.3 Response Time vs. Average Time

Response time is a useful measure of performance when synchronisation is required
before queries are permitted to terminate. In such a situation all nodes must wait
for the slowest node to complete before the next query can begin its execution. In
contrast average running time is useful when a node is permitted to begin execution
of successive queries as soon as it has completed the query it is currently running.

For scalability experiments average time and response time often exhibit increas-
ing difference as the number of processors increase. This is the case since as the num-
ber of processors increase then so does the probability of finding outliers1.

4.4 Scalability Experiment

In this experiment we investigate the scalability of the various algorithms proposed
in this thesis. The scalability of an algorithm depicts its potential usefulness as a way
of placing objects in a parallel OODBMS. The reason is the scalability of an algorithm
is a measure of the ability of the algorithm to perform efficiently as the problem size
increases in proportion to the number of processors.

For this experiment the four queries described in Section 4.1.2 were tested on the
objects of a varying sized OO7 benchmark [Carey et al. 1993]. Varying the size of the
OO7 benchmark allowed us to test the scalability of our algorithm by observing re-
sponse time as the number of processors increase in proportion to problem size. As a
base case a slightly modified (as explained in Section 4.1.2) medium sized OO7 bench-
mark was used for 32 nodes. Since the problem size was increased in proportion to the
number of processors, a perfectly scalable system would depict a constant response
time as the number of processors increase.

In this experiment the training conditions were the same as the execution con-
ditions. Therefore this experiment depicts the perfect situation in which the query
distribution information stored in the dynamic frequency counts reflect perfectly the
distribution of future object accesses.

For this experiment the declustering phase was biased in favour of reduced intern-
ode object references as opposed to increased parallelism (by setting α from Equations
3.1 and 3.2 to 0.9). The reason behind this decision was, from previous experiments the
performance of setting α to less than 0.9 was observed to cause all the algorithms to
degrade in performance for navigational queries and only slightly improve the per-
formance of set queries. This is evident in the second experiment presented in this
chapter where both α settings of 0.1 and 0.9 are tested.

All the results presented in this experiment was collected by executing each query
10 times and storing the accumulated values of the 6 measures of clustering quality.
The accumulated values were then normalised with respect to the base case (random
placement with 2 processors). This was done to allow better comparison of results
between the different queries.

1nodes completing with abnormally high or low completion times.
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The scalability information present in the running time graphs in this experiment
convey a combination of the scalability of the particular object placement method em-
ployed and query execution method employed. Wherever applicable, the distinction
will be made when discussing these results.

In preceeding sections the various object placement methods will be referred to as
follows:

� RND: Random partitioning

� RR : Round robin partitioning

� DN : Similarity declustering with no page clustering (Algorithm 1).

� DC : Similarity declustering with page clustering (Algorithm 1 and Algorithm
2). Objects in the declustering phase are considered in order of non-increasing
frequency of traversal.

� WIN: Similarity declustering with page clustering. Objects in the declustering
phase are considered in order of reachability. Analogous to the window-based
approach to similarity declustering [Liu and Shekhar 1996].

General notes to keep in mind while investigating the results presented for this
experiment:

Running time graphs Response time is represented in dotted lines, average time is
represented in solid lines.

Client workload imbalance graphs DC was removed from this graph since the clus-
tering phase does not attempt to balance the client workload and hence DC and
DN exhibit the same degree of client workload imbalance.

Internode object reference graphs DC was removed from this graph since the clus-
tering phase does not change the number of internode object references, hence
DC and DN exhibit the same number of internode object references.

The following sections will contain: four separate individual investigations of the
four queries tested; investigation of server workload imbalance results for queries 3
and 4; a comparison of the four queries relative scalability; and overall measurements
from running all four queries.

4.4.1 Individual Queries

During analysis of the results for this experiment it was observed that the behaviour of
the different queries varied vastly from each other and many interesting observations
can only be made when the queries are analysed individually. Therefore in this sec-
tion we present the results obtained from separate investigations of the four queries
involved in this experiment. However it is important to note all four queries were
involved in the training step and thus the placement algorithms still had to balance
the conflicting objectives in the four queries as explained at the end of Section 4.1.2.
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Figure 4.4: Scalability results for query 1

4.4.1.1 Query 1

Query 1 is a simple set query in which a set of objects are iterated through across the
nodes of the shared nothing system in parallel. Figure 4.4 shows the performance of
query 1 for both running time and client workload imbalance.

To explain the running time results we must first examine the client workload
imbalance graph on Figure 4.4 (b). The degree of client workload imbalance is not
large for any of the placement methods investigated. Even for RND, the maximum
client workload imbalance is only 0.1. The reason for RND to be so low is that the
random number generator is not programmed to discriminate against any set of nodes
when assigning objects to nodes. When the number of objects placed is large (as is the
case for this query) then the number of objects assigned to each node is close to the
expected number of objects per node2. RR is absent from the graph since for this query
the number of processors divided exactly into the number of objects iterated through.
It is encouraging to note that DN and WIN both perform well at around 0.001 client
workload imbalance despite the conflict between query 1 and query 4 as outlined
in the end of Section 4.1.2. However, from these observations it should be noted the
magnitude of client workload imbalance is not large for any of the placement methods
investigated.

From Figure 4.4 (a), the response time (dotted line) and average time (solid line) of
executing query 1 can be observed. The performance of the different object placement
methods was around the same for both response time and average time. This may be
explained by the absence of a navigational component to query 1 and the low degree
of client workload imbalance for all the object placement methods investigated. The
absence of a navigational component to query 1 handicaps the placement algorithms

2total number of objects divided by the number of nodes.
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Figure 4.5: Scalability results for query 2

proposed in this thesis by removing the requirement to decrease internode object ref-
erences.

Both average time and response time results for query 1 show almost perfect scal-
ability. This is due to the simplicity of query 1. Query 1 simply required each node
to iterate through a set of objects that resided on its own disk. No communication
was required other than during the startup and termination processes. However the
scalability results are not perfect, this may be explained by the fact as the number of
processors increase then so does the startup and termination costs. However, if the
number of objects processed was increased to a point where the query execution time
dominated the startup and termination time, then an even more scalable running time
graph would result.

4.4.1.2 Query 2

Query 2 is a parallel value-based hash join in which two sets of objects are joined on
a particular attribute. Figure 4.5 shows the performance of query 2 for both running
time and client workload imbalance.

As for query 1, the running time of the various placement algorithms did not differ
by much. There are two reasons for this. The first is the same as for query 1 — namely
the absence of a navigational component handicaps the object placement algorithms
developed in this thesis. The second reason is more particular to query 2. Query 2 is a
parallel value-based hash join. Parallelism for this query is not solely determined by
the object placement algorithms. In the distribution phase the objects are redistributed
via a hash function. The probing phase follows the distribution phase and thus the
degree of parallelism for the probing phase is determined by the hash function used
in the distribution phase and not the object placement algorithms. Therefore query
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2 is not very sensitive to client workload imbalance caused by the object placement
algorithms.

Query 2 does not appear to be scalable for any of the object placement algorithms
employed. The reason is that the distribution phase requires synchronisation and all
to all communication. As the number of processors increases, the communication
costs increases rapidly.

The average and response times do not differ by much since the synchronisation
required at the completion of the distribution phase causes all the nodes to finish at
about the same time.

4.4.1.3 Query 3
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Figure 4.6: Scalability results for query 3

Query 3 is the first query which contains a navigational component. In addition,
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query 3 contains sharing of objects referenced.
Figure 4.6 (a) depicts the running time behaviour of this query. The first observa-

tion that can made is that for both response time and average time, all the algorithms
proposed in this thesis, DN, DC and WIN outperform both RR and RND with WIN
being the best performer. This may have been expected since DN, DC and WIN at-
tempt to reduce communication costs by reducing the number of remote pages loaded
whereas RR and RND do not.

The second observation that can be inferred from Figure 4.6 (a) is that the perfor-
mance difference between DN and DC as the number of processors is increased above
16 is almost non-existent. This behaviour is supported on Figure 4.6 (d), where the
number of remote page loads of DN and DC converge as the number of processors
increases. This seems to suggest the clustering phase of the algorithm become, less
beneficial as the number of processors increases. After investigating this observation
the following explanation is arrived at:

� The number of internode object references per processor stays close to constant
as the number of processors is increased.

� The problem size for this query is small with only 110 objects per node.

� There is only a small number of internode object references for both DN and
DC in this query. This is caused by a combination of the high quality of the
declustering phase present in both DN and DC and the small problem size of
this query.

� As the number of processors increase the number of internode object references
directed at a particular server decreases. Beyond 32 nodes many servers contain
only one object for a particular client.

From the points stated above it can be seen the number of internode object references
per processor does not scale up as the number of processors increase. This means as
the number of processors increase, internode object references for a particular node
becomes more dispersed across the increasing number of servers. When the number
of objects residing at a particular server for a particular client is only one (as is the case
for 32 or more nodes), the object placement algorithms can no longer be optimised
by clustering. Therefore after the declustering phase the number of internode object
references for this query was too small for the clustering phase to be of any real benefit.

The degree of client workload imbalance for DN and WIN in query 3 as depicted
on Figure 4.6 (b) is up to 300-fold larger than for either of the set queries 1 or 2 shown
earlier. A possible reason for DN and WIN to perform worse than before is that there
is sharing of objects in this query. When two objects both reference the same object
being shared then they are likely to be placed in the same node even if a larger client
workload imbalance may result. This is more likely to happen when α (from equations
3.1 and 3.2) is set to 0.9 as is the case for this experiment. A possible reason why the
client workload imbalance of RND is higher for this query is that the problem size of
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this query is small and hence the actual number of objects assigned to each node may
tend to be further from the expected number3.

Finally from Figure 4.6 (a) query 3 appears to be only moderately scalable, with an
8-fold increase in running times of the various algorithms, corresponding to a 64-fold
increase in the number of processors. There are two reasons for this. The first is the
execution time of this query is only in the order of 0.2 seconds, hence the execution
time is small enough for the startup and termination time to play a large part in deter-
mining the scalability of the query. The second reason is as the number of processors
increase the number of remote page loads also increase, causing increased network
contention.

4.4.1.4 Query 4

Query 4 is another navigational query but with no sharing of objects. This query is
larger than the previous query with a problem size of 3280 objects per node instead of
110 objects per node.

Figure 4.7 (a) shows the response time of running query 4. Again the best per-
formers are the algorithms proposed in this thesis. This can be again explained by the
fact the algorithms proposed attempt to reduce remote page loads while the others do
not.

When comparing Figures 4.7 (c) and (d) a very counter-intuitive result can be ob-
served, WIN results in more internode object references when compared to DC4 but
the reverse is true when the number of remote page loads is observed. The graphs
seem to suggest the more objects requested from remote servers the fewer number of
pages is loaded. A top-level explanation for this peculiar result is that WIN declusters
the objects in a way which benefits the clustering phase more than the declustering
phase present in DC.

Firstly, an explanation needs to be given for the declustering phase of WIN to per-
form worse than DC in reducing the number of internode object references. This can
be explained by the order in which objects are considered for placement by WIN. By
considering objects in order of reachability, WIN attempts to place all the atomic part
objects referenced by a particular set object in succession. This causes the algorithm
to think that there is likely to be client workload imbalance for query 1 and 2 (where
atomic part objects are parallelised), hence WIN incorrectly places many of the atomic
objects referenced into other nodes. However this is not as likely to be the case for DC
where objects are not considered in order of reachability.

Secondly, an explanation needs to be given for the clustering phase5 to benefit
more from the declustering phase of WIN when compared to the declustering phase
of DC. This can be explained by observing Figure 4.8. From Figure 4.8 it can be seen
that WIN places set objects and composite part objects in the same node and hence the

3Total number of objects iterated divided by the number of nodes.
4Note as stated earlier DC and DN share the same first phase and hence have the same number of

internode object references. Therefore results for DN in Figure 4.7 can be used in-place of results for DC
5Both WIN and DC share the same clustering phase
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Figure 4.7: Scalability results for query 4

atomic part objects are clustered for the correct node. However DC places set objects
and composite part objects in different nodes and hence the atomic part objects are
clustered for the incorrect node. This, however, does not explain why the two placement
algorithms WIN and DC behave in the way described in Figure 4.8. For the curious a
detailed explanation of the reason why WIN and DC behave in the way exhibited in
Figure 4.8 is included in Appendix A. It may be concluded from this peculiar result
that the number of internode object references is not always a good indication of the
relative number of remote page loads of two placement algorithms when using page
grain caching.

The degree of client workload imbalance for query 4 is exhibited in Figure 4.7 (b).
The degree of client workload imbalance for DN and WIN in query 4 is smaller than
for query 3. This may be explained by the absence of object sharing and a larger
problem size.
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Figure 4.8: Diagram to aid the explanation of the peculiar result observed for query 4

The average time and response times of the various algorithms for query 4 can
be seen on Figure 4.7 (a). The average and response time results for this query do
not differ as much as was for query 3. This may be due to the lower client workload
imbalance for query 4, exhibited in Figure 4.7 (b) when compared to that of query 3 in
Figure 4.6 (b).

This is the first query in which the scalability of the various placement algorithms
differs noticeably. The algorithms proposed in this thesis are clearly more scalable
when compared to RND and moderately more scalable when compared to RR. A pos-
sible reason for this is that this query contains a large percentage of navigational com-
ponent and as the number of processors increase then so does the difference in the
amount of network contention between the different algorithms.

4.4.2 Server workload imbalance

Only the navigational queries 3 and 4 require the servers to serve remote page re-
quests. Therefore this section only presents the server workload imbalance of queries
3 and 4.

The first observation that can be seen from the two graphs presented in Figure 4.9
is that the degree of server workload imbalance appears to be random for algorithms
proposed in this thesis, namely DN, DC and WIN. This may be explained by the fact
the issue of server workload imbalance was not fully addressed by the algorithms pro-
posed in this thesis. DN, DC and WIN attempted to reduce server load imbalance by
placing tied objects on nodes which have received the least number of ties. However
this is not a satisfactory solution since tied objects occur for many reasons. Server
workload imbalance is only one among many. For instance tied objects may occur
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Figure 4.9: Server workload imbalance results

because the algorithm can not decide the best node to place an object to, in order to
balance client workload.

Future enhancements of the algorithms proposed in this thesis may include heuris-
tics that address server workload imbalance in a more satisfactory manner.

4.4.3 Scalability Comparison of Individual Queries

In this section we present graphs containing the individual completion times of every
node involved in the query processing. In addition average running time is also de-
picted on the same graphs. The graphs are all adjusted to have the same x and y range
to allow better comparison of results. These graphs are depicted on Figure 4.10. For
an alternative comparison containing response times, see Appendix B.

The scalability of the queries vary vastly, from a near perfectly scalable query 1
to a very non-scalable query 2. From these graphs it can be seen that in general the
particular type of query run is more important in determining scalability than the par-
ticular placement method employed. However Query 4 may be an exception, where
the scalability of RND is noticeably worse than the other placement methods. A pos-
sible explanation is query 4 when compared to the other queries contains the largest
percentage of object references . As the number of processors increase and along with
it the total number of objects to be processed, the network contention starts to play a
increasingly larger part in determining the scalability of the system.

These graphs also makes clear the fact that for set queries 1 and 2, the difference
in performance between object placement methods is small. However for the naviga-
tional queries 3 and 4, a larger performance difference can be seen. This seems to indi-
cate object placement methods should only be used to place objects in an application
when navigational queries occur frequently. It may be argued that parallel OODBMS
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Figure 4.10: Comparison of scalability of individual queries. This figure depicts the individual
completion times of every query along with the corresponding average running times (note
that individual times for each query are slightly offset on the x-axis to avoid overlap).
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are dominated by navigational queries since object references occur frequently.

4.4.4 Overall Results for all four queries

So far we have only shown the individual performance of the four queries tested.
However in this section we show the combined effects of executing them.

Note as explained earlier at the completion of every query the buffer was flushed,
thus the results shown in this section depicts the effect of executing the four queries
with buffers initially being empty.

The results presented in this section depict the summation of the normalised con-
tribution of each query.

4.4.4.1 Running Time
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Figure 4.11: Running time vs. number of processors for all four queries

Figure 4.11 depicts both the response time (dotted lines) and average time (solid
lines) results obtained from running all four queries.

Two general observations can made from Figure 4.11, the first is the object place-
ment algorithms presented in this thesis outperform both RR and RND. However, the
margin of improvement is not large and the difference between DN, DC and WIN is
even smaller. The second observation is the combination of the four queries run do
not seem to be scalable for any object placement algorithms tested. The reason behind
both of these observations is the fact that the parallel value-based hash join (query 2)
dominates the execution time of all four queries even after the contribution of each
query was normalised. The reason being that query 2 was so much less scalable when
compared to the other queries.



40 Experiments

4.4.4.2 Number of Remote Page Loads
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Figure 4.12: Remote page loads vs. number of processors for all four queries

Figure 4.12 depicts the overall performance of the object placement methods inves-
tigated in terms of the number of remote page loaded. Overall WIN is clearly ahead
with up to 16 times reduction in the number of remote pages loaded when compared
to RND. Note that only the navigational queries 3 and 4 contribute to this graph.
The graph shows the potential for a placement algorithm to reduce the amount of
communication during processing of navigational queries.

4.4.4.3 Degree of Client Workload Imbalance

Figure 4.13 shows the overall client workload imbalance from the combined effects of
executing all four queries.

The overall observation that can be made is that the degree of client workload im-
balance was not large for any of the placement methods and therefore did not play
a major part in separating the execution time performance of the various placement
methods. It is, however, encouraging to note that at an α6 setting of 0.9 (biasing heav-
ily in favour of reduced internode object references), the algorithms proposed in this
thesis still managed to balance client workload so well.

4.4.4.4 Scalability Experiment: Summary

The results presented for this experiment indicate the placement methods developed
in this thesis improves the overall performance for the four queries on which the ex-

6From Equations 3.1 and 3.2
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Figure 4.13: Client Workload Imbalance vs. number of processors for all four queries

periment was conducted. The overall performance improvement was not as large as
we would have liked. This was mainly due to the parallel value based hash join (query
2) dominating the overall performance. However when the navigational queries 3 and
4 were considered in isolation, the algorithms proposed in this thesis performed sig-
nificantly better than RR and RND which do not attempt to reduce remote page loads.

When comparing placement algorithms the number of internode object references
is not always a good indication of the number of remote page loads. As was exempli-
fied by the fact that for query 4 the number of internode object references was higher
for WIN than DC but the reverse is true when the number of remote page loads was
observed for the same two placement algorithms.

The scalability of the different queries differ greatly but the scalability of the dif-
ferent algorithms differ only for query 4 where the problem size is large and the per-
centage of navigational component present is large.

Overall the degree of client workload imbalance did not appear to separate the
performance of the different algorithms by much. This was due to the small magni-
tude of client workload imbalance exhibited by all algorithms investigated and the
small amount of computation required per object processed. However it is important
to note that the queries tested in this experiment had conflicting requirements in terms
of one query requiring objects to be grouped together while another query requiring
the same objects to be placed apart. It is encouraging to note in such an environment
the placement algorithms proposed in this thesis still managed to maintain a high
degree of parallelism.

Considering objects for declustering in order of reachability as exhibited by WIN
seems to be the best placement algorithm overall. The alternative, declustering in
order of decreasing frequency count as exhibited by DN and DC appears to perform
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worse since often objects which reference each other indirectly, are placed in separate
nodes.

4.5 Varying Training Conditions Experiment

This experiment investigates the dependency between the percentage of set queries
used for training the object base and the percentage of set queries used during execu-
tion. This is a test of the ability of the various object placement algorithms to adapt to
conditions where the training conditions differ from execution conditions. Each run
involved execution of a total of 100 queries with varying percentage of set and navi-
gational queries. This experiment was run on 16 nodes with the parallel file-system
de-striped, therefore disk contention was avoided.

The size of the database used for this experiment is half the slightly7 modified
medium sized OO7 benchmark.

For this experiment α8 settings of 0.1 and 0.9 were both investigated. Placing α at
0.1 corresponds to biasing the declustering phase in favour of maximised parallelism.
An α value of 0.9 corresponds to biasing the declustering phase in favour of reduced
internode object references.

Note that in all the results presented in this chapter dotted lines are used to depict
an α setting of 0.1 and solid lines are used to depict an α setting of 0.9. Also DC results
are omitted from the internode object reference results and client workload imbalance
results as was the case for the scalability experiment.

4.5.1 Response Time

Figure 4.14 shows the effect on response time of varying training conditions for two
cases of execution conditions. The first case depicts the result of executing 10% set
(90% navigational) queries and the second case depict results from executing 90% set
(10% navigational) queries.

When comparing Figures 4.14 (a) and 4.14 (b) it can be observed, for the 10% set
queries case, the response time vary vastly depending on the placement method em-
ployed while for 90% set queries the response time is around the same for all place-
ment methods. This reinforces the observation made in the scalability experiment,
where, navigational queries were found to be more sensitive to the different algo-
rithms when compared to set queries.

For the 10% set queries (90% navigational queries) case, the object placement al-
gorithms proposed in this thesis with α set to 0.9 in general outperform the same
placement methods with α set to 0.1. This is the case since a large α value of 0.9 cor-
responds to placing greater importance in reducing remote page requests and hence
benefits navigational queries.

7For an explanation of reason for modifying medium size OO7 benchmark, see Section 4.1.2.
8From equations 3.1 and 3.2
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Figure 4.14: Response time results. The dotted line curves for DN, DC and WIN represent
response time results with an α setting of 0.1. The solid line curves for DN, DC and WIN
represent response time results with an α setting of 0.9.

An important observation from Figure 4.14 (a) is that both WIN and DC at an α
setting of 0.9 exhibit almost constant response time as the training conditions move
further from execution conditions. This seems to suggest WIN and DC at an α of 0.9
can adapt to conditions where the training data used does not reflect future execution
conditions well. This is due to the presence of the clustering phase in both WIN and
DC. The clustering phase does not attempt to balance parallelism with internode ob-
ject references and thus is not sensitive to the changing training conditions. However
for DN at an α value of 0.9 the response time increases rapidly as training conditions
tend further from running conditions. This may be explained by DN only running
the declustering phase, which needs to balance the two conflicting objectives of max-
imised parallelism and minimised internode object references and hence is more sen-
sitive to the training conditions moving further from the running conditions.

Note that at training of 100% set queries all the placement algorithms proposed in
this thesis converge at a high response time. This can be explained by the absence of
information required by the declustering and clustering algorithms to reduce remote
page loads and internode object references.

Note that both RR and RND exhibit constant response time on both response time
Figures 4.14 (a) and (b). This may be explained by the fact RND was generated using
the same seed for each run. Both RR and RND do not require training and thus the
response time results for RR and RND are independent of training.

The last observation to note from Figure 4.14 (a) is that WIN at an α setting of 0.9
appears to outperform all other object placement algorithms, as was the case for the
navigational queries in the scalability experiment.
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4.5.2 Communication costs
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Figure 4.15: Executing with 10% set queries, 90% navigational queries

For the purposes of this section the term ‘communication cost’ will be used to
refer to the number of internode object references and remote page loads incurred by
the various algorithms. The communication cost behaviour of the 10% and 90% set
queries cases were observed to be identical. The reason being that only navigational
queries contain communication costs, therefore the 10% set queries (90% navigational
queries) case would have a communication cost of 90x as opposed to the 90% set
queries (10% navigational queries) case which would have a cost of 10x, where x is the
communication cost involved in executing 1% navigational queries (99% set queries).
Hence, only the results for the 10% set queries case are used for discussion in this
section. The graphs for the 90% set queries case is included in Appendix C.

Figure 4.15 presents the communication cost graphs for the 10% set (90% naviga-
tional) queries case. A general observation that can be made is that the algorithms
proposed by this thesis outperformed both RR and RND. This is not surprising since
RR and RND do not attempt to reduce remote page loads or internode object refer-
ences. Again better results are obtained when the value of α of the various algorithms
are set at the higher value of 0.9. The explanation for this observation was given in
the previous section.

The most interesting observation that can be made from Figure 4.15 (a) is that for
WIN at an α setting of 0.9 the number of internode object references increase rapidly
as training conditions become increasingly non favourable. Whereas DC9 at the same
α setting exhibit a much smaller rate of increase in the number of internode object

9Note as stated earlier DC and DN share the same first phase and hence have the same number of
internode object references. Therefore results for DN in Figure 4.15 (a) can used in-place of results for
DC
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references. However, in figure 4.15 (b) the number of remote page loads for WIN at an
α setting of 0.9 stays constantly lower than DC at the same α setting. This seems to be
similar to the observation made for the peculiar behaviour of WIN in query 4 of the
scalability experiment, namely that a high number of internode object references does
not necessarily mean a higher number of remote page loads. This may be explained
by the following points:

� The queries included in this experiment only include two navigational queries
3 and 4.

� Equal portions of query 3 and query 4 were used in this experiment.

� Query 4 involves a much larger problem size when compared to query 3. Hence
query 4 dominates the communication cost behaviour of the queries run in this
experiment.

Therefore the same arguments presented for the discrepancy in communication cost
results for WIN in query 4 in the previous experiment can be reapplied to explain the
behaviour of WIN with an α value of 0.9 in this experiment.

4.5.3 Degree of Parallelism
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Figure 4.16: Client workload imbalance results

Figure 4.16 depicts client workload imbalance for both the 10% set queries case
and the 90% set queries case. The algorithms proposed in this thesis when given an
α setting of 0.1 resulted in an object placement which gave lower client workload im-
balance when compared to the higher α setting of 0.9. This is to be expected since
assigning an α value of 0.1 gives more importance to maximising parallelism. How-
ever, even for an α value of 0.9 the algorithms still performed relatively well with
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around a 0.02 client workload imbalance for the 10% set queries case and even lower
for the 90% set queries case. This suggests for the set of four queries investigated in
this chapter assigning more importance to maximising parallelism may not be of as
much benefit as assigning more importance to reduced internode object references.

4.5.4 Varying Training Conditions Experiment: Summary

Placing more importance on reduced internode object references by setting α to a
higher value produces much better response time for the 10% set queries (90% navi-
gational queries) case. This seems to suggest the biasing term α is working as it was
intended to.

The algorithms which had a clustering phase present resulted in placements that
yielded near constant response time with varying training conditions. Whereas al-
gorithms which only had the declustering phase present produced rapid increase in
response time when training conditions moved further from running conditions. The
explanation for this observation is that the declustering phase had to balance the two
conflicting objectives of reduced internode object references and increased parallelism
whereas the clustering phase did not. Therefore this seems to suggest that if training
conditions are likely to be different from running conditions then the clustering phase
should be used when placing objects.

Again it was observed that the number of internode object references is not an
accurate indication of the number of remote page loads. This was shown by WIN
at an α value of 0.9 exhibiting very rapid increase in the number of internode object
references but resulting in a low constant number of remote page loads.

This experiment, like the scalability experiment exhibited, only a small degree of
client workload imbalance for all the placement algorithms. Hence, for this experi-
ment the degree of client workload imbalance did not play a important role in sepa-
rating the performance of the various object placement methods investigated.

Lastly, this experiment reinforced the observation made from the scalability ex-
periment, which was that set queries were not sensitive to object placement methods.
This was shown to be the case in this experiment when the percentage of set queries
were set to a high of 90% and the resultant response times of the various placement
algorithms did not differ by much.

4.6 Summary

In this chapter we conducted two investigations into the performance of the two
phased approach to object placement developed in this thesis. The findings indi-
cate that the object placement algorithms proposed in this thesis are beneficial for
navigational queries. However, set queries were found to be insensitive to the object
placement methods investigated.

When the training conditions were varied from execution conditions, the clus-
tering phase was found to be important in keeping the response time constant with
varying training conditions.



Chapter 5

Parsets

Until now we have only considered operations on objects belonging to the same type
set. However programmers often perform operations on a sub set of objects belonging
to a type set. In such cases a parallel set can be defined on which a method can be
invoked on every object in the set in parallel.

This chapter outlines the issues that arise from parallelising a sub set of a type set.
In addition it also provides a method for determining the optimal degree of declus-
tering of such a set.

5.1 Background

This idea of parallel sets was first explored by Kilian [1992] for adopting the data
parallel approach to C++. However similar ideas has appeared prior to Kilian [1992]
for different languages. Bancilhon, Briggs, Khoshafian, and Valduriez [1987] proposed
a similar facility for Bubba (a parallel RDBMS).

DeWitt, Naughton, Shafer, and Venkataraman [1996] proposed a parallel set de-
sign for parallelising C++ code on the SHORE Persistent Object Store [Carey et al.
1994]. Their goal was to provide system primitives that make it easy for a programmer
to consciously and explicity parallelise his or her own OODBMS application. They left
object placement the responsibility of the programmer. A programmer had to specify
the placement strategy employed on each parset. They included, hash, range, random
and unspecified. Unspecified object placement allows the user to manually specify the
placement of the objects of the parset. The motivation for this option was that there
are cases when no mapping exists from a value of an object to a processor number.
For example, if objects are stored on the nodes where they were created there need
not be any logical mapping from object values to nodes. Automatic declustering was
not supported.

We believe automatic object placement is critical for the efficient use of parsets. We
justify this statement in Section 5.3.

47
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Figure 5.1: Partial declustering query, it involves 5000 composite parts with 1 atomic part per
composite part.

5.2 A case for partial declustering

The goal of object placement in parsets is no different to the general problem of object
placement in parallel OODBMS. Namely the internode objects references need to be
decreased and the optimal degree of parallelism is dependent on the average work-
load performed on the parset. In fact one of the main motivating factors behind our
investigation of partial declustering is the possibility of encountering small parsets
which may also have small average workloads. In such cases the optimal degree of
declustering is often smaller than the total number of processors in the parallel com-
puter.

Figure 5.1 depicts a query using the objects of the OO7 benchmark. The query
required a total of 10000 objects to be processed. These two queries were run on the
AP1000 with the number of nodes varied from 2 to 128. The resulting response time
graph is depicted on Figure 5.2.

The first observation that can be made is that an optimal degree of declustering
does exist. Secondly it can be observed the optimal degree of declustering occurs at
around the same place for DN, DC and WIN. More tests need to be carried out but
from this graph it appears the optimal degree of declustering maybe independent of
the object placement method employed.

5.3 Automatic placement of parsets

It is in general difficult for the user to manually specify the optimal degree of declus-
tering. The reason is that the degree of declustering is dependent on the speed of the
processors, IO and communication of the parallel computer on which the parset is
declustered over. An automated placement scheme can however use a formula such
as the one described in section 5.4 to determine the optimal degree of declustering.

After determining the optimal degree of declustering, the objects needs to be as-
signed to particular nodes. This is termed the assignment problem. The ideal assign-
ment of an object residing in a particular parset is dependent on the placement of other
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Figure 5.2: Graph depicting existence of optimal degree of declustering

objects which interact with it. For the purposes of this chapter an object o i is defined
to interact with an object o j , if oi references o j or o j references oi. This interaction can
be very complex. Many objects may reference the objects in the same parset and vise
versa. In addition the frequency of reference is also important. It would be unrealistic
for the user to consider all these factors when manually placing objects in a parset.

Figure 5.3 is an example of a situation which is difficult to optimise via manual
object placement. Part a of Figure 5.3 describes the optimal state of placement of
parset 1 before the creation of parset 2. When parset 2 ( a subset of objects of parset
1) is created, the user may specify round robin declustering on parset 2 (in an attempt
to parallelise parset 2). This causes the placement in 5.3 (b) to result. The placement
depicted in 5.3 (b) is is no longer optimal, since parset 2 is no longer perfectly load
balanced. However an optimal solution does exist and is depicted in 5.3 (c). Therefore
for optimal placement, the parsets can not be considered in isolation. It is however
unreasonable for the user to manual place objects with consideration for more than
one parset. Therefore automated placement is essential for the optimal placement of
objects in this situation.

Figure 5.4 depicts another difficult situation to optimise via manual placement.
In this situation, a new object is added to the database. At this point the user can
reasonably make two choices and request the system to perform them. The first is to
cluster the objects that O1 references into one node as shown on Figure 5.4 (b) and
the second is to place O1 in the node which results in the least amount of internode
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references as shown on Figure 5.4 (c)1. However, note in case 1, parset 1 is no longer
perfectly load balanced. In case 2, there is a internode reference from object 1 residing
on node 1 to object 6 residing on node 3. Therefore both cases result in a non-optimal
placement. Note however a optimal placement does exist and is depicted on Figure
5.4 (d). These are only two of many possible situations which are difficult to optimise
via manual object placement. The reason is that object placement of a particular object
can not be considered in isolation to the requirements of other parsets that this object
interacts with.

5.4 Determination of Degree of Declustering

As mentioned in Section 5.3, the degree of declustering is an important parameter in
determining the optimal placement of objects in a parallel OODBMS. In this section
we outline a method developed in this thesis for determining the optimal degree of
declustering in a parallel OODBMS in the context of parsets. The method outlined is
an adaptation of the MDPS strategy developed by Ghandeharizadeh [1990] for rela-

1Note here a tie occurs between node 1 and node 3. For the situation depicted in Figure 5.4 (c), the tie
is broken arbitrarily by placing O1 in node 1.
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tional databases. Please see Section 2.3.2 for a brief description of MDPS. The main
idea behind this method is the optimal degree of declustering is dependent on the
workload size.

The average response time of running queries is depicted as a function of the num-
ber of processors (M) and the parset (P) being considered. This is depicted below:

RTavg � M � P ��� CPUavg � P ��� Diskavg � P �
M � M � CP ���P � � (5.1)

Where the terms CPUavg � P � and Diskavg � P � are determined using the following equa-
tions:

CPUavg � P ��� WLavg � P � � CPUobj (5.2)

Diskavg � P ��� WLavg � P � � Diskobj ���P � � (5.3)

Where Diskobj ��� P � � :
Diskobj ���P � � � Diskpage

Objspage
(5.4)

Diskobj is the average time that it takes to retrieve a desired object from disk into
memory. �P � is the number of objects in parset P. Diskpage is the time that it take to load
a page from disk to memory. Objspage is the average number of objects in a page. The
first fraction of the equation determines the time that it takes to load an object from
disk to memory if all the objects in the page are used by the query. Note this is only
true if the objects in the parallel OODBMS are well clustered for parsets.

CPUobj is a constant particular to the parallel computer being used. CPUobj is the
average time that it takes for the computer to process one object. This can be well
approximated if the amount of computation done per object does not vary vastly be-
tween objects. Therefore if methods of vastly varying complexity are invoked on the
objects, this equation may no longer be valid.

WLavg � P � is the average workload performed for the parset P and is determined as
follows:

WLavg � P ��� ∑n
i � 1 f req � P� i � � num � P� i �

∑i � 1 n f req � P� i � ���P � (5.5)

freq(P, i) is the frequency of traversal of queries of kind i for parset P. Queries
which access the same number of objects from the same parset are grouped into the
same kind. num(P, i) is the number of objects that are accessed by kind i of parset
P. Note two queries need not have the same traversal structure but only the same
number of objects traversed to be classified as the same kind. Figure 5.5 illustrates
this concept diagrammatically. Figure 5.5 (a) and (b) both belong to the same kind.

CP( �P � ) is the overhead incurred when an extra node is used to process parset P.
This overhead includes the startup and termination cost associated with adding an
extra node.

When the first derivative of Equation 5.1 is computed with respect to M and
equated to zero the following equation is derived:
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M � CPUavg � P ��� Diskavg � P �
CP ���P � � (5.6)

From Equation 5.6 we are able to compute the optimal number of processors to
decluster the parset P across. Once the value of M is determined, the assignment of
the parset objects to nodes need to be done. The assignment process is however not
covered in this thesis mainly due to time constraints.

5.5 Summary

In this chapter we took a look at the issues arising from object placement in parsets. A
method was outlined for determining the optimal degree of declustering for a parset.
It is an adaptation of a similar method used in parallel relational databases called
MDPS [Ghandeharizadeh 1990]. Unfortunately due to time constraints the method
developed was not able to be tested.
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Chapter 6

Conclusion

In this chapter we summarise the findings made during the course of the project. We
then discuss the merits of the two phased approach to object placement developed in
this thesis. Finally we describe possible directions for further work.

6.1 Summary of Findings

The objective of this project was to find the object placement which minimises the total
execution time of an arbitrary set of queries, for a shared nothing parallel OODBMS.
To achieve this objective we developed a new similarity based two phased approach
to object placement. It comprised of two phases: declustering, and clustering. The
first phase was an adaptation of the similarity based declustering approach proposed
by Liu and Shekhar [1996], for the different problem of data declustering in an unipro-
cessor multiple disk environment. The second phase was identified by this thesis to
be a necessary second step to object placement in a shared nothing parallel systems
using intra-operator parallelism.

The declustering phase was found to fail for the atomic part graph traversal of
the OO7 benchmark. After examination, the problem was found to lay in the greedy
manner in which objects are considered for placement. An improved heuristic was
developed in which objects are considered in order of reachability. The improved
heuristic was developed from the window approach to declustering used in Liu and
Shekhar [1996]. This improved heuristic was found to perform well for the atomic
part graph traversal (the problem it was developed to solve). However during subse-
quent experiments this improved heuristic was found to outperform all other place-
ment algorithms when ever navigation was present in the query. From the findings
made in this thesis it may be concluded if the length of navigation is long considering
placement in order of reachability is essential.

In general the type of query executed played a larger part in determining the scal-
ability of query processing when compare to the placement method employed. How-
ever when the query contains a large percentage of navigation as is the case in the
forth query examined in Chapter 4, the scalability of the various placement methods
varied significantly.

Set queries where found to be insensitive to the particular placement algorithm
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employed. Whereas navigational queries showed varying performance depending
on the object placement algorithm employed. This is due to the fact set queries hand-
icap the placement algorithms proposed in this thesis by removing the requirement
to reduce the number of internode object references and the number of remote page
loads. Whereas navigational queries do require these measures of placement quality
to be reduced.

When the training and execution conditions were varied in respect to each other,
the clustering phase was found to be important in keeping response time low as train-
ing conditions became increasingly non-favourable.

In conclusion both the declustering and clustering phases were found to be impor-
tant in reducing the number of remote page loads for navigational queries. For navi-
gational queries the performance of query execution can be significantly improved by
adopting a similarity-based approach to placement, such as the two phase approach
developed in this thesis. For the set of queries investigated in Chapter 4 the two
phased approach produced a large reduction in the number of remote page loads
while preserving a high degree of parallelism.

Finally a way of determining the optimal degree of declustering for small sets of
objects was presented in Section 5.4.

6.2 Further Work

In this thesis we explored a two phased approach to offline object placement. Therefore
objects are placed when the database is not in operation. However this limits the
application of the algorithm to situations where 24 hour access to the database is not
required. This limitation can be overcome if online object placement is employed.
Therefore an interesting direction for further work would be to investigate how the
two phased approach can be applied to online object placement.

There is always room for improvement for the algorithms proposed in this thesis.
Simple modifications such as changing the order in which objects are considered for
declustering can produce significant improvement in performance as shown in Sec-
tion 3.2.3



Appendix A

Peculiar Result Explanation
Continued

....... .......

Composite

Part

Set

Atomic Parts

node 1 node 2node 1

(a)

DCWIN

(b)

Figure A.1: Diagram to aid the explanation of the peculiar result observed for query 4

The purpose of this appendix is to explain the behaviour of the DC and WIN place-
ment algorithms as depicted in Figure A.1, which is a reproduction of Figure 4.8. To
understand how set objects are misplaced for DC but not for WIN, the traversal pat-
tern of both query 3 and query 4 needs to be studied together. Figure A.2 depicts the
objects traversed by query 3 and query 4, how they are related. For the scalability
experiment described in Section 4.4, set 1 and set 2 objects are referenced more often
than composite part objects. Therefore during the declustering phase of DC (greedy
approach), the set 1 and set 2 objects are placed before composite part objects. This
causes the declustering algorithm to often place set 1 and set 2 objects (which indi-
rectly reference each other) into different nodes. Hence when it is time to place com-
posite part objects, a tie situation often develops. The declustering algorithm does not
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58 Peculiar Result Explanation Continued

.....Atomic Parts

Composite Parts

Set 2

Base Assembly

Set 1

Query 3

Query 4

Figure A.2: Objects traversed by both query 3 and query 4

know whether to place the composite part object with the set 1 object or set 2 object.
If the set 1 object is chosen then the situation depicted in Figure A.1 (b) results. In
contrast WIN considers objects for placement in order of reachability. Therefore set 1,
composite part, and set 2 objects tend to be placed in the same node. The reason being
the declustering algorithm never considers set 1 and set 2 objects before composite
part objects are considered. This explains the placement behaviour of WIN depicted
in figure A.1 (a).



Appendix B

Scalability Comparison via
Response Time and Average Time
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(c) Query 3
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Figure B.1: Scalability comparison



Appendix C

Varying Training Conditions
Results Continued

These are some figures which were omitted in the varying training condition experi-
ment (Section 4.5). These graphs show the number of internode object references and
remote page loads for the 90% set (10% navigational) queries case.
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Appendix D

OO7 schema

The following is a description of the OO7 benchmark schema as described in Carey,
DeWitt, and Naughton [1993].

The description uses the C++ based data definition languages (DDLs). Inter-object
references are denoted using C++ pointers notation, eg., the partOf field of each
atomic part object is a reference to the composite part objects that the atomic part
is a part of, and its type indicated as CompositePart*. The expressions Set(T*) and
Bag(T*) denote sets and bags (multisets) of references to objects of type T. For example,
the to field of an atomic part object is a set containing references to connection objects
that hold data about (outgoing) connection between the atomic part and other atomic
parts. In addition, inverse relationships are denoted in the schema using � ��� , pro-
nounced “inverse of”. The fact that an atomic part has an inverse relationship with
the connection objects that it is connected to is captured in the DDL description of the
atomic part class via: Set(Connection*) to � ��� Connection::from. This says that
the field to of an atomic part is inversely related to the from field of the connections
that it references. Finally, it should be noted that OO7 schema includes instances of
1:1, 1:N, and M:N relationships; these are modelled as inverse relationships between
a pair of reference fields, and between two bags of references, respectively.

class DesignObj{
int4 id;
char type[10];
int4 buildDate;

};

class AtomicPart: DesignObj{
int4 x, y;
int4 docId;
Set(Connection*) to <-> Connection::from;
Set(Connection*) from <-> Connection::to;
CompositePart* partOf <-> CompositePart::parts;

}

class Connection {
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char type[10];
int4 length;
AtmoicPart* from <-> AtomicPart::to;
AtomicPart* to <-> AtomicPart::from;

};

class CompositePart: DesignObj {
Document* documentation <-> Document::part;
Bag(BaseAssembly*) usedInPriv

<-> BaseAssembly::componentsPriv;
Set(AtomicPart*) parts<-> AtomicPart:: partOf;
AtomicPart* rootPart;

}

class Document {
char title;
int4 id;
String text;
CompositePart* part <-> CompositePart::documentation;

}

class Manual {
char title[40];
int4 id;
String text;
int4 textLen;
Module* mode <-> Module::man

};

class Assembly: DesignObj {
ComplexAssembly* superAssembly

<-> ComplexAssembly::subAssemblies;
Module* module <-> Module::assemblies;

};

class ComplexAssembly: Assembly {
Set(Assembly*) subAssemblies

<-> Assembly::superAssembly;
}

class BaseAssembly: Assembly {
Bag(CompositePart*) componentsPriv

<-> CompositePart::usedInPriv;
}
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class Module: DesignObj {
Manual* man <-> Manual::mod;
Set(Assembly*) assemblies <-> Assembly::module;
ComplexAssembly* designRoot;

} with extent (id indexed);
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