
Multi-Buffer Manager: Energy Efficient Buffer
Manager for Databases on Flash Memory

Ulpian Cesana and Zhen He
Department of Computer Science and Computer Engineering
La Trobe University
VIC 3086
Australia
ucesana@gmail.com, z.he@latrobe.edu.au

Embedded devices such as personal digital assistants (PDAs), pocket PCs, palmtops, and handheld PCs are
increasingly using flash memory for the permanent storage of databases. Databases achieve their fast data access
speeds by using a memory manager which manages data pages in a memory buffer. The buffer manager uses a
page replacement policy to evict pages when the memory buffer is full. An eviction of a dirty page will result
in a write to flash memory. Unfortunately, writing to flash memory consumes a lot more energy than reading.
Much of the previous work in page replacement policies has focused on reducing the number of page reads rather
than writes. One of the few existing works to consider the effects of flash memory’s hardware constraints for
database design is Lee et. al.’s [Lee and Moon 2007] In-page Logging (IPL) approach. They demonstrated IPL
significantly outperforms traditional disk-based databases when running on flash memory. However, they do
not consider the energy efficiency of their approach in terms of the behaviour of the page replacement policy.
This paper addresses this issue by presenting the Multi-Buffer manager which is customized for flash databases
that uses a logging-based approach for managing updates such as IPL. Extensive experiments show the page
replacement policy used plays a pivotal role in the performance of the flash database system. In particular, our
Multi-Buffer manager can reduce energy consumption by up to 40% compared to the state-of-the-art clean first
flash-based buffer replacement policy (CFLRU).

Categories and Subject Descriptors: H.2.4 [Information Systems]: Database Management—Systems; D.4.7
[Software]: Operating Systems—Organization and Design

General Terms: Performance, Algorithms
Additional Key Words and Phrases: flash memory, flash drive, embedded device, database, page replacement,
buffer manager, cache manager, energy efficiency

1. INTRODUCTION

Embedded devices such as personal digital assistants (PDAs), pocket PCs, palmtops, and
handheld PCs are becoming ubiquitous in the consumer market. It is likely that there will
be an increase in demand for applications such as spreadsheet editors, personal organisers,
scientific programs, and financial accounting software that require a database installed di-
rectly on embedded devices. Flash memory is ideal for storing data for embedded devices
because it is small, light-weight, noiseless, energy efficient, and has excellent kinetic shock
resistance.

The typical strategy to achieve fast database access is to have a buffer manager to man-
age a subset of the database pages within a fast RAM buffer. Whenever a requested page
is not found in the buffer, a page fault occurs, which involves loading the requested page
from flash memory into the RAM buffer. Whenever a page is updated, the buffer manager
updates it within the RAM buffer and marks it as ’dirty’. When the RAM buffer is full and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY, Pages 1–??.

a page needs to be loaded from flash, a page replacement policy is used to select a page for
eviction. When a dirty page is evicted, it is written (or flushed) into the flash memory.

Using flash memory for the buffer manager poses a problem for the page replacement
policy because each eviction of a dirty data page will force a write to flash memory. Flash
memory consumes significantly more energy to perform a write operation compared to
a read operation. In addition, writes can only occur in blocks that have been previously
erased. A block typically contains 64 pages. Therefore, erase costs must also be factored
into the write code when flushing a dirty page. Energy in the embedded device’s battery is
a limited resource. So, to extend the operation time of the embedded device, the embedded
device should conserve as much energy as possible. Since writes are much more expensive
compared to reads, the database page replacement policy should bias the eviction of clean
pages over dirty pages.

A recent state-of-the-art flash database uses the In-page Logging approach (IPL) pre-
sented in Lee et. al.’s paper[Lee and Moon 2007]. It takes advantage of the asymmetric
read/write speeds of flash memory to improve the performance of a buffer manager on flash
memory. When a data page is updated, the changes are written in the form of log pages
instead of overwriting the data page itself. So when the data page is loaded from flash
memory, the log pages are applied to the original version of the data page. Loading a data
page and its associated log pages consumes energy proportional to the number of pages that
are read from flash memory because loading a data page requires loading the data page’s
associated log pages. This means different data pages may have potentially different read
costs. Therefore, a buffer replacement algorithm that is customized for a logging-based
database such as IPL needs to consider the different potential read cost of data pages as
well as the high cost of flushing log pages. Despite this fact, the buffer replacement algo-
rithm used in IPL is just the traditional, least recently used buffer replacement algorithm
that does not consider these differences in costs.

Most previous work on buffer replacement has mainly focused on virtual memory sys-
tems or database buffering systems. These algorithms do not factor in the asymmetric costs
of read and write or the potential for different read costs. However, there has been some
recent work that has proposed techniques to develop a flash-aware page replacement policy
[Park et al. 2004; Park et al. 2006; Tseng et al. 2006]. The general approach is to prefer
evicting clean pages versus dirty pages. These techniques succeed in reducing the energy
consumption for virtual memory system running on flash memory. However, they do not
consider the fact that data pages can have different read costs in logging-based database
systems for flash memory.

This paper presents the Multi-Buffer Manager which solves a class of problem inspired
by the IPL approach. The Multi-Buffer Manager breaks up the global memory buffer into
a set of local buffers of various sizes and a page replacement policy that discriminates be-
tween data pages with a different number of associated log pages and dirty pages. The key
idea behind the Multi-Buffer Manager is the resize formula. The resize formula computes
the optimal local buffer sizes in order to minimize the overall energy consumption for a
given workload. The Multi-Buffer manager will dynamically recompute the optimal buffer
sizes in order to adjust to changes in the workload.

We have conducted extensive experiments comparing our Multi-Buffer manager to the
clean first least recently used algorithm[Park et al. 2006] (CFLRU), a simple variant of
CFLRU which we created called lowest log count clean first LRU (LLCCFLRU) and the

traditional least recently used (LRU) buffer replacement algorithm running on a single
global buffer. The results show Multi-buffer outperforms CFLRU, LLCCFLRU and LRU
in all cases tested. Multi-buffer can reduce energy consumption by up to 63%, 40% and
40% compared to LRU, LLCCFLRU, CFLRU respectively. Although Multi-buffer im-
posed significantly more buffer replacement overhead than its counterparts, we argue that
the large energy savings from flash memory access far outweigh the additional buffer re-
placement overheads.

2. FLASH MEMORY

Flash memory is small, light-weight, shock-resistant, energy efficient[Chiang et al. 1997],
noiseless, and has fast data access speeds. These properties of flash memory make it a
suitable high-density storage device for embedded devices[Wu and Zwaenepoel 1994a].
There are two types of flash memory: NAND, and NOR. NAND flash memory is cheaper,
has higher storage capacity, and overall, consumes less energy and is faster than NOR flash
memory. We have chosen to use NAND flash memory in our experiments.

Read Write Erase
Energy Consumption (µJ/4kb) 9.4 59.6 16.5
Access Time (µs/4kb) 284.2 1833.0 499.2

Table I. Typical energy consumption and access time of NAND flash memory[Park et al. 2006]

The characteristics of NAND flash memory are summarised in Table I. Please note that
the erase operation is actually done at the block grain and all the values in the table were
scaled to 4KB operations for fair comparison. The energy cost and access time of a write
is about six times that of a read and about three times that of an erase.

Flash memory is divided into a sequence of large blocks. Each block is typically di-
vided into 64 pages. The typical size of a page is 2KB. Flash memory starts with all
of its blocks erased. The flash memory erase operation erases all the pages within one
block. Each block in flash memory has a limited number of erase cycles, between 10,000
and 1,000,000. Once a block has been erased a number of times beyond the erase cycle
threshold, it can no longer be used[Wu and Zwaenepoel 1994a]. The flash memory write
operation is performed a page at a time[Chiang and Chang 1999]. Flash memory does
not support in-place updates because before a page can be overwritten, the entire block
in which it resides must be erased. The typical strategy to update a page is to write out
the updated page to an empty page, and mark the original page as invalid. Eventually, a
set of invalid pages will accumulate within blocks, so it becomes necessary for a garbage
collector to erase these pages to reclaim memory.

The following summarizes the various constraints of flash memory:

Write/Read Ratio Cost. Write operations consume more energy than read operations.
This can be observed from Table I.

No In-place Update. It is not possible to overwrite an existing page until that page is
erased. So, an in-place update has to be performed as an out-of-place update. However,
an out-of-place update may consume a lot of energy. Not only is there the energy cost of
writing a page, there could be the additional energy costs of the garbage collector which
needs to write out valid pages before erasing a block.

Block Wear. Blocks have a limited number of erase cycles (typically 1,000,000 erases).
So any block that fails because of block wear will render it unwritable. This has the conse-
quence that the number of blocks that flash memory can write to will diminish throughout
the flash memory’s life-time. To avoid blocks becoming unwritable before others, the
writes have to be spread across its blocks as evenly as possible. This is called wear-
leveling[Chiang et al. 1997].

The above summary underlines the importance of reducing the amount of writes to flash
memory. In this paper, our buffer replacement algorithm biases retaining dirty pages over
clean pages in order to reduce energy consumption.

3. RELATED WORK

We discuss five areas of related work: virtual memory systems, database buffering man-
agers, flash specific buffering managers, the flash based database system IPL and log-
structured flash file systems.

Frequency-Based Replacement Algorithm (FBR)[Robinson and Devarakonda 1990],
and Least Recently/Frequently Used (LRFU)[Lee et al. 1999; 2001] are examples of page
replacement policies for virtual memory that improve LRU. Most improve the hit rate by
taking into account reference frequency. SEQuence Replacement Algorithm (SEQ)[Glass
and Cao 1997], Early Eviction Least Recently Used (EELRU)[Smaragdakis et al. 1999],
and Low Inter-references Recency Set (LIRS)[Jiang and Zhang 2002] page replacement
policies attempted to resolve the cyclic pattern problem. Unfortunately, all these policies
contain user-defined parameters. The Adaptive Replacement Cache (ARC)[Megiddo and
Modha 2003] is an adaptable page replacement policy that solved the sequential scan prob-
lem.

DEtection based Adaptive Replacement (DEAR) [Choi et al. 1998] is a database buffer
manager that resolves the cyclic pattern and sequential scan problems of LRU. Hot Set
Model[Sacco and Schkolnick 1982; 1986], and DBMIN[Cornell and Yu 1989] are exam-
ples of database buffer managers that use prior knowledge of the workload to guide the
page replacement decisions. The reference pattern behaviour is either derived from an ac-
cess plan generated by a database query optimiser, or by hints that are supplied by the user.
The problem for the first approach is that the overhead of executing a query optimiser on
an embedded devices may be prohibitively high. The problem for the second approach
is that it may not be possible for a user to know the behaviour of the reference pattern in
advance in order to derive the hints.

O’Neil et al. [O’Neil et al. 1993] observed that LRU, which was originally intended
for reference patterns in code execution, does not work well for database reference pat-
terns. So they developed LRU-K, a database page replacement algorithm that records the
last K references of each page in order to better distinguish between frequently and infre-
quently accessed pages, and it is able to adapt to a changing workload. Johnson et. al.
[Theodore Johnson 1994] developed 2Q which reduced the time complexity of LRU-K to
constant time.

All buffer replacement algorithms mentioned above are not customized for the asym-
metric read versus write cost of flash memory and also do not consider the fact that in a
logging based flash database such as IPL, different data pages can have different read costs.

There has been some recent work on the development of flash-aware buffer managers.
Park et al.’s Clean-First Least Recently Used (CFLRU)[Park et al. 2004; Park et al. 2006],

Log page

........

Data region Log region

Data page

Fig. 1. Flash block layout for IPL.

and Hung-Wei et al.’s HotCache[Tseng et al. 2006] incorporate the asymmetric cost of
read and writes of flash memory in their buffer replacement policy. However, these buffer
managers do not factor in the fact that different data pages can have different read costs in
a logging based flash database such as IPL.

Lee et. al.[Lee and Moon 2007] designed a flash based DBMS that caters for the erase
before write characteristic of flash memory by partitioning a block (grain at which data is
erased) into a data region and a log region. The data region stores data pages and the log
region stores update to the data pages in the form of log pages. They call this approach
In-Page Logging (IPL). Figure 1 shows the flash block layout used by IPL. When a data
page is updated, a log record is written into a RAM resident log page that is associated
with the data. When the log page is evicted from RAM, it is written into the log region
of the block its data page resides in. This way, the data pages themselves never need to
be written back into the flash memory. Therefore, overcoming the high cost of in-place
updates in flash memory. However, when there are no more free pages in the log region
of a block, the log region is freed up by erasing the block and writing back the data pages
with the log records applied. This is called merging the data region with the log region.

Since data pages are not updated in-place, they can be out-of-date, so whenever a data
page is loaded into RAM, all its associated log pages are also loaded in order to reconstruct
the updated the data page. This means different data pages can have different associated
read costs since different data pages can have different numbers of associated log pages.
However, Lee et. al.[Lee and Moon 2007] do not propose any buffer replacement algorithm
that is aware of these differences or the fact that writes are much more expensive than reads.
In contrast, the approach proposed in this paper address both of these deficiencies in IPL.

IPL can be configured to support recovery. IPL supports recovery by flushing all log
pages that are dirtied by a transaction when it commits. Before commit, no log pages are
flushed. Upon transaction abort the RAM resident log pages are discarded and the up-
dates to the corresponding data pages are automatically de-applied. Since log pages are
not flushed before commit, there is no need to perform an undo during a transaction abort.
When merging the data and log pages to free up new space for future log records, the
aborted transactions can cause problems since a log record of a transaction that has been
aborted must not be merged with the data pages. The problem is overcome by marking
log records of aborted transactions so that during merging, those records can be discarded
without merging with the data page. During a merge, the log records of the current un-
committed transactions are marked as uncommitted and copied to the newly freed-up log
region because we do not know if the current transaction will be aborted or committed.
The requirement by IPL’s recovery support to flush all log pages at every transaction com-
mit means often many log pages with few update records will be flushed. This results
in a high number of page flushes, which is very expensive for flash memory. Therefore,
recovery support in IPL will come at a very high energy cost. In this paper, we present

our solution to buffer management in a logging-based flash database such as IPL assuming
no recovery support. This allows us to have control over when log pages are flushed and
thereby, produce a much more efficient solution. However, our approach can be used with
recovery support by controlling the replacement of data pages. This would not allow as
much energy to be saved but will still lead to considerable savings in terms of minimising
energy used for reading data pages.

There has been a number of log-structured files systems proposed to deal with the oper-
ational constraints of flash memory. These file systems include the Journaling Flash File
System (JFFS)[Woodhouse 2001] and the Yet Another Flash File System (YAFFS)[Manning
2002]. These file systems organise the entire flash as a log in which flushed dirty pages
are appended to the end of the page. The original page that has been dirtied is invalided.
A RAM-based buffer is used to keep track of the mapping from logical page id to the cur-
rent location of the page in the log. This contrasts from log-structured database IPL by
considering updates at the coarse page grain as opposed to the finer tuple grain.

Figure 2 shows an example that contrasts the difference between the log-structure database
IPL and a log-structured file system. As shown in Figure 2 (a), in IPL, a block is divided
into a data region and a log region. When a tuple is updated, a log record is written into an
in RAM log page for the block. The log page fills up gradually as other tuples in the same
block are updated. This allows three tuple updates from different pages to be grouped to-
gether into one log page flush. In contrast, Figure 2 (b) shows the same three tuple updates
generating three page flushes for the log-structured file system. The log-structured file sys-
tem operates solely at the page grain and therefore does not consider separate individual
tuples.

A log-structured buffer manager that addresses the write-erase costs of flash memory
was proposed by Jo et. al. called the Flash-Aware Buffer Manager (FAB)[Heeseung Jo and
Lee]. It too operates on the page grain, but this works well for the buffer manager because
it is intended for use in portable media players that have large blocks of contiguous data.
However, it suffers the same problem as IPL in that it does not account for the different
read costs of log-page linked data pages.

4. PROBLEM DEFINITION

In this paper, we define a class of problem which is inspired by the IPL approach. Suppose
we have a logging based database buffer manager that stores data at the page grain. When
a data page is updated, the changes made to its contents are recorded by writing log pages
to flash memory. The original data page itself is left intact. Whenever an updated data
page is loaded from flash memory, its associated log pages are loaded along with it, and
the contents of the updated data page are reconstructed by applying the log pages to the
original data page.

The problem with this type of buffer manager is that the cost of loading a data page is
proportional to the number of log pages that are associated with that data page. The cost of
loading an evicted data page that has many log pages is greater than the cost of loading an
evicted data page that has few log pages. Therefore, an optimal buffer replacement policy
must be aware of the different loading costs for different data pages when deciding which
data page to evict. In addition, the optimal buffer replacement policy must also be aware
of the cost of evicting a dirty log page.

In this paper, we take a multiple buffer approach to solve this class of problem. The

updated tuple

.....

data region log region

Page non−updated tuple

(a) A block with three tuple updates in IPL

.....

Page non−updated tuple updated tuple

new pagePage marked as invalid

(b) Three updated tuples in a log-structured file system

Fig. 2. Example showing the difference between the log-structure database IPL and a log-structured file system.

approach discriminates between data pages with a different number of associated log pages
and the dirty log pages in order to maintain a set of separate local buffers of varying sizes.
Data pages are stored in the local buffers that have a matching number of associated log
pages. Dirty log pages are placed in its own separate local buffer. The global buffer
consists of all the local buffers. The problem is to find the optimal maximum buffer sizes
for the local buffer so that the total expected energy cost of future references is minimized
and the global buffer does not exceed a certain total size limit.

We formally define the problem as follows. Let the workload, W , be defined as a set of
data and log pages along with their associated stationary probability of being referenced
(either updated or read). In addition, for the data pages we also include the number of asso-
ciated log pages. Therefore, W = {<page id, stationary probability of reference, the num-
ber of associated log pages if page is a data page >}. For example, W = {< dp1, 0.6, 3 >,
< dp2, 0.2, 5 >, < dp3, 0.1, 5 >, < lp4, 0.1,− >}. In this example, W consists of the
data page dp1 with a stationary probability of 0.6 and has 3 log pages associated with it.
The example also contains the log page lp4 with stationary probability of 0.1. The sta-
tionary probability for a page p can be computed using the following ratio: number of
references to page p / total number of references for all pages. These workload statistics
are updated continuously during the on-line phase so the most up-to-date information can
be used to find the optimal maximum local buffer sizes.

The total expected energy cost per page reference in W , TEC(W), is defined as:

TEC(W) =
∑

p∈D(W)(Prmiss(p)× costmiss(p)× Prreadref
(p))

+
∑

p∈L(W)(Prflush(p)× costflush(p)× Prupdateref
(p)) (1)

where D(W) is the set of data pages in W , L(W) is the set of log pages in W ,
Prmiss(p) is the stationary probability of a page fault occurring for the data page p,
costmiss(p) is the cost for loading a data page p, Prreadref

(p) is the stationary proba-
bility of a read reference for data page p, Prflush(p) is the stationary probability of a page
flush occurring for the log page p, costflush(p) is the cost for flushing a log page p to the
flash memory, and Prupdateref

(p) is the stationary probability of an update reference for
log page p.

Note in the above expect energy cost formulation we assume that the energy consump-
tion for page loads and writes are constant and we do not factor in the energy cost of
accessing RAM.

The problem is then defined as finding the maximum local buffer sizes such that the
expected energy cost per page reference, TEC(W) for a given workload W is minimized
while conforming to the global total size constraint.

The global total size constraint states that the total maximum local buffer sizes must be
equal to or less than the total RAM available to the global buffer. It is defined as:

∑

B∈G

(size(B))−ML = 0 (2)

where size(B) is the maximum buffer size of local buffer B and ML is the global memory
limit and G is the set of all local buffers. Note size(B) and ML are in terms of number of
pages.

In Section 5.4, we minimize Equation 1 under the global total size constraint (2) with re-

spect to energy to derive a resize formula that enables us to compute the optimal maximum
local buffer sizes.

5. MULTI-BUFFER MANAGER DESIGN

Log page count = m −1

Local data buffer 1

Local data buffer 2

Local data buffer m

Local log buffer

Log page count = 0

Log page count = 1

Fig. 3. Multi-Buffer with m local data buffers and one local log buffer

In this paper, we propose the Multi-Buffer manager to solve the problem defined in
the previous section, which means it is a buffer manager that is designed to minimize
energy usage for log based flash databases such as IPL[Lee and Moon 2007]. To fully
understand this section, it is important the reader understands how IPL works (see the
seventh paragraph of Section 3 and the first two paragraphs of Section 4). The Multi-Buffer
Manager has a global buffer which consists of m+1 local buffers. The first m local buffers
are local data buffers and the last one is a local log buffer. The local buffers can have
different maximum sizes (see Figure 3). Having different local buffers with different sizes
allows the buffer manager to discriminate between pages based on their associated loading
and eviction costs. Pages in smaller local buffers will be evicted more aggressively. The
optimal sizes for the local buffers is determined by the resize formula derived in Section
5.4. We define the maximum global buffer size constraint which states that the sum of all
the pages that reside in all the local buffers is no greater than the maximum global buffer
size.

Each local data buffer is associated with an attribute called the log page count. The
log page count is the number of log page loads that are required to load a data page into
a particular data local buffer. The cost of loading a data page into a particular local data
buffer is proportional to the log page count attribute of the local data buffer. The local log
buffer stores all log pages that have been updated in RAM and are yet to be flushed into
flash memory.

The number of local buffers and the maximum sizes of each local buffer are computed
from the reference behaviour of the workload. First, an off-line component of the Multi-
Buffer Manager is run by using a previously collected workload in order to generate the
necessary statistics to compute the optimal number of buffers and the maximum local
buffer sizes. During on-line operation, the local buffers are periodically resized using
off-line generated statistics that are partially updated during normal operation. This allows
the buffer manager to adapt to changing workloads. The reason that not all the statistics

can be updated dynamically is that some of the statistics require too much computation to
update on-line.

A global page replacement algorithm is developed to evict pages from the buffer. It
tries to keep the local buffers from overflowing their computed optimal maximum sizes by
evicting pages from local buffer that are overflowing. By keeping the number of pages in
each local buffer close to the computed optimal maximum size, the total energy cost of
reading and writing flash pages is minimized.

5.1 Global Page Replacement Principles

In this paper, the Least-Recently Used (LRU) page replacement policy is used to decide
which data page within a local buffer to evict. Note that the Multi-Buffer approach can be
used with any existing buffer replacement policy internally within local buffers.

In addition to the internal page replacement within the local buffers, we introduce a
global page replacement policy (see Section 5.2) which follows the following four princi-
ples:

Principle 1. The sum of all the pages across all the local buffers cannot exceed the
maximum global buffer size.

Principle 2. The number of pages in a local buffer can exceed the local buffer’s maxi-
mum size as long as principle 1 holds.

Principle 3. Data pages should always reside in the local data buffer associated with its
current log page count.

Principle 4. Log page evictions are triggered solely based on minimizing IO costs con-
siderations.

Principle 1 is a consequence of the maximum global buffer size constraint. The intuition
behind this principle is that it allows the Multi-Buffer Manager to resize the maximum sizes
for each local buffer, as long as the maximum global buffer size constraint is not violated.
The fundamental idea behind the Multi-Buffer Manager is to set the local buffer sizes such
that the total energy consumption is minimized. The local buffer sizes are computed by the
resize formula which will be described in detail in Section 5.4.

Principle 2 states that local buffers are allowed to overflow. Although overflow is al-
lowed, it is not desirable since it means the maximum buffer sizes that are computed are
not being obeyed. So overflow is avoided as much as possible. However, it is not a good
idea to avoid overflow in all cases. An example is when a data page is loaded into a local
data buffer that is full but the global buffer is not full yet. In such a situation, it would be
sub-optimal to evict a data page from the local data buffer when there is still enough RAM
globally available for the data page. When the number of pages in a local buffer exceeds
its maximum size, then it is said that the local buffer has a Local Buffer Maximum Size
(LMBS) Violation . In effect, principle 2 states that LMBS violations are allowed as long
as the maximum global buffer size is not violated.

Principle 3 states that when a data page’s log page count is increased (caused by updates)
or decreased (as a result of merging data and log pages for a block), it must be moved to a
local data buffer that has a matching log page count. This is important since, if we allow
data pages to reside in local data buffers that have a different log page count, then LBMS
violation would not be accurate. Note moving pages into different local buffers could cause
the target local data buffer to overflow. The overflow is allowed according to principle 2.

Principle 4 states that when deciding whether a log page should be evicted, we only
consider IO costs. This gives us full control on when the log pages are flushed which,
in turn allows our buffer replacement algorithm the maximum flexibility in reducing IO
costs. This principle differs from both the basic and no-force log page eviction policies
described in IPL[Lee and Moon 2007]. In the basic policy, log pages must be flushed
when its associated data page is flushed. This policy does not allow for recovery since
no updated data is forced onto flash when a transaction commits. However, by linking
flushing of log pages with data pages we lose the flexibility of flushing log pages at the
optimal time in order to reduce IO costs. The no-force log page eviction policy ensures
recoverability of the data by flushing all updated log pages when a transaction commits.
This, however, generates a lot of write IO since many log pages are flushed when they are
still close to empty.

5.2 Global Page Replacement Algorithm

performEviction(G : the global buffer, B: local buffer that the requested page will be placed in)

1. Let the local buffer chosen for eviction be E
2. if (at least one local data buffer in G has a LBMS violation)
3. E = local data buffer in G that has a LBMS violation and has the smallest log page count
4. else if (local log buffer has a LBMS violation)
5. E = the local log buffer
6. else if (B is not empty)
7. E = B
8. else if there is at least one non-empty local data buffer
9. E = the non-empty local data buffer with the smallest log page count
10. else
11. E = the local log buffer
12. end if
13. evict a page from E according to the local buffer replacement algorithm
14. if E is the local log buffer

// let the evicted log page be e
// let p be the data page associated with log page e

15. flush e into flash memory
16. // let fb be the block that e was flushed into
17. if the flushing caused fb to merge its log and data pages
18. place all RAM resident data pages in block fb into local data buffer with log page count 0
19. else
20. // let lc be the original log page count of p
21. promote p into the local data buffer with log page count lc + 1
22. end if
23.end if

Fig. 4. Algorithm for evicting a page.

The global page replacement algorithm trims back local buffers that have LMBS viola-
tions in order to maintain optimal performance. When the global buffer is full, there may

be one or more local buffers that have more pages than their maximum buffer size (LMBS).
The remaining local buffers will be under-utilised. The under-utilised local buffers contain
fewer pages than the optimal number as calculated by the resize formula. This has the
consequence that the Multi-Buffer Manager would experience sub-optimal performance.

The global page replacement algorithm is presented in Figure 4. It follows the four
principles described in Section 5.1. The algorithm is triggered when a page needs to be
placed in the buffer. The algorithm first tries to evict pages from the local buffer that have
LBMS violation (lines 2 to 5). Among the local buffers that have a LBMS violation, it tries
to evict from the one with the lowest cost. Hence, the order it uses to pick the local buffer
to evict from is the local data buffer with the lowest log page count followed by the local
log buffer. The local log buffer has the highest cost since it requires flushing a page into
flash memory. If no page has LBMS violation (lines 6 - 12), then we try to evict from the
buffer that the next page will be placed into B (lines 6 - 7). However, if B is empty, then it
will try to evict from the lowest cost local buffer, where the cost is again ranked according
to the ranking policy used for lines 1 to 4 of the algorithm. When a local buffer is chosen
for eviction, a page in the local buffer in evicted according to the local buffer replacement
algorithm (line 13). In our experiments, we use the least recently used (LRU) as the local
buffer replacement algorithm. Note as a consequence of principle 4, data page evictions do
not trigger any log page evictions. Lines 13 - 22 of the algorithm describe what happens
if a log page is evicted. When a log page is evicted the log page count of various pages in
the buffer may have changed. Therefore, according to principle 3, the affected data pages
that are currently RAM resident need to be moved into their new corresponding local data
buffers (lines 16 - 21).

In our experiments, the local buffers are resized after every 10000 evictions. Although
this is very infrequent, it still generates very good results. The resize is done according to
the optimal local buffer resize formula described in Section 5.4. The computation of the
resize formula requires a few basic arithmetic operations which, given modern computers
have much faster CPU compared to disk, is not a large overhead. Section 7.4 shows an
experiment in which we vary the rate at which the local buffers are resized.

5.3 Read and Write Operations

In this section, we describe the algorithm used to handle a data page read and data page
write respectively. All the algorithms follow the three principles described in Section 5.1.
The subscripts i and j used throughout Figures 5 and 6 denote the page ID and the log
page count respectively. This notation will become more clear in 5.4 when we discuss the
workload.

Figure 5 shows the algorithm used to handle a data page read. The algorithm is straight-
forward (lines 1 - 8). At the end of the algorithm (line 9), the statistics used by the resize
formula are recomputed.

Figure 6 shows the algorithm for updating a data page. First, the algorithm checks if the
data page to be updated resides in RAM. If not, it is first loaded up (lines 1 - 3). When a
data page is updated, a log record is generated. The log record needs to be placed into the
RAM resident log page allocated to the data page. All data pages that reside in the same
flash block have the same allocated log page. This is because all data pages of the same
block share the same set of log pages. If there are currently no log pages in the global
buffer for the updated data page, then a new one is created (lines 4 - 9). When a log record
is written, it is possible that an old log page becomes full and needs to be flushed (lines 13

readPage(pi,j : the requested data page, BDj : the local data buffer for the requested
data page, G : the global buffer)

1. if (data page pi,j is not in G)
2. if (G is full)
3. performEviction(G, BDj)
4. end if
5. Load data page pi,j from flash memory
6. Load and apply any non RAM resident log pages associated to data page pi,j

7. Insert data page pi,j into local buffer BDj

8. end if
9. Update resize statistics // Described in Section 5.4.6

Fig. 5. Algorithm for reading a data page.

- 22). When a log page is flushed, some data pages may need to be moved into a new local
data buffer that corresponds to its new log page count. This is done for the same reasons
as for lines 14 - 23 of Figure 4. Lastly, the statistics needed for resizing the local buffers
are updated.

5.4 Resize Formula

This section presents the resize formula and its derivation. The resize formula is used to
set the optimal maximum size of the local buffers. The resize formula is a mathematically
optimal solution to the problem defined in Section 4. The formula considers a range of
factors such as the probability of page references to local buffers, the probability of cache
miss as a function of local buffer size, the total number of pages (either in RAM or in flash)
that is associated with the local buffer, the cost of loading or evicting pages from the local
buffer, etc. Intuitively, a local buffer will be set a smaller maximum size if the local buffer
is not used much, has few data pages associated to it, has the property that a larger size
does not bring significant reduction in cache miss rate, and the energy cost of loading or
evicting a page associated with the local buffer is small.

We now formally describe the derivation of the resize formula. Let the global buffer, G,
be a set of m local data buffers and one local log buffer. Let each local data buffer in G
be denoted by BDj , where the subscript j denotes the log page count associated with the
local buffer. Let the local log buffer be denoted by BL. A data page can only be inserted
into a local data buffer if its log page count matches the log page count of the local data
buffer. All RAM resident log pages are placed in BL.

To compute the optimal maximum local buffers sizes, we proceed to reformulate the
total expected cost formula (Equation 1) in terms of the local buffers. Before we define the
reformulated cost formula we need to provide a new definition of workload W called W ′

in which page reference statistics are grouped into local buffers. Each data page pi,j ∈ W
belongs to some local data buffer BDj and each log page pLi belongs to the local log buffer,
so the pages in the ordered set W can be rearranged into groups of pages, W ′, where each
member of the same group in W ′ belongs to the same local buffer. W ′ is formally defined
as follows:

DEFINITION 1. : Workload W ′ consists of a set of m local buffer workloads {w′0, w′1, ..., w′m−1}.

updatePage(dpi,j : the data page to update, lp : the log page the update will be stored in,
lr: the update log record, BDj : the local data buffer for the updated data page,
G : the global buffer)

1. if (pi,j is not in G)
2. readPage(pi,j , BDj , G)
3. end if
4. if lp does not exist in G
5. if (G is full)
6. performEviction(G, local log buffer)
7. end if
8. create a new log page and place it into G, and let lp be a reference to the new log page.
9. end if
10. if (space left in log page lp >= size of the update log record lr)
11. write log record lr into log page lp
12. else
13. flush log page lp into flash memory
14. // let BL(dpi,j) be the block that page dpi,j resides in
15. if flushing log page lp caused block BL(dpi,j) to merge its data and log pages
16. place all RAM resident data pages in block BL(dpi,j) into local buffer BD0

17. else
18. promote data page dpi,j into local buffer BDj+1

19. end if
20. place a new log page nlp into the local log buffer
21. write log record lr into new log page nlp
22. end if
23. Update resize statistics // Described in Section 5.4.6

Fig. 6. Algorithm for updating a data page.

Where m is the total number of local buffers in the global buffer and each local buffer work-
load wj consists of a set of page reference statistics for pages that belong to the jth local
buffer. The first m− 1 workloads belong to the data local buffers and the final one belong
to the local log buffer. wj = {< p1,j , sp1,j >,< p2,j , sp2,j >}. Where pi,j is the ith page
in local buffer j and spi,j is the stationary reference probability of referencing page pi,j .

For example, suppose the workload is as follows: W = {< p1,1, 0.1, 1 >,< p2,0, 0.2, 0 >
,< p3,1, 0.1, 1 >,< pL1 , 0.2,− >, < p4,1, 0.1, 1 >,< pL2 , 0.1,− >,< p5,0, 0.2, 0 >}.
Where W is as defined in Section 4. W can be rearranged into three workload subsets
W ′ = {w′0 = {< p2,0, 0.2 >,< p5,0, 0.2 >}, w′1 = {< p1,1, 0.1 >,< p3,1, 0.1 >,<
p4,1, 0.1 >}, w′2 = {< pL1 , 0.2 >,< pL2 , 0.1 >}}, each of the subsets belongs to a dif-
ferent local buffer. The first subset w′0 has data page references that belong to buffer BD0 ,
the second subset w′0 has data page references that belong to buffer BD1 and the log pages
in the third subset w2 belong to BL. After the reformulation, Equation 1 becomes:

TEC(W ′) =
∑

BDj
∈D(W ′)(Prmiss(BDj)×

∑
pi,j∈BDj

costmiss(pi,j)× Prreadref
(pi,j))

+Prflush(BL)×∑
pLi

∈BL
costflush(pLi)× Prupdateref

(pLi)
(3)

where the symbols used are the same as those for Equation 1 and above. Observe that the
loading cost for all data pages in the same local data buffer is the same and the probability
of reading from a buffer is equal to the probability of reading all the pages in the buffer.
Hence, the second summation that appears in Equation 3 becomes:

∑

pi,j∈BDj

costmiss(pi,j)× Prreadref
(pi,j) = costmiss(BDj

)× Prreadref
(BDj) (4)

Similarly, all flushing costs and update reference probability for the local log buffer are
the same. Hence, the third summation in Equation 3 becomes:

∑

pL,i∈BL

costflush(pL,i)× Prupdateref
(pL,i) = costflush(BL)× Prupdateref

(BL) (5)

Substituting Equation 4 and 5 into Equation 3, the reformulated total expected cost for-
mula (TEC ′) becomes:

TEC ′(W ′) =
∑

BDj
∈W ′(Prmiss(BDj)× costmiss(BDj)× Prreadref

(BDj))
+Prflush(BL)× costflush(BL)× Prupdateref

(BL)
(6)

The computation of the terms Prmiss(BDj), costmiss(BDj), Prflush(BL) and costflush(BL)
in Equation 6 are each described in the following four sections.

5.4.1 Computing Prmiss(BDj). Since the ultimate aim of this section is to set the op-
timal maximum local buffer sizes, we need to know how different maximum local buffer
sizes affect the buffer miss probability (page fault rate). Therefore, we need a miss proba-
bility that is a function of local buffer size. In order to produce a function that is bounded
on the x-axis between 0 and 1, we set the x-axis as the fraction of data pages in the local
buffer (buffer size / total number of data pages).

Figure 7 shows two example miss probability functions. Function a. of Figure 7 shows a
typical miss probability function. Observe that initially the miss probability rapidly drops
as the buffer size increases, then levels out. This is a result of temporal locality in the
reference pattern. However, function b. shows a linear miss probability function which
is the case when a random reference pattern is encountered (no temporal locality in the
reference pattern). In this paper, we use a miss probability equation that can be adjusted
to model both reference patterns of high and low temporal locality. Equation 7 shows the
general form of the miss probability function used in this paper. However, it is important
to note that this is only an example of a function that can be used. For future work, we plan
to explore the suitability of other functions.

Prmiss(xj) =
cj(1− xDj)
ajxj + cj

(7)

where a and b are constants which are obtained from off-line training using a training
workload. xj is the fraction of data pages that reside in buffer BDj and it is given by

xj =
sj

tj
(8)

1.0Fraction of pages in buffer

b. Random References

1.0

0

Miss Probability

a. Typical References

Fig. 7. Typical miss probability vs. fraction of data pages in the buffer function.

where sj is the maximum size of the buffer BDj , and tj is the total number of distinct
data page references that can reside in a buffer BDj . The miss probability function was
derived from the general form of the equilateral hyperbola[Middlemin 1955] and solved so
that it is constrained to pass through the points (0, 1) and (1, 0). The point (0,1) reflects the
fact that when a buffer is empty, there will be a miss probability of 1, and the point (1,0)
reflects the fact that when the buffer size is equal to the number of distinct data pages that
are loaded into the buffer, then the miss probability falls to zero. Different forms of the
miss probability function can be expressed by varying the parameters aj and cj in Equation
7. The values of aj and cj will depend on the system behaviour and reference patterns.
Hence we determine the values of aj and cj during the off-line training which is described
in Section 5.6.

Since xj is a function of BDj , we can express Equation 7 in terms of BDj instead of xj

as follows:

Prmiss(BDj) =
cj(xj − 1)
ajxj + cj

(9)

5.4.2 Computing Prflush(BL). Prflush(BL) is the probability that an update into the
local log buffer will trigger a log page flush. This probability depends on size of the local
log buffer. A larger log buffer will decrease the probability that a flush will be triggered as
a result of a log page update. This is similar to the behaviour of the system in response to
cache misses. Hence, we use the miss probability function (Equation 7) to also model this
function.

5.4.3 Computing costmiss(BDj). costmiss(BDj) is the cost of cache miss when ref-
erencing data page pi,j into local buffer BDj . This cost equals the cost of loading data page
pi,j and all of its associated log pages. We express the cost in terms of data buffer BDj

since all data pages in the same data buffer incur the same load cost. The cost is defined

by the following equation:

costmiss(BDj
∈ W ′) = (1 + j)× costread (10)

where j is the number of log pages associated with any data page in buffer BDj
(note

this is the same j as that used in the subscript of BDj), and costread is the cost of reading
a page from flash to RAM. Note that the constant of 1 accounts for loading the data page
itself, which must always be done upon a page miss.

5.4.4 Computing costflush(BL). costflush(BL) is the cost of flushing a log page pLi

from the local log buffer BL. costflush(BL) incorporates the cost of a merge. This is
because flushing a log page may cause the destination flash block to overflow, which in
turn, triggers data and log pages in the destination block to be merged. costflush(BL) is
expressed as follows:

costflush(BL ∈ W ′) = costwrite +
costmerge

n
(11)

where costwrite is the cost of writing a page from RAM to flash memory and n is the
number of log pages per block. costmerge is the cost of merging the data and log pages in
a block. Note the merge cost includes the cost of erasing the block. We divide the merge
cost by the number of log pages n since this apportions the merge cost evenly across the
log pages of the block.

5.4.5 Computing Prreadref
(BDj) and Prupdateref

(BL). Computing Prreadref
(BDj)

and Prupdateref
(BL) is straightforward. Prreadref

(BDj) equals the total number of read
references to the local data buffer BDj divided by the total number of read and update
references to any page in the entire global buffer. Similarly, we compute Prupdateref

(BL)
by dividing the total number of update references to the local log buffer BL by the total
number of read and update references to any page in the entire global buffer. We keep track
of the number of read and update references by counting them during the online operation
of the buffer manager.

5.4.6 Online update of statistics . The following statistics are updated online: Prmiss(BDj),
Prflush(BL), Prreadref

(BDj) and Prupdateref
(BL). Note when updating Prmiss(BDj)

and Prflush(BL) we do not recompute cj and aj since that would require expensive curve
fitting, hence they are computed in the offline training as described in Section 5.6. To up-
date the statistics above, we just need to increment the following three counters: the total
number of references, the number of references to each local buffer and the number of
distinct pages in each local buffer.

5.5 Computing Optimal Local Buffer Sizes

Before describing the solution for finding the optimal maximum local buffer sizes, we
would like to simplify Equation 6. The simplification involves using the same symbols to
describe the terms for both local data and local log buffers. After simplification, Equation
6 becomes the following:

TEC ′(W ′) =
∑

BAk
∈W ′

PrIO(BAk
)× costIO(BAk

)× Prref (BAk
) (12)

where BAk
is the kth local buffer of any type (either local data buffer or local log buffer),

PrIO(BAk
), costIO(BAk

), Prref (BAk
) are defined as follows:

PrIO(BAk
) =

{
Prmiss(BAk

) if BAk
is a local data buffer

Prflush(BAk
) if BAk

is a local log buffer

costIO(BAk
) =

{
costmiss(BAk

) if BAk
is a local data buffer

costflush(BAk
) if BAk

is a local log buffer

Prref (BAk
) =

{
Prreadref

(BAk
) if BAk

is a local data buffer
Prupdateref

(BAk
) if BAk

is a local log buffer

Observe that costIO(BAk
), Prref (BAk

) are constant for each local buffer BAk
∈ W ′.

By letting costIO(BAk
)× Prref (BAk

) equal Uk, equation 12 becomes:

TEC ′(W ′) =
∑

BAk
∈W ′

PrIO(BAk
)× Uk (13)

By substituting the miss probability function given in Equation 9 as PrIO into Equation
13 (since both Prmiss(BAk

) and Prflush(BAk
) use the same general probability func-

tion), the total expected cost formula is re-expressed as:

∑

BAk
∈W ′

ck(1− sk

tk
)

ak
sk

tk
+ ck

Uk (14)

To compute the optimal buffer sizes ({s1, s2, ..}) for each local buffer we need to mini-
mize the total expected cost as follows:

minimize

 ∑

BAk
∈W ′

ck(1− sk

tk
)

ak
sk

tk
+ ck

Uk

 (15)

Equation 15 is a function in more than one variable {s1, s2, ..} (note the other terms are
constants) and it is to be minimized under the constraint given in Equation 2. Minimising a
function f(x) under the constraint g(x) = 0 is done by applying the technique of Lagrange
Multipliers. The function f takes its maximum (or minimum) value at a point x0 if there
is a number λ such that:

∇f(x0) + λ∇g(x0) = 0 (16)

The Lagrange Multiplier functions for this problem are as follows:

f(sk) =
∑

BAk
∈W ′

ck(1− sk

tk
)

ak
sk

tk
+ ck

Uk (17)

g(sk) =
∑

BAk
∈W ′

(sk)−ML = 0 (18)

where sk is the size of the buffer BAk
.

∇f(sk) yields m + 1 partial derivatives (m local data buffers and 1 local log buffer) of
the form:

δf

δsk
=

−ck

tk
(ck + ak)

(ak

tk
sk + ck)2

Uk (19)

∇g(sk) yields m + 1 partial derivatives of the form:

δg

δsk
= 1 (20)

Combining Equations 16, 19 and 20 yields m + 1 simultaneous equations of the form:

−ck

tk
(ck + ak)

(ak

tk
sk + ck)2

Uk + λ = 0 (21)

Solving Equation 21 for sk yields:

sk =
tk
ak

±

√
ck

tk
(ck + ak)

λ
Uk − ck

 (22)

After solving Equation 22 for λ and substituting the result into the constraint (Equation
18), the buffer resize formula becomes the following:

sk =
tk
ak

√
ck

tk
(ck + ak)Uk

(∑W ′

BAk
∈W ′(tkck

ak
) + ML

)

∑W ′
BAk

∈W ′
tk

ak

√
ck

tk
(ck + ak)Uk

− ck

 (23)

During normal operation, the multi-buffer manager uses Equation 23 to determine the
optimal size of the local buffers. It is important to note that Equation 23 can be computed
very fast since the two summations can be computed just once and reused for setting each
of the m + 1 buffer sizes sk.

The values computed by the resize formula are real numbers, so they are rounded to the
nearest whole number. Note that the resize formula may compute negative values for the
buffer sizes for some of the local buffers. This means that no data pages should be put into
these local buffers. To avoid setting buffer sizes to negative values, we set the maximum
buffer size for these local buffers to zero, and re-compute the maximum buffer sizes of
the remaining local buffers. However, even after this resize, there is still a possibility of
obtaining negative values. So, we resize the local buffers recursively in this manner until
each local buffer has either a zero or positive value for its maximum buffer size.

5.6 off-line Training

The resize formula has parameters that need to be generated by performing off-line train-
ing. In off-line training, the Multi-Buffer Manager is run with one local buffer using some
traditional buffer replacement algorithms such as LRU (or any other page replacement pol-
icy that is chosen to be used internally for each local buffer). The single local buffer is

Parameter Value
Page size 2 KB
Block size 128 KB
Flash memory size 187.5 MB
RAM size 500 KB
Number of transactions 10000

Table II. Simulation parameters used in the experiments

repeatedly run with different buffer sizes to record the miss and flush probabilities as a
function of buffer size.

The parameters that are collected during off-line training are as follows:

—The constants ak and ck for the IO probability function PrIO(BAk
) for each local buffer.

—The total number of distinct data pages for each local buffer (tk).
—The probability of buffer references (Prref (BAk

)) for each local buffer.

To compute the constants ak and ck, a weighted least-squares fit of the non-linear ratio-
nal IO probability function (IO probability used to denote both miss and flush probabilities)
is used. In order to compute the IO probability for each discrete point on the x-axis, the
Multi-Buffer Manager sampled the IO probability at fixed intervals of buffer sizes. Once
the data points are computed, the least-squares fit is performed to compute the constants
ak and ck.

All the parameters used in the resize formula, with the exception of the constants ak and
ck, are dynamically readjusted during on-line operation. This allows the resize formula to
use more up-to-date statistics.

6. EXPERIMENTAL SETUP

This section describes the experimental setup that was used to conduct the experiments for
this paper.

6.1 Simulation and benchmark

The experiments were conducted on a simulation of the NAND flash memory device.
The simulation was written in C++. The simulation modeled the NAND flash memory
characteristics described in Section 2. The flash memory’s energy costs of a read, a write
and an erase are taken from Table I. The other parameters of the simulation are described
in Table II. Unless otherwise specified, the parameter values described in Table II are those
used in the experiments.

The experiments were conducted using the TPC-C benchmark. We used the initial
database size specified by the benchmark. We simulated all five transactions specified
by the benchmark. All experiments involved running 10000 transactions where each trans-
action is one among the five specified by the benchmark (chosen using uniform random
distribution).
6.2 Buffer Manager Settings

All buffer managers tested are built within a slightly modified IPL flash database man-
agement system from Lee et. al.[Lee and Moon 2007]. The default parameters specified
in the IPL paper were used except we set the default number of log page slots per block
to 8. The reason is we found this makes IPL perform much better for our workload than

when the number of log page slots per block was set to 4 (the default IPL setting). We
only simulated the non-recovery version of IPL since the recovery version of IPL is highly
inefficient for the reasons described in Section 3. As also mentioned in Section 3, our al-
gorithm can still work in recovery mode since we can still control the buffering of the data
pages. However, we expect the performance benefits of our algorithm for recovery mode
to be significantly smaller since we would have no control on when log pages are flushed.
The slight modification we made to the basic IPL algorithm is that instead of allowing a log
page to only store log records for a single data page, we allow log pages to store a mixture
of log records from different data pages as long as all the data pages belong to the same
block. The benefit of this slight modification of IPL is log pages become more full before
being flushed, which, in turn, means better cache utilization and less expensive merges.
However, the down side is there is potentially more reads since updates for a data page
may be spread across more log pages. We believe our modification is an improvement on
IPL since page writes cost a lot more than page reads.

The IPL paper does not specify how insertion operations should be handled. We handle
insertions as follows. We wait and accumulate inserted tuples until we fill up an entire data
page and then write that data page directly into the flash. Therefore, newly inserted tuples
are not kept in our buffer. After the data page, has been written into the flash as a new data
page we can handle it like any other data page.

We used the greedy garbage collection algorithm proposed by Wu and Willy Zwaenepoel[Wu
and Zwaenepoel 1994b]. The greedy algorithm chooses the block with the most number
of invalid pages to recycle first. This algorithm was found to perform very well for all but
highly skewed data distributions. Testing the effect of different garbage collection algo-
rithms on the performance of our system is an area for future work.

The experiments compare the results of three buffer managers and are described as fol-
lows:

Multi-Buffer. The Multi-Buffer Manager proposed by this paper. By default, the local
buffers are resized after every 10000 evictions. Each of the local buffers use LRU internally
as the buffer replacement algorithm.

LRU. the least recently used buffer replacement algorithm managing a single global
buffer.

CFLRU. This is the clean first least recently used (CFLRU) buffer replacement algo-
rithm proposed by Park et. al. [Park et al. 2006]. The algorithm defines a window of
the least recently referenced pages. When a page needs to be evicted, the least recently
accessed clean page in the window is selected to be evicted. If no clean page exists in
the window, then the least recently accessed dirty page is evicted. This policy results in
reduced page flushes since clean pages are preferred when making eviction choices. Park
et. al. propose both a static and dynamic methodology of defining the window size. Their
dynamic algorithm uses a very ad hoc reactive approach which consistently performed
worse than their static approach which is trained off-line. We have chosen to implement
their static algorithm since we want to compare our algorithm against the better performing
variant of CFLRU.

LLCCFLRU. This is an algorithm we have created called the lowest log count clean
first LRU (LLCCFLRU). It is a simple variant of CFLRU. Like CFLRU, LLCCFLRU also
evicts clean pages before dirty pages from the window of pages. However, it picks the data
page with the lowest log count within the least recently used window to evict first. In this

way, data pages that can be reloaded cheaply are evicted before data pages that are more
costly to reload. This algorithm was introduced to enable us to compare a simple algorithm
that distinguishes between data pages with a different number of log counts over our more
complex multi-buffer algorithm.

The off-line training for Multi-Buffer and CFLRU was done using the same workload
generator as the on-line testing but a different random seed was used. The different random
seed means the workload of the off-line training and on-line testing contains transactions
with different parameters and occurring in different orders. In a real system, typically the
previous day’s transactions would be used training for the next day. Typically, the workload
for consecutive days would be similar.

6.3 Off-line curve fitting

This section compares how well the fitting curve (Equation 9) matches the collected train-
ing points. Figure 8 shows the results for the first and second local data buffers. The
graphs for the other local buffers show similar trends and therefore are not shown. The
miss probability for each local buffer was sampled at 100 intervals.

In general, the fitting curve fits well with the training points. The miss probability start
with a miss probability of 1 for an empty buffer size is expected. However, the miss
probability curves drop dramatically when the buffer size is just a little over 0 fraction of
pages in the buffer. The reason for this is that a page can contain a large number of tuples
as soon as one or two pages fit in the buffer, hence the relatively large number of buffer
hits. Although the fitting curve does not fit the training points perfectly, it does model
the training points well, which contributes to the good performance of the Multi-Buffer
described in later sections. Finding a better fitting curve is an area of future research.

6.4 Hardware

The hardware used was a DELL M1530 notebook with a core 2 duo T9300 2.5 GHz CPU
with 4 MB of RAM and a 320GB HDD. The operating system used was Windows Vista.

7. EXPERIMENTAL RESULTS

Nine experiments were conducted to compare the performance of multi-buffer versus LRU,
CFLRU and LLCCFLRU. The first set of experiments varied the RAM size. The second
set of experiments varied the maximum number of log pages per block. The third set of
experiments varied the number of transactions. The fourth experiment varied the rate at
which the local buffers were resized. The fifth set of experiments measured the fraction of
local buffer maximum size (LBMS) violations as the number of transactions varied. The
sixth set of experiments measured the number of data page loads based on the number
of associated log pages. The seventh set of experiments varied the percentage of training
skew. The eighth set of experiments tested the algorithm under read intensive and write
intensive workloads. Finally, in the ninth set of experiments, we compared different buffer
replacement algorithms in terms of their overhead.

In the experiments, we report the results in terms of the following metrics: number of
page reads, page writes and erases; and energy consumption. We do not report execution
time results since the read/write/erase cost ratios are almost the same for both execution
time and energy consumption, therefore the relative performance of the different algo-
rithms would be almost identical whether we report energy consumption or execution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
is

s
pr

ob
ab

ili
ty

Fraction of pages in buffer for log count 0

training points
fitting curve

(a) Local Buffer B0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
is

s
pr

ob
ab

ili
ty

Fraction of pages in buffer for log count 1

training points
fitting curve

(b) Local Buffer B1

Fig. 8. off-line training miss probability curve fit for the first two local buffers

results. We choose to report energy consumption because in embedded devices, energy
consumption is typically a higher concern for users than execution time.

7.1 Varying RAM size Experiment

Figure 9 reports the results of the varying RAM size experiment. The Multi-Buffer man-
ager outperforms the LRU, CFLRU, LLCCFLRU algorithm for all RAM sizes. The Multi-
Buffer manager consumes up to 63%, 40% and 40% less energy than LRU, CFLRU and
LLCCFLRU respectively.

The Multi-Buffer outperforms LRU, CFLRU and LLCCFLRU in terms of the number
of page loads (Figure 9 (c)). The reason Multi-Buffer generates less page loads is that
unlike LRU, CFLRU and LLCCFLRU, it has an eviction policy that both tries to keep the

optimal ratio of clean pages versus dirty pages and also the optimal ratio of data pages with
small versus large associated number of log pages. In contrast, LRU does not distinguish
between clean and dirty pages or data pages with smaller or large log count when choosing
pages for eviction. CFLRU and LLCCFLRU are too biased toward evicting clean pages
and hence do not retain clean pages in RAM for long enough. Intuitively, LLCCFLRU
should outperform CFLRU for the number of page loads since LLCCFLRU tries to retain
the data pages with the smallest number of log pages. However, LLCCFLRU performs
about the same as CFLRU. This is because both LLCCFLRU and CFLRU are so focused
on keeping the dirty pages in RAM that it leaves very little room for clean data pages. The
result, is during eviction, there are usually only one or two clean data pages to choose from
in the LRU eviction window. Since there is so little choice as to which data page to evict,
LLCCFLRU and CFLRU end up performing about the same.

Figure 9 (c) and (d) shows that Multi-Buffer generates a lower number of page writes
and erases compared to LRU. This is because of multi-buffer ability to distinguish between
the high cost of flushing the log pages and the relatively lower cost of loading a data page
from a low ranking data buffer. In contrast, LRU makes no such distinction.

 2

 4

 6

 8

 10

 12

 14

 500 1000 1500 2000

T
ot

al
 E

ne
rg

y
U

se
d

(J
ou

le
s)

RAM Size (KB)

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(a) Energy Consumption

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 500 1000 1500 2000

N
um

be
r

of
 P

ag
e

Lo
ad

s

RAM Size (KB)

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(b) Number of Page Loads

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 500 1000 1500 2000

N
um

be
r

of
 P

ag
e

W
rit

es

RAM Size (KB)

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(c) Number of Page Writes

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 1000 1500 2000

N
um

be
r

of
 B

lo
ck

 E
ra

se
s

RAM Size (KB)

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(d) Number of Block Erases

Fig. 9. Varying buffer size results.

7.2 Varying Maximum Number of Log Pages Per Block Experiment

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25

T
ot

al
 E

ne
rg

y
U

se
d

(J
ou

le
s)

Number of Log Pages Per Block

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(a) Energy Consumption

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 5 10 15 20 25

N
um

be
r

of
 P

ag
e

Lo
ad

s

Number of Log Pages Per Block

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(b) Number of Page Loads

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 5 10 15 20 25

N
um

be
r

of
 P

ag
e

W
rit

es

Number of Log Pages Per Block

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(c) Number of Page Writes

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25

N
um

be
r

of
 B

lo
ck

 E
ra

se
s

Number of Log Pages Per Block

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(d) Number of Block Erases

Fig. 10. Varying number of log pages results.

Figure 10 reports the results of varying the number of log pages per block. The Multi-
Buffer manager outperforms LRU, CFLRU and LLCCFLRU algorithms for the entire
range of number of log pages per block. The Multi-Buffer manager consumes up to 50%,
40% and 40% less energy than LRU, CFLRU and LLCCFLRU respectively.

The reasons for the superior performance of the Multi-Buffer algorithms over LRU,
CFLRU and LLCCFLRU are the same as the previous experiment. Namely, Multi-buffer
tries to keep the optimal ratio of clean pages versus dirty pages and also the optimal ratio
of data pages with small versus large associated number of log pages. Also, the factor
by which Multi-Buffer outperforms LRU stays relatively equal when varying number of
log pages. This shows the superior performance of Multi-Buffer over LRU is robust with
respect to different values for the number of log pages per block.

As the number of log pages per block increases, the amount by which Multi-buffer out-
performs CFLRU and LLCCFLRU increases. This is because as the number of log pages
per block increases, it becomes increasingly more important to favor retaining data pages

in RAM since the cost of loading data pages increases. However, CFLRU and LLCCFLRU
evict the data pages before log pages and hence incurs the high cost of reloading the data
pages with large log counts. This is evidenced by the increase in read cost as the number
of log pages per block increases as shown in Figure 10 (b).

The reason all measure metrics become lower as the number of log pages per block
increases is that more log pages per block means less merges of data and log pages in
blocks. Merges incur a large amount of page loads, writes and block erases.

7.3 Varying Number of Transactions Experiment

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000

T
ot

al
 E

ne
rg

y
U

se
d

(J
ou

le
s)

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(a) Energy Consumption

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 P

ag
e

Lo
ad

s

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(b) Number of Page Loads

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 P

ag
e

W
rit

es

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(c) Number of Page Writes

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 B

lo
ck

 E
ra

se
s

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(d) Number of Block Erases

Fig. 11. Varying number of transactions results.

Figure 11 reports the results of varying the number of transactions. The Multi-Buffer
manager outperforms the LRU, CFLRU and LLCCFLRU algorithms for the entire range
of number of transactions tested. The Multi-Buffer manager consumes up to 50%, 38%
and 38% less energy than LRU, CFLRU and LLCCFLRU respectively.

Observe that when there are few transactions, all four buffer managers experience sim-
ilar performance. However, as the the number of transactions increases, the Multi-Buffer

manager outperforms its competitors at a higher rate. The reason for this is that in the
beginning, when the Multi-Buffer has seen few transactions, there will be few log pages.
So effectively, the Multi-Buffer runs as if it has a single buffer and so gives similar results
to LRU, CFLRU LLCCFLRU. When the Multi-Buffer sees more transactions, data pages
will have more associated log pages which, in turn, expands the number of local buffers.
So only after a sufficient number of transactions will the Multi-Buffer have enough buffers
in order to distinguish between data pages with a different number of associated log pages
and dirty log pages. The effect of the increase in the number of local data buffers is most
evident in the number of page loads as shown in Figure 11 (b).

7.4 Varying the Resize Rate of Local Buffers

 0

 1

 2

 3

 4

 5

 6

 7

 0 20000 40000 60000 80000 100000

T
ot

al
 E

ne
rg

y
U

se
d

(J
ou

le
s)

Number of buffer replacements between successive buffer resizes

Multi-Buffer

(a) Energy Consumption

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 20000 40000 60000 80000 100000

N
um

be
r

of
 P

ag
e

Lo
ad

s

Number of buffer replacements between successive buffer resizes

Multi-Buffer

(b) Number of Page Loads

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 20000 40000 60000 80000 100000

N
um

be
r

of
 P

ag
e

W
rit

es

Number of buffer replacements between successive buffer resizes

Multi-Buffer

(c) Number of Page Writes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20000 40000 60000 80000 100000

N
um

be
r

of
 B

lo
ck

 E
ra

se
s

Number of buffer replacements between successive buffer resizes

Multi-Buffer

(d) Number of Block Erases

Fig. 12. Varying the Resize Rate of Local Buffers. The resize rate is presented on the x-axis as the number of
buffer replacements between successive buffer resizes.

Figure 11 reports the results of varying the rate at which Multi-buffer resizes the local
buffer. A higher resize rate can be computationally expensive so we wanted to see what
happens if we do not resize very often. The x-axis shows the number of buffer replacements
between successive buffer resizes.

The results show that performance deteriorates very slowly with the rapid decrease in the
rate at which the buffers are resized. In fact, the total energy consumption metric deterio-
rates by only 10% when we resize after every 100000 buffer replacements. This is because
the buffer sizes are initialized to the optimal buffer sizes using the off-line training. The off-
line training is very effective at determining the optimal buffer size for a typical workload.
As mentioned before, typically database workloads do not change much between succes-
sive days. The results are very encouraging since it shows our Multi-buffer replacement
algorithm can perform very well with very few resizes. This reduces the computational
overhead of our algorithm.

7.5 Fraction of Local Buffer Maximum Size (LBMS) Violations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

F
ra

ct
io

n
of

 L
B

M
V

S
 V

io
la

tio
ns

Number of Transactions

Multi-Buffer

Fig. 13. Fraction of LBMS violations as the number of transactions was varied.

Figure 13 reports the change in the fraction of local buffer maximum size (LBMS) vi-
olations as the number of transactions increases. The results show that LBMS violation
occurred during a large fraction (0.68 - 0.82) of evictions. This is not surprising since
LBMS violations occur when the local buffers fill up at rates different from their maxi-
mum buffer sizes as a proportion of the global buffer size. In addition, when a data page’s
log page count is changed, it is moved into a different local buffer, thus potentially causing
an LBMS violation.

7.6 Measure number of data pages loads based on log count

Figure 14 shows the number of data page loads for each category of data page, where cate-
gory is determined by the number of associated log pages. The results show for data pages
with zero log count Multi-buffer performs the same or worse than the other algorithms.
However, for data pages with larger log counts, Multi-buffer performs much better com-
pared to the other algorithms. This is due to the use of the cost formula by Multi-buffer
to determine the size of the local buffers. Local buffers with lower log counts have low
log costs and hence, will be assigned smaller buffer sizes. Data pages belonging to smaller
buffers will be evicted and consequently loaded more often. LLCCFLRU performs almost
the same as CFLRU. Intuitively, LLCCFLRU should evict more data pages with a smaller

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 D

at
a

P
ag

e
Lo

ad
s

Log Page Count

Multi-Buffer
LRU

CFLRU
LLCCFLRU

Fig. 14. The number of data pages loaded based on the log count of the data pages.

log count than CFLRU, since it is designed to prefer evicting data pages with lower log
counts. Although LLCCFLRU also tries to evict data pages with a lower log count, it tries
too hard to keep the dirty pages (log pages) in RAM for as long as possible, due to the use
of the clean first policy. This results in a very small portion of clean data pages in the tail
LRU window, often just one or two data pages. Since there is so little choice as to which
data page to evict, LLCCFLRU performs about the same as CFLRU.

7.7 Varying Training Skew

In this experiment, we varied the percentage of training skew by varying the percentage
difference between the transaction mix used for training versus testing. For example, when
the percentage difference is at 10%, there was 10% more update transactions in the training
workload compared to the testing workload. The results are shown in Figure 15. The
results show that Multi-buffer significantly outperforms its counterparts even when there is
90% training skew. This is because the dynamic re-adjustment of the resize statistics used
by Multi-buffer is effective at correcting the incorrect statistics obtained from the training
phase.

The results show that the training skew affects the amount of writes more than reads
for Multi-buffer. When the training skew is greater than 70%, Multi-buffer performs more
writes than CFLRU and LLCCFLRU. This is because when the percentage of training skew
is high, the training data set has a much higher ratio of read transactions compared to the
testing data set. This results in the trained statistics heavily underestimating the probability
of flushes due to write versus probability of cache misses due to read.

7.8 Different Read/Write Ratio

In this experiment, we compared the algorithm in two scenarios with contrasting read ver-
sus write ratios. Figure 16 shows the results of varying the number of transactions when the
workload has 80% read-only transactions and 20% update transactions. Figure 17 shows
the results of varying the number of transactions when the workload has 80% update trans-
actions and 20% read-only transactions. The results show that Multi-buffer outperform its
counterparts for both update and read intensive workloads. This is an encouraging result

 5

 6

 7

 8

 9

 10

 11

 12

 0 20 40 60 80

T
ot

al
 E

ne
rg

y
U

se
d

(J
ou

le
s)

Percentage change in workload

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(a) Energy Consumption

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 0 20 40 60 80

N
um

be
r

of
 P

ag
e

Lo
ad

s

Percentage change in workload

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(b) Number of Page Loads

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

 0 20 40 60 80

N
um

be
r

of
 P

ag
e

W
rit

es

Percentage change in workload

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(c) Number of Page Writes

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0 20 40 60 80

N
um

be
r

of
 B

lo
ck

 E
ra

se
s

Percentage change in workload

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(d) Number of Block Erases

Fig. 15. Varying the percentage of training skew.

since it tells us that Multi-buffer is flexible enough to handle both read intensive and write
intensive workloads well.

7.9 Buffer Replacement Overhead

In this experiment, we measured the buffer replacement overhead of the various algorithms.
The results are shown in Figure 18. Unsurprisingly, the results show that Multi-buffer has
significantly larger overhead compared to its simpler counterparts. However, we argue this
extra overhead is a small price to pay for the significant energy savings for flash memory
access. Although the overhead of Multi-buffer is around a factor of 10 compared to LRU,
this overhead is quite small in absolute terms, since LRU is a very simple algorithm which
uses very little computation. This additional overhead of Multi-buffer is easily offset by
approximately halving the energy consumption used for flash memory access compared
to LRU. Similar arguments can be made when comparing Multi-buffer against the other
buffer replacement algorithms.

Figure 18 (a) shows that the relative difference between the total overhead of the differ-
ent buffer replacement algorithms stay about the same as the number of transactions in-

 0

 1

 2

 3

 4

 5

 6

 7

 0 2000 4000 6000 8000 10000

T
ot

al
 E

ne
rg

y
U

se
d

(J
ou

le
s)

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(a) Energy Consumption

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 P

ag
e

Lo
ad

s

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(b) Number of Page Loads

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 P

ag
e

W
rit

es

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(c) Number of Page Writes

 0

 200

 400

 600

 800

 1000

 1200

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 B

lo
ck

 E
ra

se
s

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(d) Number of Block Erases

Fig. 16. The results of varying the number of transactions when the workload has 80% read-only transactions and
20% update transactions.

creases. However, Figure 18 (b) shows that the average overhead per miss of Multi-buffer
(total overhead divided by the number of misses) increases with the number of transactions
whereas the others stay relatively flat. The reason for the discrepancy between these two
graphs is that the majority of the overhead incurred by Multi-buffer occurs when pages
are moved from one local buffer to another, this is not dependent on the number of buffer
misses. As the number of transactions increases the number of buffer misses decreases
since the buffer becomes populated with pages that are likely to be reused in the future.
Hence as the number of transactions increases the overhead per transaction remains con-
stant because the number of misses decreases and the overhead per miss increases. At the
end what really matters is Figure 18 (a), because it shows the total overhead as the number
of transactions increases. For that graph the relative difference between the different algo-
rithm stay about the same as the number of transactions increases, hence our algorithm do
not become increasingly worse compared to the other buffer replacement algorithms as the
number of transactions increases.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2000 4000 6000 8000 10000

T
ot

al
 E

ne
rg

y
U

se
d

(J
ou

le
s)

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(a) Energy Consumption

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 P

ag
e

Lo
ad

s

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(b) Number of Page Loads

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 P

ag
e

W
rit

es

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(c) Number of Page Writes

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 B

lo
ck

 E
ra

se
s

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(d) Number of Block Erases

Fig. 17. The results of varying the number of transactions when the workload has 80% update transactions and
20% read-only transactions.

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000

T
ot

al
 o

ve
rh

ea
d

(s
ec

s)

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(a) Total overhead

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0.00022

 0 2000 4000 6000 8000 10000

av
er

ag
e

ov
er

he
ad

 p
er

 m
is

s
(s

ec
s)

Number of Transactions

Multi-Buffer
LRU

CFLRU
LLCCFLRU

(b) Average overhead per miss

Fig. 18. The buffer replacement overhead as the number of transactions is varied.

8. CONCLUSION

This is the first paper that is focused specifically on addressing the buffer management
problem for logging based databases that run on flash memory. The experimental results
show the large potential gains in performance when a customized buffer manager for flash
memory is used. The novelty in our approach stems from the fact we recognize that differ-
ent pages in the buffer have different read and write costs. The difference in the costs stems
from the logging nature of the flash databases. In order to incorporate the different costs
of reading and writing pages, we divide the global buffer into a set of local buffers where
each local buffer contains pages of the same cost. We then give preference to some local
buffers with respect to others by adjusting the maximum size of local buffers according
to an optimal local buffer size formula. The optimal local buffer size formula is derived
from a sound mathematical analysis of the total read and write costs for a workload that
represents the recent behavior of the system.

The Multi-Buffer Manager’s performance was compared to CFLRU, LRU and LLC-
CFLRU (log count sensitive variant of CFLRU). All these algorithms were running on top
of IPL. Extensive experiments have demonstrated that the Multi-Buffer Manager performs
the same or better than CFLRU, LLCCFLRU and LRU for all settings tested by up to 40%,
40% and 63% respectively for energy consumption. Although Multi-buffer imposed sig-
nificantly more buffer replacement overhead than its counterparts, we argue that the large
energy savings from flash memory access far outweigh the additional buffer replacement
overheads. We have presented the evidence on the relative merits of Multi-buffer versus
other simpler buffer replacement algorithms; it is up to the reader to decide if this algorithm
will be the best for their application.

An area of future work, as mentioned earlier, is to find an even better miss probability
fitting curve. Using higher-order polynomial functions to fit the curve may produce a
better fit. Another area of future work is to adopt Multi-buffer to work for a logging-based
database designed to use a combination of flash memory and hard disk drive. Currently,
multi-buffer uses LRU within each local buffer to choose the particular page to evict when
a particular local buffer is chosen for eviction. Another area of future work is to use
different buffer replacement algorithms within the local buffers. Finally, testing the effect
of different garbage collection algorithms on the performance of our system is an area for
future work.

9. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful comments and suggestions which have
greatly improved the quality of this paper. This work is supported under the Australian
Research Council’s Discovery funding scheme (project number DP0985451).

REFERENCES

CHIANG, M. L. AND CHANG, R. C. 1999. Cleaning policies in mobile computers using flash memory. The
Journal of Systems and Software 48, 213–231.

CHIANG, M.-L., LEE, P. C. H., AND CHANG, R.-C. 1997. Managing flash memory in personal communication
devices. In Proceedings of 1997 IEEE International Symposium on Consumer Electronics. Seattle, WA, USA,
177–182.

CHOI, J., NOH, S. H., MIN, S. L., AND CHO, Y. 1998. An adaptive block management scheme using on-line
detection of block reference patterns. In Multi-Media Database Management Systems, 1998. Proceedings.
International Workshop. 172–179.

CORNELL, D. W. AND YU, P. S. 1989. Integration of buffer management and query optimization in relational
database environment. In Proceedings of the Fifteenth International Conference on Very Large Databases.
Amsterdam, The Netherlands, 247–255.

GLASS, G. AND CAO, P. 1997. Adaptive page replacement based on memory reference behaviour. In ACM
SIGMETRICS Conference. 115–126.

HEESEUNG JO, JEONG-UK KANG, S.-Y. P. J.-S. K. AND LEE, J. FAB: Flash-aware buffer management policy
for portable media players. IEEE Transactions on Consumer Electronics 52, 2.

JIANG, S. AND ZHANG, X. 2002. LIRS: An efficient low inter-reference recency set replacement policy to
improve buffer cache performance. In ACM SIGMETRICS Conference.

LEE, D., JONGMOO CHOI, J.-H. K., NOH, S. H., MIN, S. L., CHO, Y., AND KIM, S. 1999. On the existence
of a spectrum of policies that subsumes the least recently used (LRU) and least frequently used (LFU) policies.
In ACM SIGMETRICS Conference. Atlanta, Georgia, USA, 134–143.

LEE, D., JONGMOO CHOI, J.-H. K., NOH, S. H., MIN, S. L., CHO, Y., AND KIM, S. 2001. LRFU: A spectrum
of policies that subsumes the least recently used and least frequently used policies. IEEE Transactions on
Computers 50, 2, 1352–1361.

LEE, S. AND MOON, B. 2007. Design of flash-based dbms: An in-page logging approach. In SIGMOD.
MANNING, C. 2002. YAFFS (Yet Another Flash File System). Aleph One Ltd.
MEGIDDO, N. AND MODHA, D. S. 2003. ARC: A self-tuning, low overhead replacement cache. In USENIX

File and Storage Technologies Conference (FAST).
MIDDLEMIN, R. R. 1955. Analytic Geometry, 2 ed. McGraw Hill Book Company, Inc.
O’NEIL, E. J., O’NEIL, P. E., AND WEIKUM, G. 1993. The LRU-K Page replacement algorithm for database

disk buffering. In Proceedings ACM SIGMOD Conference. 297–306.
PARK, C., KANG, J.-U., PARK, S.-Y., AND KIM, J.-S. 2004. Energy-aware demand paging on NAND flash-

based embedded storages. In Proceedings of the 2004 international symposium on low power electronics and
design. 338–343.

PARK, S., JUNG, D., KANG, J., KIM, J., AND LEE, J. 2006. CFLRU: A replacement algorithm for flash
memory. In Proceedings of the 2006 international conference on compilers, architecture and synthesis for
embedded systems. 234–241.

ROBINSON, J. T. AND DEVARAKONDA, M. V. 1990. Data cache management using frequency-based replace-
ment. In Proceeding of 1990 ACM SIGMETRICS Conference on Measuring and Modeling of Computer
Systems. 134–142.

SACCO, G. M. AND SCHKOLNICK, M. 1982. A mechanism for managing the buffer pool in a relational
database system using the hot set model. In Proceedings of the Eigth International Conference on Very Large
Databases. 257–261.

SACCO, G. M. AND SCHKOLNICK, M. 1986. Buffer management in relational database systems. ACM Trans-
actions on Database Systems 11, 4 (December), 473–498.

SMARAGDAKIS, Y., KAPLAN, S., AND WILSON, P. 1999. EELRU: Simple and effective adaptive page replace-
ment. In Proceedings of the 1999 ACM SIGMETRICS international conference on Measurement and modeling
of computer systems. 122–133.

THEODORE JOHNSON, D. S. 1994. 2Q: A low overhead high performance buffer management replacement
algorithm. In Proceedings of the 20th VLDB Conference. 439–450.

TSENG, H., LI, H., AND YANG, C. 2006. An energy-efficient virtual memory system with flash memory as the
secondary storage. In Proceedings of the 2006 international symposium on low power electronics and design.
418–423.

WOODHOUSE, D. 2001. JFFS: The journaling flash file system. Ottawa Linux Symposium.
WU, M. AND ZWAENEPOEL, W. 1994a. eNVy: A non-volatile, main memory storage system. In Proceedings of

the sixth international conference on architectural support for programming languages and operating systems.
86–97.

WU, M. AND ZWAENEPOEL, W. 1994b. eNVy: A non-volatile, main memory storage system. In Proceedings
of ASPLOS. 86–97.

