
Finding One-Of Probably Nearest Neighbors with
Minimum Location Updates

Mitzi McCarthy
Department of Computer Science

La Trobe University
Bundoora, VIC, Australia

Email: m.mccarthy@latrobe.edu.au

X. Sean Wang
Department of Computer Science

The University of Vermont
Burlington, VT, USA

Email: Sean.Wang@uvm.edu

Zhen He
Department of Computer Science

La Trobe University
Bundoora, VIC, Australia

Email: z.he@latrobe.edu.au

Abstract—Location information is necessarily uncertain when
objects are constantly moving. The cost can be high to maintain
precise locations at the application server for all the objects while
many applications may not need all the costly precision that is
technically possible. An interesting question is how to reduce the
cost associated with obtaining precise locations while satisfying
user requirements. A general technique of maintaining uncertain
location information is using a “safe-region” for each object, a
region in which the object must be in but it is not known where
it exactly is. Location updates are only needed when the object
moves out of its safe region, or a user query needs more precise
information to answer. This paper uses the same idea for finding
an object that is likely to be the nearest neighbor of a query
location, a query type termed herein Probabilistic one-of Nearest
Neighbor (PoNN) query. An algorithm is described that first tries
to answer a given PoNN query with the known safe regions. If this
fails, the algorithm selects some objects to ask for their precise
locations (called location exposures). An innovative method is
used by the algorithm in deciding which objects to expose in
order to reduce the total number of exposures. The innovation
includes an information gain formulation of the problem and
careful probability calculations. The paper details the algorithm
and shows an experimental study of the algorithm against more
straightforward solutions in a simulated environment.

I. INTRODUCTION

Location aware mobile devices have become prevalent in
recent times. These devices often sense their locations via a
global positioning system (GPS) and have the capability to
report their locations. The proliferation of such devices has
made location based services a fast growing application area.

An interesting query used in location based services is the
nearest neighbor query. The nearest neighbor query asks which
object is closest to a query location. To answer this, the current
location of each object of interest needs to be determined.
However, the communications overhead to discover the loca-
tion of every object is very high. A popular way to minimize
this overhead is to use the concept of a safe region [1], [2],
[3], [4] around each object. The safe region is an efficient way
for the application server to keep track of object locations by
obtaining objects’ locations only when they move out of their
safe regions or a need arises from application requirements.

In existing safe region work the focus has been on the
optimal assignment of safe regions to objects to minimize
location updates due to objects leaving their safe regions.
However, we identify that an optimal evaluation of queries

with the given set of safe regions is also an important problem
to solve in reducing the overall communication cost. To
our knowledge none of the existing research addresses this
problem. It is important to note that sometimes a query answer
is not known even if the objects stay inside their safe regions,
as a result, e.g., of the appearance of a new query or movement
of an existing query. In this case we may need to force some of
the affected objects to expose their location in order to answer
the query. Note that due to our focus on optimal exposure
for query evaluation, we do not propose methods for optimal
assigning of safe regions in this paper.

In this paper we study the problem of answering the
probabilistic, one-of, nearest neighbor (PoNN) query within
the aforementioned problem context. The PoNN query returns
one object which is either the same distance or closer than all
other objects to the query location with a probability over a
given threshold. Given a set of safe regions we aim to answer
the PoNN query with the minimum number of object location
exposures. We adopt an information gain-based solution which
aims to progressively expose objects such that the uncertainty
in query answer is reduced. For example uncertainty is likely
to be reduced when exposing an object will likely result in
ruling in (or out) the object being a PoNN.

To our knowledge, there is no existing work which selec-
tively exposes object locations in order to answer probabilistic
queries with minimum location updates. Most existing work
on probabilistic queries [5], [6], [7], [8], [9], [10], [11], [12]
assume the uncertainty in the object location is an inherent
property of the problem and cannot be reduced. Therefore
these works focus on reporting an answer with an associated
level of confidence [6], [7], [10], answer above a certain
probability threshold [5], [8], [11], [12], or give the answer in
terms of a probability distribution [9]. Within this context they
propose CPU and IO efficient solutions. In contrast, we assume
object location uncertainty can be improved by requests to
objects and thereby answer the probabilistic nearest neighbor
query up to a given probability threshold (which can be 100%,
reducing to the deterministic case).

The work done by Wolfson et. al. [13] on probabilistic range
queries assume the uncertainty in moving object locations can
be controlled. However, they effectively controlling the size
of the safe region instead of actively requesting objects to



report their locations when answering queries. The work done
by Hu et. al. [4] is the only work that studies probabilistic
queries within the context of safe regions. However, again they
are focused on assigning safe regions to objects instead of
minimizing object location exposures when answering queries.

In this paper, we give the details of our information gain-
based algorithm, and report the results of a performance study.
The experimental results show that our algorithm outperforms
straightforward solutions in a variety of situations. At a high
level, with this paper, we make the following contributions:

• Frame the problem of answering PoNN queries as a
controlled location discovery problem in which the goal
is to minimize the number of objects needed to report
their current location;

• Introduce a novel information gain-based solution to the
aforementioned problem; and

• Obtain performance results through experiments.
The rest of the paper is organized as follows. We first

introduce our assumptions and basic definitions in Section II.
We then outline our algorithm in Section III. We detail the
information gain-based solution in Section IV. In Sections V
and VI, we describe the experimental setup and results. We
finally conclude our paper with Section VII with a summary
statement and some thoughts on possible future directions.

II. PRELIMINARIES

In this section, we provide our assumptions and notation.
We assume a set of objects O in a two-dimensional space.
Each object in O is denoted as s, possibly with a subscript.
Each object is assumed to be located in a rectangular, closed,
safe region. That is, each object can be, and must be, anywhere
in a rectangular region [(xmin, ymin), (xmax, ymax)] denoted
by the two opposite corner coordinates.

The two-dimensional space is assumed to be discretely and
regularly gridded, i.e., the whole space is partitioned into a set
of equal-sized and aligned squares. This is assumed to be our
location information precision, i.e., an object can only report
its location in terms of cells in the grid, but not the exact
location within the cell. In this assumption, the safe region is
also assumed to be a rectangle covering exactly some cells.

Figure 1(a) shows the gridded space with two objects s1 and
s2 with their corresponding safe regions s1.SR and s2.SR.
When the safe region is only of one cell, we say the exact
location of the object is known, or its location is exposed.

A query location, denoted q, can be anywhere in the 2D
space. The query location is modeled to occupy an entire grid
cell due to the gridded 2D space, as shown in Figure 1. The
numbers in the safe regions correspond to the distance of the
cell in the safe region to the query location.

In this paper, we are concerned with the probabilistic, one-
of nearest neighbor query. More specifically,

Definition 1: Given a threshold value τ ∈ [0, 1], query
location q and the set O of objects (with their corresponding
safe regions), an object s in O is called a probabilistic, one-of,
nearest neighbor of q, denoted PoNN, if the probability of s
to be one of the nearest neighbors of q is no less than τ .

Our query is to find probabilistic, one-of, nearest neighbors
of q over the threshold τ . That is, any one of these objects will
be satisfactory. Note that when τ = 1, the nearest neighbor
we find is one of the deterministic nearest neighbors. And
furthermore, when no ties exist, the query result is the nearest
neighbor of the query location q.

We now need to discuss the probability of an object being a
nearest neighbor. The probabilistic nature arises from the fact
that an object can be in any cell in its safe region. A “point”
in the probabilistic space (with dimensionality=|O|) consists
of the |O| locations, each corresponding to the location of an
object. A valid “point” is one that gives non-zero probability,
and such a valid “point” must consist of locations within the
safe regions of the respective objects. If uniform assumption
for safe region is used and objects are independent of each
other with respect of their locations in their own safe regions,
each valid “point” is equally likely to appear. And in each
valid “point”, one or more objects are the nearest neighbor
of q (only one if no ties). The probability that a particular
object s is a nearest neighbor is the number of valid “points”
in which s is a nearest neighbor of q over the total number of
valid “points” in the probabilistic space.

Given the safe regions of the objects, we can first try to
answer the PoNN query. For certain values of τ , it may not be
possible, i.e., no answer can be provided. The central problem
of this paper is how to reduce the number of reports of object
locations, or the number of exposures, when finding PoNN.

III. ANSWERING PONN QUERIES

The task of answering PoNN queries faces two hurdles. The
first is how to figure out whether a PoNN can be found with
the known safe region and exact location information, and if
so, which object is a PoNN. The second hurdle is that if the
above fails, what we should do. For the first hurdle, some basic
probabilistic calculation exercise suffices and we will describe
the exact procedure in the next section. The second hurdle
calls for some interesting solution. Obviously, if we know the
exact locations of all the objects, then all PoNNs can be found
trivially. So a trivial strategy is to ask for the exact locations
from all the objects. The question, however, is if we can do
better, namely if we can ask the fewest objects to expose their
locations. This is a non-trivial optimization problem.

s2

3

2 3 4q

1.SRs

2.SR

(a) Query and two objects

s

2

3

2 3 4q23

3.SRs
2.SRs

1.SR

(b) Adding one more object s3
Fig. 1. Examples of query and object locations in gridded space

We use the two examples in Figures 1(a) and 1(b) to
illustrate the problem. The numbers in the cells of the ex-
amples represent the distance the cell is from query location
q, and we assume τ = 1. In Figure 1(a), no PoNN can be
found with the current safe regions, so we need to expose



some objects. There are two possible sequences of location
exposures: ⟨s1, s2⟩ and ⟨s2, s1⟩. If s1 is exposed first, there
is a 50% chance that we find the nearest neighbor of q (if it
exposes to be in its cell 2, and in this case s1 is a PoNN for
sure) and the other 50% chance is that it falls into its cell 3,
in which case we have to expose s2 to find the result. So the
expected number of exposures is 0.5∗1+0.5∗2 = 1.5. If the
other order is considered, the expected number of exposures
is 2/3 ∗ 1 + 1/3 ∗ 2 = 4/3, since exposing s2 first gives us a
2/3 chance of finding the result with one exposure. Therefore,
it is more profitable to expose s2 first.

In Figure 1(b), with another object s3 joining in, exposing s2
first becomes less desirable. Indeed, now there are 6 possible
exposure sequences. If s2 is exposed first, there is 1/3 chance
that the nearest neighbor of q can be found with only one
exposure (i.e., s2 falls in its cell 2), and in all other cases,
another exposure (of either s1 or s3) will give the result (e.g., if
s1 falls in its cell 2). Hence, the expected number of exposures
is 1/3∗1+2/3∗2 = 5/3. If we expose s1 first, there is a 1/2
chance that a PoNN is found (i.e., when it falls in its cell 2),
and in the other case (i.e., s1 falls in its cell 3), we just need
to expose s2 to find one of the nearest neighbor. Hence, in this
case, the expected number of exposures is 1/2 ∗ 1+1/2 ∗ 2 =
1.5 < 5/3. Hence, the stochastically optimal strategy is to
expose s1 (or equivalently s3) first.

In order to make the solution computationally feasible we
take a greedy approach. Algorithm 1 describes the detailed
steps. The non-trivial step is in line 4, in which we determine
which object in B most likely will lead us to answering the
query with the minimum number of exposures. This step is
the topic for the next section. Note that the algorithm will
eventually stop with a finite set O since once we know all the
exact locations. A PoNN can be answered with any τ value,
irrespective of the order in which the objects are exposed.

Algorithm 1 Algorithm for finding PoNN.
textbfInput: q: query location, O: all data objects, τ : minimum

probability threshold
Output: a PoNN of q with τ among objects in O
Method:

1: Initialize B to be the set of objects in O without exact locations
(cell level), along with their safe regions

2: Initialize E to be the set of objects in O with known exact
locations (cell level), along with their exact locations

3: while PoNN in O cannot be found with information in B ∪ E
do

4: Find an object s in B and move s from B to E
5: Ask s for its exact location (at the cell level).
6: end while
7: Return a PoNN s in O

IV. ENTROPY-BASED SAFE REGION EXPOSURE

In this section, we consider the method of picking the best
object to expose for line 4 of Algorithm 1, which is the
main contribution of this paper. The aim of this line is to
expose the object which is most likely to result in answering
the PoNN query with minimal exposures. This is a non-
trivial stochastic optimization problem, and in this section we

provide an entropy-based approximation approach. We will
also provide procedures for lines 3 and 7.

The notions of entropy and information gain form the basis
of our approach. Here we use the concept of entropy to mean
the amount of uncertainty in the answer of the nearest neighbor
query given the current set of object safe regions. Accordingly
we aim to expose the object whose exposure will lead to
the greatest reduction in entropy and correspondingly the
greatest information gain. We define the entropy for the query
qNN under the current safe regions, denoted H(qNN ). Note,
however, since we are concerned with the “one-of” semantics,
i.e., we are interested in one of the nearest neighbors (in case
of ties) of a query location, we first define the entropy in terms
of an object s, intuitively meaning the uncertainty of s being
a nearest neighbor, denoted Hq(s), given as follows:

Hq(s) =− P (s ∈ qNN )log2P (s ∈ qNN )

− P (s /∈ qNN )log2P (s /∈ qNN )
(1)

where P (s ∈ qNN ) is the probability that s is one of the
nearest neighbor of q and P (s /∈ qNN ) = 1 − P (s ∈ qNN ).
Considering all the objects, we then have:

H(qNN ) =
1

|O|
∑
s∈O

Hq(s) (2)

where O is the given set of objects. Intuitively, this uses
the average uncertainty of the objects for the query as the
uncertainty of the query.

The above entropy formulation gives us a clue as to how
uncertain we are in reaching the query result (when entropy
is 0, we have obtained the deterministic answer, i.e., all the
objects are known either in qNN or not). Using this, we
consider the question of which object to expose. This boils
down to the conditional entropy with the condition of only
object si being exposed, denoted H(qNN |si). The idea of the
conditional entropy is that we assume we expose si, and then
look at the possible resulting situations. After si is exposed,
there are three cases:

1. We know si is definitely a nearest neighbor of q,
2. We know si is definitely not a nearest neighbor of q, and
3. We don’t have a definitive conclusion.

Here “definitely” means τ = 1, i.e., 100% probability that si
is (or is not) one of the nearest neighbor of q. Since we do not
know where si is in its safe region, each case has a correspond-
ing probability, denoted P (si∈̂qNN |si), P (si /̂∈qNN |si), and
P (si∈̂U |si), respectively. Note the ∈̂ and /̂∈ notation means
definitely or deterministically in and not in, respectively.

We will use the above three cases to define our conditional
entropy and hence the information gain. First assume the
following density function for distances:

pdfs(ds,q), (3)

i.e., the distance probability density of an object s to query
q. Due to our safe region assumption, there is a range [ls, us]
for each object s for pdfs(ds,q) to be non-zero.



We will also use the cumulative probability function:

cpfs(x) =
∑
y≤x

pdfs(y), (4)

i.e., the probability of an object s to be no further than the
parameter value.

Note that in this paper we assume gridded space and discrete
probability functions. The continuous case can be handled
similarly, but not dealt with here.

Now, in order to find P (s∈̂qNN |s), we just need to find
all the minimum distances of all other objects in O − {s},
i.e., lsmin = minsi∈O−{s}(lsi), and then we figure out the
probability of s to be no greater than this minimum distance,

P (s∈̂qNN |s) =
∑

ls≤x≤lsmin

pdfs(x). (5)

Clearly, if ls > lsmin, we default to 0.
Lemma 1: Equation (5) correctly computes the probability

of finding s to be a definite nearest neighbor of q when
exposing s.

For P (s /̂∈qNN |s), we do the opposite, i.e., find the mini-
mum of the upper bounds of all other objects, and then find
the probability of s to be beyond this upper bound. In formula,

P (s /̂∈qNN |s) =
∑

x>us
min

pdfs(x) = 1− cpfs(u
s
min), (6)

where us
min = minsi∈O−{s}(usi).

Lemma 2: Equation (6) correctly computes the probability
of definitely ruling out s to be a nearest neighbor of q when
exposing s.

The last item P (s∈̂U |s) can be found by 1 minus the values
of Equations 5 and 6.

s2

3

4

52.SRs

.SRs 1

2 3 4 5q123456

3.SR

Fig. 2. Example used to intuitively show the meaning of the probabilities
P (si∈̂qNN |si), P (si /̂∈qNN |si) and P (si∈̂U |si).

Using the example in Figure 2, we have P (s1∈̂qNN |s1) =∑
ls1≤i≤2 pdfs1(i) = 2/6 since ls1min = 2. Indeed, there is

2/6 probability that s1 is in cell 1 or 2 and these are exactly
the cases when s1 is definitely one of the nearest neighbors
to q. Likewise, we have P (s1 /̂∈qNN |s1) = 1/6 since there is
1/6 probability s1 is in cell 6 (note us1

min = 5) and this is
exactly the case there is no possibility for s1 to be one of
the nearest neighbors of q. Finally we have P (s1∈̂U |s1) =
1− 2/6− 1/6 = 3/6.

We are now ready to define conditional entropy Hq(s|si),
i.e., the entropy of s being PoNN assuming si is exposed, as

follows, where s, si ∈ O and s can be the same as si:

Hq(s|si) =P (si∈̂qNN |si)Hq(s|si∈̂qNN )

+ P (si /̂∈qNN |si)Hq(s|si /̂∈qNN )

+ P (si∈̂U |si)Hq(s|si∈̂U),

(7)

where Hq(s|si∈̂qNN ) is the entropy of s assuming si is
definitely a nearest neighbor of q after exposing si, and
similarly for Hq(s|si /̂∈qNN ), and Hq(s|si∈̂U). These entropy
values are defined as in Equation (1) replacing with the
appropriate probability values. Then the conditional entropy
of the query is:

H(qNN |si) =
1

|O|
∑
s∈O

Hq(s|si) (8)

And the information gain of exposing si is then

G(qNN , si) = H(qNN )−H(qNN |si) (9)

Now we can completely describe line 4 of Algorithm 1 as
follows:

Line 4: Calculate G(qNN , si) for each si in B and then
pick the si with the greatest G(qNN , si) value (in
case of tie, randomly pick one of). Move si from B
to E.

Since H(qNN ) is fixed irrespective of which si to expose,
to obtain the greatest G value is to get the smallest H(qNN |si)
value among all objects si in B.

The probabilities needed to compute the entropies in Equa-
tion 7 are P (s ∈ qNN |si∈̂qNN ), P (s ∈ qNN |si∈̂U) and
P (s ∈ qNN |si /̂∈qNN ). These follow the same formula but with
each conditional probability using a different pdf for si (while
keeping the pdfs for all other objects untouched). Hence,
our fundamental calculation is to calculate the probability
P (s ∈ qNN ), given the pdf’s of all the objects. But this is
not difficult:

P (s ∈ qNN )

= Σx∈[ls,us] (pdfs(x) ·Πsi ̸=sP ((distance of si to q) ≥ x))

= Σx∈[ls,us] (pdfs(x) ·Πsi ̸=s(Σy≥xpdfsi(y))

= Σx∈[ls,us] (pdfs(x) ·Πsi ̸=s(1− cpfsi(x) + pdfsi(x))) ,
(10)

Following the above discussion, to calculate P (s ∈
qNN |si∈̂qNN ), we keep all the pdf’s for sj ̸= si and
project/restrict pdfsi to the range [lsi , l

si
min]. We then use Equa-

tion (10). Other conditional probability calculations can be
done similarly, and hence we obtain the conditional entropies
for each object with Equation 7 and the conditional entropy for
the query with Equation 8. When the safe region is a rectangle,
the pdf of the distances of the cells to the query location can
be derived without much difficulty.

Theorem 1: Equation (10) correctly computes the probabil-
ity of s to be a PoNN, i.e., P (s ∈ qNN ). The computational
complexity of the calculation is O(|us − ls| ∗ |O|).

Now we have a procedure for lines 3 and 7 in Algorithm 1:
Line 3: While (for each s ∈ O, P (s ∈ qNN ) < τ )



Line 7: For each s ∈ O, return s if P (s ∈ qNN ) ≥ τ

The computational complexity of both lines 3 and 7 is
O(maxr∗|O|2), where maxr = maxs∈O(|us−ls|), following
the complexity result in Theorem 1 and the fact that we need
to loop through all objects in O in the worst case.

Theorem 2: The computation complexity of Algorithm 1 is
O(maxr ∗ |O|3), where maxr = maxs∈O(|us − ls|).

The complexity result above is derived directly from Theo-
rem 1 and the analysis of lines 3, 4, and 7. Indeed, the worst
case is that we iterate over all the objects in O with the while
statement. Then in each iteration, lines 3, 4 and 7 dominate
the complexity with each being O(maxr ∗ |O|2). Hence, the
overall complexity is O(maxr ∗ |O|3).

This complexity result does not look promising when the
size of O is large. However, in practice, we only need to
consider the objects that are close to the query location.
Indeed, we can filter out an object s if there is another one
s′ such that ls > us′ since s cannot be a PoNN in any
case. Another source of speedup is that the calculation of
Equation (10) may be done more quickly when intermediate
results are kept around in the algorithm because much work is
repeated when considering each different s. More sophisticated
speedup method may use the τ value to reduce the work
of lines 3 and 7. However, we do not pursue these lines
of optimization in this paper. Instead we are more interested
in seeing how the information gain-based approach works in
reducing the number of exposures.

V. EXPERIMENTAL SETUP

Our experiments were conducted using one query location
and randomly placed data objects with random safe regions.
Each experiment was run 100 times. In the next section, the
average and standard deviation of the number of exposures
needed to answer the PoNN query are shown for our algorithm
and three other algorithms. The default number of objects was
40 and the default probability threshold (τ ) was 0.8.

The data objects were placed in the grid using a normal
distribution with the query’s location as the mean and a default
standard deviation of 6 (this was varied in an experiment). The
object’s coordinates were generated independently along the
two dimensions with the same distribution.

The x and y lengths of the safe regions of the data objects
were generated around the object center also using a normal
distribution. The default mean and standard deviation were
both set to 5 (the default mean was varied in an experiment).
Once safe regions were assigned, object positions within their
safe regions were randomized using a uniform distribution.

In our experiments we compared our algorithm against three
other algorithms. The algorithms were as follows:

IGBE This is our information gain-based exposure algo-
rithm.

NMin This algorithm is Algorithm 1 with Line 4 changed
to: Pick s ∈ B where s has the nearest minimum
distance to the query location. Move s from B to E.

NMax Similar to NMin except we pick s ∈ B where s has
the nearest maximum distance to the query location.

NCent Similar to NMin except we pick s ∈ B where s has
the nearest safe region center to the query location.

VI. EXPERIMENTAL RESULTS

In this section we report the results of four experiments. The
following were varied in one experiment each: the number of
objects; τ ; the deviation in the data object locations and the
mean safe region size.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  10  20  30  40  50  60  70  80  90  100  110

av
g 

ex
po

su
re

s

number of objects

IGBE
NMax
NMin

NCent

(a) Average number of exposures

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  10  20  30  40  50  60  70  80  90  100  110

st
an

d 
de

v

number of objects

IGBE
NMax
NMin

NCent

(b) Standard deviation of exposures

Fig. 3. Results of varying number of objects.

First, we vary the number of objects. The results are shown
in Figure 3. In Figure 3(a) the average number of exposures
needed to answer the query is shown. The results show IGBE
outperforms the three naive algorithms, for all values tested.
The performance difference between IGBE and the other
algorithms increases as the number of objects increases. This
is because as the number of objects increases so does the
uncertainty of which object is the nearest neighbor, which the
more sophisticated IGBE can handle better.

Figure 3(b) shows the standard deviation (SD) of the al-
gorithms. Smaller SD means a more stable performance. The
results show the three other algorithms have higher deviations
in its effectiveness than the IGBE algorithm does. This is
because, in contrast to IGBE, these algorithms are beneficial
in specific scenarios (or “guessed right”) but perform poorly
in other scenarios, whereas IGBE is a more general approach
working well in most cases. It is also interesting to note that
NMin has a lower SD than NCent does, and NCent in turn
has lower SD than NMax does. This shows that in most cases
NMin is more stable than NCent, and that taken together with
a smaller average number of exposures, NMin works better in
most cases than NCent does (not just having a better average).
The same can be said comparing NCent and NMax.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0.5  0.6  0.7  0.8  0.9  1

av
g 

ex
po

su
re

s

τ

IGBE
NMax
NMin

NCent

(a) Average number of exposures

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0.5  0.6  0.7  0.8  0.9  1

st
an

d 
de

v

τ

IGBE
NMax
NMin

NCent

(b) Standard deviation of exposures

Fig. 4. Results of varying threshold.

Now we vary the probability threshold (τ ) needed to give
an object as the answer to the PoNN query. Figure 4(a) shows
that in terms of average exposures IGBE again outperforms



the other algorithms at all values. At τ = 1, the result is
very similar for NMin (average exposures = 9.4) and IGBE
(average exposures = 9.26). When τ = 1, we expected NMin
to perform well. This is because in most cases, the object
(snmin) with the smallest minimum distance must be exposed
since otherwise we can’t know for sure that no other object
is closer than snmin is. As τ decreases so does the necessity
to expose the object with the smallest minimum. This is why
NMin begins to perform worse than NCent once τ < 0.9.
Note in all cases, IGBE is still the best performer.

The standard deviation of the results of the different runs is
shown in Figure 4(b). Similar to Figure 3(b) IGBE and NMin
are the most consistent. For τ = 1, NMin is more consistent
than IGBE. This is because IGBE uses a probabilistic approach
so it will, on average, give better or the same number of objects
to expose. However, this means there will be more variability
than for NMin which uses a good selection method for τ = 1
and ignores the probabilities of the different distances.

Now, we vary the standard deviation of the data objects’
center locations (the mean is the query’s location). The results
are shown in Figure 5(a). IGBE again consistently outperforms
the other algorithms. The difference between IGBE and the
other algorithms is greater when the data’s standard deviation
is low. This is because the data objects will be more crowded
around the query making it less obvious which object(s) should
be exposed (in which case IGBE shines). NMin performs
worse when the data’s standard deviation is 2 than elsewhere
because most of the objects will have a small minimum
distance, so the size of the safe region becomes more important
(which NMin ignores).

The standard deviation results for the experiments in Fig-
ure 5 are similar to those above and omitted here.

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12

av
g 

ex
po

su
re

s

data stand dev

IGBE
NMax
NMin

NCent

(a) Varying data standard deviation

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  1  2  3  4  5  6  7  8  9  10

av
g 

ex
po

su
re

s

safe region mean

IGBE
NMax
NMin

NCent

(b) Varying SR mean length

Fig. 5. Results of varying data standard deviation and SR mean.

Finally, we vary the mean of safe region range. The results
are shown in Figure 5(b). On average IGBE outperforms the
other algorithms. NMin is the second best for the smaller safe
region means and NCent is second best for the other values.
This is because when the safe regions are smaller exposing
the object with the smallest minimum is more likely to have
its actual location closer than the other objects’ safe regions.

VII. CONCLUSION

In this paper, we have shown a detailed algorithm that selec-
tively exposes object locations in answering the probabilistic
one-of nearest neighbor query. The interesting findings include

the promise of the information gain-based approach. The
experimental results show the positive effect of our approach.

From a theoretical perspective, the computational complex-
ity of the algorithm is cubic in the number of objects. (Note
that the straightforward solutions we compared with all have
the same computational complexity, and hence the inherent
complexity may not be in the information gain but rather in the
probabilistic calculation.) However, as mentioned earlier, there
are many opportunities to reduce the calculation time. In our
experimental results, we focused on the number of exposures.
It will be an interesting future direction to study the effect of
various optimization techniques.

A general future direction, which is what we are actively
pursuing, is to see how the information gain-based approach
works for various other kinds of queries. Also, how to assign
safe regions together with query evaluation consideration is an
interesting direction.

Acknowledgment: The work of Wang was supported by
the National Science Foundation, while working at the Foun-
dation. Any opinion, finding, and conclusions or recommen-
dations expressed in this material, are those of the authors and
do not necessarily reflect the views of the Foundation.

REFERENCES

[1] H. Hu, J. Xu, and D. L. Lee, “A generic framework for monitoring
continuous spatial queries over moving objects,” in Proceedings of
SIGMOD, 2005, pp. 479–490, safe region.

[2] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch, “Main memory
evaluation of monitoring queries over moving objects,” Distributed and
Parallel Databases, vol. 15, no. 2, pp. 117–135, 2004.

[3] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Ham-
brusch., “Query indexing and velocity constrained indexing: Scalable
techniques for continuous queries on moving objects,” IEEE Transac-
tions on Computers, vol. 51, no. 10, pp. 1124–1140, 2002, safe region.

[4] H. Hu, J. Lee, and D. Lun, “PAM: an efficient and privacy-aware moni-
toring framework for continuously moving objects,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 3, pp. 404–419, 2010.

[5] G. Beskales, M. A. Soliman, and I. F. IIyas, “Efficient search for
the top-k probable nearest neighbors in uncertain databases,” in VLDB
Conference, 2008, pp. 326–339, approximate KNN.

[6] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Evaluating probabilistic
queries over imprecise data,” in SIGMOD Conference, 2003, pp. 104–
130.

[7] ——, “Querying imprecise data in moving object environments,” TKDE,
vol. 16, no. 9, pp. 1112 – 1127, 2004.

[8] J. Chen and R. Cheng, “Efficient evaluation of imprecise location-
dependent queries,” in ICDE Conference, 2007, pp. 586–595.

[9] V. Ljosa and A. Singh, “ALPA: indexing arbitrary probability distribu-
tions,” in ICDE Conference, 2007, pp. 945–955.

[10] H.-P. Kriegel, P. Kunath, and M. Renz, “Probabilistic nearest-neighbor
query on uncertain objects,” in Advances in Databases: Concepts,
Systems and Applications, 2008, pp. 337–348.

[11] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar,
“Indexing multi-dimensional uncertain data with arbitrary probability
density functions,” in VLDB ’05: Proceedings of the 31st international
conference on Very large data bases. VLDB Endowment, 2005, pp.
922–933.

[12] R. Cheng, L. Chen, J. Chen, and X. Xie, “Evaluating probability
threshold k-nearest-neighbor queries over uncertain data,” in EDBT
’09: Proceedings of the 12th International Conference on Extending
Database Technology. New York, NY, USA: ACM, 2009, pp. 672–
683.

[13] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha, “Updating and
querying databases that track mobile units,” Distrib. Parallel Databases,
vol. 7, no. 3, pp. 257–387, 1999.



[14] J. Birge and F. Louveaux, Introduction to stochastic programming.
Springer, 1997.


