
SeTPR*-tree: Efficient Buffering for
Spatiotemporal Indexes Via Shared

Execution
THI NGUYEN, ZHEN HE, YI-PING PHOEBE CHEN

Department of Computer Science and Computer Engineering, La Trobe University, VIC 3086, Australia
Email: nt2nguyen@students.latrobe.edu.au, z.he@latrobe.edu.au, Phoebe.Chen@latrobe.edu.au

In this paper, we study the problem of efficient spatiotemporal indexing of moving objects. In order
to reduce the frequency of object location updates, a linear motion model is used to model the near
future location of moving objects. A number of existing spatiotemporal indexes have already been
proposed for indexing these models. However, these indexes are either designed to offer high query
performance or high update performance. Therefore, they are all ill suited to handle situations
where both queries and updates arrive at a high rate. In this paper, we propose the SeTPR*-
tree which extends the TPR*-tree to more efficiently use a limited sized RAM buffer for processing
queries in batches and rapidly arriving updates. We provide both theoretical and empirical evidence
of the effectiveness of the SeTPR*-tree in improving query and update performance. We have
conducted extensive experiments using a recognized spatiotemporal benchmark on a solid state
drive. The SeTPR*-tree simultaneously outperforms the best tested index optimized for queries by
up to a factor of 5.6 for query I/O and outperforms the best tested index for updates by up to a

factor of 11.5 for update I/O.
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1. INTRODUCTION

An increasing number of mobile devices such as mobile
phones and car navigation systems are becoming GPS-
enabled and capable of reporting their current location
wirelessly to a central server. This allows the design of many
different applications which involve querying the current or
near future locations of the mobile devices.

A popular method to reduce the report rate from mobile
devices is to use a linear motion-based model to model the
near future location of moving objects. The model consists
of the initial extent of the object and a velocity vector. An
update is issued by the object when its velocity changes.
A number of index structures have been proposed to index
and query the trajectory information. These indexes include
the TPR-tree [1], TPR*-tree [2], Bdual-tree [3], Bx-tree [4],
ST2B-tree [5], etc. These index structures are optimized for
one-at-a-time querying and updating. However, there are
many situations where a potentially large number of queries
and updates need to be executed on the index at the same
time. We call these ”batch” queries and updates.

Queries and updates need to be queued and executed
in batch when they arrive faster than the processing rate.
For example, a large stream of index update requests can
arrive in a very short time period as a result of many
objects invalidating their linear motion models around the
same time. In our experiments, we found that the fastest
existing spatiotemporal index for updates takes around 6 ms
to process an individual update when indexing 1 million

objects. This means that if more than 166 out of the 1 million
objects need to be updated within 1 second, then updates
and later arriving queries need to be queued and processed
later in a batch. We envisage this situation to occur often
in a real system using these indexes. We therefore propose
algorithms for the fast batch processing of queries and
updates for spatiotemporal indexes.

Another situation where batch query execution is
particularly useful is for processing continuous intersection
joins [6], where one set of objects needs to be regularly
joined with another by effectively issuing a batch of range
queries simultaneously on a spatiotemporal index.

It is important to note that there is a tradeoff between
response time and throughput when queries are executed
in batches. Executing batches of queries can improve
the efficiency of query execution, leading to increased
throughput. However, this will also lead to increased
response time. In this paper, we mainly focus on improving
throughput since we are interested in situations where
queries arrive too fast for the system to handle. If queries are
not processed fast enough, the system will never catch up to
the speed of query arrival, hence in this situation, it is more
desirable to maximize throughput than minimize response
time. We have measured this tradeoff between response time
and throughput in our experiments.

All existing spatiotemporal indexes struggle to cope with
the situation when many queries and updates occur in a short
period of time for the following reasons:
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• ineffective RAM buffer usage resulting in high I/O
costs for each query and update executed.

• optimizing for either query or update performance but
not both.

Due to the slow speed of secondary storage (either
hard disk drives or solid state drives) compared to RAM,
secondary storage indexes use a RAM buffer to cache
recently used index nodes and thereby hide some of the
high access costs of secondary storage. The buffer only
works well when there is high temporal locality. However,
in existing systems, the degree of temporal locality is
essentially determined by luck, namely the order in which
the queries arrive. High temporal locality occurs when
spatially close queries happen to arrive in close succession.

We propose the SeTPR*-tree which uses three techniques
to reorder index node references for batched queries (both
range queries and k nearest neighbour queries) and thereby
increase temporal locality. The three techniques are shared
query execution, shared deletion execution and proximity
ordered insertion. Shared query execution groups queries
together and executes them in a batch so that the minimum
number of page loads are performed to execute the entire
batch of queries. Shared deletion works by first caching all
deletions in the RAM buffer and then executing the deletions
in batch when the RAM is full. Finally, we also cache
object insertions in RAM and then insert them into the tree
in proximity order when the RAM buffer is full.

The idea of improving temporal locality by performing
query execution, deletion and insertion in batch has been
proposed in the area of indexing and querying static
objects using R-trees [7, 8, 9]. However, none of these
ideas have been studied comprehensively in the context
of spatiotemporal indexes. This paper first analyzes the
negative consequences of naively applying these batch
execution techniques into R-tree based spatiotemporal
indexes. Based on this analysis, we propose the SeTPR*-
tree which incorporates tailored batch execution algorithms
for improving the query and update performance of the
TPR*-tree (a state-of-the-art spatiotemporal index). The
tailored algorithms are designed in an integrated way to
maximize the utilization of the limited RAM buffer by using
dynamic buffer allocation. The SeTPR*-tree algorithms can
be applied to any other R-tree based spatiotemporal index
such as the TPR-tree.

In addition to the above, this paper offers the first detailed
performance study of the effect of optimizing temporal
locality in the context of spatiotemporal indexes. The main
results of the performance study are as follows:

• The high temporal locality update algorithms of
the SeTPR*-tree outperforms the closest competitor
for updates, RUM*-tree (the RUM-tree [8] update
algorithms applied to the TPR*-tree) by a factor 11.5
for update I/O.

• Although the batched update algorithms of the
SeTPR*-tree cause queries to slow down due to
delaying updates (frequent updates are essential for
re-optimizing the tree for querying), the shared query

execution more than compensates for this slow down.
The result is that the shared range query execution
algorithm of the SeTPR*-tree outperforms its closest
competitor, the TPR*-tree (best for queries) by up to a
factor of 5.6 for query I/O.

• The SeTPR*-tree only needs to process a batch of 5
queries or more to outperform all tested algorithms for
query I/O performance.

• Shared deletion execution and proximity ordered
insertion, when used together, result in the largest
reduction in update I/O. However on their own, shared
deletion execution is more effective than proximity
ordered insertion at reducing update I/O.

• Proximity ordered insertion significantly outperforms
arrival ordered insertion.

• The high temporal locality operations of the SeTPR*-
tree make it much less sensitive to changes in the
characteristics of the data and query sets. The query
and update I/O performance per operation of the
SeTPR*-tree stays near constant, with varying update
frequency, query size and maximum velocity of moving
objects. This contrasts with other tested indexes whose
performance deteriorated significantly with decreased
update frequency, enlarged query size and increased
maximum velocity of moving objects.

This paper makes five key contributions. Specifically:

• we propose a spatiotemporal index called SeTPR*-
tree which is simultaneously optimized for executing
batches of queries and individually arriving updates;

• the SeTPR*-tree reorders the query and update
reference stream to the spatiotemporal index and
thereby improves the temporal locality of the reference
stream;

• we theoretically prove that our SeTPR*-tree achieves
minimum buffer miss rates;

• we integrate our proposed techniques for increasing
temporal locality with dynamic RAM buffer allocation
to make the best use of the limited sized RAM buffer;
and

• we conduct an extensive experimental study to compare
our SeTPR*-tree with three rival state-of-the-art
spatiotemporal indexes.

The remainder of the paper is organized as follows.
Section 2 describes the related work which includes
a detailed look at R-tree based spatiotemporal indexes;
Section 3 describes the benefits of shared execution for
reducing I/O costs; Section 4 describes our proposed
SeTPR*-tree; Section 5 describes the experimental setup
used to test our SeTPR*-tree; Section 6 shows the
experimental results and analysis for comparing the
effectiveness of our SeTPR*-tree with existing indexes; and
finally, in Section 7, we conclude the paper and outline
directions for future work.
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2. RELATED WORK

In this section, we start by describing the existing work
on R-tree based spatiotemporal indexes and its dependence
on updates for reducing MBR overlap. Next, we present
existing work on supporting efficient updates on R-tree
based indexes. We then present existing work on bulk
loading R-tree and TPR-tree indexes. Finally, we briefly
describe existing work on B+-tree based spatiotemporal
indexes.

2.1. R-tree based spatiotemporal indexes

An established approach to index spatiotemporal data is
to use the R*-tree to index the extents of objects and
their current velocity. These indexes include the TPR-
tree [1] and the improved TPR*-tree [2]. They work by
grouping object extents at the reference time into minimum
bounding rectangles (MBRs). Figure 1(a) shows the objects
O1, O2 and O3 grouped into the same MBR in node
N1. Accompanying the MBRs are the velocity bounding
rectangles (VBRs) which represent the expansion of the
MBRs with time according to the velocity vectors of the
constituent objects. The rate of expansion in each direction
is equal to the maximum velocity among the constituent
objects in the corresponding direction. A negative velocity
value implies that the velocity is towards the negative
direction of the axis. For example, in Figure 1(a), we can
see the hollow arrow on the left of node N1 has a value
of -2. This is because the maximum velocity value of the
constituent objects in the left direction is 2.

The MBR and VBR structure described can be extended
by replacing the constituent object extents with smaller
MBRs. This, when recursively applied, creates a
hierarchical tree structure. The tree structure is identical
to the classic R-tree [10], the only difference being
the algorithms used to insert, delete and query the
tree also need to take the velocity information into
consideration. The TPR-tree and TPR*-tree modify the R*-
tree insertion/deletion and query algorithms to operate on the
tree.

2.1.1. Issue of overlapping MBRs
An important phenomenon that occurs as a result of using
the R-tree structure to index this type of spatiotemporal
information is that the MBRs can rapidly expand with time
and thus cause an increased overlap among MBRs. For
example, Figure 1(b) shows the expansion of the MBRs
of nodes N1 and N2 at time 1 from the MBRs of the
corresponding nodes at time 0 (Figure 1(a)). To reduce
MBR expansion, the TPR-tree and TPR*-tree tighten the
MBRs of tree nodes following object location updates. For
example, Figure 1(c) shows the deletion of O1 followed by
the tightening of the MBR for N1.

The above example shows the importance of tightening
the MBR to reduce the amount of overlap for the TPR-
tree and TPR*-tree. Overlap increases query execution cost.
For example in Figure 1(b), query Q1 needs to inspect the

objects in both N1 and N2. In contrast, in Figure 1(c) the
same query Q1 only needs to inspect the objects in N2, since
the MBR of N1 has been tightened.

It is important to note that MBR tightening only occurs as
a result of updates (either deletions or insertions) in the TPR-
tree and TPR*-tree. Therefore, frequent update operations
on the index are vital to its query performance. However,
the downside of frequent updates is the high I/O costs. This
is due to the need to update multiple MBRs and possible
tree restructuring. A naive solution for reducing update I/O
is to use one of the existing methods [7, 8, 9] that buffer
deletion and/or insertion in RAM before applying them in
batch to the disk-based R-tree. Another way of delaying the
application of updates to disk, is to attempt to restrict updates
to leaf nodes only by using a bottom-up update approach
[11, 12]. However, following the analysis above, delaying
the application of updates to disk will increase query I/O
costs.

The above raises an interesting dilemma, namely,
delaying updates reduces update I/O but at the same time,
also increases read I/O costs of queries. Our proposed
solution which uses shared execution to execute queries in
batch overcomes the negative effects of delayed updates
for the following reasons: increased temporal locality; and
reduced sensitivity to MBR overlap. In Section 3, we will
show how shared execution can increase temporal locality
and how it can reduce sensitivity to MBR overlap. Both of
these factors contribute to the overall reduction in I/O costs
during querying.

2.2. Efficient updates on R-tree based indexes

In this section, we describe in more detail how existing work
can reduce the cost of updates on R-tree based indexes and
why they result in poor query performance when used for
indexing spatiotemporal data.

One way to reduce update costs is to perform deletions
followed by bottom-up insertions [11, 12]. In memory,
indexes are used to directly identify leaf nodes containing
the object to be deleted. Next, an attempt is made to directly
reinsert the object in the same leaf node involved in the
deletion without doing a top-down traversal. One of the key
benefits of this approach for indexing stationary objects is
that non-leaf nodes can be left untouched. However, when
this is applied to spatiotemporal indexes, this at best, delays
MBR tightening and at worst, never tightens any MBRs.
The reason is that tightening of MBRs can only be done
by updating non-leaf nodes, since the MBR of all nodes are
stored in non-leaf nodes.

The RUM-tree [8] (which stands for R-tree with update
memo), achieves high update performance by buffering
deletions in main memory before applying them to disk in
batch. The RR-tree [7] proposed by Biveinis et al. buffers
both insertions and deletions. When the operation buffer is
full, some or all of its operations are applied to disk in bulk.
As mentioned earlier, these approaches attempt to delay
updates to the disk tree which results in delayed tightening of
the MBRs and hence, increased overlapping of MBRs. As
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(c) Tightened MBR after deleting O1 at time 1

FIGURE 1. Example of MBRs of a TPR-tree growing with time and subsequent tightening of node N1’s MBR after the deletion of object
O1

a consequence, when applied to spatiotemporal indexes, it
results in reduced query performance. Our work differs from
these in two respects. First, our shared query execution is
less sensitive to the negative effects of overlapping MBRs, as
explained in Section 3.2. Second, unlike Biveinis et al. [7],
we perform proximity ordered insertion instead of batched
insertion which results in a more optimized tree (see Section
4.4 for a more detailed explanation).

2.3. Bulk loading R-trees and TPR-trees

In this section, we present techniques designed for the bulk
loading of R-trees and TPR-trees. Most of the existing
work in bulk loading R-trees and TPR-trees is designed
to speed up the bulk insertion of a group of static data
objects [13, 14, 15, 16, 17, 18, 19, 20] into an empty tree.
Therefore, they are not designed to handle continuously
arriving updates and hence, are not useful for our purposes.

Arge et al. [21] propose the use of a simple lazy buffering
technique for performing bulk operations on the R-trees. In
contrast to the above work, they support performing batched
insertions, deletions and queries on an already existing tree.
They attach buffers to all R-tree nodes at certain levels of the
tree. These buffers are then used to cache tree operations and
apply them lazily to nodes lower down the tree. However,
their buffers reside on disk. Therefore, using their approach
introduces extra read and write IO when accessing the disk
buffer. In contrast, we buffer batch operations in RAM and
therefore do not incur any extra IO overheads.

Zhou et al. [22] apply a similar technique to Arge et al.
[21] but on main memory indexes instead of disk resident
indexes. Therefore, their buffers reside in main memory
instead of disk. They support both batched insertions and
updates. The key difference between their work and ours
is that we focus on disk-resident spatiotemporal indexes
instead of memory resident indexes.

Lin et al. [9] combine disk buffered lazy bulk insertions
with RAM buffered bottom-up batched deletions. This
technique introduces additional read and write I/O for the
disk buffers for insertions. Its query performance is low due

to its approach of delaying updates.

2.4. B+-tree based spatiotemporal indexes

The R-tree based spatiotemporal indexes like TPR*-tree
have high query performance if updates are performed
frequently. However, they suffer from low update
performance due to expensive node splitting and merging
operations. Storing the spatiotemporal data inside a B+-
tree overcomes this problem by using the highly efficient
insertion and deletion procedures of the B+-tree. The
Bx-tree [4] is the first technique to adopt the B+-tree to
index moving objects. The Bdual-tree [3] and ST2B-tree
[5] are two recent improvements on the Bx-tree. Park et
al. [23] propose an adaptive index management system for
answering future queries. The index structure used is the
Bst-tree [24] which incorporates the features of the B-tree
and the multi-version tree [25, 26].

Although B+-tree based spatiotemporal indexes are
good for update performance, they suffer from low query
performance. This is due to the reduction in dimensionality
resulting from the need to enlarge queried regions in order
to ensure no objects belonging to the result set are missed.

3. THE BENEFITS OF SHARED QUERY EXECU-
TION

In this section, we will describe how shared query execution
can reduce I/O costs of queries by increasing the temporal
locality of the reference stream and reducing sensitivity to
overlapping MBRs.

The high level idea behind shared execution is to process
a batch of queries concurrently by doing a single traversal of
the TPR*-tree, visiting every node referenced by the union
of the batch of queries.

3.1. Increased temporal locality

Buffers work best when there is high temporal locality in the
reference stream. This is because higher temporal locality
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means a smaller buffer is needed to avoid buffer misses for
the same reference stream. Often, the amount of temporal
locality present is a property of the data and workload and
therefore, beyond our control. However, when we process
queries in a batch, we have the opportunity to influence the
amount of temporal locality present by changing the order
in which operations are done. In this section, we compare
the amount of temporal locality present when we process
queries in arrival order, using shared query execution and in
spatial proximity order.

We define shared execution as follows.

DEFINITION 3.1 (Shared Execution). Given a set of
operations O to perform on a tree, shared execution
performs all the operations in O while producing a reference
stream on the nodes of the tree such that every tree node
is referenced at most once and the set of distinct nodes
accessed equals the union of the nodes that would be
accessed if the operations of O were performed individually.

The above definition of shared execution can be applied
to any of the following operations: query, insertion and
deletion to produce shared query execution, shared insertion
execution and shared deletion execution, respectively.

High temporal locality is achieved when the buffer miss
rate decreases rapidly with increased buffer size. Therefore,
we provide a definition for buffer miss rate as a function
of buffer size. For a given input reference stream S =
⟨s1, s2, .., si, ..sn⟩, where si is the page referenced at the
ith reference, buffer size M specified in pages, buffer
replacement policy B, we define buffer miss rate as follows:

MissRate(S,M,B) =

∑
s∈S PageLoad(s,M,B)

|S|
(1)

where PageLoad(s,M,B) is a function that returns 1 if
reference s causes a page load, else it returns 0.

In an extreme case when M equals 1 page, the only way
to avoid a page load (buffer miss) is to reference the page
currently in the buffer. This is what leads us to propose
the following shared query execution function (SQF (S))
which reorders the reference stream S to minimize the buffer
miss rate while also meeting the shared execution definition
(Definition 3.1). SQF (S) is defined as follows:

DEFINITION 3.2 (Shared Query execution Function
(SQF (S))). Given an input reference stream S, SQF (S)
outputs a reordered reference stream in which every
reference to the same page is grouped to occur consecutively.

This definition of SQF seems difficult to achieve since it
seems to require knowledge of the complete set of pages
references at the beginning. However, this knowledge is
not required since we can produce this reference order by
traversing the tree in a particular way, as shown in more
detail in Algorithm 2 for the range query and Algorithm 3
for the k nearest neighbour query.

We next define a Lemma which states that in a situation
where there is a buffer of size 1 page, SQF (S) reorders the
input stream to achieve minimum buffer miss rate.

LEMMA 3.1 (Maximum miss rate for RAM buffer size 1).
Given a reference stream S, a 1-page buffer and any buffer
replacement algorithm B, assuming the buffer starts empty,
the miss rate MissRate(SQF (S), 1, B) is minimized when
the reference stream is reordered using the shared query
execution function SQF (S).

Proof. The number of distinct pages in the output stream
of SQF (S) equals |{si ̸= si−1|∀si ∈ SQF (S) ∧ 1 <
i ≤ n}| + 1 because SQF (S) groups all references to the
same page consecutively. Only references si ̸= si−1 and
s1 require a page load because in the remaining situations
(sj = sj−1), the page sj can be found in the 1-page buffer.
Therefore, the number of page loads by SQF (S) is exactly
equal to the number of distinct pages in S. The least number
of pages that can be loaded for a given stream S is equal to
the number of distinct pages in S. This is because the buffer
starts empty and therefore we cannot avoid loading every
distinct page at least once. Therefore, SQF (S) achieves
the lowest number of page loads possible and therefore the
minimum miss rate.

Using Lemma 3.1, we arrive at Theorem 3.1 which
effectively says if we use the shared query execution
function to reorder the reference stream, we can achieve
the minimum miss rate using a buffer of just one page.
Increasing the buffer size will not further decrease the miss
rate.

THEOREM 3.1 (Maximum miss rate for any buffer size).
Given a reference stream S, any buffer size M > 0, and
any buffer replacement algorithm B, an empty initial buffer,
the minimum miss rate MINp∈π(S)MissRate(p,M,B) =
MissRate(SQF (S), 1, B)), where π(S) is the set of all
possible permutations of the reference stream S.

Proof. This proof is a trivial extension of the proof for
Lemma 3.1. As stated in the proof for Lemma 3.1, the
number of page loads for SQF (S) is equal to the number
of distinct pages in S. No matter how much bigger we make
the buffer, we cannot improve on this since we start with an
empty buffer and we therefore need to load every distinct
page into the buffer at least once.

Our shared query execution algorithm produces an output
reference stream which conforms to SQF and therefore,
according to Theorem 3.1, it achieves the minimum possible
miss rate with a read buffer of just one page. This frees
the remainder of the buffer to buffer object insertions and
deletions. In our system, a memory-based index exists which
is used at query time concurrently with the disk-based index
(more details in Section 4).

Note when the theorem is applied to our shared query
execution, we minimize the intra-batch miss rate instead of
the inter-batch miss rate. That is, we consider the reference
stream S as the reference stream generated from executing
the queries of the current batch instead of queries across
separate batches.

Figure 2 uses an example to illustrate the miss rate for
processing three queries in arrival order against using shared

, Vol. ??, No. ??, ????



6 T. NGUYEN, Z. HE, Y.-P. P. CHEN

C

2

Q3

Q1

A

GFED

B

Q

(a) Tree traversal for queries Q1, Q2

and Q3

Buffer miss

2 3

RAMG

Disk

D

G

A

A C

B C

FE

Q (A, C, G)

Buffer hit

RAM

Disk

D

G

A

A

B C

FE

B D

Q (A, B, D)

RAM

Disk

D

G

A

A

B C

FE

C G

Q (A, C, G)

Buffer miss followed by hit

1

(b) Arrival Ordered Query Execution (Buffer size 3)

(Q , G)(Q 3 , G)(Q1 , C)(Q 3 , C)(Q

2(Q , B)
2

1 2 , A)(Q 3 , A)(Q

F

Disk

D

G

A B C

FE

RAM
G

Disk

D

G

A B C

E

RAM

Disk

D

G

A B C

FE

RAMB D

Disk

D

G

A

A

B C

FE

RAM

Disk

D

G

A B C

FE

RAMC

(Q , D)

, A)
1

(c) Shared Query Execution (Buffer size 1)

FIGURE 2. Example of tree traversal in arrival order versus shared
execution. Queries arrive in the following order: Q1, Q2 and Q3.

execution. In this example, we assume the popular least
recently used buffer replacement (LRU) policy is being used.
Figure 2(a) shows the traversal path of the three queries Q1,
Q2, and Q3. Figure 2(b) shows the buffer hits and misses for
processing the queries in the arrival order of ⟨Q1, Q2, Q3⟩
with a buffer size of 3. The example shows the three queries
are processed with 7 buffer misses and therefore 7 page
loads. Although there are 9 references, only 2 of them
were buffer hits, because of the low temporal locality in
the reference stream. This contrasts with shared execution,
shown in Figure 2(c), where all the queries process the same
node of the tree at the same time. The example shows,
using shared execution with a buffer of just 1 page, we can
achieve 4 buffer hits (2 hits on page A, 1 on C and 1 on G)
and therefore only 5 buffer misses. 5 buffer misses is the
minimum possible, since the three queries access 5 distinct
pages (A, C, G, B and D). This is an illustration of Theorem
3.1.

3.2. Reduced sensitivity to overlap

As mentioned at the end of Section 2.1.1, another benefit
of shared query execution is reduced sensitivity to MBR
overlap. This is due to the fact that using shared query
execution, the number of page loads equals exactly the
number of distinct pages in the reference stream (as

explained in Section 3.1). Therefore, if at least one query
among the batch uses a page, then that page will be loaded
exactly once, no matter how many queries touch that same
page.

Figure 3 shows an example of two queries Q1 and Q2

traversing a tree with non-overlapping MBRs F and G
(Figure 3(a)) and overlapping MBRs F and G (Figure 3(b)).
Figure 3(c) and 3(d) compare the number of buffer misses
for the non-overlapping and overlapping cases, respectively,
when using shared query execution. The results show, in
both cases, the number of buffer misses equals 4. The reason
for the same number of buffer misses, despite the absence
and presence of overlapping MBRs, is that the number of
distinct page references is the same for both cases.

It is important to note that although shared execution
reduces the impact of MBR overlap, it is still desirable for
the MBR to have less overlap. We can think of it as follows:
shared execution effectively works like creating one large
query which is the union of the entire batch of queries. This
large query will touch a lot of MBRs due to its large size,
however, if there is more overlap between the MBRs, it will
likely touch more MBRs than if there were less overlap.

4. BUFFER-EFFICIENT SPATIOTEMPORAL IN-
DEXING

In this section, we describe our SeTPR*-tree which uses
a combination of four techniques: dynamic RAM buffer
allocation (DBufferAlloc); shared query execution; shared
deletion execution; and proximity ordered insertion. These
techniques are combined to minimize query and update I/O
simultaneously. Although this section presents our ideas
when applied to the TPR*-tree, they can be equally applied
to the TPR-tree.

All four techniques are designed to obtain the maximum
benefit from the use of the limited sized RAM buffer. Figure
4 shows a high level diagram of how our SeTPR*-tree works.
DBufferAlloc breaks up the buffer usage into two phases:
the operation phase; and the merge phase. The operation
phase caches updates and performs shared query execution.
The merge phase merges the cached objects with the disk-
based TPR*-tree.

DBufferAlloc assigns RAM buffer space to index
operations dynamically, according to need. During the
operation phase, we only allocate a 1-page buffer for
answering queries. This is because we use shared query
execution to execute batches of queries at once and thereby
reduce the number of read I/O to the minimum possible with
a read RAM buffer size of just 1 page (proved in Section
4.1). DBufferAlloc allocates the remaining RAM buffer to
a RAM-based TPR*-tree which stores inserted objects. This
reduces update costs by allowing us to delay updates to a
later time. Deletions are also delayed in RAM and cached
using a hash table for fast lookup. The higher resultant query
I/O costs from delayed insertions and deletions is overcome
by shared query execution.

When insertions and deletions have filled up the RAM
buffer entirely, DBufferAlloc switches into the merge
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FIGURE 4. Diagram illustrating operations on the SeTPR*-tree

phase and reallocates the RAM buffer space as follows.
DBufferAlloc converts the RAM-based TPR*-tree into a
proximity ordered list of objects, thereby freeing RAM
which is then used for a multi-page deletion/insertion buffer.
We then delete all the objects in the deletion hash table
from the disk-based TPR*-tree in bulk via shared deletion
execution. This increases the temporal locality which
results in making more efficient use of the deletion/insertion
buffer. Finally, we insert all the objects in the RAM-based
TPR*-tree into the disk-based TPR*-tree in proximity order

(benefits explained in Section 4.4). This also increases the
temporal locality of the insertions which results in more
optimized insertion buffer usage. At the end of the merge
phase, the operation phase is restarted.

Algorithm 1 gives the high level algorithm for our
SeTPR*-tree. In the merge phase (Lines 10 - 16), we
perform deletion and insertion separately because shared
insertion execution would lead to a less optimized tree (see
Section 4.4 for an example). Therefore, instead of shared
insertion execution, we do proximity ordered insertion for
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Algorithm 1: High Level Algorithm(o)
Input: Operation o

1 if operation o is batched range query then
2 invoke Shared Query Execution on RAM-based

TPR*-tree
3 invoke Shared Query Execution on disk-based

TPR*-tree
4 combine results from querying both trees

5 else if operation o is batched kNN query then
6 invoke Shared kNN Query Execution on

RAM-based TPR*-tree
7 invoke Shared kNN Query Execution on

disk-based TPR*-tree
8 combine results from querying both trees

9 else
10 if RAM buffer is full then
11 // execute merge phase
12 move objects from RAM-based TPR*-tree to

object insertion list
13 enlarge disk-based TPR*-tree’s buffers to

occupy free buffer space
14 invoke Shared Deletion Execution using

objects in deletion hash table
15 invoke Proximity Ordered Insertion using

objects in insertion list
16 flush all pages in disk-based TPR*-tree’s buffer

and reset buffer size to 1 page

17 if operation o is insertion then
18 insert object into RAM-based TPR*-tree

19 else if operation o is deletion then
20 if object exists in RAM-based TPR*-tree then
21 delete object from RAM-based TPR*-tree

22 else
23 insert object into deletion hash table

the TPR*-tree. However, as our experiments in Section
6.2 show, our proximity ordered insertion which has high
temporal locality reduces I/O costs significantly compared to
arrival ordered insertion. Sections 4.3 and 4.4 describe our
shared deletion execution and proximity ordered insertion
algorithms, respectively.

In batched query execution (either range or kNN queries)
(Lines 1 - 8), we first perform shared query execution on
the RAM-based TPR*-tree because it contains all the most
recently inserted objects. The reason we perform shared
query execution on the RAM-based TPR*-tree is because
shared query execution results in higher temporal locality
which results in less level 1 and 2 CPU cache thrashing.
For the RAM-based TPR*-tree, we found a node size of
512 bytes gave best performance. When performing shared
execution on the disk-based TPR*-tree, we do not check
whether the same object was found in the RAM-based
TPR*-tree since any object that exists in both must also be in

the deletion hash table. When using the disk-based TPR*-
tree, we remove from the result any objects which are in
the deletion hash table. Sections 4.1 and 4.2 present the
algorithms used for shared query execution for range queries
and k nearest neighbour queries, respectively.

It is important to note that one limitation of shared query
execution is that it cannot be used when there are certain
types of dependencies between queries, for example, if the
parameters of one query depend on the results of an another
query.

4.1. Shared range query execution

Algorithm 2: Shared Range Query Execution(QL, DL)
Input: range query list QL, deletion list DL
Output: result set RS⟨query, entry⟩

1 // let LE be a list of node entries that need to be
processed

2 initialize an empty LE
3 insert root entry to LE
4 while LE is not empty do
5 remove the last entry le from LE
6 load the node N pointed by le
7 initialize an empty Query List QL′

8 insert all queries from QL which intersect with N
to QL′

9 if N is a leaf node then
10 for each entry e ∈ N do
11 if querying RAM-based tree or e /∈ DL

then
12 if e intersects with query q ∈ QL′ then
13 insert a pair ⟨q, e⟩ into RS

14 else
15 /* N is a non leaf node */
16 insert all entries ∈ N which intersect with any

query in QL′ into LE

17 return RS

In this section, we describe our algorithm for shared range
query execution (Algorithm 2). The algorithm works by
doing a depth-first traversal down the TPR*-tree with an
initial list of queries. The tree traversal only follows down
children entries if at least one of the queries in the query
list intersects with the children node. Therefore, the pruning
ability of the TPR*-tree is maintained. As we traverse down
the tree, the query list QL is trimmed down by using QL′

which only stores the queries that intersect the current node
N . We next prove that Algorithm 2 is correct.

THEOREM 4.1 (Algorithm 2 is correct). Algorithm 2
returns for each of the range queries in the query list QL,
the complete set of intersecting valid (non-deleted) objects.

Proof. Every node that intersects at least one of the list of
range queries is traversed. This can be seen from Line 16.
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For every leaf node traversed, all of its entries (objects),
which intersect at least one of the range queries which
have not been deleted, are inserted into the result set of the
corresponding query. This can be seen from Lines 9 to 13.
Therefore, for each of the range queries in the query list QL,
the complete set of intersecting valid (non-deleted) objects
are returned.

We next prove that Algorithm 2 performs shared query
execution according to Definition 3.2:

THEOREM 4.2 (Algorithm 2 conforms to SQF ).
Algorithm 2 reorders the index node reference stream of the
batch of queries to conform to the definition of the output of
the shared query execution function (SQF ).

Proof. We need to prove two facts. First, Algorithm 2
accesses the same set of nodes as arrival order processing.
Second, the sequence of node accesses by Algorithm 2
has the same property as the output of SQF , namely all
references to the same page (in this case index nodes) are
accessed consecutively. The first fact is true since Line 16
ensures that the traversal only loads nodes that intersect with
at least one query in QL′. Therefore, a node that does not
intersect any query is never loaded. The second fact is true
since Algorithm 2 does a single pruned depth first traversal
which never revisits a node that has already been visited.

By combining Theorem 4.2 and 3.1, we can conclude
Algorithm 2 achieves the minimum possible miss rate given
a RAM buffer of size one page.

It is important to note that Algorithm 2 trades extra
computation costs for reduced temporary memory usage.
This is because it uses a none pruned QL in Line 8 in each
pass of the while loop. Therefore, we need to look through
the entire QL every time we create QL′. The benefit of
this approach is that we do not need to keep a temporary
pruned query list for each node traversed but not yet finished
processing. These temporary query lists can occupy a lot of
memory if the query batch size and tree size are both large.

4.2. Shared k nearest neighbour query execution

Our shared k nearest neighbour (kNN) query execution
(Algorithm 3) works by doing a shared depth-first traversal
down the TPR*-tree. The tree traversal works the same
as the non-shared execution kNN query traversal algorithm
of the TPR*-tree, except we simultaneously perform the
traversal for the entire batch queries at the same time. We
keep track of the traversal meta-data for each query in the
batch in the SLEq list and the result set data structure RSq .
The algorithm, like the non-shared execution kNN query
traversal algorithm, traverses down to the entry at the top
of the SLEq list first (Line 7). This corresponds to the entry
which has the minimum distance to the query point. We do
not care which of the SLEq lists is used first to drive the
traversal because we know each entry at the top of every
SLEq must be traversed sooner or later.

When we traverse down an entry, we update the meta-
data for all queries. If the node pointed to by the entry is a

Algorithm 3: Shared kNN Query Execution(QL, DL)
Input: kNN query list QL, deletion list DL
Output: set of results RSq⟨rs,maxdist⟩ for each query

q ∈ QL, where rs is the set of kNN objects to
q and their associated distance to q and
maxdist is the maximum distance of all
objects in rs

1 // let SLEq⟨entry, dist⟩ be a list of node entries sorted
by distance (dist) associated with a kNN query q

2 initialize the SLEq for each query q ∈ QL to contain
the root entry

3 initialize RSkNN to empty
4 // let ⟨le, distq→le⟩ be the current node entry (le) and

the distance from q to le (distq→le)
5 while QL is not empty do
6 for each query q ∈ QL do
7 ⟨le, distq→le⟩ ← remove the last entry from

SLEq

8 if |RSq.rs| < q.k || distq→le < RSq.maxdist

then
9 for each query q′ ∈ QL\{q} do

10 remove le from SLE′
q′

11 exit the for loop (Line 6)

12 else
13 remove q from QL // q is completed

14 if QL is empty then
15 return set of all results

16 load the node N pointed by le
17 if N is a leaf node then
18 invoke Shared kNN Search Leaf Execution

(N , QL, RSkNN , DL) (Algorithm 4)

19 else
20 // N is a non-leaf node
21 for each query q ∈ QL do
22 for each entry e ∈ N do
23 if |RSq.rs| < q.k || distq→e <

RSq.maxdist then
24 insert ⟨e, distq→e⟩ into SLEq

leaf node, then we update the current kNN result set (RSq)
for any query q which contains at least one object in RSq

which could potentially be further from q than the objects
in the currently considered leaf node (Line 18). If the node
is a non-leaf node, then we insert each of its children which
could potentially contain an entry that contains one or more
objects belonging to its kNN into its SLEq list (Lines 21 -
23). We next prove that Algorithm 3 is correct.

THEOREM 4.3 (Algorithm 3 is correct). Algorithm 3
returns for each kNN query in the query list QL, the set of
k valid (non-deleted) objects which have closest distance to
the query.

, Vol. ??, No. ??, ????



10 T. NGUYEN, Z. HE, Y.-P. P. CHEN

Algorithm 4: Shared kNN Search Leaf Execution(N ,
QL, RSkNN , DL)
Input: leaf node N , kNN query list QL, kNN result set

RSkNN , deletion list DL
1 initialize an empty query list QL′

2 for each query q ∈ QL do
3 if |RSq.rs| < q.k || distq→N < RSq.maxdist then
4 insert q into QL′

5 for each query q ∈ QL′ do
6 for each entry e ∈ N do
7 if querying RAM-based tree or e /∈ DL then
8 if |RSq.rs| < q.k then
9 insert ⟨e, distq→e⟩ into RSq.rs

10 if distq→e > RSq.maxdist then
11 RSq.maxdist← distq→e

12 else
13 if distq→e < RSq.maxdist then
14 replace ⟨e′, RSq.maxdist⟩ ∈

RSq.RS by ⟨e, distq→e⟩

Proof. Algorithm 3 performs a top down traversal visiting
all nodes containing the k nearest objects. Every branch of
the tree is traversed except for branches which is pruned by
the pruning rule. The pruning rule avoids traversing those
nodes whose distance from every query q ∈ QL is greater
than the current maximum distance of the current k nearest
objects of the corresponding query or the query has less than
k nearest objects found so far. If a node satisfies the pruning
rule it can not contain any of the k nearest objects for any
query. This is because it means all the space that the pruned
node covers are further than the maximum distance of the k
nearest objects founds so far for every query. Lines 6 - 13
and 21 - 24 of Algorithm 3 and Lines 2 - 4 of Algorithm
4 show the application of the pruning rule during the top
down traversal of the tree. For every leaf node traversed
Lines 5 - 14 of Algorithm 4 updates the current k nearest
objects of every query by doing a linear scan through all
the objects of the traversed leaf node and comparing the
distance of each scanned object to the k nearest objects of
every query. Therefore, for each kNN query in the query list
QL, the complete set of k nearest objects is returned.

We next prove that Algorithm 3 performs shared query
execution according to Definition 3.2:

THEOREM 4.4 (Algorithm 3 conforms to SQF ).
Algorithm 3 reorders the index node reference stream of the
batch of queries to conform to the definition of the output of
the shared query execution function (SQF ).

Proof. We need to prove two facts. First, Algorithm 3
accesses the same set of nodes as arrival order processing.
Second, the sequence of node accessed by Algorithm 3
has the same property as the output of SQF , namely all

references to the same page (in this case index nodes) are
accessed consecutively. The first fact is true since it always
traverses down the nodes at the top of the SLEq lists first
(Line 7). This is the same as the traversal pattern of arrival
order processing. The second fact is true since Algorithm
3 does a single pruned depth-first traversal which never
revisits a node that has already been visited, since it updates
the meta-data for all the queries as soon as an entry is
visited.

By combining Theorem 4.4 and 3.1, we can conclude
Algorithm 3 achieves the minimum possible miss rate given
a RAM buffer of size one page.

4.3. Shared deletion execution

Algorithm 5: Shared Deletion Execution(DL)
Input: object deletion list DL

1 initialize an empty reinsertion list Lreinsert

2 load a root node N
3 invoke Shared Node Deletion Execution(N , DL,
Lreinsert)

4 for each entry e in the Lreinsert do
5 invoke Insert(e) /* same as TPR*-tree’s insertion

algorithm */

In this section, we describe our algorithm for shared
deletion execution (Algorithm 5). The algorithm first deletes
all objects in the object deletion list DL, using shared
deletion execution (see Algorithm 6). During the shared
deletion execution, some nodes underflow. The children
of these nodes are placed in the list Lreinsert, which are
then reinserted into the disk-based TPR*-tree in Line 5.
These objects are inserted using proximity ordered insertion
since Algorithm 6 places the nodes that need reinsertion in
the depth-first traversal order of the disk-based TPR*-tree.
Again, we use proximity ordered insertion instead of shared
insertion execution in order to keep the tree more optimized
(see the example in Section 4.4).

Algorithm 6 shows the shared deletion algorithm used
to delete the objects in the deletion list DL from the
disk-based TPR*-tree. The algorithm works by doing a
depth-first traversal of the tree, using shared execution.
During the execution of this algorithm, we use the most
recently used buffer replacement policy which resembles the
replacement strategy of a stack. This makes sense because
after visiting children nodes, the parent node sometimes
needs to be accessed again to tighten the MBR of the child
node. The algorithm performs a shared traversal of the tree,
thereby reducing the high read I/O costs of performing many
individual deletions. It only traverses down paths which
intersect at least one object in the deletion list DL (Lines
11 - 14), thereby using the tree to prune the traversal. The
algorithm also places the children of underflow non-leaf
nodes (Line 25) and objects of underflow leaf nodes (Line
4) into the reinsertion list Lreinsert. These objects are later
reinserted into the disk-based TPR*-tree.
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Algorithm 6: Shared Node Deletion Execution(N , DL,
Lreinsert)
Input: node N , object deletion list DL, reinsert list

Lreinsert

1 if N is leaf node then
2 remove from both N and DL all the objects which

are in both containers
3 if N underflows then
4 copy all remaining entries of N to Lreinsert

5 mark N as an obsolete node, to be deleted

6 else
7 // N is a non leaf node
8 initialize an empty list CLdeleted which holds array

index to deleted children entries
9 for each entry e in N do

10 initialize an empty current object deletion list
DL′

11 insert all objects from DL which intersect with
N into DL′

12 if DL′ is not empty then
13 load a child node N ′ pointed by e
14 invoke Shared Node Deletion Execution

(N ′, DL′, Lreinsert)
15 if N’ marked as an obsolete node then
16 insert index of e into CLdeleted

17 else
18 tighten MBR of e according to

TPR*-tree heuristics

19 remove all objects from DL which is no
longer in DL′ after the recursive call

20 if DL is empty then
21 // terminate search because all objects

have been deleted
22 exit the for loop (Line 9)

23 remove all entries in CLdeleted from N
24 if N underflows then
25 copy all remaining entries of N into Lreinsert

26 mark N as an obsolete node, to be deleted

The shared deletion algorithm cannot reorder the
reference stream to conform to the output of the SQF and
hence get minimum miss rate with a buffer size of 1 page.
This is because it needs to tighten the MBR of the parent
node after traversing down to the child. However, given
a buffer size equal to the height of the tree, we can avoid
loading any page more than once. This is proved in the
following theorem.

THEOREM 4.5 (Shared Deletion Execution). Given a
buffer with size equal to the height of the index tree Mh

which is evicted using the most recently used replacement
policy (like a stack), Algorithm 6 never loads a page (tree
node) more than once.

Proof. The maximum depth of the recursion of Algorithm
6 is Mh. This is because Line 14 is the only place the
function recursively calls itself and it uses N ′ as its argument
which is a child of the current non-leaf node N . Lines 16
and 18 are the only places a previously loaded node (page)
are reused. Both of these references are to entries of the
current node N (Line 12) whose child was just traversed
in the recursive call on Line 14. Once we come out of a
recursion, we never reference a node that was just recursed
down to. Therefore, as long as the buffer can fit Mh pages,
we can safely evict the most recently accessed page without
ever needing it again.

4.4. Proximity ordered insertion
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FIGURE 5. Example of how shared execution insertion can cause
more MBR overlap than individual insertion

In this section, we describe our simple proximity ordered
insertion algorithm and use an example to show why shared
insertion execution would lead to a less optimized tree
compared to individual insertion.

Proximity ordered insertion improves cache locality
because objects that are close to each other often share the
same or similar traversal paths. Therefore, when nearby
objects are inserted in succession, there is a high probability
of cache hits. Our proximity ordered insertion works as
follows. We first traverse the RAM-based TPR*-tree in
depth-first order and insert the objects encountered into an
insertion list in traversal order. The order of the objects in
the insertion list has proximity order since the nodes of the
TPR*-tree groups objects in proximity order. This method is
faster than using methods such as the Peano curve or Hilbert
curve, since the TPR*-tree has already laid out the objects
in proximity order for us. We then insert the objects in that
order into the disk-based TPR*-tree.

Figure 5 shows an example that demonstrates why shared
insertion execution can create a less optimized tree (more
MBR overlap) compared to individual insertion. Figure 5(a)
shows the set of objects O1, O2, O3 and O4 in the tree and
the two objects O5 and O6 that need to be inserted. Figure
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Parameter Setting
Space domain 100,000x100,000m2

Query type range query, kNN query
Data size (objects) 100K, ..., 1M
Maximum object speed 10m/ts, ..., 100m/ts
Maximum update interval 120ts
Update frequency 1, ..., 10
Range query side length (m) 2,000, 10,000, ..., 20,000
Number of neighbours, k 100, ..., 1000
Query batch size 1, 5, 10, 25, 50, 100
Query predictive time 60ts
Time duration 240ts, 600ts
Buffer size (pages) 50, 4, 8, 16, 32, ..., 256
Disk page size 4KB
Update/query ratio 1:100

TABLE 1. Parameters and Their Settings. Note ts is an
abbreviation for time stamp.

5(b) shows the resultant tree after object O5 and O6 have
been inserted individually. Assume the order of insertion
is O5 and O6. O5 will be inserted into leaf node N1 since
this results in the least amount of node expansion. Next,
when O6 is inserted, it can be placed directly into N1 with no
further need for node expansion. The final result is that the
two nodes N1 and N2 do not overlap. In contrast, consider
O5 and O6 are inserted using shared insertion execution. In
this case, O5 and O6 may be inserted into different nodes,
as shown in Figure 5(c). The reason O6 is inserted into N2

instead of the more optimal N1 is that in shared insertion
execution, the search for the best node to insert into would
be done together for all the nodes at the same time. In such a
case, the only computationally feasible way to determine the
best node each object should be inserted into is to consider
the insertions independently, assuming no other objects have
been inserted yet. In that case, inserting O6 into N2 will
be considered better than N1 since it results in less node
expansion, assuming O5 has not yet been inserted.

5. EXPERIMENTAL SETUP

In this section, we first describe the benchmark used in our
experiments in Section 5.1. Next, in Section 5.2, the rival
algorithms used in our experimental study are described.
Section 5.3 describes the metrics we used to measure the
algorithms. Finally, in Section 5.4, we describe the hardware
used to test the algorithms.

5.1. Benchmark setup

The experiments were conducted using the benchmark
defined in Chen et al. [27] for evaluating moving object
indexes. The data sets used in the experiments was
the uniform data set generated by the benchmark’s data
generator which was downloaded from [28].

The parameters used in the experiments are summarized
in table 1, where values in bold denote the default values
used. For more details on the benchmark settings, please
refer to [27].

5.2. Algorithm setup

We compare our SeTPR*-tree against three rival state-of-
the-art spatiotemporal indexes: the TPR*-tree, the Bx-tree
and the RUM*-tree (a memo-based update approach applied
to the TPR*-tree). We used the source code for the TPR*-
tree, the Bx-tree and the RUM*-tree provided by Chen
et al. from [28]. We modified the TPR*-tree code to
make the SeTPR*-tree. All code was implemented in C++
under Microsoft Visual C++ 2008 running on Windows XP
Professional SP3. The algorithms compared are described
as follows:

• SeTPR*-tree. The SeTPR*-tree was built on top of
the TPR*-tree using the shared execution techniques
described in Section 4. The RAM-based TPR*-tree has
a node size of 512 bytes and the disk-based TPR*-tree
has a node size 4KB (1 page).

• TPR*-tree. The TPR*-tree proposed by Tao et al.
[2] is optimized for the range query with default size
10,000x10,000m2.

• Bx-tree. The Bx-tree proposed by Jensen et al. [4]
using the Hilbert curve with the grid order λ equals 8
for space partitioning. The Bx-tree has two partitions.
The velocity histogram contains 1,000 x 1,000 cells.

• RUM*-tree. The RUM-tree [8] was modified to work
on top of the TPR*-tree instead of the traditional R-
tree. This is the same approach as that used in Chen
et al. [27]. A total of 10 tokens was used where each
token is passed to another leaf node after every 1,000
updates.

In addition to the above algorithms, we also compared the
TPR-tree but found its performance was very similar to the
TPR*-tree, so therefore we did not report its results.

5.3. Measurement metrics

Our experiments measure the following main metrics:
average I/O per query; average I/O per update; average
execution time per query; and average execution time per
update. In Section 6.10, we also measure query performance
in terms of throughput and response time. The execution
time, throughput and response time results include both
CPU and I/O time. Our experiments were conducted on the
Windows XP operating system (OS), which automatically
caches all I/O requests. This effectively invalidates our own
RAM buffer since a miss on our buffer may become an OS
cache hit. Therefore, we disabled the operating system’s
caching functionality. If we had used the OS caching
functionality, all objects would be cached since we cannot
make the RAM buffer smaller than the index size. In this
case, all the algorithms would just populate the cache and
then never load anything ever again. Therefore, we bypassed
the OS buffer and used our own controlled buffer. All
algorithms were allocated the same RAM buffer size. Our
algorithms used the buffer management technique described
in Section 4. The other algorithms used a LRU buffer. This
setup is different from the benchmark of Chen et al. [27],
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where the CPU time is reported instead of execution time.
The reason is that we would like to study the efficiency of
buffering on total execution time, including both CPU and
I/O costs.

5.4. Hardware setup

All experiments were conducted on a PC powered by Intel
Core i7 CPU 2.8GHz with 4GB DDR3 main memory, and
using a 64GB G.Skill Solid State Drive FM-25S2S-64GB
(SSD). By default for use the SSD rather than a traditional
magnetic hard disks because SSDs are very efficient for
random reads and writes [29] and the price of SSDs has
come down significantly. However, we have also included
an experiment (shown in Section 6.11) using a magnetic hard
disk with the same default settings to evaluate all algorithms.

6. EXPERIMENTAL RESULTS

In this section, we report the results of experiments,
illustrating the performance of our SeTPR*-tree against the
TPR*-tree, the Bx-tree and the RUM*-tree.

6.1. Effect of range query batch size

In the first set of the experiments, we varied the query
batch size used by our SeTPR*-tree from 1 to 100 queries.
Figures 6(a) and (b) show that the query performance of
the SeTPR*-tree improves significantly as the number of
queries per batch increases. This is because as the batch size
increases, the SeTPR*-tree is more effective at increasing
the temporal locality of the page reference stream of the
queries. All other indexes perform the same, regardless of
the batch size because they execute queries individually and
therefore cannot take advantage of large batch sizes. The
SeTPR*-tree outperforms all other indexes at a batch size of
5 for query I/O and it outperforms the rest at a batch size
of 25 for execution time. This indicates the SeTPR*-tree
needs a larger batch size to outperform the other indexes
for execution time compared to query I/O. This is due to
a combination of two additional computational costs that
the SeTPR*-tree incurs. First, it needs to query both the
RAM-based TPR*-tree and disk-based TPR*-tree, whereas
the other indexes do not need to query a RAM-based tree.
Second, to save temporary memory space, it does not fully
utilize the pruning capability of the TPR*-tree to reduce
computation costs, as explained at the end of Section 4.1.
We observed that at batch size of 100, the SeTPR*-tree
outperforms its nearest competitor, the TPR*-tree, by a
factor of 5.6 for query I/O and 3.7 for query execution time.

The seemingly strange result that the SeTPR*-tree’s query
execution time performance is worse at a batch size of
5 compared to 1 can be explained as follows. When
performing shared query execution, there is tradeoff between
higher CPU cost versus lower I/O costs. At batch size
1, there is no CPU overhead associated with shared query
execution. The lower number of I/O of batch size 5
compared to batch size 1 is not enough to offset the higher

CPU overheads. When the batch size is greater than 5, the
I/O saving begins to outweigh the CPU overheads.

The SeTPR*-tree achieves its good performance by
increasing temporal locality of page references. The effect
of temporal locality on performance is largely dependent on
RAM buffer size. Therefore, in Figure 7, we vary both query
batch size and RAM buffer size. In this experiment, we
only compared the SeTPR*-tree with the TPR*-tree. The
reason is that the TPR*-tree was found to give the best query
performance compared to other competing indexes tested
and we did not want to clutter the graph with too many
curves. Section 6.7 shows the performance of the other
competing indexes with varying RAM buffer size.

The results in Figure 7 show that the performance of
the SeTPR*-tree does not change with RAM buffer size
for a given query batch size. The reason can be explained
by Theorem 4.2 which effectively states our shared query
execution algorithm only needs one RAM buffer page to
achieve the same number of buffer misses as any sized RAM
buffer. When the RAM buffer size is large, the SeTPR*-
tree needs to process larger query batches before it can
outperform the TPR*-tree. This is because a large RAM
buffer size is more forgiving of the low temporal locality of
the TPR*-tree.

6.2. Benefits of shared deletion execution and proximity
ordered insertion

In this experiment, we explore the individual performance
advantages of using shared deletion execution (SD) and
proximity ordered insertion (PI). We wanted to further
explore if performing entire update operations (deletion
followed by insertion of same object) together is better than
deleting all objects followed by inserting all objects. So
accordingly, we have tested the following insertion deletion
combination approaches:

TPR*-tree approach: this is the traditional TPR*-tree
approach which performs deletions and insertions in
pairs in arrival ordered.

SeTPR*-tree approach: this is our approach which uses
both shared deletion execution and proximity ordered
insertion techniques to perform updates. The SeTPR*-
tree first applies shared deletion execution to delete all
objects in a batch, then inserts all objects in proximity
order.

Naive 1 ⟨ID −AI⟩ approach: this approach performs up-
dates by separating deletions and insertions. It deletes
all objects individually in arrival order (ID) first and
then inserts all objects individually in arrival order (AI).

Naive 2 ⟨ID − PI⟩ approach: this approach also per-
forms updates by separating deletions and insertions.
It still uses normal individual deletions in arrival order
(ID), but applies the proximity ordered insertion tech-
nique (PI).

Naive 3 ⟨SD −AI⟩ approach: this is the opposite of the
Naive 2 ⟨ID−PI⟩ approach, namely it applies shared
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deletion execution (SD) followed by arrival ordered
(AI) insertion.

Naive 4 ⟨POU⟩ approach: this approach performs dele-
tions and insertions in pairs, but performs these updates
in proximity order (POU).

The results of this experiment are shown in Figure
8. The results show that the SeTPR*-tree, which uses
shared deletion execution and proximity ordered insertion,
outperforms all the other approaches. This is because both
techniques together achieve the highest temporal locality
of page references. It is interesting to note that SD
by itself without PI (Naive 3 ⟨SD − AI⟩ approach)
already significantly outperforms the normal way updates
are handled by the TPR*-tree. However, proximity ordered
insertion by itself without shared deletion (Naive 2 ⟨ID −
PI⟩ approach) performs worse than Naive 4 ⟨POU⟩
approach which performing updates according to their
proximity ordered insertions. This indicates shared deletion
execution has a larger positive impact on performance than
proximity ordered insertion. However, when used together,
they both contribute to improved performance. Finally, it
is interesting to note that proximity ordered updates (Naive
4 ⟨POU⟩ approach) perform almost as well as using both
shared deletion execution and proximity ordered insertion

(SeTPR*-tree approach) when buffer size is large.

6.3. Effect of data size

In this experiment, we examine the update and query
performance of each index while varying the number of
objects from 100K to 1M. As the data size grows, Figure 9
shows that the query performance decreases approximately
linearly across all indexes. The results show that the
SeTPR*-tree has the best query performance. This is
because of the shared query execution used by the SeTPR*-
tree. We observed that the Bx-tree has the worst query
performance. This is due to its structure which requires it
to expand the size of the queried region. The RUM*-tree’s
query performance is worse than the TPR*-tree due to the
obsolete entries left in the tree. When the data set reaches
1M objects, the SeTPR*-tree is 2.2 times better than the Bx-
tree in terms of the average number of I/O per query.

The SeTPR*-tree consistently outperforms the other
indexes for update performance. Its update performance
approaches that of the Bx-tree and the RUM*-tree as the
number of objects approaches 1,000,000. The reason for
this is that the buffer size stays the same in this experiment.
Therefore, as the number of objects increases, our proximity
ordered insertion begins to thrash the buffer since the buffer
becomes too small to fit the working set. The TPR*-tree has
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FIGURE 9. Effect of data size

worst update performance since during object insertion and
deletion, it traverses multiple paths when there is overlap
MBRs. As the density of objects increases so does the
amount of MBR overlap.

6.4. Effect of time

Figure 10 shows the performance of the indexes as a function
of time. Overall, the performance of the SeTPR*-tree is
the least affected by time and also consistently offers the

best update and query performance. This is because shared
query execution is less sensitive to changes in workload.
The RUM*-tree has better update performance compared to
the Bx-tree and the TPR*-tree. The main reason is that the
RUM*-tree delays deletions and performs them in a batch
which is more efficient. However, due to delayed deletions,
the MBRs are tightened less frequently which explains its
poor query performance. The Bx-tree shows periodical
patterns for both update and query performance due to its
use of dual-tree structures. The Bx-tree has the most query
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FIGURE 10. Effect of time

execution time even though it produces less query I/O. This
is because reduced I/O costs of the Bx-tree are eroded by
its high CPU time for transforming a two-dimensional query
range to an enlarged one-dimensional interval.

6.5. Effect of maximum object speed

In this experiment, we study the effect of maximum object
speed on the update and query performance among all the
indexes by varying the maximum object speed from 10m/ts
to 100m/ts. The results in Figure 11 show that the query
performance of the SeTPR*-tree is much less sensitive to
object speed compared to the other indexes tested. The
reason for this is that the SeTPR*-tree’s use of shared
query execution is much less sensitive to MBR overlap
(as explained in Section 3.2.) MBR overlap increases as
speed increases. When the maximum object speed reaches
100m/ts, the SeTPR*-tree outperforms the TPR*-tree by a
factor of 1.9 for query I/O and a factor of 1.6 for query
execution time.

The SeTPR*-tree exhibits the lowest update costs
compared to all other indexes. The SeTPR*-tree has 2.8
times less update I/O and similarly for update execution time
than the best of the three indexes (RUM*-tree) for updates.
The SeTPR*-tree and the RUM*-tree are barely affected by
increasing object speed. The update cost of the TPR*-tree
increases rapidly with increasing speed since it needs to do a
lot of traversals of the R*-tree during update. Traversal costs

increase with increased speed since higher speed results in
more MBR overlap. The Bx-tree’s update performance is
not affected by increasing object speed as it does not take
into account the object velocities.

6.6. Effect of update frequency

In this experiment, the update frequency is varied from
1 to 10. This means that within a time interval of 120
time stamps, each object issues at least 1 to 10 updates
at random time instances. Figure 12 shows that all the
indexes have better update and query performance when
updates are more frequent. This is because all indexes re-
optimize the tree during updates. The SeTPR*-tree has the
best query performance and is by far the least sensitive to
update frequency. The query performance of the RUM*-
tree, the TPR*-tree and the Bx-tree improves rapidly with
more frequent updates. This is an important observation
since it means that the SeTPR*-tree is much more robust to
the frequency of updates compared to the other algorithms.
We observed that when the updates frequency is 1, the
SeTPR*-tree outperforms the TPR*-tree by a factor of 1.9
for query I/O and 1.6 for query execution time.

For update performance, the SeTPR*-tree also has the
smallest update costs and is again hardly affected by
update frequency. The results show that the SeTPR*-tree
outperforms the RUM*-tree (its nearest competitor) by a
factor of 2.8 for update I/O and 1.9 for update execution
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time. The Bx-tree has worse update performance but is also
largely unaffected by the update frequency. The TPR*-tree
and the RUM*-tree have the most improvement in update
costs with more frequent updates. These improvements are
mainly caused by more frequent MBR tightening, and thus,
the overlap among MBRs are less, which leads to better
update performance.

6.7. Effect of RAM buffer size

In this experiment, we varied the number of RAM buffer
pages from 4 to 256. The results in Figure 13 show
that the RAM buffer size has a significant effect on query
performance for all the indexes except for the SeTPR*-tree.
This is because the SeTPR*-tree index uses only one RAM
buffer page for querying. Therefore, its query performance
is not sensitive to RAM buffer size. This result is very
significant since it means that the query performance of
the SeTPR*-tree is much more robust to different RAM
buffer sizes compared to the other indexes. The results show
that the SeTPR*-tree outperforms its nearest competitor, the
TPR*-tree, by up to a factor of 2 for query I/O and a factor
of 1.6 for total execution time.

For update performance, overall the SeTPR*-tree signif-
icantly outperforms the other indexes. This is because the
shared deletion execution and proximity ordered insertion
use the RAM buffer much more efficiently. However, when
the RAM buffer size is only 4 pages, the SeTPR*-tree per-
forms slightly worse than the RUM*-tree and Bx-tree. This
is because the proximity ordered insertion and shared dele-
tion execution need slightly larger RAM buffers to work
at their maximum efficiency. The results show that the
SeTPR*-tree outperforms its nearest competitor, the RUM*-
tree, by up to a factor of 11.5 for update I/O and a factor of
2.3 for update execution time.

6.8. Effect of range query size

In this experiment, we vary the size of the square window
query from 2,000 x 2,000m2 to 20,000 x 20,000m2. Figure
14 shows that the query performance of all the indexes
degrades rapidly with an enlarged query window, except for
the SeTPR*-tree which is close to constant (up to 25 I/Os).
The reason is that a larger query window for the Bx-tree,
RUM*-tree and TPR*-tree results in more node accesses.
The reason the SeTPR*-tree is much less sensitive to query
window size is explained in Section 3, this being the cost of
shared query execution equals the number of distinct node
assesses. In all experiments, the disk-based TPR*-tree of
our SeTPR*-tree index contains less than 750 distinct nodes,
therefore for the default 25 queries executed in a batch, the
average I/O per query cannot be greater than 30. The results
show that the SeTPR*-tree outperforms the best tested index
optimized for query (TPR*-tree) by up to a factor 3 for I/O
and 2.5 for execution time.

6.9. Performance of k nearest neighbour queries

In this experiment, we examine the performance of the k
nearest neighbour query instead of the range query. We vary
the number of nearest neighbours from 100 to 1000. All
other parameters used are the same as for the range query,
namely the default parameters listed in Table 1. Figure 15
shows that for all indexes, I/O cost and query execution time
increases with increasing k. The reason is a larger k leads to
a larger effective search area.

The Bx-tree has the worst kNN query performance in both
query I/O and execution time. The reason is that the Bx-tree
processes a kNN query by using progressively larger range
queries. This tends to result in it searching over a larger area
than necessary.

The results show that the SeTPR*-tree outperforms all
other indexes in both query I/O and execution time. This
is because the shared execution results in higher temporal
locality of the reference stream. However, we note that the
margin by which SeTPR*-tree outperforms the TPR*-tree
and RUM*-tree is lower than for the range query. The reason
for this is the high density of objects in the query search
space results in the query being effectively small in size (i.e.
small search area).

6.10. Throughput and response time

In these experiments, we measure both the throughput and
response time for the range query. The throughput is defined
as the average number of queries that can be processed
within a second, whereas the response time is defined as
the time it takes for a query to be answered from the
time it is issued. As noted in the introduction, there is a
tradeoff between throughput and response time. In these
experiments, we will explore this tradeoff within the context
of our algorithms.

The results in Figure 16(a) show the effect on throughput
as batch size increases. The results show that as the batch
size increases, throughout of the SeTPR*-tree increases
significantly. The reason is that with bigger batch sizes,
the average query execution time to process one query is
significantly reduced. We observed that when the SeTPR*-
tree processes a batch of 100 queries, it has 3.7 times higher
throughout compared to the best other index (TPR*-tree).

Figure 16(b) shows the response time results. The
response time results shown are averages from performing
100 queries. This graph shows the effect of varying both
the query arrival interval and batch size. The query arrival
interval is varied on the x-axis and the results of different
batch sizes are shown for the SeTPR*-tree. The query arrival
interval is important in determining the response time since
it determines how much free time is available between query
arrivals for the server to process the queries. A smaller
arrival interval means there will be a high response time
since there is less time between queries for query processing.

In this experiment, we vary query arrival interval from 0,
2, 4, ..., 20, where a value of 0 means that all 100 queries
arrive at the same time, whereas a value of 2 means that
one query arrives every 2 ms. A newly arriving query needs
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FIGURE 13. Effect of RAM buffer size
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FIGURE 14. Effect of range query size

to be placed in a queue if the previous query has not been
completely processed.

The results in Figure 16(b) show that the response time
of the SeTPR*-tree, in general, increases with increasing
query arrival time. The reason for this is that in these
experiments we force SeTPR*-tree to wait for a batch of
queries of a specified size to arrive first before processing the
queries. Hence, there is a longer wait if the arrival interval is
large. We note this is effectively artificially handicapping
our system, but in real life, we would process whatever
currently resides in the query queue straight away. So our
system would work better in a situation where queries are

arriving too fast for the system to handle.

The results show that the SeTPR*-tree shows lower
response time for smaller batch sizes when the query arrival
interval is greater than zero. This can be explained by the
fact that it needs to wait a shorter time period for smaller
batch sizes before it can start processing. When the query
arrival interval is zero, larger batch sizes result in smaller
response time. This is because when all the queries arrive at
once, processing the queries in smaller batches results in the
later processed queries to have a very high response time,
thus reducing the average response time.
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FIGURE 16. Throughput and response time

6.11. Vary data size using traditional hard disk

In this experiment, we examine the update and query
execution time performance of the indexes under a
traditional magnetic hard disk instead of SDDs. We use the
same data sets and default settings as in Section 6.3 (Effect
of data size). The hard disk used for this experiment is
the Seagate Barracuda ST31000528AS 1TB 7200 RPM. The
results are shown in Figure 17. The results show the same
performance trends among the different algorithms as for the
SSD results when the data set size is varied (see Section 6.3).
However, the query and update execution time of all indexes
using the traditional hard disk is up to the factor of 8 worse
than the performance when using the SSD. This is because
SSDs are much faster than magnetic hard disks in terms of
both random access and seek time. The results show the
SeTPR*-tree still consistently outperforms all other indexes
in both query and update performance.

7. CONCLUSION

This paper is the first to comprehensively study the impact
of improving temporal locality for the performance of
spatiotemporal indexes. Specifically, we proposed the
SeTPR*-tree which uses the following three techniques
to improve the temporal locality of the page reference
stream: shared query execution; shared deletion execution;
and proximity ordered insertion. Integrating these three
techniques with dynamic buffer allocation has resulted in
a very effective use of the limited-sized RAM buffer. The
consequence is significant I/O performance improvement
over existing algorithms with small RAM buffer sizes.

In our experiments, we showed that the SeTPR*-tree only
needs a query batch size of 5 to outperform the best tested
index (TPR*-tree) for query I/O performance. This means
we only need relatively small query batch sizes to make
shared query execution an effective technique for reducing
query I/O. When we tested our shared deletion execution and
proximity ordered insertion in isolation, the results showed
shared deletion execution was responsible for the majority
of the improvement in update I/O performance. When we
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FIGURE 17. Vary data size using a traditional hard disk

varied the data size, we found the SeTPR*-tree consistently
outperformed the other indexes for the entire range of data
sizes tested. The results for varying maximum object speed
showed that the SeTPR*-tree was a lot less sensitive to
MBR overlap compared to other indexes. Results showed
that unlike the other indexes, the SeTPR*-tree did not need
frequent updates to improve query performance.

In future work, we would like to explore techniques
for dynamically adjusting the index to favor processing
individual queries versus batches of queries based on query
workload characteristics. We would also like to explore our
temporal locality enhancing techniques on the B+-tree based
spatiotemporal indexes.
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