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Abstract
Purpose Lung cancer has the highest death rate amongst
all cancers in the US. In this work we focus on improv-
ing the ability of computer-aided diagnosis (CAD) sys-
tems to predict the malignancy of nodules from cropped
CT images of lung nodules.
Methods We evaluate the effectiveness of very deep
convolutional neural networks at the task of expert-
level lung nodule malignancy classification. Using the
state-of-the-art ResNet architecture as our basis, we ex-
plore the effect of curriculum learning, transfer learning,
and varying network depth on the accuracy of malig-
nancy classification.
Results Due to a lack of public datasets with stan-
dardized problem definitions and train/test splits, stud-
ies in this area tend to not compare directly against
other existing work. This makes it hard to know the
relative improvement of the new solution. In contrast,
we directly compare our system against two state-of-
the-art deep learning systems for nodule classification
on the LIDC/IDRI dataset using the same experimen-
tal setup and data set. The results show that our sys-
tem achieves the highest performance in terms of all
metrics measured including sensitivity, specificity, pre-
cision, AUROC, and accuracy.
Conclusions The proposed method of combining deep
residual learning, curriculum learning, and transfer learn-
ing translates to high nodule classification accuracy.
This reveals a promising new direction for effective pul-
monary nodule CAD systems that mirrors the success
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of recent deep learning advances in other image-based
application domains.
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1 Introduction

Lung cancer has the highest death rate amongst all can-
cers for both men and women in the US [1], and is one
of the leading causes of human mortality worldwide [8].
Computer-aided diagnosis (CAD) systems have the po-
tential to offer a significant boost to the feasibility of
computed tomography (CT) based screening programs
by helping radiologists make correct classification de-
cisions and reducing costs incurred by manually read-
ing scans. In this paper we address the specific task of
pulmonary nodule classification according to subjective
human expert consensus as a means of improving the
capabilities of CAD systems for lung cancer screening
support.

This paper focuses on classifying lung nodules di-
rectly from cropped CT images without segmentation
or hand-crafted features. In contrast, a common ap-
proach taken by existing automatic nodule classifica-
tion systems is to 1) segment the nodule, 2) extract
hand-crafted morphological and/or statistical features,
and 3) classify the nodule based on these features. The
exact details of this procedure varies somewhat.

There are many existing works that extract hand
engineered features from segmented images [15,29,13]
or non segmented images [16] and then feed them into
some kind of classifier like support vector machines [16],
decision trees [29], fully connected neural networks [13],
or a classifier ensemble [15]. In contrast, Kumar et al.
[12] proposed using a fully connected autoencoder to
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learn features automatically from nodule images. Un-
fortunately, the results were not favorable in light of
many of the other related works that use hand-crafted
features.

Another approach to nodule classification is the use
of convolutional neural networks (CNNs) [14]. CNNs
have state-of-the-art results in a wide variety of ma-
chine learning tasks such as estimating human poses
[27], processing natural language [10], and playing Go
[21]. A recent trend in CNN-related research has been to
increase the depth of models (the number of weighted
layers), with the increased depth yielding more accu-
rate results in such models as VGG [22] and ResNet [5].
Deeper neural networks are thought to have increased
representational power [25], which we explore in the
context of nodule classification.

A significant advantage of using CNNs is that they
remove the need for any kind of hand-crafted feature
engineering from images, and instead learn discrimina-
tive features from the data directly. A few attempts
have been made to classify pulmonary nodules using
shallow CNN architectures [20,7,3,19]. Shen et al. [20]
were able to successfully classify malignant lung nod-
ules using a 2-layer convolutional neural network on
multiple crops of the nodule at different scales. Hua et
al. [7] also use a shallow CNN with only 2 convolutional
layers to perform classification, but include 2 fully con-
nected layers before the network output. Ciompi et al.
[3] perform classification of peri-fissural nodules with
an existing pretrained CNN called OverFeat [18] (with
8 weighted layers). Multiple views of the nodule (axial,
coronal and sagittal) are evaluated with OverFeat, and
the posterior distributions combined to produce a final
prediction. Setio et al. [19] perform classification using
9 separate CNNs (each with 3 convolutional layers) on
different nodule views (axial, coronal, sagittal, and 6
diagonal planes) to determine nodule presence. The fi-
nal classification result is obtained by fusing the CNN
outputs with fully connected layers.

There are a couple of major difficulties associated
with using CNNs to perform lung nodule classification.
Firstly, the publicly available datasets for the task are
small (hundreds or thousands of examples) when com-
pared to other image classification datasets (up to mil-
lions of examples). Secondly, the differences between
examples in the nodule classification task are subtle,
whereas most existing CNN classifiers deal with classes
that are much more visually distinct (eg. dogs and cars).
These challenges lead us to three research questions ex-
plored in this paper:

1) Does increasing the depth of neural networks help
with the task of lung nodule classification? In most con-

ventional object recognition tasks there exists a well-
defined hierarchy of concepts (eg. edge→ wheel→ car)
which can intuitively benefit from network depth. It is
not clear whether CT scans contain a hierarchy that is
sufficiently rich to benefit from very deep networks. To
explore this idea, our architecture is much deeper than
existing lung nodule classification systems using CNNs
[20,7,3,19]. This increased depth is made possible by
recent advancements such as batch normalization [9]
and residual learning with ResNets [5].

2) How can we leverage transfer learning to achieve
higher accuracy? As humans we bring a wealth of prior
knowledge and experience to every new task that we en-
counter. In contrast, neural networks are often expected
to learn tasks entirely from scratch, based on a com-
pletely random initialization of weights. One approach
to bridging this initial knowledge gap is transfer learn-
ing, in which the network is pretrained on a completely
different task. The weights learned during pretraining
then become a starting point for learning the desired
task. We experiment with this idea by pretraining on
CIFAR-10, a well-known and large image classification
dataset, before training on the smaller nodule dataset.

3) Can accuracy be improved by using a training cur-
riculum? The work of Bengio et al. [2] suggests that
gradually increasing the difficulty of examples as train-
ing progresses can be beneficial. In this paper we de-
scribe a way to quantify the difficulty of an example for
the task of nodule classification, and use this definition
to create a training curriculum. Our results show that
this approach improved the accuracy of nodule classifi-
cation.

In addition to the above research questions, we also
observe that there is currently a lack of comparison be-
tween different neural network architectures for lung
CT analysis. Existing papers that use CNNs for ana-
lyzing lung nodules [7,20,3,19] do not compare their
results against each other on the same dataset and ex-
perimental setup. It is important to address this omis-
sion due to significant variations in CNN architectures
and training strategies. Unless the algorithms are com-
pared under the same experimental conditions we can
not objectively conclude certain architectural choices
and training algorithms are better than others.

We present two main sets of results. Firstly, we re-
port on the positive influences that deeper networks,
transfer learning, and curriculum learning have on the
classification accuracy of our system. Secondly, we ob-
jectively compare our system against implementations
of existing models under the same training and test
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conditions: 1) a simple baseline fully connected neural
network, 2) a strong state-of-the-art rival convolutional
neural network [19], and 3) an OverFeat network [18]
which has proven performance in other image classifi-
cation tasks. The best variant of our system achieved
a classification accuracy of 89.90% on test examples
taken from the LIDC/IDRI dataset [23]. In contrast,
the best existing neural network architecture compared
against (a shallow convolutional neural network from
[19]) achieved an accuracy of 86.23%. In addition the
results show that our system achieves the highest per-
formance in terms of all metrics measured including,
sensitivity, specificity, precision, AUROC and accuracy.

2 Materials and methods

2.1 The dataset

Our experimental dataset was derived from the pub-
licly available LIDC/IDRI dataset [23]. LIDC contains
CT scans for 1,010 patients, with each patient assessed
by four radiologists to produce four sets of subjective
nodule readings. Readings for the same nodule were
grouped according to the Cornell LIDC nodule size re-
port [17]. We averaged the malignancy ratings provided
by at least three radiologists to produce a median rat-
ing from 1 to 5, which was treated as ground truth.
Binary malignancy labels were derived by treating any
example with malignancy rating above 3 as a positive
example. Nodules with borderline median malignancy
(rating = 3) were discarded.

We use the subjective LIDC malignancy ratings due
to the lack of large-scale, publicly available, objective
labels. However, should such a dataset become avail-
able, we anticipate that the difficulty of predicting ob-
jective labels would be similar since human experts tend
to use the features most indicative of malignancy to ar-
rive at their subjective ratings.

After preprocessing we were left with 831 examples
of nodules, 50.66% of which were positive examples.
The examples ranged in diameter from 3 mm to 42
mm according to nodule boundaries annotated by the
radiologists. The original CT slice images were com-
bined to form a three-dimensional volume of voxels from
which arbitrary two-dimensional planes could be sliced.
The voxel values were normalized using a fixed lin-
ear transformation, such that -1 and 1 correspond to
-2048 and 4096 in Hounsfield units respectively. This
normalization procedure preserves the significance of
the Hounsfield scale whilst providing the network with
a more easily digestible numeric range. Following the
lead of Ciompi et al. [3], three orientations of extracted
planes were considered: axial, sagittal and coronal. Each

two-dimensional plane covered a 45 mm × 45 mm area
centered on the nodule in question, and was represented
as a 64 pixel × 64 pixel greyscale image. Since the CT
scans did not have consistent spacing between pixels
and slices, resampling with trilinear filtering was per-
formed where necessary to keep scale of a voxel consis-
tent across examples. Figure 1 depicts several cropped
nodule CT images, which are representative of typical
inputs provided to the neural network. Note that nod-
ule segmentation (such as a contour around the nodule)
was not used as part of the input to the network.
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Figure 1 Examples of two benign and two malignant nodules
from the dataset. Each nodule volume was preprocessed to cre-
ate a coronal, sagittal, and axial planar view, as shown.

2.2 Deep residual networks

In this section we provide a more detailed description
of the deep residual network (ResNet) [5], as it is fun-
damental to our proposed solution. The main benefit
of using ResNets is the ability to train deep networks
with dozens of weighted layers. As the depth of a net-
work increases it becomes increasingly difficult for the
gradients to backpropagate from the loss function to the
various layers without either diminishing to zero or ex-
ploding. ResNets allow gradients to pass unattenuated
through layers by using an identity (skip) connection.
Figure 2 shows a basic residual network block with the
inclusion of the identity connection. The residual block
will learn the following function.

H(x) = F (x) + x (1)

The residual function F (x) is learnt by training the
weight layers using labeled data. The weight layers can
consist of any type of neural network layer including
convolutional or fully connected layers. The residual
block allows the forward pass through the network to
selectively skip over certain parts of the network by
setting F (x) equal to zero for those parts. This makes
it possible to build a really deep network consisting of
many different layers of feature extractors, each captur-
ing a different possible characteristic of the data. For
any given input instance, only the parts of the network
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Figure 2 A basic residual network block [5].

that are relevant to classifying that particular instance
are turned on.

2.3 Our model

We apply the basic principles of the residual network
(ResNet) to the problem of lung nodule classification.
However, our ResNet implementation has several dif-
ferences to the original. Firstly, it accepts a 64 pixel
× 64 pixel greyscale input, and the initial convolution
layer has been adjusted to accommodate this. Secondly,
the number of feature maps has been lowered through-
out the network, which allows us to fit the 3-column
network in GPU memory without sacrificing minibatch
size or network depth. Thirdly, the network isThirdly,
the ResNet is modified to be “fully convolutional” and
does not contain any fully connected layers. In general,
this reduces the number of learnable parameters and
increases translational invariance.

We tested a number of different model configura-
tions. Figure 3 shows a specific example of our model
with 3 columns (sequences of network layers extend-
ing horizontally from the input ). However, in general
n columns can be used. Each column is a modified in-
stance of ResNet, denoted fk(xk, θk), where xk is the
kth planar view of the nodule and θk denotes the col-
umn’s parameters. The final nodule malignancy predic-
tion, y, is obtained via a weighted sum of column out-
puts (Equation 2). ck is the learnt importance weighting
for column k. A sigmoid function is used to squash the
final output between 0 and 1, which will always be a
valid probability.

y = σ(
∑

k

ckfk(xk, θk)) (2)

One way to consider the arrangement of multiple
columns is as an ensemble of n models, where each
model operates on a different planar view of the nodule.

The main structural element used in our ResNet
implementation is the revised residual block proposed
by He et al. [6] as a follow-up to the original ResNet
paper (refer to the “zoomed-in” portion of Figure 3).

A residual block contains two stacked 3 × 3 convolu-
tional layers which learn to produce “residuals” that
are added to the block input. Each convolution is pre-
ceded by a preactivation which consists of spatial batch
normalization and rectified linear units (ReLUs).

2.3.1 Three-column configuration

Using three 2D planar views (axial, sagittal, and coro-
nal; Figure 4) instead of the full 3D volume allowed us
to significantly reduce the size of the input while still
retaining important features for accurate classification.
This corresponds to a three-column configuration of our
model. Let fc(xc, θc), fs(xs, θs), and fa(xa, θa) be the
columns for the coronal, sagittal, and axial planar views
respectively. This gives us Equation 3, which is an in-
stance of Equation 2.

y = σ(ccfc(xc, θc) + csfs(xs, θs) + cafa(xa, θa)) (3)

We found that cc, cs, and ca had similar values after
training, meaning that the three columns made similar
contributions to the result.

2.4 Deep learning techniques

In addition to residual learning, many other deep learn-
ing techniques were investigated in order to maximize
classification accuracy.

2.4.1 Batch normalization

Batch normalization [9] regularizes and hastens the train-
ing of neural networks. This is achieved by gathering
minibatch statistics during training to normalize each
layer’s input distribution. Equation 4 shows how nor-
malized values x̂(k) are calculated from d-dimensional
input x = (x(1)...x(d)) for a fully connected layer. Ap-
plying batch normalization to convolutional layers in-
volves a similar set of calculations.

x̂(k) = x(k) − E[x(k)]√
Var[x(k)]

(4)

Batch normalization has quickly been adopted by
the deep learning community as it makes training deep
networks easier and reduces the impact of selecting poor
initial weights. As an additional bonus, batch normal-
ization introduces a form of regularization due to the
noisy approximation of minibatch statistics. This helps
prevent the network from simply “memorizing” the la-
bels of training nodules, which would not generalize to
unseen examples. As is shown in Figure 3, batch nor-
malization is placed before the ReLU non-linearities in
the ResNet architecture.
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Figure 3 A configuration of our model using three ResNet-18 columns (drawn horizontally). The magnified inset shows how an
individual block is constructed.
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Figure 4 Coronal, sagittal, and axial planar views of a nodule.

2.4.2 Pretraining

Every neural network must be initially trained from
randomly initialized starting weights. Given a small
dataset it is often important to pretrain the model on
a larger dataset first in order to give the early convolu-
tional layers better initial values. This can significantly
improve the generalization ability of the model. We gen-
erated pretrained column parameters using the CIFAR-
10 dataset, which contains 60,000 images separated into
ten classes. After pretraining, the model was trained as
per usual on the nodule data, with the notable differ-
ence of parameters starting with values learned from
another task as opposed to purely random initializa-
tion. Our motivation for pretraining on CIFAR-10 is
that the amount of nodule data we have is small, and
often the features learned close to the input of neural
networks are linear edge-detecting filters that tend to
develop regardless of the specific task.

2.4.3 Curriculum learning

Curriculum learning [2] is a general term used to de-
scribe the technique of somehow increasing the diffi-
culty of training examples as the model learns. There is
an intuition here that, like humans, artificial neural net-
works will learn better by starting with easier problems.
For the nodule classification problem we define an easy
example to be one which is clearly malignant (median
rating = 5) or clearly benign (median rating = 1), and
an easy minibatch to be a minibatch containing only
easy examples. When loading inputs during training,
we stochastically decide whether the current minibatch
should be easy or not using the following probability:

Pr(easy minibatch) = k

Nepochs
(5)

Where k = the current epoch and Nepochs = the
total number of epochs. Therefore the model will be
exposed to an increasing number of difficult examples as
it learns, which may improve parameter optimization as
the complexity of the loss surface is gradually increased
with time. We choose a gradual approach instead of a
drastic switch, as suddenly changing the surface being
optimized would likely have harmful effects on learning.

2.4.4 Test data augmentation

Augmentations involving variations in scale, rotation,
and translation were applied to the nodules at test
time. Transformations to the nodule examples were ap-
plied in three-dimensional space using randomly sam-
pled values. Scale was increased or decreased by up to
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Figure 5 Flowchart of the training and evaluation process.
“Optional” phases are shown with dashed borders.

2%, translation was applied by up to 1 mm in any di-
rection, and rotation was applied by up to 2 degrees
about a random axis. By passing multiple variations of
the input through the network with small transforma-
tions, we can gather multiple malignancy predictions.
These predictions are then combined by taking the av-
erage, which should improve robustness at test time
and yield better accuracy. Various forms of test data
augmentation have been successfully utilized in many
well-established CNN architectures [11,22,18,24,5].

We also tried applying similar augmentations to the
training data, but found that doing so did not have
a noticeable positive effect on performance. Hence for
clarity in the results we do not include experiments with
training augmentation.

2.4.5 Training

Generally speaking, the goal of training a neural net-
work for classification is to optimize the parameters (θ)
of the model (f(x,θ)) such that it produces the in-
tended output label (y) for each input (x). Our training
set consists of input/output pairs, 〈xi, yi〉, where xi is
a CT image of a nodule and yi ∈ {0, 1} is the associ-
ated malignancy label. It follows that our optimization
goal is to find θ∗, the parameters which maximize the
probability of the network predicting the correct label
for each training example.

θ∗ = arg max
θ

(
∑

i Pr(y = yi|xi,θ)yi)

= arg min
θ

(
∑

i[ − log(f(xi,θ))yi+

− log(1− f(xi,θ))(1− yi)])

(6)

We use the Adadelta [28] optimizer to find θ∗, since
it adaptively sets learning rates.

Figure 5 depicts a high-level view of the training
process in flowchart form. Initially the model begins
with random parameters. If pretraining is to be under-
taken, the column model is then trained on all of the
CIFAR-10 dataset. The model is then trained on 80%
of the nodule data, which has been designated as the
training set. If curriculum learning is enabled, easier
nodule examples are selected towards the beginning,
gradually increasing in difficulty as training progresses.
Once training is completed, the system is evaluated on

the remaining 20% of the nodule data which comprise
the test set.

During training we used minibatches of 128 exam-
ples per iteration. We stopped training each model after
200 epochs, since the parameters had converged by this
point. An epoch is defined as being one complete pass
through all training examples. Early stopping with a
validation set was not employed since such an approach
would require the small dataset to be split further to
create a validation set. This would either result in a
smaller training set or an even smaller test set.

Multi-column network training When the network has
multiple columns, the training process is extended slightly.
We begin by training a single column as described above
on axial images only. We then clone this column to con-
struct the final multi-column network and train for an-
other 50 epochs with curriculum learning disabled. This
additional training fine-tunes the other columns to bet-
ter recognize sagittal and coronal planes.

2.4.6 Implementation of comparison networks

We compare our system against a simple fully con-
nected network as a baseline and two strong rivals con-
sisting of a state-of-the-art shallow CNN [19] and a pre-
trained OverFeat network [18].

For each of the reference implementations we again
use Adadelta [28] as the optimization algorithm. One
exception is the fully connected network which failed
to learn using Adadelta - this particular network was
trained using RMSProp [26] with a learning rate of 1×
10−5.

Below we present the comparison models in more
detail.

Multilayer perceptron (MLP) A multilayer perceptron
(MLP) is a feed-forward neural network consisting of
stacked fully connected layers. By flattening the input
image into a one-dimensional vector, it is possible to
use a MLP to perform classification of nodules. This is
a simple baseline model. The specific network we im-
plemented consists of three fully connected (FC) layers
configured as shown in Figure 6.

0.1372
4096 2048

Input OutputFC

ReLU

2048

FC

ReLU

1

FC

Sigmoid

Figure 6 The baseline MLP model.
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Shallow CNN (setio-cnn) To represent the shallow CNNs
used in many state-of-the-art nodule classification sys-
tems we implemented the “false positive reduction” CNN
described by Setio et al. [19]. This is the deepest cus-
tom CNN we could find amongst the related works.
The model uses 50% dropout for regularization and has
three convolutional layers (Figure 7).

OverFeat OverFeat [18] is a well-known CNN based
on AlexNet [11] that contains 6 convolutional layers.
Ciompi et al. [3] make use of a publicly available version
of OverFeat which has been pretrained on ImageNet
data, adapting it to perform nodule classification. We
followed a similar process to compute 4096-element fea-
ture vectors from nodule CT slices, then used an MLP
to produce the final output prediction.

2.4.7 Performance metrics

In the context of nodule classification we consider ma-
lignant nodules to be positive examples. Accuracy is
the percentage of examples which were correctly classi-
fied. Sensitivity is true positive rate. Specificity is true
negative rate. Precision is the ratio of true positives to
predicted positives.

Area under receiver operating characteristic curve. To
convert the malignancy probability output by the clas-
sifier to a binary response, we must set some thresh-
old (eg. τ = 0.5). However, decreasing or increasing
τ will cause the classifier to produce more positive or
negative predictions respectively. The classifier can be
characterized with a receiver operating characteristic
(ROC) curve as τ is varied from 0 to 1. The area un-
der the ROC curve (AUROC) expresses the probability
that the classifier will rank a random positive example
higher than a random negative example [4].

2.4.8 Evaluation

The accuracy of models varies slightly according to train-
ing/test splits and fluctuations between training iter-
ations. Note that for our evaluation the terms “test
set” and “validation set” are synonymous since param-
eters are selected solely on the training set. To com-
pare different models as fairly as possible the impact
of these variations was reduced by training and testing
each model 24 times with differentrandomized dataset
splits. Each trial involved training for 200 epochs with
minibatches of size 128, setting aside one fifth of the
data for testing the ability of the model to generalize
to previously unseen examples. Although slightly dif-
ferent to traditional k-fold cross-validation, this form of

evaluation has the distinct advantage of enabling more
trials without reducing the size of the test set (which
would increase variance). The randomized splits serve
the same fundamental purpose as the fixed splits in k-
fold cross-validation, allowing us to set aside a portion
of the data for testing the generalization of the model.

2.4.9 Hardware

Each model was trained and evaluated using a Maxwell
architecture NVIDIA Titan X GPU. The training time
per model was typically in the order of a few hours
to convergence, though we did not benchmark on this
explicitly since certain aspects of the system (such as
the data loader) were built for experimental flexibility
rather than speed.

3 Results

3.1 Depth

In order to determine the optimal ResNet depth for
nodule classification, we conducted a series of experi-
ments on single column networks with pretraining and
curriculum learning disabled. Depth was adjusted by
changing the number of blocks within each of the four
groupings shown in Figure 3. For example, a depth of 18
has 2 blocks per grouping (since 18 = 1+4×2+1). The
results shown in Figure 8 indicate that increased depth
does not necessarily correspond to an increase in accu-
racy (error bars mark the 80% confidence interval ob-
tained via statistical bootstrapping). More specifically,
there is a “sweet spot” at 18 weighted layers where ac-
curacy is at a maximum. This seems to suggest that, for
our particular task, increasing depth can only improve
accuracy up to a certain point. We observe that since
the issue is not with vanishing gradients, the dataset
itself must not be especially conducive to extremely
deep hierarchical representation. Since 18 weighted lay-
ers was found to be optimal, we used ResNet-18 for the
next set of experiments.

3.2 Comparison of configurations

Different variants of our ResNet-based model were trained
and evaluated. The number of training epochs was fixed
at 200, and the results were averaged across 24 trials.
Each of the 24 trials was a run of the exact same ex-
periment, but with different training/test splits. The
measured accuracy (with and without test set augmen-
tation) for each tested configuration is shown in Table
1.
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Table 1 Accuracies for deep residual model variants

Columns Pretrain Curriculum Test accuracy %
Type Count Plain Augmented

ResNet-18 1 7 7 85.75 85.76
ResNet-18 1 3 7 86.15 86.16
ResNet-18 1 7 3 88.07 88.22
ResNet-18 1 3 3 89.09 89.09
ResNet-18 3 7 7 87.37 87.37
ResNet-18 3 3 7 87.67 87.88
ResNet-18 3 7 3 88.69 88.89
ResNet-18 3 3 3 89.64 89.90
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Figure 8 Classification accuracy for different ResNet depths.

The results show that using modern deep learning
techniques improves accuracy at test time, with the
best model involving pretraining and curriculum learn-
ing. The 3-column models always outperformed their
1-column counterparts.

Figure 9 depicts a histogram of output predictions
from our best model. Most examples are correctly clas-
sified with high confidence. By examining the misclassi-
fied examples at either extreme, we can begin to under-
stand why the output sometimes differed from ground
truth. The false negatives contained small, faint nod-
ules that were assessed as malignant by the radiologists.
The false positives either contained large, pronounced
nodules or faint images that strongly resemble the false
negatives. Since large benign nodules are uncommon
in the dataset, it is quite possible that with a larger
dataset the system could learn to better classify exam-
ples like these.
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Figure 9 Histogram of test set predictions from our best
model. Examples are grouped by label (malignant/benign) and
binned by malignancy probability. Instances of strongly mis-
classified examples are shown.

3.3 Comparison with existing systems

In order to benchmark the performance of ResNet-based
systems relative to existing work, we selected our best
variant (single column ResNet-18 with pretraining and
curriculum learning). This was then subjected to an in-
depth comparison with MLP, shallow CNN (setio-cnn),
and OverFeat models. We also tested an enhanced ver-
sion of our strongest rival, setio-cnn+, which incorpo-
rated pretraining, curriculum learning, and a 3-column
setup. As is shown in Table 2, our ResNet-based sys-
tem outperforms everything else for each of the per-
formance metrics gathered. The Wilcoxon signed-rank
test was applied to the measured accuracies for each
pair of models, revealing that the results are statisti-
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Figure 10 ROC curves for each model. Points are marked
where the accuracy threshold is 0.5.

Table 2 Comparison of nodule classification systems

Model Sensitivity Specificity Precision AUROC Accuracy
MLP 78.87% 82.68% 83.93% 0.9041 80.59%

setio-cnn 87.82% 84.48% 85.67% 0.8950 86.23%
setio-cnn+ 89.21% 84.96% 86.31% 0.9342 87.18%
OverFeat 82.92% 81.01% 82.21% 0.9003 81.94%
Ours 91.07% 88.64% 89.35% 0.9459 89.90%

cally significant with p-values under 0.0001 (excluding
the setio-cnn/setio-cnn+ pair, which yielded a p-value
of 0.02). The deep learning techniques which benefit our
network were also found to benefit setio-cnn, but not to
the same extent. Interestingly, our system also exhibits
a very nice balance between sensitivity and specificity,
which implies that it is equally good at recognizing pos-
itive and negative examples. The ROC curves in Figure
10 provide evidence that our system demonstrates the
best behavior in terms of both sensitivity and specificity
across a wide range of threshold values.

4 Discussion

Using a deep residual network with pretraining, cur-
riculum learning, and a 3-column architecture appears
to be a very strong recipe for success in the lung nodule
classification task. An interesting observation is that it
really seems to be the complete combination of these
factors which yields superior results. For example, our
results showed that a shallow convolutional network is
better than ResNet-18 without any enhancements ap-
plied to either. However, after incorporating deep learn-
ing techniques we found that the enhanced ResNet-18
architecture was better than the enhanced shallow net-
work (setio-cnn+) by a significant accuracy margin of
over 2.5 percentage points. If we had simply assumed
that ResNet-18 would always be inferior based on our
initial results, we would not have been able to achieve

classification accuracies that were as high as we ob-
served.

We theorize that the key reason why ResNet re-
ceived more of a benefit from curriculum and transfer
learning than the shallow CNN is that its higher rep-
resentational power is not being appropriately guided
otherwise. That is to say, ResNet is more susceptible
to overfitting than the shallow CNN when trained on
a small dataset. Once we have overcome the overfit-
ting discrepancy between the two architectures, the up-
side of having increased representational power shines
through and we arrive at the favorable results presented
in Table 2.

We tried applying 3D convolutions to the problem
as well, but found they were unwieldy due to the large
memory requirements that they imposed. Furthermore,
their use was complicated by inconsistency among CT
slice depth spacings within the dataset.

5 Conclusions

We have investigated multiple variants of a pulmonary
nodule malignancy classification system based on deep
residual networks. In addition, this is the first paper
to objectively compare results against two state-of-the-
art rival convolutional neural network models (setio-cnn
and OverFeat) under similar training and testing con-
ditions. Our best system configuration was shown to
outperform all alternatives through experiments which
were designed to report real-world classification perfor-
mance on previously unseen examples. Our results sug-
gest that modern advancements in deep learning are
also applicable to medical imaging, and could be used
to increase the feasibility of lung cancer screening pro-
grams involving early detection with CT scans.

Interesting future work includes comparing the sys-
tems presented here with solutions based on hand-engineered
features, and leveraging the deep residual architecture
to perform automatic nodule detection. Furthermore,
the models in this paper were trained to reproduce the
subjective rating of an ensemble of radiologists, and it
remains an open question as to how well this correlates
with performance in real clinical practice.
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