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Evaluation of Range Queries with Predicates
on Moving Objects

Mitzi McCarthy, Zhen He and X. Sean Wang

Abstract—A well-studied query type on moving objects is the continuous range query. An interesting and practical situation is
that instead of being continuously evaluated, the query may be evaluated at different degrees of continuity, e.g. every 2 seconds
(close to continuous), every 10 minutes or at irregular time intervals (close to snapshot). Furthermore, the range query may be
stacked under predicates applied to the returned objects. An example is the count predicate that requires the number of objects
in the range to be at least γ. The conjecture is that these two practical considerations can help reduce communication costs. We
propose a safe region-based solution that exploits these two practical considerations. An extensive experimental study shows
that our solution can reduce communication costs by a factor of 9.5 compared to an existing state-of-the-art system.

Index Terms—Spatial databases, temporal databases, query processing
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1 INTRODUCTION

R ECENTLY, there has been a rapid increase in the
number of geolocation-aware devices. These de-

vices give rise to a new class of applications called
location-based services (LBS). An interesting problem
arising in LBS is the continuous evaluation of spatial
queries.

There has been extensive research into developing
techniques for answering both continuous and snap-
shot range queries on moving objects. These studies
can be categorized as those focused mainly on min-
imizing computation time [1], [4], [7], [9], [13], [15]
or minimizing communication costs [6], [8], [12], [16]
incurred by mobile devices reporting their location to
a central server. Our work falls in the latter category.
Like other work in this category, we also use the con-
cept of safe regions to reduce communication costs.
Data objects (the mobile devices being queried) only
report their locations when they move out of their
rectangular safe region or are probed by the server.
This prevents the need for objects to constantly report
their location.

We extend the traditional continuous range query
in the following three ways:

• aggregation predicates
• answer queries which have different degrees of

continuity, covering the entire spectrum from
continuous to snapshot queries

• moving range queries
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We describe and motivate each of these three exten-
sions to the continuous range query.

1.1 Range with aggregation predicates
In practice, more operations may be applied to the
set of objects returned by the range query before the
results are presented to the user. As an example, a
count predicate may be applied to the range query
result. More specifically, given a range query q and
a set of data objects S, we may issue the query: if
COUNT (P ) ≥ γ then return true else false, where
P = {s| location of s is within the range of q, s ∈ S}
and γ is a user defined threshold. We can replace
COUNT (P ) ≥ γ with a predicate on one of the
aggregation functions MIN, MAX, SUM or AVER-
AGE. We call queries of this type range queries with
an aggregation predicate (RAP). Note RAP can be used
to answer the traditional range query by setting the
predicate COUNT (P ) ≥ 0 and returning all objects
within the range if the predicate evaluates to true.

We use two examples to illustrate the use of RAP
queries.

Example 1: An advertising company operating a
dynamic electronic billboard. At any given time, we
need to select a small car or family sedan to advertise.
Suppose age was the most important factor for choos-
ing which car type to display. We can then specify that
if the average age of people within 100 meters of the
billboard is at least 30, then advertise the family sedan
else the small car. This RAP query (q1) can be written
as follows: return true if AV ERAGE(P.age) ≥ 30 else
return false, where P = {s| location of s is within 100
meters of q1}. If the query returns true, then advertise
the family sedan else the small car.

Example 2: A query q2 alerts a taxi driver if there are
likely more than 5 people wishing to use the service
within a specified range of q2. This can be written
as follows: return true if COUNT (P ) > 5 else return
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false, where P = {s| location of s is within range of
q2}.

Motivation for a new approach. RAP queries can-
not be handled efficiently by existing safe region-
based work [6], [8], [12], since the existing work
would answer RAP queries by first executing a range
query and then applying the aggregation predicate
on all returned objects. This approach would result
in more communication than necessary since RAP
queries are concerned with group properties rather
than individual properties. Suppose there are 10,000
objects and our RAP query wants to know if there are
at least two objects within the query range. The ex-
isting work would precisely determine whether each
of the 10,000 objects is within range and then check if
the number of objects within range is at least 2. This is
clearly acquiring more information than necessary. In
contrast, our approach only tries to find two objects
(any two) within query range.

1.2 Queries with different degrees of continuity
Queries can be evaluated at different frequencies.
There is a trade-off between frequency of query
evaluations and communication costs. More frequent
evaluations means there is less chance of missing a
monitored event, but also means higher communica-
tion costs. In most existing work on traditional range
queries, queries are either continuous [6], [8], [12] or
snapshot [1], [4], [14], [16]. We note these are actually
the two extremes among a spectrum of possibilities.
For example, queries can be answered every 2 seconds
(close to continuous), or every 10 minutes or at irreg-
ular time intervals (close to snapshot). In this paper,
we support the entire spectrum of possibilities. Our
system seamlessly supports a mixture of queries with
different degrees of continuity. Our solution reactively
adapts to these different degrees of continuity.

Motivation for a new approach. Most systems
designed to answer snapshot range queries either use
the constant update model [16], the linear update
model [1], [4] or the recursive motion function model
[14]. The linear update and recursive motion func-
tion models require fewer updates than the constant
model. However, all three models result in a lot of
communication since they effectively track the move-
ment of the objects at all times. These models are
not adaptive to when and where queries occur, and
therefore result in higher communication costs than
necessary. For example, objects moving in a region
which is never queried will still need to have their
movements tracked by the server.

Most systems designed to answer continuous range
queries use safe regions [6], [8], [12]. However, they
allocate unnecessarily small safe regions for queries
that require infrequent answers because their safe
regions ensure query answers are known at all times.
If a query only needs an answer every 10 minutes,
then it is better to assign nearby objects larger safe

regions and deal with the consequences (more object
location reporting) when it comes time to answer the
query. We develop a reactive safe region assignment
algorithm which considers the frequency at which
query answers are required.

1.3 Moving queries

In many situations, the queries will be moving rather
than stationary. This could be the case for both the
examples above. In Example 1, the electronic billboard
can be mounted on a bus or tram. In Example 2, the
queried region can be around the taxi itself.

Motivation for a new approach. Existing work
[6], [8], [12] for handling continuous traditional range
queries using safe regions assumes queries are station-
ary. They would handle moving queries by continual
query insertion and deletion which requires the mov-
ing query object to continuously report its location.
In contrast, we assign safe regions to query objects,
thereby reducing the frequency that moving query
objects report their locations.

1.4 Our overall approach

Our approach consists of two main parts. First, we
assign safe regions to objects and queries and second,
we answer RAP queries given the current set of
object/query safe regions. We call the first part safe
region assignment and the second query evaluation.

There is a trade-off between larger safe regions
which give objects more freedom to move versus
smaller safe regions which benefit query evaluation
because more precise location information is known.
In order to address this trade-off, we take a reactive
approach to assigning safe regions. Objects which fre-
quently move out of their safe regions will have their
safe regions enlarged. In contrast, objects which are
frequently asked to report their location during query
evaluation will have them shrunk. The shape of the
safe regions is also adaptive to the query and object
movements. This safe region assignment approach is
very general in that it can be used for any spatial
query.

Evaluating a set of RAP queries is an interesting
problem since, given a set of object/query safe re-
gions, we often have to choose which objects/queries
will report their precise location to the server (called
exposure). In an example RAP query which requires
at least two objects within the query region, we
are happy to find any two objects. Hence, we need
to determine which object to target first. We may
believe the query is false, in which case we need
to efficiently determine that at most one object is
within the query range. Making the right choices can
result in lower communication costs. In this paper,
we develop an information theoretic approach and
a rank-based heuristic approach for choosing which
objects to expose during query evaluation. These two
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approaches provide almost identical amounts of lo-
cation exposures. However, the rank-based approach
incurs lower execution time whilst the information
theoretic approach is more generic in that the same
formulation can be used with any predicate.

We have conducted experiments to determine the
merit of our proposed algorithms against the state-of-
the-art safe region-based query monitoring algorithm
(SRB) [6] designed for continuous range queries. The
results show that for moving RAP queries with differ-
ent degrees of continuity, we significantly outperform
SRB for all settings tested by up to a factor of 9.53 in
terms of communication costs whilst incurring similar
computational costs.

We quantify the benefits of using our approach to
handle each of the three extensions to the traditional
continuous range query in isolation as follows: 1)
our approach incurs up to 26% less communication
costs by exploiting the aggregation predicate of RAP
queries as opposed to range queries without the ag-
gregation predicate; 2) exploiting varying degrees of
continuity allows us to reduce communication cost
by up to a factor of 5.23 compared to SRB; and 3)
using safe regions around moving queries results in
answering up to 63% of moving queries without any
communication costs. Overall, our experiments show
our approach is effective in saving communication
costs for a wide variety of usage scenarios.

In summary, we make the following three main con-
tributions. 1) We propose an approach that can take
advantage of any combination of the following query
characteristics to minimize communication costs: RAP
queries; queries of varying degrees of continuity; and
moving query objects. 2) We develop an information
theoretic and a rank-based query evaluation algo-
rithm and a reactive safe region assignment algorithm.
3) We conduct an extensive performance assessment
of our algorithm against the existing state-of-the-art
SRB algorithm.

Following the introduction, we formally define the
RAP query with different degrees of continuity an-
swering problem in Section 2. In Section 3, we provide
an overview of our approach. In Section 4, we describe
the query evaluation algorithms for RAP queries. We
describe the algorithm used to assign safe regions for
objects in Section 5. Section 6 details our experimental
analysis. We discuss the related work in Section 7.
Finally, in Section 8, we conclude the paper and
describe directions for future work.

2 PROBLEM DEFINITION

In this section, we give a formal definition of range
queries with an aggregation predicate (RAP).

We assume a collection O of moving objects is reg-
istered with a central server. These objects are mod-
eled as moving points in the plane. An object may
“appear” and “disappear” at different times, i.e., an
object may come in and out of O.

We assume there is a set of data objects S ⊆ O and a
set of query objects Q ⊆ O. The two sets can overlap,
that is, an object can act as a query as well as a data
object for another query. (We use “query” and “query
object” interchangeably when no confusion arises.) We
assume a query object is never used as a data object
for its own answer. A data object has an associated
attribute a used by the aggregation predicates (other
than COUNT). A query object q is associated with
a rectangular region centered on its position (cx, cy)
with user selected radii rx and ry . This defines the
query range q.R.

We formally define the range query with aggrega-
tion predicate (RAP).

Definition 1: Given a threshold γ, a RAP query for
a query object q is denoted RAP (q). RAP(q) returns
true if AGGREGATE({s.a|s ∈ P}) θ γ else re-
turns false, where AGGREGATE is one of COUNT,
SUM, AVERAGE, MIN or MAX, θ is a comparison
operator (<,≤, >,≥,=), s.a is an attribute of ob-
ject s (not required for COUNT) and P = {s ∈
S|location of s is within the range of q and s 6= q}.

A simple extension to the RAP query returns the
set P if AGGREGATE(P ) θ γ is true. This is useful
when the users want to know which particular objects
are within range once the predicate is true.

Based on the definitions above, we define our prob-
lem as follows.

Definition 2: We assume a set of moving objects
O, query objects Q ⊆ O and data objects S ⊆ O.
Each query object q is associated with a RAP . The
RAP query answering with different degrees of
continuity problem is that, at the user-required times,
the server needs to precisely answer the RAP query
associated with each q in Q.

The user-required times for query answering can
either follow a user defined schedule, or at user’s
request (ad-hoc times). Note that the latter option will
incur an additional communication cost because the
user will need to alert the server each time an answer
is needed.

The goal of this paper is to find algorithms that
precisely answer the given set of RAP queries Q
at user required times with minimal object location
communication. Similar to [5], we only count the com-
munication cost from the objects (and queries) to the
server because our aim is to prolong the battery lifes-
pan of the mobile devices. There are no restrictions
on the frequency or regularity/irregularity of time
intervals between queries, therefore supporting the
entire spectrum from continuous to snapshot queries.

3 OVERVIEW OF OUR APPROACH

As mentioned in the introduction, this paper takes the
approach of assigning safe regions around objects to
minimize communication costs. A safe region s.SR
is defined as a rectangular area around an object s.
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While an object stays within its safe region, it does
not need to tell the server its current location unless
the server explicitly requests a location update (called
object exposure). This explicit request may be needed
in order to answer queries whose answer cannot be
determined precisely otherwise.

Moving queries. In our work, queries can move.
To reduce the rate of location reporting, we assign
safe regions to queries. This means queries only have
to report their locations when they move outside of
their safe region.

Queries with different degrees of continuity. We
handle varying degrees of continuity of queries by
using the concept of liberal safe regions as opposed
to the traditional approach of conservative safe regions.
Conservative safe regions used by existing algorithms
such as SRB [6] build safe regions small enough to
ensure that the query answer is known at all times.
In contrast, liberal safe region assignment allows
safe regions to grow freely and addresses the conse-
quences during query evaluation time. During query
evaluation, some exposures may be needed in order
to answer the queries. This approach allows queries
of varying degrees of continuity to be supported
efficiently since it means the frequency of exposures
during query evaluation will depend on how often
the queries need to be answered.

A consequence of using liberal safe regions is that
the safe region assignment algorithm needs to balance
between smaller safe regions (desirable for query
evaluation) and larger safe regions (harder for objects
to move out). We use a reactive safe region assignment
algorithm that dynamically adjusts the size and shape
of the safe regions to minimize exposures during
query evaluation while keeping the safe regions as
large as possible. By assigning safe regions in this way,
our system adjusts itself to take maximum advantage
of time gaps between query answers.

Our approach for evaluating RAP queries is to
take the current set of safe regions and queries which
need to be answered and determine the object ex-
posure order such that the total number of expo-
sures is minimized and all queries are answered.
This is preferable to using the existing traditional
range query solutions which would first answer the
range query and then apply the predicate. The often
complex decision of which object to expose first is
discussed in Section 4.4.

The next two sections provide more details of our
approach. Section 4 explains how we evaluate queries
given a set of object safe regions. Section 5 details our
reactive safe region assignment algorithm.

4 QUERY EVALUATION APPROACH

In this section, we describe our algorithm for evalu-
ating RAP queries. The evaluation algorithm solves
the following problem: given a set of objects inside
their safe regions, and a set of RAP queries Qt to

be answered at time t, answer all queries in Qt with
minimum communication costs.

4.1 Evaluation algorithm at a high level
At a high level, the evaluation algorithm first tries
to evaluate queries without exposing the current lo-
cations of any objects. If some query answers are
unknown without exposures, we then ask certain
objects to expose (report) their exact locations. This
second step (described in Section 4.4) requires careful
planning in order to minimize communication costs.

Algorithm 1 High-level pseudo code for the evalua-
tion algorithm.
Input: Qt: set of queries that need to be an-
swered at the current time t and S: all data ob-
jects

1: Let UQ store the set of queries for which the result
is unknown which is initialized to Qt

2: UQ = answer queries(UQ, S) {answers all queries
that do not need exposure using Algorithm 2}

3: for each query u in UQ do
4: if query u is still unanswerable then
5: Request query u to expose its current location
6: Set u.SR to a point which is represented by

the reported location of u
7: Mark that u.SR “should shrink” from its

previous size
8: end if
9: end for

10: UQ = answer queries(UQ, S) {Algorithm 2}
11: while UQ is not empty do
12: Select a data object s to expose {See Section 4.4}
13: Expose s
14: Set s.SR to a point which is represented by the

reported location of s
15: Mark that s.SR “should shrink” from its previ-

ous size
16: UQ = answer queries(UQ, S){Algorithm 2}
17: end while
18: Report to the user the query results for those

queries that have changed.

Algorithm 1 shows the straightforward algorithm
for query evaluation at a high level. It works by
first trying to answer as many queries as possible
without exposing anything (line 2). We then expose
the unanswered queries in UQ incrementally (lines 3-
9), taking care to ensure we do not expose queries
that are now answerable due to the exposure of prior
queries in UQ. Next, we again try to answer the
queries in UQ to remove any that are now answerable
(line 10).

We found exposing the queries before expos-
ing their surrounding objects almost always results
in fewer total exposures. This is because exposing
a query first means we reduce more uncertainty
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(whether each surrounding object is within query
range) with a single exposure, whereas exposing an
object first only reduces uncertainty regarding that
single object. The exposure order of queries in UQ
has little effect on the overall number of exposures
because we can only avoid exposing a query if it can
be answered solely by exposing other queries. These
exposed queries must also be unknown objects for the
query in question. We conducted an experiment using
our default experimental settings to test the effect of
the order of exposing queries. We found for 1000 ran-
dom query exposure orders, the standard deviation of
total exposures was between 0.04% and 0.30% for the
different algorithms. This result shows that the query
exposure order makes very little difference.

If there are still queries left unanswered after expos-
ing queries (lines 3-10), then we answer the remaining
queries by selecting one object at a time to expose
(line 12) and exposing it (line 13). We aim to select
the object to expose which leads to the least number
of other exposures in order to answer the queries
(Section 4.4). We then set the safe region to be just
a point at the reported location of the exposed object
(line 14). Given that the previous safe region (before
it was a point) was exposed, it was probably too
large. Hence, we mark s.SR as ”should shrink” as an
indication for the next safe region assignment task
(described in Section 5). We then try to answer the
queries in UQ again (line 16) and repeat this process
until all the queries have been answered.

4.2 Interesting regions
In order to determine which queries are answerable
without exposure (lines 2, 10 and 16 of Algorithm 1),
we need to first study the various important regions
around a query object. Figure 1 shows a safe region

q.OR
q.UR

q.IIR

q.SR

q.r y

xq.r

q.ry

xq.r

q.rx

s  .SR1

xq.r

q.ry

s  .SR2

q.ry

s  .SR3

Fig. 1. A query with various interesting regions.
for a query q labeled as q.SR and safe regions for three
data objects labeled as s1.SR, s2.SR and s3.SR. Using
q.SR and the radii of the query range (q.rx and q.ry),
we can define three interesting regions that aid in
answering query q. The regions are the inner influence
region (q.IIR), the unknown region (q.UR) and the
outer influence region (q.OR). We first describe the
important properties of these regions and then in
Theorems 1 - 3, we prove the properties.

q.IIR is the smallest rectangular region enclosing
q.SR in Figure 1. It tells us which objects are definitely

inside q.R. For example, in Figure 1, we know s1 is
definitely within q.R since s1.SR is fully inside of
q.IIR. We give the name q.OFI to the set of objects
whose safe regions are fully inside q.IIR.

q.UR is the shaded region in Figure 1. It tells us
which objects have an unknown status in terms of
being inside or outside q.R. For example, in Figure
1, we do not know if s2 is inside or outside q.R since
s2.SR intersects q.UR. We give the name q.OU to the
set of objects whose safe regions intersect q.UR. We
call the objects inside q.OU the unknown objects.

q.OR is the region outside q.UR in Figure 1. It
tells us which objects are definitely outside q.R. For
example, in Figure 1, we know s3 is definitely outside
q.R since it is fully in q.OR.

We now formally define these regions and explain
how we arrive at the above properties.

Definition 3: Given query q with safe region q.SR,
let q.IIR =

⋂
u∈q.SR

q.R[u] and q.OR =
⋂

u∈q.SR

q.R[u] =
⋃

u∈q.SR

q.R[u] where R is the complement of a region

R, and each rectangular region R[u] = (ux, uy, rx, ry)
is the same region R = (cx, cy, rx, ry) but with cen-
ter shifted to u = (ux, uy). Furthermore, q.UR =
q.IIR ∪ q.OR = q.OR− q.IIR.
Note that q.IIR, q.OR and q.UR do not depend
on (cx, cy) but only on q.SR, i.e., these regions are
agnostic with respect to the exact location of q within
its safe region. A practical method of obtaining the
corners of these regions when q.IIR 6= ∅ is depicted
in Figure 1.

Theorem 1: If s.SR is entirely inside q.IIR, then s
is within q.R.
Proof. From Definition 3, we have that q.IIR is the
intersection of all the possible positions of q.R. If we
know that s.SR lies entirely within this intersection,
then it must be within q.R.

Theorem 2: If s.SR is entirely inside q.OR, then s
is not within q.R.
Proof. If s.SR is entirely inside q.OR then, by Defini-
tion 3, s.SR is in the complement of the union of all
possible positions for q.R. That is, s.SR is not in any
possible q.R. Therefore s.SR is not in q.R.

Theorem 3: If s.SR intersects q.UR, then it is un-
known if s is inside q.R.
Proof. If s.SR intersects q.UR, then there is a point
p ∈ s.SR such that p ∈ q.UR. From Definition 3, we
have p is in the complement of the union of q.IIR
and q.OR. That is, p is neither in q.IIR nor q.OR.
Therefore, neither Theorem 1 nor Theorem 2 applies
and it is unknown whether s is inside q.R.

Table 1 shows the symbols used to refer to the
various regions and sets of objects related to a query.

4.3 Evaluation before any exposure
Having defined the various important regions

around a query, we can now define the algorithm
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Symbol Meaning
SR Safe region of a query
R Range of a query

IIR Inner influence region of a query
UR Unknown region of a query
OR Outer influence region of a query
OFI Set of all objects with safe regions fully inside q.IIR
OU Set of all objects with safe regions overlapping q.UR

TABLE 1
Table of symbols associated with a query.

Algorithm 2 Algorithm to answer queries before ex-
posing any objects
Input: UQ ⊆ Q: queries and S: all data objects
Output: X : the set of queries unanswerable without
exposing any object
Method:

1: Let X store the queries in UQ that cannot be
answered without exposures

2: Initialize X to ∅
3: for each query q in U do
4: tentative answer = AGGREGATE(q.OFI) θ γ
5: if using q.OFI ∪ any subset of q.OU instead of

just q.OFI will change the tentative answer in
line 4 then

6: Place q inside X
7: else
8: The tentative answer is the answer to q
9: end if

10: end for
11: return X

used to answer a query without any object location
exposures (used in Lines 2, 10 and 16 of Algorithm
1). Algorithm 2 shows the pseudo code. The algo-
rithm tries to answer the query without exposing
any objects; if unsuccessful, it puts the query into
the set X which is returned to Algorithm 1. The
idea is to first give a tentative answer to query q
using the objects in q.OFI (line 4). We then need
to consider if any subset of q.OU , when combined
with the q.OFI objects, can invalidate the tentative
answer. If this occurs, we cannot accurately answer
the query using the current information (line 5). We
need to expose at least one unknown object or the
query itself. Therefore, we place the query in the set
of unanswerable queries (line 6). Otherwise, the query
can be accurately answered using the tentative answer
(line 8).

Evaluating line 5 for AVERAGE merits some discus-
sion. The other aggregation functions are straightfor-
ward. The condition can be evaluated since the server
already has stored the attribute of interest for q.OFI
and q.OU . Knowing this, we can determine the tenta-
tive answer of line 4 by considering the AVERAGE of
some subsets of q.OU ∪ q.OFI . For example, assume
θ is ≥ and the tentative answer is true. We only need
to consider at most |q.OU | subsets by incrementally
growing the subset one object at a time, where the

object inserted is always the object with the smallest
s.a among objects remaining in q.OU .

For example, let’s use the query q in Figure 1 as
the input for Algorithm 2 (i.e. UQ = {q}). We assume
q has a predicate of COUNT (P ) ≥ 1. In this case,
q.OFI only contains s1 since it is the only object in
q.IIR. The tentative answer for q is therefore true (line
4). We can also see that, irrespective of the location
of the unknown objects, this tentative answer cannot
change (line 5). Therefore, the query answer is true.

Algorithm 2 can be used for all the aggregation
functions and comparison operators. For example,
assume the query predicate is SUM(P ) < 100 and
there is one object s1 in q.OFI where s1.a = 150.
Therefore, our tentative answer is false. Now assume
we have five unknown objects. One of these objects s2

has s2.a = −100. If s2 is found to be inside q.R then
SUM({s1} ∪ {s2}) = 50 < 100 (line 5) which changes
the tentative answer to true. Therefore, the answer to
the query is unknown without further exposure.

4.4 Evaluation with exposures
In our settings, some queries (the ones returned from
Algorithm 2) cannot be answered without requiring
some objects to report their locations. In this situation,
as described in line 12 of Algorithm 1, we need to pick
an object to expose. The number of objects that need
to be exposed depends on the order of exposure. This
is shown by the example in Figure 2.

.SR

1.SR
s2.SRs4.SR

q1.R q2.R

s3

s

Fig. 2. Example of the importance of exposure order
In the example, there are two RAP query objects

q1 (COUNT (P ) ≥ 2) and q2 (COUNT (P ) ≥ 3),
and four data objects s1, s2, s3 and s4. We assume
the exact locations of q1 and q2 are known, hence
q1.R and q2.R are also known. All the data objects
are unknown objects. Both q1 and q2 have a high
probability of containing less than the γ required
objects. The question now is which unknown object
should be exposed first in order to make the query
results unambiguous. The answer is not trivial since
s1, s2 and s4 are all good candidates. Exposing s1 first
would be good if s1 turns out to be outside both q1.R
and q2.R, since in this case we know both queries
must return false without needing further exposure.
However, if s1 is inside either q1.R or q2.R, then we
need to expose more unknown objects. On the other
hand, exposing both s2 and s4 would be sufficient
to answer false for both queries if both objects are
outside the range of the queries. Exposing s3 is not
good since it has a low probability of being outside
q2.R. As this example shows, the decision of which
unknown object to expose first is non-trivial.

We now define the evaluation with exposures prob-
lem.
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Definition 4: Given a set of RAP queries, we define
the evaluation with exposures problem as one of
picking the next unknown object to expose which re-
sults in the minimum number of expected exposures.

Instead of considering all objects, we only need to
consider the unknown objects. We do not need to
consider objects which are fully inside q.OR or in
q.OFI since these objects are definitely outside and
inside the query range, respectively.

We propose an elegant information theoretic ap-
proach and a rank-based heuristic approach to solve
the problem in Definition 4. The information theo-
retic approach provides a single generic formulation
for use with any predicate. The rank-based heuristic
requires less computation while exposing a similar
number of objects when compared to the information
theoretic approach.
4.5 Information theoretic approach
In this section, we outline our information theoretic
algorithm. We propose a greedy algorithm that is
based on an information gain calculation. Intuitively,
information in our situation refers to how close we
are to deterministically knowing the query result.
Therefore, if exposing an object does not result in any
information gain, then the exposure does not bring us
closer to knowing if the query returns true or false.
4.5.1 Generic aggregation predicate
We present the generic information gain formulations
which can be applied to queries with any aggregation
predicate including: COUNT, SUM, AVERAGE, MIN
and MAX. Consider a query q with a generic aggrega-
tion predicate. We denote the probability that a query
returns true as P (q) and false as P (q̄) = 1 − P (q).
The probability that an object s is within range of
q is denoted P (s ∈ q.R). In order to compute the
information gain, we need to first define the entropy
for query q under the current safe regions. This is
defined as usual:

H(q) = −P (q)log P (q)− P (q̄)log P (q̄)

We then consider the conditional entropy under the
condition that only object s is exposed:

H(q|s) = P (s ∈ q.R)H(q|s ∈ q.R) + P (s /∈ q.R)H(q|s /∈ q.R)

where P (s ∈ q.R) and P (s /∈ q.R) are the probabilities
that s falls inside q.R and outside q.R, respectively.
H(q|s ∈ q.R) and H(q|s /∈ q.R) are the entropies
of q, assuming s falls inside q.R and outside q.R,
respectively. The H(q|s ∈ q.R) entropy is given below.
The equation for H(q|s /∈ q.R) is similar.

H(q|s ∈ q.R) = −P (q|s ∈ q.R)log P (q|s ∈ q.R)
− P (q̄|s ∈ q.R)log P (q̄|s ∈ q.R)

The information gain of exposing s is then

G(q, s) = H(q)−H(q|s).

We then approximate the effect of exposing an
object s on all unanswered queries in U ⊆ Q to be
G(s) = Σq∈UG(q, s) and pick the object s in line 12 of
Algorithm 1 which gives the greatest G(s) value. (This
is an approximation since we ignore the dependency
among the queries with respect to their probabilities
to return true.)

The critical part of the above calculation is comput-
ing the various probability values, namely P (s ∈ q.R),
P (s /∈ q.R), P (q), P (q|s ∈ q.R) and P (q|s /∈ q.R).
Assuming uniform probability distribution for the
location of s within s.SR, we can compute P (s ∈ q.R)
and P (s /∈ q.R) as the fraction of s.SR which overlaps
q.R and outside of q.R respectively.

Calculating P (q): Once we know P (s ∈ q.R) for
each s, we can now compute P (q) as follows:

P (q) =Σ{U⊆q.OU |AGGREGATE(U∪q.OFI) θ q.γ}(Πs∈U (
P (s ∈ q.R))×Πns∈q.OU−U (P (ns /∈ q.R))) (1)

Equation 1 looks at all possible subsets U of q.OU
such that the aggregation predicate when applied to
the objects U ∪ q.OFI compared to q.γ returns true
(when using the comparison operator θ).

Note that we can compute which subsets return true
for any aggregation function since the server stores
s.a for all data objects s. For each of these subsets, we
compute the probability that exactly this subset is in
range. For example, if the aggregate is COUNT and θ
is ≥ we would look at all subsets of unknown objects
which contain q.γ − |q.OFI| or more objects.

The remaining two probabilities, P (q|s ∈ q.R) and
P (q|s /∈ q.R), can be calculated similarly to P (q).
This is done by replacing q.OU with q.OU − {s},
and in the case of P (q|s ∈ q.R), we also replace
AGGREGATE(U ∪ q.OFI) with AGGREGATE(U ∪
q.OFI ∪ s).

Complexity analysis. The worst case run-time
complexity of the information theoretic approach is
O(2n2n−1(n− 1)µ) = O(µn(n− 1)2n) where n = |OU |
and µ is the number of unanswered queries. While
the complexity is high, we propose strategies which
are very effective in reducing the actual computational
costs (as shown in results of Section 6.1).

4.5.2 Strategies for reducing computation
In this section, we present two strategies for speed-
ing up the information theoretic algorithm without
compromising result quality (results in same exposure
order). The two strategies can be used together.

Both strategies focus on reducing the cost of com-
puting the generic P (q) formulation shown in Equa-
tion 1. The other computationally dominant terms
P (q|s ∈ q.R) and P (q|s /∈ q.R) can be improved in
the same way. The first strategy caches previously
computed results and the second exploits particular
characteristics of the individual predicates.

Strategy 1: caching previous results. We reduce
the number of times P (q) is calculated by caching
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previous calculation results, since the calculations are
often repeated. When the predicate is COUNT, the
cache lookup key consists of the adjusted threshold
q.γ (q.γ − |q.OFI|) and the probability of each un-
known object being in range. This lookup key results
in high cache hits since typically there is only a small
number of objects in q.OU .

We can also cache the previous calculations of P (q)
for SUM and AVERAGE. This is done by extending
the COUNT cache by including s.a for each object
s ∈ q.OU . We also replace q.γ − |OFI| with q.γ −
Σs∈q.OUs.a for SUM, and q.γ, Σs∈q.OFIs.a and |q.OFI|
for AVERAGE. For the MIN predicate where θ is < or
≥ (≤ or >) the lookup key is q.γ with P (s ∈ q.R)∀s ∈
q.OU where s.a < (≤)q.γ. If θ is = the key is q.γ
with P (s ∈ q.R)∀s ∈ q.OU , where s.a < q.γ and ∀s ∈
q.OFI ∪ q.OU where s.a = q.γ. MAX is similar.

Strategy 2: exploiting predicate-specific charac-
teristics. For the COUNT predicate, we have two
sub-strategies to reduce the computational cost of
the generic P (q) (Equation 1). The first sub-strategy
reduces the number of subsets considered when com-
puting P (q) by only considering subsets of q.OU with
restricted cardinality. The second is to consider P (q̄)
instead of P (q) if this results in even less subsets.
The first method involves rewriting the generic P (q)
equation as follows.

P (q) = Σ{{s1,...,sm}⊆q.OU |m θ q.γ−|q.OFI|}P (s1 ∈ q.R)× · · ·×
P (sm ∈ q.R)× P (sm+1 6∈ q.R)× · · · × P (sn 6∈ q.R) (2)

where n = |q.OU |. The second method is possible
when calculating P (q̄) results in a smaller number of
subsets of q.OU than computing P (q). For example, if
the comparison operator θ is ≥ and q.γ−|q.OFI|−1 <
|q.OU | − (q.γ − |q.OFI|) then it is better to calculate
P (q̄) rather than P (q), since the number of subsets
which satisfy m ≥ q.γ−|q.OFI| (for P (q) calculation)
is larger than those which satisfy m < q.γ − |q.OFI|
(for P (q̄) calculation). For future work, we will detail
this strategy for the other predicates.

4.6 Rank heuristics

The computation cost of the information theoretic
approach can be high when the number of objects
is large. We therefore propose a faster heuristic algo-
rithm for each of the standard aggregation predicates:
COUNT; SUM; AVERAGE; MIN; MAX. These heuris-
tics result in very similar exposures compared to
the information theoretic approach. Conceptually, the
algorithms can be thought of as follows. We consider
two sets of objects. The first is the set of objects we
would expose if we believe the query will return true.
We call this the true set. The second is the objects to be
exposed if we believe the query will return false. We
call this the false set. We expose the single object that
lies in the intersection of these two sets. Intuitively, ex-
posing this object is the best choice because we would

expose this object whether we believed the query will
return true or false. We extend the above approach
to handle multiple queries by each query calculating
and nominating its preferred object for exposure. The
object with the most nominations is then exposed.
We call the heuristic algorithms created using this
approach rank because each of the heuristics involve
ranking the objects. In the subsequent subsections, we
assume that the comparison operator θ is ≥. The other
comparison operators can be done similarly.

Complexity analysis. The worst case run-time com-
plexity of rank is far lower than the information
theoretic approach. The complexity of rank for the
COUNT, SUM and AVERAGE predicates is domi-
nated by the complexity of ranking the objects. The
complexity is therefore O(µn log n) where n = |OU |
and µ is the number of unanswered queries. For the
MIN and MAX predicates, we only need to look for
the object with the highest probability of being in
range. The complexity is therefore O(µn) for MIN and
MAX.

4.6.1 COUNT predicate
We now describe the two overlapping sets (true and
false set) for the COUNT predicate and the resulting
heuristic. If we believe the query will return true, we
need to show that q.γ − |q.OFI| unknown objects are
within q.R. We would select the unknown objects with
the highest probability of being in q.R. Therefore, the
true set is the q.γ − |q.OFI| unknown objects whose
safe regions overlap most with q.R. If however we
guess that the query will return false, we should
expose a set of unknown objects which leaves less
remaining unknown objects than the threshold. To get
closer to this situation, we need to expose unknown
objects which are most likely to be outside q.R. The
minimum number of unknown objects we can expose
to show the query answer is false is |q.OU | − (q.γ −
|q.OFI|) + 1. Therefore, the false set is the set of
|q.OU | − (q.γ − |q.OFI|) + 1 objects with the lowest
probability of being in q.R. There is one object in the
intersection of the true set and the false set. This object
is the one with the (q.γ − |q.OFI|)th highest overlap
with q.R. This is the object we nominate for exposure.
Each time an object is exposed to be within range,
|q.OFI| is increased by 1. We continue nominating
the (q.γ − |q.OFI|)th highest overlap unknown object
until the query is deterministically answerable.

q.R
.SRs

s .SR4

s .SR2

s .SR3

s .SR5

1

Fig. 3. Rank algorithm example

Figure 3 shows an example illustrating the rank
algorithm for the COUNT predicate. In the example,
the query returns true if there are at least 4 objects
inside q.R (COUNT (P ) ≥ 4). There are two objects
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completely inside q.R and three objects intersecting
it. Therefore |q.OFI| and |q.OU | are 2 and 3 respec-
tively. Our true set is {s3, s1}, the q.γ − |OFI| = 2
unknown objects with the highest probability of being
in q.R. On the other hand, our false set is {s2, s1}, the
|OU |−(q.γ−|OFI|)+1 = 2 unknown objects with the
lowest probability of being in q.R. The intersection of
the true set and the false set is s1. Therefore, s1 is the
object nominated for exposure.
4.6.2 SUM and AVERAGE predicates
A variant of the rank algorithm for COUNT can also
be designed for SUM and AVERAGE.

We describe the SUM algorithm as follows. Let
ec(s), defined formally below, be the expected con-
tribution of object s to the sum of the attribute
of interest (sum of s.a) for q. We define ec(s) as:
ec(s) = P (s ∈ q.R) × s.a. Once we have calculated
this value for all the objects which overlap the q.UR
region, we rank the objects in descending order on
ec(s). We then nominate for exposure the ith object
si such that Σi

j=1(ec(sj)) + Σs∈q.OFIs.a ≥ q.γ and
Σi−1

j=1(ec(sj)) + Σs∈q.OFIs.a < q.γ. We continue this
until the query can be deterministically answered.

We similarly define a rank algorithm for AVERAGE.
We rank the objects which overlap q.UR on ec(s)
which is an approximation of the expected contri-
bution to the aggregation. Assume the ranked list
is s1, s2, ..., sn. We then nominate for exposure the
object with the smallest i such that the expected
average of the first i objects is above the threshold i.e.
Σi

j=1ec(sj)+Σs∈q.OF Is.a

Σi
j=1P (sj∈q.R)+|q.OFI| ≥ q.γ. We continue to nominate

objects for exposure in this way until the query can
be deterministically answered.
4.6.3 MIN and MAX predicates
For the MIN predicate, the only objects which can
alter the query answer are those objects s, where
s.a < q.γ. We therefore only consider these objects
for exposure. We call the set of these objects UB.
We again relate to the idea of selecting the object at
the intersection of the true set and the false set. To
show the query is true, we need to expose all objects
s ∈ UB and discover all exposed objects are outside
q.R. Therefore, our true set is UB. To show the query
answer is false, we only need to expose one object
s ∈ UB and discover that it is inside q.R. We select
the object s in UB which is most likely to be inside
q.R (s.SR with the highest percent overlap with q.R).
This object is also in the query true set. Our heuristic
therefore nominates this object for exposure. This is
repeated until we find an object which is inside q.R
(query returns false), or UB is empty (query returns
true).

The rank heuristic for the MAX predicate is similar.

5 ASSIGN SAFE REGIONS

Objects are assigned new safe regions whenever they
move out of their safe region or are exposed dur-

ing query evaluation (line 13 of Algorithm 1). As
explained in the introduction, there is a fundamen-
tal tradeoff between larger and smaller safe regions.
Larger safe regions will make it harder for the object
to move out but will mean we know less about its
exact location. The consequence is more exposures
during query evaluation to find the deterministic
query answer. Smaller safe regions are better for query
evaluation but are easier for objects to move out of.

The optimal tradeoff will depend on a range of fac-
tors including: object movement speed; object move-
ment pattern; query answering frequency; the density
of queries around the object; the thresholds for the
RAP queries; and so on. Most of these factors can
potentially change with time. It would be impractical
to formulate a mathematical model that incorporates
all these factors and use the model to find a global
optimal safe region assignment for all the objects.
We therefore propose a practical and simple reactive
mechanism to dynamically balance the competing
concerns with minimal overhead. Our algorithm has
the added benefit of being general enough to be used
across a broad range of spatial queries.

In Section 5.1, we present our reactive strategy to
adjust safe regions. Next, in Section 5.2, we discuss
assigning the initial safe regions when the system
starts with no safe regions for any moving object.

5.1 Reactive safe region assignment
The algorithm we propose simply reactively adjusts
the size and shape of the safe region, based on the
cause for an object to lose its safe region and its move-
ment patterns. We use the perimeter length (rather
than area) as the measure of size for a safe region. This
was proven to be the correct metric to optimize by
Hu et. al. [6] when assigning safe regions for moving
objects. For each object o, we use a size value o.s to
keep track of the perimeter length of the safe region.
That is, the safe region has a perimeter of length equal
to 4αo.s, or o.s = (perimeter of safe region)/4α, where
α is a system-level parameter called the unit length (or
“quantum”). Intuitively, α is the “unit” by which the
user wants the safe regions to grow or shrink in the
x and y axes each time a safe region is re-assigned.

The o.s value for object o is reactively adjusted as
follows. When object o moves out of its safe region,
it is marked as needing expansion. This is because o
moving out of its safe region indicates the safe region
is too small for o. In this case, we increase the o.s
value by 1. On the other hand, when the evaluation
algorithm decides that o should be exposed in order
to answer one or more queries, then o is marked
for shrinking. In this case, we should decrease the
o.s value by 1. Once the o.s value is determined for
object o, what remains to finalize its safe region is the
shape of the safe region. Shape for us is determined
by the ratio between the rectangular safe region’s x
radius and y radius. Here, we advocate the use of
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(b) safe region with p.win.t = 4
MBR of window of points safe regionMBR of window of points safe region

(a) safe region with p.win.t = 6

Fig. 4. Example safe regions derived from windows of
p.win.t = 6 and p.win.t = 4 respectively.

the historical movement pattern of the object as a
prediction of likely future movement patterns. For
example, a person walking in a northernly direction
should have a narrow vertical safe region rather than
a square one. We assume that the object o (at the client
side) constructs the minimum bounding region (MBR)
enclosing object o’s locations in the past window
of time. Figure 4 shows two example safe regions
derived from the MBRs defined by the past 6 δ time-
unit intervals and 4 δ time-unit intervals, respectively,
where δ is a system-level time unit parameter. To
assign the new safe region, we use the ratio ρ = MBR
length along the x-axis / MBR length along the y-axis.

With o.s and ρ values for o given, we can determine
the height and width for the safe region (o.SR.ly and
o.SR.lx respectively) of o as follows:

2o.SR.lx+2o.SR.ly = 4αo.s and o.SR.lx/o.SR.ly = ρ.

Hence, we have

o.SR.lx = 2αo.s/(1+1/ρ) and o.SR.ly = 2αo.s/(1+ρ) (3)

We assign a rectangle with the above calculated
dimensions centered on the location of o, as o’s safe
region. In Algorithm 3, we only consider objects

Algorithm 3 The re-assignment algorithm
Input: Oe: the set of all objects that need safe regions
assigned
Output: safe regions for all objects in Oe

Method:
1: for every o ∈ Oe do
2: if o was marked to expand then
3: o.s = o.s + 1
4: else if o was marked to shrink then
5: o.s = max(o.s− 1, 0)
6: end if
7: let o.SR be the safe region having the center at

o’s exact location, and width and height given
in Equation 3.

8: end for
9: return the assigned safe regions for Oe.

which do not currently have a safe region due to
either query evaluation exposure or moving out of
their safe region. Each of these objects is either marked
to expand or to shrink. Objects are marked to expand
whenever they move out of their assigned safe re-
gion. We check if each object has been marked to
expand on line 2. We expand (shrink) by incrementing
(decrementing) o.s by one (lines 2 - 6). In the case of

shrink, we do not allow o.s to reach below 0. Then
Equation 3 is used to determine the x and y lengths
of the rectangle, respectively. Finally, safe regions are
assigned to the objects in Oe.

5.2 Initialize all the safe regions
The initialization step assumes that all objects do not
have a safe region, and the system knows the exact
locations of all of the objects. For all o ∈ O, we
initialize o.s = 1 and o.SR to be a square (i.e. ρ = 1).
This method takes no consideration of whether a data
object is close to a query or not. Intuitively, if a data
object is far away from any query, we can start with a
large safe region. However, we contend this may not
be necessary for two reasons. First, our system will
later reactively adjust the shape of the safe regions
according to movement patterns. Second, we deal
with a dynamic situation in which objects (including
query objects) can appear anywhere. Hence, starting
with a large safe region may not be a good strategy,
especially if the object does not move much.

6 EXPERIMENTAL EVALUATION

Our experiments were conducted on a simulation
of the RAP query processing environment. The ex-
periments were run on a single core of an Intel i7
2.80GHz machine with 8GB RAM running Ubuntu
11.10. We used a variety of data sets, including the
uniform, Gaussian and road network data sets with
the default parameters of Chen et. al [3] and also
the MilanoByNight simulation [10] data set. We only
report the results for the MilanoByNight data set due
to space constraints. The results for the other data sets
were similar.

The MilanoByNight data set was designed to sim-
ulate people using a friend finder service. It modeled
the movements of people on a typical Friday or Sat-
urday night (between 7pm and 8:15pm) in a big city.
The total area covered by user movement is 324 km2.
The data consists of 150 snapshots of object locations
with a 30 second interval between snapshots. The data
set was discretized to 1024 by 1024 cells.

We modeled all the users as moving data objects
with a randomly-picked subset as moving query
objects. The following parameters were generated
following a Gaussian distribution: query range; the
query threshold q.γ; the object attribute s.a. For the
SUM predicate, we restricted s.a to be greater than
0. The parameter values used are shown in Table
2, where µ and σ are used to represent the mean
and standard deviation of Gaussian distributed data,
respectively. The default values are in bold.

We simulated queries with different degrees of con-
tinuity by assigning queries with different probabili-
ties (using random uniform distribution) of needing
an answer at each query evaluation instance. Evalu-
ation instances occur at a fixed period of 60 seconds
by default.
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parameter values
no. of objects 1000, ..., 5000, ..., 10000
no. of queries 500

q.R (µ, σ2) = (100,202)
aggregation predicate COUNT; SUM; MIN

θ ≥
COUNT: q.γ (µ, σ2) = (2,12)

SUM: q.γ (µ, σ2) = (80,402)
MIN: q.γ (µ, σ2) = (60,302)

SUM and MIN: s.a (µ, σ2) = (40,202)
Safe region assignment

p.win.t 4
δ 30 seconds
α 4

TABLE 2
Experiment parameters (default values in bold)

The algorithms used in the experiments are as
follows (where RSR refers to the use of our reactive
safe region assignment algorithm):

RSR-InfoTh This is our system using the infor-
mation theoretic evaluation algorithm with the two
speedup strategies of Section 4.5.2. The cache of Strat-
egy 1 of Section 4.5.2 was pre-filled.

RSR-Rank This is our system using the rank heuris-
tics described in Section 4.6.

RSR-Naive This is our system where line 12 of
Algorithm 1 selects a random unknown object to
expose.

RSR-ExposeAll This is our system where lines 11
to 17 of Algorithm 1 are replaced with expose all
unknown objects in one step. This effectively answers
a traditional range query.

SRB This is the state-of-the-art safe region-based al-
gorithm designed for the continuous stationary range
and kNN queries proposed by Hu et. al. [6]. We
adapted this work to answer RAP queries by first
answering the range query and then applying the
predicate. SRB cannot be trivially modified to exploit
the characteristics of RAP queries when answering
queries since it assigns conservative safe regions. This
does not allow unknown objects to exist because it
needs to ensure that the answer to the traditional
range query is always known. Queries with differ-
ent degrees of continuity were handled by simply
reporting query answers less often. Moving queries
were handled by deletion followed by insertion in the
new position. The grid was set to the experimentally
determined optimal of 256 × 256 divisions.

Evaluation metrics. For the majority of our exper-
iments, we report the total exposures and evaluation
exposures. The total exposures include object location
exposures during query evaluation and objects mov-
ing out of their safe regions. Evaluation exposures
is the number of times the objects reported their
location during query evaluation. This metric reflects
the quality of the evaluation algorithms used in the
different variants of our algorithm. We do not report

the results for SRB for this metric since SRB does
not have a separate query evaluation step. Instead, it
continuously adjusts safe regions to ensure the query
results are always known.

6.1 Results with all three query characteristics
present

In this section, we report the experimental results
when all three extensions to the traditional range
query are present, namely, RAP queries, queries of
varying degrees of continuity and moving queries.
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Fig. 5. Results of varying number of objects

Varying number of objects. In this experiment,
we vary the number of objects. The results for the
total number of exposures (Figure 5(a)) show our
algorithms consistently outperform SRB by up to a
factor of 3.84 (this increases up to 9.53 in later ex-
periments) because our algorithms exploit the three
query characteristics. We can see that exploiting RAP
queries can save 26% of the total number of exposures
by comparing RSR-InfoTh or RSR-Rank (both exploit
RAP queries) against RSR-ExposeAll (does not exploit
RAP queries).

For evaluation exposures (Figure 5(b)), RSR-
ExposeAll is the worst performing RSR algorithm
since it exposes all the unknown objects instead of
incrementally exposing objects and testing query an-
swerability.

The results show that RSR-InfoTh and RSR-Rank
consistently outperform RSR-Naive, because RSR-
InfoTh and RSR-Rank expose objects in a more opti-
mal order. The RSR-InfoTh and RSR-Rank results are
very similar because they follow a similar principle.
RSR-Rank exposes the object with the (q.γ− |OFI|)th

highest probability of being in q.R. This is the object
we are most uncertain about for knowing whether the
query is true or false. This is similar to RSR-InfoTh
which exposes the object that is expected to reduce
the overall entropy the most.

Varying aggregation predicate. In this section, we
show the results for the experiments using the MIN,
SUM and COUNT aggregation predicates. The results
in Figure 6(a) show that all versions of our algorithm
significantly outperform SRB. The difference between
our algorithms and SRB is larger for the MIN predi-
cate compared to COUNT and SUM. This is because
the MIN query is much easier to answer than COUNT
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and SUM since we only need to find one object below
the threshold which is in range.

Query safe region effectiveness. In this experi-
ment, we explore the effectiveness of assigning safe re-
gions to moving queries. The results in Figure 7 show
that by using safe regions around moving queries, we
are able to answer up to 63% of the queries without
exposing the query or any data objects. As the number
of objects increases, the query becomes harder to an-
swer (smaller percentage of queries answered without
exposure) since it becomes more likely that there are
γ objects within the query’s range. We expect that if
the number of objects was to increase far enough, the
query would become easier to answer again.

Computational costs. In these experiments, we
compare our algorithms against SRB in terms of com-
putational costs. Figure 8(a) shows that the average
computation time per time stamp for all versions
of our algorithm is less than 0.6 seconds for all
number of objects tested. This is much lower than
the 30 second interval between timestamps. We see
that our approach requires similar computation time
compared with SRB. As expected, as the number of
objects increases, the RSR-Rank heuristic outperforms
RSR-InfoTh by a larger margin.

Figure 8(b) shows the safe region assignment al-
gorithm consumes a significant part of the computa-
tional cost.

Figure 8(c) shows the breakdown of evaluation time
between picking the objects to be exposed and the rest
of evaluation, such as checking query answers and
finding unknown objects. The results show the high
computational costs incurred by RSR-InfoTh for pick-
ing which objects to expose compared to negligible
picking costs of RSR-Rank.

6.2 Results of varying query characteristics
In this section, we compare our algorithm against SRB
as each of the three query characteristics are gradually

taken away. Due to space constraints, we only report
the results for the COUNT predicate in this section.

In these experiments, we vary the degree of con-
tinuity by changing the period between query eval-
uations (the time interval between when queries can
be evaluated), thereby effectively moving along the
spectrum from continuous queries (small period) to
snapshot queries (large period). Consequently, the
number of query evaluations changes throughout the
graphs. Therefore, we report the number evaluation
exposures per query evaluation instead of the total
number of evaluation exposures.
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Fig. 9. Results of varying degrees of continuity for
moving RAP queries

Moving RAP queries. In this experiment, we vary
the degree of continuity of the queries. We keep both
the other advantages of our algorithm, namely mov-
ing queries and RAP queries. The results in Figure
9(a) show all three of our algorithms consistently out-
perform SRB across the range of evaluation periods
(different degrees of continuity) by up to a factor of
9.53. The margin by which our algorithm outperforms
SRB increases as the time period between query evalu-
ations increases. This is because our algorithm adapts
to lower frequency of query answering by assigning
larger safe regions. In contrast, SRB is designed to
provide continuous answers to queries and therefore
gives conservative safe regions irrespective of query
answer frequency. Figure 9(b) shows that RSR-InfoTh
and RSR-Rank reduce evaluation exposures per query
by up to 41% from RSR-ExposeAll and up to 19% from
RSR-Naive. This shows selecting objects to expose
intelligently is important in reducing the number of
evaluation exposures per query.
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Fig. 10. Results of varying degrees of continuity for
stationary RAP queries

Stationary RAP queries. In this experiment, we
remove the advantage of moving queries to be closer
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Fig. 8. Computational time results

to the setting that SRB is designed for (stationary
queries). Therefore, the results in Figure 10 show that
our algorithms outperform SRB by less in this setting
than the previous experiment (Figure 9). For example,
in Figure 9, our algorithms outperformed SRB by a
factor of 8.36 when the period between evaluations
was 16 minutes. However, with the same period
between evaluations, that margin reduced to a factor
of 4.97. The SRB safe regions are now more stable
since queries do not move, which in turn significantly
reduces the total number of exposures. In contrast,
our algorithms no longer benefit from building safe
regions around queries. However, the results show
that our algorithms still outperform SRB due to the
use of RAP queries.
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Fig. 11. Results of varying degrees of continuity for
traditional range queries

Moving traditional range queries. In this exper-
iment, we remove the advantage of RAP queries
but retain the benefit of moving queries. We report
the results for only one of our RSR variants (RSR-
ExposeAll labeled as RSR). All our algorithm variants
give the same results when answering a traditional
range query since all unknown objects need to be
exposed. The results in Figure 11(a) show that when
the period between evaluation is higher than 30 sec-
onds, our algorithm starts to outperform SRB. This
is because the benefit of answering the queries less
frequently outweighs losing the advantage of RAP
queries.

Stationary traditional range queries. In this exper-
iment, we remove both the RAP query and moving
query advantages of our algorithm. These are the
most favorable settings for SRB. We only show one
variant of RSR for the same reason as the previous
experiment. The results in Figure 11(b) show the
benefit of our approach for queries with different

degrees of continuity in isolation from the other two
advantages. The results show RSR outperforms SRB
by up to a factor of 5.23. The benefit is again due to
our algorithms taking advantage of different degrees
of continuity by relaxing constraints on safe regions.
It is encouraging to note that our algorithm can still
outperform SRB even with two of our advantages re-
moved, albeit at a higher period between evaluations.

7 RELATED WORK

In this section, we review the work on handling
continuous and snapshot spatial queries that has not
been discussed in the introduction. We begin with
work that does not use safe regions and then review
the more related safe region-based work.

Mokbel et al. [11] proposed the Scalable INcremen-
tal hash-based Algorithm (SINA) for processing con-
tinuous range and k nearest neighbor (kNN) queries.
Wu et al. [17] proposed an algorithm for processing
continuous range queries with count predicates to aid
in the efficient processing of reverse kNN queries. In
contrast to our work, neither of these studies focus
on reducing communication, instead they focus on
reducing computational time.

In the work by Cai et al. [2] and Zheng et al.
[19] objects use the resident domain and the roaming
region respectively to directly monitor their nearby
queries. Objects then report their location to the server
whenever their movement effects a query answer.
This model would not be efficient for RAP queries
since the group property of RAP queries cannot be
monitored by individual objects without incurring
excess communication costs.

Prabhakar et al. [12] proposed a safe region-based
solution for answering continuous range queries by
swapping query and object roles and by assigning safe
regions based on an object’s distance to its nearest
queries. Kalashnikov et al. [8] performed a compre-
hensive evaluation of different data structures for
indexing safe regions in main-memory. They found
the grid data structure gave the best results. SRB [6]
is a safe region-based solution used to reduce com-
munication when answering continuous range and
kNN queries. Tzoumas et al. [16] propose a workload
adaptive index system which self adjusts based on
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whether the workload is query intensive or location
update intensive. Their index is designed for the snap-
shot range and kNN queries. Yin et al. [18] handle the
proximity detection problem which detects if pairs of
friends are within a given distance of each other. They
use circular safe regions to reduce communication.
Chen et al. [5] use the current trajectory of moving
data objects to predict safe regions for the objects.
These safe regions are used to answer range and
kNN queries. Their work focuses on developing an
efficient update protocol for continuous traditional
range and kNN queries. All of these studies differ
from our work because they are designed to handle
continuous range queries that return all objects in the
range, without a clear way of taking advantage of the
three characteristics in our setting.

8 CONCLUSION

We have studied the problem of communication cost
minimization for moving range queries with predi-
cates and different degrees of continuity. The study
reveals that communication costs can be greatly re-
duced by exploiting RAP query characteristics and
adapting to the degree of continuity of queries using
a reactive safe region assignment algorithm.

We propose a rank-based heuristic and an informa-
tion theoretic approach for determining the order of
exposing objects during query evaluation. The rank-
based heuristic is computationally more efficient than
the information theoretic approach but not as generic.
The information theoretic approach allows the same
formulation to be used with any predicate. Both ap-
proaches result in a similar number of exposures.
Experiments show our system imposes substantially
lower communication costs when compared to the ex-
isting state-of-the-art SRB algorithm for a wide variety
of settings. The execution time results of our system
show it is practical for use in real-time applications.

For future work, we will explore k nearest neighbor
(kNN) queries with different degrees of continuity
using a framework similar to ours and extend the
framework for probabilistic range and kNN queries.
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