
External Sorting on Flash Memory
Via Natural Page Run Generation
YANG LIU, ZHEN HE, YI-PING PHOEBE CHEN AND THI NGUYEN

Department of Computer Science and Computer Engineering, La Trobe University, VIC 3086, Australia
Email: y34liu@students.latrobe.edu.au, z.he@latrobe.edu.au, Phoebe.Chen@latrobe.edu.au,

nt2nguyen@students.latrobe.edu.au

The increasing popularity of flash memory means more database systems will run on flash memory
in the future. One of the most important database operations is the external sort. Hence, this paper
is focused on studying the problem of efficient external sorting on flash memory. In contrast to
most previous work, we target the situation where previously sorted data has become progressively
un-sorted due to data updates. Accordingly, we call this ”partially” sorted data. We focus on
re-sorting partially sorted data by taking advantage of the partial sorted nature of the data to
speed up the run generation phase of the traditional external merge sort. We do this by finding
”naturally occurring” page runs in the partially sorted data. Our algorithm can perform up
to a factor of 1024 less write IO compared to a traditional external merge sort during the run
generation phase. We map the problem of finding naturally occurring runs into the shortest distance
problem in a directed acyclic graph (DAG). Accordingly, we propose an optimal solution to the
problem using the well known DAG-Shortest-Paths algorithm. However, we found the optimal
solution was too slow for even moderate sized data sets and accordingly propose a fast heuristic
solution which we experimentally show finds a high percentage of page runs using a minimum of
computational overhead. Experiments using both real and synthetic data sets show our heuristic
algorithm can halve the external sorting time when compared to three likely competing external

sorting algorithms.

Keywords: external sorting; flash memory; relational database; merge sort

1. INTRODUCTION

Flash memory is becoming more popular due to its rapidly
decreasing price and increasing performance. The compact
form of flash memory is used for small mobile devices
while larger ones called solid state drives (SSD) are used
to replace hard disk drives. Recent advances in flash
memory technology has meant SSDs with the capacity of
hundreds of GB are becoming ever more affordable. The
study by Lee et. al. [1] shows that the use of flash
memory can greatly increase the performance of database
systems. The performance increase comes from flash
memory’s ability to perform fast random reads. However,
writes are comparably slow due to flash memory’s inability
to write in-place. Therefore, any effective algorithm that
uses flash memory needs to take advantage of fast random
reads while performing writes sparingly.

External sorting is a fundamental operation in relational
database systems, with applications such as: sorted merge
join; facilitating fast range query lookups; result sorting;
duplicate removal; uniqueness verifications etc.

In this paper, we focus on re-sorting data that was initially
sorted but becomes progressively unsorted due to updates.
We call this ”partially” sorted data. One situation which
prefers sorted data, but will still work (albeit sub-optimally)
when the data is partially sorted is answering range queries
using an unclustered index. In this situation, the sought

range would span less disk pages when the tuples are closer
to being fully sorted. Another situation is a mostly read only
database being updated in batch. In this case re-sorting can
occur right after a batched update.

We do not control when the re-sort is needed, but instead
assume some mechanism exists to tell us when re-sorting is
necessary. In this paper, we extend the traditional external
merge sort algorithm to take advantage of partially sorted
data and the unique characteristics of flash memory. Our
approach uses the partially sorted nature of the data to reduce
the number of writes at the expense of increased random
reads. This is particularly suitable for use on flash memory
since flash memory is fast at random reads but slow at
writing.

The traditional external merge sort algorithm has two
phases. In the first phase, blocks of data are loaded into
RAM and sorted to create sorted runs. In the next phase,
the sorted runs are repeatedly merged until a single sorted
run containing all the data is created. Our key insight is
that the sorted run generation phase produces a lot of writes
which can be minimized by finding disk pages that form
a ”naturally” occurring page run. We define a naturally
occurring page run as a sequence of pages whose record
value intervals do not overlap each other. Therefore all
values in the second page of the naturally occurring page
run are larger than all values in the first page and so on.

, Vol. ??, No. ??, ????

2 Y. LIU, Z. HE, Y. P. CHEN, T. NGUYEN

Data after updates (partially sorted data)

102, 180, 500 503, 700, 80070, 80, 10011, 18, 502, 10, 11

Original sorted data in pages

2, 50, 11 11, 80, 20 102, 180, 700 205, 700, 800

p2p1 p3 p4 p5

p1 p2 p3 p4 p5

p1, p3, p5

200, 120, 100

Sequence of indexes to naturally occuring run

FIGURE 1. Example of a naturally occurring page run of 3 pages
in partially sorted data.

Values within each page do not need to be internally sorted.
We can then store indexes to these pages instead of creating
a normal sorted run. Assuming an index entry occupies 4
bytes and a page occupies 4096 bytes, this results in a 1024-
fold saving in write costs for sorted run generation. Figure
1 shows an example of a naturally occurring page run in
partially sorted data. Note there is no overlap between the
minimum and maximum value ranges of the pages of the
naturally occurring page run.

From the above description, it can be seen that our
technique aims to reduce the write IO costs during sorted run
generation. In Section 4, we explain why it is a particularly
good idea to optimize write IO costs in an external merge
sort on flash memory.

The following two factors aid us in finding a high
percentage of naturally occurring page runs: 1) the input
data is partially sorted; and 2) we generate the smallest
possible run size which does not increase the number of
merge passes. Partially sorted data typically means the
values in each page span a smaller range because the data is
still mostly sorted. Smaller run sizes are easier to find since
less pages with non-overlapping value ranges are required.

It should be noted that re-sorting partially sorted data has
been studied extensively in the existing literature in the form
of adaptive sorting [2, 3]. However, almost all existing work
in this area is focused on internal sorting (where all data fit
in RAM). The adaptive internal sorting algorithms are not
designed to minimize the number of accesses to secondary
storage by using a RAM buffer and therefore are not suitable
for re-sorting data residing in secondary storage (the focus of
this paper).

Estivill-Castro et al. [2], in their widely cited survey
paper on adaptive sorting, identify the replacement selection
sort [4, 5] as the only existing adaptive external sorting
algorithm. A replacement selection sort can produce longer
sorted runs when the data is partially sorted. However,
unless the output of the run generation is a single sorted run,
each data page still needs to be written out at least twice,
once during run generation and once during the merge.
In contrast, our approach of finding naturally occurring
page runs can avoid writing a high percentage of the data
pages during run generation. Experimental results show our
approach can outperform replacement selection sort by up to
a factor of 1.87.

We map the problem of finding naturally occurring page
runs into the problem of finding the shortest path in a
directed acyclic graph (DAG). Instead of finding the shortest
path, we find the path whose length exactly equals the size
of the page run. We adapt the well known DAG-Shortest-
Paths algorithm [6] to solve our problem. Although the
algorithm is guaranteed to find a page run of the required
length if it exists, it is unfortunately too slow with a run
time complexity of O(NA + N

T (M + E)), where N is
the total number of pages to be sorted, T is the size of
the sorted runs, M is the number of pages that can fit in
RAM, A is the number of records per page and E is the
number of edges in the DAG. In the worst case, E can equal
(M2 +M)/2. Accordingly, we propose a heuristic solution
which comes close to the DAG-Shortest-Paths algorithm in
terms of finding a high percentage of naturally occurring
page runs but incurs much lower overhead. The run time
complexity of our heuristic solution is O(N(A + log2M)).
Experimental results show our heuristic algorithm can halve
the sorting time compared to three likely competitors. In
addition, our heuristic algorithm finds a high percentage of
naturally occurring runs even when there is a significant
percentage of random updates to previously sorted data.

This paper makes the following key contributions:

• We propose a new approach to speeding up sorted run
generation for external merge sort. The idea is to
cleverly exploit the characteristics of partially sorted
data and the characteristics of flash memory by finding
naturally occurring page runs.

• We show the problem of finding naturally occurring
page runs can be mapped into the shortest path
algorithm for a DAG.

• We propose two solutions to the problem. First is
an optimal solution based on the well-known DAG-
Shortest-Paths algorithm and the second is a fast
heuristic solution which finds a high percentage of
naturally occurring page runs at much lower overheads.

• Extensive experiments using both real and synthetic
data sets against three likely competing algorithms
demonstrates the superiority of our approach.

The remainder of the paper is organized as follows:
Section 2 describes the characteristics of flash memory;
Section 3 describes the traditional external merge sort
algorithm; Section 4 describes why it is a good idea to
minimize write IO costs during the run generation phase;
Section 5 describes our approach of minimizing write IO
costs during run generation using naturally occurring runs;
Section 6 describes the experimental setup used to test
our solution; Section 7 shows the experimental results and
analysis for our empirical study on the effectiveness of our
solutions; Section 8 describes the related work and finally in
Section 9 we conclude the paper and outline directions for
future work.

, Vol. ??, No. ??, ????

EXTERNAL SORTING ON FLASH MEMORY VIA NATURAL PAGE RUN GENERATION 3

2. FLASH MEMORY CHARACTERISTICS

Our work is focused on the popular NAND flash memory.
NAND flash memory has the following characteristics:

• Asymmetric read versus write cost Unlike the hard
disk drive (HDD), the random write cost of flash
memory is typically much higher than random read
costs. This is due to flash memory’s need to erase
an entire block of data (a block consists of multiple
pages) before writing to it. Therefore, if no pre-erased
block exists, an expensive garbage collection process is
started which cleans dirty blocks. Writing is done at the
page grain (typically 4 KB).

• Fast random read Unlike HDD, flash memory does
not have any rotational latency associated with data
access. Therefore, it can perform random reads very
fast. This combined with the high random write costs
means replacing random writes with random reads
is a good strategy for improving the performance of
algorithms which use flash memory. The algorithm
designed in this paper has this property.

• Limited number of block erasures Each block in flash
memory has a limited lifespan in terms of the number
of write/erase cycles before it becomes unstable and
unusable. Newer flash drives have increasingly higher
life spans, enduring up to 5 million write/erase cycles.
Nevertheless, each erase operation slowly wears out the
block. To maintain the functionality of the blocks for
as long as possible, page updates should be spread out
evenly across all available blocks. This is commonly
called wear-leveling and is normally taken care of by
a special type of firmware called the flash translation
layer (FTL).

FTL is a software layer between the file system and
flash memory hardware. FTL provides the file system
with an interface to the flash memory that is identical
to that of the common HDD. As a result, common file
systems such as FAT, ATA or SATA can be used with
flash memory. FTL performs updates out-of-place, garbage
collection, wear leveling and error detection transparent to
the file system. This is done by mapping virtual addresses
to physical addresses. Although FTL addresses the need for
wear leveling on flash memory, it does not address the issue
of the skewed read/write speed ratio.

3. TRADITIONAL EXTERNAL MERGE SORT

Almost all external sorting algorithms are some variant of
the traditional external merge sort. Therefore, we first
provide a detailed description of the tradition external merge
sort.

The overall idea behind the traditional external merge
sort algorithm is to use the limited RAM buffer to sort
small portions of the input data at a time and store them as
”sorted runs”. Then, the sorted runs are repeatedly merged
into larger sorted runs until a single sorted run is produced.
Accordingly the algorithm is divided into two phases, the
run generation phase and the merge phase.

RAM Buffer with M pages

N/M

N input pages

Run 1

.

.
Run

Run 2

Disk

Disk

(a) Run Generation Overview

5018700 100280

P1 P2 P3

111070

P1

P4

P2 P3

5018700 100280

P5
P6

111070

P’2

P’3

RAM

Disk

503 205 800 59 82 53 12 19

P’1

Disk

Sorted Run 1

112 10

18 50 70

80 100 700

(b) Run Generation Example

FIGURE 2. Diagrams describing the run generation of Traditional
External Merge Sort

Assume a RAM buffer of M pages and an input data of
N pages. The run generation phase loads up M input data
pages into the RAM buffer, sorts them and writes them back
to disk as sorted runs. This is repeated until ⌈N/M⌉ sorted
runs are generated. Figure 2(a) shows this diagrammatically.
Figure 2(b) shows an example which uses a three-page
buffer to generate a three-page sorted run.

Figure 3(a) shows a diagram describing the overview of
the merge phase. In the merge phase, K sorted runs are
merged at a time, where K is a user-determined parameter.
Each of the K sorted runs are allocated an input buffer which
stores a cluster (unit of IO) of the sorted run’s data. A single
output buffer is allocated to store the current portion of the
merged sorted run. Figure 3(b) shows an example of how
sorted runs are merged. In the example, the data need to be
sorted in ascending order. The first cluster (in this case just
one page) of each sorted run is loaded into their respective
input buffers. Next, the output buffer is filled with the three
smallest values of all the input buffers (crossed out values).
Next, the output buffer is flushed to disk and emptied. The
same process is used repeatedly to fill the output buffer.
Whenever an input buffer becomes empty, the next cluster of
the corresponding sorted run is loaded into the input buffer.
This entire procedure is repeated until the K sorted runs are
merged into a single sorted run. Then, each of the merged
sorted runs are combined repeatedly until there is only one
resulting sorted run for the entire data set.

Section 8 reviews recent research into improving
the traditional external merge sort algorithm and other
approaches to achieving fast external merge sort.

, Vol. ??, No. ??, ????

4 Y. LIU, Z. HE, Y. P. CHEN, T. NGUYEN

Cluster of sorted run to be merged

Sorted Run 1

Sorted Run 2

.
Sorted Run K

.
Sorted Run N/M

Disk

.

Input Buffer 1

Input Buffer 2

Input Buffer K

RAM

Output Buffer

Disk

Merged Sorted Run

(a) Merge Phase Overview

RAM1

P’2

112 10

18 50 70

80 100 700P’3

112 10

5 12 19P’4

P’5

P’6

P’1

5 12 19

P’4
102 5

102 5

83 503 800

Disk

Sorted Run 1

20 53 59

Sorted Run 2

Input Buffer 2

Input Buffer 1

Disk

Output Buffer

P’

(b) Merge Phase Example

FIGURE 3. Diagrams describing the merge phase of the
Traditional External Merge Sort

4. WHY OPTIMIZE WRITE IO COSTS OF RUN
GENERATION?

In this section, we describe the rationale for focusing on
optimizing the write IO costs of run generation instead
of the other IO costs associated with an external merge
sort. The merge cluster size is an important determinant
of the performance of the external merge sort. According
to the analysis in Appendix A.2, the best cluster size for
flash memory is one page. As shown in Table A.1 of
Appendix A.2, this translates to a one pass merge in almost
all practical situations. Therefore, in the rest of this section,
we assume the external merge sort uses a single merge
pass. The total IO cost for one pass merge (TIOOP) for
performing the external merge sort is given by the equation
below:

TIOOP (N) = RGRC+RGWC+MRC+MWC (1)
= N(FMRC+FMWC)+N(FMRC+FMWC)

where RGRC, RGWC, MRG, MWC refer to the
following costs respectively: sorted run generation read IO
cost; sorted run generation write IO cost; merge phase read
cost; and merge phase write cost. The remaining terms have
the same definition as those defined for Equation A.2.

Equation 1 states that for a one pass merge, we only need
to load every page once and write them out once for both the
sorted run generation and merge phases. We now analyze
the possibility of avoiding some of each of the following

costs in Equation 1: RGRC; RGWC; MRC; and MWC.
Avoiding some RGRC would mean we can create the sorted
runs without ever loading some of the pages into RAM.
This seems impossible unless we already have some kind
of index on the data. However, we assume no such index
exists. Although some existing techniques try to avoid some
RGWC and MRC by keeping the last generated sorted run
in RAM and use it directly during merging, this approach
does not result in much savings if the data set size N is
much larger than the memory size M . Finally, it seems
impossible to avoid MWC since the aim is to generate
a sorted sequence onto flash memory. In contrast to the
previous cost analysis, it is possible to avoid close to all
RGWC by finding naturally occurring sorted runs using our
technique described in Section 5 and only write indexes to
them rather than the actual runs themselves. In addition,
avoiding write IO is much more profitable than read IO
for flash memory due to the asymmetrical read versus write
costs of flash memory.

5. SORTED RUN GENERATION BASED ON NATU-
RALLY OCCURRING PAGE RUNS

Section 4 explained the rationale behind reducing write IO
costs during the run generation phase of an external merge
sort instead of other IO costs. In this section, we present
our approach for achieving this, using naturally occurring
runs. The idea is to create naturally occurring page runs by
finding pages whose value ranges do not overlap each other.
We call these naturally occurring page runs. An example is
shown in Figure 1. In the example, the naturally occurring
page run consists of 3 pages, p1, p3 and p5. Notice the value
interval created from their minimum and maximum values
do not overlap. We then densely pack these indexes into
pages and write them out instead of naturally occurring runs
themselves. Assuming an index entry occupies 4 bytes and
a page occupies 4 KB, this translates to a 1024 factor saving
in write costs during run generation.

The remainder of this section is presented as follows.
First, we formally define the problem of finding naturally
occurring runs in Section 5.1. Second, we show the problem
of finding naturally occurring page runs can be mapped to
finding the shortest path problem in a directed acyclic graph
in Section 5.2. Third, as it is not clear we should look for
large page runs or small ones, since large ones will result
in less merge passes but are harder to find, in Section 5.3
we describe the analysis used to arrive at the optimal size
of naturally occurring page runs. Finally in Section 5.4,
we describe a fast heuristic algorithm for finding naturally
occurring runs.

5.1. Problem of finding naturally occurring runs

In this section, we first formally define the problem of
finding naturally occurring page runs and then show how it
can be mapped into the well known problem of finding the
shortest path in a directed acyclic graph.

The problem of finding naturally occurring page runs is
defined as follows:

, Vol. ??, No. ??, ????

EXTERNAL SORTING ON FLASH MEMORY VIA NATURAL PAGE RUN GENERATION 5

3 P4 P5P2

P2

P1

P3
P4

P5

2 18 11 11 30 20 20 35 25 45 40 50 5 28 55

18
11 30

40 50
5 55

2

20

P

35

1 P

(a) Mapping to intervals

1

P5

P2
P3

P4P

(b) Mapping to directed acyclic graph (DAG)

FIGURE 4. Example showing intervals being mapped into a DAG

DEFINITION 5.1 (Find naturally occurring runs problem).
Given a set of pages S, where each page s ∈ S has an
associated value interval < smin, smax >, find a naturally
occurring page run which consists of a set of T pages R such
that R ⊆ S and no pair of pages ri ∈ R, rj ∈ R, i ̸= j have
overlapping value intervals.

In the above problem definition, T is an input parameter
to the problem. Figure 4(a) shows an example in which we
are looking for T = 3 non-overlapping pages among the
5 pages available to create a naturally occurring page run.
The example also shows the value intervals corresponding
to the pages. In the example, the pages P1, P3 and P4 form
one possible naturally occurring page run since none of their
value intervals overlap.

5.2. Shortest path based solution to finding naturally
occurring runs

We can map the value intervals of Definition 5.1 to a directed
acyclic graph (DAG) as follows. Each vertex represents a
page Pi and there is a directed edge from vertex Pi to Pj

if and only if Pi and Pj are non-overlapping and Pi’s range
is less than Pj’s range. There can not be any cycles in this
graph because of the transitivity of less than. Then finding
a naturally occurring run of size T is equivalent to finding
a path of length T . This is a simple variant of the longest
path problem in a DAG, where instead of finding the longest
path, we stop as soon as we find a path of length T . The
longest path problem is NP for a general graph, however, for
a DAG, it can be computed in polynomial time by mapping
it into the shortest path problem where the edge weights are
negated.

We use the well known DAG-Shortest-Paths algorithm [6]
as the basis for our solution. Since we only have a limited
amount of RAM, we can only search among the pages that
can fit into the memory. Algorithm 1 details the algorithm
we use. The algorithm works by first filling the RAM buffer

with unprocessed pages (Line 2) from the flash memory.
We load the pages in a particular order to maximize the
chances of finding page runs (please see separation distance
loading in Section 5.4 for more details). Next, we find the
minimum and maximum values from the loaded pages to
construct the value intervals. We then insert these value
intervals into the DAG. In Line 5, we use a simple variant
of the shortest path algorithm to find a path of length T .
Instead of finding the shortest path, we stop the search as
soon as we have found a path of length T . If no path is
found, we create a normal sorted run by sorting T pages with
the longest intervals (Line 7) and writing them into the flash
memory. Removing the longest intervals is desirable since
these intervals generally are less connected with other pages
because of their tendency to overlap with other pages (e.g.
page P5 in Figure 4). If a naturally occurring page run is
found we do not write the pages out but instead write index
entries to the locations of the pages into an index buffer page.

Algorithm 1 FindNaturalRuns(Input P :Sequence of pages
to be sorted, T : optimal naturally occurring run size; M :
RAM buffer size; N input data size)

1: while more pages in P need to be processed do
2: fill RAM Buffer with next set of unprocessed pages

from P using separation distance loading.
3: extract value intervals from loaded pages
4: insert newly extracted intervals into DAG
5: find the first naturally occurring page run of size T in

DAG using DAG-Shortest-Paths algorithm [6]
6: if no naturally occurring page run of size T can be

found in DAG then
7: sort T pages with longest intervals into one run and

write it to flash memory as a normal sorted run
8: else
9: Write index entries for pages of naturally occurring

page run into index page
10: Flush index page if it becomes full
11: end if
12: Remove processed pages from RAM buffer
13: end while
14: If index page is not empty, flush it to flash memory

THEOREM 5.1 (Run time complexity of Algorithm 1).
The computational complexity of Algorithm 1 is O(NA +
N
T (M + E)), where N is the total number of data pages to
be sorted, T is the size of the page runs, M is the size of the
RAM buffer in pages, A is the number of records per page
and E is the number of edges in the DAG.

Proof. The minimum and maximum values for each of the
N pages containing A records per page need to be found
to create the value intervals (Line 3), hence the cost is NA.
We run the code between Lines 2 and 12 N

T times because
during each iteration of the while loop we process T of the
N pages either into a naturally occurring page run or normal
sorted run. The shortest path algorithm used in Line 5 incurs
the dominant run time cost and it has a run time complexity

, Vol. ??, No. ??, ????

6 Y. LIU, Z. HE, Y. P. CHEN, T. NGUYEN

of O(M + E) [6]. Therefore, the run time complexity of
Algorithm 1 is O(NA+ N

T (M + E)).

The run time complexity of Algorithm 1 can be very
high since in the worst case E equals (M2 + M)/2.
Our experiments show the execution time of Algorithm
1 increases very fast with increasing data size, making it
unusable even for moderate sized data. Accordingly, we
developed a fast heuristic algorithm to solve the problem
of finding naturally occurring page runs without the need to
create a graph. This algorithm is presented in Section 5.4.

5.3. Optimal naturally occurring run size

In this section, we will define the optimal size of naturally
occurring page runs. This is non-trivial since larger naturally
occurring page runs are hard to find, but smaller ones may
cause more than one merge pass. The reason larger naturally
occurring runs are hard to find is that they require more non-
overlapping pages. Smaller naturally occurring page runs
may increase the number of merge passes because it might
exceed the maximum number of runs that can be merged in
RAM in one pass. Therefore, we define the optimal naturally
occurring run size as follows:

DEFINITION 5.2 (optimal naturally occurring page run
size). The optimal naturally occurring page run size is
defined as the minimum run size subject to the constraint
the number of merge passes equals the minimum achievable
for any run size.

We now define the equation we use to compute the
optimal page run size given the following: a data size
of N pages; a RAM size of M pages; one-page used to
accumulate index entries during run generation; a one page
output buffer during the merge; and an index buffer of
E pages used during the merge. We need a small index
buffer of E pages during the merge to prevent repeated
disk loads for naturally occurring page run index lookups.
Since the index pages are densely packed, we found in our
experiments we only need a very small index buffer of 20
pages to prevent almost any repeated index loads. The
optimal naturally occurring page run size (ONRS) can be
computed by the equation below:

ONRS(N,M,E) = ⌈ N

(M − E − 1)⌈logM−E−1⌈ N
M−1 ⌉⌉

⌉

(2)

THEOREM 5.2. Equation 2 satisfies the optimal naturally
occurring page run size Definition 5.2.

Proof. For Equation 2 to be correct, its denominator
must specify the maximum number of runs subject
to the constraint of Definition 5.2. This is because
⌈ N
numberofruns⌉ equals the run size. So, we turn our

attention to proving the denominator of 2 equals the
maximum number of runs subject to the constraint in
Definition 5.2. The ⌈logM−E−1⌈ N

M−1⌉⌉ expression, which
we will call MinPasses, specifies the minimum number
of merge passes. This is because the ⌈ N

M−1⌉ expression

inside the MinPasses expression specifies the maximum
run size possible, given a RAM of M pages with one
reserved for accumulating indexes to naturally occurring
runs. The minimum number of merge passes occurs when
the maximum number of runs (M − E − 1) are merged in
one pass. This is because of the M pages available RAM,
E pages are reserved for the index buffer and another one
page is reserved for the output buffer. Hence MinPasses
is the minimum number of merge passes for any given run
size. (M − E − 1)MinPasses is the maximum number of
runs that can be merged in MinPasses.

Having specified a way of computing the optimal
naturally occurring page run size and proven it is correct, we
describe our algorithm for finding naturally occurring runs
of the optimal size. In the remainder of this paper, whenever
we mention naturally occurring page runs, we mean page
runs of optimal size as specified in this section.

5.4. Fast heuristic algorithm

2 P3

P3 P5 P7 P9

P4

P7
P8 P9 P10

P5

RAM

Disk

2 13 11 11 23 20 20 25 22 40 48 50 5 53 55

P

112 13 1210 30 11 23 20 35 20 25 2233 40

53 30 34 40 48 50 45 58 40 5 53 55 50 70 80

P

6

1

P1
P

FIGURE 5. Example illustrating loading pages with one page
separating them.

Our heuristic approach to finding naturally occurring page
runs of optimal size starts by loading as many pages as
possible into the RAM buffer and then looking for non-
overlapping pages among them. To maximize our chances of
finding naturally occurring page runs, we use the following
three techniques:

• Separation distance loading of pages. Loading pages
which are far apart from each other into the RAM buffer
gives us a high chance of finding naturally occurring
page runs. This is because the input data is partially
sorted and therefore pages further apart are less likely to
overlap. Accordingly, we load pages ⌊ N

M−1⌋ − 1 pages
apart from each other, where N is the data size and M
is the RAM buffer size in pages. The M−1 term comes
from the fact one page is reserved for accumulating
index entries to naturally occurring runs. This allows
the loaded pages to have the maximum distance apart
from each other. When loading pages, we wrap back to
the beginning of the input page sequence once we reach
the end. Figure 5 shows an example where N = 10,
M = 5 and therefore pages should be loaded with one
page separating them.

• Find non-overlapping intervals using a minimum
interval tree (Min Tree). We index pages loaded into
RAM using their corresponding minimum value inside

, Vol. ??, No. ??, ????

EXTERNAL SORTING ON FLASH MEMORY VIA NATURAL PAGE RUN GENERATION 7

the Min Tree. The Min Tree can be implemented by
using any main memory binary search tree such as
the red and black tree. Note the tree must allow for
duplicate keys. We use the Min tree to scan for non-
overlapping intervals from left to right. Therefore, we
start with the interval with the smallest minimum value
L and then use L.maximum to find the next interval
U which has the property U .minimum is the closest
to L.maximum. We perform all these searches using
the Min Tree. Figure 6(a) shows an example of using
the Min Tree to find a naturally occurring page run of
size three pages. The first page found is P1 which has
the smallest minimum value. Then, the next two pages
found are P3 and P7 in that order.

• Remove long intervals using an interval length tree
(Length Tree). When it is determined that we can not
find enough non-overlapping pages to form a naturally
occurring page run, we create a ”normal” sorted run.
A normal sorted run is created by sorting the values
inside its set of pages and writing into the disk sorted
like the traditional external merge sort. When creating
a normal sorted run, we try to pick the remaining pages
that have the longest interval length. This is because
the intervals with the longest interval length are more
likely to overlap with other pages. The Length tree
can also be implemented by any binary search tree
which allows duplicate keys. Figure 6(b) shows an
example where the page P9 was the first picked, using
the Min Tree since it is the one with the smallest
minimum value. However, after that, no other RAM
buffer resident pages can be picked since they all have
minimum values larger than the maximum value of P9.
Therefore, the Length Tree is used to pick two pages
(P2 and P6) with the longest remaining interval length
to be sorted to create a normal sorted run.

10

P

3P

5P
7P

9P

2 13

20
5040

25

2311

5

5 40

20

11

50

12

10

5

Length Tree Min Tree
Selected page

1

55

2

(a) Example showing naturally occurring run found

P5 55

3P 2311

2P

4P

Selected page

6P

Min Tree Node Retrieved

9

10

11

33

10 30

33 40

34 53

20

5017 34

Length Tree Min Tree

12

Length Tree Node Retrieved

19 5

(b) Example showing no naturally occurring page run found, so need to
sort data in pages

FIGURE 6. Example showing our heuristic algorithm finding
naturally occurring page runs.

Our experiments show the above techniques used together

are very effective in finding a high percentage of naturally
occurring page runs in partially sorted data. Algorithm 2
shows the pseudo code for finding naturally occurring page
runs. Lines 2 to 5 populate the RAM buffer with pages
loaded from the disk and inserts them into the Min Tree
and Length Tree. Lines 6 to 17 look for naturally occurring
runs among the pages in the RAM buffer. If no naturally
occurring run can be found, then Lines 8 to 12 create a
normal sorted run using the pages picked so far and the
pages with the longest remaining value intervals. Finally,
if a naturally occurring page run is found, Lines 19 to 21 are
used to write the index entries for the pages of the run.

Algorithm 2 FindNaturalRuns(Input P :Sequence of pages
to be sorted, T : optimal naturally occurring page run size;
M : RAM buffer size; N input data size)

1: while more pages in P need to be processed do
2: Fill RAM Buffer with next set of unprocessed pages

from P using separation distance loading.
3: extract value intervals from loaded pages.
4: insert extracted value intervals into Min Tree and

Length Tree.
5: initialize current run list CL to empty.
6: while |CL| < I and RAM buffer is not empty do
7: if no interval in Min Tree has minimum value

greater than maximum value of last element in CL
then

8: // no naturally occurring run found
9: insert T - |CL| of the longest intervals in Length

Tree into CL
10: remove inserted intervals from Min Tree and

Length Tree
11: sort pages in CL in RAM and write into flash

memory.
12: remove all pages in CL from the RAM buffer
13: else
14: insert interval in Min Tree with smallest

minimum value into end of CL
15: remove inserted interval from Min Tree and

Length Tree
16: end if
17: end while
18: if naturally occurring run was found then
19: Write index entries for pages of naturally occurring

run found from CL into index page
20: Flush index page if it becomes full
21: Remove pages in CL from RAM buffer
22: end if
23: end while
24: If index page is not empty flush it to flash memory

The benefits of finding naturally occurring runs would be
outweighed by its computational costs if Algorithm 2 is too
slow. Therefore, we use the theorem below to show the
computation costs of Algorithm 2 is modest.

THEOREM 5.3 (Run time complexity of Algorithm 2).
The computational complexity of Algorithm 2 is O(N(A +

, Vol. ??, No. ??, ????

8 Y. LIU, Z. HE, Y. P. CHEN, T. NGUYEN

log2M)), where N is the total number of data pages to be
sorted, M is the size of the RAM buffer in pages and A is the
number of records per page.

Proof. The minimum and maximum values for each of the
N pages (containing A records per page) need to be found to
create the value intervals (Line 3), hence the cost NA. Each
of the N pages needs to be inserted (Line 4) and removed
(Lines 10 and 15) from the Min Tree and Length Tree. Each
insertion and deletion takes O(log2M) since each of these
trees indexes M intervals and they are both binary search
trees. The Min Tree is searched in Line 7 and the Length
tree is searched in Line 9 but both of these searches are only
done at most once per page. Therefore, all operations on the
Min Tree and Length Tree costs O(Nlog2M).

5.5. Merge Phase

The merge phase of our approach is the same as the external
merge sort with two exceptions. First, pages belonging
to naturally occurring runs are first internally sorted when
loaded into RAM. Second, we reserve a small portion of
the RAM buffer to buffer index pages to naturally occurring
page runs. We use the least recently used buffer replacement
policy for the index page buffer. The size of the index page
buffer can be very small, just 20 pages in our experiments.
This is because each index page can contain indexes to 1024
pages of naturally occurring runs.

A small optimization that can improve the performance
of the index page buffer is to rearrange index page entries
so that the same ith page of page runs are grouped into the
same page. For example, an index page would contain only
the 2nd pages of page runs. This improves the temporal
and spatial locality of references to index pages during the
merge. The reason is the merge phase tends to progress
through the pages of the page runs close to parallel. For
example, when the 2nd page of one page run is being
processed, it is common to be processing the 2nd page of
the other page runs at the same time.

6. EXPERIMENTAL SETUP

The experiments were conducted using a 256GB Super
Talent Ultra Drive GX FTM56GX25H SSD. As mentioned
in the introduction, SSDs are high capacity flash devices,
designed to replace hard disk drives. The read and write
characteristics of the flash drive compared to common HDD
are shown in Table 1. From the table, we can see the random
read performance of the SSD is around 2.5 times faster than
random write. However, the HDD random read and write
performances are much more similar. The random read
performance of the SSD is much higher than the HDD.

The CPU we used had the following specifications: Intel
Core 2 Duo E8500; 3.2 GHz; and 6 MB L2 cache. The
machine had 3 GB of total available RAM. However, we
further restricted the amount of RAM available to the
tested algorithms. The experiments were conducted on the
linux operating system. Linux automatically caches all IO
requests. This would invalidate our experiment results since

Real data default value Synthetic data default value
RAM size (pages) 2, 000 20, 000
Data size (pages) 19, 018 150, 000
Record size (bytes) 200 200
UpdatePercentage 20 20
MaxUpdateRange 20 20
Page size (bytes) 4096 4096

TABLE 2. Default parameter settings for both the real and
synthetic data sets.

it would mean pages loaded during run generation will be
available for reuse in the merge phase without the need to
reload from the SSD. Therefore, we disabled the operating
system’s caching functionality.

We have used both real and synthetically generated data
sets. Our real data set is the United States Census 2000
data set which can be downloaded from [7]. The census
data consisted of more than 200 columns. We chose, by
default, column 7 which contains the population of each
county of the USA, including urban and rural. However,
we tested the first 100 columns and found the performance
difference between our algorithm and the others stayed about
the same across all the different columns. Section 7.4 shows
the results from columns 6 to 20. The synthetic data set was
generated by generating random integers between 0 and 1,
000, 000 with uniform random distribution.

For both real and synthetic data, we did the following to
convert them into partially sorted data. The data was first
sorted. Next, updates were introduced by randomly picking
a certain percentage of values to be updated (we call this
UpdatePercentage). For each picked value x, a random
new value was assigned in the range x− x δ

100 and x+ x δ
100

using uniform random distribution, where δ is a parameter
we call MaxUpdateRange. Note MaxUpdateRange is a
percentage value.

Table 2 shows the default parameter settings used for the
real and synthetic data sets.

We compared the performance of our approach against
three rival external sorting algorithms. They are described
below, along with any parameter settings we have used for
them.

• NaturalDAGMSort This is shortest path on a DAG
algorithm described in Section 5.2, with the index
buffer used in the merge phase (Section 5.5) set to 20
pages and run size determined by Equation 2.

• NaturalMSort This is our fast heuristic algorithm
described in Section 5.4, with the index buffer used in
the merge phase set to 20 pages and run size determined
by Equation 2.

• TradMSort This is the traditional external merge sort
algorithm described in Section 3, with run size set to
the total size of RAM.

• ReplaceMSort This is the replacement selection merge
sort algorithm [8] described in Section 8.1, with run
size set to the total size of RAM. This algorithm
is selected because it is known to perform well
for partially sorted data, the reason being that this

, Vol. ??, No. ??, ????

EXTERNAL SORTING ON FLASH MEMORY VIA NATURAL PAGE RUN GENERATION 9

Sequential Read (MB/s) Sequential Write (MB/s) Random Read (IO/s) Random Writes (IO/s)
Super Talent UltraDrive GX FTM56GX25H 256 GB SSD 230 180 4630 1866
Seagate Barracuda 7200 RPM ST3500418AS 500GB SATA HDD 73 64 159 111

TABLE 1. Read and write characteristics for the SSD and HDD used in our experiments.

algorithm can take advantage of partially sorted data
to create longer sorted runs.

• FAST This is the external sorting algorithm designed
by Park et. al. [9] especially for use with flash memory.
The algorithm was described in Section 8.3.

For all of the above algorithms, we used a merge
cluster size of 1 page following the analysis in Section
Appendix A.2.

7. EXPERIMENTAL RESULTS

We conducted six experiments. The first four experiments
used the real data set and the last two used the synthetic data
set. In the first experiment, we varied the data size of the
real data. In the second experiment, we varied RAM size.
In the third experiment, we varied the amount of update. In
the fourth experiment, we reported the results from sorting
different columns of the US Census 2000 data. In the
fifth experiment, we tested the scalability of the different
algorithms by varying the size of the synthetic data set.
Finally, in the sixth experiment, we varied the record size
of the synthetic data set.

We only report the results for NaturalDAGMSort for
experiment 1 since NaturalDAGMSort runs too slowly for
all other experiments due to the larger data size.

7.1. Real data: vary data size results

In this experiment, we compare the performance of the
different algorithms when the data size is varied from 1000
pages to 5000 pages for the real US Census 2000 data. We
set the RAM size to 500 pages. We left the other parameters
to the default settings specified in Table 2.

Figure 7 shows the results for this experiment. The
results show our heuristic NaturalMSort algorithm is the best
performer for total execution time (Figure 7 (b)). This can
be explained by the similarity between the shape of total
execution time and the number of write IO curves (Figure
7 (b)). This suggests that the write IO costs dominate all
other costs and that NaturalMSort produces the second least
number of write IO. Although NaturalDAGMSort produces
a lower number of write IO than NaturalMSort, it is not
practical to use it when the data size is above 3000 pages
(it takes more than 2 hours for 4000 pages) because of its
high run time complexity.

Although the NaturalMSort algorithm executes much
faster than NaturalDAGMSort, it still manages to find a high
percentage of naturally occurring page runs as shown in
Table 3. The table shows NaturalDAGMSort is able to find
a higher percentage of naturally occurring page runs than
NaturalMSort, but this comes at a very high CPU cost.

7.2. Real data: vary RAM size results

In this experiment, we compare the performance of the
different algorithms when the RAM size is varied from 200
pages (around 1% of total data size) to 5000 pages (around
26% of total data size) for the real US Census 2000 data. We
left the other parameters to the default settings specified in
Table 2. We do not include the results for NaturalDAGMSort
in this or any subsequent experiments because it too slow for
any data size larger than 3000 pages, as shown in Section
7.1.

Figure 8(a) shows the total execution time result when
the RAM size is varied. Table 4 shows the ratio of total
execution time of the competing external sort algorithm
against the total execution time of NaturalMSort. Therefore,
a ratio of 2 means NaturalMSort outperforms the competing
algorithm by a factor of 2. The results show that when
the RAM size is 800 pages (4% of total data size) or
larger, NaturalMSort significantly outperforms the other
algorithms. This can be explained by looking at Table
5, which shows that when the RAM size gets to 800
pages, 72% of the runs used by NaturalMSort are naturally
occurring. Furthermore, the table also shows at 800 pages,
runs need to be 25 pages long. This shows that even in this
difficult situation, our heuristic algorithm can find naturally
occurring page runs a large percentage of the time.

Figure 8(a) also shows NaturalMSort does not perform
as well as the other algorithms when RAM size is very
small (below 800 pages or 4% of total data size). This is
because when the RAM size is that small, the size of the
naturally occurring page runs is large (see Table 5), which
makes it hard to find many non-overlapping pages. At this
point, the small benefit from finding the small percentage of
naturally occurring page runs is outweighed by the high cost
of looking for them.

The results in Figures 8(b) and 8(c) show that NaturalM-
Sort outperforms TradMSort and ReplaceMSort at larger
RAM sizes because of its ability to reduce write IO costs
rather than read IO costs. This matches our aim explained in
Section 4. The reduced write IO costs is due to the high per-
centage of naturally occurring runs found, as shown in Table
5.

The reason the FAST algorithm is generally the worst
performer is that it tries to create longer sorted runs by taking
too many read passes through the data. This can be seen
from Figure 8(b).

7.3. Real data: vary update

In this section, we answer the question of how robust
NaturalMSort is to varying amounts of updates in the
partially sorted data. We answer this question by injecting

, Vol. ??, No. ??, ????

10 Y. LIU, Z. HE, Y. P. CHEN, T. NGUYEN

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 15 20 25 30 35 40 45 50

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
s)

Total Data Size (x100 page)

NaturalMSort
NaturalDAGMSort

TradMergeSort
ReplaceMSort

FAST

(a) Total execution time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 15 20 25 30 35 40 45 50

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
s)

Total Data Size (x100 page)

NaturalMSort
NaturalDAGMSort

TradMergeSort
ReplaceMSort

FAST

(b) Total execution time (zoomed in)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 R

ea
d

IO

RAM Size (x100 pages)

NaturalMSort
NaturalDAGMSort

TradMergeSort
ReplaceMSort

FAST

(c) Number of Read IO

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 15 20 25 30 35 40 45 50

N
um

be
r

W
rit

e
IO

RAM Size (x100 pages)

NaturalMSort
NaturalDAGMSort

TradMergeSort
ReplaceMSort

FAST

(d) Number of Write IO

FIGURE 7. Vary total data size for the real data

Data Size (pages) 1000 2000 3000 4000 5000
Percentage of runs being naturally occurring(heuristic design) 90.4 73.00 65.60 53.80 36.20
Percentage of runs being naturally occurring(DAG based design) 91.60 93.00 89.80
Size of naturally occurring page runs (pages) 3 4 6 8 10

TABLE 3. Vary data size results for the real data

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
s)

RAM Size (x100 pages)

NaturalMSort
TradMergeSort
ReplaceMSort

FAST

(a) Total execution time

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 R

ea
d

IO

RAM Size (x100 pages)

NaturalMSort
TradMergeSort
ReplaceMSort

FAST

(b) Number of Read IO

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

W
rit

e
IO

RAM Size (x100 pages)

NaturalMSort
TradMergeSort
ReplaceMSort

FAST

(c) Number of Write IO

FIGURE 8. Vary RAM size for the real data

RAM Size (x 100 pages) 2 4 6 8 10 20 30 40 50
TradMSort/NaturalMSort 0.94 0.98 1.0 1.54 1.87 1.86 1.89 1.87 1.93

ReplaceMSort/NaturalMSort 0.85 0.91 0.92 1.42 1.78 1.79 1.81 1.80 1.92
FAST/NaturalMSort 1.09 1.04 1.0 1.53 1.94 1.87 1.91 1.85 1.92

TABLE 4. Total execution time of competing algorithms
NaturalMSort for varying RAM size for the real data

RAM Size (x 100 pages) 2 4 6 8 10 20 30 40 50
Percentage of runs being naturally occurring 0 0.27 16.31 72.04 98.43 99.93 99.98 99.99 99.99
Size of naturally occurring page runs (pages) 107 51 33 25 20 10 7 5 4

TABLE 5. Vary RAM size results for the real data.

, Vol. ??, No. ??, ????

EXTERNAL SORTING ON FLASH MEMORY VIA NATURAL PAGE RUN GENERATION 11

UpdatePercentage

M
a
x
U
p
d
a
te
R
a
n
g
e

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
5% 2.18 2.31 2.31 2.29 2.27 2.28 2.25 2.26 1.43 2.27 1.86
10% 2.20 2.24 2.32 2.12 2.26 1.67 2.17 1.32 2.24 2.10 2.17
20% 2.28 2.29 2.26 1.72 2.08 1.61 1.29 2.15 2.11 2.15 2.09
30% 2.29 2.28 2.15 2.18 2.15 1.36 2.04 2.08 2.12 2.06 2.09
40% 2.28 2.32 2.11 2.18 1.75 1.44 1.59 1.56 1.65 1.51 1.45
50% 2.30 2.26 2.16 1.95 1.40 1.22 1.19 1.14 1.11 1.13 1.19
60% 2.34 2.21 2.11 2.07 1.53 1.28 1.01 0.99 0.98 0.97 0.97
70% 2.28 2.58 2.17 2.08 1.54 1.14 1.04 0.98 0.98 0.96 0.43
80% 2.18 2.22 2.15 2.06 1.51 1.15 1.00 1.05 1.05 0.97 0.96
90% 2.22 2.22 2.15 2.13 1.58 1.15 1.01 1.05 0.96 1.04 0.96

100% 2.23 2.19 2.14 2.09 1.37 1.14 1.03 0.98 0.97 0.96 0.96

TABLE 6. Vary update results of TradMSort total execution time
NaturalMSort total execution time for the real

data.

varying amount of updates to the sorted real data by varying
the values of UpdatePercentage (as described in Section
6) and MaxUpdateRange from 5% to 100%. We left the
other parameters to the default settings specified in Table 2.

Table 6, 7, and 8 show the performance of NaturalMSort
against TradMSort, ReplaceMSort and FAST, respectively.
The tables show the ratio of total execution time of the
competing external sort algorithm against the total execution
time of NaturalMSort. Therefore, a value of two means
NaturalMSort outperforms the competing algorithm by a
factor of 2.

The results show that NaturalMSort outperforms the other
external sorting algorithms for a wide range of update
amounts. When an update amount is low, NaturalMSort can
outperform TradMSort by more than a factor of 2. This
can be explained by two facts. First, NaturalMSort can
potentially save half of the write IO costs and it also uses less
CPU time. Second, as we saw in the previous experiments,
write IO costs are the dominant costs on total execution time.
Due to the design of NaturalMSort, it can virtually avoid any
write IO during run generation and thereby effectively halve
the write IO costs. In addition, we found TradMSort can
spend a factor of 13.7 more CPU time for run generation
compared to NaturalMSort. This is because TradMSort
needs to sort large runs in RAM which takes a lot more time.
In contrast, NaturalMSort does not need to sort naturally
occurring runs at all during run generation. Although
NaturalMSort incurs slightly more CPU overhead during the
merge phase (internal sorting of pages belonging to naturally
occurring page runs) than NaturalMSort, this overhead is
much lower than the CPU overhead savings made during run
generation.

As expected, when the amount of updates increases,
NaturalMSort loses its performance advantage against the
competing algorithms. However, it is encouraging to
see that NaturalMSort can tolerate around 50% update in
both UpdatePercentage and MaxUpdateRange before it
starts to be slightly worse than the competing algorithms.
These results show NaturalMSort can tolerate a large amount
of updates to partially sorted data when finding naturally
occurring page runs.

UpdatePercentage

M
a
x
U
p
d
a
te
R
a
n
g
e

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
5% 1.84 1.87 1.86 1.84 1.85 1.86 1.84 1.83 1.18 1.87 1.52
10% 1.88 1.86 1.87 1.82 1.85 1.38 1.78 1.08 1.84 1.73 1.82
20% 1.87 1.86 1.82 1.38 1.75 1.32 1.05 1.79 1.81 1.82 1.79
30% 1.85 1.80 1.77 1.75 1.15 1.86 1.77 1.79 1.82 1.78 1.84
40% 1.85 1.86 1.80 1.79 1.47 1.26 1.38 1.39 1.38 1.36 1.31
50% 1.83 1.85 1.79 1.73 1.25 1.09 1.06 1.03 1.02 1.02 1.01
60% 1.86 1.83 1.76 1.36 1.07 0.91 0.90 0.88 0.88 0.88 0.87
70% 1.86 1.82 1.80 1.76 1.34 1.04 0.91 0.89 0.88 0.88 0.88
80% 1.83 1.81 1.78 1.35 1.03 0.92 0.89 0.89 0.88 0.88 1.82
90% 1.87 1.83 1.80 1.77 1.32 1.04 0.91 0.88 0.87 0.88 0.87
100% 1.86 1.83 1.80 1.75 1.24 1.03 0.93 0.88 0.89 0.87 0.87

TABLE 7. Vary update results of ReplaceMSort total execution time
NaturalMSort total execution time for the real

data.

UpdatePercentage

M
a
x
U
p
d
a
te
R
a
n
g
e

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
5% 1.85 1.89 2.03 2.06 1.96 2.06 1.92 1.87 1.26 1.96 1.57
10% 1.90 1.88 1.89 2.02 1.93 1.42 2.00 1.11 1.88 1.79 1.85
20% 2.05 1.95 2.03 1.51 1.82 1.36 1.16 1.86 1.88 1.89 1.92
30% 1.88 1.95 2.01 2.01 1.96 1.19 1.83 1.88 1.90 1.87 1.89
40% 1.90 2.00 2.00 2.01 1.51 1.30 1.43 1.45 1.42 1.39 1.38
50% 2.07 1.97 1.91 1.41 1.87 1.12 1.09 1.06 1.05 1.05 1.05
60% 1.93 1.98 1.96 1.94 1.38 1.10 0.94 0.91 0.91 0.91 0.91
70% 1.93 2.00 1.97 1.97 1.50 1.07 0.94 0.98 0.98 0.91 0.98
80% 1.89 1.96 1.99 2.00 1.50 1.06 0.93 0.91 0.91 0.99 0.99
90% 1.92 2.01 2.00 1.99 1.47 1.17 0.93 0.91 0.90 0.90 0.97
100% 1.90 2.00 1.97 1.96 1.39 1.17 0.96 0.90 0.99 0.98 0.97

TABLE 8. Vary update results of FAST total execution time
NaturalMSort total execution time for the real

data.

7.4. Real data: vary column number results

In previous experiments, we used the default real data
column 7 of the US census data. In this section, we report the
results for columns 6 to 20 of the US Census 2000 data. This
allows us to show that the use of column 7 in the previous
experiments was representative of the different columns of
the US census data set. We actually tested the first 100
columns of the real data but due to space constraints, we
only show the results for columns 6 to 20. The performance
difference between the algorithms did not vary much across
all 100 columns tested. The columns below 6 were not tested
since they contained categorical data instead of numerical
data.

The results for this experiment are reported in Table 9.
The results show the performance of NaturalMSort did not
vary much across the different columns tested. We analyzed
the data distribution of the different columns and found
that they all conform to a very skewed Zipfian distribution.
Although this means we essentially tested our algorithm on
the same data distribution, nevertheless it shows our results
are robust across the different columns of the US Census
2000 data. The synthetic data used in subsequent sections
use uniform distribution. This means we have tested our
algorithms across both a very skewed Zipfian distributed
data set and an uniform distributed data set.

7.5. Synthetic data: vary data size

In this section, we compare the performance of the
algorithms when the total data size is varied for the synthetic
data set. The remaining parameters are set to the default

, Vol. ??, No. ??, ????

12 Y. LIU, Z. HE, Y. P. CHEN, T. NGUYEN

Column Number 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NaturalMSort 42.78 43.04 43 42.93 43 44.48 43.65 49.57 49.89 42.66 42.87 54.2 43.74 50.92 48.33
TradlMSort 83.58 80.66 81.03 80.91 84.06 83.21 83.49 86.27 86.28 83.45 84.2 85.47 86.87 84.06 85.65
ReplaceMSort 77.13 78.03 77.96 77.58 77.59 77.9 78.03 77.63 77.44 77.15 77.68 77.49 77.27 77.39 81.4
FAST 79.32 81.40 80.53 80.94 79.57 80.36 79.74 79.42 79.31 79.9 79.69 79.38 79.93 79.35 79.77

TABLE 9. Total execution time (secs) results for varying column number of US Census 2000 Data

 0

 500

 1000

 1500

 2000

 2500

 500 1000 2000 3000 4000 5000

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
s)

Total Data Size (x100 pages)

NaturalMSort
TradMSort

ReplaceMSort
FAST

(a) Total execution time SSD

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 500 1000 2000 3000 4000 5000

N
um

be
r

of
 R

ea
d

IO

Total Data Size (x100 pages)

NaturalMSort
TradMSort

ReplaceMSort
FAST

(b) Number of Read IO

 0

 200000

 400000

 600000

 800000

 1e+06

 500 1000 2000 3000 4000 5000

N
um

be
r

W
rit

e
IO

Total Data Size (x100 pages)

NaturalMSort
TradMSort

ReplaceMSort
FAST

(c) Number of Write IO

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
s)

Data File Size (x100 Pages)

NaturalMSort
TradMSort

ReplaceMSort
FAST

(d) Total execution time HDD

FIGURE 9. Vary synthetic data size

values described in Section 2. We show both SSD and
HDD total execution time results because we want to verify
our claim that NaturalMSort is customized for the unique
characteristics of the SSD and therefore not suitable for the
HDD.

We will first discuss the results for the SSD. Figure
9(a) shows the total execution time results for the different
algorithms when using the SSD. Table 10 presents the
same results in terms of the ratio of total execution time
of each of the sorting algorithms against NaturalMSort.
Therefore, a value of two means NaturalMSort outperforms
the competing algorithm by a factor of 2. The results
show NaturalMSort significantly outperforms the competing
algorithms when the total data size is smaller than 300, 000
pages. This is because NaturalMSort finds a high percentage
of naturally occurring page runs at this lower total data size
range, as can be seen in Table 11

NaturalMSort loses its advantage over the competing
algorithms when the total data size increases. This is
because, in this experiment, the RAM size does not change
and therefore, as the data size increases, the RAM to data
size ratio drops rapidly. When the total data size increases
beyond 300, 000 pages, the corresponding RAM size / data
size ratio drops below 0.0067. Lower RAM size / data size
ratio results in increases in the size of naturally occurring
runs which make them harder to find (see Table 11).

The results show ReplaceMSort and FAST consistently
outperform TradMSort. This is because both ReplaceMSort

and FAST create longer sorted runs than TradMSort. Longer
run size means less runs are merged together which, in turn,
reduces CPU usage.

Figure 9(d) shows the total execution time results for the
HDD. As expected, the results show that the NaturalMSort
is consistently the worst performer. This is due to the extra
seeks incurred by NaturalMSort, outweighing the benefits
gained from a reduced number of write IO. NaturalMSort
incurs extra seeks in two places: when loading pages far
apart from each other during run generation; and loading
the scattered pages of naturally occurring page runs during
the merge phase. These extra seeks do not incur much
overhead when NaturalMSort is operating on the SSD but
on the HDD, it dominates the execution time.

7.6. Synthetic data: vary record size

The record size is an important parameter for determining
the success of our approach of finding naturally occurring
run, the reason being that more records in one page makes it
harder to find naturally occurring runs, since it increases the
chances of having more extreme maximum and minimum
values in each page. Accordingly, in this section, we
compare the performance of the algorithms when the record
size is varied for the synthetic data set. The remaining
parameters are set to the default values described in Section
2.

Figure 10(a) and Table 12 show NaturalMSort consis-

, Vol. ??, No. ??, ????

EXTERNAL SORTING ON FLASH MEMORY VIA NATURAL PAGE RUN GENERATION 13

Total Data Size (x100 pages) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
TradMSort / NaturalMSort 2.32 1.92 1.68 1.30 1.24 1.20 1.03 0.95 1.01 0.98

ReplaceMSort / NaturalMSort 1.67 1.44 1.52 1.09 1.21 1.13 0.98 0.97 0.95 0.95
FAST / NaturalMSort 1.69 1.48 1.56 1.13 1.10 1.01 0.98 0.92 0.99 0.98

TABLE 10. Total execution time of competing algorithms
NaturalMSort for varying synthetic total data size when using the SSD.

Data file size(x100 pages) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Percentage of runs being naturally occurring 96.11 84.22 86.56 55.23 54.32 41.14 16.89 6.35 12.46 11.21
Size of naturally occurring page runs (pages) 3 6 8 11 13 16 18 21 23 26

TABLE 11. Vary record size results for the synthetic data set.

tently outperforms the other algorithms for the entire range
of record sizes tested. Furthermore, it shows NaturalMSort
can outperform competing algorithms by more than 30%,
even when the record size is just 50 bytes (translates to 81
records in one page). This is hard to achieve since find-
ing naturally occurring page runs becomes difficult when so
many records in the same page can be updated. Table 13
shows even when records are only 50 bytes, NaturalMSort
can find 63.58% of naturally occurring page runs. These
results show the robustness of NaturalMSort to changing
record sizes.

8. RELATED WORK

Most research in the area of external sorting have focused
on speeding up the run generation or merge phases of the
external merge sort, hence we start our discussion on these
two sub-areas of research.

8.1. Speeding up the run generation phase

Speeding up sorted run generation has been studied by
the research community [10, 3, 11]. There are basically
two general ways for creating sorted runs in an external
merge sort. The first is load-sort-store and the other is
replacement selection [8]. Load-sort-store is the approach
described in Section 3 which repeats the following: it loads
as many pages as possible into the RAM buffer and sorts
them into a sorted run and stores them back into the disk.
Replacement selection typically creates runs twice as long
as load-sort-store by only including records in the current
run which are higher than the highest key output so far, and
the non-qualifying records are used for the next run. This
approach is particularly suitable for situations where the data
is almost sorted, since in this case, very long sorted runs
can be created. In addition, replacement selection allows
computation and IO to be overlapped during run generation.

Larson and Graefe [10] proposed efficient memory
management algorithms for run generation which support
variable length records. A replacement selection algorithm
is proposed that handles variable length records. The
proposed algorithms offer performance which gracefully
adapts to varying RAM buffer sizes. Larson [3] proposed
a batched version of replacement selection which is also
CPU cache conscious and can handle variable sized records.
All of the above work either attempts to speed up CPU

processing in run generation or create longer runs. Either
way, they do not reduce the amount of write IO. In contrast,
our work is focused on reducing the amount of write IO
during run generation by finding naturally occurring page
runs.

8.2. Speeding up the merge phase

Most proposed improvements on the traditional external
merge sort algorithm are focused on speeding up the merge
phase [12, 13, 14]. Double buffering and forecasting (see
[8]) are well-known techniques for overlapping computation
and disk IO during the merge phase. The idea in double
buffering is to assign two buffers to each run during the
merge phase. One buffer stores the current cluster of the run
being processed and the other is used as a prefetch buffer for
the next cluster of the same run. This allows the processing
of the current cluster to be overlapped with the prefetching
of the next cluster. Forecasting assigns one buffer to each
run and one extra prefetch buffer to the particular run which
is forecasted to be the next one that needs to be loaded.
Salzberg [15] analyzed the effectiveness of double buffering
under different conditions for situations where memory size
is large. Zhang and Larson [13] proposed three buffering
and read ahead strategies that improve on traditional double
buffering and forecasting.

Zheng and Larson [12] proposed using extra buffer space
during merging to order the retrieval of data blocks from the
HDD in order to reduce total I/O time. Estivill-Castro and
Wood [14] extended this approach by grouping adjacent run
blocks together to reduce disk seeks. In contrast to the above
techniques, we are focused on improving the run generation
phase of the external merge sort instead of the merge phase.

8.3. External sorting using flash memory

Andreou et. al. [5] proposed a variant of the replacement
selection external merge sort algorithm for sorting in
Flash Memory. Park et. al. [9] proposed the Flash-
Aware external Sorting algorithm (FAST) which replaces
writes with multiple read passes. Their approach can be
conceptualized as extending replacement selection sort to
create longer sorted runs. Instead of creating the longest run
you can using a one pass replacement selection sort, they
take multiple read passes to create longer sorted runs. Our
work contrasts from theirs in that we can significantly reduce

, Vol. ??, No. ??, ????

14 Y. LIU, Z. HE, Y. P. CHEN, T. NGUYEN

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
s)

Record Size (Bytes)

NaturalMSort
TradMSort

ReplaceMSort
FAST

(a) Total execution time

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600

N
um

be
r

of
 R

ea
d

IO

Record Size (Bytes)

NaturalMSort
TradMSort

ReplaceMSort
FAST

(b) Number of Read IO

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600

N
um

be
r

of
 W

rit
e

IO

Record Size (Bytes)

NaturalMSort
TradMSort

ReplaceMSort
FAST

(c) Number of Write IO

FIGURE 10. Vary record size for the synthetic data

Record Size (Bytes) 50 100 200 300 400 500 600
TradMSort / NaturalMSort 1.6354 1.6836 1.7323 1.7489 2.1876 2.0450 1.8644

ReplaceMSort / NaturalMSort 1.3251 1.3829 1.5270 1.5452 1.8267 1.8056 1.6268
FAST / NaturalMSort 1.3704 1.4239 1.5679 1.5751 1.8397 1.8529 1.6530

TABLE 12. Total execution time of competing algorithms
NaturalMSort for varying synthetic record size

the number of write IO without needing to significantly
increase the total number of read IO. We only introduce a
small amount of read IO during the merge phase to read
indexes to naturally occurring page runs.

8.4. Virtual sorted runs

We now describe the existing work that is closest to ours.
Haerder [16] first proposed the idea of combining multiple
non-overlapping runs into one longer run during the merge
phase of external sorting. The non-overlapping runs can
be virtually concatenated by declaring they belong to one
run instead of physically joining them in the disk. Graefe
[17] called these ”virtual” runs and stated that this approach
is particularly suitable for almost sorted input. Graefe
goes a step further to suggest virtual runs can be created
by concatenating ”partial” virtual runs. For example, if
a large part of the one sorted run does not overlap with
a large portion of another sorted run, then these can be
joined to form one longer virtual sorted run. However, no
experimental work was done to verify the effectiveness of
the approach.

Although this work appears similar to ours, there are
a number of key differences. First, we create naturally
occurring page runs by combining non-overlapping pages of
tuples to speed up the run generation. In contrast, their work
is focused on virtually concatenating non-overlapping sorted
runs to speed up the merge phase. Section Appendix A.2
explains our analysis which concludes optimal external
merge sort for flash memory typically has only one merge
pass. However, their approach is only useful for multi-pass
merge. In addition, our problem is more challenging since it
has a much larger search space. This is because we search
for non-overlapping pages instead of sorted runs. Second,
we develop a method to determine the optimal size for
naturally occurring runs based on the characteristics of flash
memory (see Section 5.3), whereas, no such work has been
done in virtual run generation. Third, we show the problem

of finding naturally occurring page runs can be mapped to
the shortest path algorithm for a DAG. No such work exists
for finding virtual runs. Fourth, we propose a heuristic
solution to the problem of finding naturally occurring runs
which we empirically show is computationally efficient and
can find a high percentage of naturally occurring runs. No
existing empirical or theoretical work has been conducted on
the effectiveness of using virtual runs to speed up external
merge sort.

8.5. Other work on external sorting

Nyberg et. al. [11] propose the AlphaSort algorithm which
performs CPU cache sensitive run generation. In addition,
they use multiple processors to break the sort into subsort
chores which are then merged by a root process. Some
researchers focus on the problem of adjusting external merge
sort to adapt to the changing amount of memory available
[18, 19]. In contrast, we assume the memory available for
sorting is pre-determined and fixed. Yiannis et. al. [20]
propose a compression-based external sorting technique.
Govindaraju et. al. [21] propose the use of the graphics
processing unit to sort large databases. Some researchers
work on the problem of performing external sorting in-place
[22, 23], namely no temporary disk space is required during
sorting. In contrast, we assume there is adequate temporary
space available on the flash memory to perform out of place
external sorting. We think this is a reasonable assumption,
given the fast pace at which SSDs are increasing in size and
decreasing in cost.

9. CONCLUSION

In this paper, we proposed a novel approach for speeding
up the sorted run generation phase of an external merge
sort. The approach is designed to sort partially sorted
data. The idea is to replace writing sorted runs to disk with
writing indexes to naturally occurring page runs which can
potentially save up to a factor of 1024 on write IO costs. The

, Vol. ??, No. ??, ????

EXTERNAL SORTING ON FLASH MEMORY VIA NATURAL PAGE RUN GENERATION 15

Record Size(Bytes) 50 100 200 300 400 500 600
Percentage of runs being naturally occurring 63.58 72.03 86.56 85.55 99.86 99.86 90.26
Size of naturally occurring page runs (pages) 8 8 8 8 8 8 8

TABLE 13. Vary record size results for the synthetic data set.

approach is particularly suitable for the characteristics of
flash memory, where write costs are higher than read costs.

In this paper, we proposed a formula for determining
the optimal size of naturally occurring page runs. We also
map the problem of finding naturally occurring runs into
the shortest path problem on a DAG. Accordingly, we use
a shortest path algorithm to solve the problem. However,
the algorithm was found to have high run time complexity
and experimentally found to be impractical to use for even
moderately sized data. Hence, we proposed a fast heuristic
solution which executes much faster but still finds a high
percentage of naturally occurring page runs.

A detailed experimental study was conducted into the
effectiveness of our proposed algorithms against three likely
competitors, using both real and synthetic data sets. The
results show our fast heuristic algorithm can find a high
percentage of naturally occurring runs, even when there was
a high percentage of updates. Further, finding naturally
occurring runs had a significant impact on reducing total
execution time. The results show our approach prefers a
larger RAM to total data size ratio, since in these conditions,
the required size of the naturally occurring runs are smaller.
However, a RAM to total data size ratio of 0.067 is all that
is needed for our approach to outperform its competitors.
Our approach can halve the sorting time compared to its
competitors under favorable situations but is only slightly
worse under unfavorable situations.

In the future, we plan to propose even faster and more
effective heuristics for finding naturally occurring page runs.
We will investigate how our approach can be integrated into
the sorted merge join operation.

ACKNOWLEDGMENT

This work is supported under the Australian Research
Council’s Discovery funding scheme (project number
DP0985451). We would like to thank the anonymous
reviewers of this paper for their insightful comments and
suggestions.

APPENDIX A. IMPORTANCE OF CLUSTER SIZE
FOR TRADITIONAL EXTERNAL
MERGE SORT

In this section, we explain why determining the best cluster
size (IO unit) for an external merge sort is particularly
important for performance. We highlight the difference
between the best cluster size for HDD and flash memory.

Appendix A.1. The best merge cluster size for HDD

As mentioned in Section 3, a traditional external merge sort
loads sorted runs in clusters into the RAM buffer during the

Input Buffer 1

Input Buffer 2

Output Buffer

(a) Large cluster size merge

Output Buffer

Input Buffer 4

Input Buffer 3

Input Buffer 2

Input Buffer 1

(b) Small cluster size merge

FIGURE A.1. Example showing merging at different cluster sizes

merging of sorted runs. Figure 1(a) shows that when the
cluster size is large, only a very few runs can be merged
in each step, resulting in more merge passes. During each
merge pass, all data pages need to be loaded from the disk
and written back to the disk in a sorted order. Therefore,
less merge passes result in less IO. However, using smaller
cluster sizes as shown in Figure 1(b) results in more random
seeks (which is very costly on the HDD) because the same
amount of data is loaded into RAM in smaller clusters.
The positive effect of smaller clusters is less merge passes.
Therefore, the best cluster size is non-trivial to determine
for the HDD. This has been demonstrated experimentally
in the paper by Lee et. al. [1]. The IO cost of the merge
phase (MCost) can be described using the equation below
(assuming the output buffer size is one cluster):

MCostHDD(N,M,C) = ⌈log⌊M/C⌋−C(⌈N/M⌉)⌉× (A.1)
(HDDseek⌈N/C⌉+N(HDDRC+HDDWC))

where N , M and C are the data size in the pages, the
RAM buffer size in the pages and the cluster size in the
pages, respectively. HDDseek is HDD seek cost, HDDRC

the HDD transfer cost for reading one page and HDDWC

the HDD transfer cost for writing one page.
As we can see from Equation A.2, the number of merge

passes (⌈log⌊M/C⌋−1(⌈N/M⌉)⌉) decreases with decreasing
cluster size C, but the number of HDD seeks per pass
(⌈N/C⌉) increases with decreasing C. HDDseek is
typically much higher than HDDRC and HDDWC .

, Vol. ??, No. ??, ????

16 Y. LIU, Z. HE, Y. P. CHEN, T. NGUYEN

M ↓ N → 1 GB 10 GB 100 GB 1000 GB
50 MB 1 1 1 2
500 MB 1 1 1 1

1 GB 0 1 1 1
4 GB 0 1 1 1

TABLE A.1. Table showing the optimal number of merge passes
for sorting on the flash memory for various memory (M) and data
(N) sizes.

Appendix A.2. The best merge cluster size for flash
memory

The best merge cluster size for flash memory is much
more trivial to find since flash memory does not have
rotational latency and therefore, its random read and
sequential read performance is much more similar. Hence,
we can approximate the merge IO costs for flash memory
(MCostF lash) as follows (assuming the output buffer size
is one cluster):

MCostF lash(N,M,C)=⌈log⌊M/C⌋−C(⌈N/M⌉)⌉N(FMRC+FMWC)

(A.2)
where the terms above have the same definition as for

Equation A.2 and FMRC is the cost of reading a page from
the flash memory and FMWC is the cost of writing a page
into the flash memory.

Equation A.2 shows smaller cluster size C will result in
a lower cost of merge on the flash memory since it results
in less merge passes with no corresponding increase in IO
cost during each pass. This is confirmed by Lee et. al. [1]
whose experiments show the optimal cluster size for flash
memory is in the range of 2 to 4 KB. Most modern flash
memory drives have a page size of 4 KB. Therefore, the
optimal cluster size for flash memory is just one page in size.

Having established that the optimal cluster size is one
page for flash memory, we show in Table A.1 the number
of merge passes (⌈log⌊M⌋−1(⌈N/M⌉)⌉) for various M and N
sizes. We assume the page size of 4 KB. From the table, we
can conclude for most typical memory and data sizes, the
optimal number of merge passes is 1. The only case where
more than 1 merge pass is needed is when 50 MB of memory
is used to sort 1 TB of data.

REFERENCES

[1] Lee, S.-W., Moon, B., Park, C., Kim, J.-M., and Kim, S.-W.
(2008) A case for flash memory SSD in enterprise database
applications. SIGMOD Conference, Vancouver, Canada, 9-
12 June, pp. 1075–1086. ACM.

[2] Estivill-Castro, V. and Wood, D. (1992) A survey of adaptive
sorting algorithms. ACM Computing Survey, 24, 441–476.

[3] Larson, P.-A. (2003) External sorting: Run formation
revisited. IEEE Transactions on Knowledge and Data
Engineering, 15, 961–972.

[4] Dobosiewicz, W. (1984) Replacement Selection in 3-level
Memories. The Computer Journal, 27, 334–339.

[5] Andreou, P., Spanos, O., Zeinalipour-Yazti, D., Samaras, G.,
and Chrysanthis, P. K. (2009) Fsort: external sorting on flash-
based sensor devices. Proceedings of the Sixth International

Workshop on Data Management for Sensor Networks, 24
August.

[6] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990)
Introduction to Algorithms. The MIT Press.

[7] Bureau, U. C. (2000). United States Census 2000.
http://www.census.gov/main/www/cen2000.html.

[8] Knuth, D. E. (1973) Sorting and Searching volume 3 of
the The Art of Computer Programming. Addison-Wesley,
Reading, Massachusetts.

[9] Park, H. and Shim, K. (2009) FAST: Flash-aware external
sorting for mobile database systems. J. Syst. Softw., 82, 1298–
1312.

[10] Larson, P.-A. and Graefe, G. (1998) Memory management
during run generation in external sorting. SIGMOD
Conference, New York, NY, USA, pp. 472–483. ACM.

[11] Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J., and Lomet,
D. (1994) AlphaSort: a RISC machine sort. SIGMOD
Record, 23, 233–242.

[12] Zheng, L. and Larson, P.-A. (1996) Speeding up external
mergesort. IEEE Transaction on Knowledge and Data
Engineering, 8, 322–332.

[13] Zhang, W. and Larson, P.-A. (1998) Buffering and read-
ahead strategies for external mergesort. VLDB Conference,
San Francisco, CA, USA, pp. 523–533. Morgan Kaufmann
Publishers Inc.

[14] Estivill-Castro, V. and Wood, D. (1994) Foundations for faster
external sorting (extended abstract). Proceedings of the
14th Conference on Foundations of Software Technology and
Theoretical Computer Science, London, UK, pp. 414–425.
Springer-Verlag.

[15] Salzberg, B. (1989) Merging sorted runs using large main
memory. Acta Informatica, 27, 195–215.

[16] Härder, T. (1977) A scan-driven sort facility for a relational
database system. VLDB Conference, pp. 236–244. VLDB
Endowment.

[17] Graefe, G. (2006) Implementing sorting in database systems.
ACM Computing Survey, 38, 10.

[18] Pang, H., Carey, M. J., and Livny, M. (1993) Memory-
adaptive external sorting. VLDB Conference, San Francisco,
CA, USA, pp. 618–629. Morgan Kaufmann Publishers Inc.

[19] Zhang, W. and Larson, P.-A. (1997) Dynamic memory
adjustment for external mergesort. VLDB Conference,
San Francisco, CA, USA, pp. 376–385. Morgan Kaufmann
Publishers Inc.

[20] Yiannis, J. and Zobel, J. (2007) Compression techniques for
fast external sorting. The VLDB Journal, 16, 269–291.

[21] Govindaraju, N., Gray, J., Kumar, R., and Manocha,
D. (2006) Gputerasort: high performance graphics co-
processor sorting for large database management. SIGMOD
’06: Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, New York, NY, USA, pp.
325–336. ACM.

[22] Six, H. W. and Wegner, L. (1984) Sorting a Random Access
File in situ. The Computer Journal, 27, 270–275.

[23] Dufrene, W. R. and Lin, F. C. (1992) An Efficient External
Sort Algorithm with no Additional Space. The Computer
Journal, 35, 308–310.

, Vol. ??, No. ??, ????

