
Skyline Trips of Multiple POIs Categories

Saad Aljubayrin 1, Zhen He 2, and Rui Zhang 1

1 Department of Computing and Information Systems, The University of Melbourne
Melbourne, Australia

Aljubayrin@su.edu.sa
rui.zhang@unimelb.edu.au

2 Department of Computer Science and Computer Engineering, Latrobe University
Melbourne, Australia

z.he@latrobe.edu.au

Abstract. In this paper, we introduce a new interesting path finding problem,
which is the Skyline Trips of Multiple POIs Categories (STMPC) query. In par-
ticular, given a road network with a set of Points of Interest (POIs) from different
categories, a list of items the user is planning to purchase and a pricing function
for items at each related POI; find the skyline trips in term of both trip length
and trip aggregated cost. This query has important applications in everyday life.
Specifically, it assists people to choose the most suitable trips among the skyline
trips based on two dimensions; trip total length and trip aggregated cost. We prove
the problem is NP-hard and we distinguish it from existing related problems. We
also proposed a framework and two effective algorithms to efficiently solve the
STMPC query in real time and produce near optimal results when tested on real
datasets.
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1 Introduction

Over the past few decades spatial databases have been studied extensively, resulting in
significant outcomes in areas such as spatial indexing, path finding and data modelling
[5,11,8,21,28,31]. In this paper we focus on the path finding field and introduce a new
interesting path finding problem, which is the Skyline Trips of Multiple POIs Categories
STMPC query. In particular, given a road network graph G, source s and destination d, a
set of n POIs categories C = {c1, c2, ...cn} with a set P of POIs in each category ci =
{p1, p2, ...pn}, a list O of items the user is planning to purchase O = {o1, o2, ...on}
and a pricing function f(oi) for items at each related POI pi; find the skyline trips
Sky(T ) = {t1, t2, ...tn} that each starts at s, pass through at least one POI pi from
each related category and ends at d, thus ti = {s, p1 ∈ c1, p2 ∈ c2, ...pn ∈ cn, d}.
Sky(T ) is the set of trips that are not dominated by any possible other trip in term of
both trip length and trip cost aggregated from POIs creating the trip.

Since the Trip planing query (TPQ) studied in [19] is a special case of our problem,
we would illustrate it first and distinguish it from the typical shortest path query. TPQ
is a generalization of the Traveling Salesman problem (TSP) [9] and more inclusive
than normal shortest path query. Specifically, a TPQ usually starts from a source point
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Fig. 1: Motivating example

and pass through a number of POIs in particular order and possibly restricted by some
constraint (e.g. time, distance). In contrast, a typical shortest path query aims at finding
the shortest path between source and destination by finding the smallest aggregated
weight of road segments connecting the query points. For example, TPQ can be finding
a path from a user’s office that pass by an ATM, supermarket, restaurant and ending the
trip at the user’s home. While a shortest path query can be finding the path between two
targets (e.g. ATM and supermarket) in a trip. The cost at each POIs is not considered
in the TPQ, thus, there is only one optimal trip, which is the shortest trip that passes
through at least one POI from each category.

The main difference between the TPQ query and the query studied in this paper is
that, the STMPC query involves another optimality dimension, which is the trip total
cost aggregated from POIs creating the trip. Specifically, while the TPQ query only
finds the shortest trip, our query uses the trips length and cost to find the set of skyline
trips. This results in the possibility of having multiple skyline optimal trips. We illustrate
the STMPC query in the following example.

Figure 1 shows an example of a road network with source s and destination d and a
number of POIs from three different categories; gas stations, restaurants and supermar-
kets. Based on the prices of items the user is planning to purchase and their quantity,
we define the cost at each POI. When the user at s wants to visit one POI from each
category on her way to d, there can be a large number of possible trips which all include
one POI from each category. For instance, Trip1 = {s,m1, r1, g1, d} has the shortest
distance (15) with expensive cost (45), while Trip3 = {s, r3,m3, g3, d} has the lowest
cost (30) but with quite long distance (27). In addition, there can be a trip that is both
short (17) and has a low cost (36) i.e. trip2 = {s, g2, r2,m2, d} .Therefore, the user
can choose the most preferable trip amongst the skyline trips, which are based on two
dimensions; trip distance and trip total cost. In this example the trips Trip1, T rip2 and
Trip3 are the skyline trips because they are not dominated by any other possible trip.

Motivated by scenarios such as the previous example, we formulated the STMPC
query and proposed two effective algorithms to efficiently answer the query in real time
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and produce near optimal results. Our first algorithm is generally based on defining a
new weight for each POI, where this weight is a combination of both POI cost and
POI distance from query points. Next, we perform a number of iterations, where in
each iteration we change the weight of the two dimensions (cost and distance) in order
to get the skyline candidates from each category. Our second algorithm does not only
consider the distance between each POI and the query end points, it also considers
clustered POIs using a suitable data structure (e.g. Quadtree, Rtree). This results in
more accurate skyline trips especially if some POIs are clustered in geographical spots.

In this paper we also proposed a framework to estimate the network distance be-
tween POIs and query points. This is because using the Euclidean distance in road
network does not usually provide accurate measurement while using the exact network
distance between all POIs and query points would be an expensive task at the query
time. Our framework is based on precomputing the network distance between POIs and
a group of geographical spots in the network and then using this distance to estimate
the actual network distance.

We make the following contributions:

1. We introduce the STMPC query, which is a novel path finding problem and has
important applications in everyday life.

2. We proposed two interesting heuristic algorithms to solve the STMPC query and
produce near optimal results.

3. We proposed an offline framework to estimate the network distance between POIs
and predefined geographical regions, which can contain the query points. Our frame-
work shows superior results compared to the Euclidean distance estimation.

4. We perform extensive experiments to evaluate the effectiveness and efficiency of
the proposed algorithms, and the results are summarized as follows:
(a) In term of effectiveness, our algorithms produce up to 0.99 optimal results

based on our optimality indicter. The accuracy of the distance estimated by our
framework is between 0.96 and 0.99 compared to actual network distance.

(b) In term of efficiency, our algorithms answer STMPC queries in real time and
up to four orders of magnitude faster than the baseline solution.

The reminder of the paper is organized as follows. Related work is discussed in Sec-
tion 2. Section 3 presents the preliminaries and problem definition. Sections 4 details the
proposed efficient heuristics and the distance estimation framework. The experimental
results are shown in Section 5. Finally we conclude the paper in Section 6.

2 Related Work

Related work can be categorised into two categories; road network skyline query related
problems and trip planing query related problems. We are unaware of any attempt to
investigate the problem of finding the skyline trips of multiple POIs categories within
either categories.

First, most existing studies on skyline queries (e.g.[3,29,17,27]) have focused on ef-
ficiently finding the skyline points for datasets in the traditional database systems. Only
a few studies considered the skyline concept in spatial database systems, specifically, in
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road networks. Deng in [7], proposed to solve the "Multi-source Skyline Query", which
aims at finding skyline POIs in road network based on the attribute of the POI (e.g.
price) and the aggregated distance between the POI and multiple locations. For exam-
ple, find the skyline hotels that are both cheap and close to the beach, the university
and the botanic garden. The setting of this problem is different from ours in that it only
assumes one POI category (e.g. hotels), while we consider multiple POIs categories
and also consider the total trip distance aggregated from travelling between POIs from
different categories. Therefore, the solution of Deng is not applicable to our problem.

Some other studies in road network skyline query [18,20,30] focus on finding the
skyline paths considering multiple path attributes such as distance, driving time, gas
consumption, number of traffic lights, etc. They assume different paths would have
different values at each attribute and thus their goal is to find the set of skyline paths to
allow the user to choose the most preferable path. Again, this problem is different than
ours in that it does not include any POIs nor the distance between them, hence, their
solution is not applicable.

Other road networks skyline studies such as [12,14,13], consider continuous sky-
line queries for POIs in road network. They continuously search for the skyline POIs
for a moving object considering both the attributes of the POIs (e.g. price, rating) and
their distance to the moving object. In these studies, the outcome is not a complete trip
consisting of POIs from multiple categories, instead, it is a set of skyline POIs from the
same category and hence, their solutions are not applicable to our problem.

Second, most trip planing studies [19,26,4,16] have one optimal trip that answer
their queries, while we consider a set of skyline trips. The TPQ [19] discussed in the
introduction can be considered as a special case of our problem. This is because TPQ
does not consider the cost at POIs while constructing the trip. Therefore, applying the
TPQ solution to our problem would only return one trip from the skyline trips, which is
the one with the lowest distance. The optimal sequenced rout query studied in [26,16]
aims to solve the TPQ with order constraint, is a special case of the TPQ and thus a
special case of our problem. Finally, the "The multi-rule partial sequenced route query"
studied in [4] is similar to both the optimal sequenced route query and the TPQ in that,
it may involve some order constraint.

Although some of the above mentioned studies might seem similar to the STMPC
query, their solutions are not applicable. This is because our problem is mainly inherited
from three major queries types, which are multi-dimensional skyline queries, nearest
neighbour queries and shortest path queries. On the other hand, most of the studies
discussed in this section are only inherited from two queries types.

There are some existing studies on the nearest neighbor or range queries [1,32,10,33],
which retrieve the set of objects with the smallest distance to the query point. However,
the STMPC and TPQ queries uses the aggregated distance between query points and
POIs to find the trip with the lowest total distance.

3 STMPC Query

We first formalize the STMPC query and present the baseline algorithm, and then we
prove it is NP-hard. Table 1 summarizes our notation.



Skyline Trips of Multiple POIs Categories 5

Table 1: Frequently Used Symbols
Symbol Explanation
s The source of a STMPC query.
d The destination of a STMPC query.
P A set of POIs.
C A set of POIs categories.
O A set of items the user wants to purchase.
t A trip from s to d through one POI from each category.
Dis(pi, pj) The network distance between pi and pj .
pc The cost at a POI p.
pd The aggregated distance from a POI p to both s and d.
tc A trip total cost.
td A trip total distance.
pp The priority value of a POI p.

3.1 Problem Definition

Giving a road network graph G, source s and destination d, a set C of POIs categories
C = {c1, c2, ...cn} with a set P of POIs in each category ci = {p1, p2, ...pn}, a list
O of items the user is planning to purchase O = {o1, o2, ...on}. Each item in the user
list oi can be associated with different costs at different related POIs. Let ti = {s, p1 ∈
c1, p2 ∈ c2, ...pn ∈ cn, d} be a trip that starts from s and passes at least through one
POI from each category and finishes at d. We use ti

d to donate the total distance of
a trip, which is the sum of the network distances between s, the trip POIs and d in
the travelled order; tid = Dis(s, p1) + Dis(p1, p2) + ... + Dis(pn, d). We use ti

c

to donate the total cost of a trip, which is the sum of the cost at each POI in the trip
ti
c = p1

c + p2
c + ... + pi

c. For example the trip distance of trip1 in Figure 1 is
t1

d = Dis(s,m1) +Dis(m1, r1) +Dis(r1, g1) +Dis(g1, d) = 15, while the cost of
the same trip is t1c = m1

c + r1
c + g1

c = 45.
We can consider any trip ti that starts at s, pass at least through one POI from

each category and ends at d as a valid trip because it answers the user query. However,
different trips have different distance and cost values, hence a trip with a short distance
such as trip1 may have a high cost and vice versa. Therefore, we leave it up to the
user to decide the relative importance of trip distance travelled and cost by returning
the skyline trips. The problem of the STMPC query is defined as follow:

Definition 1 Skyline Trips of Multiple POIs Categories (STMPC) Query: given a
road network graph G, source s and destination d, a set C of POIs categories with
a set P of POIs in each category, a list O of items the user is planning to purchase
and a pricing function f(oi) for items at each related POI, the STMPC query finds the
skyline trips Sky(T ) that each starts at s, passes through at least one POI from each
related category and ends at d such that any trip t ∈ Sky(T ) are not dominated by any
other trip t′ in term of both trip distance td and trip cost tc, i.e., ∀t′, td ≤ t′d ∨ tc ≤ t′c.
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Based on the above definition, a straightforward solution is as follow. First, compute
all the possible POI permutations, where only one POI from each category is chosen
based on the list of items the user wants to purchase. Next, add s and d to the beginning
and end of each found permutation in order to construct valid trips. Finally, compute
cost and network distance for each constructed trip and perform a skyline query to find
the skyline trips. The problem with this solution is that, it is extremely slow and only
applicable for very small dataset sizes. For example, it takes more than 24 hours to find
the skyline trips when applied only to 40 POIs.

3.2 STMPC NP-hard

The STMPC query can be considered as a generalization of some known path finding
problems such as TPQ [19] and the travelling salesman problem (TSP) [9]. We will
show in the following theorems that these two problems are special cases of the STMPC
problem.

Theorem 1. The metric travelling salesman problem with defined start and end points
is a special case of the STMPC query.

Proof. According to definition 1, when we simplify the STMPC problem to assume
that, there is only one POI in each category, all trips will have the same cost (e.g.
t1

c = t2
c = ... = tn

c) while visiting POIs in different order may results in trips with
different distances (e.g. t1d 6= t2

d 6= ... 6= tn
d), thus, there will only be one skyline

trip, which is the trip with the minimum distance. According to the TSP definition, this
version of the STMPC problem is an instance of the TSP. Therefore, TSP is a special
case of the STMPC problem.

Theorem 2. The trip planning query (TPQ) is a special case of the STMPC query.

Proof. According to definition 1, when we simplify the STMPC problem to assume
that all POIs from the same category have the same cost (e.g. p1c ∈ c1 = p2

c ∈ c2 =
... = pn

c ∈ cn), all trips will have the same cost (e.g. t1c = t2
c = ... = tn

c). While
visiting different POIs in different orders may results in trips with different distances
(e.g. t1d 6= t2

d 6= ... 6= tn
d), thus, there will only be one skyline trip, which is the

trip with the minimum distance. According to the TPQ definition, this version of the
STMPC problem is a an instance of the TPQ. Therefore, TPQ is a special case of the
STMPC problem.

Corollary 1. The Skyline Trips of Multiple POI Category query STMPC is NP-hard.

Proof. According to [9] and [19] the problems TSP and TPQ are proven to be NP-hard.
Therefore, since the problems TSP and TPQ are special cases of the STMPC problem
(theorems 1 and 2), the STMPC query is NP-hard.

The aim of the STMPC query is to find a set of optimal trips, which are the skyline
trips in regard to two quality dimensions; trip cost and distance. Based on theorem 2,
the TPQ is a simpler version of the STMPC query, where only the shortest optimal trip
is queried. This means, finding each skyline trip is at least as hard as the TPQ.
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4 Proposed Heuristics

In this section we present our proposed heuristics algorithms and a network distance
estimation framework. For ease of understanding, we first describe a simple Euclidean
distance based solution, which we call Weighted POIs Algorithm (WPOIs). Next we
detail the distance estimation framework, which is used by both algorithms to estimate
the network distance instead of using the Euclidean distance. Finally, we cover the sec-
ond algorithm; Clustered Weighted POIs Algorithm (CWPOIs), which is an improved
cluster based version of the first algorithm.

4.1 Weighted POIs Algorithm (WPOIs)

Here we present an efficient algorithm to find the skyline trips for multiple POIs cate-
gories based on two dimensions (trip cost and trip distance). The WPOIs algorithm is
divided into two stages; POIs nomination stage and trip construction stage. It works by
repeatedly iterating through these two stages, where the outcome of each iteration is a
skyline trip candidate. In the first stage of each iteration, every POI category nominates
one POI as the most superior POI in the category. In the trip construction stage of each
iteration, we use s, d and the nominated POI from each category to construct a trip
using a greedy approach.

POI Nomination Stage: Before we start illustrating the process of this stage, we need
to define new properties for both POIs and iterations. First, for each POI, we define
two properties, which are POI aggregated distance pd and POI cost pc. As mentioned
in Section 3 ,the property pc represents the POI expected cost based on the items the
user wants to purchase, while the property pd represents the POI aggregated Euclidean
distance from both s and d. Second, for each iteration, we define two dependant weight-
ing values wc and wd, which are the cost weight and the distance weight, respectively,
where always wc + wd = 1. These two weights represent the importance of cost and
distance when nominating a POI from each category. We also define a third property
for each POI, which is the POI priority value pp. The priority value pp is simply the
weighted sum of the POI cost and distance, thus, pp = wcpc + wdpd. However, before
finding the value of pp, we first need to normalise the POIs cost range to match their
distance range. Data normalisation is discussed in [22]. The value of pp represents the
total weight of a POI in each iteration.

The main idea of this stage is to vary the weights of the cost and distance (wc,
wd) during every iteration in order to nominate the POI with the lowest pp from each
category. For example in Figure 2, when wc = 1, thus wd = 0 (1 − wc), the priority
value pp of the three gas stations (g1, g2, g3) are (18 ∗ 0+14 ∗ 1 = 14, 14 ∗ 0+18 ∗ 1 =
18, 16 ∗ 0 + 15 ∗ 1 = 15) respectively. Therefore, the gas station category nominates
the POI with the lowest pp, which is g1. Similarly m2 and r2 are nominated. On the
other hand when wd = 0.5 and thus wc = 0.5, the nominated POIs from each category
are is g3,m3, r2 and so on. The order of the POIs is not important at this stage of the
algorithm because the trip will be formed in the trip construction stage.

Based on definition 1, if a trip ta consists of the cheapest POI from each category
(e.g. min(pi

c)), then, ta is a skyline trip because it is the cheapest. We could also expect
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Fig. 2: WPOIs algorithm example

that, if a trip tb consists of POIs with the least aggregated distance from s and d (e.g.
min(pi

d)), then, tb is a skyline trip because it is the shortest. In the previous process,
when wc = 1, only POIs with the lowest cost will be nominated resulting in the cheapest
trip (skyline). Similarly, when wd = 1 the POIs of the shortest trip (skyline) will be
nominated. The two skyline trips ta and tb are the most extreme skyline points on each
dimension, thus, based on definition 1, if ta 6= tb, then, all other skyline points are
between ta and tb.

As mentioned at the beginning of this stage, the variables wc and wd are dependant
because wc + wd = 1. Therefore, a possible approach of trying to get all the skyline
trips is to vary the cost weight wc between 1 and 0 for a number of iterations. In every
iteration, we get the best POI from each category, which together could form a skyline
trip. A straightforward technique of achieving this is to have a fixed number of iterations
(e.g. 100) where we gradually change the cost weight wc between 1 and 0 in every
iteration. For example the values of wc in the 100 iterations are (1, 0.99, 0.98...0) as
a results the values of wd are (0, 0.01, 0.02...1). However, this approach has two main
disadvantages. First, it is possible that a POI category nominates the same POI for
different iterations. For example in Figure 2, the gas station g1 is nominated when the
cost weight is 1 ≥ wc ≥ 7.5. This is because the pp of g1 is the lowest compared to
other gas stations in the specified range. Second, it is also possible to miss some skyline
trips if they exist between two fractions with a small difference between them (e.g.
wc = 0.751 and wc = 0.752). As a result, the straightforward technique is inefficient.
We use an efficient iterating technique that is based on the following theorem.

Theorem 3. If a > b and p is nominated when wc = a and also nominated when
wc = b, then p is nominated when a ≥ wc ≥ b.

Proof. Since pp = wcpc + (1− wc)pd and p is nominated based on the pp of a and b,
pa

p and pa
p respectively, where pa

p ≥ pa
p. let wc = x, thus, pxp = xpc + (1− x)pd.

if a ≥ x ≥ b then, pap ≥ px
p ≥ pa

p and hence p is nominated when wc = x.

Based on the above theorem, we do not need to fix the number of iterations (e.g. 100).
Instead, for each POI category, we compare the nominated POI for the two extreme
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weight of wc, where wc = 0 and wc = 1. If the same POI is nominated, we do not
need check any other value of wc. Otherwise, we compare the nominated POI of the
middle weight (e.g. wc = 0.5) to both extreme values and so on. For example in Figure
2, when wc = 1 the Restaurant category nominates r2 because r2

p < r1
p (13 < 15)

and also nominates r2 when wc = 0 because r2
p < r1

p (16 < 17). Therefore, we do
not to iterate between 1 and 0 in order to look for a POI with less pp in the Restaurant
category.

Trip Construction Stage: As mentioned at the beginning of this subsection, the out-
come of the POI nomination stage is a set of skyline candidate trips. Each consists of
one nominated POI from each category. In this stage, we focus on the order of the nom-
inated POI in order to achieve a trip that starts from s, pass through the nominated POIs
and ends at d with the minimum distance. As explained in Section 3, this stage of the
algorithm is NP-hard problem by itself because it is a special case of the TSP. There-
fore, we use the same greedy technique used to solve the TPQ and TSP problems. It
works by visiting the nearest neighbour of the last POI added to the trip starting from s
and ending at d, where the Euclidean distance is used in the nearest neighbour search.
In each iteration, we use the greedy technique to form the general shape of a candidate
trip (POIs order) regardless of the real network distance between them.

Once all candidate trips are formed, we can use any shortest path algorithm to create
the final trips using the network distance. Next, we perform a skyline query over the
candidate trips using their costs and network distances as the two dimensions in order
to prune any dominated trip. Finally, we get the set of skyline trips Sky(T ).

4.2 Distance Estimation Framework

In the previous illustration of the WPOIs algorithm, we used the Euclidean distance to
estimate the aggregated distance pd from each POI to both s and d. We also used the
Euclidean distance in the greedy solution to find the next nearest neighbour of POIs
forming a trip. The disadvantage of using the Euclidean distance in road networks is
that, it does not reflect the actual network distance [15,25,2]. In contrast, the exact net-
work distance is computationally expensive when computed online and hard to store
when computed off-line. Therefore, we propose a network distance estimation frame-
work to be used instead of the Euclidean distance in the WPOIs and CWPOIs algo-
rithms. The main idea of this framework is to precompute and store the average network
distance between every POI and specific geographical regions in the road network. It
estimates the network distance between a POI and any network vertex by retrieving the
stored distance between the POI and the region containing the queried vertex. Dividing
the network into multiple geographical regions can be done using any suitable multi-
dimensional space data structure (e.g. Quadtree, Rtree). In the settings of this study we
use Quadtree for its simplicity.

The pre-computation process starts by indexing the network vertices into the Quadtree
with suitable density level at each leave node. Next, for each POI we perform a single
source shortest path search (Dijkstra’s [8]) to find the distance from that particular POI
to all network vertices. Based on these distances, we measure and store the average dis-
tance to each of the geographical regions (Quadtree leave nodes). For example in Figure
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Fig. 3: WPOIs algorithm example

3, the average network distances between every POI {g1, g2, .., r1, ..m3} and each of
the Quadtree leave nodes {q1, q2, ....q12} are stored. At the online stage, the distance
between a network vertex and a POI is estimated by retrieving the stored average dis-
tance between the POI and the geographical square containing the vertex. For example
in Figure 3, we can estimate the network distance between g1 and r1 by retrieving the
stored distance between g1 and the Quadtree leave node q8.

The required time to pre-compute the distances and the memory consumption of
storing the distances are highly sensitive to the number of POIs and the number of
Quadtree leaf nodes, which is based on the node density. However, since the framework
is computed offline, the time consumption is not critical. Moreover, the memory con-
sumption can be well managed by using the right density level in each Quadtree leaf
node as will be shown in Section 5. The higher time and memory cost of pre-computing
the distances is well justified by the more accurate network distance estimations.

The distance estimation framework is more suitable for static road networks. How-
ever, in order to make it applicable on time-dependent road networks [6], we can use
the road network historical data to store different traveling times between POIs and the
geographical regions for different times of the day.

4.3 Clustered Weighted POIs Algorithm (CWPOIs)

The CWPOIs algorithm is an improved version of the first algorithm illustrated in Sec-
tion 4.1. The problem with the WPOIs algorithm is that, it only considers the aggregated
distance between a POI and the query points at the nomination stage, regardless of the
distance to POIs from other categories. This could result in missing some of the skyline
trips candidates when their POIs are clustered far from query points. For example, the
WPOIs algorithm may miss a skyline trip t1 = {gx, rx,mx} (POIs located in the same
location e.g. mall) when there is a another trip t2 = {gy, ry,my} (POIs located in dif-
ferent locations) with the same cost and worse total distance t2d > t1

d. This is because
the distance pd of each of the three POIs (gxd, rxd,mx

d) is large when considered in-
dividually, thus, the t1 POIs are dominated by the POIs of t2 (i.e.gxd > gy

d, rx
d >
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ry
d,mx

d > my
d). Therefore, in order to overcome this obstacle we propose the CW-

POIs algorithm, which considers both the aggregated distance from query points pd and
the distance between clustered POIs.

Similar to the first algorithm, the CWPOIs algorithm is based on the framework
illustrated in Section 4.2 to estimate the network distance. However, it also uses the
framework to cluster POIs in geographical regions (Quadtree nodes). The main idea of
this algorithm is to define two properties for each Quadtree node, which are the node
lowest cost nc and the node average distance nd. This is only applicable for nodes con-
taining at least one POI from each related category. The first property nc can be defined
by the aggregated cost of the POI with the lowest cost pc from each category located
within the geographical area of a node n. The second property nd is the aggregated av-
erage distance between a node n and the query points s and d, which is obtained from
the pre-computation of the framework.

The process of the CWPOIS algorithm starts by defining the values for the nc and
nd properties for each applicable Quadtree node, which can be leaf or non-leaf node.
Next, we use these two values to perform a skyline query over the Quadtree nodes,
where the outcome of this step is a set of non-dominated Quadtree nodes. Then, we
apply the first algorithm (WPOIS) at each of the skyline Quadtree nodes to find the
skyline trips candidates in each geographical region. Finally, we measure the network
distance for each of the candidate trips and perform a skyline query to return the final
skyline trips.

Based on the above process, the CWPOIs algorithm finds the skyline geographical
regions and apply WPOIs algorithm to each of them individually. This results in sepa-
rating the nomination competition (first stage of WPOIs algorithm) performed for POIs
in a clustered region from other regions, thus, returning more accurate skyline trips at
the final stage.

5 Experimental study

In this section we evaluate the effectiveness and efficiency of the proposed framework
and algorithms. We conducted the experiments on a desktop PC with 8GB RAM and a
3.4GHz Intel(R) Core(TM) i7 CPU. The disk page size is 4K bytes. We use the London
road network dataset extracted from Open Street Map1, which contains 515,120 vertices
and 838,702 edges. We also extracted the locations of 11,030 POIs in London classified
into 12 different categories.

We vary parameters such as the number of POIs categories, POIs cardinality within
each category, and Quadtree density level to gain insight into the performance of the
framework and the algorithms in different settings. The detailed settings are given in
the individual experiments.

1 http://metro.teczno.com/# london
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(a) Distance Accuracy (b) Construction Running Time

(c) Memory Consumption (density level) (d) Memory Consumption (cardinality)

Fig. 4: Framework Evaluation

5.1 Framework evaluation

As discussed in Section 4.2, the purpose of the framework is to provide a better es-
timation of the network distance than using the Euclidean distance. We validate the
framework in term of both effectiveness and efficiency.

Framework accuracy: First, we compare the accuracy of the distance estimated by
our framework denoted as Frame-Dis, to the Euclidean distance estimation denoted as
Eu-Dis. An intuitive way to find the accuracy ratio AR for a distance estimation method
Est-dis, which can be either Frame-Dis or Eu-Dis, is to compare it to the actual network
distance denoted as Act-Dis as follow:

AR =
Act-Dis− (|Act-Dis− Est-Dis|)

Act-Dis

For example, when Act −Dis = 37km and Frame −Dis = 37.5km, the accuracy
indicator AR = 0.98. The accuracy of our framework is highly sensitive to the density
level at each geographical region. The less dense the Quadtree cell, the more accurate
distance estimation. We vary the maximum density level inside each Quadtree node
from 0.01% to 0.001% of the total network vertices. We compare the average accuracy
ratio AR of both Frame-Dis and Eu-Dis when running 1000 queries from random POIs
to random network vertices. It can be seen from Figure 4a that, the accuracy ratio of
Frame-Dis increases up to 0.99 as the density level decreases. This is because the size of
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geographical regions decrease and hence, the difference between the average distance
from a POI to a region and the actual distance from the POI to any vertex within that
region decreases. In all density levels, our framework estimates network distance more
accurately than the Euclidean distance.

Framework efficiency: The framework efficiency is evaluated using two metrics; the
time taken to construct the framework and its memory consumption.

Framework construction running time: the running time of the framework is highly
effected by the total number of POIs from all categories. This is because we need to
find the distance to all network vertices in order to measure the average distance from
each POI to every geographical region. Figure 4b illustrates the increase of framework
construction time as the total number of POIs increases. When all the POIs are used,
the framework is precomputed in less than 10 minutes. The graph construction running
time is not affect by Quadtree density level and thus the number of the geographical
locations. This is because there will be a path finding query for each POI regardless of
the number of Quadtree nodes.

Framework memory consumption: the main purpose of the framework is to pre-
compute and store the average distance between every pair of a POI and a geographical
region. Therefore, the number of stored distances is nm, where n is the number of POIs
and m is the number of geographical regions. Figure 4c illustrates the memory space
needed to store the precomputed distance for different density levels in each geographi-
cal region when all of the 11,030 POIs are used. When the density level decreases from
0.01% to 0.001%, the number of geographical regions increase and thus more space is
needed to store the distances. At the 0.001% density, only 100 MB is needed to store the
precomputed distances. Figure 4d shows different memory consumptions for different
POIs cardinality when the density level is fixed to 0.004% in each geographical region.
The memory consumption increases as the number of POIs increases. Based on Figures
4c and 4d, we can see the density level of the used data structure affects the memory
needed more than the POIs cardinality.

5.2 WPOIs and CWPOIs Effectiveness evaluation

In this subsection, we validate the effectiveness of our proposed algorithms in finding
skyline trips. However, we need to fist discuss how to measure the optimality of our
results. Finally, we measure the effectiveness of our algorithms.

Effectiveness measurement: As discussed in Section 3, the baseline optimal solution
is extremely slow as it takes more than 24 hours to only process 40 POIs dataset .There
is no straightforward way to measure the optimality of a set of points compared to
the optimal skyline set. Therefore, we propose a formula to compare the results of
our algorithms to the optimal results and provide an optimality metric Opt, defined as
follows:

Opt = 1−
∑

x∈Sky

=
minDis(x, tp)

minDis(x, dp)



14 Skyline Trips of Multiple POIs Categories

(a) Optimality Measurement example (b) Optimality (density level)

(c) Running Time (categories number) (d) Running Time (cardinality)

Fig. 5: Algorithms Evaluation

Where, Sky is the set of optimal skyline points, minDis(x, y) is the minimum graph
distance required for a point y to dominate point x, tp is the point with the minimum
minDis from the examined points, and dp is the best case point that is dominated by
all optimal skyline points. For example in Figure 5a, when Sky = {s1, s2, s3} are
the optimal skyline points, the best case point should have the coordinates (10, 11) as
shown in the figure to be the best point dominated by all skyline points. In addition, the
minDis(s1, p1) is 0.5 because the point p1 needs to move down on the y axis by 0.5 in
order to dominate s1 and so on.

Effectiveness experiments: We use the optimality metric Opt to evaluate the perfor-
mance of our algorithms (WPOIs, CWPOIs) compared to the optimal results for 20
different queries. We also vary the density level of the framework to reflect different
performance levels. It can be seen from Figure 5b that, the optimality for both algo-
rithms increase as the density level decreases due to higher network distance estima-
tion. In addition, although both algorithms have high optimality metric value(over 0.9),
the CWPOIs outperforms the WPOIs for all density levels. This is because CWPOIs
algorithm considers clustered POIs when finding skyline trips while WPOIs algorithm
only considers the distance between a POI and the query points.
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5.3 Efficiency evaluation

In this subsection we validate the efficiency of both algorithms under different settings.
We measured the query processing time of both WPOIs and CWPOIs with different
number of POIs categories and different cardinalities within each category.

Effect of the number of POIs categories: We vary the number of related POI cate-
gories from 3 to 12 categories, where only 100 POIs from each category are considered
and measure the average running time of 100 random queries. Figure 5c shows that the
running time of both algorithms increases as the number of categories increases. The
CWPOIs algorithm run slower than the WPOIs algorithm for all different number of
categories, which is due to processing clustered POIs.

Effect of POIs cardinality: We vary the number of POIs between 2k and 11k from
all 12 categories and measure the average running time of 100 random queries. Figure
5d shows that the running time of both algorithms increases as the POIs cardinality
increases. The CWPOIs algorithm can take up to 9 seconds to answer a query when all
POIs from all 12 categories are used. However, in reality it is not common for a user
to plan to visit 12 different POI categories in one trip. In addition, the running time
can be tolerated considering the near optimal results obtained by both algorithms for an
NP-hard problem. Both algorithms are more than four orders of magnitude faster than
the baseline solution.

6 Conclusion and Future Work

We proposed a new path finding problem, STMPC, which finds the skyline trips of mul-
tiple POI categories between two points based on cost and distance. We define the prob-
lem in road network settings and proved it to be NP-hard. We proposed an independent
framework to estimate the network distance. This framework is based on precomputing
and storing the distances between POIs and some geographical regions in the network.
We also proposed two interesting heuristic algorithms, which are WPOIs and CWPOIs
algorithms. The CWPOIs algorithm considers clustered POIs when nominating skyline
candidate trips. As shown in the experiments section, both algorithms return skyline
trips that are close to optimal trips within reasonable running time when processing a
large real dataset. Our algorithms are four orders of magnitude faster than the naive
optimal solution.

For future work we will consider solving the same problem when there are multiple
quality dimensions (e.g. distance, cost, rating, number of stops ... etc). We might also
investigate improving the memory consumption of the proposed framework by only
storing network distance between different geographical regions.
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