
Adding
Logic Programming Behaviour
to the World Wide Web

Seng Wai Loke

1998

Submitted in total fulfilment

of the requirements of the degree of

Doctor of Philosophy

Department of Computer Science

School of Electrical Engineering and Computer Science

The University of Melbourne

AUSTRALIA

Abstract

Imperative programming has largely dominated both aspects ofWeb program-

ming: adding sophisticated interactive behaviours to the Web and constructing

programswhich interact with theWeb. Mostmobile code languages such as Java

are based on the imperative programming paradigm. Imperative languages are

widely used for building Web browsers and information gathering tools.

The focus of much programming language research has been on raising the

level of abstraction. Logic programming languages, which view computation as de-

duction from a set of axioms, is at a higher level of abstraction than imperative

programming languages enabling a problem or subject domain to be modelled

without focusing on the computer’s VonNeumann architecture. Logic program-

ming with program structuring abstractions has shown its utility in a variety

of applications including expert systems, Artificial Intelligence problem solving,

and deductive databases. Implementations of logic programming such as Pro-

log have features not found in traditional imperative languages including ease of

meta-programming, backtracking search, and dynamic database manipulation,

and favourable features such as automatic memory management and modular-

ity.

Compared to imperative programming languages, there has been little explo-

ration of logic programming languages for Web programming. Only in the last

few years has work begun on the relationship between logic programming and

the Web. This thesis investigates LogicWeb, a model of the Web as a collection of

inter-related logic programs. LogicWeb adds logic programming based interac-

tive behaviours to the Web, and enables the manipulation of Web information

without focusing on details of networking and data extraction.

With LogicWeb, a Web document is viewed as a live information entity able to

respond to user queries using its own rules and can have the behaviours of its

links determined by rule-based reasoning. Processing of user queries and link

i

behaviours can involve collecting and manipulating data from other Web doc-

uments. LogicWeb also adds to Web documents information in the form of de-

ductive databases and knowledge-bases.

A new language (extending Prolog) is developed based on LogicWeb for cod-

ing the logic programming behaviours, and for representing and querying the

Web-situated databases and knowledge-bases. This language offers a new Web

programming paradigm, where computing with the Web is equated to evaluat-

ing goals in compositions of programs. The practical result is that programming

with the Web in this language is aided by familiar modularity abstractions, and

the programmer need not explicitly deal with low-level issues such as document

retrieval, caching, and parsing. An operational semantics is given for the lan-

guage.

A system realising LogicWeb is implemented by integrating a public domain

Prolog system with an off-the-shelf Web browser. Security is an important issue

in the LogicWeb system because logic programs downloaded from foreign hosts

are executed locally. A flexible and precisely specified securitymodel for the sys-

tem is developed.

A range of examples illustrates LogicWeb-based programmable behaviours,

and demonstrates the feasibility and advantages of the LogicWeb language for

coding Web search tools, Web-situated databases called lightweight deductive

databases, and extensions to the semantics of Web links.

ii

Acknowledgements

This thesis would not have existedwithout the invaluable guidance, support,

continual encouragement, andwriting lessons (for Prolog and English) frommy

two supervisors - Leon Sterling and Andrew Davison. Their confidence in me

helpedwhenminewaned. Leon ledme to think about citations for themain the-

sis applications, and provided helpful feedback and thought-provoking ques-

tions on LogicWeb. In late March 1995, at my first visit to his office, Andrew

suggested that I could perhaps explore an idea he had in mind, which was to

viewWeb pages as logic programming modules andWeb links as relationships.

This view later became the basic idea of LogicWeb. I am grateful for the many

interesting discussions with Andrew throughout the years, the first one and a

half years over cappuccino and tea, and the rest over the Internet, as the details,

applications, and realisation of LogicWeb were being thought out. Leon gave

instructive and prompt feedback on the thesis drafts. Andrew provided prompt

feedback onmany details in the thesis drafts and suggestedmany improvements

to the presentation. I am also grateful to Lee Naish for a number of important

points on a draft of the thesis. Leon, Andrew, and Lee formedmy advisory com-

mittee.

I am thankful for the enjoyable conversations with (past and present) mem-

bers of the Intelligent Agent Laboratory over technical and non-technical mat-

ters, particularly AndrewCassin, Sharon Gao (who commented on drafts of sev-

eral chapters of the thesis), Dinh Que Tranh, Stewart Baillie, Hoon Kim, and Yi

Han. Thanks go to Leon for encouraging my foray into the exciting area of soft-

ware agents, and to Andrew Cassin for systems help on numerous occasions.

I am glad to have shared many postgraduate student experiences with Vin-

cent Tam (who soon will not be a student!) over the many relaxing lunch and tea

breaks.

Thanks go to Michael Bieber and anonymous referees (of papers on Log-

iii

icWeb, particularly [127, 128, 126, 130, 129]) for the encouraging feedback onLog-

icWeb. Roland Yap performed one of the first installations of an early version of

the LogicWeb system outside Australia, and helped with debugging. I am also

fortunate to have had interesting email exchanges with two experts in logic pro-

gram composition operators - Antonio Brogi and Michele Bugliesi.

I amgrateful for the financial support throughoutmy candidature from aMel-

bourne Research Scholarship sponsored by the University of Melbourne and the

University ofMelbourne Alumni, and for help from the efficient and friendly ad-

ministrative and technical support staff of the Department of Computer Science.

Many thanks go to my friends in CCM and HOG for their continual support

and encouragement throughout the thesis. Let’s achieve our vision!

Mygratitude goes tomyparentswhohave always encouragedmyeducation,

and persevered with me throughout this work.

Last but not least, I would like to thank God for making this thesis possible.

iv

Dedication

To my parents, and the memory of my grandmother who left us in 1995.

v

vi

“Representation is the essence of programming.”

- Frederick P. Brooks, Jr.,

THE MYTHICALMAN-MONTH

vii

viii

Contents

1 Introduction 1

1.1 Integrating Logic Programming Technology with the Web : : : : : 6

1.2 Contributions : 7

1.3 Overview of Thesis : 9

2 Background 11

2.1 Technical Overview of the World Wide Web : : : : : : : : : : : : : 11
2.1.1 Client-server Architecture : : : : : : : : : : : : : : : : : : : 11
2.1.2 The Web as a Hypertext System : : : : : : : : : : : : : : : 12

2.1.2.1 Uniform Resource Locators (URLs) : : : : : : : : 13
2.1.2.2 Hypertext Mark-up Language (HTML) : : : : : : 15
2.1.2.3 Hypertext Transfer Protocol : : : : : : : : : : : : 18

2.2 Logic Programming : 23
2.2.1 Syntax and Terminology : : : : : : : : : : : : : : : : : : : 23
2.2.2 Meta-programming in Logic Programming : : : : : : : : : 24
2.2.3 Compositional Logic Programming : : : : : : : : : : : : : 26

2.2.3.1 Meta-level Program Composition Operators : : : 29
2.2.3.2 Syntax : 31
2.2.3.3 Operational Semantics : : : : : : : : : : : : : : : 32
2.2.3.4 Implementation : : : : : : : : : : : : : : : : : : : 35

ix

3 LogicWeb 37

3.1 A Logic Programming Model of the Web : : : : : : : : : : : : : : 37
3.2 LogicWeb Programs : 40
3.3 The LogicWeb Language : 45

3.3.1 Querying and Manipulating LogicWeb Programs : : : : : 46
3.3.1.1 Context Switching : : : : : : : : : : : : : : : : : : 46
3.3.1.2 Composing LogicWeb Programs : : : : : : : : : : 51
3.3.1.3 Utilising the Current Context : : : : : : : : : : : 54

3.3.2 EBNF Syntax : 56
3.3.3 An Operational Semantics for LogicWeb Programs : : : : : 57

3.3.3.1 Pure Prolog : 61
3.3.3.2 Clauses from LW-compositions : : : : : : : : : : 62
3.3.3.3 Context Switching : : : : : : : : : : : : : : : : : : 64
3.3.3.4 An Example Top-down Derivation : : : : : : : : 66

3.3.4 Relationship of Operational Semantics to Declarative Se-

mantics : 67
3.4 Building Applications Using LogicWeb Programs : : : : : : : : : 68
3.5 Summary : 69

4 Implementing LogicWeb 71

4.1 The LogicWeb System Architecture : : : : : : : : : : : : : : : : : 72
4.2 Implementation Overview : 73
4.3 System Behaviour : 78
4.4 The Prolog Engine : 83

4.4.1 Mapping User Actions to Goals : : : : : : : : : : : : : : : 83
4.4.2 The LogicWeb Program Interpreter : : : : : : : : : : : : : 90
4.4.3 Translation into LogicWeb Programs : : : : : : : : : : : : : 94
4.4.4 Caching LogicWeb Programs : : : : : : : : : : : : : : : : : 95

4.5 Discussion : 97
x

5 CIFI 101

5.1 Looking for Citations on the World Wide Web : : : : : : : : : : : 101
5.2 Design and Implementation of CIFI : : : : : : : : : : : : : : : : : 105

5.2.1 Alternative Strategies : 105
5.2.2 Search Algorithm : 106
5.2.3 Obtaining Starting Points and Link Selection : : : : : : : : 109
5.2.4 Extracting the Citation : 111
5.2.5 Integrating Other Information Sources : : : : : : : : : : : 112
5.2.6 Implementation : 112

5.3 Limitations of CIFI : 113
5.4 Related Work : 115

5.4.1 Agents for Paper Search : 115
5.4.2 Web Search Tools : 116

5.4.2.1 Internet Fish : 116
5.4.2.2 General Heuristics Involving Web Links : : : : : 117
5.4.2.3 An Abductive Framework for Web Searching : : 117
5.4.2.4 Browsing Agents : : : : : : : : : : : : : : : : : : 117

5.5 Discussion : 118
6 Lightweight Deductive Databases 125

6.1 A Simple Lightweight Deductive Database : : : : : : : : : : : : : 128
6.2 Combining and Extending Lightweight Deductive Databases : : : 129

6.2.1 Virtual Relations and Relational Joins : : : : : : : : : : : : 129
6.2.2 Forming Virtual Databases Using LW-composition Opera-

tors : 131
6.3 Knowledge-based Querying of Citation Databases on the Web : : 134

6.3.1 Organising Citation Information on the Web : : : : : : : : 134
6.3.2 Searching for Citations : 135
6.3.3 Representing Knowledge : : : : : : : : : : : : : : : : : : : 137

xi

6.3.4 An Implementation of Citation Finding : : : : : : : : : : : 138
6.3.5 Summary : 139

6.4 Generating Guided Tours : 140
6.4.1 Structure of a Guided Tour and a Guided Tour Application 141

6.4.2 Tour Generation : 146
6.4.2.1 Tour Generation Using Static Information : : : : 146
6.4.2.2 Domain Knowledge as Static Information : : : : 147
6.4.2.3 Tour Generation Using Dynamic Information : : 148

6.4.3 More Complex Tour Generation : : : : : : : : : : : : : : : 150
6.4.3.1 Tours by Appending Lists : : : : : : : : : : : : : 150
6.4.3.2 Tours Containing Tours : : : : : : : : : : : : : : : 151
6.4.3.3 Tours Constructed Using User Inputs : : : : : : : 152

6.4.4 Implementation : 156
6.4.5 Other Work on Generating Guided Tours : : : : : : : : : : 157
6.4.6 Summary : 158

6.5 Server-side Databases : 158
6.6 Related Work : 161

6.6.1 Database on Web Pages : 161
6.6.2 Standardised Knowledge-bases on the Web : : : : : : : : : 162
6.6.3 Marked-up Text on the Web : : : : : : : : : : : : : : : : : 162
6.6.4 Comparison with Deductive Database Systems : : : : : : : 164
6.6.5 Knowledge-based Access to Information : : : : : : : : : : 164

6.7 Summary : 166
7 Extending the Semantics of Web Links 167

7.1 The Two-level Web Model : 168
7.2 Utilising Structured Information for Linking : : : : : : : : : : : : 169

7.2.1 IS-A Hierarchy Links : 169
7.2.2 Page Name Links : 174

xii

7.2.3 Linking Based on Logical Relationships Between Pages : : 175
7.2.3.1 Structural Relationships : : : : : : : : : : : : : : 175
7.2.3.2 Temporal Relationships : : : : : : : : : : : : : : : 179

7.2.4 Links Based on Page Information : : : : : : : : : : : : : : 181
7.2.5 Dynamically Constructing Pages : : : : : : : : : : : : : : : 182

7.3 Handling Nondeterminism in Web Links : : : : : : : : : : : : : : 183
7.3.1 Redirection Pages : 184
7.3.2 Broken Links : 185

7.4 History-based Linking : 187
7.5 Using Multiple Link Behaviours : : : : : : : : : : : : : : : : : : : 188

7.5.1 LogicWeb Operators : 189
7.5.2 Link Transducers : 190

7.6 System Link Actions : 192
7.7 Related Work : 194

7.7.1 Hypertext Tools : 194
7.7.2 Web-based Tools : 194

7.7.2.1 Structured Maps : : : : : : : : : : : : : : : : : : : 194
7.7.2.2 CGI : 195
7.7.2.3 JavaScript : 195
7.7.2.4 Link Management Systems : : : : : : : : : : : : : 196

7.8 Discussion : 196
8 Security in the LogicWeb System 199

8.1 What are the Security Issues in the LogicWeb System? : : : : : : : 199
8.2 Overview of Security Model : 201
8.3 Digital Signatures for LogicWeb Programs : : : : : : : : : : : : : 204
8.4 Specifying Security Policies : 206
8.5 Combining Security Policies : 209
8.6 Enforcing Security Policies : 212

xiii

8.7 Implementation : 219
8.7.1 A New Interpreter : 219
8.7.2 Installing Programs : 220
8.7.3 Invoking the New Interpreter : : : : : : : : : : : : : : : : 225

8.8 Control of Resource Usage : 225
8.8.1 Resource Control Using Policy Programs : : : : : : : : : : 225
8.8.2 Resource Control Using Meta-interpreters : : : : : : : : : 226

8.8.2.1 Loop Checking : : : : : : : : : : : : : : : : : : : 226
8.8.2.2 Two Resource Limits : : : : : : : : : : : : : : : : 228

8.9 Comparison with Security Models in Other Mobile Code Systems 230

8.9.1 Security Models in Two Interpreted Languages : : : : : : : 230
8.9.1.1 Safe-Tcl : 230
8.9.1.2 Java Applets : 231

8.9.2 Security Policy Modules in Two Mobile Code Systems : : : 232
8.9.2.1 SERC’s Safer Erlang (SSErl) : : : : : : : : : : : : 232
8.9.2.2 Java Aglets : 233

8.9.3 Authentication in Two Mobile Code Systems : : : : : : : : 233
8.9.3.1 Agent Tcl : 233
8.9.3.2 ActiveX : 234

8.10 Summary and Future Work : 234
9 Comparison With Related Work 239

9.1 Logic Programming Technology for the Web : : : : : : : : : : : : 239
9.1.1 Client-side Systems : 240

9.1.1.1 Prolog and Client-side Programming : : : : : : : 240
9.1.1.2 Logic-based Web Querying Languages : : : : : : 243

9.1.2 Server-side Systems : 246
9.1.3 Peer-to-peer Systems : 250

9.2 Other Web Programming Languages : : : : : : : : : : : : : : : : : 252
xiv

9.2.1 SQL-based Web Querying Languages : : : : : : : : : : : : 253
9.2.2 Languages Modelling the Web’s Nondeterministic Nature 256

9.3 Logic-based Hypertext Models : 257
10 Conclusion 259

10.1 Language Extensions : 262
10.1.1 Extending the Semantics of Downloading : : : : : : : : : : 262
10.1.2 Other Header Fields in HTTP Requests : : : : : : : : : : : 263
10.1.3 Lazy Download : 264
10.1.4 Concurrency : 265
10.1.5 Operations On the Program Store : : : : : : : : : : : : : : 266
10.1.6 Application-specific LW-composition Operators : : : : : : 266
10.1.7 Multiple Page Models : 267

10.2 Using Standardised Mark-up : 268
10.3 Applications : 268

A Prolog Facts Storing the Title, Body, Sections, and Links to Images and

Applets on a Page 303

B Application Support Library 307

B.1 Displaying Information on the Mosaic Browser : : : : : : : : : : : 307
B.2 Constructing HTML Components : : : : : : : : : : : : : : : : : : 309
B.3 Fast String Matching : 310
B.4 Comparing Dates : 310
B.5 Determining If a Program Exists in the System : : : : : : : : : : : 311
B.6 Deleting Programs : 311

xv

xvi

List of Figures

2.1 The client-server architecture of the Web. : : : : : : : : : : : : : : 12
2.2 John Smith’s homepage when rendered on a Web browser. : : : : 16
2.3 The HTML mark-up of John Smith’s homepage. : : : : : : : : : : 17
3.1 Web pages connected by hypertext links. : : : : : : : : : : : : : : 38
3.2 The LogicWebmodel where pages augmented with rules are pro-

grams and hypertext links are relationships between programs. : 39
3.3 The identifiers and components of three types of LogicWeb pro-

grams. : 41
3.4 A page with rules describing research interests. : : : : : : : : : : : 44
3.5 Aderivation of the LogicWeb goal (M + N)#>p(a) in a program

P. : 66
3.5 (Continued) : 67
3.6 A LogicWeb applicationwith the programs it uses directly and in-

directly. : 70
4.1 Architecture of the LogicWeb system. : : : : : : : : : : : : : : : : 72
4.2 An overview of themain components and data-flows (arrows) be-

tween them. : 74
4.3 The interface of a simple LogicWeb application. : : : : : : : : : : 76
4.4 The result of a query with keyword “marsupial”. : : : : : : : : : : 77
4.5 The LogicWeb system and the steps followed after a user clicks on

a link. : 79
xvii

4.6 The LogicWeb system and the steps followed after a user enters a

query. : 81
4.7 The LogicWeb system and the steps followed after a user issues a

“back” or “forward” command in Mosaic. : : : : : : : : : : : : : : 82
4.8 A simple LogicWeb application. : : : : : : : : : : : : : : : : : : : 86
5.1 The interface to CIFI. : 113
5.2 The result of a search. The required citation is the first citation in

the displayed page fragment. : 114
6.1 A representative diagramof the hypertext structure rooted at a de-

partmental homepage. The arrows denote the sequence in which

the various page types are reached, starting from the dept page. : 136
6.2 A hierarchy of sections, groups and projects. The edges represent

the has part/2 relationships. : 137
6.3 The structure of a guided tour of lecturers’ homepages in the Uni-

versity of Melbourne Computer Science department. The arrows

represent the links of the tour; the rectangles are Web pages. : : : 142
6.4 The index node for the tour of lecturers’ homepages. : : : : : : : : 143
6.5 A typical tour node. : 144
6.6 The guided tour application consists of a set of LogicWebprograms

(represented by the boxes). An arrow indicates a “uses” relation-

ship. : 145
6.7 The user interface to the Asian tour planner. : : : : : : : : : : : : 153
6.8 A guided tour constructed with sites in Thailand, Malaysia, In-

donesia, and Taiwan, for 3, 4, 3, and 4 days respectively. : : : : : : 154
6.9 A server-side database and its interface. : : : : : : : : : : : : : : : 159
7.1 The two-level Web model. A link abstraction layer separates the

source and destination of links. : 168
xviii

7.2 An IS-A hierarchy. The dashed arrow shows a link referring to a

concept in the hierarchy. The dotted arrows showmappings from

concepts to Web pages as specified by page about/2. : : : : : : 170
7.3 The page constructed when the link to “agents” is selected. : : : : 173
7.4 Components for handling a link selection. : : : : : : : : : : : : : : 193
8.1 The securitymodelwith two concentric sandboxes. The inner sand-

box consists of the LogicWeb program interpreter and policy pro-

grams, and the outer sandbox consists of meta-interpreters. : : : : 203
8.2 The use of a digital signature when sending a program from A to

B, and the subsequent assignment of a policy program. : : : : : : 205
8.3 The invocation (with P’s policy consulted) of the LogicWeb goal

Q#>read file(Contents) in P leads to the invocation of the

goalread file(Contents) inQ (where both the policy ofP and

that of Qmust be consulted). : 210
8.4 The change in the context (represented by the rectangle) of goal

evaluation starting from the goal Q#>(R#>G) in program P and

ending in goal G in program R, and the policies for validating each

subgoal. : 211
9.1 Using Prolog CGI scripts. : 247
9.2 Separating the interface and task processes. : : : : : : : : : : : : : 248
9.3 A dedicated logic programming server. : : : : : : : : : : : : : : : 249

xix

xx

List of Programs

4.1 The predicate which translates user inputs into goals. : : : : : : : 88
4.2 The interpreter for pure LogicWeb programs. : : : : : : : : : : : : 91
8.1 The interpreter for pure LogicWeb programs modified to use pol-

icy programs. This program extends Program 4.2. : : : : : : : : : 221
8.1 (Continued) : 222
8.2 A version of solve t/1 for pure Prolog. : : : : : : : : : : : : : : 227
8.3 Ameta-interpreter for pure Prolog with an argument carrying the

recursion depth and a list of ancestor goals. : : : : : : : : : : : : : 228

xxi

xxii

Preface

Preliminary work on LogicWeb was published in the Proceedings of the 7th

ACMConference onHypertext inMarch 1996 [126]. A short introduction to Log-

icWebwas published in the Proceedings of the 2nd Joint AUUGand Asia Pacific

World Wide Web Conference in September 1996 [125]. Chapter 5 uses material

on CIFI from a paper published in the Proceedings of the 4th Pacific Rim Inter-

national Conference on Artificial Intelligence in August 1996 [131], and uses in-

troductory material of a paper on a later version of CIFI published in the Pro-

ceedings of the 2ndConference on the Practical Application of Intelligent Agents

and Multi-Agent Technology in April 1997 [97]. Chapter 6 expands on material

from a paper introducing lightweight deductive databases whichwas published

in the Proceedings of the 1st Workshop on “Logic Programming Tools for In-

ternet Applications” held in conjunction with the Joint International Conference

and Symposium on Logic Programming in September 1996 [130], and a paper on

guided tours published in the Proceedings of the 5th International Conference

and Exhibition on the Practical Application of Prolog in April 1997 [128]. Chap-

ter 7 is an extended version of a paper on a two-level Web model published in

the Proceedings of the 2nd Workshop on “Logic Programming Tools for Inter-

net Applications” held in conjunction with the 14th International Conference on

Logic Programming in July 1997 [127]. An overview of LogicWeb incorporating

selected materials from Chapters 3, 4, 5, 6, and 9 has been accepted for publi-

cation in the Journal of Logic Programming [129]. Much of the related work in

Section 9.1 is based on the related work section in this journal paper. Using ma-

terial on an early version of this journal paper, a short introduction to LogicWeb

was published in the Proceedings of the 20th Electrical Engineering Conference

of Thailand in November 1997 [65]. The LogicWeb homepage contains informa-

tion taken from some of the papers:

http://www.cs.mu.oz.au/˜swloke/logicweb.html.

xxiii

The work in this thesis has not been published elsewhere, except as noted

above.

Seng Wai Loke

April 1998, Melbourne, Australia

xxiv

Chapter 1

Introduction

The World Wide Web [24], or the Web for short, is one of the most prominent

technological innovations in the area of Internet computing. Invented in 1989,

the Web is today a widely used repository of knowledge and medium for infor-

mation sharing and transport over the Internet. On the Web, an individual can

find information on almost anything and add content for world-wide consump-

tion. The individual sees theWeb as a hypertext system comprising a vast, inter-

linked repository of documents, and using a locally running program called a

Web browser, can follow links from one document to another without needing to

know details of networking.

While growing rapidly1, the Web is evolving technologically. Considerable
research and developments are under way with new applications and function-

ality being thought of for the Web. Areas of development include communi-1According to aWeb growth survey byMatthewGray of the Massachusetts Institute of Tech-
nology found at http://www.mit.edu/people/mkgray/net/web-growth-summary.ht

ml, there are approximately 650 000 hosts serving Web information in January 1997,

and since 1993, the size of the Web doubles each time in less than 6 months. The

Netcraft Web server survey found at http://www.netcraft.co.uk/Survey/

reported 1 920 933 hostnames for active Web information servers in February

1998. There are 200 million Web documents in September 1997 according to

http://www.computerworld.com/emmerce/depts/stats/sites.html.

1

2 CHAPTER 1

cation protocols, data formats, Web software (e.g., Web browsers), and security

issues.2 In recent years, there has been a growing interest in adding computa-
tional content to theWeb. Such content implements sophisticated interactive be-

haviours on the Web providing more interesting and expressive documents, al-

lowing useful tasks to be performed over the Web, and increasing the Web’s us-

ability.

The earliest mechanism for adding computational content is the form sub-

mission mechanism. By submitting information via a form on a document dis-

played on aWebbrowser, the user can invoke programs on remote hosts, thereby

allowing arbitrary applications to be used from the Web. For example, numer-

ous databases can be queried from the Web3 including databases of Web pages
(e.g., Lycos4) which help users locate desired information. The form submission
mechanism has several drawbacks. Since only programming on the remote host

is involved, it is not possible to locally extend the behaviour of hypertext link

activation or to augment the forms interface with additional graphical user in-

terface elements. Also, communication latency can be a problem, especially for

highly interactive applicationswhichdemandextensive communication between

the local host (where the form is) and remote hosts (where the computations oc-

cur). A further drawback is the load on the remote host caused by multiple Web

browsers invoking computations.

Mobile code [56, 202] adds sophisticated behaviours to the Web in a different

way, as popularised in 1995 by Java applets, which are programs written in the

language Java [187], and JavaScript programs [155]. Both Java and JavaScript

have C-based syntax. A definition of mobile code is code that can be transmit-

ted across the network and executed on the other end [56]. This thesis focuses on

mobile code which is downloaded from the remote host to the local host. In con-2More information on these developments is found at http://www.w3.org/.3Acollection of suchdatabases is seen athttp://www.mtm.kuleuven.ac.be/Services/
search.html.4Lycos Web site at http://www.lycos.com/.

Introduction 3

trast to the form submission mechanism, mobile code is downloaded with Web

documents and executed locally within the Web browser. Sophisticated user in-

terfaces can be programmed with mobile code allowing complex interactive be-

haviour in documents. Mobile code uses resources on the local host and will not

be affected by unpredictable network characteristics unless they access the net-

work. Mobile code also has advantages for software distribution: mobile code

does not need to be explicitly installed and to a large extent is architecturally in-

dependent (e.g., Java applets).

The form submission mechanism and mobile code add programmable be-

haviours to the Web making it a more powerful interactive system. These be-

haviours though contained in the Web need not interact with the Internet. For

example, a Java applet can implement a tic-tac-toe gamewhose computations do

not need to access the Internet. Programs which interact with the Internet or the

Web can achieve computational capabilities beyond that of stand-alone systems,

downloading program components to extend their own functionality, utilising

programs running on remote hosts, or retrieving and processing Web informa-

tion on behalf of its users. Notable examples of these programs include informa-

tion gathering tools which attempt to automatically extract specific items ofWeb

information [97, 164, 213]. These tools tackle a hard problem sinceWeb informa-

tion is mostly in natural language form, and in general, not sufficiently struc-

tured. More recently, the Web is being used to disseminate information which is

more amenable to sophisticated querying and automated extraction [30, 134, 110,

74]. Such work tends towards the vision of a machine processable Internet-scale

knowledge repository [23].

Both aspects of Web programming mentioned above, adding programmable

behaviours to the Web and constructing programs which interact with the Web,

has largely been dominated by imperative programming5. Most mobile code5As described in [206], imperative programming is characterised by a state (e.g., variables)
and commands (e.g., assignments) whichmodify the state, imitating the VonNeumannmachine

4 CHAPTER 1

languages such as Java, Tcl [163], Visual Basic in ActiveX [80], and Python [200]

are based on the imperative programming paradigm (though some of these

languages also utilise object-oriented concepts). An exception is Caml [173], a

functional language with imperative constructs. Imperative languages such as

Perl [212], C, and Java are widely used for developingWeb software such asWeb

browsers and information gathering tools. There are Java, Perl, and C libraries6
which provide low-level support such as communication protocol implementa-

tions and Web document parsing tools. There are also Java libraries providing

application-level support for distributed persistent data exchange, interfacing to

relational database systems, and electronic commerce on the Web.7
The focus of much programming language research has been on raising the

level of abstraction. A class of programming languages deemed to be at a higher

level of abstraction than imperative languages is declarative programming lan-

guages. Declarative languages enable the programmer to more easily model a

problem or subject domain without focusing on the computer’s Von Neumann

architecture, and hence, increase programmer efficiency and the readability of

programs. Declarative languages are characterised by simple formal semantics,

and so, are easier to reason with, and to develop tools for (e.g., interpreters). For

Web programming, emerging are languages specialised for querying the Web

(i.e., declaratively expressing how to navigate portions of theWeb to finddesired

information) [10, 119, 92, 144, 115], which explore various abstractions (e.g., ob-

jects anddatabase relations) formodelling theWeb in order to simplify retrieving

and processing of Web data.

with its modifiable registers and store (or memory).6Libwww is a package containing an implementation in C of HTTP and other Internet proto-
cols, and a rudimentary HTML parser. It is available at http://www.w3.org/Library/. The

libwww-perl distribution is a collection of Perl modules providing an application programming

interface to the Web and is available at http://www.linpro.no/lwp/.7http://java.sun.com/products/index.html has a list of Java libraries for
application-level support.

Introduction 5

A category of declarative languages which has had the benefit of more than

20 years of research is logic programming languages which view computation as

deduction from a set of axioms or a theory. Logic programming with program

structuring abstractions [47, 64] (e.g., theories, modules, or objects) has shown

its utility in a variety of applications including expert systems [146], symbolic

(e.g., natural language) processing [59], Artificial Intelligence (AI) problem solv-

ing and knowledge representation [180], deductive databases [116], and agent-

based systems [117, 204, 195].8 For software engineering, logic programming has
a number of advantages including logic programs as executable specifications,

meta-programming for building abstractions, and rapidprototyping [53, 72, 186].

The program structuring abstractions support logic programming in-the-large.

Implementations of logic programming, the most popular example of which

is Prolog [185] based on a subset of first-order logic, have features not found

in traditional imperative languages including ease of meta-programming9, pat-
tern matching via unification, backtracking search, structured database repre-

sentation and querying, and built-in grammars for parsing. They have also

the favourable features found in Java such as robustness, automatic memory

management10, and modularity.
Compared to imperative languages, there has been little exploration of declar-

ative languages for Web programming. Only in the last few years (as this thesis

was being developed) has work begun on the relationship between logic pro-

gramming and the Web [196, 66, 63, 78] (see Chapter 9 for an overview). It is the

general theme of this thesis to investigate the use of logic programming technol-

ogy for the Web.8Examples of more than 500 applications of Prolog and related languages are found in the
Prolog 1000 list at ftp://src.doc.ic.ac.uk/packages/prolog-progs-db/

prolog1000.v1.gz.9Notably, an interpreter for the language could be easily written in the language itself.10Prolog code is pointer-free and there is automatic garbage collection with dynamic memory
allocation and deallocation.

6 CHAPTER 1

1.1 Integrating Logic ProgrammingTechnologywith

the Web

This thesis presents a model for adding logic programming based interactive

behaviours and structured information to the Web, and for logic programming

based retrieval and processing of Web content. The model is characterised by

two key ideas:

1. Logic programming code is built into Web documents. Given the versatil-

ity of logic programming for different styles of programming such as al-

gorithmic, AI, and database programming, such code can be used in two

ways. First, this code can be used to implement rule-based interactive be-

haviours on the Web in the mobile code style. Second, this code can rep-

resent knowledge-bases or structured information in a similar form as de-

ductive databases. Deductive databases extend relational databases, util-

ising logic programming rules for more complex data modelling [116]. A

deductive database is, in essence, a logic program: base relations map to

facts, and rules are used to define new relations in terms of base relations,

and to process queries. Also, deductive databases structure information

according to predefined conceptual schema. Such structured information

is sufficiently formal, and therefore, more amenable to sophisticated auto-

mated searching, extraction, and processing, but is also high-level (or ab-

stract) enough to remain readable. Logic programming provides a uniform

means for representing both the data and the queries over such data. Also,

knowledge-based query processing is facilitated by logic programming.

2. Webdocuments inter-connected by links aremodelled as inter-related logic

programs. This idea is motivated by four observations. First, the Web

when viewed as a collection ofWeb documents connected by links consists

of distinct but connected components. Hence, distinct program compo-

1.2 Contributions 7

nents, and the relationships between them, naturally model the structure

of information on the Web. Second, the Internet is a distributed system.

An application may consist of program components situated in separate

files which, in turn, may be distributed over several Internet hosts. Pro-

gram structuring abstractions provide a framework for integrating these

components in a principled way. Computational content on separate Web

documents can be integrated based on such abstractions. Third, well-

established meta-programming techniques in logic programming provide

a paradigm for manipulating the Web, especially if Web documents con-

tain logic programming code. These documents can be manipulated using

their identifiers as first class entities in programs. Fourth, as mentioned,

program structuring abstractions have been useful for AI applications and

software engineering, and therefore, should be explored for the develop-

ment of Web applications.

The model emphasises computations on the local host due to its favourable

characteristics as seen from our earlier comparison of mobile code to the form

submission mechanism.

1.2 Contributions

This thesis makes the following contributions to the relationship between logic

programming and the Web:

1. A new model called LogicWeb is introduced for integrating logic program-

ming technology with the Web, where the Web is viewed as a collection of

logic programs.

LogicWeb adds logic programming based interactive behaviours to Web

documents. AWebdocument is viewedas a live information entity able to re-

spond to user queries using its own code and can have the behaviours of its

8 CHAPTER 1

links determined by rule-based reasoning. The behaviours can reasonwith

Web pages by collecting andmanipulating data from them. LogicWeb also

adds to theWeb structured information in the form of deductive databases

and knowledge-bases.

2. A new language (extending Prolog) based on LogicWeb is developed for

coding the logic programming behaviours, and representing and querying

the structured information. This language offers a newWeb programming

paradigm,where computingwith theWeb is equated to evaluating goals in

compositions of programs. The practical result is that programming with

the Web in this language is aided by familiar modularity abstractions, and

the programmer need not explicitly deal with low-level issues such as doc-

ument retrieval, caching, and parsing.

3. An operational semantics is given which makes precise how programs in

the LogicWeb language interact with the Web during goal evaluation, and

how these interactions affect goal evaluation. Interactingwith theWebdur-

ing program execution corresponds to consulting an oracle function during

proof searching. The semantics forms the basis for a language implemen-

tation.

4. A systemwhich realises LogicWeb is implemented as an extension to aWeb

browser. Security is an important issue in the LogicWeb system because

code is downloaded from remote hosts and executed locally. A security

model for the system is developedwhich is flexible and precisely specified

using proof rules.

5. A range of examples illustrates LogicWeb-basedprogrammable behaviours,

and demonstrates the feasibility and advantages of the LogicWeb language

for coding Web search tools, Web-situated databases called lightweight de-

ductive databases, and extensions to the semantics of Web links.

1.3 Overview of Thesis 9

1.3 Overview of Thesis

The rest of this thesis is organised as follows. In Chapter 2, the background of

the thesis is given. Chapter 3 presents the LogicWeb model, and the LogicWeb

language describing its operational semantics. The architecture of the LogicWeb

system and its implementation is described in Chapter 4. Chapters 5, 6, and 7

discuss LogicWeb applications constructed using the implementation given in

Chapter 4. Chapter 5 describes in detail a tool called CIFI for finding citations of

specific Computer Science publications on the Web. Chapter 6 introduces light-

weight deductive databases for structuring Web information. The use of such

databases is demonstrated for organising citation information on the Web and

for generating guided tours of Web documents. These guided tours are usable

from the Web. Chapter 7 explores a LogicWeb-based conceptualisation of the

Web as a two-layered hypertext model whereWeb links can have more sophisti-

cated semantics. A number of different link semantics is demonstrated address-

ing weaknesses in the current Web linking mechanism, and allowing linking

based on semantic criteria. Chapter 8 describes extensions to the LogicWeb sys-

tem for tackling security issues. It is shown formally that the security model for

the system can prevent attacks from downloaded programs, and that crucial to

the security model’s development are the use of meta-interpreters11 and the ex-
tensible operational semantics of the LogicWeb language. LogicWeb is compared

with related work in Chapter 9, and Chapter 10 concludes and briefly presents

avenues for future work. Appendices A and B provide an additional level of de-

tail on the extraction of components from Web documents in the LogicWeb im-

plementation andpredicates for supporting LogicWeb applications, respectively.

11A meta-interpreter is an interpreter for a language written in the language itself [185].

10 CHAPTER 1

Chapter 2

Background

2.1 Technical Overview of the World Wide Web

This section presents technical details concerning the Web’s client-server archi-

tecture and hypertext nature. Only details relevant to the thesis are discussed.

Whenever appropriate, the reader will be referred to other sources for full de-

scriptions of the technologies.

2.1.1 Client-server Architecture

The Web, like the Internet, is based on a client-server architecture. A server is a

program which accepts requests via the network, performs a task according to

the request, and then responds to the requesters. A client is a program that can

send a request to a server, wait for a response, and then reply to the server. The

client also accepts inputs (i.e., requests) from the user and displays data (i.e., re-

sponses from the server) to the user. Servers control access to information on the

Internet, accessing data on behalf of the client, manipulating the data as required,

and sending the data to the client.

Servers and clients can be characterised by the protocol they use. Web servers

and clients communicate over the network using the Hypertext Transfer Proto-

11

12 CHAPTER 2

Figure 2.1 The client-server architecture of the Web.

response

Web

Client Host

Web

Network

Data
Server

Server Host

Client

request

col. However, usually Web browsers can also communicate with servers imple-

menting other Internet communication protocols such as FTP, NNTP, Gopher, or

WAIS. In the rest of the thesis, the term Web browser shall refer to a Web client

which supports link traversal and fill-in forms. Popular Web browsers include

Microsoft Internet Explorer, Netscape Navigator, and NCSAMosaic.

The terms server host and client host refer to the machines where the server

program and the client program run respectively. A server and a client may run

on the same machine, i.e. a computer can host a server and a client at the same

time. Figure 2.1 illustrates the client-server architecture.

2.1.2 The Web as a Hypertext System

The explosive growth of the Web is due largely to the use of hypertext. Using

hypertext, two independently developed collections of information, if found to

2.1 Technical Overview of the World Wide Web 13

be related, can be easily linked. This means that newly created information can

be easily linked to the existing corpus. Standardisation of an addressing scheme

and Web document formats further ease the linking process.

Following [24], the Web is taken to mean the body of data available on the

Internet using all or some of the following items:� an address system allowing a reference (called Uniform Resource Identifier)
to be associated with each item in the Web;� a network protocol (called Hypertext Transfer Protocol) for retrieving infor-
mation on the Web; and� a standardmark-up language (calledHypertextMark-up Language) inwhich
documents are written.

These items implement the Web’s networked hypertext functionality.

2.1.2.1 Uniform Resource Locators (URLs)

AUniformResource Locator is a string referring to a resource on the Internetwhich

encodes explicit instructions on how to access the resource including the net-

work protocol to use and the resource’s physical location. A URL for a resource

consists of the following components:

1. the Internet protocol for accessing the resource;

2. the Internet host’s (i.e., the server host’s) name on which the resource is

stored;

3. (optionally) a port number atwhich the server is receiving protocol requests

(the default number is normally 80); and

4. the path identifying the resource on the server host’s file system. A server

is configured to map this path to the actual path on the local file system.

14 CHAPTER 2

For example, the following is the URL of a document about Web addressing:

http://www.w3.org/Addressing/Addressing.html

The URL states that the document of path /Addressing/Addressing.html

is retrieved using theHTTPprotocol (discussed in Section 2.1.2.3) from the server

running on a host with address www.w3.org using the default port number.

Other forms of the URL include:� relative URLs. A relative URLwithin aWeb document is expanded by com-
bining with a portion of the containing document’s URL. For instance, the

relative URL

/Addressing/Addressing.html

within a document of URL:

http://www.w3.org/

expands to the absolute or full URL:

http://www.w3.org/Addressing/Addressing.html

Just as UNIXfilenames are expanded by the current directory path, relative

URLs are expanded by its containing document’s URL.� URLs encoding queries. AURL can encode a query to be sent to a server-side
program. In such a URL, a “?” separates the address of the program from

the query posed to it. For instance, the following URL:

http://www.altavista.yellowpages.com.au/cgi-bin/query?

mss=simple&pg=q&q=logicweb

sends to aWebdocument index search program calledAltaVista1 the query
consisting of the attribute and value pairs (mss,simple), (pg,q), and

(q,logicweb).1See http://www.altavista.yellowpages.com.au/.

2.1 Technical Overview of the World Wide Web 15

URLs are part of UniformResource Identifiers (URIs) [21], the set of all names

or addresses that are strings referring to resources. There is another kind of URI

which functions as a persistent name for a resource which is called a Uniform

Resource Name (URN). URNs were proposed as a resource naming scheme to

avoid problems with using URLs for linking. When a URL is used to identify

or link to a resource, the resource’s identity is associated with its physical loca-

tion. This means that it is difficult to move the resource around without having

to update all documents that linked to it. Also, if the resource is replicated onto

multiple machines to avoid long network delays or overloaded servers, links

made using URLs can only point to a specific copy of the resource. URNs iden-

tify resources independently of their physical locations. URNs are still being

developed.2 URNs will only be considered in Chapter 7.
2.1.2.2 Hypertext Mark-up Language (HTML)

HTML is the standard language in which Web documents are written. It is a

mark-up language consisting of tags for demarcatingdocument components. The

tags allow structuring of the contents of a document into paragraphs, levels of

headings, bullet lists, and user interface objects such as menus, text input fields,

and buttons. Tags also permit mobile code to be attached. Mobile code is either

linked to from the document but rendered as part of the document (e.g., Java ap-

plets), or is textually part of the document (e.g., JavaScript). The termWeb page,

or page, is used to mean a HTML document with a URL referring to it.

A page consists of a “head” and a “body” denoted by the tags

“<HEAD>...</HEAD>” and “<BODY>...</BODY>” respectively. For ex-

ample, Figure 2.2 shows a rendered page whose HTML source is shown in

Figure 2.3.2See http://www.acl.lanl.gov/URN/.

16 CHAPTER 2

Figure 2.2 John Smith’s homepage when rendered on a Web browser.

In Figure 2.3, the “...” tags indicate a bullet list. A “(Label)” component is an anchor (i.e., an origin of a hy-

pertext link), consisting of the URL of a link destination defined by the HREF at-

tribute and a label. The “<FORM...</FORM>” tags define a form into which a

user types a query. In the form tag, METHOD=GET states that the query will be

sent using the GETmethod of the Hypertext Transfer Protocol. The GETmethod

is discussed further in Section 2.1.2.3. The ACTION value indicates AltaVista’s

URL. The “<INPUT...>” tags define what is called the query attributes of the

formwhich in Figure 2.3 are mss, pg, and q. User inputs to the form are assigned

to the query attributes. For instance, if the user types in “logicweb” in the form,

q is assigned the value “logicweb”. No user inputs are associated with query at-

tributes of TYPE set tohidden since such attributes are not presented on theWeb

browser (i.e., hidden from the user). TheVALUE attribute in each “<INPUT...>”

tag defines a default value for the query attribute (e.g., simple is a default value

for mss). How the inputs to the form are used to generate a query to AltaVista

is discussed in Section 2.1.2.3.

2.1 Technical Overview of the World Wide Web 17

Figure 2.3 The HTML mark-up of John Smith’s homepage.

<HTML>
<HEAD><TITLE> John Smith </TITLE></HEAD>

<BODY>
<H1>John Smith</H1>

I am a postgraduate student in the
Department of Computer Science
at
The University of Melbourne,
Australia.

<H3> Research interests </H3>

 information retrieval

Web addressing

<H3> Search the Web </H3>
<CENTER>
<FORM
METHOD=GET
ACTION="http://www.altavista.yellowpages.com.au/cgi-bin/query">
Australian
AltaVista
search mirror:
<INPUT TYPE=hidden NAME=mss VALUE=simple>
<INPUT TYPE=hidden NAME=pg VALUE=q>
<INPUT NAME=q size=30 maxlength=200 VALUE="">
<INPUT TYPE=submit VALUE=Submit>
</FORM>
</CENTER>
</BODY>
</HTML>

HTML is ongoing work and is continually expanding with additional tags.

For instance, the recent recommendation for HTML is HTML 4.0 [171] which

adds to an older standard (HTML 2.0) features such as tables, applets, text flow

18 CHAPTER 2

around images, superscripts and subscripts, and support for scripting languages.

In the rest of this thesis, HTML tags are introduced as required.

2.1.2.3 Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) [25] is a low-overhead protocol based on

the URL addressing scheme which can transfer information quickly to support

hypertext browsing. Various forms of information can be transferred including

text, hypertext, images, and other media types defined for the Multipurpose In-

ternet Mail Extension (MIME) [25].

HTTP is stateless in that the Internet connection is held only for the duration

of one operation (e.g., a request for a file and its response) and that HTTP re-

turns results based only on the current request and not on previous ones. Since

the location of the resource is encoded in the URL, HTTP does not need to sup-

port full navigation features like the FTP and Gopher protocols, and so does not

keep navigation history. Thus, HTTP is a simple request and respond protocol.

Once the client establishes a connection with the server, it sends a request to the

server. The server responds with the requested information (if available). The

information received by the client in response to HTTP requests are calledHTTP

response objects.

All client requests consist of two parts. The first part consists of� a request method which specifies the operation to perform;� the URL of the resource (e.g., a file) onwhich to perform the operation; and� the protocol version (e.g., HTTP 1.0).
The secondpart consists of (optional) headers providing information to the server

such as what types of data the client can handle, the client’s identity, the URL of

the document fromwhich the request originated (the referrer), and body content.

2.1 Technical Overview of the World Wide Web 19

An early draft of the HTTP protocol specification contains a list of 13 HTTP

request methods.3 Currently, the three most commonly implemented methods
are GET which is used to retrieve a resource, HEAD which requests header (or

meta-) information about a resource, and POST which allows the client to send

information of arbitrary size to the server [25]. The other methods (particularly

those which update information on the server) are at this time rarely supported

by Web servers, and hence, only the three common methods are considered for

LogicWeb. As more methods are defined and become widely used in the future,

they can be considered for LogicWeb.

The server’s response consists of two parts:

1. a status line containing the server’s protocol version, a code indicating the

status of the request, and descriptive information about the status; and

2. a message containing resource meta-information, and possibly body con-

tent. Typically, the meta-information includes the date the resource was

requested, the name and version of the server containing the resource,

MIME version, the time the resource was last modified, the content type

(e.g., text/html), and the content length. If the body content is of type

text/html, then it is a HTML document.

AGETRequest Example. Theordinary behaviour of links as seen inWebbrow-

sers (e.g., NCSAMosaic) is to retrieve and display a page. When a user clicks on

a hypertext link on a Web browser, the browser translates the URL specified in

the link into a GET request using the server host and path information encoded

in the URL, and then sends that request to the server. For example, if the user

clicks on the link on John Smith’s page marked-up by

Web addressing3See http://www.w3.org/Protocols/HTTP/HTTP2.html.

20 CHAPTER 2

the following GET request is sent after connecting to the host www.w3.org:

GET /Addressing/Addressing.html HTTP/1.0

/* a blank line here */

The server responses with:

HTTP/1.0 200 Document follows

Server: CERN/3.0A

Date: Thu, 31 Jul 1997 00:59:05 GMT

Content-Type: text/html

Content-Length: 12998

Last-Modified: Wed, 04 Jun 1997 20:17:41 GMT

/* a blank line here */

<HTML>

/* the rest of the requested document is here */

The status code of 200 indicates a successful request. On failure, other status

codes (described in [25]) are returned indicating the reason for failure such as for-

bidden access to the requested resource, the server is busy or encountered some

error, or the resource requested can not be found. If a resource has been moved,

the server (if configured to do so) sends to the client the URL of its new location

using the field:

Location: /* new URL*/

Aclient can be builtwhichunderstands this location field and automatically utili-

ses the new URL. Web browsers normally handle such redirections on behalf of

the user. It is possible that querying the server with the new URL results in an-

other URL being returned, i.e. several redirections can occur before the resource

is finally obtained. The final URL used to retrieve the resource is the resource’s

actual URL.

A HEAD Request Example. A HEAD request such as the following:

HEAD /Addressing/Addressing.html HTTP/1.0

/* a blank line here */

retrieves only the meta-information from the server, i.e. everything up to and

including the last modified time in the above example.

2.1 Technical Overview of the World Wide Web 21

Query Submission Examples. A GET request encoding a query to a server-

side program is submitted in the same way. For instance, after connecting to

the host www.altavista.yellowpages.com.au, the following request is is-

sued:

GET /cgi-bin/query?mss=simple&pg=q&q=logicweb HTTP/1.0

Such a GET request is generatedwhen a user follows a linkwith a URL encoding

the query (e.g., the example shown in Section 2.1.2.1), or when a user fills in a

form on aWeb browser (e.g., the form shown in Figure 2.3) and submits it to the

server-side program of path /cgi-bin/query.

In the GET method, query information is submitted as part of the URL. This

limits the amount of information that can be sent since the length of a URL is

limited (to 255 characters normally). The POSTmethod allows the user to submit

information of arbitrary length in a request. For instance, a POST request which

sends 10 bytes of data takes the following form:

POST /cgi-bin/post-query HTTP/1.0

Content-type: application/x-www-form-urlencoded

Content-length: 10

/* a blank line here */

int=hello!

The above content type is reserved for submitted form inputs. The con-

tent length indicates the size of the body to be submitted with the request.

/cgi-bin/post-query is the path of the program processing the form inputs.

Forms onWeb browsers can specify whether to submit form inputs using a GET

or POST request using the METHOD attribute, for example, as seen in Figure 2.3.

This form submission mechanism is called Common Gateway Interface (CGI)

and the server-side program often called a CGI script.

AHTTP request issued by aWeb client to aWeb server succeeds if the client re-

ceives the requested information. HTTP does not guarantee the success of HTTP

requests. HTTP requests may fail which means that the client does not receive

22 CHAPTER 2

the requested information, and instead receives an error message giving the rea-

son for the failure. If the server is down, then no reply will be received from the

server, and the request must be made to time-out.

From the client’s perspective, the Web has a nondeterministic nature in that

the client generally cannot predict the result of aHTTP request. The performance

and reliability of the Web (e.g., as experienced by users of Web browsers) are af-

fected by a number of factors which are often unpredictable and out of the user’s

control. Such factors include network traffic and bandwidth, availability of ser-

vers, changes to information accessible by servers, and server host characteris-

tics (e.g., CPU speed and memory). For instance, the client will not receive a re-

quested file if it has been deleted, or the server is busy. A request which failed at

one point in time may succeed at another.

At any point in time, i.e. assuming a “snapshot” of the Web, a URL uniquely

refers to at most one page. However, the same URL used at different times can

retrieve different information. The dynamic nature of Web information makes it

generally impossible for the client to predictwhat information a successfulHTTP

request will return. An example of this is a URL encoding a query. The result of

the query can vary with the time the request is issued. Another example is when

the page on the server host is modified between two HTTP requests.

TheWeb’s nondeterministic nature as seenby the client is central indiscussing

the semantics of the LogicWeb language in the next chapter.

The Hypertext Transfer Protocol (HTTP) has been in use on the Web since

1990, and is continually developing. HTTP 1.1 is the most recent proposed stan-

dard and is designed to improve several aspects of HTTP 1.0 including the per-

formance of Web clients and servers, and the reduction of Internet traffic due

to HTTP data transfers. In order for these improvements to take effect, servers

and not just clients must implement HTTP 1.1. Implementation of servers using

HTTP 1.1 are underway but this thesis considers only HTTP 1.0 since it is cur-

rently supported by most servers.

2.2 Logic Programming 23

2.2 Logic Programming

This section briefly presents the syntax and terminology of logic programming,

introducesmeta-programming in logic, and reviewswork on compositional logic

programming relevant to LogicWeb. For more thorough introductions to logic

programming and Prolog, the reader is referred to the Art of Prolog [185] and the

Foundations of Logic Programming [124].

2.2.1 Syntax and Terminology

A logic program is a finite set of Horn clauses or rules of the form:A :- B1; : : : ;Bn
where n � 0. Conjunction is denoted by the symbol “;”. If a clause is read from
left to right, “:-” is often read as “if”, but if read from right to left, “:-” can

be read as “implies”. The goal A is the head of the clause and the conjunctionB1; : : : ;Bn is the body of the clause. Each Bi is called a subgoal. A and each Bi are
atomic formulae where an atomic formula is as defined in the standard way in

[124]. When n is 0, the clauses are called facts. Facts can be written in the formA :- true, where the constant true represents the empty goal. All the vari-

ables occurring in a clause are implicitly universally quantified. For example, the

clause

h(X,Y) :- q(X,Y)

stands for8 X,Y [h(X,Y) :- q(X,Y)]
A predicate is a collection of clauses each of whose head has the same functor

and arity (e.g., h(X,Y)has functor h and arity 2). Constants are function symbols

of arity 0.

24 CHAPTER 2

A pure Prolog program, as defined in [185], is a logic programwhere an order

is defined for clauses in the program and for goals in the body of the clause. The

computation model of Prolog exploits this ordering.

A goal G1 subsumes another goal G2 if there exists a substitution � such thatG2 = G1�.
Strings within double quotes are equivalent to Prolog lists of ASCII codes.

2.2.2 Meta-programming in Logic Programming

Meta-programming involves programming with data which are themselves pro-

grams [20, 172]. Programs used as data are said to be at the object-level, and the

programs manipulating programs are at themeta-level. Meta-programming has

been used extensively in logic programming such as for debuggers, compilers,

and program transformers [20]. Many applications intrinsically involve meta-

programming such as thosewhich formalise proof procedures (e.g., constructing

meta-interpreters) and knowledge assimilators. Moreover, meta-programming

techniques have been shown to be powerful enough to capture many devices for

knowledge representation in AI [33, 34].

A simple application of meta-programming in logic is the vanilla meta-inter-

preterwhich captures the computation model of logic programs [185]:

solve(true).

solve((A, B)) :- solve(A), solve(B).

solve(A) :- clause(A, B), solve(B).

The above interpreter states how to prove goals with respect to an object-level

program represented using the predicate clause/2, where the first argument is

a clause’s head and the second, the clause’s body. Logic programs have a declar-

ative and procedural reading.

Declaratively, the solve/1 fact states that the empty goal is always true. The

first solve/1 rule states that the conjunction (A,B) is true if both A and B are

2.2 Logic Programming 25

true. The second rule states that a goal A is true if there is a clause A :- B in the

object program such that B is true.

The program can also be given a procedural reading. Thesolve/1 fact states

that the empty goal is solved. The first rule states that to solve a conjunction

(A,B), solve A and then B. This reflects the Prolog computation model where

subgoals in the body are evaluated left to right. The second rule states that to

solve a goal, obtain a clause from the object program whose head unifies with

the goal, and then solve the body of the clause. In Prolog, the required clause is

obtained by a sequential search over the clauses of the program.

Various extensions and modifications to the vanilla meta-interpreter have

been studied. For instance, the vanilla meta-interpreter can be modified to com-

pute information for detecting infinite loops (which can happen due to the use

of recursion [29]) and proof tracing (e.g., printing out information indicating the

progress of a proof), or to implement reasoning mechanisms such as forward

and backward chaining [180]. Meta-interpreters can also be combined. Enhance-

ments and combinations ofmeta-interpreters have been used for building expert

systems [184]. Some of these techniques are used in the implementation of Log-

icWeb and are discussed further in Chapters 4 and 8.

solve/1 can be generalised with an argument specifying the program in

which goal evaluation is to be carried out. This generalisation is done with the

demo/2 predicate first proposed by Bowen and Kowalski in [34]. A key moti-

vation of their work was to provide a language where the programmer can ex-

plicitly refer to different logic programs and discuss provability with respect to

alternative programs.

The vanilla meta-interpreter with demo/2 takes the form:

demo(P, true).

demo(P, (A, B)) :- demo(P, A), demo(P, B).

demo(P, A) :- P::(A :- B), demo(P, B).

The goal demo(P,G) states that the program named P can be used to demon-

strate the conclusion G. The clauses of the program P are associated with the pro-

26 CHAPTER 2

gram’s name using the operator “::” and are stored in facts of the form P::(A

:- B). The programnameargument allows the program inwhich goals are eval-

uated to be changed dynamically in a proof. For instance, by prefixing a goal G

with the name of the program P using “:”, a new kind of goal is introduced, and

is written as P:G. The following rule is added to demo/2 to process such goals:

demo(P, Q:G) :- demo(Q, G).

The definition of demo/2 can be extended to model operators for compositional

logic programming as will be shown later.

2.2.3 Compositional Logic Programming

Early implementations of logic programming languages did not adequately sup-

port software engineering and AI applications. A structuring mechanism [118],

that is a construct, mechanism, or framework for organising and composing the

parts (subprograms) of a program, is needed which would allow an application

to be constructed by combining together separate components. The procedure as

a structuring mechanism in logic programming is too fine-grained in that logic

programs appear flat and unstructured. As a result, numerous logic program-

ming languageswith structuringmechanismshave beendevelopedover thepast

decade. From the software engineeringperspective, structuringmechanismspro-

vide modularity and various abstractions for building software systems and en-

couraging code reuse. Such structuring mechanisms have also been proven use-

ful in AI applications to represent, structure, and manipulate knowledge-bases.

Approaches for structuring logic programs have been surveyed extensively

by Kwok [118], Bugliesi et al [47], and Davison [64]. These approaches include

incorporating into logic programming the notions of modules and blocks as usu-

ally found in traditional imperative languages and object-oriented features such

as inheritance as seen in [140, 214, 46, 37, 1], combining programs via meta-level

statements as seen in systems like MultiLog [109], Epsilon [58], and MetaPro-

2.2 Logic Programming 27

log [13] which have been used formanipulating knowledge-bases, and language

extensions using modal logic [93, 199]. Many Prolog implementations such as

SICStus [106], BinProlog [191], SWI-Prolog [209], and ESP [52] provide a prac-

tical module system with a predicate import and export mechanism to support

information hiding and encapsulation. These module systems andmany object-

oriented extensions to logic programming have been developed from a prag-

matic point of view and have not been given a formal semantics.

As noted in [47], two main lines of research into structuring logic programs

with a solid theoretical foundation include algebraic composition operators [160, 138,

35] and implication goals, an idea first introduced by Miller [148, 149].

Algebraic composition operators treat programs as elements in an algebra,

and operators for composing programs as operators over that algebra. This ap-

proach has a number of benefits including:� facilitating the reuse of the same programwithin different compositions of
programs;� extensibility, where new composition operators can be added by introduc-
ing operators into the algebra, or defined using existing operators; and� a formal theoretical basis for the composition operators and for building
new operators from existing ones.

In contrast to the practical module system in Prolog implementations, the alge-

braic approach provides, in a single framework, a number of different ways for

combining programs, each with its own precise meaning and formal semantics.

The algebraic approach takes ameta-linguistic viewwhere the logic programs are

sets of Horn clauses, and the meaning of the composition operators are specified

in terms of operations on the component clauses.

One particular algebraic program composition framework which was pro-

posed by Brogi in his doctoral thesis [35] stands out because of its elegant se-

mantics and expressive power. The framework builds on familiar techniques for

28 CHAPTER 2

logic programming semantics, and integrates functionalities for program speci-

fication, databases, knowledge representation, and problem solving. The frame-

work consists of a set of basic operators for composing separate logic programs.

The operators are basic in the sense of their simple semantics and their extensive

modelling capabilities. The generality andwide applicability of the operators are

shown in their use for modelling hypothetical and abductive reasoning, and for

modelling extensions to logic programming such as blocks, inheritance in object-

oriented programming, and contextual logic programming [151]. Moreover, the

framework provides a formal approach for modularising logic programs, where

predicate import and exportmechanisms and information hidingnotions aremo-

delled.

The algebraic approach on its ownhas a drawback. Theprogram system form-

ed by an algebraic composition of programs is used for evaluating the top-level

goal. All subgoals are evaluated in the same program system. There is no way

to dynamically prove subgoals in different configurations.

A more flexible method of composition uses the idea of implication goals.

Miller’s implication goal [149] is of the form D � G (D a program) and has
the following operational meaning: D � G is provable from a program P if the
goal G is provable from P [D. Implication goals provide an object-level con-
nection to meta-level algebraic compositions. Additional clauses can be dynam-

ically imported and combinedwith existing ones as part of goal evaluation. This

approach contrasts with the algebraic composition approach in that implication

goals occur as subgoals in the body of clauses extending the Horn clause (i.e., a

linguistic approach) whereas the algebraic approach leaves the Horn clause as it

is. Variants along this line of work which extend the Horn clause with different

forms of subgoals include logic programming language extensions such as con-

textual logic programming [151], N-Prolog hypothetical implications [88], linear

implication in BinProlog [191], Structured Prolog [94], the framework developed

by Brogi et al in [36], and use of modal operators in subgoals of the form [M]G,

2.2 Logic Programming 29

whereM is a program, [M] is a modal operator, and G is a goal [16].
Shown in [40] is a logic programming language which combines the use of

program expressions (constructed using Brogi’s algebraic composition operators)

with subgoalswritten in the style of implication goals. Such subgoals allowgoals

in the body of a rule to be evaluated with respect to different program expres-

sions. Below, four operators, the syntax, an operational semantics, and a meta-

interpreter for this language are presented. In the next chapter, this language is

extended to form the LogicWeb language.

2.2.3.1 Meta-level Program Composition Operators

Four meta-level operators in Brogi’s algebraic program composition framework

are: union (“[”), intersection (“\”), restriction (“�”), and encapsulation (“}”) [35].
The union of two programs is the set-theoretic union of their clauses. For ex-

ample, consider two programs with identifiers M and N, where M consists of the

clauses:

p(X) :- q(X).

r :- b.

and N, the clauses:

r :- w.

q(a) :- true.

The union of M and N, written as M [N, is the program:
p(X) :- q(X).

r :- b.

r :- w.

q(a) :- true.

The intersection of two programs is the program consisting of clauses which

result from combining clauses from both programs whose heads unify. More

30 CHAPTER 2

precisely, if the function mgu(H1; H2) returns the most general unifier of atomsH1 and H2, the intersection of P and Q is the setfA:-G j (H1:-G1 2 P) and (H2:-G2 2 Q)and � = mgu(H1; H2) and A = H1� and G = (G1; G2)�g
The intersection of programs M and N, written as M \ N, corresponds to the fol-

lowing program with only one clause:

r :- b, w.

The restriction of two programs, written as P � Q, is the program consist-
ing of clauses of P which are not defined in Q. Formally, if pred(A) is the predi-
cate symbol (i.e., functor/arity) of an atomA, and preds(P) is the set of predicate
symbols defined by program P , the restriction of P by Q is the setfA:-G j (A:-G 2 P) and pred(A) 62 preds(Q)g
The restriction of M by N is the program:

p(X) :- q(X).

since r/0 is defined in N.

The encapsulation of a program P , written as}P , consists of clauses formed
from atoms provable (using the rules given in Section 2.2.3.3) from P alone:fA :- true j A is an atom and A is provable from Pg
In theory, this set may not be finitely computable. But in practice, not all the el-

ements of this set need to be computed. For instance, given a goal A and a pro-
gram P , an attempt is made to prove A from P , and ifA is proved from P , then a
clause A :- true is obtained from }P . Proving A from P need not necessarily
involve computing all atoms provable from P .
Encapsulation hides the program’s clauses in compositions but exports its

atomic consequences. For instance, the encapsulation of N is the set:fq(a) :- trueg

2.2 Logic Programming 31

and the encapsulation of the union M [N is the following set of clauses:fp(a) :- true;q(a) :- trueg
This thesis will demonstrate the use of the above four operators in LogicWeb.

This choice is motivated by their proven utility in the numerous applications

from [35] mentioned earlier, and for databasemanipulationmentioned in [8, 41].

Moreover, the operators dealwith anotion of programswhich corresponds close-

ly to the notion of programs used in LogicWeb described in the next chapter.

However, there are other composition operators proposed in the literature which

are more specialised in their application and can not be expressed in terms of

these four operators. Such operators include tuple inheritance which models a

specific formof inheritance between logic programs [152], a formof restriction [7],

and importwhich models a form of predicate import into a program [35]. In the-

ory, an arbitrary number of specialised operators can be defined, and it is im-

practical to include all. The above four operators suffice to demonstrate the key

applications described in this thesis. The use of other operators in LogicWeb is

discussed further in Chapter 10.

The extensive survey ofmodularity in logic programming [47] used the oper-

ators union, encapsulation, and overriding union as the basic building blocks for

compositions. Overriding union has been used to model object-oriented inher-

itance between programs. The overriding union of two programs P and Q can
be expressed using union and restriction as P [(Q � P).
2.2.3.2 Syntax

The meta-language for program expressions is the following:E ::= Program j E [E j E \ E j E � Program j } (E)Program is the name of a logic program.

32 CHAPTER 2

The Horn clause is extended to utilise meta-level operators, where the body

consists of a finite sequence of elements each either an atomic formula or ameta-

level formula of the formB in E whereB is an atomic formula andE, a program
expression.

2.2.3.3 Operational Semantics

The operational semantics given here is found in [40]. A Plotkin style approach

is adopted where a set of inference rules defines a derivation relation. For any

goal formula G and program expression E, E `� G denotes the fact that there
exists a top-down derivation of G in E with computed answer substitution �. The
inference rules defining the derivation relation are in the form:premisesconclusion
which is read as conclusion holds whenever premises hold. `� is defined to be
the smallest relation satisfying the inference rules below. In the rules, P denotes
the name of a single program, E and F denote program expressions of the formE , and � denotes the empty (identity) substitution.
The language is an extension of standard pure Prolog. The ruleswhich define

derivation in standard Prolog are first given.

True. E `� true (2.1)

true represents the empty goal, and is always derivable in any program expres-

sion E returning the empty substitution �.
Conjunction. E `� G1 ^ E ` G2�E `� G1; G2 (2.2)

2.2 Logic Programming 33

Toderive anon-empty conjunction, derive each conjunct in turn. Theproof of the

second conjunct proceeds with the answer substitution � returned by the proof
of the first. The computed answer substitution for the conjunction is the compo-

sition of the answer substitutions obtained from the proof of the two conjuncts�. This rule specifies a left-to-right ordering in the evaluation of conjunctions.
Atomic formula.E `� (H :- G) ^ = mgu(A;H�) ^ E `� G�E `�� A (2.3)

To prove an atomic formula, obtain a clause (using substitution �) whose head
unifies with the formula with the most general unifier (mgu) , and then prove
the body of the clause with answer substitution � returning the composed an-
swer substitution ��.
Obtaining program clauses.P is a program ^ (A :- G) 2 PP `� (A :- G) (2.4)

This rule states that a clause is obtained from a program if the clause is amember

of the program. The computed answer substitution is �. This rule is generalised
to represent how clauses are obtained from a composition of programs. The re-

lation E ` (A:-G), where E is a program expression, is defined by adding new
rules for each type of composition. These rules define the set of clauses (virtu-

ally) found in a composition, and are defined based on the syntax of program

expressions.

Union. E `� (A :- G)E [F `� (A :- G) (2.5)F `� (A :- G)E [F `� (A :- G) (2.6)

A clause is chosen from a union E [F by choosing a clause from either E or F .

34 CHAPTER 2

Intersection.E `�1 (H1 :- G1) ^ F `�2 (H2 :- G2) ^ = mgu(H1�1; H2�2)E \ F `�1�2 (H1 :- G1; G2)
(2.7)

A clause H:-G is obtained from the intersection E \ F if there exists a clauseH1:-G1 obtained from E using �1 and a clause H2:-G2 obtained from F using�2 such that H1�1 unifies with H2�2 via , H = H1�1, and G = (G1�1; G2�2).
Note that �1 and �2 aremutually exclusive since they are computed fromdifferent
program expressions, i.e. variables inH1 :-G1 are renamed apart from those inH2 :- G2. This means, for example, that G1�1�2 = G1�1 and G2�1�2 = G2�2.
Encapsulation. E `� A}E `� A :- true

(2.8)

A clause A:-true belongs to }E if A is provable in E.
Restriction. E `� (A :- G) ^ pred(A) 62 preds(P)E � P `� (A :- G) (2.9)

A clause is obtained from a program or composition denoted by E restricted by
another (single) program P by choosing the clause from E and checking that it
has not been defined in P . The requirement that E is restricted by a single pro-
gram rather than a composition of programs allows the programmer control over

the actual clauses which will be involved in the operation [40].

The final rule below defines the “in” operation which integrates the meta-
language of program expressions into the object language. The rule states that

to solve a goal of the form A in F , solve A in the program expression F :F `� AE `� A in F (2.10)

2.2 Logic Programming 35

The following is an example of how the rules are used to prove the goal p(a)

in the union of M and N:

M `� p(X) :- q(X)

M [N `� p(X) :- q(X)
(2:5) N `� q(a) :- true

M [N `� q(a) :- true
(2:6)

M [N `� true(2:1)
M [N `� q(a) (2:3)

M [N `fX=ag p(a) (2:3)
First, rule (2.3) is used resulting in two branches. In the left branch, rule (2.5)

is used to retrieve a clause from the union. The head of the clause unifies with

the goal p(a) with the substitution of X by a, denoted by fX=ag. In the right
branch, the subgoal q(a) resulting from applying fX=ag to q(X) is proven with
the clause from N using the rules (2.3), (2.6) and (2.1).

2.2.3.4 Implementation

The above rules translate easily into an implementationwhich extends the vanilla

meta-interpreter [35, 38, 42].

The following rules defining::/2 for union, intersection, encapsulation, and

restriction are added to the demo/2 version of the vanilla meta-interpreter :

(E [F)::(A :- B) :- E::(A :- B).

(E [F)::(A :- B) :- F::(A :- B).

(E \ F)::(A :- (B, C)) :- E::(A :- B), F::(A :- C).}E::(A :- true) :- demo(E, A).

(E � P)::(A :- B) :- E::(A :- B), undefined(A, P).

The first argument of ::/2 is a program expression representing a composition

of programs rather than a single program. The first two rules define union stat-

ing that a clause belongs to the union of two programs (or compositions) E [F

if it belongs to either E or F.

The third clause for intersection utilises the unification mechanism to ensure

that the clause heads from both E and F are the same. This clause should not be

36 CHAPTER 2

seen as breaking down the clause A :- (B, C) into two clauses A :- B and

A :- C and checking for their existence in E and F respectively, but as forming

the clause A :- (B, C) from the two clauses. When ::/2 is used to retrieve a

clause from E \ F, this clause is invoked with only E, F, and A instantiated. On

succeeding, the result returned is the body (B,C) which comprises the bodies

of two clauses.

The fourth clause states that clauses from an encapsulation of a program }E
are always of the form A :- truewhere A can be demonstrated from E.

In the fifth clause, undefined(A, P) checks that the predicate symbol of A

is not defined in P, and if so, the clause A :- B from E is returned.

Rule (2.10) can be implemented by adding the following clause:

demo(E, A in F) :- demo(F, A).

Chapter 3

LogicWeb

As mentioned in the introduction, LogicWeb is based on two key ideas: mod-

ellingWeb pages inter-connected by links as distinct inter-related programs and

building logic programming rules intoWebpages. This chapter details both these

aspects of LogicWeb and the LogicWeb language. In particular, compositional

logic programming ideas introduced in the previous chapter are applied for ma-

nipulating Web pages with rules.

We begin in Section 3.1 by introducing LogicWeb programs, the central notion

in LogicWeb. The components of LogicWeb programs are detailed in Section 3.2.

Section 3.3 describes the language in which LogicWeb programs are written and

manipulated. The EBNF syntax and an operational semantics for the language

are given. The operational semantics shows how LogicWeb programs are exe-

cuted and provides a basis for language implementation. Section 3.4 outlines

how LogicWeb programs are used for building applications on the Web.

3.1 A Logic ProgrammingModel of the Web

LogicWebmodels theWeb as a collection of inter-related logic programs. In Log-

icWeb, pages can contain rules, and the hypertext Web structure is captured as

37

38 CHAPTER 3

Figure 3.1Web pages connected by hypertext links.

links

Web Page

Web Page
Web Page

Web Page

URL1

URL2

URL3

URL4

follows: each page is represented by a logic program called a LogicWeb program

and each hypertext link is a relationship betweenLogicWeb programs. Figure 3.1

shows the hypertext structure of the Web consisting of a collection of pages con-

nected by hypertext links. As noted in Chapter 2, each page is referred to by

a URL. Figure 3.2 depicts the LogicWeb model showing pages augmented with

rules andhypertext links as relationships between programs. The LogicWeb pro-

gram corresponding to a page is identified using the URL of the page, and is

made up of facts storing the page’s HTML components and the rules (if any) em-

bedded within the page. LogicWeb programs are described in detail in the next

section.

This model is not simply a pleasing abstraction, but has pragmatic uses. The

modelling of pages as programs and links as relationships between programs

allows reasoning with the Web (with embedded rules) using well-established

meta-programming techniques in logic programming. The LogicWeb programs

3.1 A Logic ProgrammingModel of the Web 39

are at the object level, and the relationships between them and rules manipulat-

ing them are at the meta-level.

As emphasised in the introduction, rules can be viewed as code or data. Rules

embedded within a page can be used to encode dynamic behaviour turning a

page into a live information entitywhich uses its rules to respond to user queries.

The ruleswithin aLogicWebprogram can reasonwith other LogicWebprograms,

i.e. the behaviour of a LogicWeb program may depend on other programs. Al-

ternatively, ruleswithin a collection of pages can form a repository of knowledge

which is published on the Web and sufficiently structured to be processed auto-

matically.

Figure 3.2 The LogicWeb model where pages augmented with rules are pro-

grams and hypertext links are relationships between programs.

rules)

rules)
rules)

rules)
(with LogicWeb

Web Page

Web Page
Web Page

Web Page

relationships

Program1

Program2

Program4

Program3

(with LogicWeb

(with LogicWeb
(with LogicWeb

40 CHAPTER 3

3.2 LogicWeb Programs

In this section, we look into the details of LogicWeb programs. LogicWeb pro-

grams are constructed from meta-information and page contents in HTTP re-

sponse objects. As mentioned in Chapter 2, the three types of HTTP requests

used in this thesis areHEAD,GET, andPOST, and hence, three kinds ofHTTP re-

sponse objects are considered. When successful, the HEAD request returns only

themeta-information about a page, whereas GET andPOST requests return both

themeta-information and page contents. AHTTP response object ismapped to a

logic program. The logic program derived from a GET or POST response object

consists of facts storing the page’s meta-information, HTML text, and embed-

ded rules. The logic program translated from aHEAD response object comprises

mainly facts storing meta-information. The components of the program (includ-

ing the names of the facts) for each type of HTTP response object are shown in

Figure 3.3.

A HEAD response object corresponds to a LogicWeb program consisting of

two types of facts storing the meta-information and the actual URL of a page.

The two types of facts are:� about(FieldName, Value). The about/2 facts store the meta-

information about a page supplied by the server as described in Section

2.1.2.3. For instance, the about/2 facts for a page are:

about(mime_version, "1.0").

about(server, "CERN/3.0").

about(date, "Thursday, 26-Dec-96 14:47:05 GMT").

about(content_type, "text/html").

about(content_length, "2322").

about(last_modified, "Sunday, 08-Dec-96 20:48:29 GMT").

In the case of redirections, only the meta-information of the page is stored,

and not header fields indicating the redirection (e.g., the Location field

described in Section 2.1.2.3).

3.2 LogicWeb Programs 41

Figure 3.3 The identifiers and components of three types of LogicWeb programs.

mapped to

HEAD Response Object

about/2, actual_url/1

mapped to

GET Response Object

Program Identifier:

Program Identifier: lw(post(Data), URL)

lw(get, URL)

information

POST Response Object

lw(head, URL)

mapped to

about/2, actual_url/1,
my_id/2, h_text/1,
link/2

Additional facts generated
from HTML text

about/2, actual_url/1,
my_id/2, h_text/1,
link/2

Additional facts generated
from HTML text

meta-

information

HTML
+

meta-

information

HTML
+

meta-

LogicWeb rules

LogicWeb rules

text

text

Program Identifier:

42 CHAPTER 3� actual url(URL). This holds the URL of the page whose meta-

information is retrieved from the server. If several redirections occur, then

actual url/1 stores the actual URL of the page.

A program corresponding to a HEAD response object has the identifier

lw(head, URL). Programs corresponding to GET and POST response objects

have identifiers of the form lw(get, URL) and lw(post(Data), URL) re-

spectively. A GET or POST response object corresponds to a LogicWeb program

consisting of:

1. five types of facts generated from the meta-information returned by the

page’s server, and the HTML text of the page, and

2. rules included within the page via a special tag.

The five types of facts are about/2 and actual url/1 described above, where

in the case of POST, actual url/1holds the actual URLof a CGI script, and the

following three types of facts:� my id(Type, URL). The argument Type stores the type of the program

which is either the term get or post(Data). In the case of get, URL is

the URL of the page used in a GET request, and for post/1, Data is in-

formation posted to the CGI script at URL. my id/2 stores the URL used

in the original Web request. This URL can differ from the URL stored in

actual url/1 if a redirection occurs. For example, the original URL in a

request is

http://www.cs.mu.oz.au/˜swloke

but the actual URL (returned in the Location field described in Section

2.1.2.3) is

http://www.cs.mu.oz.au/˜swloke/index.html

3.2 LogicWeb Programs 43� h text(HTMLText). This contains the complete standard HTML text of

the page (including the HTML tags) as a string.� link(Label, URL). This stores a page’s link information. For instance,

the marked-up anchor:

...Melbourne U...

becomes:

link("Melbourne U", "http://www.cs.mu.oz.au/").

Relative URLs in anchors are expanded into absolute URLs which are

stored in link/2. link/2 is redundant in that it stores information al-

ready contained in h text/1. However, link/2 represents explicitly as

relationships the hypertext links between programs. The advantage from

the programmer’s point of view is that link information is easily accessed

and searched over as facts without having to re-parse the page each time

link information is required.

These five types of facts suffice to model the basic page and link structure of

the Web. If other components of the HTML text are needed in applications, they

can be similarly extracted and stored in facts to simplify their use. In the next

chapter, additional components which should be extracted to support applica-

tions are prescribed.

We now consider how rules are embedded within pages. Rules are included

within a page using the tags “<LW CODE>” and “</LW CODE>”. Typically, the

code appears inside a verbatim container “<PRE>...</PRE>” or a comment

container “<!--...-->” so that it is uninterpreted by the browser. Figure 3.4

depicts a page containing rules which describe research interests.

interested in/1 states that the author is interested in several topics and

in what his friends are interested in. The LogicWeb operator “#>” evaluates the

44 CHAPTER 3

Figure 3.4 A page with rules describing research interests.

<HTML>
<HEAD>
<TITLE>Seng Wai Loke’s Home Page</TITLE>
</HEAD>

<BODY>
<H1>Seng Wai Loke’s Home Page</H1>
I’m from the
Department of Computer Science at the

University of Melbourne.
<!--
<LW_CODE>
interests(["Logic Programming", "AI", "Web", "Agents"]).

friend_home_page("http://www.cs.mu.oz.au/˜friend1/").
friend_home_page("http://www.cs.mu.oz.au/˜friend2/").

interested_in(X) :-
interests(Is), member(X, Is).

interested_in(X) :-
friend_home_page(URL),
lw(get, URL)#>interested_in(X).

</LW_CODE>
-->
</BODY>
</HTML>

goal interested in/1 against a program into which each friend’s homepage

is translated. This operator is similar to the “in” operator described in Chapter 2,
and allows the contents of a page to be accessed from rules in another page. This

operator is discussed further in the next section.

The mapping of a page to a LogicWeb program is illustrated below. As-

suming that the page shown in Figure 3.4 was retrieved using the GET method

and the URL http://www.cs.mu.oz.au/˜swloke/without redirection, the

LogicWeb program corresponding to the page comprises the following:

1. about/2 facts for the page’s meta-information (not shown in Figure 3.4).

3.3 The LogicWeb Language 45

2. actual url("http://www.cs.mu.oz.au/˜swloke/").

3. my id(get,"http://www.cs.mu.oz.au/˜swloke/").

4. h text("<HTML>...</HTML>"). This fact stores all the HTML

text including tags except for the rules within the “<LW CODE>” and

“</LW CODE>” tags.

5. Two link/2 facts:

link("Department of Computer Science",

"http://www.cs.mu.oz.au/").

link("University of Melbourne",

"http://www.unimelb.edu.au/").

6. The rules within the “<LW CODE>” and “</LW CODE>” tags.

3.3 The LogicWeb Language

The language in which LogicWeb programs are written and manipulated is an

elementary Edinburgh-style Prolog with additional program operators. A cru-

cial idea is that the identifiers of LogicWeb programs are treated as first-class en-

tities. This makes it easier for programs to access and manipulate each other,

and allows arbitrary relationships to be defined between programs. LogicWeb

programs can be queried in a similar way as ordinary logic programs using the

operator “#>” as already seen in the previous section, and manipulated using

meta-level operators similar to those given in Section 2.2.3.1.

This section first discusses informally the operational meaning of “#>” and

the meta-level operators for composing LogicWeb programs, illustrating their

usewith examples. Then, the formal syntax and an operational semantics for the

LogicWeb language are given. Finally, the relationship between the operational

semantics and a fixpoint semantics is considered.

46 CHAPTER 3

3.3.1 Querying and Manipulating LogicWeb Programs

3.3.1.1 Context Switching

We first consider the operational meaning of the operator “#>” which is called

context switching. A LogicWeb goal is a goal formed using context switching. The

following LogicWeb goal applies a goal to a program specified by its identifier:

lw(get, URL)#>Goal

If the program is not present on the client-side, then its page will be downloaded

and transformed into a LogicWeb program before the query is evaluated. How-

ever, if the program is already present, then the goal is executed immediately.

Thus, the “#>” operator permits the programmer to think ofWeb computation as

goals applied to programs, with no need for explicit Web page retrieval or pars-

ing.

The current context of a LogicWeb goal, i.e. the program or composition of

programs in which the goal is evaluated, is ignored. For example, consider the

following goal:

?- lw(get, "URL0")#>((lw(get, "URL1")#>interested_in(X)), goal).

The program lw(get, "URL0") is the context for the conjunction of the

LogicWeb goal lw(get, "URL1")#>interested in(X) and goal. How-

ever, the evaluation of interested in(X) only uses the rules in lw(get,

"URL1"), ignoring those in lw(get, "URL0"), whereas goal is evaluated in

lw(get, "URL0").

When a LogicWeb goal is evaluated, it is possible that its corresponding pro-

gram can not be created. This may happen if the HTTP request for the required

page fails due to server or network overload, which means that no page is deliv-

ered to the LogicWeb system. A failure of this kind is represented by the failure

of the corresponding LogicWeb goal, whichmakes the problem observable at the

application level. This means that LogicWeb goal failure is either due to down-

load failure, or ordinary goal evaluation failure (when the downloads succeed).

3.3 The LogicWeb Language 47

Since a LogicWeb goal E#>G interacts with the Web as part of its evaluation,

another design choice is to specify the extent of that interaction when the same

goal is invoked multiple times.

When a goal is called the first time, there are two possible cases:

1. The requested HTTP response object is downloaded and the corresponding pro-

gram is created. If the same goal is invoked at a later time, there are two

options:� reissue the HTTP request and create a new program, or� keep using the existing program.
The first option can lead to inconsistent query results. If the corresponding

page has been changed on its server between the first and second HTTP

requests, then the new program may be different from the original. Con-

sequently, the goal which may have succeeded with the original program

may now fail or succeed with different bindings. In contrast, the second

option guarantees consistent results since the program is never changed.

2. The requested HTTP response object could not be downloaded. If the same goal

is later invoked, either the:� HTTP request can be reissued, perhaps returning the actual page this
time, or� goal failure is forced, in order to be consistent with the first invocation.

For case (1), the second option is used (i.e., repeated downloads are avoided).

For case (2), the first option is implemented (i.e., allow a failed HTTP request to

be retried).

In case (1), reuse is chosen primarily to retain consistency between goal eval-

uations. Moreover, most Web pages change quite infrequently and can safely be

assumed to be constant over the duration of a query evaluation (though there are

48 CHAPTER 3

exceptions). Another advantage is that LogicWeb programs are cached on the lo-

cal host, reducing the number of network accesses, and so increasing efficiency.

This consistency also allows information to be inferred about goal failures.

The failure of a E#>G goal is ambiguous since it may be caused by the client’s

inability to retrieve the program, or because G is not provable in E. This ambigu-

ity abstracts away details about failures and is not a problem if the programmer

only wants to know if a LogicWeb goal succeeds or fails. However, the program-

mer may want to resolve this ambiguity. This ambiguity is resolved by subse-

quently calling E#>true, which will only fail if E is not present. However, if

E#>true succeeds, then this may mean that G was not provable or that E was

just downloaded successfully in order to evaluate the true goal. The situation

can be resolved by invoking E#>G again, which can now only fail if G is not prov-

able in E. Another way to resolve the situation is to determine if a program exists

by invoking a built-in predicate program exists/1 in the implementation of

the LogicWeb language (see Appendix B).

Such testing to disambiguate goal failure can be coded up by the program-

mer. For example, the following rules use the second way to resolve the ambi-

guity:

try_goal(LWProgramID, Goal, success) :-

LWProgramID#>Goal. % download and evaluation succeeded

try_goal(LWProgramID, Goal, ReasonForFailure) :-

(program_exists(LWProgramID) ->

ReasonForFailure = evaluation_failure % program exists

;

ReasonForFailure = download_failure % program does not exist

).

try goal/3will always succeed. If the LogicWeb goal fails, a test ismade to de-

termine if the program has been downloaded. If the program exists (and hence,

has been downloaded), then itmust have been that Goalwas not provable in the

downloaded program. If the program does not exist, then the attempt to down-

load the programmust have failed. This test incurs additional computation costs

3.3 The LogicWeb Language 49

(involving a search through all existing programs) and adds complexity, but can

be packaged up in the system as a variant of “#>”.

There are alternatives to reuse, which still reduce network access overheads.

For example:� A program is replaced only if it has been modified. This reduces network ac-
cess costs by issuing a HEAD request to determine if a page has beenmod-

ified instead of amore expensiveGETmessage. However, the result of Log-

icWebgoal evaluationsmay change after a newprogramhas been installed.� A program is replaced periodically. A separate agent can periodically update
the cache independently of when the programs are used. However, it is

hard to determine the desirable frequency of such updates. HTTP permits

servers to return the expiry date of a page as meta-information [25], which

would be stored in about/2. However, servers do not necessarily have to

return such information (and many do not).� Programs are replaced automatically when the evaluation of a query completes.
Thismakes LogicWebgoal evaluations consistent for the duration of a query.

A disadvantage is that a user may want to try a different query with the

same set of programs. In the current LogicWeb implementation described

in Chapter 4, the user can clear or update locally stored programs at any

time through a utility program (itself a LogicWeb application).

In case (2), repeated download attempts allow failed HTTP requests to be re-

tried. Thiswill permit usefulwork to be accomplished if a retry succeeds, though

at the cost of some inconsistency between goal evaluations (or non-logical be-

haviour).

The use of context switching is illustrated belowwith two simple search util-

ities; a more complicated search tool will be developed in Chapter 5.

The first example finds a similar page given a starting URL. The query:

50 CHAPTER 3

?- similar_pg("http://www.cs.mu.oz.au/˜ad", P).

will try to bind P to a URLwhich is similar to the given address. similar pg/2

is defined as:

similar_pg(CurrURL, SimilarURL) :-

lw(get, CurrURL)#>interested_in(Topic),

lw(get, CurrURL)#>link(Topic, SimilarURL).

The program obtains an interested in/1 topic from the given page and uses

it to select a link leaving that page. The evaluation of the query will probably

involve backtracking as it is unlikely that every topic of interest has an associ-

ated link. Note that the program lw(get, CurrURL) is downloaded only once

though it is utilised repeatedly in backtracking and in both LogicWeb goals.

A drawback of this code is that it assumes that the page contains

interested in/1 and link/2 facts. It will have the latter, since they

are generated automatically (unless there are no links leaving the page). It is

less certain that there will be an interested in/1 predicate. This can be

remedied by including an extra clause in similar pg/2 which analyses the

page using the h text/1 string. Inspecting overly large pages is avoided by

first issuing a HEAD request to determine the content length of a page, and

checking that the content length is below a specified threshold.

The second example uses the h text/1 approach to find a page below a cer-

tain size relevant to a given subject and starting page. The query:

?- relevant_pg("Logic Programming", 10 000,

"http://www.cs.mu.oz.au/˜ad", P).

will bindP to aURLwhich is related to logic programming, where thepage is less

than 10 000 bytes in length, and is linked to the starting page. relevant pg/4

is defined as:

3.3 The LogicWeb Language 51

relevant_pg(Subject, MaxSize, StartURL, URL) :-

lw(get, StartURL)#>link(_, URL),

lw(head, URL)#>about(content_length, L),

name(AL, L), % a Prolog built-in to convert string to atom

AL < MaxSize,

lw(get, URL)#>h_text(Source),

contains(Source, Subject).

relevant pg/4 selects a link in the starting pagewithout concerning itself about

the link’s label. If the size of the page linked to is less than MaxSize bytes, then

the text of that page is retrieved and passed to the LogicWeb built-in predicate

contains/2 to see if it contains the subject string. relevant pg/4 only relies

on the predicates automatically generated fromHTML text andmeta-information,

and so should bemore robust thansimilar pg/2. This example shows the ease

with which meta-information and the HTML page text can be accessed.

3.3.1.2 Composing LogicWeb Programs

LogicWeb programs can be composed enabling their behaviour or content to be

combined. The operators for composing LogicWeb programs are based on the

operators described in Section 2.2.3.1 and are collectively called LW-composition

operators. The operators are LW-union (“+”), LW-intersection (“*”), LW-restriction

(“/”), LW-encapsulation (“@”), and LW-reduce (“<>”). These operators are used

to form expressions called LogicWeb program expressions, or simply program ex-

pressions, when context differentiates these expressions from the program ex-

pressions of Chapter 2.

LogicWeb programs are composed after they have been retrieved from the

Web, and this behaviour means that the semantics of the LW-composition oper-

ators can be viewed as a variant of those described in Section 2.2.3.1, extended

to address issues related to page downloading and the mapping of pages to pro-

grams. For example, consider the following LogicWeb goal utilising LW-union:

?- (lw(get, "URL0") + lw(get, "URL1") + lw(get, "URL2"))#>p(X).

52 CHAPTER 3

This goal expresses the programmer’s intention to download three programs,

and then evaluate p(X) in the set-theoretic union of their clauses. However, if

any of the programs can not be created (e.g., because a page can not be retrieved

over the network), then the goal fails (though the goal may also fail in the usual

manner with all the programs present).

It is convenient to use Prolog’s listmanipulation capabilities toworkwith col-

lections of programs. LW-reduce is similar to the reduce in functional program-

ming and applies a binary LW-composition operator between the elements of

a list starting from the leftmost element. The following equation illustrates its

meaning:

(+)<>[lw(get, "URL0"), lw(get, "URL1"), lw(get, "URL2")] =

lw(get, "URL0") + lw(get, "URL1") + lw(get, "URL2")

LW-reduce can be used with LW-intersection in a similar way, for example, by

replacing “+” by “*” in the above equation.

LW-reduce is used with LW-restriction in a slightly different way. LW-reduce

applies the operator “/” to a pair whose first member is a program expression,

and the second a list of program identifiers. The following equation illustrates

this use:

(/)<>(lw(get, "URL0") + lw(get, "URL1"),

[lw(get, "URL2"), lw(get, "URL3")]) =

((lw(get, "URL0") + lw(get, "URL1"))

/ lw(get, "URL2")) / lw(get, "URL3")

The failure of a LogicWeb goal when a program named in a program expres-

sion can not be obtained means that we either obtain all possible solutions (e.g.,

on backtracking) when all the required programs are downloaded, or no solu-

tions when any program is absent.

In some situations, this behaviour seems too restrictive. For example, wemay

only want one solution, and do not care which one. In the above LogicWeb goal

which evaluates p(X) against the LW-union, suppose that p(X) can succeed us-

inglw(get, "URL0")alone. Allowingp(X) to succeed in the LW-unionwhen

3.3 The LogicWeb Language 53

only lw(get, "URL0") can be created permits at least one solution to be re-

turned. However, this compromises thedeclarative semantics sincep(X) is eval-

uated in only one program when it should be evaluated in three.

One way to obtain as many solutions as possible is to fetch all the required

programs before using them in a program expression. For instance:

?- setof(P,

(member(P, [lw(get, "URL0"), lw(get, "URL1"),

lw(get, "URL2")]),

P#>true),

Ps),

setof(X, ((+)<>Ps)#>p(X), Xs).

The first setof/3 goal attempts to download URL0, URL1, and URL2, and re-

turns the identifiers of the successfully downloaded ones in Ps. Ps is then em-

ployed by LW-reduction in the second setof/3 goal. LogicWeb goals of the

form P#>true can be generally employed to download programs without per-

forming any other work.

LW-composition operators encourage software engineering principles. For

example, the LogicWeb program components of an application can be dis-

tributed over several Internet hosts, and integratedwhen needed. This approach

is utilised in the Web-based databases discussed in Chapter 6.

The LW-composition operators allow collections of program identifiers to be

treated as first-class entities, which further extends the generality of programs.

For example, links/2 below obtains a list of links in a program expression C,

but this variable can be bound to any composition of programs by using suitable

operators.

links(C, Ls) :-

setof(link(A, B), C#>link(A, B), Ls).

The following query retrieves links from the union of three pages:

?- links(lw(get, "http://www.cs.mu.oz.au/˜swloke/") +

lw(get, "http://www.cs.mu.oz.au/˜ad/") +

lw(get, "http://www.cs.mu.oz.au/˜leon/"), Links).

54 CHAPTER 3

3.3.1.3 Utilising the Current Context

The operators discussed so far ignore the current context when proving goals.

However, LogicWeb includes a context operator, denoted by “(#)”, which can

be used to represent the current context in a program expression. For instance,

in the goal:

?- lw(get, "URL0")#>(((#) + lw(get, "URL1"))#>interested_in(X)).

“(#)” is instantiated to lw(get, "URL0")when the goal is evaluated. “(#)”

can be used in place of a program identifier in any expression, which pro-

vides very useful expressive power. For example, it can be employed to model

Miller’s implication goal introduced inChapter 2, and contextual logic program-

ming [151].

Recall that Miller’s implication goal of the form D � Gwhen evaluated in P
(the current context of the goal) causes the evaluation ofG in P [D. An implica-
tion goal can be simulated using the context operator by a goal of the form ((#)

+ D)#>G, which denotes (P + D)#>G where P is the current context. The
context operator can be used to generalise the implication goal toD �� Gwhich
proves G in P �D, where � denotes a composition operator. D �� Gwould be
represented by ((#) � D)#>G. The expressive power of implication goals for
implementingmemoing, abstract datatypes, andmodular logic programming is

detailed in [149].

One of the key ideas in contextual logic programming is the context extension

operator (denoted by “>>”). A goal of the form Q >> G is evaluated in a pro-
gram P by evaluating G using the predicates in Q and those in P which are not
defined in Q. The goal Q >> G can be rewritten as the LogicWeb goal (Q +

(@(#) / Q))#>G.
As mentioned in [151], the advantages of using the current context in pro-

gramming include modularity for software construction, greater generality, and

reusability of predicates. For example, “(#)” allows predicates to be defined

whose definitions are context-dependent.

3.3 The LogicWeb Language 55

Consider an application for translating dates in numerical form

(e.g., “25/12/97”) into English (e.g., “25 December 1997”), located

at http://trans.date.english/. The top-level predicate is

translate date/2, which uses date components/4 to break a numer-

ical date into its three numerical components, uses translate month/2 and

translate year/2 to convert the month and year into another form, and

uses flatten/2 to merge the new components into a date:

my_id(get, "http://trans.date.english/").

% predicate to perform translations

translate_date(NumericalDate, EnglishWordDate) :-

date_components(NumericalDate, Day, NMonth, NYear),

translate_month(NMonth, Month),

translate_year(NYear, Year),

flatten([Day, " ", Month, " ", Year], EnglishWordDate).

% predicate to break a numerical date into its components

% e.g., 25/12/97 to "25", 12, and 97

date_components(NumericalDate, Day, NMonth, NYear) :-

..../* definition of date_components/4 */...

% predicate to translate a numerical month into English

translate_month(NMonth, EnglishMonth) :-

..../* definition of translate_month/2 */...

% predicate to expand a year

translate_year(NYear, Year) :-

..../* definition of translate_year/2 */...

This program can be modified to translate dates into French instead

of English (e.g., “25 Decembre 1997”) by using a different definition for

translate month/2, but reusing all the other predicates. Assuming that

the definition of translate month/2 which converts numerical months into

French is stored in http://trans.date.french/, the LogicWeb program

for translating dates into French is given below:

56 CHAPTER 3

my_id(get, "http://trans.date.french/").

% predicate to translate numerical months into French

translate_month(NMonth, FrenchMonth) :-

..../* definition of translate_month/2 */...

% translate from lingua to French

translate_date_french(NumericalDate, FrenchWordDate) :-

((lw(get, "http://trans.date.english/") / (#)) + (#))#>

translate_date(NumericalDate, FrenchWordDate).

The program expression in the translate date french/2 rule states that

all the predicates from lw(get, "http://trans.date.english/")

except translate month/2 are added to the current context (the

program lw(get, "http://trans.date.french/")). The use

of LW-restriction excludes translate month/2 from lw(get,

"http://trans.date.english/") since it is already defined in the

current context. The LW-union operation supplies translate month/2 from

the current context.

3.3.2 EBNF Syntax

This subsection gives the EBNF syntax of the pure LogicWeb language, which is

roughly given by the equation:pure LogicWeb language = pure Prolog + LogicWeb operators
A pure LogicWeb program is a finite set of clauses of the form:[8x](A :- G)

where G is defined recursively as:G ::= A j E #> G j (G;G)
The LogicWeb language replaces the “A in F” goal in the compositional logic
programming language presented in Chapter 2 with the LogicWeb goal.

3.3 The LogicWeb Language 57E defines LogicWeb program expressions precisely:E ::= P j E+E j E*E j E/P j @E j (/)<>(E,L(P)) j (�)<>L(E)P ::= lw(head, URL) j lw(get, URL) j lw(post(L(F)), URL) j (#)F ::= field(Name,V alue)L(I) ::= [] j [I|L(I)]� ::= + j *L(I) defines a Prolog list of items each of which is described by a nonterminalI. URL is a URL, and F is a query attribute submitted to a CGI script. Name is
the name of a query attribute, and V alue is the value submitted to the server for
the corresponding attribute. The context operator “(#)” can appear anywhere

a program identifier can but “(#)” must be instantiated to a program identifier

when used in the right argument of LW-restriction (which must always be a sin-

gle program identifier as noted in Section 2.2.3.3). This requirement can be en-

forced by the programmer, or a run-time check can be built into an interpreter

for the language.

3.3.3 An Operational Semantics for LogicWeb Programs

This subsection presents an operational semantics for the pure LogicWeb lan-

guage which makes precise how LogicWeb programs interact with theWeb dur-

ing goal evaluation, and how these interactions affect goal evaluation.

Interactions with the Web are modelled by calls to an oracle function1. A Tur-
ingmachine augmentedwith an oracle was used to formalise queries on theWeb

in [145] by using the oracle to model Web data accesses. Given a node identifier

(i.e., a URL), the oracle maps it to the node’s content if the node exists, or to a1The idea of an oracle function has its roots in oracle Turing machines [89]. Such a machine is
similar to a Turing machine but has an oracle function which it “consults” at certain states of

its computation. The oracle function corresponds to a hypothetical subroutine computing the

solution to a subproblem.

58 CHAPTER 3

special symbol if not. A similar oracle function is defined below to model the

accessing of LogicWeb programs.

DEFINITION 1 (ORACLE FUNCTION)

The oracle functiondownload : LWProgramIDs! LWPrograms [f?g
takes a LogicWeb program identifier P (of the form defined by P), and returns
the program DP if it is successfully created. Failure to obtain a program is rep-
resented by returning the symbol ?.download(P) = 8>>>>>><>>>>>>:DP if the program denoted by identifier P is

successfully created,? otherwise.download attempts to download aHTTP response object and translate it into a
LogicWeb program in the way specified in Section 3.2. Due to the nondetermin-

istic nature of the Web (as seen by a client) as explained in Section 2.1.2.3, the re-

sult of download is unpredictable: a HTTP request can either succeed or fail, and
two calls to downloadwith the same arguments, but at different times, can return
different results. download represents the idea that LogicWeb programs can only
be accessed via their identifiers. How download interacts with the Web depends
on whether its program identifier invokes a HEAD, GET, or POST method, but

the result is always a program or ?.
With anordinary (i.e., withoutWeb interactions) logic programming language

(e.g., the language in Chapter 2), a proof search on succeeding returns an answer

substitution set. With the LogicWeb language, a goal is evaluatedwith respect to

downloaded LogicWeb programs, and derivation cannot proceed if any of these

programs are unavailable. As a result of (possible) downloads (and creation of

LogicWeb programs) occurring during a goal derivation, the derivation does not

only compute an answer substitution (as in the derivation relation of Chapter 2),

3.3 The LogicWeb Language 59

but as a side-effect, also computes a new set of downloaded LogicWeb programs

extending an existing program set. The set of downloaded programs is extended

by calling the function add programs, which is invoked by LogicWeb goals as
will be shown later (in rule (3.10)). add programs takes the set of existing Log-
icWeb programs and maps it to a new set using download.
DEFINITION 2 (ADDITION OF LOGICWEB PROGRAMS)

Let } denote powerset. The functionadd programs : }(LWPrograms)� }(LWProgramIDs)! }(LWPrograms)
takes a set S of programs and a set I of program identifiers and returns a new
set add programs(S; I) consisting of S augmented with newly created programs
mentioned in I but previously not in S:add programs(S; I) = S [fDP j P 2 (I n ids(S)); DP = download(P); DP 6= ?g
where ids is a function that takes a set of programs and returns the identifiers of
the programs in the set, i.e. ids(S) is the set of identifiers of the programs in S.
The above definition of add programs captures the following points about the

semantics of a LogicWeb goal discussed in Section 3.3.1:

1. If a program required by a LogicWeb goal evaluation does not exist locally

(i.e., is not in S), then an attempt is made to download and create the pro-
gram.

2. Existing programs are not replaced. add programs is a monotonically in-
creasing function. Programs mentioned in I which are already in S are not
downloaded again. This implies that if all the programsmentioned in I are
already in S then no HTTP requests are made, thereby avoiding potential
HTTP request failures.

3. A LogicWeb goal which previously failed may succeed when called at a

later time. The reason is that download represents download failure as ?

60 CHAPTER 3

which means that the associated program identifier is not recorded. Thus,download can be invokedwith that program identifier again, whichmay re-
sult in a program being added to the existing set. This in turn may permit

the LogicWeb goal to succeed.

It is assumed that there is no limit to local storage space for downloaded Log-

icWeb programs, though such a limit exists in the implementation of the Log-

icWeb system described in Chapter 4.

A derivation relation involving the set of downloaded LogicWeb programs

specifies the computation model involving interactions with the Web.

DEFINITION 3 (DERIVATION RELATION)

For any goal formula G and program expression E, we denote by S;E `S0� G the
fact that there exists a top-down derivation of G in E starting with the set S of
existing LogicWeb programs and ending with computed answer substitution �
and created program set S 0. A top-down derivation or proof of G in E starting
with S and ending with S 0 and � is a finite tree such that:
1. the root node (bottom node) is labelled by the string “S;E `S0� G”;
2. the internal nodes are derived according to the set of inference rules given

below; and

3. all the leaves of the tree are either empty or labelled by a string not contain-

ing the symbol “`” (e.g., the label “(A :- G) 2 P”).
The difference between S and S 0, S 0 n S, is the set of LogicWeb programs created
during the derivation ofG. `S� is defined to be the smallest relation satisfying the
inference rules below. If S;E `S0� G, then the goal G succeeded when evaluated
in E using S. Otherwise, the goal G failed when evaluated in E using S.
Failure in finding a matching clause (i.e., one whose head unifies with the

goal) or download failure can result in failure in finding (using the proof rules

given below) a top-down derivation for the goal.

3.3 The LogicWeb Language 61

Given a top-down derivation S;E `S0� G, if the derivation does not involve
interactions with theWeb or if no programs are downloaded, then S 0 is the same
as S (i.e., S 0 = S). If programs are downloaded, then S is extended to S 0 (� S).
The difference S 0 n S represents the effect of Web interactions during the deriva-
tion.

A context is defined for each node in a top-down derivation whose label is of

the form “S;E `S0� G”.
DEFINITION 4 (CONTEXT OF A GOAL)

Given the node label “S;E `S0� G”, E is the context (of G).
In the rules, P denotes single program identifiers of the form P , and E andF denote program expressions of the form E as defined in Section 3.3.2. L(I) de-

notes a list of the form LI . � denotes the empty (identity) substitution.
3.3.3.1 Pure Prolog

The following rules define derivation in pure Prolog taking into account the cre-

ation of LogicWeb programs:

True. S;E `S� true (3.1)

true is always derivable in any program expression E without any change to
the set of created programs.

Conjunction. S;E `S0� G1 ^ S 0; E `S00 G2�S; E `S00� G1; G2 (3.2)

Toderive anon-empty conjunction, derive each conjunct in turn. Theproof of the

second conjunct proceedswith the answer substitution � and the set of programs

62 CHAPTER 3S 0 computed by the proof of the first. S 0, which may or may not be the same
as S, is the result of Web interactions from G1’s derivation. The result of these
interactions are propagated toG2 by starting the derivation of G2� with S 0. S 00 is
the result of Web interactions from G2�’s derivation, and since G2� started withS 0, S 00 is the result of Web interactions during the derivation of the conjunction.
Atomic formula.S;E `S0� (H :- G) ^ = mgu(A;H�) ^ S 0; E `S00� G�S;E `S00�� A (3.3)

Obtaining clauses from E can involve the creation of new programs due to LW-
encapsulation (see rule (3.9)), and so, S is changed to S 0. The proof of the body
starts with the computed program set S 0 and returns the new set S 00 and the an-
swer substitution �.
Obtaining clauses from a single program.(A :- G) 2 PS; P `S� (A :- G) (3.4)

The answer substitution is �, and there is no change to S.
3.3.3.2 Clauses from LW-compositions

The rules below determine how clauses are chosen from LW-compositions, and

are defined based on the syntax of the program expressions. Except for LW-

reduce, the rules are similar to those described in Chapter 2, with the key dif-

ference being the creation of LogicWeb programs.

LW-union. S;E `S0� (A :- G)S;E+F `S0� (A :- G) (3.5)S; F `S0� (A :- G)S;E+F `S0� (A :- G) (3.6)

3.3 The LogicWeb Language 63

A clause is chosen from a LW-union E+F by choosing a clause from either E orF .
LW-intersection.S;E `S0�1 (H1 :- G1) ^ S 0; F `S00�2 (H2 :- G2) ^ = mgu(H1�1; H2�2)S;E*F `S00�1�2 (H1 :- G1; G2)

(3.7)

This rule utilises a left-to-right ordering in choosing clauses from the LW-inter-

section. A clause is first chosen from E returning S 0, and then, S 0 is used when
selecting a clause from F ending up with S 00.
LW-restriction. S;E `S0� (A :- G) ^ pred(A) 62 preds(P)S;E/P `S0� (A :- G) (3.8)

This rule is a straightforward extension of the rule for restriction in Chapter 2.

LW-encapsulation. S;E `S0� AS;@E `S0� A :- true
(3.9)

LogicWeb programs can be created in the proof of A, i.e. a new program set S 0 is
computed starting with S.
LW-reduce. The operational meaning of LW-reduce is given in terms of the

above binary operators since it is a simplified notation for applying a binary op-

erator between the program expressions in a list. LW-reduce is defined as:(�)<>[] = empty program with no clause
(eq. 3.1)(�)<>[E] = E (eq. 3.2)(�)<>[E1,E2|Es] = (�)<>[E1� E2|Es] (eq. 3.3)

64 CHAPTER 3

where � is “+” or “*”, and
(/)<>(E,[]) = E (eq. 3.4)

(/)<>(E,[P|Ps]) = (/)<>[(E / P)|Ps]
(eq. 3.5)

The expression (/)<>L, where L is a non-empty list, is not allowed by the
EBNF definition in Section 3.3.2 but is used here to specify the meaning of

(/)<>(E,L). (/)<>L is defined by replacing � with “/” in (eq. 3.2) and (eq.
3.3). Note that the above definitions define left-to-right reductions. For associa-

tive operators �, a right-to-left reduction can be similarly defined, but with no
difference in the reduction result.

3.3.3.3 Context Switching

The rule for context switching will need to download the programs referred to

in a program expression. To refer to the program identifiers within a program

expression, the following function is used:expids : ProgramExpressions! }(LWProgramIDs)expids is defined recursively based on the syntax of program expressions:expids(P) = fPgexpids((#)) = fgexpids(E1 + E2) = expids(E1) [expids(E2)expids(E1 * E2) = expids(E1) [expids(E2)expids(E / P) = expids(E) [expids(P)expids(@E) = expids(E)expids((/)<>(E,L(P))) = expids(E) [expids(L(P))expids((�)<>L(E)) = expids(L(E))expids(L(E)) = [E2L(E) expids(E)

3.3 The LogicWeb Language 65

In the above, 2 is used to represent list membership, and a L(P) is a L(E) from the
EBNF definition in Section 3.3.2.

The following function is needed to implement the context operator:insertCC : ProgramExpressions� ProgramExpressions! ProgramExpressions
which substitutes every occurrence of the operator “(#)” in a program expres-

sion (the first argument) with the current context (the second argument):insertCC((#); C) = CinsertCC(P;C) = PinsertCC(E1 + E2; C) = insertCC(E1; C) + insertCC(E2; C)insertCC(E1 * E2; C) = insertCC(E1; C) * insertCC(E2; C)insertCC(E / P;C) = insertCC(E;C) / insertCC(P;C)insertCC(@E;C) = @insertCC(E;C)insertCC((/)<>(E,L(P)); C) = (/)<>(insertCC(E;C),insertCC(L(P); C))insertCC((�)<>L(E); C) = (�)<>insertCC(L(E); C)insertCC(L(E); C) = [insertCC(E;C) j E 2 L(E)]
Operator “#>” (context switching). The rule defining context switching is the

following: I � ids(S 0) ^ S 0; F 0 `S00� GS;E `S00� F #> G (3.10)

where F 0 = insertCC(F;E), I = expids(F), and S 0 = add programs(S; I).
The rule states that the goal F #> G is provable in E starting with the pro-

gram set S if the goal G is provable in F 0 starting with the updated program setS 0 which contains all the programs mentioned in I (and hence, in F).
The condition I � ids(S 0) captures the semantics of goal evaluation in LW-

compositions discussed in Section 3.3.1.2. It requires that all the programs men-

tioned in F be downloaded before goal evaluation can continue. Whenever a

66 CHAPTER 3

program mentioned in F is not available, the LogicWeb goal fails since the con-
dition is not satisfied.

3.3.3.4 An Example Top-down Derivation

Consider twoLogicWebprogramswith identifiersM andN.M contains the clauses:

p(X) :- q(X).

r :- b.

N contains:

r :- w.

q(a) :- true.

Figure 3.5 shows an example of how the rules are used to prove the following

goal posed to a program P, which is assumed to be already downloaded (and

therefore contained in the starting program set).

?- (M + N)#>p(a).

First, rule (3.10) is used to switch from program P to the LW-union. Then, as-

suming that M and N are successfully created, rule (3.3) is used resulting in two

branches. In the left branch, rules (3.5) and (3.4) are used to retrieve a clause from

the LW-union. The head of the clause unifies with the goal p(a) with the sub-

stitution of X by a, denoted by fX=ag. In the right branch, the subgoal q(a), re-
sulting from applying fX=ag to q(X), is proven with the clause from N using the

rules (3.3), (3.6), (3.4), and (3.1). The result of the proof is the computed answer

substitution fX=ag and the new set of programs fP, M, Ng.
Figure 3.5 A derivation of the LogicWeb goal (M + N)#>p(a) in a program P.

p(X) :- q(X) 2 MfP;M;Ng;M `fP;M;Ng� p(X) :- q(X)
(3:4)fP;M;Ng; (M + N) `fP;M;Ng� p(X) :- q(X)

(3:5) (see next part of Figure 3.5)fP;M;Ng; (M + N) `fP;M;NgfX=ag p(a)fPg;P `fP;M;NgfX=ag (M + N) #> p(a)
(3:10) (3:3)

3.3 The LogicWeb Language 67

Figure 3.5 (Continued)

q(a) :- true 2 NfP;M;Ng;N `fP;M;Ng� q(a) :- true
(3:4)fP;M;Ng; (M + N) `fP;M;Ng� q(a) :- true

(3:6) fP;M;Ng; (M + N) `fP;M;Ng� true
(3:1)fP;M;Ng; (M + N) `fP;M;Ng� q(a)

(3:3)
3.3.4 Relationship of Operational Semantics to Declarative Se-

mantics

As shown in [40], the language given inChapter 2 has a fixpoint semanticswhich

is sound and complete with respect to its operational semantics. This result can

be applied to a class of LogicWeb programs called restricted LogicWeb programs.

A restricted LogicWeb program is a pure LogicWeb programwhich does not use

the context operator, and only uses groundLogicWeb program identifiers in Log-

icWeb goals. Such a program can be syntactically translated into a program in

the language of Chapter 2 by rewriting expressions which use LW-reduce, re-

placing each occurrence of “#>” by “in”, and replacing the LW-composition op-
erators with their counterparts from Section 2.2.3.1. Thus, a fixpoint semantics

can be defined for a restricted LogicWeb program which corresponds to the fix-

point semantics of that program’s translation. Also, if a goal evaluation using

the operational semantics of the previous section succeeds, then a corresponding

goal derivation in the program’s translation can be constructed using the rules

from Section 2.2.3.3. Taken together, these two points imply the soundness of

restricted LogicWeb programs.

On the other hand, logical completeness2 using the above operational seman-2Completeness in theory (i.e., assuming time and memory resources are unlimited) is meant
here, since completeness in practice is never achievable (even with no Web interactions) due to

limited resources (e.g., time or memory) or sometimes due to unfairness in Prolog’s depth first

68 CHAPTER 3

tics is not generally attainable with LogicWeb programs. The reason being that

a LogicWeb program has an open or interactive nature which contrasts with a

closed set of logical axioms whose declarative meaning is dependent only on the

form of its formulae. The success or failure of a goal in a LogicWeb program de-

pends not only on its axioms, but also on the result of the oracle function, which

is unpredictable. Goal evaluation can succeed only if the oracle function behaves

favourably towards the computation. Hence, it is possible that a goal is truewith

respect to the declarative semantics of a set of programs (some residing locally

on the client host and others on remote hosts), but is not provable (on the client)

using the above operational semantics because of the oracle function’s results.

Since it is generally impossible to adequately specify (e.g., using axioms) the re-

sult of a HTTP request at a given time, the semantics of LogicWeb programs can-

not be fully declarative.3
However, using the completeness result in [40], and given a history of

favourableWeb interactions, completeness can be stated for restricted LogicWeb

programs: if a goal is true with respect to the fixpoint semantics of a set of re-

stricted LogicWeb programs, then the goal is provable when the set of restricted

LogicWeb programs required for evaluating the goal can be successfully down-

loaded.

3.4 BuildingApplicationsUsingLogicWebPrograms

Logic programming applications can be constructed on the Web based on Log-

icWeb. Such an application, which is called a LogicWeb application, comprises a

set of LogicWeb programs of which one is singled out (by the programmer) as

the main program. Each application has an identity which is the identity of the

searching behaviour.3To add to this difficulty, since a download takes time, and the state of the Web can change
during the download, we would have to “freeze” the Web for the duration of the download.

3.5 Summary 69

main program as given by its program identifier, and a user interfacewith which

the user interacts. Users interact with a LogicWeb application (i.e., with themain

program of the application) through the Web’s interface mechanisms of hyper-

text links and HTML forms. Rules in the main program define the forms inter-

face and the mapping of user actions to the invocation of particular predicates

in the main program. A page without any LogicWeb rules can be viewed as a

rudimentary form of LogicWeb application with the ordinary behaviour of Web

links (described in Section 2.1.2.3).

A LogicWeb application is downloaded by downloading its main program.

The main program, in turn, may download and use other programs (which may

or may not be members of the application) directly or indirectly. A programM
directly uses P ifM invokes a goal in P , and indirectly uses P ifM invokes a goal
in Q which directly or indirectly uses P . The set of programs used directly or
indirectly by an application is dynamically determined and depends on the par-

ticular goals being evaluated. These programs are downloaded and added to the

monotonically increasing set of created LogicWeb programs. Figure 3.6 depicts

a LogicWeb application consisting of only one program (i.e., the main program)

and the programs used directly and indirectly by it.

The next chapter describes in detail howaLogicWeb application is constructed.

Chapters 5, 6, and 7 present examples of LogicWeb applications.

3.5 Summary

This chapter has presented LogicWebwhich represents theWeb augmentedwith

rules as a query-able collection of inter-related logic programs. The translation of

pages with rules to LogicWeb programs has been detailed. LogicWeb programs

are used as the building blocks of applications on the Web. A user queries Log-

icWeb programs through the Web’s interface mechanisms (how this is done is

shown in the next chapter). This means that LogicWeb adds to the Web a new

70 CHAPTER 3

Figure 3.6 A LogicWeb application with the programs it uses directly and indi-

rectly.

uses

LogicWeb
Application
Main
Program

Other programs
used by the
application
directly and
indirectly

form of programmable behaviourwhich is rule-based. Queries to LogicWeb pro-

grams are processed by rules which reason with the Web’s hypertext structure

and manipulate other LogicWeb programs using compositional logic program-

ming ideas. A LogicWeb goal performs two tasks: download required LogicWeb

programs and (after programs are downloaded) continue the proof search. If ei-

ther tasks fails, then the LogicWeb goal fails. Coding techniques have been pre-

sented to differentiate goal failures due to download failures from evaluation

failures.

The execution behaviour of LogicWebprograms have been capturedprecisely

in an operational semantics using Plotkin-style rules and an oracle function. The

operational semantics forms the basis for a language implementation. Although

an abstract concept, the oracle function has a direct implementation as a routine

which sends HTTP requests to servers and receives their responses. An imple-

mentation of LogicWeb is presented in the next chapter.

Chapter 4

Implementing LogicWeb

This chapter is concerned with the implementation of LogicWeb. As mentioned

in the previous chapter, a user accesses and queries LogicWeb programs through

the Web’s interface mechanisms. The mechanisms are link selection and HTML

fill-in forms on the page. A system implementing LogicWebmust support the in-

vocation of LogicWeb rules via these two mechanisms. The implementation of

the LogicWeb language must take care of the details of Web page retrieval, pars-

ing, and caching, allowing the programmer to focus on themeanings of program

compositions and the application problem.

Section 4.1 presents an architecture for such a system which is called the Log-

icWeb system. The systemhas beenbuilt by integrating an off-the-shelfWebbrow-

ser with a public domain Prolog system. Section 4.2 presents an overview of

the implementation using a simple mini picture database search application for

demonstration purposes. Section 4.3 describes the behaviour of the system in re-

sponse to user actions. Responses to user actions are determined by the system’s

Prolog component (called the Prolog engine) with the help of rules from relevant

LogicWeb programs. Section 4.4 describes the Prolog engine in detail.

71

72 CHAPTER 4

4.1 The LogicWeb System Architecture

The architecture of the LogicWeb system (its components anddata-flows between

them) is shown in Figure 4.1.

Figure 4.1 Architecture of the LogicWeb system.

Program
Store

User

Query
Processing
Engine

page

Web

Client-side

Servers

LogicWeb System

and Translator
Page Loader

Prolog Engine

Graphical
User Interface
(Web browser)

user-
actions

displayed
result

query result

program

program

program
request

pagerequest

The main components of the system are:� a graphical user interface (GUI);� an engine for processing user queries;� a page loader and (page to program) translator; and� a store of LogicWeb programs.

4.2 Implementation Overview 73

The Prolog engine is formed by the three components: the query processing en-

gine, the program store, and the page loader and translator.

Using this system, a LogicWeb programwhich is downloaded and displayed

on the GUI (or a Web browser) can be queried. The system converts user ac-

tions into queries to the program, and computes the results of the queries with

respect to the program in the query processing engine. Not all user actions on the

browser are processed by the Prolog engine. The particular user actions which

involve the Prolog engine are specified in Figure 4.2 and detailed in Sections 4.3

and 4.4. Processing of the query may result in other pages being downloaded

and translated into LogicWeb programs. Created LogicWeb programs are stored

in the program store and are utilised in the evaluation of goals. When query pro-

cessing ends, the system formats the results and shows it to the user.

Recall from Section 3.4 that a LogicWeb application consists of a set of Log-

icWebprograms ofwhich one is distinguished as themain program. ALogicWeb

application is used by downloading and querying its main program in the way

described above. A query evaluated in the main program causes other compo-

nents of the application to be retrieved.

4.2 Implementation Overview

The LogicWeb system has been implementedusing the CommonClient Interface

(CCI) (version 1.1) library1 ofNCSAMosaic (version 2.6b1) [154]. TheCCI allows
the capabilities of Mosaic to be utilised by external applications without modify-

ing Mosaic internally. The CCI library is a set of C routines implementing a pro-

tocol for external applications to communicate with Mosaic. Using the CCI pro-

tocol, an external application may request Mosaic to perform various functions

such as informing the external application when anchors (or hypertext links) are1CCI specification found at
http://www.ncsa.uiuc.edu/SDG/Software/XMosaic/CCI/cci-spec.html.

74 CHAPTER 4

Figure 4.2 An overview of the main components and data-flows (arrows) be-

tween them.

User

CCI Socket

WWWMain Prolog

The Web

reply (via pipe)

CCI

page request
Mosaic

page

display)

CCI

(hypertext link click /
form details /

command)
"back" or "forward"

page

page
request

(Prolog Engine

URL /
form

LogicWeb System

displayed result

form
URL /

user-actions

 executes here)

query
(page /

details)

query
(page /

details)

query
(goal) (via pipe)

result
(URL to
display)

result
(URL to

4.2 Implementation Overview 75

selected and sending data for specified MIME-types to the external application

instead of rendering it. Figure 4.2 presents an overview of the implementation

which consists of the following components:� Mosaic. The NCSA Mosaic browser allows the user to browse Web pages
and serves as the GUI for the LogicWeb system. As mentioned in Sec-

tion 3.4, the main program of a LogicWeb application defines the visible

interface to the application. For example, Figure 4.3 shows a form which

is the interface to a mini picture database search application. The browser

is also used to display pages generated by applications. To display a page

on the browser, the page is first saved into a temporary file. Then, the file’s

URL is passed to the browser which utilises it to fetch and display the page.

The temporary file is used since the CCI library does not have the capabil-

ity to send the page’s contents directly to Mosaic. Figure 4.4 presents an

example of a page created as the result of a search with the keyword “mar-

supial” on the mini picture database.� Prolog. This is a running Prolog process where the Prolog engine, which
handles user queries to LogicWeb programs, is executed. The query pro-

cessing engine consists of the LogicWeb program interpreter and predi-

cates to translate user actions into the evaluation of specific goals in Log-

icWeb programs. Downloaded LogicWeb programs are stored inside the

Prolog system (as facts in the SWI-Prolog database). The collection of

stored programs constitute the program store. The page loader and trans-

lator consists of predicates which download and parse HTML documents

to extract the clauses making up LogicWeb programs.

All three components are implemented in SWI-Prolog 2.1.14 [209] (about

2300 lines of Prolog) extended with utilities for parsing and communicat-

ing with the Web and Mosaic. Utilities which have speed critical features

(such as string matching) and which communicate with the Web and Mo-

76 CHAPTER 4

Figure 4.3 The interface of a simple LogicWeb application.

saic are coded as C functions with Prolog interfaces (about 1200 lines of C).

The predicate which displays information on Mosaic uses the CCI library.� WWWMain. This C program converts CCI outputs from Mosaic, such as
the notification of a hypertext link selection or information entered into

forms, into a suitable format for the Prolog engine. WWWMain starts up

Prolog and Mosaic informing it of what CCI outputs to send, and sets up

the communication links. WWWMain is about 400 lines of C.

The LogicWeb system consists of the above three communicating processes.

4.2 Implementation Overview 77

Figure 4.4 The result of a query with keyword “marsupial”.

78 CHAPTER 4

Both WWWMain and Prolog communicate with Mosaic via CCI (using socket

connections), while the communication betweenWWWMain and Prolog utilises

Unix pipes. WWWMain and Prolog share a socket connection to Mosaic. Note

from Figure 4.2 (but not shown in Figure 4.1) that Mosaic may download pages

directly from theWeb bypassing the Prolog engine. The data-flows of the system

are discussed further in the next section.

4.3 System Behaviour

User inputs are channelled throughMosaic to the Prolog enginewhich computes

the desired responses. Then, the responses are returned from the Prolog engine

to Mosaic. Figure 4.5 shows the sequence of steps taken when a user clicks on a

hypertext link and the system displays the page linked to.

When the user clicks on a link (step 1), Mosaic gets the page from the Web

(steps 2 and 3). The page’s data is not displayed but passed through the CCI

to WWWMain (step 4). On receiving the page’s data, WWWMain notices that

a link has been selected on Mosaic, and sends a “link selected” message con-

taining the selected URL via a pipe to the Prolog engine (step 5). The data from

Mosaic is insufficient for generating a LogicWeb program since it does not in-

clude the page’s meta-information. At this point, the Prolog engine could issue

a HEAD request with the page’s URL to retrieve the meta-information. How-

ever, this meta-information would not correspond to the page’s data obtained

earlier byMosaic. For instance, the time of this HEAD request and the last mod-

ified date (if the page happened to be modified) would be different from those

for the page retrieved by Mosaic. Also, the page received from Mosaic is not al-

ways the requested page, but may only be a page indicating that the requested

page has moved. Hence, the Prolog engine re-issues the page request (a GET re-

quest) in order to obtain the meta-information together with the page’s contents

(steps 6 and 7). Once the page’s meta-information and contents are obtained,

4.3 System Behaviour 79

Figure 4.5 The LogicWeb system and the steps followed after a user clicks on a

link.

The WebMosaic

page

WWWMain
Prolog

temp
Web
page

CCI

User

1 click
2

page request

page

page URL of temp page

URL of temp page

4

page

done message

display 3
page

5

6

10

8

11

7

9

page request
page

link selected message

save

80 CHAPTER 4

they are converted into a LogicWeb program which is stored inside the Prolog

system (i.e., added to the program store) for use by the LogicWeb program inter-

preter. No downloading is carried out by the Prolog engine if the program corre-

sponding to the page (identified by its URL) already exists in the program store.

The engine may execute a goal with respect to the new (or existing) program or

simply display the page with Mosaic. To display the page, its HTML contents

are augmented with a form for entering queries and stored in a temporary file

(step 8), and the URL of the temporary file is sent to Mosaic via the CCI (step 9).

A “done”message is then transmitted toWWWMain (step 10) signalling that the

Prolog engine is ready for further work. Mosaic uses the URL it receives via the

CCI to load and display the temporary page (step 11).

Figure 4.6 illustrates the second kind of user interaction with the system: the

processing of a query entered via a form acting as the interface to a LogicWeb

application.

The query is input via a form (step 1) (such as the query in Figure 4.3), and the

goal is extracted by a CGI script (step 2). The goal is passed to the CCI (step 3)

and ontoWWWMain (step 4) and finally to the Prolog engine (step 5). If the goal

uses a program that has already been downloaded (such as the current page),

then the meta-interpreter immediately evaluates the goal and stores the answer

in a temporary Web page (step 8). The URL of this page is sent to Mosaic via

the CCI (step 9) and the page is displayed byMosaic (step 11) (such as the result

in Figure 4.4). At the same time, the Prolog engine sends a “done” message to

WWWMain to signal its readiness for further work (step 10).

A slightly more complicated sequence occurs if the LogicWeb goal requires

a program that is not presently on the client-side. In that case, the correspond-

ing page is obtained from the Web (steps 6 and 7), and the program is extracted

before the goal is evaluated.

The third form of user input which is channelled through Mosaic to the Pro-

log engine is a notification whenever the user issues a “back” or “forward” com-

4.3 System Behaviour 81

Figure 4.6 The LogicWeb system and the steps followed after a user enters a

query.

The Web

WWWMain
Prolog

User

temp

page

Web
page

CCI

Prolog
term

save answer page

URL of
answer page

page

page
request

URL of
answer page

1

5

69

11

enter
query

form
details

2

3

Prolog
term

Mosaic

7

termProlog
4

CGI
script

done message10

8

display

82 CHAPTER 4

Figure 4.7 The LogicWeb system and the steps followed after a user issues a

“back” or “forward” command in Mosaic.

The Web

WWWMain

User

CCI

Prolog

1

done message

display

URL

URL
Prolog term
containing the URL
from Mosaic

2

3

4 5

6

Mosaic

or"back"
"forward"
command

page

mand in Mosaic. These two commands allow navigation within a list (stored in

Mosaic) of pages representing the history of displayed pages. The “back” com-

mand causes Mosaic to display the page which was previously displayed, and

the “forward” command displays the page after the current page in the history

list. The sequence of steps for this form of input is simpler than the previous two

and is shown in Figure 4.7. When the user invokes a “back” or “forward” com-

mand inMosaic (step 1), Mosaic displays the previous or next page (in its history

list) (step 2) andpasses theURLof the page to be displayed through the CCI (step

3) to WWWMain (step 4). WWWMain forwards the URL as a goal to the Prolog

engine (step 5) which, on receiving the goal, processes it (as shown in the next

section) and signals WWWMain that it is ready for further work (step 6).

4.4 The Prolog Engine 83

4.4 The Prolog Engine

Asmentioned in the previous section, theProlog enginedetermines the responses

to user inputs received via WWWMain. In this section, we take a detailed look

into how the user inputs are processed by LogicWeb applications and discuss the

creation and storage of LogicWeb programs. Prolog code is given defining im-

portant parts of the engine. This code is a simplification of that in the implemen-

tation leaving out details of error checking, errormessage display, optimisations,

and communication with WWWMain, and function as specifications.

4.4.1 Mapping User Actions to Goals

The top-most level of the Prolog engine is a loop where each cycle accepts inputs

fromWWWMain, invokes specific goals using the inputs, and signals toWWW-

Main that computation is done and the engine is ready for more input. The fol-

lowing recursive clause specifies this loop:

top_level :-

accept_inputs(UserInput),

(execute_goal(UserInput)

; true

),

signal_done,

top_level.

accept inputs/1 reads the user’s inputs from WWWMain via a pipe, and

blocks while waiting for input. Note from the definition of top level/0 that

the system continues execution if execute goal/1 fails (by the disjunction

with true). signal done/0 sends the done message to WWWMain as shown

in Figures 4.5, 4.6, and 4.7.

As depicted in Figures 4.5, 4.6, and 4.7, WWWMain forwards CCI outputs

from Mosaic to the Prolog engine as Prolog terms. The input from WWWMain

is one of the following:

84 CHAPTER 4

1. the user’s inputs to the HTML form acting as the interface of a LogicWeb

application;

2. a notification to the Prolog engine that the user has selected a link or has

issued an “open URL” command in Mosaic; or

3. a notification to the Prolog engine that the user has invoked the “back” or

“forward” navigation command in Mosaic.

Corresponding to these three kinds of inputs, UserInput is instantiated to

one of the following terms:

1. form input(AttributeValueList, QueryHandlerURL):

AttributeValueList is a list of terms of the form p(Attribute,

Value), each corresponding to the name and value of a query at-

tribute defined in the HTML form (as described in Section 2.1.2.2).

QueryHandlerURL is used to identify the LogicWeb program con-

taining the predicate do query/2 which will be invoked with the

AttributeValueList as one of its arguments. QueryHandlerURL is

specified as a hidden query attribute in the form.

2. link selection(URL): URL is the URL of a link selected by the user on

Mosaic, or the URL opened via an “open URL” command.

3. navigation(NewURL):NewURL is the URL of the page to be displayed in

response to a “back” or “forward” command.

As pointed out in Section 2.1.2.2, HTML forms are used for accepting inputs

to CGI scripts on the Web. But HTML forms are also used as visible interfaces

to LogicWeb applications. Forms used as application interfaces are generated

by the system using a reserved predicate called interface/1which is included

within a page. Reserved predicates are defined by the page’s author but are

recognised by the system as special purpose predicates. Reserved predicates

4.4 The Prolog Engine 85

serve as “hooks” into the system which an application uses. Below, the use of

interface/1 is first discussed. Then, two other reserved predicates are de-

scribed. The system supports only these three reserved predicates.

interface/1 contains a list of terms defining a HTML form. The possi-

ble forms of these terms are given in Appendix B (Section B.1). When a page

is downloaded, the system uses the contents of interface/1 on the page to

generate a form with a specific system value for its ACTION attribute. This sys-

tem assigned ACTION value distinguishes forms used as application interfaces.

This is required because inputs to a LogicWeb application interface are processed

differently from inputs to ordinary forms. Form inputs to a LogicWeb applica-

tion are intercepted by the LogicWeb system’s CGI script (as shown in Figure 4.6)

and used to invoke a goal in the application’s main program, whereas inputs to

ordinary forms are used for invoking scripts on remote server hosts. Form in-

puts to a LogicWeb application are sent by WWWMain to the Prolog engine in

a form input/1 term whereas the inputs to an ordinary form (using the GET

method) are passed in as alink selection/1 term. For instance, the usermay

fill in a form on Mosaic as a query to the AltaVista search engine. WWWMain

sends theURLencoding the query to the Prolog engine in alink selection/1

term. Due to a limitation of the CCI, form inputs submitted via the browser using

the POST method are not redirected to WWWMain, and hence, are not handled

by the Prolog engine. However, LogicWeb rules can retrieve programs with the

POST method using an identifier of the form lw(post(Data), URL).
Figure 4.8 is a HTML page which shows how interface/1 is used in the

mini picture database application introduced earlier. interface/1 describes

the form for interacting with the application. When the page is downloaded, it is

translated by the system into a LogicWeb program in theway described inChap-

ter 3. Then, the contents of interface/1 is used to generate a form. This form

and the non-code portion of the page is then rendered on the browser as shown

in Figure 4.3.

86 CHAPTER 4

Figure 4.8 A simple LogicWeb application.

<HTML>
<HEAD>
<TITLE>Mini Animal Picture Database</TITLE>
</HEAD>

<BODY>
<H1>Welcome to my searchable mini animal picture database!</H1>
<!--
<LW_CODE>
% a form interface to the database
interface([textnl("<P>Enter keyword to identify required picture:"),

input("text", "keyword", "", "", "20", "20")
]).

% a collection of images
pic("koala.jpg").
pic("reindeer.jpg").
pic("snake.jpg").
pic("eagle.jpg").

% generalisations
isa("eagle", "bird").
isa("reindeer", "deer").
isa("koala", "marsupial").
isa("python", "snake").

% process user queries
do_query([p("keyword", Keyword)], _) :-
pic(Name),
(contains(Name, Keyword)
; isa(Instance, Keyword), contains(Name, Instance)
),
display_picture(Name).

display_picture(Name) :-
build_head("Result Picture", Head),
flatten([""], Data),
build_body("Here is the picture", Data, Body),
build_whole(Head, Body, ResultPage),
string_to_list(Results, ResultPage),
display_page("http://www.cs.mu.oz.au/˜swloke/", [data(Results)]).

</LW_CODE>
-->
</BODY>
</HTML>

4.4 The Prolog Engine 87

User’s inputs to the generated form or link activations are passed by

execute goal/1 to one of two other reserved predicates in a LogicWeb pro-

gram. These two predicates are:� do query/2. This predicate receives user queries entered via the ap-

plication’s interface (as defined by interface/1) and decides how the

queries are processed. Its first argument is the form inputs returned by

accept inputs/1 and is instantiated by the system. The second argu-

ment is instantiated with a term representing the goal invoked in the body

of do query/2. This goal is printed for debugging purposes.

Figure 4.8 presents an example of the use of do query/2which processes

the input keyword, matching it with the name of an image defined in

pic/1, or with its generalisation as defined by isa/2. Successful pro-

cessing of the query results in the required picture being retrieved and dis-

played. contains/2 is a built-in predicate which determines if the sec-

ond argument is a substring of the first (see Appendix B). build head/2,

build body/3, and build whole/3 are used for constructing a HTML

document and are described inAppendix B. display page/2 is a built-in

predicate for LogicWebprogramswhich displays a page on the browser. Its

first argument specifies the URL to be displayed and its second argument,

the HTML source. Appendix B describes this predicate in detail. When

the user submits the keyword “marsupial” via the form, the following goal

is invoked to construct the page with the picture of a koala shown in Fig-

ure 4.4:

?- do_query([p("keyword", "marsupial")], _).� link action/1. This predicate determines what action to take when a

link is selected. For example, the following rule fetches a page anddisplays

it:

88 CHAPTER 4

link_action(URL) :-

lw(get, URL)#>h_text(HTMLSrc),

display_page(URL, [data(HTMLSrc)]).

The system supports the three reserved predicates mentioned above, but an

application need not define all of the reserved predicates. The system uses the

predicates in a specific order and defines default behaviours catering for the ab-

sence of each of the predicates. This is implemented in execute goal/1whose

basic functionality is specified in Program 4.1.

Program 4.1 The predicate which translates user inputs into goals.
execute_goal(form_input(AVList, QueryHandlerURL)) :-

demo(empty, lw(get, QueryHandlerURL)#>do_query(AVList, _Goal)).

execute_goal(link_selection(SelectedURL)) :-

handle_link(SelectedURL).

execute_goal(navigation(NewURL)) :-

update_current_page(NewURL).

% handle a link

handle_link(SelectedURL) :-

current_page(CurrentPageURL),

demo(empty, lw(get, CurrentPageURL)#>link_action(SelectedURL)).

handle_link(SelectedURL) :-

display_page_interface(SelectedURL).

handle_link(SelectedURL) :-

demo(empty, lw(get, SelectedURL)#>h_text(Src)),

display_page(SelectedURL, [data(Src)]).

% update the current URL

update_current_page(NewURL) :-

retract(current_page(_OldURL)),

assert(current_page(NewURL)).

In the first clause of execute goal/1, on receiving a form input/2

term from WWWMain, the interpreter demo/2 is called to evaluate the goal

do query/2 in the program lw(get, QueryHandlerURL). Goals are in-

4.4 The Prolog Engine 89

voked in the LogicWeb program interpreter (described in Section 4.4.2). The con-

text switching operator “#>” is used to ensure that the program is created before

the goal is evaluated. This is necessary since the program handling the query

lw(get, QueryHandlerURL)may be different from the current page (i.e., the

page currently displayed on Mosaic and accepting the user’s inputs).

In the second clause of execute goal/1, on receiving a

link selection/1 term, handle link/1 is called. handle link/1

consists of three clauses which implements how the system responds to a link

selection. The selected link resides on the current page. For determining the

response, priority is given to the predicates on the current page over those in the

page referred to by the selected link. This behaviour is implemented as follows.

The first clause of handle link/1 retrieves the URL of the current pro-

gram (i.e., the program corresponding to the current page) and invokes

link action/1 in the current program. current page/1 stores the URL of

the current page, and is updated in response to user inputs which change the

current page, or when a page is displayed as a result of goal evaluations. If the

link action/1 goal fails, control passes from the current program to the new

program identified by SelectedURL.

The next two clauses of handle link/1 attempt to start a new appli-

cation. The second clause of handle link/1 displays the interface and

the (non-code) HTML text of the page using display page interface/1

(whose definition is not given in Program 4.1) which invokes interface/1.

On succeeding, display page interface/1 updates current page/1

to store the value of SelectedURL. If the interface/1 goal fails, then

display page interface/1 fails and the system attempts to display the new

page on the browser (in the third clause of handle link/1). display page/2

on succeeding updates current page/1 to store the value of SelectedURL.

In effect, if none of the reserved predicates are present or if their invocations

fail, the system defaults to the ordinary behaviour of links where a link selection

90 CHAPTER 4

simply displays the new page.

In the third clause of execute goal/1, current page/1 is updated with

the new URL contained in navigation/1. This ensures that, as the user navi-

gates “back” and “forward” in Mosaic, current page/1 is kept up to date.

4.4.2 The LogicWeb Program Interpreter

The design of the interpreter for LogicWeb programs is based on the operational

semantics developed in Section 3.3.3. Program 4.2 shows the interpreter for pure

LogicWeb programs.

The first clause of demo/2 implements context switching as described by rule

(3.10). The predicate establish context/3 takes a program expression F, the

current context (a program expression) E, and establishes a new context F1 (also

a program expression) in the following sense:

1. establish context/3 implements expids and add programs (both de-
fined in Chapter 3) by calling the predicate download/2 (as seen in the

second last clause of establish context/3) on each LogicWeb program

mentioned in F. download/2 implements the oracle function (see Defini-

tion 1 in Section 3.3.3) augmented with a test to determine if a program ex-

ists. The following predicate specifies download/2:

download(Type, URL) :-

created(Type, URL), !. % program already exists

download(Type, URL) :- % program does not exist

retrieve(Type, URL, Contents), % retrieve from the Web

create_program(Type, URL, Contents). % create the program

create program/3 creates a LogicWeb program from Contents and is

explained further in the next subsection. download/2 does not return

the created program in its argument since the program is asserted into

the Prolog database. download/2 fails if a LogicWeb program can not

4.4 The Prolog Engine 91

Program 4.2 The interpreter for pure LogicWeb programs.

% demo/2 with LogicWeb goal
demo(E, F#>G) :- establish_context(F, E, F1), demo(F1, G).
demo(_E, true).
demo(E, (A,B)) :- demo(E, A), demo(E, B).
demo(E, A) :- E::(A :- B), demo(E, B).

% establish a context
establish_context(E + F, C, E1 + F1) :-
establish_context(E, C, E1), establish_context(F, C, F1).

establish_context(E * F, C, E1 * F1) :-
establish_context(E, C, E1), establish_context(F, C, F1).

establish_context(E / P, C, E1 / P1) :-
establish_context(E, C, E1), establish_context(P, C, P1).

establish_context(@E, C, @E1) :-
establish_context(E, C, E1).

establish_context((/)<>(E, L), C, (/)<>(E1, L1)) :-
establish_context(E, C, E1), establish_contextL(L, C, L1).

establish_context(Op<>L, C, Op<>L1) :-
establish_contextL(L, C, L1).

establish_context(lw(T, U), _C, lw(T, U)):-
download(T, U).

establish_context((#), C, C).

establish_contextL([], _C, []).
establish_contextL([E|Es], C, [E1|Es1]) :-
establish_context(E, C, E1), establish_contextL(Es, C, Es1).

% definition of ::/2
(E + _F)::(A :- B) :- E::(A :- B).
(_E + F)::(A :- B) :- F::(A :- B).

(E * F)::(A :- (B,C)) :- E::(A :- B), F::(A :- C).

(E / P)::(A :- B) :- E::(A :- B), not defined(A, P).

(@E)::(A :- true) :- demo(E, A).

((/)<>(E, []))::(A :- B) :- E::(A :- B).
((/)<>(E, [P|Ps]))::(A :- B) :- ((/)<>[(E / P)|Ps])::(A :- B).

(_Op<>[E])::(A :- B) :- E::(A :- B).
(Op<>[E1,E2|Es])::(A :- B) :-
C =.. [Op, E1, E2], (Op<>[C|Es])::(A :- B).

defined(A, P) :-
functor(A, Functor, Arity), functor(H, Functor, Arity),
P::(H :- _B).

92 CHAPTER 4

be retrieved (the situation where the oracle function returns ?). The fail-
ure of download/2 causes establish context/3 to fail. This imple-

ments the condition in rule (3.10) that all LogicWeb programs in F must

be created before goal evaluation proceeds. In contrast to the definition

of add programs(S; I) which simultaneously attempts to download all pro-
grams mentioned in I but not in S (i.e., no ordering is specified for down-
loading programs), the implementation imposes an ordering on down-

loading the programs mentioned in F which follows Prolog’s ordering in

the evaluation of establish context/3. With the ordering on down-

loads, as soon as one call to download/2 fails, no further downloads will

be attempted (since establish context/3 fails).

2. Each occurrence of “(#)” in F is replaced by E (in the last clause of

establish context/3). This implements insertCC used in rule (3.10).
The next three clauses constitute the vanilla meta-interpreter. The clauses of

LogicWeb programs are stored in ::/2 facts, but rules are defined for retrieving

clauses from LW-compositions of programs. The five rules of the predicate ::/2

defining LW-union, LW-intersection, LW-restriction, and LW-encapsulation are

similar to ::/2 defining union, intersection, restriction, and encapsulation in

Section 2.2.3.4. The other rules determine how to retrieve clauses fromLW-reduc-

tions, and are defined using the equations (eq. 3.1) to (eq. 3.5) in Section 3.3.3.

For instance, (eq. 3.4) states that (/)<>(E, []) is equal to E. Hence, retrieving

a clause from the expression (/)<>(E, []) is the same as retrieving a clause

from E, and this is represented by the clause:

((/)<>(E, []))::(A :- B) :- E::(A :- B).

in Program 4.2.

Note that ::/2 and establish context/1 are defined to allow nested ex-

pressions, i.e. terms such as

4.4 The Prolog Engine 93

(+)<>[(*)<>[lw(get, "URL1"), @lw(get, "URL2"), lw(get, "URL3")],

lw(get, "URL4"),

lw(get, "URL5")].

A downloaded LogicWeb program typically does not run in isolation. It may

download and use other LogicWeb programs or utilise local system resources.

The interpreter implements the linking to other programs and local system re-

sources dynamically as the need arises and not during compilation. Loading re-

mote programs on demand is an important feature for LogicWeb applications

which often can only determine the required programs (or data) at run-time.

Such dynamic linking to remote code and to local resources is typical of mobile

code languages [61].

For practical programming, the interpreter has been extended to inherit lan-

guage features found in SWI-Prolog including cut (!), and built-in predicates

such as setof/3, bagof/3, maplist/3, predsort/3, once/1, if-then-else

(->/3), assert/1, retract/1, list manipulation predicates (e.g., append/3

and member/2), and not/1. These extensions are based on work on Prolog

meta-interpreters (as noted in Chapter 2). For example, the rule

demo(E, A) :- built_in(A), call(A).

is added to the interpreter where built in/1 determines if A is a built-in pred-

icate and if so, calls A using the Prolog meta-predicate call/1. A similar rule

can be used to define the set of built-in predicates which a LogicWeb program is

allowed to invoke (see Chapter 8). Higher-order predicates are used by calling

demo/2 in the body. For instance, for not/1, the following rule is added:

demo(E, not(A)) :- not(demo(E, A)).

Although much of the extensive library of Prolog built-in predicates is us-

able within LogicWeb programs, new built-in predicates are added to ease the

programming of LogicWeb applications. A small set of predicates for communi-

cating with Mosaic, constructing HTML documents, fast string matching, com-

94 CHAPTER 4

paring dates, checking if a LogicWeb program exists in the program store, and

deleting programs in the program store are listed in Appendix B.

4.4.3 Translation into LogicWeb Programs

download/2 implements the page loader and translator described in Sec-

tion 4.1. download/2 requests the object using the specified URL, and if the ob-

ject is retrieved, calls create program/3 to translate it into a LogicWeb pro-

gram in the way depicted in Figure 3.3 (in Chapter 3). create program/3

parses the page storing HTML components into facts. The facts generated from

the translation are asserted into the Prolog database. To simplify processing by

the LogicWeb interpreter, all facts F belonging to a program P whether gener-
ated such as about/2 and link/2, or appearingwithin the page, are translated

into rules of the form: P :: (F:- true)
Besides the link information stored in link/2 (mentioned in Section 3.2), the

system can also extract and store as facts the title (title/1), body (body/1),

sections (section/3), and links to images (image/2) and applets (applet/5)

occurring on the page. Appendix A describes these facts in full. Only programs

obtained via GET and POST requests can contain these five types of facts, since

programs obtained via HEAD requests do not have HTML text. These facts

are generated “on demand” when a call to them is made rather than by default

thereby reducing the amount of unused information stored. However, this in-

curs a slight overhead: each time the facts need to be used, a check is made to

see if they have been created. In contrast, link/2 facts are generated by default

since link information is commonly used in applications.

These facts support applications which examine those components, such as

applet or image searching over the Web. These components are used in the ex-

amples described in the next three chapters. The body and sections of a page are

4.4 The Prolog Engine 95

coarse-grained fragments which can be further broken up. Images and applets

are deemed to be significant for applications. For instance, the popular page in-

dex AltaVista can be searched based on the occurrence of keywords in the pages’

mark-up for titles, anchors, applets, and images2. However, which components
are extracted from the text ultimately depends on the particular application. For

example, the text in the page’s body or sections can be further parsed for struc-

tures such as ordered lists, tables, or forms. Instead of supporting all levels of

parsing, it is left to the specific application to determine what further to extract.

As mentioned in Chapter 2, HTML is evolving. Later HTML specifications

standardise tags which allow multimedia components to be incorporated and

links to be labelled with relationship descriptions. The extraction of these com-

ponents can be supported when they are more widely used.

4.4.4 Caching LogicWeb Programs

A number of practical issues arise with the caching of LogicWeb programs.

Limited storage space. A policy is needed to determine which programs to re-

move whenever space runs out. The programs may be ranked according to how

often they are used, or when they were last referenced. Otherwise, the system

can simply disallow creation of new programs when some limit is attained.

Side-effects on backtracking. On backtracking over a LogicWeb goal (e.g.,

E#>G), a question iswhether created programs should be removed. For instance,

the inference rules given in Section 3.3.3 do not keep track of programs created

in failed branches during a proof search. The set of created programs in the

rules allows goals in a proof to reuse created programs, but when a goal fails

and the proof search proceeds to a different branch the set of created programs2See AltaVista help page at http://www.altavista.yellowpages.com.au/
cgi-bin/query?mss=helpadv&pg=ah.

96 CHAPTER 4

is “dumped”. In contrast, the LogicWeb program interpreter does not remove

created programs on backtracking.

Persistency across applications. One more issue is whether caching should

be persistent across applications or local to each application. A related issue is

whether the program store should be saved and restored in another session. If

caching persists across applications, network access is reduced since different

applications can use previously loaded programs. But this may cause applica-

tions to interfere with each other and an application might want to use the latest

programs.

In the implementation, LogicWeb programs are cached to allow reuse,

thereby keepingnetwork access to aminimumand consistency in successful goal

evaluations. Such caching corresponds to the semantics of LogicWeb goals dis-

cussed in Chapter 3. While an application is in use, the LogicWeb programs used

directly or indirectly by it are not updated. Programs on the client-side are not

kept consistent with their original copies residing on the server-side. However,

the user can clear the cache at any time without exiting the system using a Log-

icWeb application called the LogicWeb programmanager. This application uses the

built-in predicate delete programs/0 (see Appendix B) to clear all the pro-

grams in the program store except the program manager itself. After the pro-

gram store is cleared, applications can be reloaded, allowing queries to be eval-

uated with the most recent programs.

The cache stores all programs createdduring aproof search including those in

failed branches since they could be used for other goals. Keeping programs cre-

ated from failed branches is an implementation addendum to reduce network

access and is not specified in the operational semantics of Chapter 3. This be-

haviour means that the set of programs created during a proof search may be

larger than that necessary for the proof (where the right goals are always evalu-

ated).

4.5 Discussion 97

To deal with limited storage space, the amount of storage an application can

use is restricted. Once the limit is used, no more programs can be downloaded.

In the current implementation, this limit is large enough to support an applica-

tion downloading several megabytes of information. Enforcement of resource

limits is discussed further in Chapter 8.

4.5 Discussion

This chapter has shown how LogicWeb can be realised, describing an imple-

mentation in Prolog of the LogicWeb system which extends the NCSA Mosaic

browser. Prolog is a natural choice as the implementation language since Log-

icWeb programs are Prolog-based and due to the extensive existingwork on Pro-

log meta-programming. In fact, the use of Prolog permitted the rapid prototyp-

ing and specification of the key components of the system.

This implementation continues a recent trendwhich is to writeWeb browsers

and the mobile code they support in the same language. This trend began with

the HotJava browser [153] which is implemented in Java and supports Java ap-

plets. Another example is theMMMbrowser [173] which is implemented in Ob-

jective Caml (an object-oriented dialect of the functional language ML) using an

interface to Tcl/Tk, and supports mobile code in Objective Caml. A third exam-

ple is SurfIt! [17] which supports Tcl applets (or Tclets). The advantage of us-

ing the same language for the browser and mobile code is perhaps not just the

ease of implementation, or the demonstration of the adequacy of the language

for building such Web tools, but also to provide a browser architecture which is

customisable or extensible bymobile code without interfacing between different

languages. Chapter 8 shows that LogicWeb programs can be used not only for

building applications but to dynamically modify the functionality of the Prolog

engine.

Below, we look into different aspects of the implementation pointing out ar-

98 CHAPTER 4

eas of weaknesses and identifying possible avenues for future implementation

work.

Performance. Execution performance of LogicWeb programs has not been the

focus of the current implementation. Computation time (or CPU time) is less

significant for applications that spend much of their wall-clock execution time

waiting for and retrieving information from the Web. Moreover, as mentioned

earlier, speed critical utilities (e.g., string matching is used often) are coded in C.

Nevertheless, interpreted code generally runs slower than compiled code. Other

execution schemes can be considered with their own security and resource con-

trol mechanisms such as executing downloaded compiled byte-code.

Naming and content types. LogicWeb programs are named according to the

HTTP method and URL that is used to retrieve them. The implementation only

supportsURLswhich nameHTMLfiles (i.e., of thetext/htmlMIME type) since

LogicWeb maps HTML content to logic programs.

User interface. Using only the basic graphical user interface facilities provided

by HTML (i.e., forms and anchors) has the advantage of applications being us-

able with the simplest browsers, namely, browsers which support only forms

and anchors. Interfacing Prolog with another mobile code language with a rich

set of GUI libraries (e.g., Java) would offer the prospect of combining rule-based

inferencing with a more complex GUI. Interfacing Prolog with Java is discussed

further in Chapter 9.

Security and resource control. Security is an issue when LogicWeb programs

are allowed access to system resources. Interpreting source level programs pro-

vides a convenient means for implementing security and resource control mech-

anisms. Security issues are discussed in detail in Chapter 8.

4.5 Discussion 99

Availability and portability. Work on the implementation begun in early 1995

whenMosaic was themost popular browser and CCI provided an easymeans to

utilise the capabilities of Mosaic from an external application. Today, Netscape

andMicrosoft Internet Explorer have surpassedMosaic as the more widely used

browsers. Also, since 1995, a variety of technologies have developed which can

be used to implement LogicWeb. Hence, alternative implementations should be

considered.

The platform for the above implementation isUNIX.OnUNIX,Netscape does

not support CCI or the sending of events (e.g., link activations) to an external ap-

plication. OnWindows NT, DDE and OLE are used to to provide this capability,

and on the Mac, AppleEvents can be used with Netscape for this purpose. The

Spyglass Software Development Interface [183] defines a library similar to CCI,

but which is browser independent. Such an interface has not yet been imple-

mented for UNIX.

A browser independent approach for implementing LogicWeb is to build the

LogicWeb client as a proxy. A proxy is a program situated between a browser

(the proxy user) and servers, and hence, can intercept the browser’s requests.

LogicWeb programs can be cached on and queried via the proxy. However, this

approach has a weakness. Typically, a proxy listens at a particular host name

(on which the proxy runs) and port number. This means that, unless there is a

secure communication protocol between the LogicWeb proxy and its user, any

party which knows the proxy’s location and port number can connect to it and

interfere with its operation. The result is that the proxy is no longer dedicated to

a single user.

On the other hand, LogicWeb functionality can be integrated into a browser.

For instance, a Prolog to Tcl/Tk interface [143] (e.g., as offered by ECLiPSe Pro-

log) can be used to combine the LogicWeb Prolog engine with an existing Tcl/Tk

browser such as SurfIt!. Another possibility is to build a Prolog system into a

Web browser such as Netscape Navigator. The tight integration with a browser

100 CHAPTER 4

can offer enormous advantages since almost all user actions can be made avail-

able to a LogicWeb applicationwhich then can customise the browser’s function-

alities. Furthermore, with this approach, a CGI script will not be needed to relay

form inputs back to the LogicWeb system as in the current implementation.

Other ways of implementing LogicWebwhich build on recent integrations of

Prolog technology with the Web are discussed in Chapter 9.

Chapter 5

CIFI

This chapter illustrates programming techniques and advantages of the Log-

icWeb language for coding tools that search the Web for specific items of infor-

mation. The main example of this chapter is a LogicWeb application for finding

citations of specific Computer Science publications on the Web called CIFI.

Section 5.1 discusses strategies for finding citations of Computer Science pub-

lications on the Web, introducing CIFI’s approach. Section 5.2 presents the de-

sign and implementation of CIFI, where CIFI’s components and search strategies

are outlined, and the encoding using LogicWeb rules of these components and

strategies are given. Limitations of CIFI are discussed in Section 5.3, and related

work is reviewed in Section 5.4.

5.1 Looking for Citations on the World Wide Web

TheWeb is increasingly a rich source of Computer Science research publications.

Researchers aremaking their publications available on theWeb from their home-

pages, university publication pages, and technical report archives. These publi-

cations are usually in the form of citations with links to electronic copies of pa-

pers. Conference proceedings are appearing on the Web, and extensive biblio-

101

102 CHAPTER 5

graphic databases are already available on-line. Often, the most recent research

publications can be found on the Web.

Journal editors seek the latest citations of Computer Science publications in

order to replace references to outdated and less easily available preprints and

technical reports. Graduate students seek the full copies of papers for their lit-

erature reviews. Authors may want to look for papers on the Web, and cite the

corresponding URLs, even when they can cite the paper as appearing in some

hard-copy conference proceedings, or as a technical report. The problem is in

finding the specific citation amidst the ocean of information.

Two types of searchable indexes are widely used for information discovery

on the Web. The first type indexes pages. These indexes are generated by in-

dexing agents that traverse theWeb “off-line”, indexingWeb pages based on the

words they contain. Keywords can be submitted to these search engines to re-

cover links to documents indexed by the keywords. AltaVista and Lycos are no-

table examples of this approach.1 However, search engines do not take the user
directly to the specific piece of information being sought, but to documents that

possibly contain or lead to the required information. These documents become

the starting points for browsing. The second type indexes a specific kind of in-

formation. Examples of information indexed are subject based bibliographies

and departmental technical reports (e.g., the Unified Computer Science Technical

Reports archive2). The contents of these indexes are not searchable from the page
indexes.

Even with extensive searchable technical report and bibliographic databases,

finding the latest citation or copy of a specific Computer Science publication can

still be a challenge. At any time, none of the databases is complete, and the seeker

should try several of them.1Many other search engines are listed and evaluated in http://www.ambrosiasw.com/
˜fprefect/matrix/matrix.shtml.2http://www.cs.indiana.edu/cstr/search

5.1 Looking for Citations on the World Wide Web 103

The seeker may also use page indexes submitting the author’s name and the

publication title as search keywords. Depending on the query, these indexes can

return links to useful pages, such as personal homepages, which usually have

links to publications, or HTML versions of papers. Using page indexes alone to

find citations is not sufficient since such indexes themselves have several fun-

damental drawbacks. First, keeping the index up-to-date is difficult, especially

faced with the increasing size and growth rate of the Web. For instance, it may

take several weeks before a new site is discovered, or before the engine revisits a

page and updates its index entry. Thismeans that a newpagemay contain a cita-

tion, but the old version, indexed by the search engine, does not. Pagesmay have

been deleted, moved, or renamed since they were last indexed so that links to

them become stale. A related problemwill be the size of the page indexes, which

will become unmanageably large as the Web continues to grow. Second, if the

keywords (e.g., title and author name) happen to be quite common words, then

many irrelevant documents will be returned. This will continue to be a problem

as the Web grows. Moreover, as noted in [134] a word often has different mean-

ings causing redundant information to appear in search results. For instance, the

word “cook” could be someone’s last name besides its usual meaning. Third, it

is often difficult to determine (even manually), from the information returned

by the search engine, if a page contains the citation. Further browsing from the

search results will be required. Fourth, the page indexes do not contain informa-

tion in databases with their own search facilities (e.g., bibliographic databases).

Hence, using multiple searchable indexes coupled with Web browsing start-

ing from search results becomes a viable strategy, and has the advantage of ro-

bustness. For example, alternative resources can be utilisedwhen initial resources

are temporarily unavailable (e.g., down or busy). But the seeker has to know the

appropriate sites, and invest time wading through much data which takes much

time to download, especially with the current speed of network connections.33A recentWeb user’s survey which ran fromOctober to November 1997 found that the speed

104 CHAPTER 5

The seeker could instead delegate the task to a software entity (often called a soft-

ware agent - e.g., [81, 162]) with the required knowledge to work autonomously.

Such an agent does not only save the user’s time but also does not require the

user to have knowledge about how to find the citations (e.g., the URLs of sites

and strategies).

CIFI is a rule-based agent which combines index querying with more exten-

sive conventional browsing, guided by search heuristics tuned for finding cita-

tions. Empirical evidence suggests that author’s homepages, author’s publica-

tions pages linked fromauthor homepages, anddepartmental publications pages

are themain sources of citations. Also, if the author’s homepage can be obtained,

then the other types of pages can usually be found. For instance, the URL of the

Computer Science departmental page can usually be extracted from the URL of

the author’s homepage. Thus, an approach will be to use a search engine to find

the author’s homepage and thenuse search heuristics like the one outlined above

to guide browsing until the citation is found. Thismethod has the following ben-

efits:� There is a degree of resilience to change, since it relies only on the home-
page being indexed. Changes inside the homepage, or changes in the lo-

cation and content of the publications pages can be accommodated, since

these pages are accessed in real-time, instead of being found via indexed

information.� Browsing takes the user directly to the required information.
CIFI also searches technical report archives, which are not indexed by search en-

gines.

of downloading pages is themost common problemwith using theWeb. The results are available

at http://www.gvu.gatech.edu/user surveys/survey-1997-10/graphs/use/

Problems Using the Web.html.

5.2 Design and Implementation of CIFI 105

5.2 Design and Implementation of CIFI

Apaper is uniquely identified by its author’s name and title. CIFI takes, as input,

the author’s last name and given names (if available) and the title (whichmay be

incomplete). It attempts to return the HTML version of the paper, or a citation

of the paper, without further user intervention.

The knowledge-based approach is commonly used for building expert sys-

tems, andCIFI has beenbuilt using such an approach. CIFI is built on the premise

that aWeb search tool for finding specific information on theWeb comprises three

components:

1. the search algorithm: Web searching involves traversing the graph-like hy-

pertext structure of the Web.

2. required knowledge: knowledge is employed in the search algorithm to con-

trol searching in order to increase search efficiency, accuracy, and effective-

ness.

3. routines to retrieve and parse Web pages.

Prolog backtracking search can be used to simplify the coding of depth-first

searching of portions of the Web. Relevant knowledge about search strategies

and Web site structure can be encoded declaratively and easily as rules. Log-

icWeb operators take care of the details of page retrieval, storage, and pars-

ing, enabling the programmer to focus on the search algorithm and knowledge.

These advantages are illustrated in Section 5.2.2 and 5.2.3.

5.2.1 Alternative Strategies

CIFI uses a number of strategies to search the Web:

1. Search the Web for the HTML version of the paper. Words in the title and an

author’s name (last name and optionally, given names) are used as query

keywords to Lycos.

106 CHAPTER 5

2. Search from the author’s homepage. The author’s name (last name and option-

ally, given names) are used as keywords to Lycos. Lycos returns a num-

ber of links which possibly point to the author’s homepage. These become

starting points for further browsing.

3. Search from the university Computer Science department homepage. The Com-

puter Science department URL is extracted from the homepage URL. The

Computer Science department homepage is then explored for its technical

report or publications page. If there are several possible homepage links,

several possible links to departmental homepages are extracted, and ex-

plored for publications.

4. Search technical report archives. Queries are sent to technical report search

engines: theUnified Computer Science Technical Reports archive, and theNet-

worked Computer Science Technical Reports Library4.
5.2.2 Search Algorithm

Each of the strategies outlined above is represented using rules. In addition, a

second type of rule, navigational rules, is used to encode the actions to take when

on a particular type of page (e.g., a homepage).

Page types are names for classes of pages (some of which may contain only

one page). They enable individual pages to be referred to by their types rather

than by theirURLswhichwould be too specific, andmay change over time. Page

types also allow collections of pages to be conveniently addressed and relation-

ships to be stated between collections of pages. Examples of page types are: au-

thor homepages (calledauth homepage), Computer Science department home-

pages (cs homepage), the page of the first ten Lycos results using the title and

author name as keywords (lycos auth title srch), and the page of the first

ten Lycos results using the author name as keywords (lycos auth srch).4http://alvin.cs.cornell.edu/

5.2 Design and Implementation of CIFI 107

In general, a citation is found using a page if: (a) the citation is on the page

(the page type is first checked to see if it is likely to contain the citation), or (b)

the citation is found using a page which is linked from the page. For example, if

a homepage does not contain publications details for the author, then a search is

made for a link to the author’s publications page.

Strategies for manual citation searches were used as the basis for the CIFI

rules. Manual citation searches were carried out to find common ways in which

authors andComputer Science departmentsmake their technical reports andpub-

lications available on the Web, with particular attention paid to the hypertext

structure, and the labels and URLs used. The heuristics mostly relate to the se-

lection of links during browsing, which rely on the type of the page.

Rules for a heuristic-free search over apart of theWeb is first presented. These

rules describe a search of the Web exploring each page for the required citation,

starting from a given page, until the citation is found:

find_citation(ProgramID, KeyWords, Citation) :-

ProgramID#>h_text(Source),

contains_citation(Source, KeyWords),

extract_citation(Source, KeyWords, Citation).

find_citation(ProgramID, KeyWords, Citation) :-

ProgramID#>link(Label, NextURL),

find_citation(lw(get, NextURL), KeyWords, Citation).

In the above, the predicate, find citation/3, is true if the citation is found

from the given page, identified by ProgramID. ProgramID is a LogicWeb pro-

gram identifier. KeyWords are the keywords (author name and title) entered by

the user. Citation is a text fragment of the page containing the required cita-

tion. Note that the above rules permit infinite looping if the link goes back to a

previous page. Such looping can be prevented by recording previously visited

URLs, and not revisiting pages.

The predicate contains citation/2 determines if a page possibly con-

tains the required citation, by checking to see if the page contains all the ti-

tle keywords and the author’s last name. The page’s source is retrieved from

108 CHAPTER 5

h text/1. The predicate extract citation/3 extracts the required citation

from the page.

In the second rule, the LogicWeb goal retrieves a link from the page, and can

be used to obtain different links through backtracking. No parsing is required to

examine the links due to the abstraction of page contents as facts in a LogicWeb

program. The second rule is not used if the first rule succeeds.

An example of the use of find citation/3 is the following goal:

?- find_citation(lw(get, "http://www.cs.mu.oz.au/˜swloke"),

["Logic", "Programming", "World", "Wide", "Web"],

Citation).

Searching every page in this way is impractical, beingmuch too expensive in

time and computation.

To minimise the search space, link selection heuristics and knowledge about

page types are employed. Only certain types of pages contain citations. For ex-

ample, Computer Science department homepages do not, but author homepages

may. Also, only particular links will lead to a page containing citations. The

above rules, augmented with heuristics and page types, become the following:

find_citation(PageType, ProgramID, KeyWords, Citation) :-

pagetype_with_citations(PageType),

ProgramID#>h_text(Source),

contains_citation(Source, KeyWords),

extract_citation(Source, KeyWords, Citation).

find_citation(PageType, ProgramID, KeyWords, Citation) :-

ProgramID#>link(Label, NextURL),

sat_link_criteria(PageType, link(Label, NextURL), KeyWords,

NextPageType),

find_citation(NextPageType, lw(get, NextURL), KeyWords, Citation).

PageType and NextPageType are page type identifiers indicat-

ing the current and the next page types respectively. The predicate

pagetype with citations/1 determines if pages of the given page type

could contain citations. This predicate ensures that only likely pages are checked

5.2 Design and Implementation of CIFI 109

for the required citation (e.g., auth homepage but not cs homepage). Heuris-

tics for link selection are applied in the predicate sat link criteria/4.

These rules describe a heuristic-guided search of a part of the Web.

An example of the use of find citation/4 is the following goal which be-

gins searching from a homepage:

?- find_citation(auth_homepage,

lw(get, "http://www.cs.mu.oz.au/˜swloke"),

["Logic", "Programming", "World", "Wide", "Web"],

Citation).

5.2.3 Obtaining Starting Points and Link Selection

Thepredicatesat link criteria/4determines, given the page type andkey-

words, whether a link should be followed (i.e., whether the link satisfies some

criteria described below), and the next page type to expect if the link is followed.

Without this predicate, the search degenerates to exploring all links.

Relationships between a page type and its next page type(s) are expressed us-

ing leads to/2 facts. These relationships direct the search from one page type

to another. Also, cue strings/2 facts are used to store strings that are looked

for in the label of a link that would lead to each type of page. Below, we look at

heuristics for link selection on different pages, giving several examples of these

facts:

1. Lycos is queried using the author’s name and keywords from the title. To

determine which link, if any, in the Lycos results go to the HTML page, the

label of the link is checked for all the title keywords. If they are all present,

then the link goes to the paper.

2. The following rules are used to determine if a Lycos generated link goes to

an author’s homepage:

110 CHAPTER 5� If the label contains the author’s nameand thewords “Home” (or “Per-
sonal”) and “Page”, then the link goes to the homepage.� If the label contains parts of the author’s name, or the phrase “Fac-
ulty Advisor”, then the link goes to the author’s homepage. In ad-

dition, the URL is inspected for the phrases “people”, “Faculty”, “re-

searcher”, “staff”, “user”, and “fac”, or for the form:

<server-URL>/˜<identifier>

For example, the following URL references a homepage:

http://www.cs.mu.oz.au/˜eas

The URL is parsed, and inspected in a predicate. The phrases above

are stored in a fact.

To look for the author’s homepage after this Lycos search, the relevant facts

used by sat link criteria/4 are:

leads_to(lycos_auth_srch, auth_homepage).

cue_strings(auth_homepage,["Homepage", "Home page",

"Personal Page", "Faculty Advisor"]).

The fact leads to/2 above specifies the type of the next page to visit (i.e.

auth homepage) whenever on a lycos auth srch page. The strings

to look for in a link to an author’s homepage is specified in the fact

cue strings/2 above.

3. If the publications are not found on an author’s homepage, then a search is

made for links and URLs containing the keywords “publications” or “pa-

pers”. The check on the URLs ensures that links like “My publications are

found here.” are examined. The facts used for link selection are:

leads_to(auth_homepage, auth_pub_page).

cue_strings(auth_pub_page,["Publications", "Papers"]).

5.2 Design and Implementation of CIFI 111

4. The Computer Science department server’s URL is extracted from the au-

thor’s homepage URL. For example,

http://www.cs.mu.oz.au/

is extracted from

http://www.cs.mu.oz.au/˜eas

In the Computer Science department homepage, CIFI looks for link labels

containing “technical report” or “publications”. The motivation for this is

that a Computer Science department homepage usually has a direct link to

a technical report page, or to a publications page, with a link to the tech-

nical report page. This reasoning leads to the following leads to/2 and

cue strings/2 facts:

leads_to(cs_homepage, cs_pub_page).

leads_to(cs_pub_page, cs_tr_page).

leads_to(cs_homepage, cs_tr_page).

cue_strings(cs_pub_page, ["Publications"]).

cue_strings(cs_tr_page, ["Technical Reports"]).

The leads to/2 facts capture the common (and relevant) Web structure across

Computer Science department Web sites.

5.2.4 Extracting the Citation

The citation is extracted by scanning the page, looking for a fragment contain-

ing all the title keywords and the author’s last name. The size of the fragment

extracted was chosen by measuring the sizes of several hundred citations.

Heuristics are employed to ensure what is extracted is indeed a citation: a

citation is often given as a bullet point, and a phrase like “selected publications”

often precedes it.

112 CHAPTER 5

5.2.5 Integrating Other Information Sources

Asone of its searchmethods, CIFI sends queries to several technical report archive

search engines. The results are checked for the citation required using a method

like the one described above. Search engines are queried using LogicWeb goals

containing the search engines’ URLs appropriately appended with search key-

words in the way shown in Section 2.1.2.1.

5.2.6 Implementation

CIFI consists of only one LogicWeb program. CIFI’s user interface accepts the

author’s last name, the given names, and title keywords (see Figure 5.1), and is

defined by the following interface/1 predicate:

interface([textnl("Enter (one) author and title of paper."),

textnl("
Information on one author:-"),

textnl("
Given name(s):"),

input("text", "givennames", "", "", "16", "16"),

textnl("
Last name:"),

input("text", "lastname", "", "", "16", "16"),

textnl("
Title:-"),

input("text", "title", "", "", "30", "70"),

textnl("
Include search of technical report archives?"),

input("checkbox", "srchtr", "str", "", "", "")

]).

textnl/1 displays text with a newline after the text, and input/6 displays an

input field. These two terms are detailed in Appendix B.

On receiving the inputs, CIFI’s do query/2 predicate filters out com-

mon words and invokes find citation/4 with a starting page type, such

as lycos auth title srch (corresponding to strategy 1 in Section 5.2.1) or

lycos auth srch (corresponding to strategy 2 in Section 5.2.1), a starting pro-

gram identifier (for a Lycos search, the starting URL is constructed as described

in Section 5.2.5), and the filtered inputs in its arguments. The citation, if found,

5.3 Limitations of CIFI 113

Figure 5.1 The interface to CIFI.

is displayed on the browser (see Figure 5.2), allowing the user to follow links oc-

curring in the citation (if any).

5.3 Limitations of CIFI

Thirty different citation searcheswere carried out, ofwhich two-thirdswere found.

These citationswere foundmostly on authors’ publications pages, authors’ home-

pages, anddepartmental technical report pages. One citationwas foundbyquery-

ing the technical report archives.55This is because technical report archives are searched last. Using technical report archives
alone is inadequate, since they contain only technical reports of a limited number of participating

institutions, and many publications are not technical reports.

114 CHAPTER 5

Figure 5.2 The result of a search. The required citation is the first citation in the

displayed page fragment.

Failure cases highlight the following limitations of the current implementa-

tion:� Insufficient keywords lead to failure or erroneous results. Including the
given names of the author helps to avoid problems, and there should be

sufficient keywords from the title.� CIFI relies on Lycos to find the homepage for an author. In several searches,
the homepage was not found among the first ten hits. Other homepage

databases on theWeb could be employed such as indexes of personal home-

pages categorised by university6, or indexes of Computer Science depart-
ments, such as the Australian Computer Science Department sites7, if the
user can supply information on the affiliation of authors.� The strategy used to look for the HTML copy of the paper may only find a
page containing its abstract. One way to deal with the problem is to exam-

ine the context surrounding the link to the page for the word “abstract”.� Additional heuristics are needed for departmental pages where the techni-
cal reports are classified by research groups or by year. For instance, such6http://www.utexas.edu/world/personal/index.html7http://www.cs.jcu.edu.au/ftp/web/webAdmin/ozuni.html

5.4 Related Work 115

a format might allow a paper to be found based on its relatedness to words

in the research group titles, or its year of publication.� One link with the paper title as its label actually pointed to a redirection
page, because the page had been moved. Rules can be added to CIFI to

deal with redirections (such as those given in Chapter 7).� Some link labels to papers do not contain all the keywords from the title.
For example, for the paper “Citescapes: Supporting Knowledge Construc-

tion on the Web”, the link has the label “Citescapes Paper”. Project or sys-

tem names, like “Citescapes”, could be distinguished in the keywords, and

then be used alone to judge each link.� If the title of a paper is misspelled in a citation, CIFI may fail to find it.
Loose string matching could be used to avoid this problem.� If a link to the (HTML) paper is part of a clickable map, the paper will not
be found.

5.4 Related Work

5.4.1 Agents for Paper Search

Constructing tools to find research publication information on the Internet is a

challenging task. Two such tools different from CIFI in terms of search strategies

and resources used are discussed below.

A tool calledWEBFIND for automatically searching for scientific papers is in-

troduced in [150]. The main idea of WEBFIND is to use other (non-Web) infor-

mation sources to help retrieve information from the Web. It uses the Melvyl

database (a University of California library service) to find the institutional affil-

iations of an author of a paper, and employs NetFind to find the Internet address

of a computer with that affiliation. It then uses this address to construct the URL

116 CHAPTER 5

of the affiliation’s server. WEBFIND utilises heuristics to explore the server for

the author’s homepage and publications page, in a similar way to CIFI’s nav-

igational rules. This tool is limited by the contents of the Melvyl database. In

contrast to WEBFIND, CIFI looks for a citation to the paper which may, or may

not, have a link to the actual paper. Also, CIFI uses multiple strategies consist-

ing of a mixture of Web-based search engines, on-line databases, and heuristics,

without depending on external information sources.

BibAgent [174] semi-autonomously navigates over FTP directories (using the

Alex file-system that integrates FTP directories) looking for a specified article.

BibAgent examines readme files to aid its navigation, prioritises the directo-

ries to follow, and can retrieve the actual paper, or a completed bibliographic

reference, from bibliographic files (e.g.,.bib files). BibAgent asks the user for

traversal suggestions, and learns useful search paths for future use. In contrast

to BibAgent, CIFI navigates over the Web, and searches Web pages for citations.

A limitation of the current implementation of the LogicWeb language is that

only resources accessible via HTTP can be used in context switching (i.e., the

Melvyl database and FTP sites are excluded).

5.4.2 Web Search Tools

This subsection differentiates CIFI from other tools which use heuristics and

agents which automate the Web browsing task.

5.4.2.1 Internet Fish

Internet Fish [120] is a class of information discovery tools with persistent be-

haviour. The tools run continuously and can remember queries over time. Inter-

net Fish, like CIFI, is based on a knowledge intensive approach. It keeps knowl-

edge about on-line resources (e.g., thesaurus, name servers, and searchable page

indexes), the Internet structure (e.g., format of server names), what is interesting

5.4 Related Work 117

to the user, and rules about what to do with its knowledge.

CIFI works autonomously whereas Internet Fish interacts with the user dur-

ing searching. For instance, Internet Fish questions the user on the relevance

of keywords, and its intermediate search results. Additional knowledge can be

added to Internet Fish via a construction toolkit. Internet Fish is implemented

using the language Scheme.

5.4.2.2 General Heuristics Involving Web Links

In [182], a number of general heuristics based on link information are outlined,

which can be utilised for finding homepages, related pages, new locations of

moved pages, and unindexed information. For example, one heuristic is: if P

is a homepage and file P’ is in a directory below that of P’, then P’ is likely to be

authored by the person identified on page P. In contrast to these heuristics, CIFI’s

heuristics involve domain-specific page types.

5.4.2.3 An Abductive Framework for Web Searching

Prendinger [167] describes a client-side system implemented in Prolog for apply-

ing abductive reasoning in the design of aWeb search tool. Reachability relations

are used to model the systems’s partial knowledge of the Web. This work is still

in a preliminary stage, and does not yet offer more functionality than bounded

depth-first search guided by the occurrence or non-occurrence of keywords in

the page’s text.

5.4.2.4 Browsing Agents

Browsing agents “surf theWeb” on behalf of the user according to some criteria,

or guide the user during browsing. Most of these performmore general searches,

rather than targeting a particular domain, such as papers. Also, most learn user

interests or permit user feedback. For instance, in [15], user feedback on inter-

118 CHAPTER 5

mediate search results is used to change the link selection heuristic, improving

subsequent search results.

Fish-Search [68, 67], traverses theWeb looking for particular documents. The

user specifies either keywords, a regular expression, or external filters that the

contents of the document must match. Heuristic rules used to guide the search

are handcoded-in and include: (1) after following a number of links in a given

direction without finding relevant documents, the search stops going in that di-

rection; (2) links in relevant documents are traversed first before those of less rel-

evant ones; (3) links to documents in different sites are preferred.

WebWatcher [107, 9] uses a description of user interests to highlight interest-

ing hyperlinks, and records hyperlinks to related pages. It also remembers the

user’s interests, based on the pages selected.

Letizia [122] is an agent that infers user interests from browsing behaviour,

and explores links using a best-first search with heuristics utilising the inferred

user interests. Based on its exploration, Letizia can recommend links to follow.

A case-based approach for information retrieval is utilised in [96]. Past user

feedback on example items allows it to suggest potentially relevant new items to

the user.

CIFI does not require feedback, and does not learn from user interests be-

cause there is a specific target (e.g., a citation, or a HTML paper). The required

browsing behaviour is precisely specified using rules.

5.5 Discussion

CIFI uses heuristics about the organisation of sites being searched andWeb-based

information sources to obtain its results. CIFI shows that logic programming

permits the succinct coding of both the procedural and knowledge components

of Web search tools with a clean separation between the components. The navi-

gational rules show that it is possible to exploit the unwritten conventions of the

5.5 Discussion 119

Web, and that Prolog backtracking search maps well to the Web browsing task.

The rules also show how the low-level details of Web page retrieval and parsing

are abstracted away from the search algorithm. The treatment of LogicWeb pro-

gram identifiers as first class entities makes it easy for programs to manipulate

pages and to access their contents.

The experiments demonstrate the efficacy of CIFI, and point out its limita-

tions. Section 5.3 has pointed out howmost of these limitations can be addressed

by extending the rule set or by the user supplying more information.

CIFI’s performance can improvewith better resources andmore search strate-

gies. Work onCIFI has continued independently of LogicWebas described in [97],

where additional resources have been used including the use of AltaVista and

more recent publication databases, and the detection and use of the search facil-

ity on a departmental publications page. This has improved search results from

twenty to twenty-four successful searches (using the same thirty queries). Use-

ful results are returned evenwhen the citation can not be obtained such as a page

about a conference thatmentions the paper. The use of page types to guide search

has been investigated for other categories of information (besides citations) in a

shell for building information agents [132].

As demonstrated by CIFI, Prolog backtracking search eases the coding of

depth-first searching behaviour on theWeb. Other search algorithms can be suc-

cinctly coded in Prolog [185, 161], and so, other Web search algorithms can be

succinctly coded in the LogicWeb language. TheWeb search algorithms can also

exploit structured information on theWeb and deal with download failures. For

example, the following program traverses the Web starting from a given URL in

a bounded breadth-first search manner looking for pages relevant to a given list

of topics.

The top-level query to the program takes the form:

?- collect(["http://www.cs.mu.oz.au/˜ad"],

["logic", "AI", "Web"], 3, 20, [], Ps).

120 CHAPTER 5

The first argument is a list of starting addresses. Each page will be scored

using a score page/3 predicate which utilises the keywords in the second list.

If a score greater than 3 (the third argument value) is obtained, then the page’s

links are collected and subsequently searched. All the collected pages are stored

in a list which is eventually returned in Ps. The search stops when 20 suitable

pages (the fourth argument value) have been found, or there are no more URLs

to explore.

collect/6 is defined as:

collect(_, _, _, Max, Ps, Ps) :- % got enough addresses

length(Ps, Len), Len >= Max.

collect([], _, _, _, Ps, Ps). % no more URLs to examine

collect([URL|ToVisit], Keys, PScore, Max, Ps, FPs) :-

lw(get, URL)#>h_text(Text),

score_page(Keys, Text, Score),

act_score(Score, URL, ToVisit, Keys, PScore, Max, Ps, FPs).

act_score(Score, CurrURL, ToVisit, Keys, PScore, Max, Ps, FPs) :-

Score > PScore,

setof(URL, [Label]ˆlw(get, CurrURL)#>link(Label,URL), URLs),

append(ToVisit, URLs, ToVisit1),

collect(ToVisit1, Keys, PScore, Max, [URL|Ps], FPs).

act_score(Score, _, ToVisit, Keys, PScore, Max, Ps, FPs) :-

Score =< PScore,

collect(ToVisit, Keys, PScore, Max, Ps, FPs).

collect/6 can terminate either when Max pages have been collected

or when the URLs in the ToVisit list have been exhausted. Otherwise,

score page/3 is used to get a score for the page, which is acted upon by

act score/8. act score/8 actions depend on whether the page score is

higher than the pass score (PScore). If it is higher then the page’s links are ap-

pended to the end of the ToVisit list and the collection process continues. By

appending to the end, a breadth-first search is maintained.

The accuracy and effectiveness of the search can be increased by exploiting

structured information on the visited pages. Suppose that departmental research

5.5 Discussion 121

staff want information about their research interests to be more readily process-

able and query-able by programs. Then, they can encode this information in the

form of the interested in/1 rules as shown in Section 3.2. These rules can

be used to determine how interesting a page is. For example, if the pages the

breadth-first search utility visits contain such a predicate, then a new score pred-

icate can utilise interested in/1:

score_url(Keys, URL, Score) :-

setof(K, (member(K, Keys), lw(get, URL)#>interested_in(K)), Ks),

length(Ks, Score).

The score is the number of keywords of interest to the page’s author.

Facts on visited pages which state useful URLs about a topic can be exploited

such as:

useful_pages("Logic Programming",

["http://www-lp.doc.ic.ac.uk/",

"http://www.comlab.ox.ac.uk/archive/logic-prog.html"]).

Then, the URLs in useful pages/2 can be added to the ToVisit list if they

were related to any of the search keywords. Structured information in the form

deductive databases is described in Chapter 6.

The breadth-first search utility and CIFI can be easily modified to take into

account download failures. Nondeterminism in logic programming can reflect

the nondeterministic nature of the Web (as described in Section 2.1.2.3). For ex-

ample, in the above breadth-first search utility, when a download fails, the “#>”

goal in the third clause of collect/6will fail. This can be avoided by replacing

the goal with:

pgm_text(URL, Text)

which is defined as:

122 CHAPTER 5

pgm_text(URL, Text) :-

(lw(get, URL)#>h_text(T) ->

Text = T

;

Text = ""

).

Instead of returning the empty string, another way to cope with download

failure is to retry the request for the page. The following rules retry a request up

to NumReTries times:

pgm_text(NumReTries, URL, Text) :-

(lw(get, URL)#>h_text(T) ->

Text = T

;

NumReTries > 1,

NumReTries1 is NumReTries - 1,

sleep(30), % wait for 30 seconds before retrying

pgm_text(NumReTries1, URL, Text)

).

Other ways of coping with download failures are considered in Chapter 7.

As mentioned earlier, many search engines tuned for specific domains are

emergingwhich allow searching over not only homepages and scientific publica-

tions, but also job advertisements, corporate sites, news, e-mail addresses, soft-

ware archives, and FAQs. CIFI has demonstrated that tools which add a layer

of client-side processing between the user and search engines can be built into

the Web as LogicWeb applications. Being available on the Webmeans that these

tools can be integrated into themores ofWebusage in the sameway as the search

engines themselves.

The tools can utilise knowledge to select the appropriate search engines to an-

swer a user’s query, synthesise the results from multiple search engines (e.g., as

done in meta-search engines8), browse search results to answer specific queries,8Meta-search engines are search engines which use the results of other search

5.5 Discussion 123

or browse hierarchical site indexes such as Yahoo9. Tools can also be built which
aid the user in formulating queries. Since search engines employ keyword search-

ing which are based solely on lexical or syntactic content, they are very sensi-

tive to the choice of words used in queries. If a document is indexed on a syn-

onym of the query keyword, then the document will not be retrieved. Knowl-

edge can be built into the processing layer enabling automatic elaboration of the

user’s query (e.g., using a database of synonyms), or an interface can be pro-

vided,which given the user’s general topic of interest, suggestswords to the user

by querying a knowledge-base. For example, in the system described in [142],

the user can browse a hierarchy containing generalisations and specialisations

of words through menus in a HTML form.

From the software construction viewpoint, such tools encourage the building

of tools out of other tools by first choosing from available tools on the Web, and

then, combining them to meet new requirements. For instance, CIFI can be built

by integrating a tool for searching bibliographic databases, a tool for searching

departmental Web sites for publications, and a tool for finding homepages. The

LogicWeb language offers a simple mechanism for using other tools, i.e. by in-

voking a LogicWeb goal. The LW-composition operators allow customisations

to be done. For example, certain predicates in a tool can be overridden by new

ones.

engines. Examples include Metacrawler at http://www.metacrawler.com/,

Ahoy! at http://ahoy.cs.washington.edu:6060/, and Metabot at

http://metabot.kinetoscope.com/.9http://www.yahoo.com/

124 CHAPTER 5

Chapter 6

Lightweight Deductive Databases

As mentioned in the introduction, structured information can be represented in

the logic programming formalism as deductive databases. This chapter inves-

tigates deductive databases which are incorporated into Web pages in the style

of [75]. These databases are called lightweight deductive databases. A lightweight

deductive database is a LogicWeb programwith clauses categorised according to

three main roles: base relations, derived relations, and rules to process queries1.
In addition, it may include descriptions of the database (e.g., database schemata)

written in ordinaryHTML. These databases are lightweight in the sense that they

lack the functionality of full database systems, such as transaction processing

and query optimisation.

Since lightweight deductive databases are distributed on the Web, they have

the following features:� Distributed maintenance. A Web page can contain a part of a database.
The completed database can be created as necessary by retrieving the rele-

vant pages, and composing them together. This allows the components of

a database to be separately maintained, and combined only during query

processing.1These categories are borrowed from the field of deductive databases [116].
125

126 CHAPTER 6� Extensibility. The dynamic nature of the complete database allows the in-
cremental addition, or removal, of parts during query evaluation. This fa-

cilitates the incremental development of lightweight deductive databases.

Moreover, users, who are not the database creators, can extend the existing

database bywriting their own rules, using schemata included on the pages

containing the database.� Reusability. Rules andknowledge-bases for database queryprocessing can
be placed in Web pages, encouraging them to be reused, or shared.� Client-side processing. Lightweight deductive databases complement the
work on building forms-based interfaces to conventional databases. In the

LogicWeb system, query processing is carried out on the client-side, rather

than on the server machine. This reduces server load, and permits state

information, such as the results of previous queries, to be kept on the client-

side. With client-side caching in the LogicWeb system, once the databases

are loaded, they need not be fetched again.

The above features enable lightweight deductive databases to be used for organ-

ising information on the Web into manageable pieces which can be reused and

manipulated in a principled way.

Lightweight deductive databases encode information explicitly as facts and

rules in the “<LW CODE>...</LW CODE>” section of Web pages. This may be

seen as a disadvantage since it requires coding by the page authors. An alterna-

tive strategy is to include the information in a more informal manner, for exam-

ple, using HTML tables and new tags for defining rules, and extract it using a

separate LogicWeb parsing programwritten especially for the task. Section 6.6.3

discusses several tag-based systems for including structured information.

Another strategy is to use domain-specific syntactic sugar to define a lan-

guage for encoding special-purpose databases and queries. Such a language can

be parsed into LogicWeb rules, or meta-programming can be employed to build

Lightweight Deductive Databases 127

interpreters for specialised languages as strongly advocated in [186].

This thesis proposes that LogicWeb syntax is itself an expressive and high-

level representation formalism for data modelling and querying. A basic set of

data types is already defined fromwhich complex data structures can be system-

atically constructed. For query processing, a Turing-complete language is avail-

able, and the features of full Prolog are available if required.

The rest of this chapter illustrates the above features of lightweight deduc-

tive databases, using databases of citations as examples in the first three sec-

tions. Section 6.1 gives a simple lightweight deductive database example. Sec-

tion 6.2 introduces techniques for combining and extending lightweight de-

ductive databases including the use of LW-composition operators. Section 6.3

explores an application of lightweight deductive databases for organising ci-

tation information on the Web in a form which is more maintainable, exten-

sible, and amenable to complex forms of querying. This section emphasises

knowledge-based searching and retrieval of distributed databases. When found,

these databases are combined using techniques from Section 6.2. Another ap-

plication of lightweight deductive databases is presented in Section 6.4, where

we look into generating guided tours of Web pages by querying lightweight de-

ductive databases. This section emphasises software engineering principles of

modularity and reusability in the development of LogicWeb applications. The

guided tour was invented by the hypertext community many years before the

Web existed, and is interesting in its own right. The use of lightweight deduc-

tive databases is a novel approach for creating and using guided tours on the

Web. Although the emphasis of LogicWeb is client-side evaluation, server-side

computations are sometimes necessary. Section 6.5 shows how the LogicWeb

language accesses databases requiring query processing on the server-side. Sec-

tion 6.6 reviews related work, and compares existing deductive database sys-

tems with the lightweight counterpart.

128 CHAPTER 6

6.1 A Simple Lightweight Deductive Database

Consider a lightweight deductive database of publication citations. A citation

consists of distinct components (or attributes), and it should be possible to per-

form queries using these attributes.

A possible schema for citations is:

pub cit(authors,title,pub type,collection name,web location,date)

The schema describes the components of a typical publication citation: the

names of the authors, the title of the paper (which is used as the primary key,

indicated by underlining), the type of the publication (e.g., conference, technical

report, or journal), the collection in which the paper was published, the URL of

an on-line version, and the date of publication.

An instance of the schema is:

pub_cit([author("Seng", "Loke"), author("Andrew", "Davison")],

"Logic Programming with the World-Wide Web",

conference, "Hypertext ’96",

"http://www.cs.mu.oz.au/˜swloke/papers/paper1.ps.gz",

date(march, 1996)).

This fact is not in relational database normal form, as structured data is used.

Some of the attribute values can be stored as atoms instead of strings, but strings

are easier to manipulate in queries (e.g., we could utilise pattern matching with

a tolerance for character mismatches).

From a database of pub cit/6 facts, a database of journal citations in 1996

can be formed, which conforms to the schema:

journal 1996 cit(authors,title,collection name,month)

The new relation is derived using the rule:

6.2 Combining and Extending Lightweight Deductive Databases 129

journal_1996_cit(Authors, Title, CollectionName, Month) :-

pub_cit(Authors, Title, journal, CollectionName, _,

date(Month, 1996)).

Rules can be written to process queries on the above databases. For example,

the following rules find all the titles of papers by an author in a given year:

get_titles(Name, Year, Titles) :-

setof(Title, get_title(Name, Year, Title), Titles).

get_title(Name, Year, Title) :-

pub_cit(Authors, Title, _, _, _, date(_, Year)),

member(Name, Authors).

A lightweight deductive database can be downloaded to a LogicWeb system,

and queried. Alternatively, the base relations (facts) can be stored in one pro-

gram, and the query processing rules in another. These can be downloaded sep-

arately, and combined on the client-side.

6.2 CombiningandExtendingLightweightDeductive

Databases

Lightweight deductive databases from disparate sources can be integrated using

familiar techniques from the field of deductive databases (e.g., virtual relations

and relational joins), and LW-composition operators. These techniques are illus-

trated below.

6.2.1 Virtual Relations and Relational Joins

A virtual relation is formed from other database relations by a set of rules, all

defining the same head predicate, but each using a different relation in its body.

In the following examples, we shall assume a database of technical report details

with the schema:

130 CHAPTER 6

tr cit(authors,title,tr number,web location,date)

A virtual relation, cit/6, of citations can be defined in terms of technical re-

port and publication details, and stored in a LogicWeb program:

my_id(get, "http://www.cit.info").

cit(Authors, Title, Type, BookName, WebLocation, Date) :-

pub_cit(Authors, Title, Type, BookName, WebLocation, Date).

cit(Authors,Title, technical_report, BookName, WebLocation, Date) :-

tr_cit(Authors, Title, BookName, WebLocation, Date).

Recall that my id/2 stores the information found in the LogicWeb program’s

identifier. cit/6 assumes that pub cit/6 and tr cit/5 are present in the cur-

rent program (i.e., the program containing the virtual relation). However, if the

publication and technical report facts are stored in different programs (whose

locations are assumed to be stored in location of/2 facts), context switching

can be employed to retrieve them:

cit(Authors, Title, Type, BookName, WebLocation, Date) :-

location_of(publications, PubsURL),

lw(get, PubsURL)#>

pub_cit(Authors, Title, Type, BookName, WebLocation, Date).

cit(Authors, Title, technical_report, BookName, WebLocation, Date) :-

location_of(technical_reports, TRsURL),

lw(get, TRsURL)#>

tr_cit(Authors, Title, BookName, WebLocation, Date).

In a relational join, two relations are combined based on common attribute

values. A derived relation of citations that are both technical reports and publi-

cations can be formed using relational join as follows:

pub_tr_cit(Authors, Title, PubWebLocation, TRWebLocation) :-

location_of(publications, PubsURL),

location_of(technical_reports, TRsURL),

lw(get, PubsURL)#>pub_cit(Authors, Title, _, _, PubWebLocation, _),

lw(get, TRsURL)#>tr_cit(Authors, Title, _, TRWebLocation, _).

The shared variables, Authors and Title, are used to select citations common

to both relations.

6.2 Combining and Extending Lightweight Deductive Databases 131

6.2.2 Forming Virtual Databases Using LW-compositionOpera-

tors

In [41, 12], meta-level operators such as union, intersection, and restriction (in-

troduced in Section 2.2.3) have beenused to combine deductive databases (where

each database is a logic program). In a similar way, the LW-composition opera-

tors are used to query combinations of lightweight deductive databases or create

views over them, but the interfaces of the databases must be carefully designed.

For example, a view of citations dated between 1994 and 1997 and available

locally (where the meaning of local is as defined below by substring matching

with domain names) can be defined by a program containing:

my_id(get, "http://www.cit.info/view1.html").

cit(Authors, Title, Type, BookName, WebLocation, date(Month, Year)) :-

pub_cit(Authors, Title, Type, BookName, WebLocation,

date(Month, Year)),

local(WebLocation),

Year >= 1994,

Year =< 1997.

local(WebLocation) :-

(contains(WebLocation, "cs.mu.oz.au")

; contains(WebLocation, "unimelb.edu.au")

).

Then, authors of such publications can be queried using:

recent_pub_authors(PubDBList, Authors) :-

(+)<>[lw(get, "http://www.cit.info/view1.html")|PubDBList]#>

cit(Authors, _, _, _, _, _).

PubDBList is a list of identifiers of citation databases (i.e., LogicWeb programs)

containing pub cit/6 facts. The citation information is retrieved from the LW-

union of all the programs, which is treated as a virtual citation database. If the

programs are on different hosts, the virtual databasewill then span several hosts.

132 CHAPTER 6

LW-reduce enables queries to be stated involving collections of databases repre-

sented conveniently as Prolog lists.

The following rules define a different view where the publications must ei-

ther be conference or symposium and must reside on a local host, but where

the meaning of local is more constrained:

my_id(get, "http://www.cit.info/view2.html").

cit(Authors, Title, Type, BookName, WebLocation, Date) :-

pub_cit(Authors, Title, Type, BookName, WebLocation, Date),

(Type = conference

; Type = symposium

),

local(WebLocation).

local(WebLocation) :-

(contains(WebLocation, "http://agent-orange.cs.mu.oz.au")

; contains(WebLocation, "http://agent-99.cs.mu.oz.au")

; contains(WebLocation, "http://www.unimelb.edu.au")

).

This definition of local/1 is more restrictive than the previous one since the

hostname is specified. Authors of such publications can be found using a query

similar to recent pub authors/2 above.

Both these views can be combined to find authors of conference or sympo-

sium publications between 1994 and 1997 which reside locally (where the more

constrained definition of local is used):

recent_pub_authors(PubDBList, Authors) :-

((lw(get, "http://www.cit.info/view1.html") *

lw(get, "http://www.cit.info/view2.html")) +

(+)<>PubDBList)#>cit(Authors, _, _, _, _, _).

The use of LW-intersection means that both definitions of cit/6must be satis-

fied for every author retrieved. local/1 goals must satisfy the subgoals in the

6.2 Combining and Extending Lightweight Deductive Databases 133

clause bodies of both definitions of local/1. Thus, the more constrained defi-

nition of local dominates.

The views can be made to be context-dependent using the context operator.

For example, the definition of local/1 in the first view can be overridden by

that in the local context:

local(WebLocation) :-

contains(WebLocation, "http://localhost.cs.mu.oz.au/").

recent_pub_authors(PubDBList, Authors) :-

(((#) + (lw(get, "http://www.cit.info/view1.html") / (#))) +

(+)<>PubDBList)#>cit(Authors, _, _, _, _, _).

An advantage of LW-composition operators for querying and manipulating

lightweight deductive databases is modularity. A view on a database can be de-

rived by defining constraints in a separate program and appropriately compos-

ing them with existing programs. New views can also be composed from exist-

ing views.

In [8, 12, 41], the operator “in” is used for retrieving information from dis-
parate databases, where eachdatabase is a (Horn clause) logic programwith syn-

tax similar to the language described in Section 2.2.3. This use of “in” is similar
to how context switching is used above for retrieving information from different

LogicWeb programs. This use of context switching allows different databases

(e.g., with differing schemata) to be integrated, implementing the idea of medi-

ators [12]. A mediator is a software component which allows inter-operation of

different databases. Mediators form the “middle” layer between data from het-

erogeneous sources and users, allowing the data to be used without change and

without users needing to know the underlying data format differences. The Log-

icWeb language allows mediators to be defined between lightweight deductive

databases. Databases from remote sites which have been given a Web interface

can also be similarly integrated using the LogicWeb language (see Section 6.5).

134 CHAPTER 6

6.3 Knowledge-based Querying of Citation Databa-

ses on the Web

On-line citation information for a Computer Science department has to be kept

up-to-date, and can be categorised in a number of ways (e.g., by author, confer-

ence, date of publication, research group, and topic). This section explores the

use of lightweight deductive databases for organising citation information on the

Web in order to facilitate maintenance and more sophisticated querying.

The use of lightweight deductive databases adds an extra dimension to query

processing. Query processing for traditional databases usually consists of ex-

tracting the relevant data satisfying the query, and synthesising the results for the

user. However, with lightweight deductive databases, the rules implementing a

query may also involve finding and obtaining the relevant databases from the

Web before data is extracted. The knowledge-based search technique described

in Chapter 5 can be utilised for finding the relevant citation databases at query

processing time.

6.3.1 Organising Citation Information on the Web

We shall assume that research in a Computer Science department is organised

into sections. A section is divided into groups, and sections and groups are com-

posed from projects. Each project consists of researchers. This follows the or-

ganisation of research in the Computer Science department at the University of

Melbourne as of May 1996.

To represent the structure of aWeb site, the notion of page types and relation-

ships betweenpage types are used as inChapter 5. The page types used in the ex-

ample are: dept, research, project, project members, and researcher.

These page types will be used for describing the strategies for searching theWeb

for relevant citation databases.

6.3 Knowledge-based Querying of Citation Databases on the Web 135

We shall assume that the relevant Web structure for a Computer Science de-

partment is as shown in Figure 6.1.2 The departmental homepage (of type dept)
has a link to a page (of type research) containing research information (in

HTML). This information includes a description of the relationships between

sections, groups, and projects, and links to pages describing projects (of type

project). Each project page has a link to a page containing information

about its members (of type project members), and each project members

page has links to the members’ homepages (which are of type researcher).

The publication citations for each project are distributed in lightweight deduc-

tive databases which are accessible from the homepages of the researchers. This

allows the citation databases to be separately maintained by authors.

Another advantage of distributed citation databases is that publications for

the department or research groups can be obtained by combining the individ-

ual databases. This avoids redundancy that occurs when a department’s pub-

lications page and an author’s homepage store the same information, and en-

sures that group citation information is always up-to-date with respect to the in-

dividual databases. Queries are used to create the department’s and a research

group’s publication list on-the-fly. These queries are written as a LogicWeb ap-

plication and placed on the Web.

6.3.2 Searching for Citations

As an example, code that generates a research section’s publication list is devel-

oped. Two approaches are possible:� The URLs of all the relevant citation databases for each section can be
stored in a pre-determined program, and the citations are queried using it.

The location of/2 predicate of Section 6.2.1 is an example of how these2The entire Web site of a Computer Science department would be much larger but only part
of the site is needed in this application.

136 CHAPTER 6

Figure 6.1Arepresentative diagramof the hypertext structure rooted at a depart-

mental homepage. The arrows denote the sequence in which the various page

types are reached, starting from the dept page.

researcher

(citation database)

research

dept

project_members

project

URLs are stored.� Starting from some pre-determined page, search the Web site for the URLs
of the citation databases.

The first method requires the maintenance of a LogicWeb program containing

the citation database URLs. For example, if a researcher leaves or joins a section,

or if the URLs of pages change, then the program has to be modified. For this

reason, the second method is preferred.

Finding the relevant citation databases consists of two main steps:

1. use the given section name to find the constituent project names; and

2. using those project names, search the Web site by following the sequence

of page types shown in Figure 6.1, starting from the dept page, until the

relevant databases are found.

The search starts from the dept page, rather than the research page, in order

6.3 Knowledge-based Querying of Citation Databases on the Web 137

to accommodate changes to the research page’s URL. The URL of the dept

page is least likely to change.

In order to implement the above strategy, the relationships between sections,

groups, and projects (to carry out (1)) need to be formalised, and the Web struc-

ture specified (in order to do (2)).

6.3.3 Representing Knowledge

Representing Research Information. One way to find the projects contained

in a given section is to parse the research page, and extract the required infor-

mation. However, this would need to be done each time a query is processed.

A more efficient alternative is to represent the knowledge on that page as logic

programming facts and rules, and reason with them.

The relationships between sections, groups, and projects, are depicted as a

hierarchy of concepts in Figure 6.2. This is a representative diagram; a typical

department would have many more sections, groups, and projects.

Figure 6.2 A hierarchy of sections, groups and projects. The edges represent the

has part/2 relationships.

section(programming_langs)

project(lygon)project(mercury)

project(prolog_techniques)group(new_declarative_langs)

The relationships are represented using has part/2 facts, which specifies

how sections, groups, and projects are related. contains part/2 defines the

transitive closure of the has part/2 relation.

has_part(section(programming_langs), group(new_declarative_langs)).

has_part(group(new_declarative_langs), project(mercury)).

138 CHAPTER 6

has_part(group(new_declarative_langs), project(lygon)).

has_part(section(programming_langs), project(prolog_techniques)).

contains_part(X, Y) :- has_part(X, Y).

contains_part(X, Z) :- has_part(X, Y), contains_part(Y, Z).

Representing theWeb structure. The sequence of page types in Figure 6.1 can

be captured using leads to/2 facts:

leads_to(dept, research).

leads_to(research, project).

leads_to(project, project_members).

leads_to(project_members, researcher).

6.3.4 An Implementation of Citation Finding

A section name (e.g., “Programming Languages”) can be selected by a user from

amenu displayed on the browser. This is translated into asection/1 term, and

a goal like the following is generated:

get_citations(section(programming_langs), Citations)

Evaluation of the goal results in Citations being instantiated with a list of

pub cit/6 facts. These are formatted and displayed by the browser.

get citations/2 uses the logic programming representation of the

research information (contains part/2 and has part/2) to retrieve all

projects belonging to the specified section, and then collects the citations from

those projects:

get_citations(Section, Citations) :-

setof(project(Name), contains_part(Section, project(Name)),

Projects),

collect_citations(Projects, Citations).

collect citations/2 uses the Web structure information (coded as

leads to/2 facts) and the project names to search over the Web site for

6.3 Knowledge-based Querying of Citation Databases on the Web 139

citation database identifiers. A LW-union of these databases is accessed to

obtain the citations for the projects.

The definition of collect citations/2 is:

collect_citations(Projects, Citations) :-

location_of(dept, DeptURL),

setof(ProgramID,

find_citpgm(dept, lw(get, DeptURL), Projects, ProgramID),

ProgramIDs),

retrieve_citations(ProgramIDs, Citations).

The call to location of/2 retrieves the URL of the dept page. The URLs

of the citation databases are found by calling find citpgm/4 in a setof/3

call. find citpgm/4 is similar to CIFI’s find citation/4 described in Sec-

tion 5.2, but is different in two main ways: (1) the page types and leads to/2

facts used in find citpgm/4 are those described in Section 6.3.3, and (2)

find citpgm/4 returns the program identifier of a citation database as its re-

sult (instead of a citation). Project names in Projects are used to identify links

to relevant project pages. Cue strings are used to select the links that would

lead towards the citation databases. For instance, the word “Research” is a cue

string for pages of type research:

cue_strings(research, ["Research"]).

The predicate retrieve citations/2 retrieves citations from the LW-union

of the programs using code very much like that in Section 6.2.2.

The facts and rules described abovewould reside in a separate program at the

Web site. This program is loaded first, and other pages and citation databases are

loaded during query evaluation.

6.3.5 Summary

This example illustrates how the techniques of knowledge representation and

automated Web searching are used to support queries on lightweight deductive

140 CHAPTER 6

databases. Logic programming rules are used to represent a hierarchy of sec-

tions, groups, and projects, and to specify search behaviour overWeb pages. The

formermaps a section name to its component project names, while the latter han-

dles changes to the contents of the Web pages and the retrieval of relevant data-

bases.

The concept hierarchy needs to be updated if a research section, group, or

project, is addedor removed. This canbe donemanually (especially if the change

is small) or automatically by parsing the information on the researchpage into

logic programming facts.

6.4 Generating Guided Tours

A guided tour organises Web pages by collecting thematically related pages to-

gether [198]. A page may be a member of more than one tour, with each tour

providing a different view of the pages it uses. For instance, a guided tour of

an on-line book on Malaysian cooking aimed at beginners would present a very

different view of its component pages than a tour for experienced chefs.

A guided tour restricts and structures the links between pages. Hence, fol-

lowing a guided tour alleviates the “lost-in-hyperspace” problem one experi-

ences when navigating through complex hypertext, such as the Web.

This section describes how guided tours can be generated on the Web by us-

ing logic programming techniques. The LogicWeb language is used to represent

and query lightweight deductive databases containing information about pages,

and to manipulate lists representing tour details. The pages of a guided tour are

selected by querying the databases, and also by the dynamic extraction of infor-

mation fromWeb pages themselves. In addition, code for generating tours, tour

navigation, and tour visualisation, are each in their own programs.

The advantages of the LogicWeb approach for building guided tours are:� simplified tour generation: tour generation is expressed as queries upon (com-

6.4 Generating Guided Tours 141

binations of) lightweight deductive databases. Anarbitrary number of que-

ries can be applied to the same database to generate different tours.� modularity: as mentioned earlier, lightweight deductive databases have the
advantage of reusability. Utilities to create, navigate, and display tours are

also located in separate LogicWeb programs encouraging their reuse. For

instance, a program for displaying tours can be used with different tours.� decentralisation and customisability: the client-side generation of guided tours
encourages decentralisation and customisability. Thismeans that the pages

which form a tour can come from many servers, in the same way as the

databases. Also, local creation of tours allows them to be easily augmented

or replaced by the user’s own pages or databases.

The rest of this section is structured as follows. Section 6.4.1 describes the

structure of a guided tour and the components of a LogicWeb application im-

plementing a guided tour. Section 6.4.2 explores queries for generating tours.

In Section 6.4.3, more complex tour generation is discussed. Section 6.4.4 out-

lines howuser interactionwith tours is implemented. Section 6.4.5 reviews other

work on guided tours.

6.4.1 Structure of aGuidedTour and aGuidedTourApplication

A guided tour consists of a sequence of nodes, and its index. Figure 6.3 shows a

tour of Computer Science lecturers’ homepages at the University of Melbourne.

The index has links to each of the nodes in the sequence. Each node consists of

the page’s contents, and links to the index, the node on its left, the node on its

right, the first node, and the last node. The first node has no left link and the last

node no right link.

The index node of the tour is represented on-screen as shown in Figure 6.4.

A node is represented on-screen as shown in Figure 6.5.

142 CHAPTER 6

Figure 6.3 The structure of a guided tour of lecturers’ homepages in the Univer-

sity ofMelbourne Computer Science department. The arrows represent the links

of the tour; the rectangles are Web pages.

Moffat

index

Guozhu

Dong

Zoltan

Somogyi

first last

index

next

previous

Guozhu

Dong

Alistair

Figure 6.6 shows the structure of a guided tour application. A guided tour

application consists of a set of LogicWeb programs:

1. the main program defines the user interface to the guided tour and a pred-

icate generate tour/1which invokes a query to generate the sequence

of tour nodes returning the sequence as its argument;

2. the tour utility program contains predicates to control navigation and dis-

play tour nodes and indexes; and

3. lightweight deductive databases are used by the main programwhen gen-

erating the tour list.

To start a guided tour application, themain program is downloaded, together

with a utility program. The interface/1 predicate in the main program calls

predicates in the utility program to set up the tour and create the tour index:

6.4 Generating Guided Tours 143

Figure 6.4 The index node for the tour of lecturers’ homepages.

interface(TourIndex) :-

my_id(_, TourURL),

lw(get, "http://www.cs.mu.oz.au/gtour/utility_program.html")#>

set_up_tour(TourURL,

"A guided tour of lecturers and senior lecturers.",

TourIndex).

This definition of interface/1 is different from the earlier examples in that the

terms in its argument are dynamically generated instead of statically specified.

To set up the tour, the utility program invokes generate tour/1 in the main

144 CHAPTER 6

Figure 6.5 A typical tour node.

program. Evaluation of the tour-generation query causes lightweight deductive

databases to be downloaded so that they can be utilised.

The sequence of tour nodes is stored as a Prolog list. Each element of the list

is a node/3 term containing the URL of the page, the type of tour node, and

a string describing the node. A page type can be either page or tour. page

means that the node represents a Web page, while tour means that the node

corresponds to a subtour as explained in Section 6.4.3.2.

For the Computer Science lecturers example, the predicate

6.4 Generating Guided Tours 145

Figure 6.6 The guided tour application consists of a set of LogicWeb programs

(represented by the boxes). An arrow indicates a “uses” relationship.

for tour

navigation

databases
deductive

the tour list
query to generate

user interface
+

display and

utilities

main program utility program

lightweight

146 CHAPTER 6

generate tour/1 is defined to generate the following list of nodes:

[node("http://www.cs.mu.oz.au/˜alistair",page,"Alistair Moffat"),

node("http://www.cs.mu.oz.au/˜dong",page,"Guozhu Dong"),

node("http://www.cs.mu.oz.au/˜harald",page,"Harald Sondergaard"),

node("http://www.cs.mu.oz.au/˜lee",page,"Lee Naish"),

node("http://www.cs.mu.oz.au/˜ljj",page,"Lorraine Johnston"),

node("http://www.cs.mu.oz.au/˜ljk",page,"Leslie Kitchen"),

node("http://www.cs.mu.oz.au/˜philip",page,"Philip Dart"),

node("http://www.cs.mu.oz.au/˜rph",page,"Rex Harris"),

node("http://www.cs.mu.oz.au/˜zs",page,"Zoltan Somogyi")]

Such a list is generated by querying a page information database (or databases),

as discussed in the next section.

6.4.2 Tour Generation

Tours can be generated using two kinds of information:� static: this consists of predefined tour information, stored as lightweight
deductive databases.� dynamic: this kind of information is extracted from apage on-the-fly during
tour generation.

Tour generation using both kinds of information is carried out below.

6.4.2.1 Tour Generation Using Static Information

The tour list in Section 6.4.1 was generated by querying page information stored

in the following format:

staff(user name,sname(first name,last name),academic position)

For instance:

staff(ljj, sname("Lorraine", "Johnston"), lecturer).

staff(dong, sname("Guozhu", "Dong"), senior_lecturer).

6.4 Generating Guided Tours 147

Tour generation also utilises the dept server/1 fact to build absolute URLs:

dept_server("http://www.cs.mu.oz.au/").

Thestaff/3anddept server/1predicates are stored in aLogicWebprogram.

Another program holds the predicates which construct a tour.

The top-level query for generating the list of nodes in the tour is defined in

the body of generate tour/1:

generate_tour(NodeList) :-

staff_program_location(melbourne_cs, URL),

setof(Node, lecturer(URL, Node), NodeList).

staff program location/2 returns the URL of the LogicWeb program con-

taining staff information when given the name of the department. lecturer/2

is invoked in a set of/3 call in order to retrieve all the matching nodes.

lecturer/2 builds a single node/3 term:

lecturer(ProgramURL, node(HomePageURL, page, NameString)) :-

lw(get, ProgramURL)#>(staff(UserName, Name, lecturer)

; staff(UserName, Name, senior_lecturer)

),

lw(get, ProgramURL)#>dept_server(ServerURL),

make_homepageurl(ServerURL, UserName, HomePageURL),

make_namestring(Name, NameString).

The disjunction of staff/3 goals allows the final tour to contain both lecturers

and senior lecturers.

make homepageurl/3 constructs the URL of a homepage from the depart-

mental server’s URL (contained in dept server/1), and the username of the

staff member.

make namestring/2 creates a string from the elements of thesname/2 term

in a staff/3 fact.

6.4.2.2 Domain Knowledge as Static Information

Tours can be formulated by using additional domain knowledge which permits

tours to be createdwhich could not be formulated by looking at the text of a page

148 CHAPTER 6

alone. For example, assume that the Computer Science staff database also con-

tains information about teaching positions:

teaches(professor).

teaches(associate_professor).

teaches(senior_lecturer).

teaches(lecturer).

teaches(tutor).

These additional details allow the generation of a tour of teaching staff home-

pages by replacinglecturer/2withteaching staff/2 in the top-level query:

generate_tour(NodeList) :-

staff_program_location(melbourne_cs, URL),

setof(Node, teaching_staff(URL, Node), NodeList).

teaching staff/2uses teaches/1 as a filter so that only staff with teach-

ing positions are selected for the tour:

teaching_staff(ProgramURL, node(HomePageURL, page, NameString)) :-

lw(get, ProgramURL)#>

(staff(UserName, Name, Position), teaches(Position)),

lw(get, ProgramURL)#>dept_server(ServerURL),

make_homepageurl(ServerURL, UserName, HomePageURL),

make_namestring(Name, NameString).

6.4.2.3 Tour Generation Using Dynamic Information

Dynamic information is obtained from the meta-information of a page, or from

the page itself via parsing.

UsingMeta-information. The following exampleusesmeta-information to gen-

erate a tour of senior lecturers’ homepages which have been modified since 1st

November 1996.

The top-level query will now invoke updated senior/2 in its setof/3

call:

6.4 Generating Guided Tours 149

updated_senior(ProgramURL, node(HomePageURL, page, NameString)) :-

lw(get, ProgramURL)#>staff(UserName, Name, senior_lecturer),

lw(get, ProgramURL)#>dept_server(ServerURL),

make_homepageurl(ServerURL, UserName, HomePageURL),

modified_since(HomePageURL, ’1996;11;01;00:00’),

make_namestring(Name, NameString).

modified since/2 compares the last modified time of a page with the given

date.

modified_since(URL, Date) :-

lw(head, URL)#>about(last_modified, LastModifiedTime),

getime(LastModifiedTime, Date).

getime/2 compares two dates and is described in Appendix B.

Using the Page Contents. Empirical evidence suggests that the homepages of

academics contain the word “student” when they talk about their graduate stu-

dents. This observation is used as the basis for a tour of academic home pages

which discuss graduate students.

As before, the top-level tour generation query must be modified to call

a different predicate in its setof/3 call. For this tour, the predicate is

academic with student/2. In addition, the staff program must contain

academic position/1 facts which define academic positions (e.g., lecturer,

professor). academic with student/2 is:

academic_with_student(ProgramURL, node(HomePageURL, page,

NameString)) :-

lw(get, ProgramURL)#>(staff(UserName, Name, Position),

academic_position(Position)), % only academics

lw(get, ProgramURL)#>dept_server(ServerURL),

make_homepageurl(ServerURL, UserName, HomePageURL),

lw(get, HomePageURL)#>h_text(Source),

contains(Source, "student"), % page mentions "student"?

make_namestring(Name, NameString).

contains/2 is used here to checkwhether an academic homepage includes the

string “student”.

150 CHAPTER 6

Similarly, a tour of academics’ homepages with their images can be defined:

academic_with_imageapplets(ProgramURL, node(HomePageURL, page,

NameString)) :-

lw(get, ProgramURL)#>(staff(UserName, Name, Position),

academic_position(Position)), % only academics

lw(get, ProgramURL)#>dept_server(ServerURL),

make_homepageurl(ServerURL, UserName, HomePageURL),

lw(get, HomePageURL)#>image(_, ImageURL),

contains(ImageURL, UserName),

make_namestring(Name, NameString).

The above rule assumes that the URL (or filename) of an academic’s image

contains the academic’s username, and no other image URLs on the homepage

contain the username.

6.4.3 More Complex Tour Generation

Tours can be built by queries which combine multiple databases using LW-

composition operators in the way shown in Section 6.2.

Other ways of constructing tours are possible. Since the result of a tour-

generation query is a list of terms, the results of different queries can be easily

combined to form new tour lists. Moreover, a list node can also represent a sub-

tour, so allowing tours to be nested inside others. Tour creation can also be cus-

tomised using user inputs. Examples of thesemethods for constructing tours are

given below.

6.4.3.1 Tours by Appending Lists

Suppose that the Computer Science department at the University of Queensland

has a program containing information about staff homepages. This can be used

to construct a tour of lecturers’ homepages in that departmentwhich can be com-

bined with one for the department at the University of Melbourne. The staff

database at the University of Queensland contains the same information as the

6.4 Generating Guided Tours 151

University of Melbourne database, but does not conform to the schema given

in Section 6.4.2.1. This means that code to translate the staff information from

the two universities into node/3 terms will be different. Hence, the tour is con-

structed by combining the tours obtained from each programs separately.

The tour of the University of Melbourne lecturers is created using

lecturer/2 (as defined in Section 6.4.2.1). But for the tour of the Univer-

sity of Queensland lecturers, que lecturer/2 is used to translate their staff

information into node/3 terms.

The top-level tour query will retrieve the locations of both programs, cre-

ate two tours using lecturer/2 for the University of Melbourne lecturers and

que lecturer/2 for the University of Queensland lecturers, and append the

results together:

generate_tour(NodeList) :-

staff_program_location(melbourne_cs, MelURL),

staff_program_location(queensland_cs, QueURL),

setof(Node, lecturer(MelURL, Node), MelNodeList),

setof(Node, que_lecturer(QueURL, Node), QueNodeList),

append(MelNodeList, QueNodeList, NodeList).

The list representation allows tours to be combined, sorted, or filtered using

standard list manipulation predicates.

6.4.3.2 Tours Containing Tours

It is possible to build a guided tour, where some or all of the nodes are tours

themselves [100].

We consider a tour where the nodes are tours of professors from the Com-

puter Science departments at three universities: Melbourne, Queensland, and

Canberra. This tour is represented by the list:

152 CHAPTER 6

[node("http://www.cs.mu.oz.au/prof_tour.html",tour,

"Professors at the University of Melbourne"),

node("http://www.cs.uq.edu.au/prof_tour.html",tour,

"Professors at the University of Queensland"),

node("http://beth.canberra.edu.au/prof_tour.html",tour,

"Professors at the University of Canberra")]

TheURL in eachnode/3 term is the location of the program containing the query

which generates that particular tour’s nodes.

The subtour functionality extends the linear tour structure shown in Figure 6.3

to allow each node to be an index node, with links to its subtour nodes. In setting

up a tour, set up tour/3 in the utility program is invoked recursively on each

node of type tour. For example, with the information in the first node above,

set up tour/3 is invoked to generate the index for the subtour:

?- set_up_tour("http://www.cs.mu.oz.au/prof_tour.html",

"Professors at the University of Melbourne",

SubTourIndex).

6.4.3.3 Tours Constructed Using User Inputs

So far, the tours have been generated by pre-defined queries over databases.

Here, we look at an example where the query depends on inputs from the user.

The example is an application for planning a tour of sites in four Asian countries.

The application starts by querying the user for the number of days he/she

wishes to spend in each country, and for his/her interests (e.g., “nature”, “cul-

ture”, or others). Figure 6.7 shows the application’s user interface. Using the

user’s inputs and information from a tourist site database, the application con-

structs a guided tour of sites. Figure 6.8 shows a tour constructed with the inputs

of 3 days in Thailand, 4 in Malaysia, 3 in Indonesia, and 4 in Taiwan, and “na-

ture” and “culture” as interest areas. For each tourist site, the name, location,

category, and the suggested time to spend at the site are displayed.

The tourist site database contains details about a number of tourist sites in the

following format:

6.4 Generating Guided Tours 153

Figure 6.7 The user interface to the Asian tour planner.

154 CHAPTER 6

Figure 6.8Aguided tour constructedwith sites in Thailand,Malaysia, Indonesia,

and Taiwan, for 3, 4, 3, and 4 days respectively.

6.4 Generating Guided Tours 155

site(site id,name,country,state,category,days to spend)

An instance of the schema is:

site(bot, ’Borobudur Temple’, ’Indonesia’, ’Java’, culture, 1).

This fact represents a site in Java, Indonesia, which comes under the culture cat-

egory. A visitor is recommended to spend one day at the site.

On receiving the user’s inputs, the database is queried for sites to make up

a guided tour. For each country, a number of sites is chosen, where each chosen

site’s category matches the user’s interests and the days to spend values for the

sites sum up to what the user has specified for that country. The procedure for

choosing the sites is captured by the rule below, which takes a country, the user’s

interests, and the number of allocated days, and returns a list of tourist site IDs:

country_sites(_Country, _UserInterests, 0, SiteList, SiteList).

country_sites(Country, UserInterests, MaxDays, SiteList,

NewSiteList) :-

MaxDays > 0,

site(Id, _, Country, _, Category, DaysForSite),

member(Category, UserInterests),

not(member(Id, SiteList)), % check if site already chosen

MaxDaysLeft is MaxDays - DaysForSite,

country_sites(Country, UserInterests, MaxDaysLeft, [Id|SiteList],

NewSiteList).

The required sites are first obtained by invoking country sites/5 for each

country using a goal like:

?- country_sites(’Indonesia’, [nature, culture], 3, [], SiteList).

Then, node/3 terms similar to those used in the tours discussed earlier are gen-

erated representing the tour over all the countries, and the tour is rendered as

shown in Figure 6.8.

Each time a tour node (i.e., a tourist site) is visited, a page is retrieved from

a tourist information Web server using the site’s name, country, and state, and

information is extracted from the page anddisplayed togetherwith the tour links

like those in Figure 6.5.

156 CHAPTER 6

6.4.4 Implementation

In the utility program (see Figure 6.6), after a list of node/3 terms has been gen-

erated, each term of type page is converted into a node/7 fact of the form:

node(ID,URL,IndexNodeID,page,Description,PreviousNodeID,NextNodeID)

The fields in node/7 are: the node’s ID, the URL of the page, the ID of its in-

dex node, its type (either page or tour()), its description as contained in the

original node/3 term, and the IDs of the nodes to its left and right.

The node ID is necessary because the same page can be used in several tours

(e.g., in a tour of tours), which means that its URL cannot be used as a unique

node identifier.

For each node/3 term of type tour, the program which generates the sub-

tour is downloaded, and the subtour’s node/3 terms created. Then, a node/7

fact like that above but with the type tour(Index) is asserted. Index is a list

of strings which can be used as items in the index menu, as shown in Figure 6.4.

This list of strings are the descriptions of the subtour’s nodes as contained in the

subtour’s node/3 terms. The subtour’s node/3 terms are then translated into

node/7 facts in the same way.

Representing tours as lists makes them easier to modify and combine. How-

ever, converting them to facts makes the rules which compute tour links much

simpler. This simplification is a result of storing more information in each

node/7 fact than in the corresponding node/3 term. For example, retrieving

the destination node of the “next” link is simply a matter of retrieving the rele-

vant NextNodeID.

The user interacts with the tour via the browser. The index node becomes the

first page shown to the user (see Figure 6.4). User selection of tour links invokes

the do query/2 predicate in the main program which, in turn, invokes predi-

cates in the tour utility program. For example, when the user selects a tour link

(e.g. “next”), a query is passed via themain program to the utility program in the

6.4 Generating Guided Tours 157

Prolog engine. The next node is computed and the corresponding page is sent to

the browser to be displayed as shown in Figure 6.5.

A tour node’s page is prepared by first determining the node’s links, and then

constructing a HTML document consisting of the page contents and the link in-

formation. The document is displayed by invoking display page/2.

6.4.5 Other Work on Generating Guided Tours

Beynon-Davies et al [26] use semantic database management systems to imple-

ment their hypermedia systems. Their system enables guided tours to be cre-

ated byqueryingdatabases in a similarway as the LogicWeb-based guided tours.

Their databases contain typed binary relationships between entities, where each

entity consists of a triple containing object and type descriptions. Pre-defined

relationships include IS-A, A-KIND-OF, HAS-A, and PART-OF. Their query lan-

guage allows the retrieval of database entities and attributes, but does not al-

low the specification of rules. In contrast, LogicWeb-based guided tours utilise

Prolog-based databases allowing rules to be stored in addition to relations and

a rule language as the query language. Also, the guided tours are Web-based,

whereas their system is neither networked nor distributed.

In Nicol et al [157], a tour is represented by a list of URLs in a file. In Hauck

[100], each page in a tour is given an additionalURLnaming it in the tour. Both of

these projects use server-side mechanisms which fetch the tour pages, and aug-

ment themwith tour links before sending them to the client. In contrast, the Log-

icWeb approach is client-based: all the tour components (the databases, the tour

generation rules, and the tour navigation and display utilities) are downloaded

in separate programs, and executed on the client’s machine.

The server-side approaches assume that the nodes of a tour have been speci-

fied manually. The LogicWeb approach generates tours using static and/or dy-

namic information.

158 CHAPTER 6

6.4.6 Summary

This section haspresented a logic programming approach to constructing guided

tours in the World Wide Web. This approach has the following advantages:� Tour creation can be expressed in terms of logic programming queries, al-
lowing tours to be specified in a high-level fashion without the need for

manual processing.� Tour generation is more expressive due to the use of information stored in
lightweight deductive databases, and the ability to dynamically extract in-

formation from pages by parsing.� By representing tours as logic programming lists, they are easier to change
and manipulate. For instance, tours can be sorted, filtered, or combined

with other tours using standard list processing predicates.� Due to the use of LogicWeb programs, tour components are reusable, cus-
tomisable, and easily available.� All processing is client-based, thereby reducing server load.
This approach requires the user towrite tour generation rules. However, these

rules are reusable and enable the precise specification of a tour.

6.5 Server-side Databases

The LogicWeb system’s use of client-side processing for database manipulation

can be a disadvantage since a databasemust be downloaded to the system before

it is evaluated. This reduces the server-side load of using the database, but there

are still many reasons why the processing might be restricted to the server-side.

For instance, the databasemay be too large to be easilymoved over theWeb, or it

6.5 Server-side Databases 159

may contain confidential information that should not bemade universally avail-

able. Commercial reasons maymean that the database cannot be freely sharable.

Also, having a single, central database makes issues such as transaction control

and maintaining a consistent state easier. This subsection discusses LogicWeb’s

mechanism for accessing such server-side databases.

Figure 6.9 A server-side database and its interface.

database query
database

staff_member(Name, Address, Email, Renew)

answer

POST query

answer

.

.

.

form

server-sideclient-side

user

CGI
script

database

A typical server-side database and its interface is represented in Figure 6.9. A

user poses a query to the database via a form on a Web page available from the

database site. The form details are transmitted to a server-side CGI script which

is named within the form. In the following discussion, the script is assumed to

be located at

http://www.cs.mu.oz.au/cgi-bin/db-query

The formdetails are encodedusing theHTTPPOSTmethod in thewaydescribed

160 CHAPTER 6

in Section 2.1.2.3. These are read by the CGI script which converts them into a

query suitable for the database. The script also converts the database answer into

an appropriate Web format (usually aWeb page) which is sent back to the client.

In Figure 6.9, the database is assumed to contain Prolog facts of the form:

staff_member(Name, Address, Email, ContractRenewalDate).

For example:

staff_member(name("Guozhu Dong"), address("University of Melbourne"),

email("dong@cs.mu.oz.au"), renew(november, 2000)).

The forms interface contains four fields labelled with “Name”, “Address”,

“Email”, and “Renew”. The fields can be filled in or left blank (with the value

“none”). These field names and values are converted by the CGI script into suit-

able arguments in a goal, and applied to the database. After the database engine

has evaluated the query, the script converts the results into a Web page for the

user.

A LogicWeb program can interact with the server-side database using context

switching. For the scenario outlined above, a possible query would be:

lw(post([field("Name", "none"),

field("Address", "Univ. of Melbourne"),

field("Email", "none"),

field("Renew", "none")

]),

"http://www.cs.mu.oz.au/cgi-bin/db-query")#>

staff_member(Name, _, Email, renew(_, 2000)).

The lw/2 term can be viewed as a specification of the program containing the

query results against which the staff member/4 goal will be evaluated. In this

case, the retrieved program will contain all the staff members from the Univer-

sity ofMelbourne, and the goalwill extract the name and e-mail address of some-

one who should renew during 2 000 (through backtracking all the Melbourne

people in this situation can be collected).

6.6 Related Work 161

The server-side database may not be in the form of Prolog facts, but could be

any database system such as a relational database system which has been given

aWeb interface (and so, query-able via GET or POST requests). A LogicWeb pro-

gram can bewrittenwhich parses and converts the query results into Prolog facts

of a specific format.

6.6 Related Work

6.6.1 Database on Web Pages

Dobson et al [74, 75] utilise additional HTML tags to embed relational databases

(called lightweight databases) in Web pages. Essentially, an entity-relationship

diagram is mapped onto the hypertext structure of the Web. Relationships be-

tween entities on different pages are specified by hypertext links, with attributes

defining the relationships. Lightweight databases have been used to generate

HTML documents, for indexing, and for implementing databases which spread

over several servers.

Lightweight deductive databases are motivated by their use of relational

databases. However, lightweight deductive databases provide more powerful

modelling capabilities because of rules. LogicWeb operators are also present for

composing lightweight deductive databases.

Sandewall [175] proposes the World-Wide Data Base, where a database con-

sists of downloadable short text files, each file containing an object description.

An object consists of properties, represented in a specialised language, and can

reference other databasefiles (i.e., objects), orHTMLpages. Other object-oriented

concepts, such asmessage-passing, are not employed. Themain application dis-

cussed is HTML page generation, where objects store resources for the genera-

tion of pages. In particular, values of properties may be scripts (in LISP) which

specify how to generate HTML expressions.

162 CHAPTER 6

The databases in this chapter are deductive, whereas theirs are object-based.

However, their objects can be represented in our language. Also, they do not

provide a uniform query language for their objects database, while the LogicWeb

language is used for that purpose.

Their use of one file per object may incur heavy network transmission costs.

Lightweight deductive databases can contain multiple relations.

6.6.2 Standardised Knowledge-bases on the Web

Boley [30] proposes the use of Horn clauses to represent knowledge-bases on

the Web, and outlines issues in building a server-side search engine for query-

ing them in the style of AltaVista. LogicWeb provides the framework for build-

ing specific applications on the Web using logic programming, whereas Boley is

proposing a standardised repository of knowledge inHorn-logic. The LogicWeb

languagewould bewell-suited for building applications whichmanipulate such

knowledge and interact with Boley’s search engine, since the search engine’s re-

sults will be in a subset of the LogicWeb language.

Boley also suggested the use of Web-based Horn-logic knowledge-bases as

distributed corporate memory, i.e. an organisation’s knowledge-base residing on

an Intranet (the organisation’s network). The use of lightweight deductive data-

bases in an Intranet setting is an interesting area for future work. The LogicWeb

language can be used both to represent the knowledge-bases and to build the

applications which utilise them.

6.6.3 Marked-up Text on the Web

There has been much recent work on adding machine-processable data to the

Web in the form of marked-up text.

The recent HTML 4.0 standard [171] contains the META tag for meta-data

based around name-value pairs. The Extensible Markup Language (XML) [110]

6.6 Related Work 163

is a mark-up language extending HTML by providing the ability to define new

tags and new attributes for tags. The definitions are linked from the document

itself. The advantage of XML is to allow tags to be defined which are tailored

to an application. For example, more structure can be imposed on data which

needs to be processed automatically.

These mark-up languages prescribe tags or allow the definition of new tags

but do not specifically prescribe the information to be included using such tags.

Mark-up tags have been used to include specific attributes to improve page in-

dexing such as the Dublin Core meta-data set [208], ontology descriptions in the

form of IS-A class hierarchies and instance-instance relationships (e.g., a subsec-

tion can be related to another page by a named relationship) [134], and infor-

mation for generating code in languages such as C/C++, Java, and Visual Ba-

sic [207]. The World Wide Web Consortium’s Resource Description Language

(RDL) [189] is being developed as a data model for encoding meta-data. The

preliminary RDF specification describes a datamodel consisting of nodes (repre-

sentingWeb resources such as pages) and properties of nodes stated as attribute-

value pairs. Tags are used to include information conforming to this datamodel.

RDF uses XML encoding as its syntax. RDL is intended to be used for a variety of

applications such as encoding site-maps, search engine data collection (to sup-

port page indexing), and distributed authoring.

This chapter proposes the inclusion of machine-processable data in the form

of LogicWeb rules on Web pages. LogicWeb rules have a simple syntax which

is no more complex than tagged information, and is no less expressive than the

above tag-based systems. For example, Dublin Core meta-data, ontology de-

scriptions, and RDL’s data model can be encoded in rules, and manipulated di-

rectly without parsing tags. For simple forms of data (e.g., attributes and val-

ues), tags would suffice. But as mentioned in the introduction, Prolog rules have

proven their utility for modelling and reasoning over complex data (e.g., in ex-

pert systems). In addition, data encoded as LogicWeb rules on different pages

164 CHAPTER 6

can be combined using techniques with a solid semantic basis.

6.6.4 Comparison with Deductive Database Systems

Lightweight deductive databases uses Prolog with LogicWeb extensions. How-

ever, existing deductive database systems [116, 98] differ from Prolog systems in

several ways, including:� Query optimisation. Query processing often finds all answers to the query,
i.e. the “set at a time” paradigm is more efficient than the “tuple at a time”

paradigm of Prolog. To facilitate this, optimised bottom-up evaluation is

often used, rather than the top-down evaluation of Prolog systems.� Restrictions on rules. The rules in deductive database systems are range-
restricted, i.e. all variables that appear in the head of the clause must ap-

pear in the body. This implies that all facts must be ground. This removes

the need for full unification, thereby increasing efficiency.

Another common restriction is that all terms in the program are variables

or constants. This ensures that logical entailment is decidable. A logic pro-

gramming language with this restriction is Datalog [116].

A major difference between the LogicWeb system and existing deductive

database systems is that support for remote updating of lightweight deductive

databases is lacking. If updates were possible, transaction processing, and con-

currency control would also have to be available. Updates have not been con-

sidered because the main focus of lightweight deductive databases has been on

using the Web to disseminate structured information.

6.6.5 Knowledge-based Access to Information

Knowledge-bases have been used to facilitate (e.g., to speed-up) access to infor-

mation.

6.6 Related Work 165

The Information Manifold [113, 112] is a system for building a knowledge-

-base representing the user’s interests. This uses a combination of Horn rules

and the CLASSIC knowledge representation language to describe information

sources, and taxonomy relationships among them. The knowledge-base is also

used to process the results of searches submitted to multiple Web index servers.

LogicWeb supports knowledge-based queryprocessing. Users can build their

own knowledge-base and query processing rules, perhaps on top of those pro-

vided by information servers.

Web pages have been generated from knowledge-bases by using user pro-

files [102], and user queries [82]. A similar functionality can be achieved when

the results of lightweight deductive database queries are Web documents.

Barcaroli et al [19] represents hypertext at aWeb site using a knowledge-base.

Their system answers user queries by returning a sequence of links leading to

the page containing the answer. With lightweight deductive databases, the in-

formation provider can provide a similar capability by mapping user queries to

appropriate URLs.

These approaches typicallymake use of knowledge representation languages

based on description logics in order to represent concept models. The LogicWeb

language extendsHorn clauses sinceHorn-logic has been shown to be a versatile

and expressive data modelling language for both AI programming and deduc-

tive databases [185, 116].

Context logic, an extension of first order logic where sentences are true with

respect to a given context, has been used to integrate databases [84]. Axioms are

written which lift sentences from several contexts into a common one. This is

similar to the idea of mediators discussed in Section 6.2.

166 CHAPTER 6

6.7 Summary

The Web should be enhanced with richer and more machine-processable infor-

mation content, as argued in [24, 23]. LogicWeb rules provide a sufficiently struc-

tured, readable, expressive, and high-level representation formalism for Web

data modelling and querying.

As illustrated using an example on citation information, lightweight deduc-

tive databases can be queried based on attributes and can be separately main-

tained. At query evaluation, relevant databases are located using heuristics-

guided search and combined using well-established techniques from the areas

of deductive databases andLW-composition operators. These databases take ad-

vantage of theWeb as awidely used and cost-effective transport mechanism and

exploit client-side processing.

Familiar techniques from compositional logic programming canbe employed

not only to combine databases but also to structure LogicWeb applications (of

which lightweight deductive databases may be part), such as the guided tour

application depicted in Figure 6.6. As mentioned in Chapters 2 and 3, program

structuring ideas such as object-oriented and contextual logic programming can

be modelled using the LogicWeb operators, allowing LogicWeb applications to

be built based on these ideas.

Chapter 7

Extending the Semantics of Web

Links

The Web’s link mechanism is uni-directional, with fixed source and destination

pages. Normally, selecting a link on a Web browser simply retrieves a page and

displays it (as mentioned in Chapter 2). This chapter employs LogicWeb to ex-

tend the expressiveness of links, whose semantics are captured using rules.

A LogicWeb-based conceptualisation of the Web as a two-layered hypertext

model is presented: Web pages are at the first level, but the links between them

pass through a link abstraction layer. The abstraction layer can takemany forms,

such as a semantic network, concept hierarchy, or simply procedures to compute

destination pages. The computation associated with a link is the link’s behaviour.

Logic programming is explored for coding the link abstraction layer, exploit-

ing its ability to represent declarative structures in a concise and readable man-

ner, its nondeterminism, and its dynamic database update mechanism.

This chapter is organised as follows. The two-level Web model is described

in Section 7.1. Section 7.2 illustrates links which utilise structured information

such as semantic networks anddatabases, Section 7.3 illustrates linkswhich cope

with the dynamic and unpredictable nature of the Web, and Section 7.4 illus-

167

168 CHAPTER 7

Figure 7.1 The two-level Web model. A link abstraction layer separates the

source and destination of links.

Abstraction Layer

Source
Anchor Destination

Web Pages

trates links whose behaviour is dependent on state, such as the history of pre-

vious link selections. In Section 7.5, modular approaches to building complex

link behaviours are described, where link behaviours are encoded in separate

LogicWeb programs and combined as required. Section 7.6 describes how the

LogicWeb system is extended to allow the user to specify link behaviours which

are applicable to all pages. Section 7.7 discusses related work.

7.1 The Two-level Web Model

Figure 7.1 depicts the two-level Web model: the first level contains Web infor-

mation (e.g., Web pages, multimedia data), and the second level determines the

meaning of links (the link abstraction layer).

A link in the existing Web is uni-directional, have a fixed configuration, and

go from one source page to one destination page. Links at the abstraction layer

can be bi-directional, dynamically configured, and go from many sources to

many destinations.

The link abstraction layer can implement many link formalisms. Two key as-

pects that logic programming is particularly suitable for are:� structured information representation: asmentioned inChapters 1 and 6, logic

7.2 Utilising Structured Information for Linking 169

programming can represent structured information in the form of deduc-

tive databases, or knowledge-based structures. Such structures can be used

to create abstract views of the Web or specify page meta-data, i.e. data

about pages, which will help improve a user’s understanding of the Web,

and facilitate linking based on semantic criteria.� nondeterminism: the nondeterminism in logic programs allows links to deal
with the dynamic and unpredictable nature of the Web.

In addition, Prolog’s non-logical assert/1 and retract/1 for dynamic

database manipulation can be used to implement history-based linking, where

state information is maintained.

7.2 Utilising Structured Information for Linking

This section shows how various kinds of structured information (e.g., semantic

networks, databases) can be implemented in the link abstraction layer. These

structures can be pre-defined by the programmer, or be created dynamically by

extracting details from Web pages.

7.2.1 IS-A Hierarchy Links

The IS-A hierarchy about AI, logic programming, and agents described here is

loosely based on the Canto hypertext data model [156]. Its overall structure is

shown in Figure 7.2.

isa/2 represents an IS-A relation between concepts in the form of

isa(Subconcept, Concept) links:

isa(logic_programming, ai).

isa(agents, ai).

isa(agent_theories, agents).

isa(agent_architectures, agents).

170 CHAPTER 7

Figure 7.2An IS-A hierarchy. The dashed arrow shows a link referring to a con-

cept in the hierarchy. The dotted arrows show mappings from concepts to Web

pages as specified by page about/2.

agent_
theories

agent_
architectures

agent_
languages

agent_tcljava

Concept Hierarchy

...

...

agent0mobile_
code

logic_programmingagents

ai

page_about/2

Web Pages
Corpus of

isa(agent_languages, agents).

isa(mobile_code, agent_languages).

isa(java, mobile_code).

isa(agent_tcl, mobile_code).

isa(agent0, agent_languages).

To build an IS-A hierarchy, the transitive closure on isa/2 is defined:

trans_isa(Concept1, Concept2) :-

isa(Concept1, Concept2).

trans_isa(Concept1, Concept2) :-

isa(Concept1, Mid),

trans_isa(Mid, Concept2).

URLs are associated with concepts using page about/2:

page_about(agents,

"http://machtig.kub.nl:2080/infolab/egon/Home/agents.html").

page_about(agents, "http://www.cs.mu.oz.au/˜swloke/res1.html").

page_about(java, "http://java.sun.com/").

7.2 Utilising Structured Information for Linking 171

page_about(agent_tcl,

"http://www.cs.dartmouth.edu/˜agent/agenttcl.html").

page_about(agent0,

"http://www.scs.ryerson.ca/˜dgrimsha/courses/cps720/agent0.html").

: % more page_about/2 facts

trans about/2defines a transitive version ofpage about/2which associates

a concept with a URL if one of its sub-concepts is associated with that URL:

trans_about(Concept, URL) :-

page_about(Concept, URL).

trans_about(Concept, URL) :-

trans_isa(SubConcept, Concept),

page_about(SubConcept, URL).

Note that the pages come from different servers. The IS-A structure defines an

abstract viewover these pages classifying themby topic andvirtually integrating

information from different servers.

The IS-A structure is stored in the page:

http://www.cs.mu.oz.au/˜swloke/link_kb.html

Note that the IS-A structure (if large and complex)maybe decomposed intomod-

ules (using partitioning techniques described in [83]), where eachmodule is a rel-

atively small hierarchy stored in its own page and each such module is a node

in a hierarchy of modules.

An IS-A query will be phrased as a syntactic extension of the above URL:

http://www.cs.mu.oz.au/˜swloke/link_kb.html-isa-<concept-name>

A URL of this type will be understood to mean: retrieve a page associated with

that concept-name in the IS-A hierarchy. For example, a page about agents can

be obtained by dereferencing the anchor:

on software agents

172 CHAPTER 7

This behaviour is implemented by redefining the meaning of link action/1,

which is invokedwhen a link is activated. link action/1must extract the con-

cept from the string passed to it, search the IS-Ahierarchy for a suitableURL, and

then display that page:

link_action(HREFString) :-

link_parts(HREFString, ISA-URL, Concept),

lw(get, ISA-URL)#>page_about(Concept, ConceptURL),

my_id(_, MyURL),

ConceptURL n= MyURL, % ensure that a different page is fetched

show_page(ConceptURL).

link_parts(HREFString, ISA-URL, Concept) :-

append(ISA-URL, [0’-,0’i,0’s,0’a,0’-|ConceptStr], HREFString),

atom_chars(Concept, ConceptStr). % convert string to atom

show_page(URL) :-

lw(get, URL)#>h_text(Src),

display_page(URL, [data(Src)]).

link action/1 uses link parts/3 to split the URL string into the URL for

the IS-A hierarchy page and the concept. A suitable URL related to the concept

is obtained by calling page about/2, and the corresponding page is displayed

with show page/1 (but only if it is different from the current page).

By changing the meaning of link action/1, the same link can have quite

different semantics. For instance, all pages related to the given concept can be

returned. link action/1 uses setof/3 applied to trans about/2 to obtain

all suitable URLs. If only a single URL is found then show page/1 is called, oth-

erwise the list of URLs is assembled into a HTML page by report urls/3 and

printed.

link_action(HREFString) :-

link_parts(HREFString, ISA-URL, Concept),

setof(DestURL, lw(get, ISA-URL)#>

trans_about(Concept, DestURL), DestURLs),

7.2 Utilising Structured Information for Linking 173

([DestURL1] = DestURLs ->

show_page(DestURL1)

;

report_urls(DestURLs, Concept, Links),

display_page("Multi-destination link", [data(Links)])

).

Figure 7.3 shows the page constructed when the link to “agents” is followed.

Figure 7.3 The page constructed when the link to “agents” is selected.

174 CHAPTER 7

7.2.2 Page Name Links

We now consider an alternative link abstraction, which maps names to URLs.

This technique is similar toUniformResourceNames (URNs) introduced inChap-

ter 2.

Currently, when a Web page is moved, the links to it from other pages will

cease to work. One solution is to define links in terms of page names rather than

addresses, and use a central database (or databases) to map these names to their

actual URLs. When an author moves a page he must update its URL in the rel-

evant database, but the page name remains the same. This means that users of

a page (who use the page name as a link reference) are unaffected by the move-

ment of the page.

We imagine a database of page names and URLs of the form:

page_details(Name, URL)

e.g.

page_details("Seng’s_Page", "http://www.cs.mu.oz.au/˜swloke").

page_details("Andrew’s_Page","http://fivedots.coe.psu.ac.th/˜ad").

This database will be stored on a Web page at:

http://www.db.com/details.html

The URL syntax is extended to include a page name reference:

http://www.db.com/details.html-nm-<page-name>

e.g.

http://www.db.com/details.html-nm-Seng’s_Page

When such a link is selected on a page, its meaning must be defined with

link action/1:

link_action(HREFString) :-

append(DbURL, [0’-,0’n,0’m,0’-|PgName], HREFString),

lw(get, DbURL)#>page_details(PgName, PgURL),

show_page(PgURL).

7.2 Utilising Structured Information for Linking 175

The same technique can be used to simplify page referencing on a server host.

We assume that each server host has adatabase calledmap.htmlofpage map/2

facts. The database maps page names to actual pages on the server host. For ex-

ample:

page_map("LogicWeb", "http://www.cs.mu.oz.au/˜swloke/logicweb.html").

Users can employ a particular server’s map.html database by writing URLs of

the form:

http://<server-address>/map.html-nm-<page-name>

e.g.

http://www.cs.mu.oz.au/map.html-nm-LogicWeb

This will return Seng’s logicweb.html page.

An advantage of a server host offering page names as opposed to globally

unique page names is not only that the name space required is smaller, since the

page names need only be unique within the server host, but also the increased

maintainability: registration of pagenames is handledon a per server basis rather

than by a global authority. Offering page names does not rule out pages from be-

ing explicitly referred to via their URLs, but the incentive for linking with page

names is robustness.

7.2.3 Linking Based on Logical Relationships Between Pages

Relationships between pages are readily defined using rules. This subsection

considers structural and temporal relationships, and shows how these relation-

ships can be used to define useful Web links.

7.2.3.1 Structural Relationships

Aswe have seen in the previous chapter, a guided tour represents a sequence re-

lationship between the pages in the tour. The tour links inserted into the tour

176 CHAPTER 7

nodes (pages) allow navigation based on this relationship (e.g., to the next or

previous node in the sequence). Other structural relationships between pages

can be similarly defined, and used for providing meaningful paths through the

page corpus. The paths guide the reader as he/she navigates through the pages

providing a fast and efficient way to find related pages, so improving access to

information.

Empirical evidence for the value of meaningful paths through pages is exhib-

ited by Webrings1, which offer a way of navigating the Web by following paths
in the form of rings. Each page in aWebring contains links to two other pages in

the Webring (similar to the back and forward links in a guided tour). The URLs

used in the links are manually inserted. There are currently 15 000 Webrings,

each on a different topic and containing dozens to hundreds of pages. LogicWeb

can be used to create andmanagemore complex structural relationships between

pages.

The organisation of a large collection of pages can be represented as a logic

program, enabling the organiser of these pages to get a feel for the overall struc-

ture of the collection. For example, the following rules organise a collection of

URLs into a hierarchy:

parent("URL1", ["URL2", "URL3", "URL4"]).

parent("URL2", ["URL5", "URL6"]).

parent("URL3", []). % a leaf node

: % more parent/2 facts

sibling(URL, SiblingURL) :-

parent(_, ChildURLs),

member(URL, ChildURLs),

member(SiblingURL, ChildURLs),

SiblingURL n= URL.

child(ChildURL, URL) :-

parent(URL, ChildURLs),

member(ChildURL, ChildURLs).1http://www.webring.org/

7.2 Utilising Structured Information for Linking 177

root(URL) :-

not has_parent(URL).

has_parent(URL) :-

child(URL, _).

parent/2 defines a parent to children relation among a set of URLs.

sibling/2 states that the sibling of a URL is a URL which has the same par-

ent. child/2defines the inverse of the parent relation. The root URL is the URL

which has no parent. Useful navigational links whose destinations are inferred

dynamically from these relationships can be added to pages.

Suppose the above rules are stored in the page:

http://www.cs.mu.oz.au/˜swloke/hierarchy.html

A page can link to its parent by specifying an anchor with a HREF string of the

form:

http://www.cs.mu.oz.au/˜swloke/hierarchy.html-fam-parent

A link of this type will query the logic program representing the hierarchy

of pages for the parent URL. This behaviour is implemented by defining

link action/1 in the page as follows:

link_action(HREFString) :-

append(HURL, "-fam-parent", HREFString),

my_id(_, MyURL),

(lw(get, HURL)#>child(MyURL, ParentURL) ->

show_page(ParentURL)

;

true

).

If there is no parent, then child/2will fail. Otherwise, the parent page will

be displayed.

178 CHAPTER 7

Links to the page’s child, sibling, or the root are made in a similar way (e.g.,

by replacing parent with child in the anchor URL and the link action/1

rule).

To enable a page to link to its parent, siblings, and children, three anchors

are added to the page, together with the corresponding link action/1 rules.

These links form paths through the pages whose structure is defined by the URL

hierarchy.

Typically, Web sites are dynamic in that new pages are often created and re-

moved. An advantage of dynamically inferring the link destination is that the

pages containing the child, parent and sibling links need not be changed when

the hierarchy is updated. For instance, if a new parent/2 fact is added, since

the child, sibling, and root relationships, and the link destinations are computed,

they need not be changed. It is also easy to change the structure of the relation-

ships. For example, the hierarchy could be changed to a binary tree without af-

fecting the pages.

To maintain the hierarchy, it can be queried for particular properties. For in-

stance, to ensure that there is only one root, the program can be queried with:

?- setof(URL, root(URL), [URL]).

Hypertext links can be classified into types, each type representing a particu-

lar kind of relationship. HTML 4.0 [171] defines the REV and REL attribute in

HTML anchors whose value is a keyword specifying a link type. HTML link

types have yet to be standardised, but a range of keywords for describing HTML

link types some of which are similar to the relationships we have seen is given in

[137]. Examples of these keywords include “child”, “parent”, and “sibling” de-

scribing hierarchical relationships, “begin”, “next” , and “previous” describing

sequence relationships, and “citation”, “definition”, “footnote”, and “author”

describing related documents.

There has been much work in the hypertext community on link typing. For

example, in [28], a set of domain-independent relationships between hypertext

7.2 Utilising Structured Information for Linking 179

nodes is proposed, and in [73], a taxonomy of link types according to their func-

tion, structure, and preferred means of implementation is given.

Link types may depend on the subject matter of the Web pages, instead of

being domain-independent. For instance, in the Open Meeting system [103] for

supportingWeb-basedon-line discussions, a set of link types is proposed for struc-

turing its pages such as “agree”which describes a link to a document supporting

an action, and “answer” which describes a link to a document answering a ques-

tion.

This thesis does not prescribe a set of link types, but argues that the flexibility

of the LogicWeb linking mechanism permits different kinds of link types to be

implemented on the Web.

7.2.3.2 Temporal Relationships

To illustrate temporal relationships between pages, page versioning is consid-

ered. Version management is an important concern for the Web due to the dy-

namic nature of its content. When a page is updated, its previous versions may

just be as valuable as the latest version.

Since each page is identified by its URL, different versions of a page (which

are themselves pages) would have their own URLs. A mechanism is needed to

allow a document to be referred to independently of its versions. For instance,

it should be possible to refer (or link) to someone’s homepage without requiring

knowledge about howmany versions there are andwhat the latest version is, but

it should also be possible to link to a specific version of the homepage. A means

to achieve this is to link to a database of page versions.

As an example, consider a page containing the following facts storing the

URLs of four different versions of a homepage:

version(1, "http://www.cs.mu.oz.au/˜swloke/a.html").

version(2, "http://www.cs.mu.oz.au/˜swloke/b.html").

version(3, "http://www.cs.mu.oz.au/˜swloke/c.html").

version(4, "http://www.cs.mu.oz.au/˜swloke/d.html"). % latest

180 CHAPTER 7

Then, the URL of this page (say, http://www.cs.mu.oz.au/˜swloke) be-

comes the version-independent identity of the homepage.

A page can link to the second version of the homepage by using the URL:

http://www.cs.mu.oz.au/˜swloke-v-2

and by defining link action/1 as follows:

link_action(HREFString) :-

append(VersionDBURL, [0’-,0’v,0’-|Version], HREFString),

name(VersionNumber, Version), % convert string to atom

lw(get, VersionDBURL)#>version(VersionNumber, URL),

show_page(URL).

Rules capturing relationships between page versions can be added to the ver-

sion database:

latest(LURL) :-

setof(VersionNumber-URL, version(VersionNumber, URL), VURLs),

keysort(VURLs, SortedVURLs),

last(LURL, SortedVURLs).

earliest(EURL) :-

setof(VersionNumber-URL, version(VersionNumber, URL), VURLs),

keysort(VURLs, [EURL|_]).

precedes(URL1, URL2) :-

version(VersionNumber1, URL1),

version(VersionNumber2, URL2),

VersionNumber1 < VersionNumber2.

supercedes(URL1, URL2) :-

version(VersionNumber1, URL1),

version(VersionNumber2, URL2),

VersionNumber1 > VersionNumber2.

latest/1 retrieves the latest version, and earliest/1 the earliest version.

precedes/2 and supercedes/2 compare the version number of two URLs.

With versioning, links to pages can be given a new interpretation: an anchor’s

HREF string which does not specify a version number, but points to a version

7.2 Utilising Structured Information for Linking 181

database, refers to the latest version of a page. For instance, the following anchor

implicitly refers to the latest version of Seng’s homepage:

Seng’s homepage

This is implemented by defining link action/1 as follows:

link_action(URL) :-

lw(get, URL)#>latest(LURL).

show_page(LURL).

Similarly, the earliest/1, supercedes/2, and precedes/2 relation-

ships can be used to navigate over page versions by suitably defining the for-

mat of anchor’s HREF strings (e.g., suffixing the version database’s URL by

“-v-earliest”) and the corresponding link action/1 rules.

Spatial and temporal relationships can be combined. For instance, the follow-

ing rule states that a relationship R (e.g., child) holds between two pages URL1

and URL2 if the same relationship holds between their earlier versions.

holds(R, URL1, URL2) :-

precedes(VURL1, URL1),

precedes(VURL2, URL2),

Rel =.. [R, VURL1, VURL2],

Rel.

This rule enables structural relationships to hold for newly added versions of

pages.

7.2.4 Links Based on Page Information

The preceding examples have used information external toWebpages (i.e., an IS-

A hierarchy, a page name database, relationships between URLs). The meaning

of a link can also be determined from the source and/or destination pages, by

executing their LogicWeb code, by parsing their text, or by looking at their meta-

information.

For instance, the following link filtering rule ensures that only up-to-date, in-

teresting, and non-bookmarked pages are displayed:

182 CHAPTER 7

link_action(URL) :-

up_to_date(URL),

interesting(URL),

not(bookmarked(URL)),

show_page(URL).

up_to_date(URL) :-

lw(head, URL)#>about(last_modified, LastModifiedTime),

getime(LastModifiedTime, ’1998;04;31;01:00’).

interesting(URL) :-

lw(get, URL)#>h_text(Src),

lw(get, "http://www.cs.mu.oz.au/˜swloke")#>interested_in(KeyPhrase),

contains(Src, KeyPhrase).

bookmarked(URL) :-

lw(get, "http://www.cs.mu.oz.au/˜swloke/book_marks.html")#>

link(_, URL).

up to date/1 examines the page’s meta-information. getime/2

checks if the last modified time is equal to or after 1 am on the 31st of

April 1998. interesting/1 assumes that Seng’s homepage contains an

interested in/1 predicate (as defined in Section 3.2), and checks if any of its

key phrases are in the text of the page. bookmarked/1 assumes the existence of

a book marks.html page which contains links to Seng’s bookmarked pages.

These are tested against the page being considered.

7.2.5 Dynamically Constructing Pages

A destination page can be dynamically constructed by composing pre-stored el-

ements together. For instance, activating a link to a page may retrieve the page

augmented with extra details, such as footnotes, background links, or advertis-

ing material.

As an example, we assume that the page

http://annotations.url.db/

7.3 Handling Nondeterminism in Web Links 183

contains facts relating the URLs of pages to notes that must be added to the bot-

tom of those pages. The facts are in the form:

annotation_page(URL, NotesURL).

NotesURL is the URL of the page containing the notes about the URL page. For

a given page, the following rule retrieves its notes and displays the page text fol-

lowed by those notes:

link_action(URL) :-

lw(get, "http://annotations.url.db/")#>

annotation_page(URL, NotesURL),

lw(get, URL)#>h_text(Src),

lw(get, NotesURL)#>h_text(Notes),

display_page("Annotated Page", [data(Src), data(Notes)]).

Customising Web pages during link traversal is similar to an application of

perspectives in [168, 169]. Perspectives are graph structures that can be combined

andoperated on in variousways. Applied to theWeb, perspectives can represent

combinations of pages or page fragments. As noted in [169], this idea is imple-

mented by extending a URL with a perspective expression:

http://<host>:<port>/<path>:<perspective expression>

A perspective expression specifies a combination of several perspectives. A link

with a URL of this form triggers a computation on the (perspective-enabled) ser-

ver host to construct a page using the perspective expression. In contrast, com-

putations with the LogicWeb system are client-based, but LogicWeb goals can

retrieve information from perspective-enabled servers by using URLs with per-

spective expressions.

7.3 Handling Nondeterminism in Web Links

Due to the dynamic, unpredictable nature of theWeb, link traversal is nondeter-

ministic. Depending on the current state of theWeb, selecting a link can result in

184 CHAPTER 7

a number of possible outcomes including a page being displayed, a redirection

message, or an error message (e.g., the server is busy, or the page no longer ex-

ists). Nondeterminism in link traversal is easily modelled with logic programs.

This section presents examples of LogicWeb rules for handling redirection pages

and download failures.

7.3.1 Redirection Pages

AWeb page that has been moved is often replaced by a redirection page, which

typically contains a message like “This site has moved. We are now at...(the new

URL)”. It is possible to automate the task of following a redirection link so that

the user need never see the redirection page.

link action/1 examines the target page. If it is a redirection page, then

link action/1 is invoked (recursively) with the new URL. Otherwise, the

page is displayed:

link_action(URL) :-

(redirection_page(URL) ->

lw(get, URL)#>link(_, NewURL),

link_action(NewURL)

;

show_page(URL)

).

redirection_page(URL) :-

lw(get, URL)#>title(Title),

(contains(Title, "has moved")

; contains(Title, "site moved")

; contains(Title, "redirection to new location")

; contains(Title, "redirect URL")

).

A redirection page is recognised by looking for specific phrases in the title. The

first link on a redirection page is assumed to contain the new URL.

Alternatively, instead of relying on the page’sHTML text, aredirect/1 fact

7.3 Handling Nondeterminism in Web Links 185

containing the new URL can be added to a page to indicate a redirection. As-

suming that the user wants to see the contents of redirection pages, the follow-

ing link action/1 rules specify how to follow a chain of redirections till the

actual page is reached, whereupon the actual page and the text of all the redirec-

tion pages are displayed.

link_action(URL) :-

lw(get, URL)#>redirect(RedirectURL), !,

((#) + lw(get, URL))#>link_action(RedirectURL).

link_action(URL) :-

setof(Src, h_text(Src), Srcs),

concat_string(Srcs, Str),

display_page(URL, [data(Str)]).

The first rule adds the new program to the current context when a redirect/1

fact is found on it, and recursively invokes link action/1 in the extended con-

text. If no such fact is found, the second rule is invoked which retrieves the data

from theh text/1 facts in the current context, anddisplays them. Theh text/1

facts are accumulated by the first rule as programs are added.

An assumption here is that link action/1 is defined only in the page con-

taining the above link action/1 predicate, and not in the other pages visited.

7.3.2 Broken Links

A broken link is a link whose destination page is no longer available (e.g., the

page has been moved or deleted).

Rules can be written to automatically perform tasks which the user might

manually do when a broken link is encountered. For instance, if a page referred

to by a URL is not retrieved, its parent directory’s URL could be tried. This pro-

cedure is repeated until a page is retrieved, or the server’s URL has been tried.

The following rule implements this behaviour:

186 CHAPTER 7

link_action(URL) :-

(lw(get, URL)#>h_text(HTMLSrc) ->

display_page(URL, [data(HTMLSrc)])

;

show_parent(URL)

).

show_parent(URL) :-

parent_directory(URL, ParentDirURL),

link_action(ParentDirURL).

parent directory/2 returns the URL of the parent directory but fails if its

first argument has no parent. For example, given

http://www.cs.mu.oz.au/˜swloke/

as the first argument, parent directory/2 returns

http://www.cs.mu.oz.au/.

Alternatively, a server could provide a service enabling clients to report bro-

ken links. Each page offered by such a server could contain a link action/1

rule which informs the server whenever a page is not retrieved. When a report

of a broken link is posted to the server, the server may e-mail the page’s owner to

fix the link, and/or return information to the client to determine the subsequent

course of action, which may be to show the broken link’s parent, show a mirror

site given by the server, or retry the HTTP request after a period specified by the

server.

link_action(URL) :-

(lw(get, URL)#>h_text(HTMLSrc) ->

display_page(URL, [data(HTMLSrc)])

;

my_id(_, MyURL),

lw(post([field("On Page", MyURL), field("Broken Link", URL)]),

"http://www.cs.mu.oz.au/cgi-bin/report_failure")#>

client_action(Information),

react(Information, URL)

).

7.4 History-based Linking 187

react(page_being_updated, URL) :-

show_parent(URL). % show its parent

react(try_mirror(MirrorURL), _) :-

link_action(MirrorURL). % try a mirror page

react(retry_later(N), URL) :-

sleep(N), % delay N seconds before retrying

link_action(URL). % retry the link action

In the link action/1 rule, a POST message to report a broken link is gener-

ated automatically. The POST message consists of the page containing the bro-

ken link, the broken URL, and the CGI script of the report handling program on

the server host. react/2 determines what to do based on the information re-

turned by the server host.

HTTP returns error messages to the client when a request fails, but the above

mechanism is programmable at the application-level, andhence, ismore general.

For example, an application-specific protocol can be implemented.

7.4 History-based Linking

State information can be kept in the abstraction layer for use in future link

traversals, andupdated using Prolog’s dynamic database update facility (i.e., via

assert/1 and retract/1). A LogicWeb program can use this facility to up-

date itself in response to link selections, allowing link behaviours to reuse results

of previously executed behaviours (similar to memoingwhere previously calcu-

lated answers are stored and later used). As an example, we consider how to

order the links on a page so that a link can be traversed only if some other links

have been followed. One use of such an ordering of links is to present course

notes with dependency relationships among them (e.g., one is a prerequisite of

another).

The predicate depends on/2 is used to describe the dependency between

the links, and a selected(HREFString) fact is asserted when the link identi-

188 CHAPTER 7

fied by HREFString is selected for the first time.

link_action(HREFString) :-

selected(HREFString), !, % selected previously

show_page(HREFString).

link_action(HREFString) :-

setof(HREFString1, depends_on(HREFString, HREFString1), Hs),

all_selected(Hs), !, % check dependencies

assert(selected(HREFString)),% record the link selection

show_page(HREFString).

link_action(_).

% check that all links have been selected

all_selected([]).

all_selected([H|Hs]) :-

selected(H),

all_selected(Hs).

depends_on("http://www.cs.notes/operating_system.html",

"http://www.cs.notes/data_structures_algorithms.html").

: % more depends_on/2 facts

The above link action/1 rules enforce the ordering on the links. If

the required links as specified by depends on/2 have not been followed,

then the third link action/1 rule is chosen so that the destination page

is not displayed. To represent indirect dependencies, a transitive closure on

depends on/2 can be defined (similar to trans isa/2 shown earlier). The

link action/1 can also bemodified to report URLswhich are depended upon

but not yet selected.

7.5 Using Multiple Link Behaviours

A range of useful link behaviours have been presented. These can serve as the

basis for constructing more complex link behaviours.

Within a page, multiple link behaviours can be utilised independently or coop-

eratively, or in both modes. In the independent mode, each kind of link is distin-

7.5 Using Multiple Link Behaviours 189

guished by a specific format for the anchor’s HREF string. The page would con-

tain a collection of link action/1 rules (e.g., one for each kind of link). The

rule for processing a link selection is chosen by pattern matching on the HREF

string format.

In the cooperative mode, the link behaviours interact more closely. There are

many different ways of combining simpler link behaviours into more complex

ones. For instance, a link behaviour which uses page names links and also per-

forms automatic redirection can be coded up from scratch. However, a more

modular approachwould allow simple link behaviours to be specified separately

and combined in a principled way. Two methods for combining link behaviours

which encourages modularity are illustrated below.

7.5.1 LogicWeb Operators

A link can utilise the link action/1 rules of other pages using LogicWeb op-

erators. For instance, the rule below defines links whose semantics are exactly

those of the links found in another page:

link_action(HREFString) :-

lw(get, "URL0")#>link_action(HREFString).

Thismechanism can be used to provide consistent link behaviours. All the pages

on ahost canutilise the same link behaviour (e.g., to report broken links as shown

in Section 7.3.2) by invoking the link action/1 rule in the same program us-

ing context switching.

It is also possible to build customisable link behaviours by leaving particular

predicates open (or undefined). For example, suppose lw(get, "URL0") con-

tains the link action/1 rule described in Section 7.2.4, but not the definitions

for the predicates in the rule’s body:

190 CHAPTER 7

link_action(URL) :-

up_to_date(URL),

interesting(URL),

not(bookmarked(URL)),

show_page(URL).

The following rule utilises the link action/1 predicate in lw(get,

"URL0") but retains predicates in the current context which have not been de-

fined in lw(get, "URL0"):

link_action(HREFString) :-

(lw(get, "URL0") + ((#) / lw(get, "URL0")))#>

link_action(HREFString).

If the current context defines the predicates up to date/1, interesting/1,

and bookmarked/1, then these predicates will be used in evaluating the Log-

icWeb goal. The result is that the link behaviour depends on the current context.

Constraints can be imposed on link behaviours using LW-intersection and

LW-restriction similar to how database views are constructed.

7.5.2 Link Transducers

The idea of link transducers captures a recurrent operation in link behaviourswhich

is to convert one kind of link to another. More specifically, each link transducer

takes a HREF string (e.g., a URL) of a specific format and converts it into another

string of the same or different format. For instance, the link behaviour from Sec-

tion 7.2.2 converts

http://www.db.com/details.html-nm-Seng’s_Page

to

http://www.cs.mu.oz.au/˜swloke

Also, the link behaviour from Section 7.2.3.2 converts

http://www.cs.mu.oz.au/˜swloke-v-2

7.5 Using Multiple Link Behaviours 191

to

http://www.cs.mu.oz.au/˜swloke/b.html

The link behaviours in Sections 7.2.3.1 and 7.3.2 perform a similar conversion.

Such link behaviours can be implemented in distinct LogicWeb programs with

a well-defined interface and utilised in a standard way. The interface could take

the form:

<conversion_operation>(<input HREF string>, <output string>)

Using this interface and assuming that a set of link behaviours are defined on

the server http://www.link.org/, the following link action/1 rule con-

verts a concept link (i.e., the URL of the knowledge-base appended with a con-

cept name) into a page name link (i.e., the URL of the page name database ap-

pendedwith the page name), the page name link into a version link (i.e., the URL

of the version database and a version number), the version link into a URL, and

finds and displays amirror site of the URL performing a redirection if necessary:

link_action(HREFString) :-

lw(get, "http://www.link.org/ca.html")#>

concept_to_actual(HREFString, PageNameLink),

lw(get, "http://www.link.org/pa.html")#>

pagename_to_actual(PageNameLink, VersionLink),

lw(get, "http://www.link.org/va.html")#>

version_to_actual(VersionLink, URL),

lw(get, "http://www.link.org/m.html")#>

mirror(URL, MirrorURL),

lw(get, "http://www.link.org/r.html")#>

redirect(MirrorURL, RedirectedURL),

show_page(RedirectedURL).

The following bindings illustrate a sequence of conversions:

HREFString = http://cat.cs.mu.oz.au/˜swloke/link_kb.html-isa-agents!
PageNameLink = http://cat.db.com/details.html-nm-MUAgentLab!
VersionLink = http://cat.cs.mu.oz.au/agentlab.html-v-3

192 CHAPTER 7!
URL = http://cat.cs.mu.oz.au/agentlab3.html!
MirrorURL = http://munta.cs.mu.oz.au/agentlab3.html!
RedirectedURL = http://munta.cs.mu.oz.au/agentlab3/agentlab3.html

The above definition of link action/1 performs a rigid sequence of con-

versions from the concept link to the redirected URL. A more flexible way is to

recursively pattern match on the form of the URL (e.g., -isa-, -nm-, and -v-)

until no conversion is required:

link_action(HREFString) :-

((contains(HREFString, "-isa-"),

lw(get, "http://www.link.org/ca.html")#>

concept_to_actual(HREFString, HREFString1))

; (contains(HREFString, "-nm-"),

lw(get, "http://www.link.org/pa.html")#>

pagename_to_actual(HREFString, HREFString1))

; (contains(HREFString, "-v-"),

lw(get, "http://www.link.org/va.html")#>

version_to_actual(HREFString, HREFString1))

), !,

link_action(HREFString1).

link_action(HREFString) :-

show_page(HREFString).

The above link action/1 rules permit various sequences of conversions (e.g.,

a page name link! another page name link! concept link! version link!
page name link! ordinary URL).
7.6 System Link Actions

So far, the above link behaviours are specified on downloaded pages. The Log-

icWeb system’s user may want to use particular link behaviours (e.g., automatic

redirection) for all links regardless of the page containing the links. An extension

7.6 System Link Actions 193

Figure 7.4 Components for handling a link selection.

system’s
link action

page’s
link action

(possibly)
uses usesProlog

Engine

current programsys_link.html program

of the LogicWeb system is given here to allow the user to build link behaviours

into the system. These behaviours are defined in a LogicWeb program with a

default identifier.

Figure 7.4 shows the components for handling a link selection. A predicate

sys link action/2 in the LogicWeb program sys link.html is defined by

the user and invokedwhenever a link is selected. The first clause of the predicate

handle link/1 in the Prolog engine described in Section 4.4 is modified to use

sys link.html:

handle_link(SelectedURL) :-

current_page(CurrentPageURL),

demo(empty, lw(get, "http://www.cs.mu.oz.au/lw_sys/sys_link.html")#>

sys_link_action(CurrentPageURL, SelectedURL)).

sys link action/2 can directly invoke link action/1 in the current

page:

sys_link_action(CurrentPageURL, SelectedURL) :-

lw(get, CurrentPageURL)#>link_action(SelectedURL).

Alternatively, sys link action/2 can perform a computation similar to the

link behaviours described earlier, possibly downloading other LogicWeb pro-

grams in the process. For example, page filtering, or the handling of broken

links, IS-A hierarchy links, and page name links can be built into the system in

sys link.html.

194 CHAPTER 7

sys link action/2neednot use thelink action/1 rule in the page con-

taining the link, i.e. the link behaviours prescribed by page authors can be ig-

nored. Prioritisation schemes can also be employed, where conflicts between the

two rule sets (the one on the page and the system’s) are resolved. For instance,

the following definition adds to the current context only the predicates on the

current page which have not been defined in the current context:

sys_link_action(CurrentPageURL, SelectedURL) :-

((#) + (lw(get, CurrentPageURL) / (#)))#>

link_action(SelectedURL).

7.7 Related Work

7.7.1 Hypertext Tools

Hypertext systems which utilise semantic networks to structure their informa-

tion and which allow links to invoke computations are surveyed in [139]. An

important difference between these systems and LogicWeb is that they deal with

a closed information base whereas the Web is open. With closed information, it

is possible to build semantic networks to represent the entire corpus.

In the HyperBase hypertext tool [123, 4], Prolog code can be invoked when

buttons are pressed. Applications include a system tohelp users fill in forms, and

a system for teaching neuropathology. LogicWeb is similar in that Prolog-like

code is also invoked, but this is in the context of the Web, and the manipulation

of pages as logic programs.

7.7.2 Web-based Tools

7.7.2.1 Structured Maps

The knowledge-based structures describe earlier are built above existingWeb in-

formation, in a similar way to Structured Maps [136]. Structured Maps repre-

7.7 Related Work 195

sent semantic information using an entity-relationship diagram (ERD) expressed

in SGML, and have links to the underlying information. A three-level model is

utilised: the top-most level is the entity-relationship schema, the middle level is

an entity-relationship instance, and the bottom level is the information base. The

reader browses theMaps, moving between levels to locate information. A query

language for Structured Maps has not yet been developed.

For the knowledge-based structures in this chapter, the query language is the

knowledge representation language, and the data modelling power of rules not

found with Structured Maps is present.

7.7.2.2 CGI

A common technique for extending the meaning of a Web link is to use CGI

scripts. The key difference with this work is that CGI scripts execute on the

server, whereas the LogicWeb system is client-based. This reduces the server

load, and localises computation. Also code can be combined together in one

place, and state information can be maintained easily.

7.7.2.3 JavaScript

JavaScript is designed to allow the elements of aWebpage (e.g., form input fields,

links, text attributes) to be manipulated via a programming language [155]. For

example, it is possible for the selection of a link to invoke a JavaScript function.

Two restrictions with JavaScript are that all downloadedpagesmust bedisplayed,

and only the forms and anchors of downloaded pages can be accessed within a

program.

The LogicWeb system permits pages to be processed in more general ways.

Also, its emphasis on the rule-based specification of link behaviour offers more

direct ways for representing andmanipulating knowledge-based structures. For

example, using an imperative language to implement the link behaviours will

involve manipulating an assortment of data structures and result in code with

196 CHAPTER 7

data which is not explicitly stored (e.g., as a set of facts), and so, less readable

and more difficult to update.

7.7.2.4 Link Management Systems

A number of link management systems have been proposed which aim to pre-

vent or fix broken links. For example, the ATLAS system [165] consists of a net-

work of servers (calledATLAS servers) each of which is tightly coupled to aWeb

server and contains databases about link information. Changes in links on Web

pages are communicated between ATLAS servers. The CLT/WW system [60]

periodically traverses the links on a site to repair broken links and notifies page

authors via e-mail of changes. LogicWeb offers robust linking through the ab-

straction layer (e.g., page names links) and enables algorithms to be triggered to

handle broken links whenever they are detected during browsing.

7.8 Discussion

A two-level Web model based on LogicWeb has been presented together with

examples of its use. The examples show that this model buys significant expres-

siveness for defining Web links, and demonstrate the following advantages of

logic programming for implementing link behaviours:� Structured data crucial to many of the link behaviours, such as conceptual
structures and databases, can be coded up easily and declaratively, and the

processing of the data can be programmed in the language the data is rep-

resented.� It is advantageous that such data is easy to revise being stored as distinct
units of facts and rules since the data (e.g., versions of pages) is typically

dynamic.

7.8 Discussion 197� Pattern matching via unification enables the right link action/1 rule to

be selected automatically.� Dynamic database manipulation allows history-based linking.
Finally, the use of LogicWeb programs provides a modular approach to reusing

and constructing link behaviours.

The examples also show that linking to meta-data about pages stored as Log-

icWeb programs (e.g., version information, page names, and classification of

pages by topics) addresses four areas of weaknesses in the original Web link

mechanism:

1. inability to link to generic resources: The idea of a generic resource was intro-

duced by Tim-Berners Lee in [22]:

“...a resource may be generic in that as a concept it is well spec-

ified but not so specifically specified that it can only be repre-

sented by a single bit stream.”

IS-A hierarchy links provide an example of linking to generic resources

(e.g., a concept) rather than to a specific file.

2. links are easily breakable: page name links provide more robust linking,

thereby reducing the broken links problem caused by the movement or

deletion of link destination pages. Moreover, as shown in Section 7.3.2, al-

gorithms can be coded to automatically handle broken links.

3. lack of clarity in the semantics of links to support navigation on the Web: mean-

ingful link relationships can be definedwhich allowmultiple organisations

of a given collection of pages in amaintainablemanner. These relationships

provide meaningful paths through the Web.

198 CHAPTER 7

4. no mechanism for integrating versioning with linking: versioning can be amal-

gamated with Web link semantics by linking to databases containing ver-

sion information.

This chapter has shown the benefits of generalising the source of Web links

from pages to LogicWeb programs. Linking from a LogicWeb program allows

state information to be kept as part of the program and utilised for linking (as

shown in Section 7.4), and link behaviours to be specified by the link’s source.

An important issue in linking is the response time. It is unreasonable to

expect the user to wait long for the computation results after selecting a link.

Link behaviours normally spend the majority of their wall-clock execution time

interacting with the Web. A link behaviour which performs a single page re-

trieval is not significantly slower than an ordinary link traversal (i.e., one where

link action/1 is not invoked). But a link behaviour which involves multiple

page retrievals could take more time. Time and other resource bounds can be

imposed on goal evaluations, and are discussed in the next chapter.

Chapter 8

Security in the LogicWeb System

Security is an important and non-trivial issue in usingmobile code (i.e., inmobile

computing). To quote Meseguer and Talcott [147]:

“Security is probably the biggest technical challenge that needs to be

solved to achieve widespread acceptance of mobile computing.”

This chapter is devoted to the security issues in the LogicWeb system.

8.1 What are theSecurity Issues in theLogicWebSys-

tem?

In the LogicWeb system, programs are downloaded from remote sites and exe-

cuted locally. A malicious or buggy program whose execution is not controlled

can cause problems on the local host. As noted in [43, 163], the local host could

encounter three types of attacks from such programs:

1. integrity attacks: attempts to delete or modify information in the local envi-

ronment in unauthorised ways.

2. privacy attacks: attempts to steal or leak information to unauthorised par-

ties.

199

200 CHAPTER 8

3. denial of service attacks: attempts to occupy resources to the extent which

interferes with the normal operation of the local host.

The above attacks are possible if the foreign program has unregulated access

to local system resources such as the file system, network services (e.g., socket

connections), CPU cycles, internal memory, input/output devices, program en-

vironment (e.g., environment variables), and operating system commands. An

example of an integrity attack is a LogicWeb program issuing the operating sys-

tem command rm (via the SWI-Prolog built-in predicate system/1) to delete

files from the local file system. An example of a privacy attack is a LogicWeb pro-

gram reading a file (using the SWI-Prolog built-in predicate open/3) and trans-

mitting the contents to another host using a POST HTTP request. An example

of a denial-of-service attack is a LogicWeb program going into an infinite loop

resulting in CPU cycles being wasted, heap space being depleted when a huge

number of LogicWeb programs is downloaded, or disk space being exhausted

when a file is incessantly being written into.

On the other extreme, a foreign program which is denied access to all re-

sources cannot do any damage. But such a program cannot also perform useful

work. The problem addressed in this chapter is how to provide safe (i.e., host-

protecting) execution of LogicWeb programs without overly restricting their ca-

pabilities.

The aim is to develop a model for the safe execution of LogicWeb programs

which is:� flexible: the security model should support varying degrees of trust and ac-
cess to resources. More trusted programs should be given more privileges

to achieve greater functionality. Themodelmust determinewho has access

to what resources in what way.� formally specified: a formally specified security model provides a precise
meaning of what safe means. An additional advantage is the ability to

8.2 Overview of Security Model 201

translate the specification into an implementation.� easy to implement and trust: the design of the security model should not be
unduly complex so that it is easy to implement and the implementation can

be trusted to work correctly.

The subsequent sections present a security model with the above three prop-

erties, and describe how the LogicWeb system presented in Chapter 4 has been

extended using this model.

8.2 Overview of Security Model

The key characteristics of the LogicWeb implementation relevant to the design

of a security model are:� The program source is transmitted and downloaded. Hence, the local host
has access to the source rather than a compiled form (e.g., binary executable

or byte-code). This means that each goal (e.g., built-in predicates) invoked

is visible at the interpreter level. The source, if unencrypted, is open to tam-

pering, and can be intercepted during transmission and modified.� Downloaded programs are executed by an interpreter based on the opera-
tional semantics in Chapter 3. This semantics is extended to specify a safe

execution model for LogicWeb programs.� ALogicWeb program can invoke goals in other programs. Themodelmust
dealwith such communication betweenprograms of different levels of trust.

A less trusted program should not be able to use the privileges of a more

trusted program.

A sandboxmodel is adopted where each program is executed in its own sand-

box limiting its access to resources and controlling theway the resources are used.

202 CHAPTER 8

A sandbox for a LogicWeb program consists of its interpreter and a security pol-

icy, or policy, for short. The policy controls the program’s access to system re-

sources. Security policies allow flexibility in handing out privileges to LogicWeb

programs of varying trust. Amore trusted LogicWeb program is assigned a pol-

icy which allows less restricted access to resources, and conversely, a less trusted

program is assigned amore restrictive policy. Security policies would be defined

by the LogicWeb system’s user.

A LogicWeb program accesses the local environment and system resources

via system calls, which are SWI-Prolog built-in predicates and the built-in pred-

icates for LogicWeb applications described in Appendix B. A policy specifying

allowed system calls and the way they are to be used is encoded as a set of pred-

icates in a LogicWeb program called a policy program. The policy program also

specifies the programs that a LogicWeb program can utilise via context switch-

ing. The LogicWeb program interpreter invokes system calls by calling predi-

cates in policy programs contained in one of the interpreter’s arguments (see Sec-

tion 8.7). Policy programs are stored in remote sites or locally (as long as they are

protected from tampering) and integrated into the system as needed while the

system is running.

The policy program assigned to a LogicWeb program is determined by how

much the program is trusted, which in turn, depends on the program’s origin

(e.g., its owner or creator). The program’s origin is authenticated using PGP

(Pretty Good Privacy) digital signatures [90].

Policy programs restrict the use of system calls, thereby preventing integrity

and privacy attacks. Denial-of-service attacks are addressed by controlling the

use of resources using policy programs (as shown in Section 8.8.1), and meta-

interpreters, which control the execution of the LogicWeb program interpreter

(augmented with policy programs). These meta-interpreters can be viewed as

an outer sandbox as depicted in Figure 8.1, and are discussed further in Sec-

tion 8.8.2.

8.2 Overview of Security Model 203

Figure 8.1 The security model with two concentric sandboxes. The inner sand-

box consists of the LogicWeb program interpreter and policy programs, and the

outer sandbox consists of meta-interpreters.

policyLogicWeb program interpreter +policyLogicWeb program interpreter +

LogicWeb programs

LogicWeb program interpreter and
policy programs

meta-interpreters

LogicWeb programs

204 CHAPTER 8

The following sections describe how digital signatures are used with Log-

icWeb programs (Section 8.3), how security policies are specified (Section 8.4),

the need to combine security policies during goal evaluation (Section 8.5), how

policies are enforced by incorporating policy programs into the operational se-

mantics of LogicWeb programs (Section 8.6), an implementation of the security

model (Section 8.7), andhowdenial-of-service attacks are addressed (Section 8.8).

8.3 Digital Signatures for LogicWeb Programs

With PGP, information is encrypted using a secret private key, and decrypted us-

ing a corresponding public keywhich is distributed publically. PGP keys are used

for authentication in the followingway. SupposeAencrypts amessage and sends

it to B. B wants to ensure that the encrypted message is really from A, and that

the message has not been tampered with. To do this, B attempts to decrypt the

message using A’s public key. If the decryption succeeds, it means that the mes-

sage was encrypted using A’s private key and that it has not beenmodified, and

since the key is only known to A, the message must have been from A. If the de-

cryption fails, B cannot conclude that A encrypted the message.

Similarly, PGP keys are used to sign documents. A PGP digital signature for

a message is formed by associating the message (e.g., a program) with a signa-

ture. The signature is formed by first mapping themessage to a string (actually, a

single large number) using theMD5 algorithm [90], which almost uniquely iden-

tifies themessage.1 Then, theMD5 string is encrypted using the sender’s private
key. The encrypted MD5 string is the digital signature. The receiver of a signed

message (the message and its signature) must first use the sender’s public key to

decrypt the signature producing a MD5 string, and then check that the message

corresponds to the MD5 string, i.e. the message has not been modified in any1In practice, no two different messages have been found to map to the same MD5 string
though this is theoretically possible [90].

8.3 Digital Signatures for LogicWeb Programs 205

Figure 8.2 The use of a digital signature when sending a program from A to B,

and the subsequent assignment of a policy program.

MD5
string

A

LogicWeb

interpreter

program

received program assigned a policy program

program

used by

used by

transmission

check
correspondence

B

decrypt with
A’s public key

digital
received

signature

received
program

received
programprogram program

MD5
string

MD5
algorithm

encrypt with
A’s private key

sent

signature
digital

sent

A’s policy

way.

On successful authentication of a signed LogicWeb program, the identity of

the signatory is obtained. Then, a policy program is assigned to the LogicWeb

program by consulting a database maintained in the system which maps signa-

tories to policy programs. Unsigned programs or programs where authentica-

tion failed should not be trusted and must be restricted in its access to system

resources. Figure 8.2 shows the use of a digital signature when sending a pro-

gram from A to B, and the subsequent assignment of a policy program.

Digital signatures prove who sent the program and that the programwas not

altered either by error or design, and provides non-repudiation, which means

the sender cannot easily disavow his signature on the program. It is faster to en-

crypt and decrypt an MD5 string than to directly encrypt and decrypt the entire

program. Also, since the program is not encrypted, the program source is avail-

able even if authentication fails, and so, can still be executed (though with lim-

ited privileges). However, if confidentiality of the program is required during

206 CHAPTER 8

transmission, the whole program must be encrypted.

PGP is used since it is difficult to break, equipped with public and private

keys generation, widely available, supported on a range of operating systemplat-

forms, and one of the most popular encryption techniques. PGP public keys can

be obtained either through personal communication between the LogicWeb sys-

tem user and the program owners, or via the Web: PGP public keys which are

increasingly being placed on homepages can be extracted and added to the sys-

tem. The distribution of PGP keys is discussed further as an avenue for future

work in Section 8.8.

8.4 Specifying Security Policies

Besides system calls, a LogicWeb program accesses system resources via context

switching. The resources used via context switching are socket connections for

downloading pages and local storage for programs. A policy program defines

predicates for controlling the use of both the system calls and context switching:� valid program(Type, URL): this predicate defines the programs

(identified by the values for Type and URL) which the program associated

with this policy can use via context switching. For example, a program

that can only use programs from the domain www.cs.mu.oz.au is

specified by the rule:

valid_program(get, URL) :-

contains(URL, "http://www.cs.mu.oz.au/").

This means that a LogicWeb goal occurring in the program such as the fol-

lowing is disallowed by the policy (and will fail):

?- lw(get, "http://www.cs.rmit.edu.au/")#>h_text(Src).

8.4 Specifying Security Policies 207� valid systemCall(P): this predicate defines the set of system calls the

program is allowed to invoke. P is a term representing a predicate (see ex-

ample below).� call system(P): this predicate is a wrapper for the allowed predicates

defined by valid systemCall/1. P is a term representing a predicate

(see example below). The purpose of this predicate is to enable indirect

hooks to system calls. This can be used to implement more restrictive

versions of system calls. For example, suppose that a system call is al-

lowed to be used only once. Then, call system/1 is invoked on that

system call, and upon its success, records that the call has been performed.

valid systemCall/1 disallows system calls (i.e., imposes static restric-

tions) whereas call system/1 imposes run-time restrictions.

valid program/2 and valid systemCall/1 prevent integrity and privacy

attacks by invalidating system calls required for such attacks. These predicates

are called from the LogicWeb interpreter as shown later (in Section 8.7).

The following is an example of a policy program which per-

mits the retrieval (using the GET method) of all URLs except

http://www.cs.mu.oz.au/˜swloke/private.html, and allows ac-

cess to all system calls except system/1 and open/3 which can only be used

to read a specific file:

.../* description of the policy program */

<LW_CODE>

valid_program(get, URL) :-

URL n== "http://www.cs.mu.oz.au/˜swloke/private.html".

valid_systemCall(open(’/home/pgrad/swloke/lws/dump.txt’, read, S)).

valid_systemCall(P) :-

P n= open(_, _, _),

P n= system(_).

208 CHAPTER 8

call_system(P) :-

built_ins:call_builtin(P).

</LW_CODE>

...

The LogicWeb system has been extended with the predicate call builtin/1

pre-defined in the SWI-Prolog module built ins. call builtin/1 is a pol-

icy independent wrapper to built-in predicates and performs type checks to de-

tect and report errors before finally invoking the built-in predicates. For exam-

ple, for open/3, FileName must be an atom, Mode is either read or write,

and Stream is a variable. The type checks increase the robustness of the sys-

tem by preventing instantiation faults when the arguments of the wrong type

are utilised.

call_builtin(open(FileName, Mode, Stream)) :-

atom(FileName),

(Mode = read

; Mode = write

),

var(Stream),

open(FileName, Mode, Stream).

State information can be kept in policy programs to implement history-based

policies. For example, the following policy program permits access to theWeb if

no files have been previously accessed.

file_accessed(no). % default is no files have been accessed

valid_program(_, _) :-

file_accessed(no).

call_system(P) :-

P n= open(_, _, _),

built_ins:call_builtin(P).

8.5 Combining Security Policies 209

call_system(open(F, R, S)) :-

built_ins:call_builtin(open(F, R, S)),

(file_accessed(no) ->

retract(file_accessed(no)), % record that a file has been accessed

assert(file_accessed(yes))

;

true

).

The fact file accessed(yes) asserted into the policy program records that

a file has been accessed. This policy prevents leaking of information contained

in local files to another host by disallowing HTTP requests after a file has been

read.

8.5 Combining Security Policies

An illegal system operation is performed by a programwhen it invokes a system

call or downloads a programwhich it does not have the privilege for. A program

can invoke goals in other programs either using context switching, or through

being part of a LW-composition. A program must not be allowed to perform an

illegal system operation by invoking goals in other more privileged LogicWeb

programs. Hence, the security model for LogicWeb programs must ensure the

following:

1. Context switching must not transfer privileges between programs. The system

has to ensure that an untrusted program does not illegally access resources

by invoking a goal in a trusted program. For example, if a program P is not

allowed to read a file (as determined by its policy) while another trusted

program Q can (as determined by Q’s policy), then P should not be able to

call a goal like Q#>read file(Contents) to read the file. This means

that for such a LogicWeb goal, it is too simplistic to validate read file/1

using only the policy of Q. The policy of P must also be used to validate

read file/1.

210 CHAPTER 8

Figure 8.3 The invocation (with P’s policy consulted) of the LogicWeb

goal Q#>read file(Contents) in P leads to the invocation of the goal

read file(Contents) in Q (where both the policy of P and that of Qmust be

consulted).
P

QQ#>read_file(Contents)

consult the policy of P and that of Q.

... read_file(Contents)...
For Q#>read_file(Contents),

For read_file(Contents),

consult the policy of P.

Similarly, a LogicWeb goal cannot be allowed to perform an illegal system

operation because it is invoked in a trusted program. For example, if P can

read a file which Q can not, then the goal Q#>read file(Contents) in-

voked in P to read the file should not be allowed to succeed. This means

that although P uses Q, P should not pass its privileges to Q, since the sys-

tem trusts P but not Q. Hence, both the policy of P and that of Q must be

consulted to determine if read file/1 should be allowed, as Figure 8.3

depicts.

Whenmore than two programs are involved, a similar situation arises. For

example, consider a goal Q#>(R#>G) invoked in the program P, where G

is a system call. If G is performed because it is allowed by the policies of

P and R, disregarding Q’s policy, and suppose that Q is not allowed G, then

Q is performing an illegal system operation through R. In the same way, R

performs an illegal system operation if only the policies of P and Q are con-

8.5 Combining Security Policies 211

Figure 8.4 The change in the context (represented by the rectangle) of goal eval-

uation starting from the goal Q#>(R#>G) in program P and ending in goal G in

program R, and the policies for validating each subgoal.

... ...Q#>(R#>G)

... R#>G ...

... G ...

P

policy of P, and that of Q and of R.

Q

RFor Q#>(R#>G),

For R#>G,

consult the policy of P.

For G, consult the

consult the policy of
P and that of Q.

sidered, and R is not allowed G. Disregarding the policy of any one of the

programs potentially allows an illegal system operation. This means that,

to determine if G should be allowed, the policy for every program must be

consulted.

Figure 8.4 depicts the change in the context of goal evaluation starting from

the goal Q#>(R#>G) in program P and ending in goal G in program R, and

the policies that should be used for validating each subgoal. As Figure

8.4 suggests, the policies of all the programs involve in the evaluation of a

goal starting with the first program (i.e., P) are required. Hence, the proof

rules must incorporate a notion of the current set of policy programs which

grows as goal evaluation progresses.

2. LW-compositionsmust not transfer privileges between programs. Aprogram can

invoke the clauses of another program in the LW-composition it is part of.

For example, consider a goal G evaluated in the LW-composition P + Q:

(P + Q)#>G. Suppose that the evaluation of G utilises a clause in Pwhose

212 CHAPTER 8

subgoal invokes a clause in Q which, in turn, invokes a system call. Then,

the system call must be allowed by both the policies of P and Q. If only the

policy of P is considered, and P is trusted with the privilege of using that

system call butQ is not, thenQperforms an illegal system operation. On the

other hand, if only the policy of Q is considered, and Q is trusted with the

privilege of using that system call but P is not, then P performs an illegal

system operation through Q.

In both cases, in order to prevent illegal system operations, the system call

or download must be permitted by every policy program involved. Given a set

of policy programs (e.g., fP,Qg), the system calls and downloads permitted by
the LW-intersection of the LW-encapsulations of the policy programs in the set

(e.g.,@P*@Q) corresponds to the system calls anddownloads permitted by every

policy program in the set. LW-encapsulation is used to model the fact that each

policy program must separately validate the system calls and downloads. LW-

intersection is used to model the fact that all the policy programs must agree,

i.e., a system call or download must be permitted by every policy program. For

example, the following goal, on succeeding, means that open/3 is permitted by

both P and Q:

?- (@P * @Q)#>valid_systemCall(open(_,_,_)).

During goal evaluations, valid program/2 and valid systemCall/1 are

invoked in this LW-composition as the following semantics show.

8.6 Enforcing Security Policies

This section defines a new derivation relation extending the operational seman-

tics in Chapter 3 to use policy programs.

Policy programs are integrated into the execution model of LogicWeb pro-

grams. A goal is evaluated not only in the current context and with the current

8.6 Enforcing Security Policies 213

set of created programs, but also with the current set of policy programs. The

derivation relation in Chapter 3 is extended as follows:

For any goal formula G and program expression E,�; S; E `S0� G
denotes the fact that there exists a top-down derivation of G in E start-
ing with the set S of existing LogicWeb programs and the ordered set
of policy programs �, and ending with computed answer substitu-
tion � and created program set S 0.
The proof rules which define this new relation is an extension of the rules in

Chapter 3. Rules (3.1) to (3.9) are extended to form the corresponding rules for

the new derivation relation using the following syntactic mapping:

Replace every occurrence of an expression involving the derivation

relation of the form S;E `S0� G
with the corresponding expression of the form�; S; E `S0� G

For instance, the following rule is obtained by applying thismapping to rule (3.2)

(conjunction): �; S; E `S0� G1 ^ �; S 0; E `S00 G2��; S; E `S00� G1; G2
In this rule, the same set of policy programs � is used for each of the conjuncts
since the conjuncts occur in the same rule (and hence, the same program).

Rule (3.10) is extended to incorporate policy programs. To aid the discussion

which follows, two functions are defined: one assigns a LogicWeb program to its

214 CHAPTER 8

policy program, and the other maps a set of LogicWeb programs to their policy

programs. � denotes the set of all policy programs used by the system.
Policy programs are permitted free access to system resources, and so, are not

themselves assigned any policy program. This means that policy programs can

download any other program and freely utilise system calls.

DEFINITION 5 (POLICY PROGRAM ASSIGNMENT)

The function pol : (LWProgramIDs n ids(�))! �
takes a program identifier (which is not that of a policy program) and returns a

policy program for that program from �.pol is not defined on policy programs, and the empty program � is not assigned
a policy program.

DEFINITION 6 (POLICIES FOR A SET OF PROGRAMS)

The function pols : }(LWProgramIDs n ids(�))! }(�)
takes a set of (non-policy) program identifiers I and returns the set of policy pro-
grams assigned to the programs in I . pols is defined by:pols(I) = fpol(i) j i 2 Ig

*�@ denotes the LW-intersection of the LW-encapsulation of the policy pro-

grams in � (i.e., if � = fP1; :::; Png then *�@ = @P1 *:::* @Pn), and G denotes a
goal. Evaluating a goal against *�@ has the effect of evaluating the goal against

each program in � separately.
Recall that rule (3.10) for context switching from Chapter 3 is the following:I � ids(S 0) ^ S 0; F 0 `S00� GS;E `S00� F #> G (8.1)

where F 0 = insertCC(F;E), I = expids(F), and S 0 = add programs(S; I).

8.6 Enforcing Security Policies 215

The new definition of rule (3.10) is then:� 6= ; ^(Where each lw(Typei, URLi) 2 expids(F 0) n ids(�);;; S; � `S0 *�@#>(valid program(Type1, URL1);: : : ;valid program(TypeN, URLN))

) ^I � ids(S 0) ^ (pols(I n ids(�)) [�); S 0; F 0 `S00� G�; S; E `S00� F #> G
The new rule has been augmented with:

1. A test to determine if each non-policy program to be used in the new con-

text is allowed by the current set of policy programs �. The test is done by
invoking the predicate valid program/2 in*�@ for each such non-policy

program identified by lw(Typei, URLi) using a goal of the form:;; S; � `S0 *�@#>(valid program(Type1, URL1); : : : ;
valid program(TypeN, URLN))

N is the number of program identifiers in expids(F 0) n ids(�). A LogicWeb
goal is used when evaluating the valid program/2 goals in order to

download the policy programs. Note that goal evaluation fails if not all the

policy programs are downloaded, a policy program can invoke non-policy

programs in its rules, and the evaluation of the valid program/2 goals

begins with an empty policy program set. The rule for the case where � is
empty is given below.

2. An extension of � with new policy programs. New policy programs are
added to the front of the ordered set �:pols(I n ids(�)) [�

216 CHAPTER 8

The last program in the ordered set is, chronologically, the first policy pro-

gram, and its significance is explained below.

The following variant of above rule caters for the case where � is empty. If �
is empty, then no policy programs are employed, and no checks are made:I � ids(S 0) ^ pols(I n ids(�)); S 0; F 0 `S00� G;; S; E `S00� F #> G
The above two rules are called context switching rules.

Two new rules called system call rules are added to specify how policy pro-

grams are used with system calls. The first rule specifies a test to determine if a

goal is a valid system call, and invokes call system/1 in the last policy pro-

gram in �. The last program in � is the policy program for the main program of
the LogicWeb application, provided that the proof rules are utilised startingwith

a LogicWeb goal of the formMainProgram#>Goal (see Section 8.7.3 on invoking
the new interpreter). System callsmay update state information (e.g., record that

a file has been accessed as shown in Section 8.4). State information is maintained

in one program (i.e., the main program’s policy program) by always invoking

call system/1 in the main program’s policy program.� 6= ; ^;; S; � `S0 *�@#>valid systemCall(G) ^� = �0 [Pn ^;; S 0; � `S00� Pn#>call system(G)�; S; E `S00� G
Substitutions resulting from calling valid systemCall/1 are discarded. In-

stead, the substitutions computed fromcall system/1are used. Again, proofs

occurring in policy programs proceed with an empty policy program set.

For the case where � = ;, the rule is;; S; E `S0 built ins:builtin(G) ^ ;; S0; E `S00� built ins:call builtin(G);; S; E `S00� G

8.6 Enforcing Security Policies 217

A call to the built-in predicates in built ins is represented by the following

rule: G succeeds with �;; S; E `S� built ins:(G)
The evaluation of the goal in built ins is outside the scope of the inference

rules, but � is assumed to be the computed answer substitution.
As will be shown below, the above new set of inference rules disallows any

illegal system operation. context sequence and illegal system operation are first de-

fined.

Goal derivation with LogicWeb goals may result in several sequences of con-

text switches, each represented by a sequence of contexts. For example, the se-

quence of contexts in Figure 8.4 is

P; Q; R

The only rules which change the context are the context switching rules.

DEFINITION 7 (CONTEXT SEQUENCE)

Given a sequence of applications of inference rules in a top-down derivation,

suppose that there are n� 1 applications of the context switching rules, and that
the ith application of such rules causes the context to switch from Ei to Ei+1,
where 1 � i � n � 1, then the context sequence is the sequence of contextsE1; : : : ; En.
Informally, given a context sequence E1; : : : ; En, an illegal system operation

is performed in the context Ei if a system call, or the use of a program in context
switching, is disallowed by the policy of some program in Ei, but is attempted
in Ei or in some later context.
DEFINITION 8 (ILLEGAL SYSTEM OPERATION)

Given a context sequenceE1; : : : ; En, for someEi, P 2 pols(expids(Ei) n ids(�)),i � j � n, and system call G, an illegal system operation is performed in Ei if

218 CHAPTER 8

the goal call system(G) is invokedwhen the context ofG isEj but ;; S; P `S0�
valid systemCall(G) does not hold for any S, S 0, and �, or the oracle func-
tion is called on the identifier lw(Type, URL)when the current context is Ej
but ;; S; P `S0� valid program(Type, URL) does not hold for any S, S 0, and�.
The context switching rules guarantee that all policy programs which must

be consulted during a derivation are present.

LEMMA 8.6.1

Given the context sequence E1; : : : ; En for a top-down derivation, for any i 2f1; : : : ; ng, at the node with context Ei, the current set of policy programs � con-
tains the policy programs of all the non-policy programs occurring inE1; : : : ; Ei.
PROOF: The proof is by induction on i. For i = 1, the goal evaluation starts in
the empty program � with � = ;. For i � 2, (by the inductive hypothesis) when
the goal is evaluated inEi�1,� contains the policy programs of all the non-policy
programs occurring in E1; : : : ; Ei�1. Ei�1 changes to Ei using one of the context
switching rules. This rule updates � (say, to �0) by adding to � the policy pro-
grams of the non-policy programs occurring in Ei. Hence, the goal evaluation
continues inEiwith�0 containing all the policy programs for the non-policy pro-
grams in E1; : : : ; Ei.�
The theorem below implies soundness of the security model: all goals which

have a successful derivation have the desired security property of not perform-

ing an illegal system operation (as given by Definition 8).

THEOREM 8.6.1 (SAFETY PROPERTY)

No illegal system operation is performed in any context during a top-down

derivation using the above rules.

PROOF: Given the context sequence E1; : : : ; En, for any i 2 f1; : : : ; ng, suppose
that an illegal system operation was performed in Ei, say when the current con-

8.7 Implementation 219

text was Ej , where i � j � n, the set of policy programs was � and the set
of created programs was S. To perform this operation either (1) the system call
rule for � 6= ;, or (2) the new context switching rule for � 6= ; must have been
used. In case (1), according to the definition of the system call rule used, since

call system(G)was invoked, the goal;; S [�;*�@ `S0 valid systemCall(G)
must have succeeded. In case (2), suppose that the LogicWeb goal was F#>G
and F 0 = insertCC(F;Ej), and the oracle function was called on the identifier
lw(Type, URL) 2 expids(F 0) n ids(�), then according to the definition of the
context switching rule used, the goal;; S [�;*�@ `S0 valid program(Type, URL)

must have succeeded. But by the definition of an illegal system opera-

tion, for some P 2 pols(expids(Ei) n ids(�)), in case (1), ;; T; P `T 0�
valid systemCall(G) does not hold for any T , T 0, and �, and in case (2),;; T; P `T 0� valid program(Type, URL) does not hold for any T , T 0, and �.
In either case, it must have been that P 62 �. By the above lemma,� contains the
policy programs of all the non-policy programs occurring in E1; : : : ; Ej , namely,� � pols(expids(Ei) n ids(�)) which means P 2 �, and hence, there is a contra-
diction.�
8.7 Implementation

8.7.1 A New Interpreter

The inference rules presented in the previous section provides the basis for

an interpreter for evaluating goals in the presence of policy programs. Pro-

gram 8.1 shows how the interpreter in Chapter 4 has been extended. In

220 CHAPTER 8

the first clause of demo/3, establish context/6 extends the definition of

establish context/3 in Chapter 4 by carrying the current list of policy

program identifiers, and returning new policy program identifiers for the pro-

grams in the new context. In the second last clause of establish context/6,

add policyID/3 retrieves the policy program identifier from policyID/2.

The assignment of policy programs is explained below. In the last clause of

establish context/6, the goal allowed programs(OPL, C) checks that

the programs in the expression C are allowed to be used by every policy program

mentioned in OPL. allowed programs/2 (not given in Program 8.1) is defined

by calling allowed program/2 for each program identifier in C.

The second clause of demo/3 checks for and invokes an allowed system

call. In allowed systemCall/2, valid systemCall/1 is invoked in

each policy program individually (or equivalently, in the LW-intersection

of the LW-encapsulations of the policy programs). Policy programs known

to the system are recorded in pgpID to policyID/2 described below.

invoke systemCall/2 invokes the system call in the last (or chronologically

the first) program mentioned in the list PL of policy program identifiers.

The third clause of demo/3 allows policy programs to invoke goals in the

SWI-Prolog module built ins.

The next three clauses of demo/3 implements the vanillameta-interpreter. In

the sixth clause of demo/3, select clause/3 extends the definition of ::/2

in Chapter 4 to carry as an argument the list of policy program identifiers for use

in LW-encapsulation.

8.7.2 Installing Programs

The procedure for installing a program is slightly more complex than in Chap-

ter 4 because for each downloaded program, a policy program is assigned to it.

The following predicate specifies download/2:

8.7 Implementation 221

Program 8.1 The interpreter for pure LogicWeb programs modified to use policy

programs. This program extends Program 4.2.

% demo/3 with LogicWeb goal
demo(PL, E, F#>G) :-
establish_context(PL, F, E, PL, NPL, F1),
demo(NPL, F1, G).

demo(PL, E, G) :-
allowed_systemCall(PL, G), invoke_systemCall(PL, G).

demo(_PL, P, built_ins:G) :-
pgpID_to_policyID(_, P), call(built_ins:G).

demo(_PL, _E, true).
demo(PL, E, (A, B)) :- demo(PL, E, A), demo(PL, E, B).
demo(PL, E, A) :- select_clause(PL, E, (A :- B)), demo(PL, E, B).

% establish a context
establish_context(OPL, E + F, C, PL, PL2, E1 + F1) :-
establish_context(OPL, E, C, PL, PL1, E1),
establish_context(OPL, F, C, PL1, PL2, F1).

establish_context(OPL, E * F, C, PL, PL2, E1 * F1) :-
establish_context(OPL, E, C, PL, PL1, E1),
establish_context(OPL, F, C, PL1, PL2, F1).

establish_context(OPL, E / P, C, PL, PL2, E1 / P1) :-
establish_context(OPL, E, C, PL, PL1, E1),
establish_context(OPL, P, C, PL1, PL2, P1).

establish_context(OPL, @E, C, PL, PL1, @E1) :-
establish_context(OPL, E, C, PL, PL1, E1).

establish_context(OPL, (/)<>(E, L), C, PL, PL2, (/)<>(E1, L1)) :-
establish_context(OPL, E, C, PL, PL1, E1),
establish_contextL(OPL, L, C, PL1, PL2, L1).

establish_context(OPL, Op<>L, C, PL, PL1, Op<>L1) :-
establish_contextL(OPL, L, C, PL, PL1, L1).

establish_context(OPL, lw(T, U), _C, PL, NPL, lw(T, U)):-
allowed_program(OPL, lw(T, U)), download(T, U),
add_policyID(lw(T, U), PL, NPL).

establish_context(OPL, (#), C, PL, PL, C) :-
allowed_programs(OPL, C).

establish_contextL(_OPL, [], _C, PL, PL, []).
establish_contextL(OPL, [E|Es], C, PL, PL2, [E1|Es1]) :-
establish_context(OPL, E, C, PL, PL1, E1),
establish_contextL(OPL, Es, C, PL1, PL2, Es1).

% predicate to ensure that only allowed system calls are invoked
allowed_systemCall([], G) :-
built_ins:builtin(G).

allowed_systemCall([Pol|Pols], G) :-
demo([], empty, Pol#>valid_systemCall(G)),
allowed_systemCall(Pols, G).

222 CHAPTER 8

Program 8.1 (Continued)

% predicate to invoke system calls
invoke_systemCall([], G) :- !,
built_ins:call_builtin(G).

invoke_systemCall(PL, G) :-
last(P, PL), demo([], empty, P#>call_system(G)).

% adding a policy program identifier
add_policyID(Id, PL, PL) :-
pgpID_to_policyID(_, Id), !.% no policy program for policy programs

add_policyID(Id, PL, NPL) :-
policyID(Id, NewPolicyId),
(member(NewPolicyId, PL) ->

NPL = PL
;

NPL = [NewPolicyId|PL]
).

% predicate to ensure that only allowed programs are downloaded
allowed_program([], _Id).
allowed_program([Pol|Pols], lw(Type, URL)) :-
demo([], empty, Pol#>valid_program(Type, URL)),
allowed_program(Pols, lw(Type, URL)).

% definition of select clause/3
select_clause(_PL, lw(Type, URL), A :- B) :-
lw(Type, URL)::(A :- B).

select_clause(PL, E + _F, A :- B) :-
select_clause(PL, E, A :- B).

select_clause(PL, _E + F, A :- B) :-
select_clause(PL, F, A :- B).

select_clause(PL, E * F, A :- (B,C)) :-
select_clause(PL, E, A :- B), select_clause(PL, F, A :- C).

select_clause(PL, E / P, A :- B) :-
select_clause(PL, E, A :- B), not defined(A, P).

select_clause(PL, @E, A :- true) :- demo(PL, E, A).

select_clause(PL, (/)<>(E, []), A :- B) :-
select_clause(PL, E, A :- B).

select_clause(PL, (/)<>(E, [P|Ps]), A :- B) :-
select_clause(PL, (/)<>[(E / P)|Ps], A :- B).

select_clause(PL, _Op<>[E], A :- B) :-
select_clause(PL, E, A :- B).

select_clause(PL, Op<>[E1,E2|Es], A :- B) :-
C =.. [Op, E1, E2], select_clause(PL, Op<>[C|Es], A :- B).

defined(A, P) :-
functor(A, Functor, Arity), functor(H, Functor, Arity),
P::(H :- _B).

8.7 Implementation 223

download(Type, URL) :-

created(Type, URL), !. % program already exists

download(Type, URL) :- % program does not exist

retrieve(Type, URL, Contents), % retrieve from the Web

create_program(Type, URL, Contents), % create the program

assign_policyID(Type, URL, Contents). % assign a policy program

assign policyID/3 uses the following procedure to assign a policy pro-

gram identifier to a downloaded program. A downloaded HTTP response ob-

ject is first authenticated to determine the identity of the signatory. The system

keeps a database of pgpID to policyID/2 facts which maps the identity of a

signatory to the identifier of a policy program (chosen by the LogicWeb system

user). For example, a policy program for Seng is recorded by mapping Seng’s

PGP ID to the identifier of the policy program:

pgpID_to_policyID(’Seng W. Loke <swloke@cs.mu.oz.au>’,

lw(get, "http://www.cs.mu.oz.au/˜swloke/my_policy.html").

The first argument is Seng’s PGP ID, and the second argument is a policy

program identifier. If the HTTP response object is not PGP signed or au-

thentication fails, the created program will be assigned the default policy pro-

gram for untrusted programs, i.e. the policy program for unknown stated in

pgpID to policyID/2:

pgpID_to_policyID(unknown,

lw(get, "http://www.cs.mu.oz.au/˜swloke/default_policy.html").

Otherwise, a policy program for the signatory specified by

pgpID to policyID/2 is assigned to the program. A policy program as-

signment is recorded by asserting a policyID/2 fact into the system. The fact

is not asserted into the program itself since the location of policy programs must

be protected from applications and policyID/2must not be redefined.

assign_policyID(Type, URL, Contents) :-

determine_policyID(URL, Contents, PolicyID),

record_policyID(Type, URL, PolicyID).

224 CHAPTER 8

determine_policyID(URL, Contents, PolicyID) :-

(pgp_signed(URL) -> % if digitally signed

authenticate(Contents, SignatoryID), % try authentication

pgpID_to_policyID(SignatoryID, PolicyID)

;

pgpID_to_policyID(unknown, PolicyID)

).

record_policyID(Type, URL, PolicyID) :-

(pgpID_to_policyID(_, lw(Type, URL)) -> % if policy program

true % lw(Type, URL) is not assigned a policy program

;

assert(policyID(lw(Type, URL), PolicyID))

).

pgp signed/1 checks if the contents are digitally signed by inspecting the

URL for the extension “.lwpgp.html”. Digitally signed LogicWeb programs are

assumed to end with this extension. authenticate/2 performs the authenti-

cation by invoking the PGPsystem’s authentication procedure on theContents,

which contains HTML text and its digital signature. This procedure is depicted

in Figure 8.2 on side B. PGP extracts the digital signature from Contents and

attempts to decrypt it to obtain the MD5 string. PGP attempts to decrypt the

signature using its collection of public keys. Each of these public keys has been

added to the PGP system by the LogicWeb system’s user and is labelled with a

PGP ID. On successful decryption, PGP checks the HTML text from Contents

against the MD5 string, and returns the PGP ID labelling the key that decrypted

the signature. SignatoryID is instantiatedwith this PGP IDwhich is the signa-

tory’s PGP ID. On authentication failure (i.e., if the signature is not decrypted or

if the MD5 string does not match the HTML text), SignatoryID is instantiated

to unknown. The PGP system is invoked externally from Prolog.

8.8 Control of Resource Usage 225

8.7.3 Invoking the New Interpreter

In order to utilise the new interpreter, calls todemo/2 in Program4.1 of Chapter 4

are modified as follows:

Replace each call of the form demo(empty, LogicWebGoal) by a
call of the form demo([], empty, LogicWebGoal).

Goal derivation beginswith the empty context andwithout anypolicy programs.

8.8 Control of Resource Usage

This section addresses denial-of-service attacks by controlling the usage of an al-

lowed operation or resource using policy programs and meta-interpreters.

8.8.1 Resource Control Using Policy Programs

Resource usage can be monitored by keeping contextual or state information

within a policy program, allowing decisions to access resources to bemadebased

on execution history. For example, a limit can be imposed on the frequency of

system calls. The following definition of call system/1permits up to ten files

to be opened at a time, thereby limiting the number of file descriptors allocated.

call_system(P) :-

P n= open(_, _, _),

P n= close(_),

built_ins:call_builtin(P).

call_system(open(F, R, S)) :- % opening a file

open_count(N),

N < 10,

increment_open_count, % count an open file

built_ins:call_builtin(open(F, R, S)).

226 CHAPTER 8

call_system(close(S)) :- % closing a file

open_count(N),

N > 0,

decrement_open_count, % decrement count of opened files

built_ins:call_builtin(close(S)).

increment open count/0 and decrement open count/0 updates the

value stored by open count/1. Similarly, the number of bytes which can be

written into a file can be restricted.

8.8.2 Resource Control Using Meta-interpreters

Resource control not specific to a particular program or application is needed.

For instance, a goal evaluation involving multiple programs can go into an in-

finite loop. But, as pointed out in [163], denial-of-service attacks are not as se-

vere as the other attacks since the user can always hit the “kill key” and exit

the system. However, more graceful termination of goal evaluation under such

circumstances is preferred, at least allowing the system and the application

to remain up. Control of execution behaviour can be incorporated via meta-

interpreters [184, 185]. The use of meta-interpreters for loop checking and de-

tecting two resource limits are described below.

8.8.2.1 Loop Checking

Loop checking uses two meta-interpreters: solve ad/2 which stores as one of

its arguments the ancestor goals and the recursion depth during goal evaluation,

and solve t/1 which terminates goal evaluation whenever some pre-defined

condition (called a termination condition) holds. By using solve ad/2 to eval-

uate demo/3 goals, ancestor goals and recursion depth can be recorded dur-

ing goal evaluation. By comparing the current goal with ancestor goals, loops

within LogicWeb programs, and loops involving multiple programs can be de-

tected (such as a goal G in P calling a goal in Qwhich, in turn, calls G in P again).

8.8 Control of Resource Usage 227

A loop is detected if the current goal is a variant of an ancestor goal (i.e., the goals

subsume each other) and the goals are evaluated in the same context, or if a re-

cursion depth limit is exceeded. Goal evaluation is terminated when a loop is

detected. The termination condition is checked in solve t/1 which executes

solve ad/2. Other loop checking techniques are studied in [29].

To utilise solve ad/2 and solve t/1, instead of directly invoking the in-

terpreter demo/3 as explained in the previous section, demo/3 is invoked in

solve ad/2, and solve ad/2 is invoked in solve t/1:

solve_t(solve_ad(0 - [], demo([], empty, LogicWebGoal)))
Program 8.2 shows a version of solve t/1 simplified for pure Prolog. Ter-

mination conditions are encoded in the predicate terminate/1, which is in-

voked in the second clause of solve t/1 on every goal to find a terminating

goal. Goal evaluation terminates when terminate/1 succeeds.

Program 8.2 A version of solve t/1 for pure Prolog.

solve_t(A) :-
solve_t(A, _).

solve_t(true, _).
solve_t(A, T) :-
terminate(A), !, T = terminated. % check termination conditions

solve_t((A, B), T) :-
solve_t(A, T),
(T == terminated ->

true
;

solve_t(B, T)
).

solve_t(A, T) :-
clause(A, B), solve_t(B, T), (T == terminated, ! ; true).

To do loop checking, a goal spy point/2 is inserted into solve ad/2.

Program 8.3 shows a version of solve ad/2 simplified for pure Prolog.

copy term/2 is a SWI-Prolog built-in predicate for creating a copy of a term.

The following shows the termination condition for loop checking:

228 CHAPTER 8

Program 8.3 A meta-interpreter for pure Prolog with an argument carrying the

recursion depth and a list of ancestor goals.

solve_ad(_D_Ancs, true).
solve_ad(D - Ancs, (A, B)) :-
solve_ad(D - Ancs, A),
solve_ad(D - Ancs, B).

solve_ad(D - Ancs, A) :-
copy_term(A, A1), % make a copy of the term A
clause(A, B),
spy_point(D - Ancs, A), % spy_point inserted
D1 is D + 1, % increment recursion depth
solve_ad(D1 - [A1|Ancs], B).

terminate(spy_point(Depth - Ancs, demo(_, E, G))) :-

(

member(demo(_, E1, G1), Ancs),

E = E1, % same context

variant(G, G1), % goals are variant of one another

write(’loop found’)

;

Depth > 40,

write(’maximum recursion depth exceeded’)

).

demo(, E, G) is the current goal, Depth is the current recursion depth, and

Ancs is a list of ancestor goals. Note that the condition E = E1 will not detect

loops where the context grows indefinitely. To detect such loops, the size of the

context can be compared against a preset limit.

8.8.2.2 Two Resource Limits

Besides loop checking, two resource counts, the number of LogicWeb programs

downloaded and the number of clause applications, are used in termination con-

ditions in solve t/1. The first count is allowed to persist across solve t/1

invocations, since programs are not automatically purged after each top-level

8.8 Control of Resource Usage 229

query evaluation. The second resource count is reset at each invocation of

solve t/1, placing a resource bound on the evaluation of each top-level query.

For each invocation of the predicate download/2which downloads a page

and translates it into a LogicWeb program, the program count/1 storing

the number of LogicWeb programs created is checked against a preset limit.

create program/3 (called by download/2) is modified to not only translate

a page into a program but also to increment program count/1 each time a new

program is created. For each use of the predicate clause/2 to retrieve clauses

of the LogicWeb interpreter, the clause count/1 storing the number of clause

applications is checked against a preset limit.

The following two clauses extends terminate/1 defining termination con-

ditions based on the built-in predicates invoked by solve ad/2 (not shown in

Program 8.3):

terminate(invoked_builtin(download(_,_))) :-

program_count(N),

N > 100, % permit up to 100 programs only

write(’maximum LogicWeb program count exceeded’).

terminate(invoked_builtin(clause(_,_))) :-

retract(clause_count(N)),

N1 is N + 1,

assert(clause_count(N1)),

(N > 500 ->

writef(’maximum clause count exceeded’)

;

!,

fail

).

The termination checks can be implementedmore efficiently by directlymod-

ifying demo/3. But usingmultiplemeta-interpreters reduces the complexity of a

singlemeta-interpreter allowing each functionality to be separately implemented

and introduced. The efficiency costs are not severe if an application involves fre-

quent Web requests, and hence, would spend most of its wall-clock execution

230 CHAPTER 8

time interacting with the Web. Moreover, partial reduction techniques [185] for

translating meta-interpreters into specialised forms can be explored to remove

levels of interpretation.

8.9 Comparison with Security Models in Other Mo-

bile Code Systems

Numerous languages have been used in mobile code systems and security in

these systems is an active research area [202, 43, 61]. Language features and the

form inwhich code is transmitted greatly influence thedesign of a securitymodel.

Below, we review security models with ideas in common with the LogicWeb se-

curity model, namely, models for interpreted languages, and models which use

the idea of security policy modules and authentication.

8.9.1 Security Models in Two Interpreted Languages

8.9.1.1 Safe-Tcl

Tcl is an interpreted imperative language. Access to system resources is via per-

mitted commands of the interpreter. In the Safe-Tcl securitymodel [163], security

is enforced by making dangerous commands unavailable to scripts running in

a safe interpreter. Potentially dangerous operations such as opening sockets can

still be carried out via wrappers or aliases which invoke dangerous commands.

The wrappers ensure that the commands are used in a controlled manner (e.g.,

only socket connections to some hosts are permitted). The security policy in the

Safe-Tcl model is the set of all commands available to scripts.

The security model in the LogicWeb system is partly motivated by their

model in that their commands correspond to the set of valid system calls and

call system/1 corresponds to wrappers for their commands. A safe inter-

preter in Safe-Tcl corresponds to the LogicWeb program interpreter with appro-

8.9 Comparison with Security Models in Other Mobile Code Systems 231

priate policy programs. However, the Safe-Tcl security model has not incorpo-

rated authentication.

The Safe-Tclmodel allows Tcl programs running in different interpreters (each

with its own security policy) to communicate. Such communication effectively

composes the security policies of the Tcl programs, i.e. a program can use the

privileges of the other. Although the dangers of this is highlighted in [163], the

paper did not attempt to address this problem in a structured way. In the Log-

icWebmodel, the combined use of policy programs addresses the dangers of one

program using other programs with different access privileges.

8.9.1.2 Java Applets

Java applets are transmitted in byte-code format, which is then executed by an

interpreter on the local host. This contrasts with Safe-Tcl and LogicWeb where

source code is transferred.

Security for Java applets is based on strong type checking, pointer-free code,

garbage collection, access control for class variables and methods, and distinct

namespaces for packages [18]. Numerous security loopholes have been found in

implementations of the security architecture in Java due mainly to implementa-

tion flaws, but there has been recent work on strategies to securely support Java

applets [205].

LogicWeb programs benefit from Prolog’s automatic garbage collection and

pointer-free code from the security viewpoint. The LogicWeb system does not

yet support concurrency or sophisticated GUI programming. Hence, the Log-

icWeb securitymodel does not need to dealwithmulti-threading or control screen

resources (e.g., windows). Java programs are typed, and the Java language itself

is designed to enforce type safety. This means the compiler ensures that class

methods and programs do not access memory in ways that are inappropriate

(e.g., through type conversions) [188]. LogicWeb programs are not explicitly typ-

ed and there is no class abstraction. Type conversions (e.g., strings to atoms)

232 CHAPTER 8

are done via system calls, and hence, dangers of type conversions are avoided.

There are two trust levels for classes in the current Java security model: trusted

classes are local and part of the Java system, and untrusted classes are down-

loaded. Multiple levels of trust are possible with signed LogicWeb programs.

Security for Java applets, as implemented inMicrosoft’s Internet Explorer 3.0

andNetscapeNavigator 3.0, disallows applets from reading orwriting local files,

or establishing network connections except to the originating host. However,

there areways around these problems, including the use of server-side databases

and proxy servers. In the direction of using encryption, there has been recent

work on supporting the digital signing of JAR (Java archive) files (e.g., as sup-

ported in JDK 1.1.52), which bundles Java code and related files into one [188].
Digital signing of JAR files prevent code tampering if data from the server is in-

tercepted. In a similar way, a collection of programs making up a LogicWeb ap-

plication can be bundled, signed, and transported as one archive file.

8.9.2 Security Policy Modules in TwoMobile Code Systems

8.9.2.1 SERC’s Safer Erlang (SSErl)

The idea of policy programs is motivated by the policy modules implemented

for the safe execution of programs in SSErl, a declarative language for program-

ming concurrent and distributed systems [44, 45]. In their framework, a policy

module is not associated with a particular program as in the LogicWeb security

model, but with a SSErl node, a platform in which multiple processes may run

concurrently. System operations are performed via built-in functions. A policy

module specifies the allowable built-in functions for all the processes running at

the node.

In contrast to SSErl, execution of LogicWeb programs is single-threaded

though the thread of execution can proceed from one program to another. At2JDK 1.1.5 (final version) is available at http://java.sun.com/products/jdk/1.1/.

8.9 Comparison with Security Models in Other Mobile Code Systems 233

any one time, at most one LogicWeb application is running. The overall policy

for the running application is represented by the current set of policy programs,

and is determined dynamically (since it is generally not possible to determine a

prioriwhich programs an application will use).

8.9.2.2 Java Aglets

The Aglet workbench [108], where Java programs (called aglets) are transferred

between hosts as mobile agents, uses a policy-based security model. A spe-

cialised language for writing aglet security policy modules is proposed which

makes use of specific roles such as the aglet’s manufacturer, owner, execution

platform (e.g., the URL of the host), domain of the execution platform (e.g., be-

longing to a company), and administrator of the domains.

In contrast to a policy program which encodes a mode of resource usage, an

aglet policy specifies how to assign resources to an aglet. The LogicWeb system’s

equivalent to an aglet policy would be a policy for assigning policy programs to

LogicWeb programs. In the current implementation, the assignment of policy

programs is based solely on the identity of the LogicWeb program’s signatory.

8.9.3 Authentication in TwoMobile Code Systems

8.9.3.1 Agent Tcl

Authenticating Tcl programs using PGP has been used in a Tcl-based agent archi-

tecture Agent Tcl [95]. The PGP system is invoked externally from the Agent Tcl

system in the sameway as in the LogicWeb system keeping the Agent Tcl system

simpler and flexible (the encryption mechanisms can be easily replaced). De-

pending on the identity of the agent’s owner, an Agent Tcl program is assigned

resources such as CPU time, windows, the file system, external programs, and

network connections.

234 CHAPTER 8

8.9.3.2 ActiveX

ActiveX controls [80] are programs (in native x86 code) that can be executed on

the client-side from Web pages. A digital signature is attached to each ActiveX

control which identifies the control’s original author. The advantage of the signa-

ture is that since the author is known, anActiveX control (whose author is trusted

such as amajor vendor) can have freedom in accessing resources. Hence, trusted

ActiveX controls have the ability to performmore useful tasks in contrast to Java

applets.

Similar to ActiveX controls, a digital signature is attached to LogicWeb pro-

grams. But unlike LogicWeb programs which is sandboxed by policy programs

andmeta-interpreters, a trusted ActiveX control is not restricted in any way and

has access to all operating system services. Policy programs permit levels of trust

to be expressed. For example, a set of policy programs ordered according to in-

creasing privileges can be defined, whereas an ActiveX control is either not per-

mitted to execute or permitted to run with free access to system resources. Since

an ActiveX control is native code, a sandbox mechanism for ActiveX controls is

more difficult to implement [159]. Moreover, meta-programming combinedwith

the program source permits more meaningful analysis and verification of pro-

gram properties than binary code verification [194].

8.10 Summary and Future Work

Security is a major concern for a system that executes downloaded code. This

chapter has described a security model for protecting the client host from in-

tegrity, privacy, and denial-of-service attacks by LogicWeb programs (given in

Section 8.1), and its implementation in the LogicWeb system. The securitymodel

can be viewed as dynamically extending the LogicWeb systemwith selected pol-

icy programs. Resource control using resource counts and loop checking are per-

formed bymeta-interpreters. The security model is sufficiently simple to be eas-

8.10 Summary and Future Work 235

ily implemented and trusted. Authentication is used to provide varying trust

levels, and the security model is specified using proof rules as part of the opera-

tional semantics of the language.

From a security viewpoint, declarative programming languages with a sim-

ple formal semantics have an advantage formobile code over languageswithout

formal semantics, since the formal semantics facilitates reasoning over the pro-

gram’s execution. For instance, as reported in [69], a language weakness of Java

from the security viewpoint is its lack of formal semantics. The Java language

has neither a formal semantics nor a formal description of its type system. There

is no formal meaning for a Java program, and so, formal reasoning about Java

and the security properties of the Java libraries written in Java is not possible.

The operational semantics of the LogicWeb language permits a straightforward

proof of the soundness of the model with respect to illegal system operations.

The claim that formal language semantics can be used for security have also been

made in [147], which advocates the use of rewriting logic as the basis for amobile

code programming language so that security properties can be formally verified,

and by Volpano, in [203], who argues for the development of provably-secure re-

mote evaluation (including downloaded code) programming languages whose

semantics permit formal proof of security properties.

The security model for the LogicWeb system can be improved. As noted in

[163], itmaybedifficult to distinguish between legitimate behaviours anddenial-

of-service attacks. For instance, it is easy to introduce resource bounds but not

easy to state an appropriate value for the bound. If the value is too low, a useful

task may be terminated prematurely, but if too high, resource wastage occurs.

Perhaps a means of tackling this problem is to involve the user’s judgement by

providing query-the-user facilities via ameta-interpreter. Trace information sup-

plied by a meta-interpreter can help the user judge. The user can also use such

trace information to detect unwanted behaviours such as transferring data be-

tween sites using the client host’s resources.

236 CHAPTER 8

Some Prolog systems such as SICStus Prolog have a timeout facility on goal

evaluation, i.e. a goal evaluation is terminated if its evaluation exceeds a given

time period [106]. This can be incorporated as a hard limit after other checks:

time_out(solve_t(solve_ad(0 - [], demo([], empty, LogicWebGoal))),
Time, Result)

The goal timeouts after Time milliseconds with Result being timeout or

success.

Policy programs can be assigned based on the more general idea of creden-

tials instead of digital signatures only. For instance, a program may be allowed

certain privileges not only because of the identity of its signatory, but because it

has sufficient advocates. Recent work [176] on using logic programs to specify

and check electronic credentials would be helpful.

Policy programs simplify the administration of privileges to applications. A

more complex policy assignment procedure involving multiple roles such as the

program’s manufacturer, owner, execution platform, domain of the execution

platform, anddomain administratorswould involve composing policy programs

of different parties. LW-composition operators could be explored for creating the

appropriate security policies dynamically during policy assignment.

Apart from the LogicWeb system’s user, policy programs used by the system

can also be created by trusted parties (e.g., organisations). Authentication of pol-

icy programs then becomes necessary to ascertain their origin.

A limitation of the model is that the system must already know all the re-

quired public keys for authenticating incoming programs. An automatic distri-

bution mechanism for PGP public keys is needed. For example, the LogicWeb

system can extract required public keys from homepages given their URLs or

query Internet PGP public key servers3 [90]. But this requires trusting that the
information has not been tampered with and is reliable. The use of credentials,3One example of a PGP public key server is found at
http://www-swiss.ai.mit.edu/˜bal/keyserver.html.

8.10 Summary and Future Work 237

i.e. certification by other authorities, will be required.

The LogicWeb security model is conservative in that a trusted program is not

allowed to transfer its privileges to an untrusted program it is using. Besides re-

source usage privileges, another kind of privilege can be introduced, which is the

right to transfer privileges. This will be useful since the system may not know

the signatories of all the programs that a trusted program uses. The policy pro-

gram must also specify which privileges are transferable, and whether the right

to transfer privileges is itself transferable.

238 CHAPTER 8

Chapter 9

Comparison With Related Work

This chapter reviews work related to LogicWeb. Section 9.1 surveys and com-

pareswork concernedwith the relationship between logic programming and the

Web, placing LogicWeb in the context of such work. Section 9.2 compares the

LogicWeb language to other Web programming languages (not based on logic

programming). Finally, Section 9.3 relates the LogicWeb model to other logic-

based hypertext models.

9.1 Logic Programming Technology for the Web

The relationship between logic programming and theWeb is a young area, where

most research work has appeared only in the last few years as shown by the re-

cent workshops [196, 66, 63, 78].

As mentioned in Chapter 2, the Web uses a client-server communications

model. Logic programming technology has been used to build client-based and

server-side systems. Section 9.1.1 considers logic programming systems which

are client-based (which includes the LogicWeb system), and Section 9.1.2 exam-

ines server-side systems. Finally, Section 9.1.3 briefly describes more expressive

Internet-based logic programming systems, which utilise peer-to-peer commu-

239

240 CHAPTER 9

nications models.

9.1.1 Client-side Systems

Client-side code can bemore closely integratedwith the browser and so can offer

more sophisticated user interfaces than server-side solutions. Also, once client-

side code is downloaded it does not need to communicatewith the server, thereby

avoiding networking problems that can affect server-side applications. Only the

code which is needed for the current task has to be downloaded and, since it is

a copy of the original, it can be changed or combined with other code without

affecting the original.

Security is a major concern with the client-side approach since foreign code

is executed locally. Many client-side programming languages, such as Java, are

quite complex making it difficult to ensure security, but this problem is not so

significant with logic programming languages whose simpler formal semantics

facilitate reasoning about their security (as shown in Chapter 8 for the LogicWeb

language).

More than any other logic programming language, there has been substantial

work in using Prolog for client-side programming. Section 9.1.1.1 reviews such

work and discusses their feasibility for implementing LogicWeb. Logic-based

languages designed for querying the Web are discussed in Section 9.1.1.2.

9.1.1.1 Prolog and Client-side Programming

Prolog is being used for client-side programming in the following ways: Prolog

libraries which allow Web clients (and servers) to be built, a Prolog system im-

plemented using the plug-inmechanism1 which allows a browser to handle new
MIME types, HTML extensions to incorporate Prolog code, and Java integrations1Netscape Plug-In information is available at http://home.netscape.com/comprod/
products/navigator/version 2.0/plugins/index.html.

9.1 Logic Programming Technology for the Web 241

with Prolog.

SWI-Prolog 2.1.14 extended with an application support library, HTML

parser, and HTTP library has been used in the LogicWeb system. More re-

cently, several libraries supportingWeb applications have been implemented for

Prolog systems such as PiLLoW/CIAO [48], a SICStus Prolog Objects-based li-

brary [79], and the ECLiPSe Prolog HTTP library [32]. These packages also con-

tain tools for parsing the text and extracting information. Future implementa-

tions of LogicWeb could be built on these libraries. Cabeza and Hermenegildo’s

PiLLoW/CIAO library is the most elaborate, and it would be possible to use it

to implement a version of LogicWeb. This requires a novel feature of PiLLoW,

the active module, which is a form of independent Prolog process, started at the

operating system level. In particular, a PiLLoW-based implementation may be a

good way to make the LogicWeb system more portable than its current Mosaic-

based implementation.

The core components of the LogicWeb system (written in Prolog) are quite in-

dependent of Mosaic and can be easily adapted for other implementations. One

possible means of porting LogicWeb to the Netscape and Microsoft Internet Ex-

plorer browsers is the plug-in mechanism. A plug-in is a code module which is

loaded into the browser (while it is running) and used to handle data of a spe-

cific MIME type. To execute LogicWeb programs, the plug-in would be an im-

plementation of a Prolog system with libraries to access the Web. A plug-in for

SICStus Prolog programs has recently been released.2 The plug-in can be used
to implement an interpreter for the LogicWeb language, but then, the implemen-

tors have identified several disadvantages with the plug-in approach: plug-ins

can only support light-weight applications, they are platform specific, and a user

must download the plug-in and install it before use [76]. Moreover, unlike the

current LogicWeb system, when using the Prolog plug-in, LogicWeb programs

must be distributed as its ownMIME type, distinct from ordinary HTML pages.2See http://potato.claes.sci.eg/claes/plugin/npsp.html.

242 CHAPTER 9

ISO-HTML proposed by Price [170] allows Prolog code to be added to Web

pages using newmark-up tags defined using the Standard GeneralisedMark-up

Language. Price has also developed a system residing on the server for convert-

ing ISO-HTML pages into Prolog programs (called logic documents). The trans-

lation emphasises the detailed representation of the internal structure of a page:

every tag and attribute is represented as a fact, whereas the HTML components

in LogicWeb programs are at a larger granularity than in logic documents, em-

phasising logical components (e.g., images, sections, and applets), yet permit-

ting finer details to be extracted if required. A client system for processing logic

documents has not been developed. There is no notion of composing programs

(or pages) in Price’s work.

A number of Prolog implementations in Java has been developed. A small

interpreter for a subset of Prolog, calledW-Prolog, has beenwritten as a Java ap-

plet [210]. Interpreters have also been written as Java applets for two other rule-

based languages: ILOG, where rules can be written in C++ [105], and the Java

Experts Systems Shell [86], an implementation of the CLIPS expert system shell

in Java. Like LogicWeb rules in pages, the program source is downloaded in all

these three systems. In contrast, MINERVA [104] is a Prolog-based language im-

plemented as a Java applet. TheMINERVAapplet downloads and executes com-

piled Prolog programs (in byte-code form). An advantage of executing compiled

code is greater execution efficiency, but an inconvenience is that everyMINERVA

program has to be compiled before distribution. A compiler for Prolog which

generates Java byte-codes is jProlog, which first translates Prolog into Java (the

translator is written in Prolog) and then runs the Java to byte-code compiler [70].

Prolog is also interfaced with Java. Amzi! Prolog has a Java class interface to

its Prolog system [5], an approach also employed by Calejo and Sousa [49] with

their NanoProlog compiler, and in the JIPL system [111].

Another technique is to link Java to a Prolog system through its sockets

class [85]. This approach was rejected due to firewall restrictions on non-HTTP

9.1 Logic Programming Technology for the Web 243

traffic. Linda Interactor allows Prolog-to-Java and Java-to-Prolog bidirectional

communication over the net [192]. In [76], a Java applet is used as a front-end to

a Prolog-based application running on the server.

There are many advantages to interfacing Prolog to Java: obtaining access

to its extensive class libraries, making use of Java’s close integration with the

browser, and Java’s portability (e.g., many browsers are already equipped with

a Java interpreter). Recent additions to Java, such as remote method invocation,

Sun’s JavaSpaces, and the Java Beans programmingmode, give Prolog programs

access to forms of network programming towards the peer-to-peer model (see

Section 9.1.3 below).

An interpreter for the LogicWeb language can be implemented on top of a

Prolog system built as a Java applet. One drawback with using such a Java ap-

plet is its restrictive security features as imposed by popular browsers (see Chap-

ter 8). This drawback can be overcome bydigitally signing the Java applet, which

could then be given more privileges. Additional security restrictions can be im-

posed on LogicWeb programs via the LogicWeb interpreter instead of on the Java

applet. Another drawback is the decrease in performance compared to using

Prolog systems in C (e.g., SWI-Prolog used in the LogicWeb system), since there

are at least two levels of interpretation (given that Java applets are interpreted).

9.1.1.2 Logic-based Web Querying Languages

A number of logic-based languages and paradigms have been developed for

querying theWeb. Many of these languages utilise an abstract data model of the

Web (e.g., as objects, relations, or a graph). Similar to the LogicWeb language,

these languages aim to provide higher level abstractions to hide the complex is-

sues of communication and Web data parsing.

WebLog [119], and ADOOD [92] are two examples. Like the LogicWeb lan-

guage, these languages represent HTTP response objects as first class entities,

and utilise deduction for computation. Also, queries over the Web’s hypertext

244 CHAPTER 9

structure can be similarly expressed.

WebLog and ADOOD allow construction (i.e., grouping and formatting) of

query results as first class entities. This allows different models of Web pages

to be dynamically defined. For instance, an ADOOD class representing a page

model with the attributes of title and image can be defined, and language con-

structs are present to allow instances of this class to be created or modified at

run-time. The LogicWeb language does not have such explicit constructs, but a

LogicWeb program can be modified by parsing the page contents and extracting

components as new facts which are added to the program. For instance, HTML

tables can be extracted from interesting sections of a page using the section/3

facts.

WebLog and ADOOD do not make use of meta-level composition operators

and do not deal with pages containing rules.

Another example of a logic-based language for building Web applications is

W-ACE [166] which is based on ACE, a parallel logic programming system. The

aim of W-ACE is to provide a complete framework for building applications on

both the client and server-side. Parallelism in W-ACE allows interactions with

multiple servers and permits W-ACE to be used on the server-side to serve mul-

tiple Web clients concurrently. W-ACE aims for a close coupling between client

and server, where the actions of the client on pages are translated into arguments

for predicate calls in the server.

W-ACE has predicates to retrieve pages and represents a page as a tree struc-

ture in a logic term. Hypertext structure involving several pages is represented

as a graph where each node is a page and each edge, a link. W-ACE is not yet

fully developed, but the proposed design suggests the incorporation intoW-ACE

ideas present in LogicWeb: including W-ACE rules within pages, the modelling

of each page as a theory, the use of a basic set of facts for representing a page’s

HTML text, and extendingACEwithmeta-level program composition operators

(like those described in Chapter 2). The design also speculates on the use of op-

9.1 Logic Programming Technology for the Web 245

erators frommodal logic, where each “world” is a page. These operators express

queries that involve reachability relations between worlds or pages. An exam-

ple is a query which, given a page and a goal, determines if the goal is provable

in all the pages (directly) linked from the given page. Such queries can be coded

up in the LogicWeb language using context switching.

Datalog is used as a Web querying language in the D3Web system [2]. They
propose a number of new META tag name/value pairs for Web pages to hold

extra semantic information. TheD3Web system treats these pages as distributed
deductive databases when processing queries. As with LogicWeb, a database is

derived from the analysis of a page, but most information comes from its META

tag information. AldanaMontes and Yagüe del Valle argue that Datalog is a bet-

ter choice for querying databases than Prolog due to its underlying set-at-a-time

paradigm, its efficiency due to the restrictions placed on the forms of rules and

terms, and the incremental nature of their query evaluator. Asmentioned in Sec-

tion 6.6.4, Datalog is a subset of Prolog where all terms in the program are vari-

ables or constants. Hence, since only simple data structures are permitted (e.g.,

no lists), Datalog is less expressive for general purpose programming than Pro-

log.

Datalog is the basis for the Hy+ visualisation system, and its associated
GraphLog language [99]. The Hy+ system obtains its information from a Mo-
saic browser as Prolog facts in a similar way to the LogicWeb system: the URL,

title, and any anchors are extracted from each retrieved document. These Hy+
facts record a history of Web traversals (e.g., links activated), and group the doc-

ument’s URL and title together. GraphLog queries on these facts are specified

graphically and are used to generate graphical views of Web traversal history

and structure. Different from Hy+, the LogicWeb system utilises its information
from Mosaic to invoke specified behaviours. Also, GraphLog queries are per-

formed over collected Hy+ facts only, and do not download Web pages.

246 CHAPTER 9

Another graph-oriented language isWG-log [62], which allows querying over

graphs or schemas representing the content of Web sites. WG-log makes a dis-

tinction between actual information and conceptual structures. Similar schemas

can be encoded in the LogicWeb language and queried, but WG-Log has the ad-

vantage of being graphical. WG-logdoes not yet support querieswhich compose

schemas or take into account links between schemas of different Web sites.

9.1.2 Server-side Systems

LogicWeb applications run on the client-side but communicates with server-side

software (e.g., run CGI scripts) through theHTTP protocol (e.g., as shown in Sec-

tion 6.5).

In general, server-side software is ideal for controlling resources such as data-

bases which cannot be sent over the Web for various reasons. Also, having all

users communicate with a central location makes it easier to program applica-

tions requiring coordination, such as chat systems or market places.

Server-side solutions may suffer from network load problems, and from ex-

cess load on the server, which must handle all user activities.

CGI is a popular server-side programming interface, allowing information

fromWeb forms to be passed to programs. There aremany librarieswhich enable

Prolog programs to process information from CGI input, and generate suitable

replies (typically, new Web pages) [6, 48, 51, 133]. The basic idea is captured by

Figure 9.1.

Examples include: WebLS, a tool for building expert systems [6], BobCarpen-

ter’s theoremprover3, andLeeNaish’s ICLP’97 submissions form4. An extensive
set of CGI Prolog tools were written for the organisation of the program commit-

tee work in ILPS’97 [158]. These include facilities for helping the PC chair and

submission reviewers.3See http://macduff.andrew.cmu.edu/cgparser/.4See http://www.cs.mu.oz.au/˜lee/iclp97/submitreg.html.

9.1 Logic Programming Technology for the Web 247

Figure 9.1 Using Prolog CGI scripts.

client
user browser

form details

answer

answer invoke with
form input

in Prolog
CGI script written

server

In Figure 9.1, the CGI script is newly invoked for each query from a client,

which can be a problem if the script has to load very large support software. The

client-server model allows a server to process several clients concurrently, which

implies that several invocations of the same scriptmay need to be running simul-

taneously. This may not be practical because of the size of the system, and also

makes changes to shared resources more complicated.

Another server-side solution is to separate query processing into two parts: a

light-weight CGI scriptwhich acts as an interface to a separate heavy-weight task

process. A key feature of the task process is that it is continually running, and so

only needs to be loaded once. In the context of logic programming, this process

might be a Prolog system or logic database. The invoked CGI interface scripts

communicate with the task process by using sockets. The overall approach is

shown in Figure 9.2.

Examples of these systems include the Announce system coded in ECLiPSe

Prolog which uses this technique to implement its electronic calendar of

events [135], the EMRM knowledge-base of medical records which utilises the

OR-parallel Aurora system to process multiple queries at once [190], and Phil

Vasey’s property underwriting system which uses a separate Prolog process

built with LPA’s ProWeb [201].

248 CHAPTER 9

Figure 9.2 Separating the interface and task processes.

client
user

form details

answer

link

answer invoke with
form input

server
browser

Prolog
task
process

CGI interface
script socket

The PiLLoW/CIAO library supports a higher level communications layer be-

tween the interface and task processes based on activemodules. Each invocation

of the interface script communicates with the task process as if it was calling a

module [48]. The authors speculate on using &-Prolog/CIAO to parallelise their

Prolog engine.

Although this server-side technique solves the problem of multiple invoca-

tions of potentially large task processes, it still leaves unresolved how to support

multiple queries on a shared resource. This remains an issue even when parallel

languages are used.

The shared resource problem was highlighted in the CGI scripts developed

for ILPS’97 [158]: SICStus Prolog has a database library, but it can only be ac-

cessed by one user at a time. One solution is to connect the scripts to a separately

runningmulti-user database; another is to extend the existing databasewith con-

current transaction features.

Another problem, addressed in the EMRMsystem, is how todealwith lengthy

browser interactions, which require the task process to suspend while the user

enters further details. A related difficulty, peculiar to logic programming sys-

tems, is how to deal with backtracking to a previous stage in the user interac-

tion. The ProWeb system [133] records the pages associated with earlier stages,

and can redisplay them as required. Backtracking may also make it necessary

9.1 Logic Programming Technology for the Web 249

to rollback changes to (shared) resources. These problems can occur with any

multi-user logic programming application, but are compounded by the forms-

based user interface supplied byCGI, and the stateless nature of theHTTPproto-

col. For LogicWeb applications, backtracking leaves side-effects. As mentioned

in Chapter 4, LogicWeb programs downloaded in failed derivation branches re-

main cached. Also, LogicWeb goal evaluations can leave side effects on server

hosts on backtracking. For example, if a LogicWeb goal has posted information

to a server, on backtracking over this goal, the information is not recovered from

the server.

A third server-side technique is to completely replace the traditional Web

server by software which combines the functionality of a server with the partic-

ular task. This is illustrated in Figure 9.3.

Figure 9.3 A dedicated logic programming server.

client
user

dedicated logic

browser

query

answer

programming
server

Anotable logic programming solution in this style is the ECLiPSeHTTP server

library, which allows a basic server framework to be customised for different

communication protocols [32]. Indeed, the major advantage of this technique

is the way that the server can be specialised for specific applications and com-

munication modes. The main drawback is the large amount of work required

to implement a fully featured server with concurrency control, error handling,

administrative tools, and so on.

This approach is also used in theMunichRentAdvisor, which coded its server

with ECLiPSe (but without the help of the ECLiPSe HTTP server library) [87].

A different view of this server-side technique is the idea of a wrapper which

250 CHAPTER 9

provides a uniform database interface to disparate sources, such as the semi--

structured documents found on the Web. Bonnet et al [31] describes the use of

Prolog to write a generic wrapper.

9.1.3 Peer-to-peer Systems

The Web model is based on clients and servers, which makes it difficult to code

systems where the communication is between entities with equal status. In par-

ticular, it discourages the implementation of multi-agent systems where it is es-

sential that all the participants can communicate on equal terms.

For this reason, some logic programming systems utilise other abstractions

but retain the Internet as their underlying communication layer. Two such ab-

stractions are message-passing and blackboards.

The language April [141] uses message passing and has the ability to move

code between machines. April is not strictly speaking a logic programming lan-

guage, but has borrowed ideas from logic programming, and its macro language

can be used to support more Prolog-like behaviour [55].

April is used as the basis of a multi-agent system for extracting informa-

tion from multiple, heterogeneous information sources [55]. Unlike LogicWeb’s

CIFI, described in Chapter 5, a variety of agents are used for carrying out com-

ponent tasks, such as locating sources, phrasing queries in a suitable form for

those sources, translating responses, and reformulating queries. Also, agents are

moved over the network so that queries are carried out locally at the information

sources.

The LogicWeb model focuses on communication between LogicWeb appli-

cations and servers, and not on communication between LogicWeb applications

residing on different hosts. However, asynchronous message passing between

two LogicWeb applications (running on different hosts) can be simulated by us-

ing a Web server (acting as a mediator) to store messages for clients. For exam-

ple, a LogicWeb application can use the POST method to send a message to the

9.1 Logic Programming Technology for the Web 251

mediator, and another LogicWeb application can request its messages from the

mediator using a GET request (at a later time). A limitation is that an application

must explicitly invoke a LogicWeb goal to “receive” its messages or to determine

if it has any message. The application is not interrupted by, or notified of, mes-

sage arrival.

The blackboards in Multi-BinProlog are the basis of LogiMOO, a high-level

kernel for Internet collaborative work [197]. LogiMOO has been given a forms

interface, where CGI scripts are used to communicate with a persistent Logi-

MOO server. More recent versions of BinProlog permits executing code to

migrate between platforms by relocating first order continuations acting as

threads [193, 194]. The intuitionistic assumption mechanism is used to invoke

computations on remote BinProlog servers. LogiMOO uses local and virtual

blackboards to hide the underlying network. Similar approaches are possible in

other logic programming languages with Linda-style blackboards, such as SICS-

tus Prolog. For example, ACLT, implemented in SICStus Prolog, offers multiple

logical tuple spaces aimed at coordinating activities on theWeb [71]. One of their

extensions to the Lindamodel is the notion of communication events which trig-

ger activities automatically.

As early as 1994, a commercial product based on Linda for collaborative work

over the Internet, called Ubique Doors [179], used Flat Concurrent Prolog (FCP).

However, it is now coded in C++.

The blackboard paradigm, or Linda model, is useful because it operates at a

higher level than the networking protocols required for peer-to-peer systems. In

particular, the board abstraction can be viewed in several different ways: as a

kind of global knowledge-base, a flexible communications medium, or a virtual

world where agents meet. Most systems support multiple boards, to further en-

hance the representation. The board mechanism simplifies the complex task of

defining agent cooperation andnegotiation protocols since it allows the coupling

between agents to be less explicit, overcoming the restrictions of point-to-point

252 CHAPTER 9

communication in simplemessage passing and client-server formalisms. Boards

allow applications to be scaled up easily since the addition of extra agents does

not require a realignment of the communication network. Also, coordination ac-

tivities can be represented by agents (e.g., as mediators), thereby placing control

on an equal footing with the other computational aspects of the paradigm.

The main disadvantage of the board model is the implicit nature of the con-

nections between agents and their control or coordination logic. This can make

it difficult to understand the overall behaviour of a system.

Since a CGI forms interface can be used to communicate with a LogiMOO

server [197], a LogiMOO client can be implemented as a LogicWeb application.

By connecting to the same LogiMOO server, two LogicWeb applications can

communicate using the blackboard mechanism.

Different from the above abstractions is the use of a distributed logic pro-

gramming language. Pamela is a proposed system for helping a user find and

track information on the Web [77]. It will be coded using the distributed logic

programming language DLP, extended with primitives to access the Web and

the DESIRE modelling framework for expressing cooperation between agents.

CORBAwill be utilised as the object-level mediator for communication between

software agents and other Internet entities.

9.2 Other Web Programming Languages

This section reviews SQL-based languages for querying the Web and languages

with explicit constructs tomatch theWeb’s nondeterministic nature (as explained

in Section 2.1.2.3).

9.2 Other Web Programming Languages 253

9.2.1 SQL-based Web Querying Languages

WebSQL [144] and W3QL [115] are examples of Web querying languages based

on the database query language SQL. These languages allow the user to specify

queries which� take into account the Web’s hypertext structure;� incorporate some of the user’s knowledge for searching; and� involve more complex analysis of page contents.
Such queries are not supported by search engines whose pages are queried as a

flat corpus. These languages impose a data model on theWeb and allow queries

to be specified based on the data model. Both these languages adopt a simple

relational model of pages which do not represent the contents of pages in detail.

WebSQL models the Web with two relations:Document[url; title; text; type; length;modif]
which represents eachHTML document’s URL, title, HTML source, MIME type,

length, and last modification date, andAnchor[base; href; label]
whichmodels each anchor (or link) in a document. base is the URL of the HTML
document containing the anchor, href is the URL of the document referred to,
and label is the label of the anchor.
The data model for W3QL allows the title, base URL, HTML source, and the

anchors of HTML documents to be queried.

The LogicWeb model of Web pages subsumes these page models in that a

LogicWeb program contains facts allowing all of the above information (and oth-

ers) to be retrieved. However, W3QL models not only pages but also Latex and

PostScript files. Any type of file can be retrieved and processed as strings in

254 CHAPTER 9

a LogicWeb program. But it would be convenient to query the components of

other types of files in the same way as page components are queried. This is

listed as an avenue for future work in Chapter 10.

WebSQL and W3QL queries are formulated using path regular expressions

which specify sequences of Web link traversals. The analysis of page contents

and anchor labels involves substring matching in WebSQL and regular expres-

sion pattern matching in W3QL. These queries can be reformulated in the Log-

icWeb language since the full expressive power of Prolog is present. As exam-

ples, twoWebSQL queries from [11] are re-expressed in the LogicWeb language.

These two queries show that link traversals specifiable by path regular expres-

sions are specifiable in the LogicWeb language.

Example 1 (query 5 in [11]). The following query first queries an index server

(AltaVista is chosen) to find pages that mention the keywords “employment job

opportunities”, and then, from each of these pages, paths of length 1, 2, or 3 (i.e.,

a sequence of 1, 2, or 3 links) are followed to find a page that contains the phrase

“software engineer”.

% URL1 is a page containing ‘‘software engineer’’ reachable in a

% path of length 1, 2, or 3 from the AltaVista result page.

se_page(URL1) :-

lw(get, "http://www.altavista.yellowpages.com.au/cgi-bin/query?

mss=simple&pg=q&q=employment+job+opportunities")#>

link(_, URL),

contains_se(3, URL, URL1).

contains_se(_, URL, URL) :-

lw(get, URL)#>h_text(Src),

contains(Src, "software engineer").

contains_se(Depth, URL, URL2) :-

Depth > 1,

lw(get, URL)#>link(_, URL1),

Depth1 is Depth - 1,

contains_se(Depth1, URL1, URL2).

9.2 Other Web Programming Languages 255

Note that the code does not detect loops formed by pages linking back to previ-

ously visited pages.

Example 2 (a generalisation of query 10 in [11]). The following query returns

the URL of a broken link which is reachable from a given page.

broken_url(URL, BURL) :-

reachable(URL, BURL),

not(lw(get, BURL)#>true). % the link is broken

% URL1 is reachable from URL if

% URL1 is contained in URL or URL1 is reachable from a link in URL.

reachable(URL, URL1) :-

lw(get, URL)#>link(_, URL1).

reachable(URL, URL2) :-

lw(get, URL)#>link(_, URL1),

reachable(URL1, URL2).

A broken link is detected by the failure of the goal lw(get, BURL)#>true. In

both cases, setof/3 can be used to find all such pages (though infinite looping

is possible if a link goes back to a previous page).

The semantics of WebSQL and W3QL assume a static model of the Web, fo-

cusing on the structure of the part of the Web being queried such as the node

content structure and hypertext structure. The operational semantics in Chap-

ter 3 recognises that theWeb is not static and that changes on server hosts and in

the network could mean that required programs are not obtainable. The condi-

tion on the result of add programs in rule (3.10) ensures that required programs
are available before goal evaluation continues.

WebOQL [10], another Web querying language with SQL-based syntax, em-

ploys a tree-structured model of HTML documents similar to that used in W-

ACE, but whose representation is not a logic term but expressions made up of

tree labels and operators over trees. The tree representation gives better support

for analysis and extraction of document components than the relational models.

The main aim of the language is to allow restructuring of documents: forming a

256 CHAPTER 9

newdocument using selected components extracted from an existing document.

In contrast to the tree-structured page models which focus on HTML structure,

the LogicWeb page model emphasises types of components such as links, sec-

tions, and images, and facilitates extracting and searching over components of

the same type.

Adrawback of the above query languages is their limited expressiveness com-

pared to traditional programming languages. A full programming languagewith

constructs for Web interaction has greater expressive power and generality.

9.2.2 LanguagesModelling theWeb’s Nondeterministic Nature

The above SQL-based languages assume that theWeb is a static database and do

not take into account unreliability and nondeterminism in communication. Two

recently proposed languages aim to provide constructs to match the nondeter-

ministic nature of theWeb: theHigh-level Internet Programmingwith Persistent

Objects (HIPPO) language [57], and Cardelli et al’s service combinators [50].

HIPPO views the Web as a large database mutable by multiple agents (and

not just by the agent querying the database). A key feature of HIPPO is the abil-

ity to express nondeterminism using the alt construct. For example, if a and

b are two statements to retrieve pages from two different sites, then a alt b

means return the result of either operation. It is an implementation choice to de-

termine if this nondeterminism results in concurrent or alternative (and single-

threaded) computations. Such nondeterminism is also expressible in the Log-

icWeb language, with single-threaded semantics. The HIPPO project also plans

to add typed data to theWeb and support their querying usingHIPPO. TheHIP-

PO language is still under development.

Cardelli et al’s service combinators allow the behaviour of a human brows-

ing the Web to be represented as a program consisting of a sequence of com-

mands. There are commands to retrieve pages, concurrently execute two com-

mands, time-out on apage request, terminate a command if the rate of data trans-

9.3 Logic-based Hypertext Models 257

fer drops below a threshold, or repeat commands. The service combinators do

not in themselves form a full programming language but can be usefully embed-

ded in a language. The service combinators have been implemented as functions

and operators in a scripting language called WebL [114]. Timing-out and mea-

suring data transfer rate would be useful in the LogicWeb language. Extend-

ing the LogicWeb language to incorporate these features is discussed in the next

chapter.

9.3 Logic-based Hypertext Models

The use of first-order logic to capture the components of hypertext have been

used by Bieber in [27]. Simple notions of hypertext node, hypertext link, and

link traversal are first formalised in first-order logic. For example, the following

example adapted from [27] shows how two nodes and a link between them are

represented:

node(1, [‘The Age’, ‘August 8, 2001’])

node(2, [‘The New York Times’, ‘August 11, 1999’])

link(1, 1, 2, display, full window)

This formalisation is then used as a basis for generalising the node and link

notions, allowing the generalisations to be captured and reasonedwith formally.

Nodes are extended from fixed pieces of text to dynamically generated text, and

link activation do not simply produce the destination node but can execute at-

tached procedures.

First-order logic is used to model hypertext in [91], with emphasis on for-

mally capturing functionalities such as the filtering of information during link-

ing, and the versioning, aggregation, and generalisation of nodes.

258 CHAPTER 9

Both the above models aim to provide a clear and rigorous logic-based un-

derstanding of hypertext abstractions (e.g., node and link) and a framework to

extend their functionality. In a similar way, LogicWeb provides a logic program-

ming interpretation of the Web’s hypertext notions of node (or page) and link,

and extend their functionality. In LogicWeb, the modelling of link activation us-

ing rules provides a basis for extending link semantics (as shown in Chapter 7),

and themodelling of pages as programs provides a conceptual understanding of

“query-able pages”. LogicWeb also introduces the idea of composingWeb pages

which is not present in the other two hypertext models. In [91], an aggregation

groups nodes together under the same name but do not specify semantically rich

pairwise combination of nodes (as in the case of LW-composition operators).

Chapter 10

Conclusion

This thesis has presented LogicWeb, a model of the Web as a collection of inter-

related logic programs, and explored its implementation and applications. The

central notion in LogicWeb is the LogicWebprogramwhich is formed fromHTTP

response objects.

This thesis has demonstrated that LogicWeb is a feasible, versatile, and ef-

fective integration of logic programming technology with the Web. LogicWeb

enhances Web documents and links with logic programming based interactive

behaviours using chiefly client-side computations, and enables the construction

of applications on theWebwith the help of abstractions from compositional logic

programming. A new Web programming paradigm has been developed based

on the idea of LogicWeb programs.

Chapter 3 showed how Web documents are translated into LogicWeb pro-

grams, how LogicWeb programs form applications on the Web, and how Pro-

log is extended with the use of LogicWeb programs to form the LogicWeb lan-

guage. The operational semantics of LogicWeb programs was given by extend-

ing the operational semantics of an ordinary compositional logic programming

language (described in Chapter 2). Computation involving LogicWeb programs

combines deduction with Web interaction, returning a set of downloaded Log-

icWeb programs as a side-effect of goal derivation. The operational semantics

259

260 CHAPTER 10

models this side-effect and shows how LogicWeb programs downloaded at one

point in a derivation are used for subsequent goal derivations without further

network access. The unpredictable characteristic of the oracle function models

the unpredictability in downloading the programs.

Implementation of LogicWebwas explained in Chapter 4. A system integrat-

ing a Prolog system with the Mosaic browser was described which permits Log-

icWeb programs to be queried through the user interface mechanisms of forms

and links. For processing queries, an interpreter for LogicWeb programswas de-

veloped based on the operational semantics of Chapter 3. Alternative methods

for implementing LogicWeb were outlined in Chapter 9.

The LogicWeb applications investigated in Chapters 5, 6, and 7 demonstrate

a variety of Web programming tasks that logic programming is very useful for.

These tasks naturally involve symbolic processing (e.g., knowledge modelling

and manipulation). Particular applications developed included the rule-based

agent CIFI, a querying facility for citation databases on theWeb, guided tours on

the Web, and links which on activation query structured data to determine their

destinations and perform computations to cope with HTTP request failures.

Logic programming can contribute towards Web search tool construction.

As CIFI exemplifies, when the knowledge required for a Web searching task is

known in detail and can be precisely stated (e.g., the search target can be recog-

nised using heuristics, and it is knownwhich sites to use, andwhat to look for on

pages), search can be automated by engineering the knowledge into a tool, and

logic programming is a convenient formalism for such knowledge engineering.

Moreover, as logic programming is widely used for declaratively coding graph

search algorithms, the LogicWeb languagewould beuseful for declaratively cod-

ing Web search algorithms, with minimal effort required for details of network-

ing, document caching, and document parsing.

The data modelling and high-level symbolic processing capabilities of logic

programming are crucial for building lightweightWebdatabaseswhich are read-

Conclusion 261

able yet formal and amenable to sophisticated querying and composition. These

capabilities and dynamic databasemanipulation are also significant for address-

ingWeb linking problems through querying andmanipulating structured meta-

data.

InChapter 8, security issues concernedwith executingdownloadedLogicWeb

programs were dealt with, and the system was extended to implement a policy-

based security model for the safe execution of LogicWeb programs. The use of

policy programswas specifiedby extending the operational semantics fromChap-

ter 3. The modified operational semantics was used to provide a simple proof of

the soundness of the model with respect to a safety property.

From the viewpoint of mobile code security, logic programming has a num-

ber of advantages, as the security model in Chapter 8 exemplifies. First, logic

programs are amenable to formal reasoning and their formal semantics can be

extended to accommodate security features forming the basis of a securitymodel.

Second, extensive control over the execution of logic programs can be achieved

using meta-interpreters. Third, the absence of pointers and automatic memory

management prevent misuse of memory. Fourth, the use of logic programs as

policy programs in Chapter 8 enables the declarative specification of resource

usage and control.

Chapter 9 placed LogicWeb in the context of other work on logic program-

ming and theWeb,Webprogramming languages, and logic-based hypertextmod-

els.

Amidst the large established base of imperative code and expertise, logic pro-

gramming languages continue to improve in a variety of ways such as in expres-

sive power (e.g., Lygon [211]), efficiency in execution (e.g., Mercury [181]), and

program structuring abstractions (e.g., [101]). Logic programming languages (and

other declarative programming languages) should be exploited forWebprogram-

ming, and this thesis has proposed the LogicWeb approach towards this end.

262 CHAPTER 10

10.1 Language Extensions

A goal of language design should be simplicity [206]. The current design of the

LogicWeb language focuses onproviding the ability tomanipulate LogicWebpro-

grams from disparate sources. Mastery of the current language features will al-

ready enable a variety of applications to be built such as those described in this

thesis. Nevertheless, the language can be extended in a variety of directions in-

creasing its functionality and generality, though at the cost of greater complexity.

Seven features which can be added are outlined below. A design and implemen-

tation challenge is to have all these features co-exist in the language, which po-

tentially will have a complicated semantics.

10.1.1 Extending the Semantics of Downloading

In the current implementation of the LogicWeb language, there are no mecha-

nisms for handling network delays, low data transfer rates, or requests via proxy

servers. Such mechanisms would allow greater programmer control over inter-

actionswith theWeb, similar to Cardelli’s service combinators (see Section 9.2.2).

For example, the programmer should be able to limit the amount of time spent

on a HTTP request, and a request may need to be routed through a proxy server.

One possible way to implement these mechanisms is to extend the LogicWeb

program identifier to the form:

lw(Type, URL, Control, Status)#>Goal

Control is a list of terms specifying control information such as a time-out pe-

riod on the HTTP request, a proxy Web server through which the request must

be channelled, or a threshold data transfer rate. If the data transfer rate drops

below this threshold value, then the download is interrupted. Status is a term

reporting a successful download or a list of terms indicating reasons for a down-

load failure. A crucial change here from the earlier semantics of LogicWeb goals

is that download failure will not fail the LogicWeb goal, i.e. the LogicWeb goal

10.1 Language Extensions 263

will succeed leaving variables in Goalunbound. However, the earlier semantics

can be coded up by taking advantage of unification, instantiating Statuswith

download success in the LogicWeb goal:

lw(Type, URL, Control, download_success)#>Goal

The control information is required for downloading a program. As an ex-

ample, the following goal time-outs if there is no response from the server after

5 seconds, and issues the HTTP request through a proxy at location URL1:

?- lw(get, "URL0", [timeout(5), proxy("URL1")], Status)#>goal.

10.1.2 Other Header Fields in HTTP Requests

The LogicWeb program identifier used in this thesis is formed from the mini-

mum amount of information required in a HTTP request. This information is

adequate for the applications presented and keeps the identifiers simple.

The HTTP protocol allows clients to submit other header fields in a HTTP re-

quest such as passwords and usernames (often used by Web servers for restrict-

ing access to information), and MIME types that the client will accept. Similar

to the control information mentioned above, such information can be included

in the program identifier when downloading a page. For example, the following

goal extends the goal in Section 10.1.1 by submitting the username guestwith

password general:

?- lw(get, "URL0",

[timeout(5), proxy("URL1"), pass("guest", "general")],

Status)#>goal.

This extension leads to lengthy program identifiers. Subsequent referrals to a

downloaded program do not require the additional header information, but the

programmer has to remember that a program has been downloaded.

264 CHAPTER 10

10.1.3 Lazy Download

The semantics in Chapter 3 can be said to download programs eagerly. Context

switching as specified inChapter 3 downloads all programs in a LW-composition

before goal evaluation begins, including programs that are never used in the

evaluation of the specified goal. One optimisation is to download programs

lazily, i.e. a program is downloaded only when an attempt is made to retrieve

its clauses.

For example, in the following LogicWeb goal

?- (lw(get, "URL0") + lw(get, "URL1"))#>p(X).

suppose that p(X) succeeds binding X using only the clauses from lw(get,

"URL0"), and no further solutions for X are required. Then, with eager down-

loading, time and resources are wasted in downloading lw(get, "URL1"),

whose clauses are not used. Since the evaluation of p(X) uses the clauses

from lw(get, "URL0") first, this wastage is prevented by first downloading

lw(get, "URL0") (as soon as its clauses are required), and then evaluating

p(X)without needing to download lw(get, "URL1").

Using the semantics given in Chapter 3, the above LogicWeb goal expresses

the programmer’s intention to “download the two programs, and evaluate p(X)

in the LW-union of the two programs”, and if one of the programs cannot be

downloaded, this intention cannot be satisfied.

Lazy download offers an alternative semantics for the LogicWeb goal. The

LogicWeb goal nowmeans “downloading programs only when their clauses are

needed, evaluatep(X) returning a solution forX as soon as one can be obtained”,

i.e. a solution can be returned using only programs in a sub-expression of the

original program expression.

Goals that use lazy download aremore robust returning asmany solutions as

possible and can prevent downloading programs whose clauses are never used.

In the above example, if downloadinglw(get, "URL1") fails, then eager down-

10.1 Language Extensions 265

load returns no solution. Goals with lazy download semantics must be distin-

guished from goals using eager download semantics (e.g., by using a different

operator).

Lazy download semantics might be implemented as follows. Program 4.2

is modified so that download/2 is called when clauses are selected and not by

establish context/3. ::/2 is replaced by select clause/2 in the fourth

clause of demo/2 in Program 4.2:

demo(E, A) :- select_clause(E, (A :- B)), demo(E, B).

select clause/2defines how clauses are selected from a program expression

in a similar way as select clause/3 in Program 8.1 (without the list of pol-

icy program identifiers). But for selecting a clause from a single program, the

following rule is defined:

select_clause(lw(T, U), (A :- B)) :-

download(T, U), % attempt a download

lw(T, U)::(A :- B).

This means that no attempt is made to download a program until a clause is re-

quired from it, i.e. when select clause/2 is called with the program’s iden-

tifier as its first argument.

10.1.4 Concurrency

The current LogicWeb implementation is single-threaded. The exploitation of

concurrency can potentially improve the performance of applications in a num-

ber of ways. For example, the programs required in a LW-composition can be

downloaded concurrently. Furthermore, while a program is downloading, other

goals can be evaluated. In the following query, the conjuncts can be evaluated

concurrently:

?- lw(get, "URL0")#>goal0, lw(get, "URL1")#>goal1, goal2.

266 CHAPTER 10

The programs are downloaded at the same time and the goals are evaluated in-

dependently and concurrently. LogicWeb extensions to a concurrent logic pro-

gramming language such as Parlog [54] canbe investigated. The addition ofmeta-

level operators for composing programs to the concurrent language W-ACE has

already been proposed (as noted in Section 9.1.1.2).

10.1.5 Operations On the Program Store

The operational semantics in Chapter 3 captures the monotonic extension of the

program store through successfully downloaded programs. However, deletions

(and replacement) of programs is not represented. One promising formalism for

representing such updates is linear logic which, roughly speaking, contains con-

nectives to delete (consume) and add (produce) clauses (resources). In contrast

to assert/1 and retract/1 in Prolog which are not part of classical logic, op-

erations to update resources are part of linear logic. Linear logic has been used to

provide a logical interpretation of database updates [121]. Based on such work,

linear logic based operators can be investigated for updating the program store.

Other formalisms for state update in logic programming (e.g., [3]) may also be

explored.

10.1.6 Application-specific LW-composition Operators

Other LW-composition operators can be explored besides those utilised in the

LogicWeb language. Addingmore operators increases expressive power but also

adds complexity to the language. Dialects of the LogicWeb language can be cre-

ated which are tailored for particular applications, or the language can be com-

partmentalised. For example, LogicWeb counterparts of union (e.g., LW-union),

overriding union, and tuple inheritance would form a suite of operators mod-

elling (three different notions of) inheritance between LogicWeb programs. As

mentioned in Chapter 2, overriding union has been used tomodel inheritance in

10.1 Language Extensions 267

object-oriented programming, and tuple inheritance expresses a form of inher-

itance between two programs which cannot be captured using union and over-

riding union (as shown in [152]).

10.1.7 Multiple Page Models

The page model employed in this thesis allows the convenient retrieval of par-

ticular HTML components from pages. This pagemodel is satisfactory for many

applications, but it is desirable to have other models of the page at hand. For ex-

ample, the current page model does not explicitly capture context information

such as the section to which a given link belongs, or the paragraph containing a

reference to an image. But the representation of a page as a single term in [48],

the detailed representation of HTML tags and attributes in [170], and the tree-

structured representations in W-ACE (mentioned in Section 9.1.1.2) and Web-

OQL (mentioned in Section 9.2.1) make some context information explicit.

One way to allow more flexible querying of pages is to utilise multiple page

models for each page, each model optimised for a particular kind of query. An-

othermethod is to allow a LogicWeb program ameans of specifying its ownpage

model, such as the tags to parse and the facts to generate. For example, a tag such

as

<PAGE_MODEL=URL>

can be used whereURL refers to a programwhich can be loaded into the system

for parsing the page. A basic page model will still be employed but additional

components can be generated via this specification.

The Web contains a large variety of document types (e.g., PostScript, Latex,

MicrosoftWord, Virtual RealityModellingLanguage, musicmark-up languages).

Models are needed for representing and querying other types of documents be-

sides HTML.

268 CHAPTER 10

10.2 Using StandardisedMark-up

The recent HTML 4.0 specification [171] recommends tags and attributes that al-

low HTML documents to include scripts in highly active and interactive ways.

For instance, it is possible to include in a document� a script that will execute whenever the document is downloaded modify-
ing the document’s contents dynamically,� a script to process form inputs, and� a script that is associated with a link and will execute when the link is ac-
tivated.

The scripting language must be specified together with the embed-

ded script. This mark-up provides a standard way in which LogicWeb

rules can be included within documents, i.e. non-standard tags such as

“<LW CODE>...</LW CODE>” can be omitted. Pages with rules embedded

using these HTML 4.0 tags can be mapped to LogicWeb programs in a way

similar to the mapping of HTTP response objects to facts described in Chapter 3.

A Web browser could be built which will not only support JavaScript, VB-

Script, or Tcl scripts, but also LogicWeb rules. The browser should allow its user

to build link behaviours into it, as is possible for the LogicWeb system, where

the user canmodify the predicate sys link action/2which is invoked by the

system in response to link activations (see Section 7.6).

10.3 Applications

Section 6.6.2 briefly outlined the use of lightweight deductive databases in an

Intranet setting. Other applications should be explored.

One LogicWeb application that looks promising is distributed software engi-

neering, where timely communication between project members on remote sites

10.3 Applications 269

is crucial. As noted in [14], the Web can support the required communication.

Sedlock et al [177] recommends writing Prolog programs in the literate program-

ming style, together with their documentation and specifications, in HTML files.

The programs are extracted when needed. This not only benefits the program-

mer, but also other team members who can then browse the code. The paper

describes an implementation in Prolog of a software project management sys-

tem where all the code is written in HTML files. However, all the source code

resides on a single server.

Sedlock et al’s recommendation could be taken further with LogicWeb as the

basis for a distributed programming platform. A scenario can be envisioned

where programmers on remote sites cooperate in building software consisting

of distributed LogicWeb programs, each of which is readily browsable and ex-

ecutable from other LogicWeb programs. More sophisticated module mecha-

nisms can already be built from LogicWeb programs. For example, the opera-

tors for combining LogicWeb programs can be used to model several notions of

encapsulation and visibility in the way done in [39]. Linking to versions of pro-

grams can be supported as shown in Chapter 7.

Another use of LogicWeb would be to bring more traditional rule-based ap-

plications to the Web such as expert systems. There are already expert systems

with a Web interface and use mainly server-side evaluation. For example, users

interact with the WebLS system via CGI scripts [178]. In the architecture pro-

posed in [76], a Java-applet is used as the front-end to a Prolog expert system

running on the server-side. LogicWeb offers a different architecture where the

rule-bases, the reasoning component, and the user interface can be implemented

as separate LogicWeb programs, and where all processing is client-based. This

reduces the load on the server host, stores state information on the client host re-

lieving the server of the need to maintain state information for multiple clients,

provides each user with a copy of the expert system (allowing local alterations

and extensions), and encourages software engineering principles.

270 CHAPTER 10

Bibliography

[1] K. Akama. Inheritance Hierarchy Mechanism in Prolog. In Proceedings of

the 5th Conference on Logic Programming (Lecture Notes in Computer Science

No. 264), pages 12 – 21. Springer-Verlag, June 1986.

[2] J.F. Aldana Montes and M.I. Yagüe del Valle. Querying the Web

with Higher Expressive Power: D3Web. 1997. Available at<http://apolo.lcc.uma.es/personal/yague/seg/
iclp97.html>.

[3] V. Alexiev. Mutable Object State for Object-Oriented Logic Pro-

gramming. Technical Report TR 93-15, Department of Comput-

ing Science, University of Alberta, August 1993. Available at<ftp://ftp.cs.ualberta.ca/pub/TechReports/1993/
TR93-15/>.

[4] Amzi! Prolog. HyperBase. July 1992. Product out of distribution. Infor-

mation available by e-mail to <info@amzi.com>.
[5] Amzi! Prolog. Amzi! Prolog + Logic Server – Embed Logic-Bases in

C/C++, Java, Visual Basic, Delphi, the Web and More. 1997. Available

at <http://www.amzi.com/catprls.htm>.
[6] Amzi! Prolog. WebLS - Embed Intelligent Components on

Web Pages. 1997. Documentation and system available at<http://www.amzi.com/catwebls.htm>.
271

272 BIBLIOGRAPHY

[7] D. Aquilino, P. Asirelli, C. Renso, and F. Turini. Apply-

ing Restriction Constraints to Deductive Databases. “Non-

determinism in Deductive Databases”, Annals of Mathematics and

Artificial Intelligence, 19(1 & 2):3 – 25, 1997. Available at<file://rep1.iei.pi.cnr.it/pub/asirelli/AMAI-97.ps>.
[8] D. Aquilino, C. Renso, and F. Turini. Towards Declarative

GIS Analysis. In Proceedings of the 4th ACM-GIS Workshop,

Rockville, Maryland, U.S.A., November 1996. Available at<http://www.di.unipi.it/˜renso/papers/
gis-analysis.ps>.

[9] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. WebWatcher:

A Learning Apprentice for the World Wide Web. In On-line Work-

ing Notes of the AAAI Spring Symposium Series on Information Gather-

ing from Distributed, Heterogeneous Environments, 1995. Available at<http://www.isi.edu/sims/knoblock/sss95/mitchell.ps>.
[10] G. Arocena and A. Mendelzon. WebOQL: Restructuring Documents,

Databases, and Webs. In Proceedings of the 14th International Conference on

Data Engineering, Orlando, Florida, U.S.A., February 1998. Available at<ftp://ftp.db.toronto.edu/pub/papers/weboql.ps.gz>.
[11] G. Arocena, A. Mendelzon, and G.A. Mihaila. Applications of a

Web Query Language. In Proceedings of the 6th International World

Wide Web Conference, Santa Clara, U.S.A., April 1997. Available at<http://proceedings.www6conf.org/HyperNews/get/
PAPER267.html>.

[12] P. Asirelli, C. Renso, and F. Turini. Language Extensions for Se-

mantic Integration of Deductive Databases. In Proceedings of the

International Workshop on Logic In Databases 1996 (Lecture Notes in

273

Computer Science No. 1154). Springer-Verlag, 1996. Available at<file://rep1.iei.pi.cnr.it/pub/asirelli/LID-96.ps>.
[13] H. Bacha. MetaProlog Design and Implementation. In R.A. Kowalski and

K.A. Bowen, editors, Proceedings of the 5th International Conference and Sym-

posium on Logic Programming, pages 1371 – 1387, Seattle, Washington, Au-

gust 1988. MIT Press.

[14] M. Baentsch, G. Molter, and P. Sturm. WebMake: Integrating Dis-

tributed Software Development in a Structure-enhanced Web. Pro-

ceedings of the 3rd International World Wide Web Conference, Com-

puter Networks and ISDN Systems, 27(6), April 1995. Available at<http://www.igd.fhg.de/www/www95/proceedings/papers/
51/WebMake/WebMake.html>.

[15] M. Balabanovic and Y. Shoham. Learning Information Retrieval

Agents: Experiments with Automated Web Browsing. In On-line

Working Notes of the AAAI Spring Symposium Series on Information Gath-

ering from Distributed, Heterogeneous Environments, 1995. Available at<http://www.isi.edu/sims/knoblock/sss95/
balabanovic.ps>.

[16] M. Baldoni, L. Giordano, and A. Martelli. A Multimodal Logic to Define

Modules in Logic Programming. In D. Miller, editor, Proceedings of the In-

ternational Symposium on Logic Programming, pages 473 – 487. MIT Press,

1993.

[17] S. Ball. SurfIt! - AWWWBrowser. In Proceedings of the 4th Annual USENIX

Tcl/Tk Workshop, pages 161 – 171, Monterey, California, U.S.A., July 1996.

Available at <http://demos.anu.edu.au/steve/papers/
Tcl-Workshop-96/ball.html>.

274 BIBLIOGRAPHY

[18] J.A. Bank. Java Security. December 1995. Available at<http://www-swiss.ai.mit.edu/˜jbank/javapaper/
javapaper.html>.

[19] C. Barcaroli, L. Iocchi, M. Lenzerini, and D. Nardi. Knowledge-

based Access to the Network. In Proceedings of the Workshop on

“Artificial Intelligence-based Tools to Help WWW Users” at the 5th In-

ternational World Wide Web Conference, May 1996. Available at<http://www.info.unicaen.fr/˜serge/3wia/workshop/
papers/paper6.html>.

[20] J. Barklund. Metaprogramming in Logic. In A. Kent and J.G.

Williams, editors, Encyclopedia of Computer Science and Technol-

ogy, volume 33, pages 205 – 227. Marcel Dekker, New York,

1995. Also available as UPMAIL Technical Report No. 80 at<ftp://ftp.csd.uu.se/pub/papers/reports/0080.ps.gz>.
[21] T. Berners-Lee. Universal Resource Identifiers in WWW: A Unifying

Syntax for the Expression of Names and Addresses of Objects on the

Network as used in the World Wide Web. May 1994. Available at<http://www.w3.org/Addressing/URL/URI Overview.html>.
[22] T. Berners-lee. Generic Resources. 1996. Available at<http://www.w3.org/DesignIssues/Generic.html>.
[23] T. Berners-Lee. World-wide Computer. Communications of the ACM,

40(2):57 – 58, February 1997.

[24] T. Berners-Lee, R. Cailliau, A. Luotonen, H.F. Nielsen, and A. Secret. The

World Wide Web. Communications of the ACM, 37(8):76 – 82, August 1994.

[25] T. Berners-Lee, R. Fielding, and H. Frystyk. HyperText Trans-

fer Protocol version 1.0 Specification (RFC 1945). Available from

275<http://www.w3.org/pub/WWW/Protocols/Specs.html> and at<http://ds.internic.net/rfc/rfc1945.txt>.
[26] P. Beynon-Davies, D. Tudhope, C. Taylor, and C. Jones. A Semantic

Database Approach to Knowledge-based Hypermedia Systems. Informa-

tion and Software Technology, 36(6):323 – 329, 1994.

[27] M.P. Bieber and S.O. Kimbrough. On the Logic of Generalised Hypertext.

Decision Support Systems, 11:241 – 257, 1994.

[28] H. Bloomfield. Links in Hypertext: An Investigation into How They Can Pro-

vide Information on Inter-node Relationships. PhD thesis, Queen Mary and

Westfield College, University of London, 1994.

[29] R. Bol. Loop Checking in Logic Programming. PhD thesis, CWI, Amsterdam,

The Netherlands, October 1991.

[30] H. Boley. Knowledge Bases in the World Wide Web: A Challenge

for Logic Programming. In P. Tarau, A. Davison, K. De Bosschere,

and M. Hermenegildo, editors, Proceedings of the 1st Workshop on

Logic Programming Tools for Internet Applications (in conjunction with

the Joint International Conference and Symposium on Logic Program-

ming), pages 139 – 147, Bonn, Germany, September 1996. Available at<http://clement.info.umoncton.ca/˜lpnet/lp-internet/
lpwww-e/lpwww-e.html>.

[31] Ph. Bonnet and S. Bressan. Extraction and Integration of Data

from Semi-structured Documents into Business Applications. In

Proceedings of the 10th Symposium and Exhibition on Industrial Ap-

plications of Prolog, Kobe, Japan, October 1997. Available at<http://sirac.inrialpes.fr/˜pbonnet/inap97-f.ps.gz>.

276 BIBLIOGRAPHY

[32] Ph. Bonnet, S. Bressan, L. Leth, and B. Thomsen. Towards ECLiPSe

Agents on the Internet. In P. Tarau, A. Davison, K. De Bosschere,

and M. Hermenegildo, editors, Proceedings of the 1st Workshop on

Logic Programming Tools for Internet Applications (in conjunction with

the Joint International Conference and Symposium on Logic Program-

ming), pages 1 – 9, Bonn, Germany, September 1996. Available at<http://clement.info.umoncton.ca/˜lpnet/lp-internet/
eclipse/ea.html>.

[33] K. A. Bowen. Meta-Level Programming and Knowledge Representation.

New Generation Computing, 3(4):359 – 383, 1985.

[34] K. A. Bowen and R. A. Kowalski. Amalgamating Language and Metalan-

guage in Logic Programming. In K.L. Clark and S.A. Tarnlund, editors,

Logic Programming, pages 153 – 172. Academic Press, 1982.

[35] A. Brogi. Program Construction in Computational Logic. PhD thesis, Univer-

sita di Pisa-Genova-Udine, 1993.

[36] A. Brogi, E. Lamma, and P. Mello. A General Framework for Structuring

Logic Programs. Technical report, Dipartimento diMatematica e Informat-

ica, Universita’di Udine. C.N.R., TR 04-90-RR, Maggio 1990.

[37] A. Brogi, E. Lamma, and P. Mello. Objects in a Logic Programming Frame-

work. In Proceedings of the 1st and 2nd Russian Conference on Logic Program-

ming Framework (Lecture Notes in Artificial Intelligence No. 592), pages 102 –

113. Springer-Verlag, 1990/1991.

[38] A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Meta for Modularising

Logic Programming. In Proceedings of the 3rd. International Workshop, Meta-

Programming in Logic, META 92 (Lecture Notes in Computer Science No. 649),

pages 105 – 119. Springer-Verlag, June 1992.

277

[39] A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular Logic Pro-

gramming. ACM Transactions on Programming Languages and Systems,

16(4):1361 – 1398, 1994.

[40] A. Brogi, C. Renso, and F. Turini. Amalgamating Language

and Meta-Language for Composing Logic Programs. In Pro-

ceedings of GULP-PRODE 94 Joint Conference on Declarative Pro-

gramming, pages 580 – 592, Peniscola, Spain, 1994. Available at<ftp://ftp.di.unipi.it/papers/turini/PRODE94.ps.gz>.
[41] A. Brogi, C. Renso, and F. Turini. Dynamic Composition of Pa-

rameterised Logic Programs. In Proceedings of the Workshop on

Logic-based Composition of Software (in conjunction with the 14th In-

ternational Conference on Logic Programming), July 1997. Available at<http://www.scs.leeds.ac.uk/hill/locos/final/
brogi.ps.gz>.

[42] A. Brogi and F. Turini. Meta-logic for Program Composition: Semantic Is-

sues. In K.R. Apt and F.Turini, editors,Meta-Logics and Logic Programming,

chapter 4, pages 83 – 110. MIT Press, 1995.

[43] L. Brown. Mobile Code Security. Technical report, Australian De-

fence Force Academy, Canberra, Australia. TR - CS07/96, September

1996. Presented to AUUG96, Melbourne, Australia and available at<http://www.adfa.oz.au/˜lpb/TR/mcode96.html>.
[44] L. Brown. Custom Security Policies in

SSErl (DRAFT). April 1997. Available at<http://www.adfa.oz.au/˜lpb/TR/ssp97/sserl pol97.html>.
[45] L. Brown. Introducing SERCs Safer Erlang (DRAFT). April 1997. Available

at <http://www.adfa.oz.au/˜lpb/TR/ssp97/sserl97a.html>.

278 BIBLIOGRAPHY

[46] M. Bugliesi. A Declarative View of Inheritance in Logic Programming. In

K.Apt, editor, Proceedings of the Joint International Conference and Symposium

on Logic Programming, pages 113 – 127. MIT Press, 1992.

[47] M. Bugliesi, E. Lamma, and P. Mello. Modularity In Logic Programming.

Journal of Logic Programming, 19 & 20:443 – 502, May 1994.

[48] D. Cabeza, M. Hermenegildo, and S. Varma. The PiLLoW/CIAO

Library for Internet/WWW Programming Using Computational

Logic Systems. In P. Tarau, A. Davison, K. De Bosschere, and

M. Hermenegildo, editors, Proceedings of the 1st Workshop on Logic

Programming Tools for Internet Applications (in conjunction with the

Joint International Conference and Symposium on Logic Programming),

pages 43 – 62, Bonn, Germany, September 1996. Available from<http://clement.info.umoncton.ca/˜lpnet/lp-internet/
pillow/lpnet3.html>.

[49] M. Calejo and J.P. Sousa. Embedding Prolog in the Java Environ-

ment. In K. De Bosschere, M. Hermenegildo, and P. Tarau, edi-

tors, Proceedings of the 2nd Workshop on Logic Programming Tools for In-

ternet Applications (in conjunction with the 14th International Conference

on Logic Programming), pages 108 – 116, July 1997. Available at<http://www.clip.dia.fi.upm.es/lpnet/proceedings97/
calego/calego.html>.

[50] L. Cardelli and R. Davies. Service Combina-

tors for Web Computing. 1997. Available at<http://www.research.digital.com/SRC/personal/
Luca Cardelli/Papers/ServiceCombinators.A4.ps>.

279

[51] B. Carpenter. A Prolog Based CGI Handler. 1996. Available at<http://macduff.andrew.cmu.edu/cgparser/
prolog cgi.html>.

[52] T. Chikayama. ESP - Extended Self-Contained Prolog - as a Preliminary

Kernel Language of 5th Generation Computers. New Generation Comput-

ing, 1(1):11 – 24, 1983.

[53] P. Ciancarini and G. Levi. What is Logic Programming Good for in Soft-

ware Engineering. Technical Report UBLCS-93-9, Laboratory for Com-

puter Science, University of Bologna, April 1993.

[54] K.L. Clark and S. Gregory. Parlog: Parallel Programming in Logic. ACM

Transactions on Programming Languages and Systems, 8(1):1 – 49, January

1986.

[55] K.L. Clark and V.S. Lazarou. Distributed Information Retrieval Us-

ing a Multi-Agent System and the Role of Logic Programming.

In K. De Bosschere, M. Hermenegildo, and P. Tarau, editors, Pro-

ceedings of the 2nd Workshop on Logic Programming Tools for Inter-

net Applications (in conjunction with the 14th International Confer-

ence on Logic Programming), pages 82 – 99, July 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
lazarou.ps>.

[56] D. Connolly. W3C: On Mobile Code. December 1996. Available at<http://www.w3.org/MobileCode/>.
[57] R. Connor, K. Sibson, and P. Manghi. HIPPO: High-level In-

ternet Programming with Persistent Objects. Available at<http://www.dcs.gla.ac.uk/˜hippo/>.

280 BIBLIOGRAPHY

[58] P. Coscia, P. Franceschi, G. Levi, G. Sardu, and L. Torre. Meta-Level Defini-

tion and Compilation of Inference Engines in the Epsilon Logic Program-

ming Environment. In R.A. Kowalski and K.A. Bowen, editors, Proceed-

ings of the 5th International Conference on Logic Programming, pages 359 – 373.

MIT Press, 1988.

[59] M. Covington. Natural Language Processing For Prolog Programmers.

Prentice-Hall, Inc., 1994.

[60] M.L. Creech. Author-Oriented Link Management. In Proceedings of

the 5th International World Wide Web Conference, April 1997. Available at<http://www5conf.inria.fr/fich html/papers/P11/
Overview.html>.

[61] G. Cugola, C.Ghezzi, G. Picco, andG. Vigna. AnalyzingMobile Code Lan-

guages. InMobile Object Systems: Towards the Programmable Internet (Lecture

Notes in Computer Science No. 1222), pages 93–110. Springer-Verlag, April

1997.

[62] E. Damiani and L. Tanca. Structuring and Querying the Web Through

Graph-Oriented Languages. In K. De Bosschere, M. Hermenegildo, and

P. Tarau, editors, Proceedings of the 2nd Workshop on Logic Programming

Tools for Internet Applications (in conjunction with 14th International Con-

ference on Logic Programming), pages 129 – 148, July 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
edamiani.ps>.

[63] J. Davila (Web page author), editor. On-line Abstracts for “Logic Program-

ming and the Internet, Opportunities and Challenges, A Compulog Net Work-

shop at Imperial College”, London, U.K., December 1996. Available at<http://www-lp.doc.ic.ac.uk/lp-internet/
lp-int-abs.html>.

281

[64] A. Davison. A Survey of Logic Programming-based Object Oriented Lan-

guages. In P. Wegner, A. Yonezawa, and G. Agha, editors, Research Direc-

tions in Concurrent Object Oriented Programming, pages 42 – 106. MIT Press,

1993.

[65] A. Davison and S.W. Loke. An Introduction to LogicWeb. In Proceedings

of the 20th Electrical Engineering Conference of Thailand, pages 262 – 267 (Vol-

ume 1), Bangkok, Thailand, November 1997. TechnologyMedia Company

Ltd.

[66] K. De Bosschere, M. Hermenegildo, and P. Tarau, editors. Pro-

ceedings of the 2nd Workshop on Logic Programming Tools for Internet

Applications (in conjunction with the 14th International Conference on

Logic Programming), Leuven, Belgium, September 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/
proceedings97/>.

[67] P.M.E. De Bra and R.D.J. Post. Information Retrieval in the World-Wide

Web: Making Client-based Searching Feasible. In Proceedings of the 1st

WorldWideWebConference, ComputerNetworks and ISDNSystems, pages 183

– 192. Elsevier Science, 1994.

[68] P.M.E. De Bra and R.D.J. Post. Searching for Arbitrary Informa-

tion in the WWW: the Fish-Search for Mosaic. In Proceedings of

the 2nd International World Wide Web Conference, 1994. Available at<http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/
Searching/debra/article.html>.

[69] D. Dean, E.W. Felten, and D.S. Wallach. Java Security:

From HotJava to Netscape and Beyond. In Proceedings of

the 1996 IEEE Symposium on Security and Privacy, pages 190

282 BIBLIOGRAPHY

– 200, Oakland, California, U.S.A., May 1996. Available at<http://www.cs.princeton.edu/sip/pub/secure96.html>.
[70] B. Demoen and P. Tarau. jProlog. 1997. System available at<http://www.cs.kuleuven.ac.be/˜bmd/PrologInJava/>.
[71] E. Denti, A. Natali, and A. Omicini. Merging Logic Programming

into Web-based Technology: A Coordination-based Approach. In

K. De Bosschere, M. Hermenegildo, and P. Tarau, editors, Pro-

ceedings of the 2nd Workshop on Logic Programming Tools for Inter-

net Applications (in conjunction with the 14th International Conference

on Logic Programming), pages 117 – 128, July 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
denti.ps>.

[72] E. Denti and A. Omicini. Open Logic Theory Composition in a Software

Engineering Perspective. In L. Sterling and P. Ciancarini, editors, Proceed-

ings of the Post-Conference Workshop on Applications of Logic Programming to

Software Engineering (in conjunction with the International Conference on Logic

Programming), pages 139 – 148, Genova, Italy, June 1994.

[73] S. DeRose. Expanding the Notion of Links. In Proceedings of Hypertext ’89,

pages 249 – 257. ACM Press, 1989.

[74] S. Dobson and V. Burrill. Towards Improving Au-

tomation in the World Wide Web. Available at<http://www.scit.wlv.ac.uk/ndisd/dobson.ps>.
[75] S.A. Dobson and V.A. Burrill. Lightweight Databases. Pro-

ceedings of the 3rd International World Wide Web Conference, Com-

puter Networks and ISDN Systems, 27(6), April 1995. Available at<http://www.igd.fhg.de/www/www95/proceedings/papers/
54/darm.html>.

283

[76] S.R. El-Beltagy, M. Rafea, and A. Rafea. Practical Develop-

ment of Internet Prolog Applications using a Java Front End. In

K. De Bosschere, M. Hermenegildo, and P. Tarau, editors, Pro-

ceedings of the 2nd Workshop on Logic Programming Tools for Inter-

net Applications (in conjunction with the 14th International Conference

on Logic Programming), pages 100 – 107, July 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
beltagy/beltagy.html>.

[77] A. Eliëns, P. de Bra, J. Treur, F. Brazier, and H. van Vliet. Po-

sition paper: Web Agent Support Programming. In Proceedings of

the Workshop on Logic Programming and the Web at the 6th International

World Wide Web Conference, Santa Clara, U.S.A., 1997. Available at<http://www.cs.vu.nl/˜eliens/WWW6/papers/wasp/>.
[78] A. Eliëns (Web page author), editor. Proceedings of the Workshop

on Logic Programming and the Web at the 6th International World

Wide Web Conference, Santa Clara, U.S.A., April 1997. Available at<http://www.cs.vu.nl/˜eliens/WWW6/index.html>.
[79] J. Eriksson, F. Espinoza, N. Finne, F. Holmgren, S. Janson, N. Kaltea, and

O. Olsson. An Internet Software Platform Based on SICStus Prolog. In

Proceedings of the Workshop on Logic Programming and the Web at the 6th

World Wide Web Conference, Santa Clara, U.S.A., April 1997. Available at<http://www.cs.vu.nl/˜eliens/WWW6/papers/joakime/>.
[80] W. Ernst. Presenting ActiveX. Sams.net, 1996.

[81] O. Etzioni and D. Weld. Intelligent Agents on the Internet: Fact, Fiction,

and Forecast. IEEE Expert, 10(4):44 – 49, August 1995.

[82] J. Euzenat. Knowledge Bases as Web Page Backbones. In Proceedings

of the Workshop on “Artificial Intelligence-based tools to help WWW users” at

284 BIBLIOGRAPHY

the 5th International World Wide Web Conference, May 1996. Available at<http://www.info.unicaen.fr/˜serge/3wia/workshop/
papers/paper10.html>.

[83] A. Fall. Reasoning with Taxonomies. PhD thesis, School of Computing Sci-

ence, Simon Fraser University, 1996.

[84] A. Farquhar, A. Dappert, R. Fikes, and W. Pratt. Integrating In-

formation Sources Using Context Logic. In On-line Working Notes

of the AAAI Spring Symposium Series on Information Gathering from

Distributed, Heterogeneous Environments, January 1995. Available at<http://www.isi.edu/sims/knoblock/sss95/farquhar.ps>.
[85] D. Ferguson. Linking a Prolog Program into anHTTPD. 7November 1996.

Posting to <comp.lang.prolog>.
[86] E.J. Friedman-Hill. JESS, The Java Expert System

Shell (Version 3.2). November 1997. Available at<http://herzberg.ca.sandia.gov/jess/README.html>.
[87] T. Frühwirth and S. Abdennadher. The Munich Rent Advisor. In P. Tarau,

A. Davison, K. De Bosschere, andM. Hermenegildo, editors, Proceedings of

the 1st Workshop on Logic Programming Tools for Internet Applications (in con-

junction with the Joint International Conference and Symposium on Logic Pro-

gramming), pages 11 – 27, Bonn, Germany, September 1996. Available at<http://clement.info.umoncton.ca/˜lpnet/lp-internet/
lpnet5/lpnet5.html>.

[88] D.M. Gabbay and U. Reyle. N-Prolog: An Extension of Prolog with Hypo-

thetical Implications. Journal of Logic Programming, 1:179 – 210, 1984.

[89] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, 1979.

285

[90] S. Garfinkel. PGP: Pretty Good Privacy. O’ Reilly and Associates, Inc., 1995.

[91] P.K. Garg. Abstraction Mechanisms in Hypertext. Communications of the

ACM, 31(7), July 1988.

[92] F. Giannotti, G. Manco, and D. Pedreschi. A Deductive Data

Model for Representing and Querying Semistructured Data. In

K. De Bosschere, M. Hermenegildo, and P. Tarau, editors, Pro-

ceedings of the 2nd Workshop on Logic Programming Tools for Inter-

net Applications (in conjunction with the 14th International Confer-

ence on Logic Programming), pages 55–67, July 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
manco.ps>.

[93] L. Giordano and A. Martelli. Structuring Logic Programs: A Modal Ap-

proach. Journal of Logic Programming, 21(2):59 – 94, 1994.

[94] L. Giordano, A. Martelli, and G. Rossi. Structured Prolog: A Language for

Structured Logic Programming. In Software - Concepts and Tools, number 15,

pages 125 – 145. Springer-Verlag, 1994.

[95] R.S. Gray. Agent Tcl: A Flexible and Secure Mobile-agent System. In

M. Diekhans and M. Roseman, editors, Proceedings of the 4th Annual Tcl/Tk

Workshop (TCL 96), Monterey, California, U.S.A., July 1996. Available at<http://www.cs.dartmouth.edu/˜agent/papers/
tcl96.ps.Z>.

[96] K.Hammond, R. Burke, andC.Martin. ACase-BasedApproach to Knowl-

edgeNavigation. In Proceedings of the AAAIWorkshop on Indexing and Reuse

in Multimedia Systems, pages 46 – 57. AAAI, 1994.

[97] Y. Han, S.W. Loke, and L. Sterling. Agents for Citation Finding on the

World Wide Web. In Proceedings of the 2nd International Conference on Prac-

286 BIBLIOGRAPHY

tical Applications of Intelligent Agents and Multi-Agent Technology, pages 303

– 317. The Practical Application Company Ltd, April 1997.

[98] J. Harland and R. Kotagiri. An Aditi Implementation of a Flights

Database. Applications of Logic Databases, 1994. Available at<http://www.cs.rmit.edu.au/˜jah/publications/
book94.ps.gz>.

[99] M.Z. Hasan, A.O. Mendelzon, and D. Vista. Visual Web

Surfing with Hy+. In Proceedings of the 1995 IBM CASCON

Conference, pages 524 – 535, November 1997. Available at<http://www.cs.ubc.ca/doc/rr1/proceedings/cascon95/
htm/francais/abs/hasanmv.htm>.

[100] F.J. Hauck. Supporting Hierarchical Guided Tours in

the World Wide Web. In Proceedings of the 5th Interna-

tional World Wide Web Conference, May 1996. Available at<http://www5conf.inria.fr/fich html/papers/P30/
Overview.html>.

[101] P. Hill (Web page author), editor. Proceedings of LOCOS’97:

Workshop on Logic-based Composition of Software at the 14th In-

ternational Conference on Logic Programming, 1997. Available at<http://www.scs.leeds.ac.uk/hill/locos/accepted.html>.
[102] T. Hoppe, C. Kindermann, O.K. Paulus, and R. Tolksdorf. The

MIHMA Project: a Web Information Service Based on De-

scription Logics. In Proceedings of the Workshop on “Artifi-

cial Intelligence-based tools to help WWW users” at the 5th Inter-

national World Wide Web Conference, May 1996. Available at<http://www.info.unicaen.fr/�serge/3wia/workshop/
papers/paper25.html>.

287

[103] R. Hurwitz and J.C. Mallery. The Open Meeting: A Web-Based Sys-

tem for Conferencing and Collaboration. In Proceedings of the 4th

International World Wide Web Conference, December 1995. Available at<http://www.ai.mit.edu/projects/iiip/doc/open-meeting/
paper.html>.

[104] IF Computer. Minerva. 1997. Available at<http://www.ifcomputer.com/MINERVA/>.
[105] ILOG. ILOG: Optimization and Visualization Software Components for

Strategic Advantage. Available at <http://www.ilog.fr/>.
[106] Intelligent Systems Laboratory, Swedish Institute of Computer Sci-

ence. SICStus Prolog User’s Manual. October 1996. Available at<ftp://ftp.sics.se/archive/sicstus3/sicstus.ps.gz>.
[107] T. Joachims, T. Mitchell, D. Freitag, and R. Armstrong. Web-

Watcher: Machine Learning and Hypertext. Fachgruppentreffen

Maschinelles Lernen, Dortmund, Germany, August 1995. Available at<http://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/
webwatcher/mltagung-e.ps.Z>.

[108] G. Karjoth, D. Lange, and M. Oshima. A Security Model for Aglets.

IEEE Internet Computing, 1(4), July/August 1997. Available at<http://www.computer.org/internet/ic1997/w4toc.htm>.
[109] H. Kauffmann and A. Grumbach. MULTILOG: Multiple Worlds in Logic

Programming. In B. Du Boulay, D. Hogg, and L. Steels, editors, Advances

in Artificial Intelligence, pages 233 – 247. Elsevier Science, 1987.

[110] R. Khare and A. Rifkin. XML: A Door to Automated Web Applica-

tions. IEEE Internet Computing, 1(4), July/August 1997. Available at<http://www.computer.org/internet/ic1997/w4toc.htm>.

288 BIBLIOGRAPHY

[111] N. Kino. JIPL. 1997. Available at<http://Prolog.isac.co.jp/jipl/index e.html>.
[112] T. Kirk. Knowledge Based Access to Information on the

World Wide Web. In Proceedings of the Workshop on “Artifi-

cial Intelligence-based tools to help WWW users” at the 5th Inter-

national World Wide Web Conference, May 1996. Available at<http://www.info.unicaen.fr/˜serge/3wia/workshop/
papers/paper20.html>.

[113] T. Kirk, A.Y. Levy, Y. Sagiv, and D. Srivastava. The In-

formation Manifold. In On-line Working Notes of the AAAI

Spring Symposium Series on Information Gathering from Dis-

tributed, Heterogeneous Environments, January 1995. Available at<http://www.isi.edu/sims/knoblock/sss95/kirk.ps>.
[114] T. Kistler and J. Marais. WebL - A Programming Language for the

Web. Technical Report 1997-029, Digital Equipment Corporation Sys-

tems Research Center, Palo Alto, CA, December 1997. Available at<http://gatekeeper.dec.com/pub/DEC/SRC/
technical-notes/SRC-1997-029-html/>.

[115] D. Konopnicki. Information Gathering in theWorldWideWeb: TheW3QL

Query Language and the W3QS System. Master’s thesis, Computer Sci-

ence Department, Technion (Israel Institute of Technology), 1996.

[116] R. Kotagiri and J. Harland. An Introduction to Deductive Database Lan-

guages and Systems. VLDB Journal, 3(2):107 – 122, April 1994.

[117] R.A. Kowalski. Using Meta-Logic to Reconcile Reactive with Ra-

tional Agents. In K. Apt and F. Turini, editors, Meta-Logic and

Logic Programming, pages 227 – 242. MIT Press, 1995. Available at

289<http://www-lp.doc.ic.ac.uk:80/UserPages/staff/rak/
agents.ps.gz>.

[118] C.S. Kwok. A Survey of Structuring Mechanisms for Logic Programs.

Technical report, Department of Computing, Imperial College, London,

November 1988.

[119] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. A Declar-

ative Language for Querying and Restructuring the World Wide

Web. In Proceedings of the Post-ICDE IEEE Workshop on Research Is-

sues in Data Engineering (RIDE-NDS’96), February 1996. Available at<http://www.cs.concordia.ca/˜grad/subbu/
publications.html>.

[120] B.A. LaMacchia. Internet Fish. Technical Report AITR-

1579, PhD Thesis at the Artificial Intelligence Laboratory, Mas-

sachusetts Institute of Technology (MIT), June 1996. Available at<http://www.farcaster.com/thesis/ifish-tr.ps.gz>.
[121] D. Lee andC.P. Tsang. Solving the Database Update ProblemUsing Linear

Logic. In Proceedings of the 7th Australasian Database Conference, pages 131

– 138, 1996.

[122] H. Lieberman. Letizia: An Agent That Assists Web

Browsing. In Proceedings of the International Joint Confer-

ence on Artificial Intelligence, Montreal, 1995. Available at<http://lieber.www.media.mit.edu/people/lieber/
Lieberary/Letizia/Letizia.html>.

[123] A. Littleford. Artificial Intelligence andHypermedia. In E. Berk and J. De-

vlin, editors, Software Engineering Series, Hypertext/Hypermedia Handbook,

pages 357 – 378. McGraw-Hill Publishing Company, Inc., 1991.

290 BIBLIOGRAPHY

[124] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[125] S.W. Loke. LogicWeb: Using Logic Programming to Extend the World

WideWeb. In Proceedings of the 2nd Joint AUUG and Asia Pacific World Wide

Web Conference, pages 220 – 226, Melbourne, Australia, September 1996.

[126] S.W. Loke and A. Davison. Logic Programming with the World

Wide Web. In Proceedings of the 7th ACM Conference on Hyper-

text, pages 235 – 245. ACM Press, March 1996. Available at<http://www.cs.unc.edu/˜barman/HT96/P14/lpwww.html>.
[127] S.W. Loke and A. Davison. A Two-level World Wide Web Model with

Logic Programming Links. In K. De Bosschere, M. Hermenegildo, and

P. Tarau, editors, Proceedings of the 2nd Workshop on Logic Programming

Tools for Internet Applications (in conjunction with the 14th International

Conference on Logic Programming), pages 41 – 54, July 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
loke.ps>.

[128] S.W. Loke andA.Davison. A Logic ProgrammingApproach toGenerating

Web-based Guided Tours. In Proceedings of the 5th International Conference

and Exhibition on the Practical Application of Prolog, pages 191 – 203, London,

U.K., April 1997.

[129] S.W. Loke and A. Davison. LogicWeb: Enhancing theWebwith Logic Pro-

gramming. Journal of Logic Programming, 36(3):195 – 240, September 1998.

[130] S.W. Loke, A. Davison, and L. Sterling. Lightweight Deductive

Databases on the World Wide Web. In P. Tarau, A. Davison, K. De

Bosschere, and M. Hermenegildo, editors, Proceedings of the 1st Work-

shop on Logic Programming Tools for Internet Applications (in conjunction

with the Joint International Conference and Symposium on Logic Program-

ming), pages 91 – 106, Bonn, Germany, September 1996. Available at

291<http://clement.info.umoncton.ca/˜lpnet/lp-internet/
lwddbs/lwddbs.html>.

[131] S.W. Loke, A. Davison, and L. Sterling. CIFI: An Intelligent Agent for Ci-

tation Finding on the World Wide Web. In Topics in Artificial Intelligence,

Proceedings of the 4th Pacific Rim International Conference on Artificial Intelli-

gence (Lecture Notes in Artificial Intelligence No. 1114), pages 580 – 592, 1996.

[132] S.W. Loke, L. Sterling, E. Sonenberg, and H. Kim. ARIS: A Shell for In-

formation Agents that Exploit Web Site Structure. In Proceedings of the 3rd

Conference on the Practical Application of Intelligent Agents and Multi-Agent

Technology (to appear), April 1998.

[133] LPA. LPA ProWeb Server. 1997. Available at<http://www.lpa.co.uk/>.
[134] S. Luke, L. Spector, and D. Rager. Ontology-Based Knowledge Discovery

on the World Wide Web. In Proceedings of the Workshop on Internet-based

Information Systems at AAAI ’96, Portland, Oregon, U.S.A., 1996. Available

at <http://www.cs.umd.edu/projects/plus/SHOE/
aaai-paper.html>.

[135] S. Lüttringhaus-Kappel and D. Schulz. A Calendar of Events - Ar-

chitecture and Experiences. In P. Tarau, A. Davison, K. De Boss-

chere, and M. Hermenegildo, editors, Proceedings of the 1st Workshop

on Logic Programming Tools for Internet Applications (in conjunction

with the Joint International Conference and Symposium on Logic Program-

ming), pages 29 – 41, Bonn, Germany, September 1996. Available at<http://clement.info.umoncton.ca/˜lpnet/lp-internet/
announce/announce.html>.

[136] D. Maier, L. Delcambre, L. Anderson, and R. Reddy. Modeling Ex-

plicit Semantics Over a Universe of Information. In Proceedings of the

292 BIBLIOGRAPHY

3rd GCA International HyTime Conference, August 1996. Available at<http://www.hightext.com/IHC96/lmd7.htm>.
[137] M. Maloney. Hypertext Links in HTML. Available at<http://www.sq.com/papers/Relationships.html>.
[138] P. Mancarella and D. Pedreschi. An Algebra of Logic Programs. In R.A.

Kowalski and K.A. Bowen, editors, Proceedings of the 5th International Con-

ference on Logic Programming, pages 1006 – 1023. MIT Press, 1988.

[139] J. Mayfield. Two-level Models of Hypertext. In C. Nicholas and J. May-

field, editors, Intelligent Hypertext: Advanced Techniques for the World Wide

Web (Lecture Notes in Computer Science No. 1326), pages 90 – 108. Springer-

Verlag, 1997.

[140] F.G. McCabe. Logic And Objects. Prentice Hall, 1992.

[141] F.G. McCabe and K.L. Clark. April - Agent Process Interaction Language.

InM.Wooldridge andN. Jennings, editors, Intelligent Agents (Lecture Notes

in Artificial Intelligence No. 890). Springer-Verlag, 1995.

[142] D.L. McGuiness, H. Manning, and T.W. Beattie. Knowledge Assisted

Search. In Proceedings of the Workshop on the Future of AI and the Internet

at IJCAI-97. 1997.

[143] M. Meier. ProTcXl - the Prolog Interface to Tcl/Tk and Xlib. Web site at<http://www.ecrc.de/eclipse/html/protcl/protcl.html>.
[144] A. Mendelzon, G. Mihaila, and T. Milo. Querying the World Wide Web.

International Journal on Digital Libraries, 1(1):54 – 67, 1997. Available at<http://www.cs.toronto.edu/˜mendel/papers.html>.
[145] A. Mendelzon and T. Milo. Formal Models of the Web. In Proceedings

of the Principles of Database Systems, PODS ’97, May 1997. Available from<http://www.cs.toronto.edu/˜mendel/papers.html>.

293

[146] D. Merritt. Building Expert Systems in Prolog. Springer-Verlag, 1989.

[147] J. Meseguer and C. Talcott. Rewriting Logic and Secure Mobility. In Pro-

ceedings of Foundations for Secure Mobile Code Workshop, 1997. Available at<http://www.cs.nps.navy.mil/research/languages/
statements/meseguer.ps>.

[148] D. Miller. A Theory of Modules for Logic Programming. In Proceedings of

the IEEE Symposium on Logic Programming, pages 106 – 114. IEEEComputer

Society Press, 1986.

[149] D. Miller. A Logical Analysis of Modules in Logic Programming. Journal

of Logic Programming, 6(1 & 2):79 – 108, January/March 1989.

[150] A.E. Monge and C.P. Elkan. The WebFind Tool for Finding

Scientific Papers over the World Wide Web. In Proceedings of

the 3rd International Congress on Computer Science Research, Ti-

juana, Baja California, Mexico, November 1996. Available at<http://www.cs.ucsd.edu/users/amonge/Papers/
ciicc96.ps>.

[151] L.Monteiro andA. Porto. ALanguage for Contextual Logic Programming.

InK.R. Apt, J.W. de Bakker, and J.J.M.M. Rutter, editors, Logic Programming

Languages: Constraints, Functions and Objects, pages 115 – 147. MIT Press,

1993.

[152] J.J. Moreno-Navarro. Tuple Inheritance: A New Kind of Inheritance

for (Constraint) Logic Programming (Extended Abstract). In L. Ster-

ling, editor, Proceedings of the 12th International Conference on Logic Pro-

gramming, page 829. MIT Press, 1995. Full paper is available at<http://gedeon.ls.fi.upm.es/�jjmoreno/
pap bib.html#inh>.

294 BIBLIOGRAPHY

[153] Motiv Systems, Ltd. The JavaWhite Paper: The HotJava WorldWideWeb

Browser. 1996. Available at <http://java.motiv.co.uk/intro/
javawhitepaper 7.html>.

[154] NCSA. NCSA Mosaic for the X Window System. Available at<http://www.ncsa.uiuc.edu/SDG/Software/XMosaic/>.
[155] Netscape Communications Corporation. JavaScript Resources. Available

at<http://home.netscape.com/comprod/products/navigator
/version 2.0/script/script info/index.html>.

[156] C.K. Nicholas and L.H. Rosenberg. Canto: A Hypertext Data Model. Elec-

tronic Publishing, 6(1):1–23, March 1993.

[157] D. Nicol, C. Smeaton, and A.F. Slater. Footsteps: Trail-blazing the

Web. Proceedings of the 3rd International World Wide Web Conference,

Computer Networks and ISDN Systems, 27(6), April 1995. Available at<http://www.igd.fhg.de/www/www95/proceedings/papers/
60/footsteps.html>.

[158] U. Nilsson and L. Naish. The Program Committee Virtual Work-

bench. In K. De Bosschere, M. Hermenegildo, and P. Tarau, edi-

tors, Proceedings of the 2nd Workshop on Logic Programming Tools for

Internet Applications (in conjunction with the 14th International Con-

ference on Logic Programming), pages 1 – 12, July 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
nilsson.ps>.

[159] Object Management Group. Comparing ActiveX and CORBA/IIOP.

Available at <http://www.omg.org/news/activex.htm>.

295

[160] R. O’Keefe. Towards An Algebra for Constructing Logic Programs. In

J. Cohen and J. Conery, editors, Proceedings of the IEEE Symposium on Logic

Programming, pages 152 – 160. IEEE Computer Society Press, 1985.

[161] R.A. O’Keefe. The Craft of Prolog. MIT Press, 1990.

[162] D.E. O’Leary. AI andNavigation on the Internet and Intranet. IEEE Expert,

pages 8 – 10, April 1996.

[163] J.K. Ousterhout. The Safe-Tcl SecurityModel (DRAFT). March 1997. Avail-

able at <http://www.sunlabs.com/people/john.ousterhout/
safeTcl.html>.

[164] M. Perkowitz, R.B. Doorenbos, O. Etzioni, and D.S. Weld. Learning to Un-

derstand Information on the Internet: An Example -BasedApproach. Jour-

nal of Intelligent Information Systems, 8(2), March/April 1997. Available at<http://www.cs.washington.edu/homes/map/ila.html>.
[165] J.E. Pitkow and R.K. Jones. Supporting the Web: A Distributed

Hyperlink Database System. In Proceedings of the 5th Inter-

national World Wide Web Conference, April 1997. Available at<http://www5conf.inria.fr/fich html/papers/P10/
Overview.html>.

[166] E. Pontelli and G. Gupta. W-ACE: A Logic Language for Intelligent Inter-

net Programming. In Proceedings of the IEEE 9th International Conference on

Tools with Artificial Intelligence, pages 2 – 10, 1997.

[167] H. Prendinger. Logic Programming Methods for Searching the Web

(Preliminary Report). In K. De Bosschere, M. Hermenegildo, and

P. Tarau, editors, Proceedings of the 2nd Workshop on Logic Programming

Tools for Internet Applications (in conjunction with the 14th International

Conference on Logic Programming), pages 68 – 81, July 1997. Available at

296 BIBLIOGRAPHY<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
prendinger.ps>.

[168] V. Prevelakis. A Model for the Organisation and Dynamic Reconfiguration of

Information Networks. PhD thesis, University of Geneva, 1995.

[169] V. Prevelakis. A Framework for the Organisation and Dy-

namic Reconfiguration of the World Wide Web. In Proceedings

of the 5th Hellenic Conference on Informatics, 1996. Available at<http://senanet.com/epy/18/www/epy.htm>.
[170] R. Price. No More “Me Too” - Different Approaches to Logic Doc-

uments. In K. De Bosschere, M. Hermenegildo, and P. Tarau, edi-

tors, Proceedings of the 2nd Workshop on Logic Programming Tools for

Internet Applications (in conjunction with the 14th International Confer-

ence on Logic Programming), pages 28 – 40, July 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
price.ps>.

[171] D. Raggett, A. Le Hors, and I. Jacobs. HyperText Markup Lan-

guage 4.0 Reference Specification. December 1997. Available at<http://www.w3.org/TR/REC-html40/>.
[172] G. Rossi. Programs As Data. The Computer Journal, 36(3):217 – 226, 1993.

[173] F. Rouaix. A Web Navigator with Applets in Caml. In Proceedings of

the 5th International World Wide Web Conference. May 1996. Available at<http://pauillac.inria.fr/˜rouaix/mmm/papers/
Overview.html>.

[174] D. Rus andD. Subramanian. Information Retrieval, Information Structure,

and Information Agents. In C. Nicholas and J. Mayfield, editors, Intelligent

297

Hypertext: Advanced Techniques for theWorldWideWeb (LectureNotes in Com-

puter Science No. 1326), pages 145 – 182. Springer-Verlag, 1997. Available

at <http://cs.cornell.edu/Info/People/rus/papers/
Information-agents.ps>.

[175] E. Sandewall. Towards a World-wide Data Base. In Proceedings of

the 5th International World Wide Web Conference, May 1996. Available at<http://www5conf.inria.fr/fich html/papers/P54/
Overview.html>.

[176] K.E. Seamons, W. Winsborough, and M. Winslett. Internet Creden-

tial Acceptance Policies. In K. De Bosschere, M. Hermenegildo, and

P. Tarau, editors, Proceedings of the 2nd Workshop on Logic Programming

Tools for Internet Applications (in conjunction with the 14th International

Conference on Logic Programming), pages 13 – 27, July 1997. Available at<http://clement.info.umoncton.ca/˜lpnet/proceedings97/
winsborough.ps>.

[177] D. Sedlock and J. Jörg. Managing Software Projects with Prolog

and the WWW. In Proceedings of the 4th International Conference on

the Practical Applications of Prolog, London, U.K., 1996. Available at<http://www.franken.de/users/nicklas/das/papers/pap96/
pap96.html>.

[178] A. Sehmi and M. Kroening. WebLS: A Custom Prolog Rule Engine for

Providing Web-Based Tech Support. In P. Tarau, A. Davison, K. De

Bosschere, and M. Hermenegildo, editors, Proceedings of the 1st Work-

shop on Logic Programming Tools for Internet Applications (in conjunction

with the Joint International Conference and Symposium on Logic Program-

ming), pages 107 – 123, Bonn, Germany, September 1996. Available from

298 BIBLIOGRAPHY<http://clement.info.umoncton.ca/˜lpnet/lp-internet/
amzi/lspap.html>.

[179] E. Shapiro. Enhancing the WWW with Co-Presence. In Presentation

at the Workshop on “Wide-Area Collaboration and Cooperative Computing”

of the 2nd International World Wide Web Conference, 1994. Available at<http://www.ai.mit.edu/projects/iiip/colab/
shapiro-abstract.html>.

[180] Y. Shoham. Artificial Intelligence Techniques in Prolog. Morgan Kaufmann,

1994.

[181] Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of

Mercury: An Efficient Purely Declarative Logic Programming Language.

Journal of Logic Programming, 29(1-3):17 – 64, October-December 1996.

[182] E. Spertus. ParaSite: Mining Structural Information on

the Web. In Proceedings of the 6th International World Wide

Web Conference, Santa Clara, U.S.A., 1997. Available at <
http://www6.nttlabs.com/HyperNews/get/PAPER206.html>.

[183] Spyglass, Inc. Software Development Interface. 1996. Available at<http://www.spyglass.com/products/smosaic/sdi/
sdi spec.html>.

[184] L. Sterling and R.D. Beer. Metainterpreters for Expert System Construc-

tion. Journal of Logic Programming, 6(1 & 2):163–178, January/March 1989.

[185] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1994.

[186] L. Sterling and Y. Yalcinalp. Logic Programming and Software Engineer-

ing - Implications for Software Design. Knowledge Engineering Review,

11(4):317– 332, December 1996. Also available as Technical Report 96/31

299

at <http://www.cs.mu.oz.au/publications/tr db/
mu 96 31.ps.gz>.

[187] Sun Microsystems, Inc. Java Home Page. Available at<http:/java.sun.com/>.
[188] Sun Microsystems, Inc. Secure Computing with Java: Now

and the Future (Executive Summary). 1997. Available at<http://www.javasoft.com/marketing/collateral/
security.html>.

[189] R. Swick. Resource Description Framework (RDF). December 1997. Avail-

able at <http://www.w3.org/RDF/>.
[190] P. Szeredi, K. Molnár, and R. Scott. Serving Multiple HTML Clients

from a Prolog Application. In P. Tarau, A. Davison, K. De Boss-

chere, and M. Hermenegildo, editors, Proceedings of the 1st Workshop

on Logic Programming Tools for Internet Applications (in conjunction

with the Joint International Conference and Symposium on Logic Program-

ming), pages 81 – 90, Bonn, Germany, September 1996. Available at<http://clement.info.umoncton.ca/˜lpnet/lp-internet/
iqsoft/multiple.html>.

[191] P. Tarau. BinProlog 3.30, User Guide. Technical report, Departement

d’Informatique, Universit�a deMoncton, Moncton,Canada, February 1995.
[192] P. Tarau. Linda Interactor. 1997. Distribution available at<http://clement.info.umoncton.ca/˜tarau/

LindaInteractor.tar.gz>.
[193] P. Tarau and V. Dahl. Mobile Threads through

First Order Continuations. 1997. Available at<http://clement.info.umoncton.ca/html/tmob/html.html>.

300 BIBLIOGRAPHY

[194] P. Tarau, V. Dahl, and K. de Bosschere. A Logic Programming Infrastruc-

ture for Internet Programming, Mobile Code, and Agents. 1997. Available

at <http://clement.info.umoncton.ca/html/mobile/
html.html>.

[195] P. Tarau, V. Dahl, and K. De Bosschere. Remote Execution, Mo-

bile Code and Agents in BinProlog. In Proceedings of the Work-

shop on Logic Programming and the Web at the 6th International World

Wide Web Conference, Santa Clara, U.S.A., 1997. Available at<http://www.cs.vu.nl/˜eliens/WWW6/papers/tarau/>.
[196] P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo, editors.

Proceedings of the 1st Workshop on Logic Programming Tools for Internet Ap-

plications (in conjunction with the Joint International Conference and Sympo-

sium on Logic Programming), Bonn, Germany, September 1996. Available

at <http://clement.info.umoncton.ca/˜lpnet>.
[197] P. Tarau and K. De Bosschere. Virtual World Brokerage with Bin-

Prolog and Netscape. In P. Tarau, A. Davison, K. De Bosschere,

and M. Hermenegildo, editors, Proceedings of the 1st Workshop on

Logic Programming Tools for Internet Applications (in conjunction with

the Joint International Conference and Symposium on Logic Program-

ming), pages 63 – 80. Bonn, Germany, September 1996. Available at<http://clement.info.umoncton.ca/˜lpnet/lp-internet/
lpnet10/art.html>.

[198] R.H. Trigg. Guided Tours and Tabletops: Tools for Communicating in a

Hypertext Environment. ACM Transactions on Office Information Systems,

6(4):398 – 414, October 1988.

[199] T. Uustalu. Combining Object-Oriented and Logic Paradigms: A Modal

Logic Programming Approach. In O. Lehrmann Madsen, editor, Proceed-

301

ings of the 6th European Conference on Object-Oriented Programming ’92 (Lec-

ture Notes in Computer ScienceNo. 615), pages 98 – 113. Springer-Verlag, July

1992.

[200] J. van Rossum, G. van Rossum, and K. Manheimer. Python Language

Home Page. Available at <http://www.python.org/>.
[201] P. Vasey. Underwriting on the Web Using Prolog. In PAP’97 tutorial at the

5th International Conference and Exhibition on the Practical Application of Pro-

log, 1997.

[202] J. Vitek and C. Tschudin, editors. Mobile Object Systems: Towards the Pro-

grammable Internet (Lecture Notes in Computer Science No. 1222). Springer-

Verlag, April 1997.

[203] D. Volpano. Provably-Secure Programming Languages

for Remote Evaluation. In Proceedings of Foundations

for Secure Mobile Code Workshop, 1997. Available at<http://www.cs.nps.navy.mil/research/languages/
statements/necula.ps>.

[204] G. Wagner. Artificial Agents and Logic Programming. In Panel state-

ment at the workshop on Logic Programming and Multi-agent Systems at the

14th International Conference on Logic Programming, July 1997. Available at<http://www.informatik.uni-leipzig.de/˜gwagner/
lpmas.ps.gz>.

[205] D.S.Wallach, D. Balfanz, D. Dean, and E.W. Felten. Extensible Security Ar-

chitectures for Java. Technical Report TR 546-97, Department of Computer

Science, Princeton University, April 1997.

[206] D.A. Watt. Programming Language Concepts and Paradigms. Prentice Hall

International Ltd., 1990.

302 BIBLIOGRAPHY

[207] webMethods, Inc. webMethods - Web Interface Definition Language.

Available at <http://www.webmethods.com/technology/
widl description.html>.

[208] S. Weibel. A Proposed Convention for Em-

bedding Metadata in HTML. Available at<http://www.oclc.org:5046/˜weibel/html-meta.html>.
[209] J. Wielemaker. SWI-Prolog Reference Manual. Technical report, Univer-

sity of Amsterdam, Department of Social Sciences Informatics (SWI), April

1995.

[210] M. Winikoff. W-Prolog 1.0. 1996. Documentation and system available at<http://www.cs.mu.oz.au/˜winikoff/wp/>.
[211] M. Winikoff. Logic Programming with Linear Logic. PhD thesis, Department

of Computer Science, The University of Melbourne, 1997.

[212] C. Wong. Web Client Programming. O’ Reilly and Associates, Inc., 1997.

[213] A.Wyatt. SportsFinder: An Information Extraction Agent to Return Sports Re-

sults. Honour’s thesis, Department of Computer Science, The University

of Melbourne, 1997.

[214] S. Yokoi. A Prolog Based Object-oriented Language SPOOL and its Com-

piler. InProceedings of the 5th Conference on Logic Programming (Lecture Notes

in Computer Science No. 264), pages 116 – 125. Springer-Verlag, June 1986.

Appendix A

Prolog Facts Storing the Title, Body,

Sections, and Links to Images and

Applets on a Page

HTML contains tags to mark-up text as the title, body, and sections of a page,

and to embed images and applets. These components are extracted on demand

as noted in Chapter 4 and are stored in the following five types of facts:� title. title(Title) stores the text between the tags <TITLE> and

</TITLE>. The goal lw(get, URL)#>title(Title) retrieves the ti-

tle of the page at URL. In the first call to title/1, the page is parsed

and a title/1 fact is asserted into the program. Any subsequent calls to

title/1 retrieves information from the title/1 fact, without re-parsing

the page.� body. body(Text) stores the text between the tags <BODY> and

</BODY>. Like title/1, this fact is generated the first time a call to

body/1 is made.

303

304 APPENDIX A� sections. section(Title, Text, Level) facts store the title, text,

and level of the page’s sections. The title is the text between the tags <Hn>
and </Hn>. Level is nwhich is an integer from 1 to 6 indicating the section
level, and text is the portion of text between the end tag of this section and

the start tag of the next (or end of file).

In the first call to section/3, all section/3 facts are generated regard-

less of the arguments in the call. Then, variables in the goal are instantiated

returning information in the same call. Subsequent calls to section/3 re-

trieve information from the created section/3 facts. The same goes for

the image/2 and applet/5 facts described below.� images. image(ALTText, URL) stores the value of the ALT attribute

(i.e., the text to use in place of the image), and the URL of the image. For

example, the marked-up text:

becomes:

image("beer picture", "http://www.prost.org/beer.gif").� applets. applet(CODEBASE, CODE, ALT, NAME, Description)

stores the baseURLof the applet, the applet class name, the alternative text,

the applet name, and the applet description. For example, the tags which

include an applet within a page:

<APPLET CODEBASE="http://base.applet.url/" CODE="applet.class"

ALT="should be an applet here" NAME="applet-name"

WIDTH=10 HEIGHT=10 ALIGN=middle>

<PARAM NAME="audio" VALUE="on">

Here is my applet.

</APPLET>

is translated into the fact:

305

applet("http://base.applet.url/", "applet.class",

"should be an applet here", "applet-name",

"Here is my applet.").

Other information such as parameters to the applet and size of the applet

display area for use by the browser are not stored.

306 APPENDIX A

Appendix B

Application Support Library

This appendix contains a complete list of the 9 predicates (in 6 categories) which

are built into the LogicWeb language to facilitate construction of the applica-

tions described in this thesis. These predicates are used for communicating with

Mosaic, constructing HTML documents, fast string matching, comparing dates,

checking if a LogicWeb program exists in the program store, and deleting pro-

grams in the program store. The predicates mentioned here are additional to

the SWI-Prolog built-in predicateswhich LogicWeb programs can use (see Chap-

ter 4).

B.1 Displaying Information on the Mosaic Browser

display page(BaseURL, PageComponents): this predicate is used for

sending information to the browser. It uses the CCI library to communicate with

Mosaic. BaseURL is the baseURL of the displayed page and is added to the page

by the system via the mark-up:

<BASE HREF= BaseURL>

BaseURL is displayed on Mosaic’s URL window.

307

308 APPENDIX B

PageComponents is a list of terms of the form data(String) or

form(URL, FormElements). String is a SWI-Prolog string. data/1

terms carry text to be included in a HTML page. A form/2 term with URL

as an argument defines a form acting as the interface to the LogicWeb pro-

gram identified by lw(get, URL). FormElements is a list of terms each of

which represents a component of a form. These terms are illustrated below via

examples:� text(Data): the terms text("hello "), text("there") are con-

verted into the following text:

hello there� textnl(Data): the terms textnl("hello "), text("there") are

converted into the following text:

hello

there� input(Type, Name, Value, Checked, Size, Maxlength): the

term

input("text", "key", "none", "", "5", "6")

is converted into the following HTML mark-up:

<INPUT TYPE="text" NAME="key" Value="none" SIZE=5 MAXLENGTH=6>� select(Name, Size, Multiple, OptionList): the term

select("choices", "10", "", ["choice1", "choice2", "choice3"])

is converted into the following mark-up:

309

<SELECT NAME="choices" SIZE=10>

<OPTION SELECTED> choice1

<OPTION> choice2

<OPTION> choice3

</SELECT>� textarea(Name, Rows, Cols, Contents): the term

textarea("text", 10, 4, "stuff")

is converted into the following mark-up:

<TEXTAREA NAME="text" ROWS=10 COLS=4>stuff</TEXTAREA>

The argument of the reserved predicate interface/1 (introduced in Sec-

tion 4.4.1) is a list of terms each of which is in one of the above forms.

B.2 Constructing HTML Components

The following predicates are used for constructing HTML pages. The input and

output arguments to the predicates are lists of ASCII codes:

build head(Title, Head): a goal such as build head("Hello",

Head) instantiates Headwith the list

<HEAD>

<TITLE>Hello</TITLE>

</HEAD>

build code(Code, CodePart): a goal such as build code("a :-

b.", CodePart) instantiates CodePartwith the list

<LW_CODE>

a :- b.

</LW_CODE>

310 APPENDIX B

build body(Title, PageData, Body): a goal such as

build body("Title", "Data", Body) instantiates Bodywith the list

<BODY>

<H1>Title</H1>

Data

</BODY>

build whole(Head, Body, Whole): Whole is instantiated with the con-

catenation of the lists in Head and Body:

<HTML>

Head

Body

</HTML>

B.3 Fast String Matching

contains(Text, Pattern): this predicate determines if Text contains

Pattern. This predicate takes arguments which can be lists of ASCII codes,

SWI-Prolog strings, or atoms. contains/2 is a foreign predicate implemented

in C for fast string matching.

B.4 Comparing Dates

getime(GMTTime, LWTime): this predicate compares an atom GMTTime in

the typical format of times returned by HTTP servers (e.g., “Thu Jun 27 04:44:42

GMT 1996” or “Tue, 11 Feb 1997 02:41:00 GMT”) with an atom LWTime in the

form “1996;06;27;14:44” specifying the year, month, day, hours, andminutes, and

succeeds if the first time is greater (or later) than or equivalent to the second.

311

B.5 Determining If a Program Exists in the System

program exists(LWProgramID): this predicate takes a LogicWeb program

identifier LWProgramID as an argument and determines if the program is in the

program store, succeeding if so, and failing, otherwise.

B.6 Deleting Programs

delete programs/0: this predicate deletes (using retract/1 repeatedly)

all the LogicWeb programs from the SWI-Prolog database except the LogicWeb

programmanager (see Section 4.4.4). The LogicWeb programmanager is identi-

fied by the filename “lwmanager.html”.

