
Towards Explanation-Aware Selection in Internet-Scale Infrastructures:
Generating Rationale for Web Services Ratings and Reputation

Wanita Sherchan

Faculty of Information Technology

Monash University

Caulfield East, VIC 3145, Australia

Wanita.Sherchan@csse.monash.edu.au

Seng W. Loke

Dept. of Comp. Sc. and Engg.

Latrobe University

Bundoora, VIC 3086,Australia

S.Loke@latrobe.edu.au

Shonali Krishnaswamy

Faculty of Information Technology

Monash University

Caulfield East, VIC 3145, Australia

Shonali.Krishnaswamy@csse.monash.edu.au

Abstract

A collection of 1 billion publicly available web services
can form an internet-scale infrastructure for building di-
verse applications. For a given application, selection of ser-
vices and service providers from this collection becomes im-
portant and reputation is recognized as a key factor for this
purpose. However, current reputation systems are limited
in their ability to exchange reputation information between
heterogeneous systems. To facilitate meaningful exchange
and reuse of reputation information and for the overall de-
termination of reputation, we identify the need to infer and
explicate rationale for ratings. We present our knowledge
based approach to inferring and explicating rationale for
ratings. We show that this approach facilitates detection of
deception and collusion, user preferences elicitation, expli-
cation of rationale behind user ratings and generation of
personalized service recommendations.

1. Introduction

“Web services are a natural consequence of the evolution
of the Web into an open medium which facilitates complex
business and scientific application interactions” [1]. This
transformation of the Internet from a source of informa-
tion to a medium for the provision of Web/e-services has
significantly changed the traditional paradigms of business
interaction, resulting in an open distributed environment
with possible interactions and dealings with hitherto un-
known entities and short-term dynamic business relation-
ships. In these emerging circumstances, traditional para-
digms of business interactions fail to cope with the chang-
ing dynamics of electronic business. With the widespread
proliferation of web service applications and the increas-
ing diversity of service providers, selection of the most ap-
propriate service (for a given set of requirements) poses

a significant challenge. There has been a focus on extra-
functional properties as the key distinguishing selection cri-
teria. These extra-functional properties include Quality of
Service (QoS) [7], trust and reputation [6].

Current reputation systems [8, 9, 13, 16] are typically
based on ratings provided by the users. When there are
no mechanisms in place to detect collusion and deception,
combining user testimonies as such to form a providers rep-
utation may not give an accurate assessment [3, 15], espe-
cially if the context of the ratings is not known. Moreover,
such systems are vulnerable to manipulations by malicious
users. Hence it becomes essential to establish the validity
of the ratings prior to using them in formulating reputation
based on such ratings.

Another significant issue that hasn’t been addressed so
far is the transferability of reputation between separate but
potentially related environments [8]. For example, eBay
and Amazon both provide e-marketplaces for online auc-
tions / transactions. Currently, the reputation that a user has
in eBay is not transferable when s/he goes to Amazon. This
makes it easier for malicious users to deceive repeatedly.
Such users can indulge in deceitful behavior in one context
and this is not reflected as they move to another (User iden-
tity management is an important consideration, but outside
the scope of this research). Because of lack of mechanisms
for supporting transfer of reputation information, such dis-
honesty cannot be detected, nor stopped. For creating safer /
more reliable environment for online interactions it is essen-
tial to be able to exchange / transfer reputation information.
For a reputation management system which facilitates trans-
fer of reputation information between domains, it is impor-
tant to identify and include the rationale along with the rat-
ings so that ratings can be reused (in the new domain) in a
meaningful way relevant to the context. Moreover, reputa-
tion evaluation depends on a number of factors such as the
length of history, the number of interactions and user biases,
and can change considerably if the factors considered are



different. Hence, “rationale”, which explicates these fac-
tors, plays an important part in understanding and using the
reputation data. It is important to identify the rationale be-
hind the ratings so that similar ratings (or ratings pertaining
to a context) can be aggregated to obtain a reputation value
meaningful in that context. Rationale provides justification,
explanation, meaning and context to ratings and reputation
values (which on their own are merely numbers). Without
rationale, reputations as such have no meaning, especially if
they were obtained from another reputation system (another
context). For example, two reputation servers have reputa-
tion information regarding the same service but in different
context, then in this case rationale provides a basis for com-
bining these two information to obtain a more relevant and
meaningful evaluation. Also, if the servers have reputation
information regarding two different services, rationale pro-
vides a basis for making comparisons and selection of the
most suitable one. Rationale is especially significant if the
two reputation servers are heterogeneous (employ different
mechanisms / algorithms for reputation evaluation). There-
fore, to facilitate meaningful exchange and reuse of reputa-
tion information and for the overall determination of repu-
tation, we identify the need to infer and explicate rationale
for ratings and reputation.

Currently there has been little effort focused towards ra-
tionale inference and reasoning in the context of reputation.
We aim to bridge this gap to facilitate a better understanding
and holistic treatment of reputation in the specific context
of Web Services. In this paper, we present one way of gen-
erating rationale for user ratings by comparing subjective
and objective performance of the services/service providers.
Using this approach we are able to support detecting decep-
tion and collusion (hence validating the ratings), identifying
user preferences / detecting biases, providing recommenda-
tions to users and explicating the rationale for transfer be-
tween different reputation systems. Our proposed approach
detects false or invalid ratings by comparing the ratings with
the performance of the services, thereby reducing the possi-
bility of maliciousness. Thus elucidated invalid ratings can
be excluded from reputation evaluations. Moreover, based
on such detection, we are able to identify deceptive and col-
lusive users. The offending users could then be penalized in
various ways, such as alienating the user in the society and
barring the user from using the reputation system. Further-
more, the proposed approach infers user preferences from
the users’ rating behavior. Thus inferred preferences can
then be used for providing suitable recommendations to the
user. In doing so, i.e. detecting deception, collusion and in-
ferring user biases, we are able to reason about user ratings
and infer the rationale behind user ratings. In addition, our
model uses knowledge engineering for reasoning, hence we
are able to generate explanations for the conclusions drawn
and the inferences made. Provision of such explanations

gives credibility to the deductions, makes the results more
acceptable and accessible to the users [4, 12] and facilitates
in exchange and reuse of rationale with reputation informa-
tion.

The remainder of the article is structured in the follow-
ing way. We first discuss our previous work and introduce
our knowledge based modeling for reasoning about ratings
in section 2. In section 3, we present the basic knowledge
base of the reasoning system and discuss the rules in the
knowledge base. We then discuss the operation of the basic
reasoning model in section 4. In section 5, we discuss the
prototype implementation to demonstrate how our knowl-
edge based modeling provides a means to extract rationale
for different aspects of reasoning with rationale such as de-
tecting suspicious ratings, poor raters and identifying biases
of users. We then discuss extensions to the basic reason-
ing model in section 6. Finally, we conclude and highlight
the contributions of our model in reputation management in
web services domain and point to future work in Section 7.

2. Generating rationale for user ratings

In our previous work [11], we proposed a fuzzy approach
to extracting the rationale of user ratings and identifying
user preferences. The proposed model uses a set of fuzzy
inference rules which model unbiased rating and different
possible biases towards particular attributes. To establish a
particular bias, we compare the rating provided by a user
with the rating generated by the inference rules based on
the services’ actual performance.

We proposed to calculate the compliance values [5] for
each parameter specified in the SLA and combine them us-
ing fuzzy inference rules to get the overall estimated rating
for the service in that invocation. We proposed to estimate
a set of ratings for a service based on its compliance in the
different SLA parameters. Each rating is estimated on a cer-
tain basis, for example, unbiased towards any parameter, bi-
ased towards Response Time, biased towards Performance,
biased towards Response Time and Performance, and so on.
For this purpose, we proposed to define different sets of in-
ference rules. The first set consists of unbiased rules, i.e.
rules which treat all parameters as equal. The other sets of
rules consider one parameter each as more important than
other parameters. Using different sets of rules the estimated
rating are different, for e.g. the estimated rating obtained
by using unbiased set of rules will give an unbiased rating
which will be different from that obtained by using a set
of rules biased towards a particular attribute (e.g. response
time). The rating given by the user is then compared against
all of the estimated ratings obtained through the fuzzy infer-
ence and the estimated rating which is the closest match is
considered equivalent to the users rating. Then the basis
used for getting that estimation will be established as the



rationale for that user rating. If the users rating does not
match any of the estimated ratings, then the users rating is
termed invalid because the estimated ratings are calculated
for each possible case.

The work reported in this article is an extension of this
previous work. In this paper, we use a knowledge based
approach for reasoning about user ratings and explicating
the rationale behind ratings. This has significant effects.
First of all, we do not generate estimated ratings (as per
the services’ performance) and compare it with the user’s
ratings. Rather we use logic rules to directly compare the
ratings with the service performance. This eliminates the
problem arising due to estimation of ratings, because using
the rules we are able to identify a user rating bias towards
any number of quality attributes. Second, we are also able
to detect collusion and deception in user ratings on a per
transaction basis. Based on the results of this inference, we
propose an approach for empirical analysis of user rating
history to determine collusive and deceptive users. Third,
since our model uses knowledge representation, we are able
to explicate inferred rationale and generate explanations for
the inferences. Fourth, the model infers all biases a user
rating may have (i.e. bias towards any number of quality
attributes), hence analysis/compilation of user bias history
will give all the biases that a user has, which may be differ-
ent in different invocations. Compiling all this information,
we use a set of rules to determine biases of a user. This
is significant in recommending services that perform well
in those parameters that the user is consistently biased to-
wards. This ability to capture/record varying biases is sig-
nificant because in Web services context, changing bias is
a valid occurrence. For example, at one time, price may
not be a problem for a user, but may need a fast response
time. At other time, accuracy may be most important due to
critical nature of the service. Hence, for the same user, pref-
erences are different in different invocations. Therefore, in
these circumstances, traditional ways of determining pref-
erences, such as statement of preferences by the users dur-
ing registration are inadequate. It is required to infer users’
preferences on a per invocation / transaction basis and com-
pile them to determine the preferences of the user. In our
model, we provide preference elicitation in per transaction
basis and provide inference rules that perform empirical
analysis of user biases to determine the preferences of the
user. This is useful in generating recommendations that are
more suitable for the user’s preferences.

In addition, the proposed reasoning system is also capa-
ble of providing an explanation for its inferences, i.e. ex-
plaining how the system established these inferences. Such
explanations give credibility to the deductions and the re-
cipient of such information can use the information accord-
ingly. For example, if the recipient of the information is
a human, then textual explanations can be provided. Sim-

ilarly, if the recipient is a computer program, then the se-
quence of facts and rules that led to the conclusion can be
provided to the recipient system, which will use the infor-
mation accordingly. Use of knowledge based approach fa-
cilitates such explanation.

Another advantage of using logic representation to store
domain knowledge is that it provides a basis for defining
vague concepts such as “deception” and “collusion”. As
such, we follow these definitions of “deception” and “col-
lusion”:
Deception: Deception is a situation where deliberately mis-
leading ratings are provided which tarnishes the reputation
of a service. For example, the service performs well, but
user gives low ratings. In this situation, the user is trying
to deceive other users by deliberately providing low ratings
even when the service performed well. Such situations are
termed as deception.
Collusion: Collusion is a situation where deliberately mis-
leading ratings are provided that boost the reputation of a
service. For example, the service performs poorly, but user
gives high ratings. In this situation, the user is colluding
with the service/provider and trying to boost its reputation,
so even when it performed poorly, the user gave high rat-
ings. Such situations are termed as collusion.

Our reasoning model identifies these situations in per
transaction/ invocation level (i.e. deception/collusion in an
invocation) as well as in users (i.e. a deceptive/collusive
user).

In the next section, we describe the knowledge base of
the reasoning system and discuss the rules in the knowledge
base.

3. The Basic Knowledge Base

We use service performance measure compliance and
user ratings to infer the rationale behind user ratings.
For performance measurement and compliance calculation,
readers are referred to Kalepuet al. [5] and Sherchanet
al. [11]. We use fuzzy concepts to define performance lev-
els and user ratings because the terms used to refer to both
compliance (such as “compliant”, “very compliant”) and
ratings (“poor”, “moderate”, “good”, “very good”) have a
fuzzy element; hence fuzzy representation gives a more re-
alistic mapping between the two. Also, the mapping be-
tween compliance and service performance is fuzzy. For
example, we say, if a service has high compliance, then its
performance is excellent, hence it should have high ratings.
Whereas to map the same fact in numerical terms is next to
impossible. Therefore, for the same reasons, we use fuzzy
concepts to map compliance values to performance levels.
In this paper, we use compliance as a performance measure.
However, we would like to note that this model can support
other forms of performance measures besides compliance.



We would also like to note that, if we take user ratings in
the textual/descriptive form (which may be more appealing
to the users), we do not need the rules that map numerical
ratings to fuzzy ratings levels.

3.1. Fuzzy Terms

First, we start with the definitions of fuzzy terms/sets for
ratings and performance (compliance). Table 1 lists these
definitions. We have defined 4 terms (fuzzy sets) for rat-
ings, namely,poor, moderate, good and excellent. Simi-
larly, we have defined 3 fuzzy sets for compliance, namely,
lowCompliance, compliantandhighCompliance. However,
we would like to note that the fuzzy categorization levels
may be increased as per the granularity desired. The de-
finitions as shown in Table 1 are for rating values in the
range of 0 to 10, and compliance values in the range of -1 to
1. These fuzzy predicates define the degree of membership
in different fuzzy sets for a given rating/compliance value.
These definitions are consistent with declarations of fuzzy
terms as used in Ciao Prolog [14].

For example, definition of the fuzzy predicatepoor (re-
fer to predicate (1) in Table 1):

• poor(X,1) ⇔ X ≥ 0 ∧ X < 1.
A rating valueX has 1 degree of membership in the fuzzy set
poor if X ≥ 0 and X< 1.]

• poor(X,M) ⇔ X ≥1 ∧ X<3 ∧ 2 ∗M = 3−X.
A rating valueX hasM degree of membership in the fuzzy
setpoor if X ≥ 1 and X< 3 and2 ∗M = 3−X.

• poor(X,0) ⇔ X ≥ 3 ∧ X ≤ 10.
A rating valueX has 0 degree of membership in the fuzzy set
poor if X ≥ 3 and X< 10.

Similarly, other fuzzy predicates for rating and compli-
ance fuzzy sets for have been defined. Table 1 lists the com-
plete definitions.

Table 2 shows the definitions for ratings and compliance
levels for given values of rating/compliance and member-
ship degree. These predicates define the criteria for map-
ping ratings/compliance values to the different fuzzy sets.
For example, the predicateisPoorEnough/1 is defined
as (refer to predicate (8) in Table 2):
isPoorEnough(R) ⇐ poor(R,M) ∧M≥ 0.5∧M≤ 1.
A rating R is “poor” enough (or it is somewhat poor)ifR has a
membership degree of 0.5 or more in the fuzzy setpoor .

This mapping using two sets of rules (1 to 14) provides
flexibility in the modeling and separates fuzzy membership
definitions from the rest of the predicates. This lets us
model the fuzzy membership functions as desired and the
rest of the predicates need not change even if the fuzzy de-
finitions change. Here, for the purpose of demonstration,
we have used triangular membership functions for ratings
and compliance fuzzy sets. However, we would like to note

Table 1. Fuzzy Terms
Rating Fuzzy Sets

Poor: (1)

poor(X,1) ⇔ X ≥ 0 ∧ X < 1.

poor(X,M) ⇔ X ≥ 1 ∧ X < 3 ∧ 2 ∗M = 3−X.

poor(X,0) ⇔ X ≥ 3 ∧ X ≤ 10.

Moderate: (2)

moderate(X,0) ⇔ X ≥ 0 ∧ X < 1.

moderate(X,M1) ⇔ X≥1 ∧ X<3 ∧ 2 ∗M1 = X − 1.

moderate(X,M2) ⇔ X≥3 ∧ X<5 ∧ 2 ∗M2 = 5−X.

moderate(X,0) ⇔ X ≥ 5 ∧ X ≤ 10.

Good: (3)

good(X,0) ⇔ X ≥ 0 ∧ X < 3.

good(X,M1) ⇔ X≥3 ∧ X<6 ∧ 3 ∗M1 = X − 3.

good(X,M2) ⇔ X≥6 ∧ X<9 ∧ 3 ∗M2 = 9−X.

good(X,0) ⇔ X ≥ 9 ∧ X ≤ 10.

Excellent: (4)

excellent(X,0) ⇔ X ≥ 0 ∧ X < 6.

excellent(X,M) ⇔ X ≥ 6 ∧ X < 9 ∧ 3∗M = X−6.

excellent(X,1) ⇔ X ≥ 9 ∧ X ≤ 10.

Compliance Fuzzy Sets

Low Compliance: (5)

lowCompliance(X,1) ⇔ X ≥ -1 ∧ X < -0.3 .

lowCompliance(X,M) ⇔
X ≥ -0.3 ∧ X < 0 ∧ 3 ∗M = - 10 ∗X.

lowCompliance(X,0) ⇔ X ≥ 0 ∧ X ≤ 1.

Compliant: (6)

compliant(X,0) ⇔ X ≥ -1 ∧ X < -0.3 .

compliant(X,M1) ⇔
X ≥ -0.3 ∧ X < 0 ∧ 3 ∗M1 = 10 ∗X + 3

compliant(X,M2) ⇔
X ≥ 0 ∧ X < 0.3 ∧ 3 ∗M2 = 3− 10 ∗X

compliant(X,0) ⇔ X ≥ 0.3 ∧ X ≤ 1.

High Compliance: (7)

highCompliance(X,0) ⇔ X ≥ -1 ∧ X < 0.

highCompliance(X,M) ⇔
X ≥ 0 ∧ X < 0.3 ∧ 3 ∗M = 10 ∗X.

highCompliance(X,1) ⇔ X ≥ 0.3 ∧ X ≤ 1.



Table 2. Definitions for Ratings and Compli-
ance Levels

Rating

Rating is “poor” enough (8)

isPoorEnough(R) ⇐ poor(R,M) ∧ M ≥ 0.5 ∧ M ≤ 1.

Rating is “moderate” enough (9)

isModerateEnough(R) ⇐moderate(R,M) ∧M≥ 0.5∧M≤ 1.

Rating is “good” enough (10)

isGoodEnough(R) ⇐ good(R,M) ∧ M ≥ 0.5 ∧ M ≤ 1.

Rating is “excellent” enough (11)

isExcellentEnough(R) ⇐
excellent(R,M) ∧ M ≥ 0.5 ∧ M ≤ 1

Compliance

Compliance is “low” enough (12)

isLowEnough(C) ⇐
lowCompliance(C,M) ∧ M ≥ 0.5 ∧ M ≤ 1

Compliance is “compliant” enough (13)

isCompliantEnough(C) ⇐
compliant(C,M) ∧ M ≥ 0.5 ∧ M ≤ 1

Compliance is “high” enough (14)

isHighEnough(C) ⇐
highCompliance(C,M) ∧ M ≥ 0.5 ∧ M ≤ 1

that our model can incorporate other types of fuzzy mem-
bership functions, for which only the definitions in Table 1
need change.

3.2. Axioms(Rules)

The axioms of the reasoning system are defined using
the basic predicates defined in Tables 1 and 2. We discuss
each of these rules in detail in this section.

Collusive Rating: (15)
This rule defines the condition when a particular rating (in a
particular invocation) is collusive. Collusion is determined
with respect to a service/provider. The rule is defined as
follows:
isInvalidCollusive(R, S, Inv) ⇐⇒

ratingIn(R, Inv)
∧ serviceIn(S, Inv)
∧ (isExcellentEnough(R) ∨ isGoodEnough(R))
∧ ∀A∈q.complianceIn(C,A,Inv) ∧isLowEnough(C)

where q is the set of quality attributes in the system.
A rating (in a particular invocation) is identified as collusive with
respect to a service/provider, if the rating is either “excellent”
or “good”, and the service had low compliance in all the quality
attributes.

This means that the user rated the service highly even
when the service performed poorly, hence a clear case of
collusion between them.

Deceptive Rating: (16)

This rule defines the condition when a particular rating (in
a particular invocation) is deceptive. The rule is defined as
follows :
isInvalidDeceptive(R, Inv) ⇐⇒

ratingIn(R, Inv)
∧ (isPoorEnough(R) ∨ isModerateEnough(R))
∧ ∀A∈q.complianceIn(C,A,Inv) ∧isHighEnough(C)

where q is the set of quality attributes in the system.
A rating (in a particular invocation) is identified as deceptive, if
the rating is either “poor” or “moderate”, and in that invocation
the service had high compliance in all the quality attributes.

This means the user rated the service poorly even when
the service performed exceptionally well, hence a clear
case of deception.

Bias of a Rating: (17)
This rule identifies the bias of a particular rating (in a
particular invocation), i.e., it identifies which attributes
the rating is biased towards. Here “bias” means that the
user’s rating is consistent with the performance delivered
for that particular attribute, therefore the indication that
the user places higher importance in that attribute because
the performance in that attribute had higher significance
in the user’s rating. We declare that “a user rating has
bias towards an attribute” if the rating properly reflects
the performance in that attribute and therefore indicates
preference to that attribute. The rule is defined as follows:
biasOf(R, Inv, Attrib) ⇐⇒

ratingIn(R, Inv)
∧ complianceIn(C, Attrib, Inv)
∧ (isPoorEnough(R) ∧ isLowEnough(C)) ∨

(isExcellentEnough(R) ∧ isHighEnough(C))
There are two conditions for determining bias. A rating (in
a particular invocation) is biased towards a quality attribute,
if the service performed poorly in that attribute and the user
gave a low rating; or the service performed extremely well
in that attribute and the user gave a high rating. The rule
is based on the notion that an attribute that a user is biased
towards has the most impact on the user’s rating. Through
multiple invocations of the rule, it is possible to identify all
the biases of a particular rating.

Biased Rating: (18)
This rule defines the condition for declaring a rating as
biased. The rule is defined as follows:
isValidBiased(R, Inv) ⇐⇒

ratingIn(R, Inv)
∧ ∃A. biasOf(R, Inv, A)
∧ ¬ isInvalidCollusive(R, S, Inv)
∧ ¬ isInvalidDeceptive(R, Inv)

A rating is biased but valid if it is neither collusive nor deceptive,
and has a bias towards an attribute.

This rule enforces that a biased rating is neither collusive
nor deceptive, i.e. biasedness is mutually exclusive to both
collusion and deception. Hence preserves the consistency
of the knowledge base. This rule labels a rating as biased,
whereas rule 17 identifies the biases of a rating.



Unbiased Rating: (19)
This rule defines unbiased rating.
isUnbiased(R, Inv) ⇐⇒

¬ isInvalidDeceptive(R, Inv)
∧ ¬ isInvalidCollusive(R, S, Inv)
∧ ¬ isValidBiased(R, Inv)

Unbiased ratings are all those ratings that are valid, and
there could be hundreds of rules to determine unbiased
valid ratings. Hence, instead of declaring/defining numer-
ous rules for valid unbiased ratings, we define a rating as
unbiased, if it is neither biased, nor collusive, nor deceptive.
The assumption is that there are only four types of ratings
- collusive, deceptive, biased towards certain parameters,
and the unbiased ones.

Valid Rating: (20)
This rule defines the validity of a rating.
valid(R, Inv) ⇐⇒

isValidBiased(R, Inv)
∨ isUnbiased(R, Inv)

A rating is valid if it is biased towards certain parameters, or if it
is unbiased, i.e. all ratings identified as biased are valid, and all
the ratings identified as unbiased are valid.

Invalid Rating: (21)
Ratings that are deceptive or collusive are invalid.
¬ valid(R, Inv) ⇐⇒

isInvalidCollusive(R, Inv)
∨ isInvalidDeceptive(R, Inv)

All ratings that are collusive and deceptive are invalid. An invalid
rating is the negation of a valid rating.

The basic knowledge base consists of the rules 1 to 21.
These rules are complete enough for the reasoning system
to be able to detect collusive and deceptive ratings and infer
the biases of a rating. For further reasoning processes new
rules can be added to the knowledge base. We discuss this
further in a later section. At present, in the subsequent sec-
tions, we explain the operation of the reasoning system and
discuss the prototype implementation of the basic reasoning
engine.

4. Operation of the Reasoning System

Initially, the system contains only the axioms in its
knowledge base, i.e. rules 1 to 21. Then once facts become
available, the reasoning process starts. After each service
invocation, the facts (Compliance details and the Ratings
provided by the users) are entered in the system. Then for
each rating provided, the system will determine whether it
is collusive or deceptive or biased towards any attribute. If
it is established to be none of these, then it is determined
to be unbiased. The conclusion, i.e. the inference drawn
(whatever it is among the four) is then added to the knowl-
edge base, and can be used for further processing, such as
determining user biases and determining a user as deceptive

/ collusive.

A deceptive / collusive rating is different from a decep-
tive / collusive user. Deceptive / collusive ratings are deter-
mined in a per transaction basis, whereas a user who gives
consistently deceptive / collusive ratings is a deceptive / col-
lusive user. Hence the distinction is appropriate.

First, we define the representation of the facts. The de-
tails of a particular rating are represented as:
userIn(U, Inv) ∧ serviceIn(S, Inv)
∧ ratingIn(R, Inv) ∧ time(T, Inv).
Where Inv is a unique invocation ID, U is the user ID of the user
who invoked the service, S is the invoked service, R is the rating
value provided by U in Inv, and T is the instance of time at invo-
cation of S.

Similarly, details of performance statistics, i.e. Compli-
ance statements are represented as:
complianceIn(C1, Attrib1, Inv)

∧ complianceIn(C2, Attrib2, Inv) ∧ ...

This representation format makes it possible to accommo-
date any number of attributes in the system without chang-
ing the representation. Moreover, new details pertaining to
an invocation can be added into the knowledge base without
significant changes in the representation format.

The reasoning system has fixed categorization levels for
compliance levels and rating levels. To increase the cate-
gorization levels, the fuzzy rules (1-4 for Rating and 5-7
for Compliance) need to be changed accordingly, i.e., new
rules need to be added into the knowledge base. This is rea-
sonable because the categorization levels are fixed during
the construction of the system and new categorization lev-
els are not introduced later. Once the categorization levels
are fixed, the system can function smoothly.

The system is flexible enough to allow any number of at-
tributes to be used in the evaluation. Even different number
of attributes or different attributes in different invocations
will not hinder the operation of the system in any way. For
example, in two invocations, two different sets of attributes
are used, i.e. the system recorded performance statistics
in different sets of attributes, then there may be no basis
for comparing the results of the evaluations, but the system
will, in each case, provide a valid conclusion irrespective of
the number or types of attributes.

Furthermore, the system can provide justifications for its
conclusions such as a rating is collusive or deceptive or bi-
ased, by tracing the rules used to arrive at the conclusion,
this is the explicated rationale.

In the next section, we present our prototype implemen-
tation.



5. The Prototype Implementation of the Rea-
soning System for Generating Ratings Ra-
tionale

We developed a prototype knowledge-based reasoning
engine in SWI-Prolog. The reasoning system operates as
discussed in section 4. The reasoning system is then pop-
ulated with random invocation results (compliance values)
and ratings. Then the system is posed a set of queries -“Is
the rating collusive / deceptive / biased / unbiased ?”. The
answers to these queries determine the validity of the rat-
ings, which are helpful in making the subsequent decisions
whether or not to include these ratings in the evaluation of
the services. The system will terminate with success after
finding a positive answer to any one of the queries. This
is desirable because the properties deceptiveness, collusive-
ness, biasedness and unbiasedness are mutually exclusive,
i.e. a rating is either deceptive or collusive or biased to-
wards a set of parameters or unbiased, it can never be two
or more of them at the same time. In addition, the system
will find all the biases that the rating has which are then
stored for future reference.

Then for generating explanations for the conclusions, we
used the PML (Proof Markup Language) [2] developed by
Knowledge Systems AI Laboratory at Stanford University.
PML was developed for explaining the answers in the Se-
mantic Web and provides portable and shareable explana-
tions for question answering. Therefore, it is ideally suited
for our purpose, that is to be able to exchange rationale
along with ratings/reputation information between hetero-
geneous reputation systems. The explanations are in owl
format and are portable, sharable, combinable and reusable.

The explanations can be represented as proof trees for vi-
sualization by human users and can be translated into plain
English for human users. At the same time, the owl for-
mat is also machine readable. Therefore these explanations
can be used to provide ratings/reputation rationale to human
users as well as exchanged between reputation systems. For
using these explanations in making decisions, we need to
develop a decision support system, which is under investi-
gation.

Having discussed the completed work so far, in the next
section, we discuss enhancements to this basic reasoning
system.

6. The Extended Knowledge Base

The basic knowledge base described in section 3 can be
extended to include new reasoning features in the system.
We discuss some of these extensions in this section.

The rules formulated in the basic knowledge base make it
possible to identify collusive and deceptive rating and infer

the biases of a rating, taking into account a single invoca-
tion. However, to determine collusion between a user and a
service, to identify a deceptive user and infer the biases of
a user, new rules should be added to the knowledge base.
We discuss each of these extensions in the subsequent sub
sections.

In the subsequent formulation of rules, we use the
following notation:
We denote “there existse such thatp(e) ” by

∃ e. p(e)
and “for alle such thatp(e) , q(e) is true” by

∀ e. p(e): q(e)

Identifying a Collusive/Deceptive User
A collusive user is one who provides consistently collu-

sive ratings. Collusion between a user and a service can be
determined by examining the ratings provided by the user
to the service. If it is found that the user has been consis-
tently providing collusive ratings to a service, then collusion
is determined. The definite rule for determining collusion is
when a user always gives collusive ratings to the service.
This rule is defined as follows:
isColludingWith(User, Service) ⇐=
∀ Inv. userIn(User, Inv) ∧

serviceIn(Service,Inv) ∧ ratingIn(R,Inv):
isInvalidCollusive(R, Service, Inv)

A user is colluding with a service if in all of the invocations of the
service by the user, the ratings provided by the user to the service
were found to be collusive.

However, this may not be the case in all situations. A
user may provide collusive ratings only sometimes, which
will not be detected by the above axiom. Hence, there
is a need for a more distinctive measure for determining
collusiveness in a user. However, from the definition
of collusion itself, it is evident that a user that gives a
single collusive rating is also collusive because a fair user
would never give a high rating to a service, when the
service performed poorly in all the quality attributes. In
this situation, a collusive user will be identified using the
following rule.
isColludingWith(User, Service) ⇐=
∃ Inv. userIn(User, Inv) ∧

serviceIn(Service,Inv) ∧ ratingIn(R,Inv) ∧
isInvalidCollusive(R, Service, Inv)

Therefore, to differentiate between degrees of collusion,
we can have a notion of degree of collusion, which can be
defined as follows:
degreeOfCollusion(User,Service,Value) ⇐=

percentageCollusion(User, Service, Value)
Where the predicate percentageCollusion(User,
Service, Value) , given User and Service, returns a Value
which is defined as follows:
Value = Number of collusive ratings provided by User to
Service/Total number of ratings provided by User to Service.

Here, the predicatepercentageCollusion/3 can
be an external routine that performs this computation. Us-



ing this axiom, it is possible to identify a user as certain
percent collusive instead of simply stating that the user is
collusive.

Similarly, for determining a deceptive user, similar rules
follow. The only difference is, deception is unrelated to a
service and is a property of a user only, whereas collusion
is with respect to a service.

Determining Biases of a User
The bias of a user will be towards those attributes to-

wards which most of his/her ratings are found to be biased.
Bias determination is useful for recommending suitable ser-
vices to the user. The simplest case is when in every invo-
cation the user (rating) shows bias towards the same (set of)
attributes. In this case, the biases of a user are determined
using the following rule:
userBias(User, Attrib) ⇐=
∀ Inv. userIn(User,Inv) ∧ ratingIn(R,Inv):

biasOf(R ,Inv, Attrib)
A user is biased towards an attribute, if in all of the past invoca-
tions, the user has provided ratings biased towards that attribute.

Now, for aggregating all the biases, we can use an inbuilt
predicate in Prologfindall/3 to find all the biases of a
user and store it in a list using the following axiom:
biasList(User, AttribList) ⇐=

findall(A, userBias(User, A), AttribList)
However, it may not always be the case that a user is found
biased towards the same set of quality attributes in every
invocation. The ratings provided by a user may have differ-
ent biases in different invocations. Therefore, in such cases,
we require a different mechanism for determining the biases
of the user. For such situations, we propose the following
possible solutions:

• Dominant biases: Consider the dominant biases, i.e. biases
that occur in most of the invocations.

• Union of all biases: Combine all the biases in individual rat-
ings (invocations).

• Weighted majority: Assign weights to different biases ac-
cording to the frequency of occurrence of the biases.

• Most frequent: Consider only those biases that occur most
frequently.

Biases thus determined can be used for providing
suitable recommendations to the users. We discuss this in
the following section.

Providing Recommendations
Using the various techniques discussed above, user bi-

ases (towards a set of attributes) are established. This infor-
mation is then stored in the knowledge base. Based on such
previously inferred biases, the system can make personal-
ized recommendations to the user. There could be several
techniques for providing recommendations. We list the fol-
lowing three:

• Recommend a service that has been rated highly by other
users.

• Recommend a service that has been rated highly by other
users who have similar preferences (similar to collaborative
filtering recommendations).

• Recommend a service that has performed well in the at-
tributes which are most important to the user:
recommend(S, User) ⇐=

biasList(User, AttribList)
∧ ∀Inv.serviceIn(S,Inv) ∧ a∈AttribList:

complianceIn(C, a, Inv) ∧
(isHighEnough(C) ∨isCompliantEnough(C))

Recommend the service to the user, which, in all of it past in-
vocations, performed well (i.e. had high compliance or was
compliant) in all the quality attributes the user has bias to-
wards.

The first approach uses only ratings provided by the
users, irrespective of the validity of the ratings and ignores
the preferences of the user for whom recommendation is
sought. Therefore, it is not very desirable.

The second approach takes user preferences into ac-
count, but it has some limitations. Firstly, it employs user
similarity to find services that have been rated highly by
similar users. It is difficult to determine similarity between
users. One case would be: those users that have exactly the
same preferences as the target user (for whom recommen-
dation is being generated) are similar. In all other cases, it
is difficult to determine similar users (i.e. users with similar
preferences). If we consider only strict similarity, then there
may be less number of users that are similar, and even less
number of invocations for each service, hence the recom-
mendation may not be accurate/suitable. Moreover, some
ratings may be invalid (a possible occurrence because sim-
ilar user does not mean that the ratings given by the users
are all valid), further decreasing the number of invocations
to be considered.

The third approach eliminates all of these issues because
it uses only the actual performance of the services, so, all
the invocations can be taken into account. Also, it utilizes
the inferred biases of the target user in providing the recom-
mendations. Hence, it is by far the most desirable recom-
mendation technique.

The proposed axiom however, considers the most sim-
plest case only and is inadequate for different situations. For
example, the user for whom recommendation is being pre-
pared (sought) may have preference towards more than one
attribute and there may be no service that performed excel-
lently in all those attributes in all the invocations. Alterna-
tively, there may be more than one service that performed
well in those attributes. In these situations, we need a more
sophisticated mechanism.

Lets consider the first case, i.e. when there are no ser-
vices that performed well in all the parameters that are im-
portant to the user. One solution to this problem could be
generalizing the rule, i.e. removing a few parameters from
the list of attributes that are important to the user. Then



the question arises, which parameter to remove? In case
the user has been found to be biased towards different at-
tributes in different invocations, the attribute that the user is
less frequently biased towards can be removed to find more
matches for the recommendable services.

In the second case, i.e. when there are more than one
service that have performed well in the parameters that are
important to the user; if one of the services had high compli-
ance in all the attributes important to the user more number
of times than the others, the above rule does not detect this,
and will recommend whichever service it evaluates first. To
solve this problem (i.e. termination at finding of a single
solution), we can ask a different query. Such as “Find all
the services that performed well in all the parameters that
are important to the user”. Then on the result, we can apply
different rules to choose between the services based on the
number of times the service performed better than the other
service.

7. Conclusions and future directions

We have established that analyzing user rating behavior
against service performance gives insight into rationale be-
hind user ratings. In summary, we have made the following
contributions:
(i) Identification of invalid (collusive and deceptive) ratings
(ii) Identification of deceptive and collusive users
(iii) Identification of user preferences (bias towards certain
quality attributes)
(iv) Inference and explication of rationale behind user rat-
ings
(v) Mechanisms for personalized service recommendations
based on the services’ past performance and inferred user
biases

Through identification of invalid ratings, the proposed
model enhances the functionality of the Web Services Rep-
utation System, making it robust from attacks by mali-
cious entities. Also inclusion of rationale along with rat-
ings makes it possible to personalize and tailor reputation
evaluations to particular user requests (user requirements),
subsequently enhancing the functionality of the service bro-
ker. Existing reputation systems which employ aggregation
of user ratings as the basis for reputation assessment can
make use of our reasoning engine to filter out invalid rat-
ings. Also, the reputation models that take user preferences
into account while assessing reputation [8, 10] can make use
of our reasoning engine to infer user preferences instead of
asking users explicitly. In addition, the system can provide
explanation for its conclusions, i.e. how the system estab-
lished that a particular rating / user is collusive / deceptive /
biased towards ceratin quality attributes. Such explanations
give credibility to the deductions, and the recipient of such
information can use the information accordingly. More-

over, because the explanations are in owl format, they are
portable and shareable and can be exchanged along with the
ratings and reputation values between heterogeneous repu-
tation systems operating in different domains.

However, to fully exploit the benefits of our reason-
ing engine, the reputation evaluator needs to have mech-
anisms to incorporate rationale into its reputation calcula-
tions, which is currently unavailable. Therefore, our next
step is to design and develop a reputation evaluator which
incorporates rationale inferred by the reasoning engine into
its reputation calculations so that the system can deliver per-
sonalized and customized reputation assessment as per the
user request.

In this paper, we presented one way of generating ratio-
nale for ratings (i.e. using objective service performance
and subjective user ratings). However, various types of
reputation systems implementing different reputation eval-
uation mechanisms / algorithms are in existence. For a
fully functional network of heterogeneous reputation sys-
tems that can exchange reputation information, we need to
be able to explicate rationale for every, or at the very least, a
few unique types of reputation systems. Therefore, our next
step is generating rationale for different reputation evalu-
ation mechanisms. Moreover, to fully exploit the benefits
of rationale explication, we need a decision support system
that evaluates the rationale and provides a basis for compar-
ison of the different kinds of rationale. This is also currently
under investigation.

References

[1] F. Curbera, W. Nagy, and S. Weerawarana. Web services: Why and
how. In Proc.s of the Workshop on Object-Oriented Web Services,
held in conjunction with OOPSLA 2001, Tampa, Florida, USA, Oc-
tober 2001.

[2] P. P. da Silva, D. L. McGuinness, and R. Fikes. A proof markup
language for semantic web services.Information Systems, 31:381–
395, June-July 2006.

[3] C. Dellarocas. Immunizing online reputation reporting systems
against unfair ratings and discriminatory behaviour. InProc.s of the
2nd ACM Conference on Electronic Commerce, pages 150–157, Oc-
tober 2000.

[4] J. L. Herlocker, J. A. Konstan, and J. Riedl. Explaining collabora-
tive filtering recommendations. InProc.s of 2000 ACM Conference
on Computer supported cooperative work, pages 241–250, Philadel-
phia, Pennsylvania, United States, 2000.

[5] S. Kalepu, S. Krishnaswamy, and S. W. Loke. Reputation = f(user
ranking, compliance, verity). InProc.s of the IEEE International
Conference on Web Services (ICWS 2004), pages 200–207, San
Diego, California,USA, July 2004. IEEE Press.

[6] K.-J. Lin, H. Lu, T. Yu, and C. en Tai. A Reputation and Trust Man-
agement Broker Framework for Web Applications. InProc.s of the
2005 IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE’05), pages 262–269, Hong Kong, March 2005.

[7] A. Mani and A. Nagarajan. Understanding Quality of Service for
Web Services . January 2002.http://www-106.ibm.com/
developerworks/library/wsquality .



[8] E. M. Maximilien and M. P. Singh. Reputation and endorsement for
web services.SIGEcom Exchanges (ACM Special Interest Group on
E-Commerce), 3(1):24–31, 2002.

[9] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model
of trust and reputation. InProc.s of the 35th Hawaii International
Conference on System Sciences, volume 7, page 188. IEEE Press,
2002.

[10] W. Sherchan, S. Krishnaswamy, and S. W. Loke. Relevant past per-
formance for selecting web services. InProc.s of the 1st Interna-
tional Workshop on Services Engineering (SEIW 2005), held in con-
junction with the 5th International Conference on Quality Software
(QSIC 2005), Melbourne, September 2005. IEEE Press.

[11] W. Sherchan, S. W. Loke, and S. Krishnaswamy. A fuzzy model for
reasoning about reputation in web services. InProc.s of the 21st ACM
Symposium on Applied Computing (ACM SAC 2006) - Trust, Recom-
mendations, Evidence, and other Collaborative Know-how (TRECK)
track, Dijon, France, April 2006. ACM Press.

[12] R. Sinha and K. Swearingen. The role of transparency in recom-
mender systems. InCHI ’02 extended abstracts on Human Factors in
Computing Systems, pages 830–831, Minneapolis, Minnesota, USA,
April 2002. ACM Press.

[13] R. M. Sreenath and M. P. Singh. Agent-based service selection.Jour-
nal on Web Semantics, 1(3):261–279, April 2004.

[14] C. Vaucheret, S. Guadarrama, and F. Bueno. Ciao
Prolog Reference Manual: Fuzzy Prolog . July 2004.
http://clip.dia.fi.upm.es/Software/Ciao/
ciao html/ciao 113.html#SEC467 .

[15] A. Whitby, A. Josang, and J. Indulska. Filtering out unfair ratings
in bayesian reputation systems. InProc.s of the 7th International
Workshop on Trust in Agent Societies, at AAMAS 2004, New York,
July 2004.

[16] B. Yu and M. P. Singh. An evidential model of distributed reputa-
tion management. InProc.s of the 1st International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems, pages 294–
301, Bologna, Italy, July 2002. ACM Press.


