
Situation Semantics for Things: Everyday Artifacts that
Come with Pre-Specified Behaviours

Seng W. Loke
Department of Computer Science and Computer Engineering, La Trobe University

VIC 3086, Australia
s.loke@latrobe.edu.au

ABSTRACT
This paper proposes the idea of providing artifacts with specifica-
tions of their situation transforming behaviour. Such specifications
can be created by designers (and so would come together with the
artifact on purchase) or end-users to implement smart things that
transform their environment in meaningful ways. The specifica-
tions are based on situation semantics first developed for studies in
linguistics.

1. INTRODUCTION
The notions of spime [13], context-aware smart artifacts, smart

objects, and things that think1 (e.g., as in [10, 8, 4, 5, 12]) are
changing the way we view ordinary everyday objects and also defin-
ing new kinds of things with networking, computational and sens-
ing capabilities.

We envision everyday objects with accompanied computational
behaviour. Buying a new television and introducing it into the
living room should automatically cause changes in or interactions
with other appliances/devices in the living room (perhaps invisible
to the end-user), or a new table (with an embedded computer such
as the Microsoft surface computer) introduced into an office might
begin to interact with other tables and perform various behaviours.
In a similar way, any device or a coffee cup (with embedded com-
puter and networking capabilities) introduced temporarily into a
space might cause computational behaviour and underlying inter-
actions automatically, whether for art, commerce, entertainment or
other applications. And it may not only be the presence of an arti-
fact that causes interactions but also the location of an object - e.g.,
placing a vase on the dining room table causes the dining room
lights to turn on but placing the same vase on the living room cof-
fee table causes a table lamp to turn on. In addition, placing a col-
lection of vases (of a certain type) next to each other might cause
certain songs to be playable from a set of nearby speakers (this
could be used by businesses to reward buyers for buying a whole
collection of vases, etc). Hence, a case can be made for packaging
everyday objects (from furniture to vases to digital picture frames,

1http://ttt.media.mit.edu/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam.
Copyright 2011 ACM 978-1-4503-0785-7/11/12 ...$10.00.

etc) with accompanying computational behaviours as value-adding,
triggered by

• their presence,

• their position,

• their movements,

• their proximity to other objects, or

• more generally, context changes

within their normally situated spaces.
People buy clothings and accessories to make a (fashion) state-

ment or purchase things to transform their situation and lifestyle. In
other words, an artifact, device, or object has the purpose (or intent)
and/or ability to alter the current situation or environment in which
they inhabit. For example, a lamp when switched on changes the
environment from dark to bright, and a smart road sign (between
two road segments with two different speed limits) is intended to
change the speed of cars as drivers observe these signs.

A set of vases put together might begin to play orchestral music;
arranging chairs together in a certain way in a cafe yield certain
updates on public displays; a pill bottle at the right time and in the
presence of the owner begins to glow till the owner takes the medi-
cation; throwing a ball among a group of people results in the ball
changing colours; a new set of speakers introduced in the living
room finds sounds from the TV or a radio being piped through it,
and placing a plant in the middle of a shopping mall results in pe-
riodic reports about deforestation happening throughout the world.
These are only a few examples of artifacts or things with situation
transforming intent, whether the thing has its own capabilities to
achieve the effect, the intent is achieved through a human in the
loop influenced by the thing, or the thing effectively uses other re-
sources, or triggers another system to try to accomplish its intent.

The general idea is that when an artifact is brought into a space
(e.g., a living room), based on its current situation, the artifact
causes a new situation to arise (which the artifact is then now in). If
the same artifact is placed in another space (e.g., the kitchen), based
on its new current situation, the artifact causes a new situation. The
relationship and interaction between space and artifact has been
explored in [7], but we highlight in this example that the artifact
operationally represents a relationship between two situations, the
situation which the artifact first occurs in and the situation which
the artifact has caused. This by no means should terminate, the ar-
tifact may continuously transform the situation it is in, generating
a sequence of time-ordered situations, but a simplification or a dis-
cretization (taking two snapshots in time) can be extracted, and so
we deal with discrete situations in this paper.

227

In this paper, we present a perspective on an artifact based on
its (designed or user-conceived) purpose to change its current situ-
ation. We define context to be any information that can be used to
recognize the situation of an entity [3], and situation as a state of
affairs in which an artifact finds itself. We formalize the fact that
an artifact is intended to have some effect on situations; we provide
a situation semantics for artifacts, where an operational meaning of
an artifact can be given by a relation between a situation the artifact
is in and a situation it is purposed to achieve. Certainly, a specifica-
tion for the situation-changing behaviour of an artifact can be given
separately, but we imagine that an artifact in the future will come to-
gether with its situation-transforming behaviour (specified in some
standard language), only to be interpreted by the space (i.e., the
space software) in which the artifact is placed. We provide a for-
malism for specifying the intended situation-changing behaviour of
an artifact, effectively giving the artifact a semantics. Such specifi-
cations can then be executed to try to achieve the intended effects
or used for reasoning about the behaviour of the artifacts. We de-
scribe this meaning of artifacts based on situation semantics [1]
in Section 2, where we also explore the semantics of collections of
things and consider modifiers on things. In Section 3, we briefly re-
view implementation architectures. We conclude with future work
in Section 4.

2. SITUATION SEMANTICS FOR THINGS
What is a thing? As mentioned earlier, various terminology in-

cluding smart objects, Internet of Things, and context-aware arti-
facts have been used to describe everyday objects with one or more
of the three capabilities: computation, networking and sensing. Our
semantics applies to “things” which, here, refer to not just these ob-
jects with these capabilities but also those without such capabilities
but tagged (e.g., RFID-tagged or Bluetooth tagged) so that they
can be recognized and used to trigger situation changes. Situation
semantics was first developed to study the semantics of natural lan-
guages [2, 1]. We use here the notion of situation from [2]: “Situa-
tions are parts of the world and the information an agent has about
a given situation at any moment will be just a part of all the infor-
mation that is theoretically available." Context, being information
that can be used to determine context, can then be aggregated in a
model of situations.

2.1 Things as Relations
With situation semantics, roughly speaking, the meaning of an

expression ψ is taken to be a relation: d, cJψKe between an utter-
ance or discourse situation d, a speakerÕs connection function c
(which refers to objects mentioned), and a situation e described by
the utterance. Here, the situations d and e can be finitely described
by a set of non-contradictory facts (describing different types of
context attributes and values), since they are only descriptions of
some part of the world. Correspondingly, we give the semantics
of a thing t as a relation: s, IJtKs′, between the situation s in which
the thing is embedded, an interpreter function I which discerns
if s occurs, and a situation s′ representing the intended effect of
t which is ascertained by I . Sometimes, we will leave I out in
our expressions when that is implicit. Given specifications of the
form s, IJtKs′ as above, we identify six stages a system realizing I
should support for their execution:

1. determine if the situation s has occurred: we consider the
current situation of the artifact, and the system may use sen-
sors to determine if s has occurred;

2. explore the effects of s′: it is useful to understand the effects
of the intended artifact before they are executed; the idea is

that the system can reason with these specifications and their
possible effects before actually executing them, for example,
either as a safeguard against undesired behaviours or to de-
termine the likelihood of success;

3. execute the specifications: the system needs to figure out the
appropriate operations to perform in order that s′ may be ef-
fected, based on the current situation s;

4. ascertain if the intended situation has been achieved: the sys-
tem can check to see if the operations produced the intended
effects, perhaps by perceiving the situation via sensors af-
ter the operations complete, or by querying the status of de-
vice(s);

5. update self-knowledge: the system might then update its own
knowledge base, either to record the success (or failure) of
the specified artifact or to record the effects of a successfully
achieved situation;

6. inform the user: we assume here some mechanism of feed-
back to users; sometimes this might not be necessary if the
user can simply observe the new situation.

Our specifications describes an artifact as a relation between two
situations, and goes beyond simple Event-Condition-Actions (ECA)
rules by (i) representing (effectively) conditions as the prerequisite
situation s which forms a set of coherent facts about the world,
instead of a simple Boolean condition, (ii) mapping to situations
instead of actions, allowing an interpreter I to figure out opera-
tions required to achieve the situation. We contend that, for situ-
ations, mapping between situations is at a higher level of abstrac-
tion than mere ECA rules. This also facilitates specifying things
with chained effects. For example, for things t1 and t2, we have
s1Jt1Ks′

1 and s2Jt2Ks′
2 and s2 ⊆ s′

1 so that the resulting situation
of t1 enables t2 to have effect. We can also have ramified effects,
where we might also have thing t3 so that s3Jt3Ks′

3 and s3 ⊆ s′
1

so that not just t2 but also t3 is enabled. We plan to exploit such
chained and ramified effects in collections of things mediated by
the physical world. (This idea also allows us to generalize the se-
mantics to relations between situation-types instead of situations,
where we define a situation-type as a set of situations.)

Consider a simple example of the intended effect of a table_lamp:
< dark = true >, IJtable_lampK < dark = false >
where we rely on some interpreter I to elaborate on the exact mean-
ing of dark and not dark. This specifies the table_lamp as an
artifact that turns a dark place to a place that is not dark. Given a
system realizing I that can execute this specification, we effectively
have an automatic table lamp. A light sensor could be used with a
table lamp that is computer controllable (e.g., via an UPnP2 or Web
service interface). Note that a comparatively simple implementa-
tion of this is if a normal table lamp is used, we can implement
this automatic behaviour by RFID tagging the table lamp and then
having an RFID reader that detects the presence of the table lamp,
and then when the light sensor readings are obtained, use an X10
controller to switch the lamp on or off. Hence, there are numer-
ous ways to implement such a specification. But the idea is that
the expression above is an abstract specification of the functional
meaning of the table lamp, which is a relation between the situa-
tion < dark = true > and < dark = false >.

Of course, one can use a more elaborate description of the situ-
ation < room_dark = true > and < room_dark = false >
which refers to my room where the table lamp is located (this in-
terpretation of the context room_dark is supplied by I which will
2http://www.upnp.org

228

map it to an appropriate range of readings of a light sensor in my
room). There could be multiple table lamps with a similar specifi-
cation because of their similar effects on dark rooms, and so such
specifications are considered abstract, applicable to a variety of
similar (at least with respect to their situational effects) things.

We also note that the situations to which a thing relates may have
nothing to do with the capabilities of the thing. For instance, we
may have
(1) < room_dark = true >, IJbookK < room_dark =
false >
to mean that when a particular book is brought into the room, the
book’s presence triggers some light in my room to turn on so that
my room is no longer dark. Effectively, we specified a situation
altering thing: the book changes the lighting condition in my room.
This could be implemented by, say, RFID tagging the book, and
when an RFID reader in my room detects the (tag on the) book, the
system then turns a light on. What we have done is then assigned
situation semantics to the book, but this semantics does not relate to
the book’s capabilities. We could also assign a different semantics
to the same book, as follows:
(2) < quiet = false >, IJbookK < quiet = true >
which makes a room quiet when the book is brought in. Now,
both specifications can be composed without problems here, but
this yields a slightly different meaning:
{< room_dark = true >,< quiet = false >}, IJbookK
{< room_dark = false >,< quiet = true >}
The enabling conditions are now both< my_room_dark = true >
and < quiet = false >, and so, both have to be true before the
book has any effect, in contrast to the two separate specifications
(1) and (2) above, which takes effect on one or both situations hap-
pening. But in general, the designer should consider compatibility
of multiple enabling situations and multiple goal situations.

2.2 Collections of Things
There has been much work on aggregating devices and artifacts

for computational purposes (e.g., [6], [9], and e-gadgets3), includ-
ing aggregating things such as grocery items on a kitchen table [11]
and clothings in a wardrobe. Consider an electronic orchestra (or
band) formed by a collection of vases, each vase contains a mini-
computer and speakers to emit music corresponding to a particular
type of instrument: we have one vase emitting guitar music, another
five vases emitting violin music, another vase emitting piano music
and another emitting bass music, but the vases wirelessly commu-
nicate with one another and are synchronized by a vase playing the
role of a conductor. A user might buy a collection of such vases
(containing at least the conductor vase) and then when the vases
are set in close enough proximity to each other and the atmosphere
is sufficiently quiet, they begin to play a musical piece. Given a
collection of seven such vases v1, . . . , v7, we can write a specifi-
cation for this collection as follows, for some interpreter I , and the
result is to play a piece by Mozart:
{< quiet = true >,< v1, . . . , v7 in close proximity >
}IJv1, . . . , v7K{< Mozart_playing = true >}
A system implementing this specification should be able to track
the vases or sense their collocation and proximity with one another,
and should also be able to detect the current sound level where the
vases are. An easy variation is where appropriate vases are present
so that a particular kind of music can be played (say, Bach), and
say this requires only v1, . . . , v4 to be present:
{< quiet = true >,< v1, . . . , v4 in close proximity >
}IJv1, . . . , v4K{< Bach_playing = true >}

3http://www.extrovert-gadgets.net/

An interesting issue that arises here is that enabling situation
{< quiet = true >,< v1, . . . , v7 in close proximity >
}
subsumes the second enabling situation
{< quiet = true >,< v1, . . . , v4 in close proximity >
}
so that two possible situations might be intended here. The sys-
tem must then choose one of the musical pieces randomly, choose
to satisfy the most specific situation, or the more general one - a
policy is needed for such a case. Alternatively, if there is a user
interface, the user can be asked for his/her choice. However, there
would be situations where the resulting intended situation do not
conflict and both can be carried out. For example, suppose we have
“opening the window” instead of “playing Mozart” with the seven
vases:
{< quiet = true >,< v1, . . . , v7 in close proximity >
}IJv1, . . . , v7K{< open_window = true >}
Then, both having Bach playing and an open window can co-occur.
In general, given two specifications s1JC1Ks′

1 and s2JC2Ks′
2 where

C ∩ C′ 6= ∅, a designer needs to consider disjoint, overlap, and
subset relationships between enabling situations and situations to
be achieved, i.e. s1 ∩ s2 = ∅, s1 ∩ s2 6= ∅ (and if s1 ⊆ s2 or
s2 ⊆ s1), and s′

1 ∩ s′
2 = ∅, s′

1 ∩ s′
2 6= ∅ (and if s′

1 ⊆ s′
2 or

s′
2 ⊆ s′

1).

2.3 Command-Controllable Things,
Stateful Things, and Thing-Currying

Currying in functional programming refers to turning an n-argument
function to a (n − 1)-argument function. A thing that can receive
commands (and not all things can do this) can be “curried” in that
the thing itself may have a function, but the thing with a command
issued on the thing (written like a method on an object) might have
a slightly different function, and the thing with a command issued
on the thing and additional parameters on the command might have
yet another function.
{< room_dark = true >}, IJdrapes.openK{< room_dark =
false >}
and an example with a parameter:
{< room_noisy = false >}, IJtv.set_volume(high)K
{< room_noisy = true >}
Things even if not command-controllable can be described with
states. States of things can be described as part of an enabling sit-
uation, but could specify a curried version of things - we basically
employ appropriate adjectives (written in bold) with things. For ex-
ample, we might then have
< quiet = false >, IJopened bookK < quiet = true >
Coupled one of the above specifications, we may have a book being
brought into my room causing the light to come on, and when the
book is opened, the radio in the room is turned off.

3. PROOF-OF-CONCEPT
As noted earlier, a thing (a) may have its own capabilities to

achieve the situation changes, (b) may involve a human in the loop
influenced by the thing to help it achieve its intent, or (c) the thing
effectively uses other resources, or triggers another system to try to
accomplish its intent. In other words, the thing might be stand alone
and does not involve any surrounding infrastructure or it may con-
nect to and utilize a surrounding infrastructure. The thing may or
may not involve a user in its achieving of an intended situation. Be-
low, we describe a prototype using Bluetooth discovery/scanning
for Bluetooth tagged devices and a linear array of Phidgets4 dis-
4http://www.phidgets.com

229

tance sensors, which allows thing identity (via Bluetooth addresses)
and presence to be detected, and position with respect to the array
of sensors to be detected.

Figure 1 illustrates the array of eight distance sensors (small
boxes numbered 1 to 8) connected to a computer. The large rectan-
gle represents an area where the position of an object (illustrated as
a circle) can be detected. The large rectangle can be vertical (on a
wall) or horizontal (on a floor, carpet, or table). A distance sensor
can detect the distance of an object from it roughly up to 0.7metres
away. In the figure, the object is a distance x metres away from

Figure 1: An illustration of our simple testbed of detecting the
position of objects on a rough grid using an array of distance
sensors numbered 1 to 8.

sensor 3, and so would have coordinates (3,x). Hence, the number
of the sensors and the distance measures provide a rough grid for
the object’s position. It is possible that the object is detected by
two sensors but we avoid that by having any two sensors more than
a certain distance apart (determined by the dimensions of the ob-
ject or thing) - but which also creates gaps in the detectable regions
when the object is “between” two sensors. What is not shown in the
diagram is that the object is Bluetooth-tagged (RFID can be used
too) so that the computer can also sense the identity and presence of
the object. We used this testbed to determine the current situation
of the thing being tracked (presence/absence, position relative to
our coordinate system), and output situations can range from dis-
playing different content on a large screen to changing the music
currently being played. We could have a specification such as the
following for vase v1 on a fairly large table, with I denoting the
system:
{< v1 at position (3,0.5m) >}, IJv1K
{< Mozart_playing = true >}
And by simple Euclidean distance calculations on coordinates of
two vases, we could have:
{< v1 and v2 in close proximity >}, IJv1, v2K
{< Bach_playing = true >}
The above specifications are general and can be used in other en-
vironments. For example, the way in which music is played in
one environment is via computer speakers and another via sending
commands to a hi-fi system, but the goal is to have Bart or Mozart
played.

4. CONCLUSION AND FUTURE WORK
We have introduced ideas for specifying situation semantics for

things, and illustrated our ideas with several examples. Such spec-
ifications, we assume, can then be executed by a system that will
proceed through the six stages we outlined. We envision such a sys-
tem being end-user programmable so that users can assign situation
semantics to his/own own things, according to their own fancy. We
think that the end-users, not only designers, should have a means

to define the situation semantics of artifacts according to their own
preferences, and create specifications in a standard XML language
(which we have not defined in this paper) so that such specifications
can be shared and reused.

We envision a generic interpreter which can execute these stan-
dard XML specifications, just like how a Web browser interprets
standard HTML, e.g. user buys a vase and puts it in the living
room and starts to see the vases’ behaviour manifest, as specified.
An ontology of situations and context ontologies (e.g., as reviewed
in [14]) might be helpful to aid users in this regard. Descriptions of
situations can then make use of context attributes from referenced
ontologies.

Future work will extend the range of sensors used and define a
collection of typical situation semantics specifications for everyday
objects.

5. REFERENCES
[1] Jon Barwise and John Perry. Situations and Attitudes. MIT

Press, Cambridge, MA, 1983.
[2] Keith Devlin. Situation theory and situation semantics. In

John Woods and Dov M. Gabbay, editors, Handbook of the
History of Logic, pages 601–664. 7 edition, 2006.

[3] Anind K. Dey. Understanding and using context. Personal
and Ubiquitous Computing, 5(1):4–7, 2001.

[4] Hans W. Gellersen, Albercht Schmidt, and Michael Beigl.
Multi-sensor context-awareness in mobile devices and smart
artifacts. Mob. Netw. Appl., 7(5):341–351, 2002.

[5] Neil Gershenfeld. When Things Start to Think. Henry Holt
and Co., Inc., New York, NY, USA, 1999.

[6] Andreas Heil, Mirko Knoll, and Torben Weis. The internet of
things - context-based device federations. In HICSS ’07:
Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, page 58, Washington, DC,
USA, 2007. IEEE Computer Society.

[7] Ashraf Khalil and Kay Connelly. Context-aware
configuration: A study on improving cell phone awareness.
In CONTEXT, pages 197–209, 2005.

[8] Gerd Kortuem, Fahim Kawsar, Vasughi Sundramoorthy, and
Daniel Fitton. Smart objects as building blocks for the
internet of things. IEEE Internet Computing, 14(1):44–51,
2010.

[9] Rajnish Kumar. User-centric framework for device
aggregation. Master’s thesis, 2003.
http://scholarship.rice.edu/handle/1911/17600?show=full.

[10] Mike Kuniavsky. Smart Things: Ubiquitous Computing User
Experience Design. Morgan Kaufmann, 2010.

[11] Marc Langheinrich, Friedemann Mattern, Kay RŽmer, and
Harald Vogt. First steps towards an event-based
infrastructure for smart things. In Ubiquitous Computing
Workshop (PACT 2000), Philadelphia, PA., October 2000.

[12] Seng W. Loke. Context-aware artifacts: Two development
approaches. IEEE Pervasive Computing, 5(2):48–53, 2006.

[13] Bruce Sterling. Shaping Things. MIT Press, 2005.
[14] Juan Ye, Lorcan Coyle, Simon Dobson, and Paddy Nixon.

Ontology-based models in pervasive computing systems.
Knowl. Eng. Rev., 22(4):315–347, 2007.

230

	1 Introduction
	2 Situation Semantics for Things
	2.1 Things as Relations
	2.2 Collections of Things
	2.3 Command-Controllable Things, Stateful Things, and Thing-Currying

	3 Proof-of-Concept
	4 Conclusion and Future Work
	5 References

