
TASKREC: A Task-Based User Interface for Smart Spaces

Vo, C.C., Loke, S.W., Torabi, T.
Department of Computer Science & Computer

Engineering, La Trobe University
VIC 3086, Australia

{c.vo,s.loke,t.torabi}@latrobe.edu.au

Nguyen, T.
Department of Computer Networking &

Communications, University of Information
Technology, Ho Chi Minh City, Vietnam

tuanna@uit.edu.vn

ABSTRACT
A smart space is a physical space such as a seminar room or a
university campus that is richly and invisibly interwoven with sen-
sors and actuators into everyday objects, and consists of connected
devices. This space is often difficult to use and its capability is of-
ten invisible from users’ awareness, especially for those who are
unfamiliar with this space. The difficulty results from the over-
load of features/configurations offered by individual devices and
their combinations while the invisibility comes from the blend of
computational elements into the environment. This paper describes
TASKREC, a new system that automatically generates a list of high-
level tasks supported within a smart space based on user’s location,
surrounding devices, and user’s pointing gestures. TASKREC may
automatically execute or guide the user through the accomplish-
ment of the selected task based on the corresponding task model.

Keywords
Task-Based User Interfaces, Location-Based Task Recommenda-
tion, Location Modelling, Task-Driven Computing.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Graphical user interfaces.

1. INTRODUCTION
Smart spaces allow users to accomplish high-level tasks beyond

tasks supported by single device and service. As these spaces in-
creasingly embedded with technologies become more complex and
sophisticated, everyday users often find themselves spending more
time and effort in understanding, configuring, and exploiting them.
Task-driven computing [11] appears to be a promising paradigm
to address this problem as it shifts focus to what users want to do
(i.e., on the tasks at hand) rather than on the specific means for
achieving those tasks [6].

Loke [5] introduces a concept of taskable space, a space of con-
nected devices and ubiquitous services is fitted with a task com-
puting framework. The taskable space supports physical tasks, soft

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam.
Copyright 2011 ACM 978-1-4503-0785-7/11/12 ...$10.00.

Figure 1: Task-based UIs based on user location. The left
screen is a list of recommended tasks supported within the uni-
versity campus. The right is recommended tasks supported
within the personal office.

tasks, combined, and tasks which are accomplished by multiple de-
vices working together. This paper presents TASKREC, a system
that automatically generates a list of tasks (presented on the user’s
smartphone) supported within a smart space based on user’s loca-
tion, surrounding devices, and user’s pointing gestures. The list of
tasks are suggested by the system to the mobile user according to
the capabilities of the current space in which the user is situated and
according to what the user points his/her smartphone at. The user
can then select tasks s/he wants to do from this task list. The system
can then either automatically execute or guide the user through the
accomplishment of the selected task.

Let’s examine a scenario: When Bob drives into the university
campus, the TASKREC client on his mobile phone automatically
recommends him a list of available tasks as shown on Figure 1
left. When Bob enters and remains in his personal office, he is
recommended a list of tasks supported within his office (see Fig-
ure 1 right). While he is walking forward and pointing the phone to
the television, a list of television-supported tasks are recommended
(see Figure 2 left); similarly Figure 2 right is a list of recommended
tasks as he points the phone to the air-conditioner. When Bob se-
lects a task to be accomplished, if the task is toggleable (e.g., turn
on/off lights), there will be no user interface for that task; otherwise
the system will guide him through the task accomplishment by ex-
ecuting the corresponding task model. The system also supports
for multi-tasking. That means, Bob can switch between currently
running tasks (e.g., ’Make coffee’ and ’Watch TV’) to control their
executions. He can also define whether some tasks can be automat-

223

ically executed when his context changes e.g., entering or leaving
his office.

Challenges for TASKREC are to accurately infer user’s location
and to execute tasks. To address the first challenge, we use multi-
model location technologies with various accuracies ranging from
hundreds of metres (e.g., the global positioning system) to a few
centimetres (e.g., the Cricket system1). Accordingly, we propose
a multi-level location model to incorporate spaces and sub-spaces
ranging from campus scales to device’s vicinity scales. This allows
the user to switch between levels to get different task lists. We ad-
dress the second challenge by using task models specified in the
ANSI/CEA-2018 standard [1]. A task model is a formal descrip-
tion of activities involved in completing the corresponding task. It
helps the machine understand how a task is performed [9]. Key re-
quirements of task models are to be abstract enough to avoid being
bound to individual devices/services; and to be able to incorporate
context information into task execution. In the ANSI/CEA-2018
standard, tasks are defined in terms of subtasks; atomic tasks can
be “grounded” to actual device functions and services.

TASKREC is implemented on top of a task computing framework
fitted into a taskable space (so called space server). This server
enables the manipulation, composition, and advertisement of task
models for that space. Users of TASKREC use a handheld device
(e.g., a PDA or mobile phone) or even their laptop or desktop PC to
receive and execute relevant tasks. There is no need for installing
a special program on user devices except a web browser because
the TASKREC client is actually a web page. Most computational
processes are at the space server.

The rest of the paper is organised as follow. First, we briefly
present related work in this area. The next section elaborates on
the conceptual models, followed by TASKREC’s architecture and
implementation. We conclude with a discussion of implementation
decisions and future work.

2. RELATED WORK
Much work has been done in recommending users applications,

services, and resources which may suit their current context. For
example, Cheng et al. [2] propose a system which recommends users
applications installed on a mobile phone. However, having recom-
mended applications, services, and resources, it is still difficult for
the users to get them working together to achieve their intended
tasks.

Research has focused on automating device integration and task
execution in smart spaces. Messer et al. [7] implement the Inter-
Play system that allows a user to express tasks via a pseudo-English
interface then the system does the rest. However, because of the au-
tomation of device integration, the user may not be aware of tasks
the system can supports at a particular moment. Also, the user
needs to learn how to express accurately their tasks. These limi-
tations can reduce user acceptance of this system. Similarly, Ran-
ganathan [8] reports a task execution engine, where the user can
select a task to be executed, then the system discovers and binds
the best available resources for executing the task.

Several work has focused on methods for automatically gener-
ating interfaces for systems of multiple connected appliances like
Huddle [4]. Huddle is designed to support multimedia tasks which
rely on flows of data such as audio or video data. In contrast, we
aim to support all types of tasks including soft tasks such as ‘Bor-
row a book from a library’.

3. CONCEPTUAL MODELS
1http://cricket.csail.mit.edu/

Figure 2: Pointing & Tasking metaphor. Two device-based
task interfaces when the user points to a television or an air-
conditioner.

We explain the concepts and ideas we utilized in our task-based
conceptualization of smart spaces in this section.

3.1 Task-Based User Interfaces
We refer a task-based user interface to as a user interface (UI)

which is tailored to users’ current high-level goals called tasks.
Such the interface is not to present the user a static matrix of but-
tons (e.g., for controlling a particular device) or a rigid hierarchical
menu like traditional menus on PC; but to present relevant sugges-
tions and guides for the users to accomplish their intended tasks.
A typical example of a task-based UI is given in [9] where the UI
guides a user through the completion of a task called ‘Borrow a
book’.

3.2 Context-Aware Task Recommendation
Users want to know or to be informed what tasks they could do in

their situation at a specific space. Context-aware task recommen-
dation is a method that uses context information for making task
recommendation [10]. Context information can be any information
as long as it is useful to characterise user’s situation [3]. In this pa-
per, we consider user’s location for recommending tasks. We call
this method location-based task recommendation. Specifically, the
system continually updates a user’s location, then the tasks which
are supported within the spaces containing that location will be rec-
ommended for the user. A space could be at a larger scale such as
university campus, or at a medium scale such as library, or at a
room scale such as personal office, or even at an object-zone scale
(i.e., the surrounding of device, person, or physical object such as
book). Figure 1 and 2 are examples of such location-based task
recommendations.

3.3 Pointing & Tasking Metaphor
We aim towards scenarios where a user can retrieve a list of

object-related tasks when he/she points to a particular object (e.g.,
a book, a television, or even a person). This scenario would be
possible as physical objects in smart spaces are tagged with com-
putational elements such as RFID tags or sensors. Imagining that
you scan a book then you would be suggested a task called ‘Bor-
row the book’; or you approach close to a person at a conference
then perhaps you would be suggested to get the profile (e.g., name)
of that person. We implement this concept in our prototype where
we points our phone which is attached with a special hardware (we
will present this in the implementation section) to a television or
air-conditioner then related tasks are shown to us (Figure 2).

3.4 Multi-level Location Model
Our location-based task recommendation approach needs to know

the space the user is currently in. The more specific space is deter-

224

Figure 3: Multi-level location modelling. The first column
consists of four different location levels. The second column
presents examples of spaces at individual levels. The last col-
umn is location technologies used at corresponding levels.

Figure 4: Architecture of the TASKREC system.

mined, the more specific tasks are recommended. However, the
granularity level of spaces is determined depending on technolo-
gies which are used to get user’s location information. It is not
flexible if the system is designed to function only in one level of
location granularity such as room level or campus level because
the tasks which are supported within e.g. a university campus may
not be supported within e.g. a specific room or the tasks which are
supported within a room may not be supported by a specific device.
Therefore, we propose a multi-level location model where spaces
at larger scales are divided into sub-spaces at smaller scales. In our
design, we have four levels of granularity including campus level,
building level, room level, and device zone level. Figure 3 shows
the four levels and their instances of spaces. The user is allowed
to switch between levels to retrieve different task lists. We think
that the more specific the spaces, the more relevant the tasks are to
users. That is why currently we do not consider larger scales such
as countries in our research.

4. ARCHITECTURE
In the TASKREC system, a handheld device (e.g., a PDA or mo-

bile phone) plays two roles. First, it is the interface between the
user and the space. Second, it can provide location information if it
has a built-in GPS unit and/or a Bluetooth unit. Users of TASKREC
firstly need to register with the space server for that space. During
the registration, he/she will active the address of their Bluetooth
unit if have. An overall view of TASKREC architecture is shown in
Figure 4.

TASKREC requires two types of input to function. The first is
a repository of task models for possible tasks supported within the
space. Designers use the Task Model Editor to specify task models
in XML complying with the ANSI/CEA-2018 standard [1]. Task
models can be published and advertised for others to search for and

reuse. We leave the development of a graphical tool for authoring
task models in the future work. The critique of the reason of using
the ANSI/CEA-2018 standard are given in [9]. The second type of
input TASKREC requires is user’s location information. The Loca-
tion Engine is responsible for updating user’s location and inferring
the spaces the user is currently in.

The Task Recommender takes the current space of the user in-
ferred by the Location Engine to recommend tasks. These com-
ponents work in separate processes but on the same location data.
The Task Execution Engine is to execute tasks and to guide the user
through task accomplishment.

5. IMPLEMENTATION
To get location information corresponding to the four levels of

location granularity, we integrate four location technologies into
TASKREC including GPS, Bluetooth, RFID, and Cricket. How-
ever, we do not limit our system to any future location technolo-
gies. Figure 3 outlines our decision of using these technologies
for retrieving location information at different levels. Accordingly,
we use the GPS technology to infer outdoor locations (i.e., campus
level and building level) because of its high inaccuracy. We set an
accuracy threshold to 20 metres. If the location accuracy reposted
by the GPS unit is greater than the threshold, the campus level will
be used to infer the spaces; else the building level will be used.

The Bluetooth and RFID technology is used to infer indoor loca-
tion information (e.g., buildings and rooms). Users can either use
Bluetooth or RFID technology for providing their location infor-
mation. The Bluetooth addresses and/or ID card numbers (i.e., of
their personal ID cards) are provided to the system during users’
registration. The Location Engine has modules for scanning Blue-
tooth devices in surroundings and ID cards. These modules are
assumed to be placed at various locations around the spaces and all
connected to the Location Engine. Currently, we use a 13.56Mhz
Mifare reader to scan for ID cards and Bluecove-based programs
for Bluetooth devices scanning. The event of sweeping the ID card
over the reader is a clue to infer user’s entering or leaving the room.
Accordingly, if the user has specified some preferred tasks for these
events, then they will be executed on the occurrences of corre-
sponding events. We have experimented this concept with ‘Turn
on/off light’ and ‘Turn on/off fan’ tasks as preferred tasks for the
events of entering/leaving the personal office. Currently, the con-
trolling of the light and fan is implemented using an X10-based
HomeAutomation Kit though any other technologies are possible
to be incorporated into our system as soon as the designers are pro-
vided URL services for controlling desired devices.

We use the Cricket system to infer user’s pointing gestures and
device’s proximity. Cricket uses time-difference-of-arrival between
radio frequency and ultrasound to obtain distance estimates. The
accuracy can be between 1cm and 3cm. Cricket consists of bea-
cons and listeners. A beacon can be worn by the user or attached
to the user personal device (e.g., mobile phone). Each listener is
attached to a device/appliance in the space and connected to the
Location Engine. Cricket is able to provide listener identifiers and
their distances to each beacon within their radio ranges at every
moment. By comparing these distances, the Location Engine re-
veals the device/appliance which is currently nearest to the beacon
(hence nearest to the user). Then the tasks supported by this de-
vice/appliance will be recommended.

To recognise the user’s pointing gestures, we use the line-of-sight
connectivity between listeners and beacons. Theoretically, if a lis-
tener and a beacon are facing each other, the rate of receiving ultra-
sound signals at the listener is highest in comparison with a beacon
facing a listener at some angles. We have set an experiment where

225

Figure 5: Experiment of beacon-listener facing positions.

a beacon was in turn placed at four different angles facing a listener
from a two metre-distance including direct facing, 450 angle, right
angle, and opposite (see Figure 5). We recorded statistically four
averaged rates of receiving signals at the listener in the four cor-
responding positions for ten seconds each. The result proved the
mentioned assertion. Based on this measurement, the Location En-
gine is able to infer the device/appliance the user currently points
to, then recommend tasks for this device.

6. DISCUSSION AND FUTURE WORK
The TASKREC client running on the user device frequently re-

quests for the updated list of tasks from the Task Recommender.
The interval between two requests should depend on how frequent
the user’s location changes. For example, at the room level if the
user is walking within his office consisting of some taskable ap-
pliances, then his/her current position would rapidly change from
appliance’s zone to another appliance’s zone just in one second.
In this case, the interval would be set to one second. However, if
the user is walking around the university campus, then his/her cur-
rent location would only change from space to space in some sec-
onds. Therefore, the interval would be set longer to some seconds.
We propose to examine the trend in the user’s location changes in
the last ten location updates. Then based on this, the Task Rec-
ommender suggests the TASKREC client to set the interval to an
appropriate value.

As future work, we plan to develop a graphical tool for efficiently
creating, composing, and searching for task models. The task exe-
cution engine should be extended to deal with how should the sys-
tem inform users of task execution progress, errors, and failures.
It should also support for migrating tasks (thus migrating UIs of
tasks) and address UI adaptation when the user changes the space.

7. CONCLUSION
This paper has demonstrated the concept and the design of a

task-based user interface for smart spaces. The interface auto-
matically recommends a list of high-level tasks supported within
a smart space based on user’s location, surrounding devices, and
user’s pointing gestures; and guides the user through the accom-
plishment of the selected task. We have implemented and tested
the system in several spaces including university campus, personal
office, and devices/appliances.

We contend that the notion of the task provides users a much
higher level of abstraction than individual applications, and this
is also seen in operating systems (e.g., Windows), which display

lists of tasks for users, rather than just a menu of applications. We
think that such a task abstraction should apply more broadly not
just to desktop operating system tasks but also to everyday tasks
that users want to perform in their respective spaces, and to things
users want to do with their everyday appliances. Our work also
leads to the idea of devices or appliances in the future which may
or may not have a physical user interface - the modern television
today does not have its control panel obviously visible since it is
operated with using a remote controller; one can think of various
appliances which are “faceless” or does not (need to) have an ob-
viously visible control panel since one can bring up an interface to
the device on the smartphone by simply pointing to the appliances
(our use of the cricket system may be cumbersome for now but they
serve a useful demonstrator - other directional RF technologies can
be considered for the same purpose).

In the future, we can expect, apart from task lists being shown
on smartphones, the tasks lists can be shown on wearable display
devices2 that resemble eye-glasses or even Internet-enabled contact
lenses (with embedded microelectronics).3

8. REFERENCES
[1] C. E. Assoc. Task model description (CE Task 1.0),

ANSI/CEA-2018, Mar. 2008.
[2] e. D. Cheng˙Mobile situation-aware task recommendation

application. In NGMAST ’08, 2008.
[3] A. K. Dey. Understanding and using context. Personal and

Ubiquitous Computing, 5(1):4–7, Feb. 2001.
[4] J. N. et al. Huddle: automatically generating interfaces for

systems of multiple connected appliances. In UIST ’06,
pages 279–288, NY, USA, 2006. ACM.

[5] S. Loke. Building taskable spaces over ubiquitous services.
IEEE Pervasive Computing, 8(4):72–78, 2009.

[6] R. Masuoka, B. Parsia, and Y. Labrou. Task computing–the
semantic web meets pervasive computing. In Proceedings of
the Second International Semantic Web Conference, pages
866–881, Florida, USA, 2003.

[7] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song,
P. Kumar, P. Nguyen, and K. Yi. InterPlay: A middleware for
seamless device integration and task orchestration in a
networked home. In PerCom, pages 298–307, 2006.

[8] A. Ranganathan. A Task Execution Framework for
Autonomic Ubiquitous Computing. PhD thesis, University of
Illinois at Urbana-Champaign, 2005.

[9] C. Rich. Building task-based user interfaces with
ANSI/CEA-2018. Computer, 42(8):20–27, 2009.

[10] C. Vo, T. Torabi, and S. Loke. Towards context-aware task
recommendation. In Proceedings of the 4th International
Conference on Pervasive Computing, pages 289–292,
Taiwan, 2009.

[11] Z. Wang and D. Garlan. Task-driven computing. Technical
report, School of Computer Science, Carnegie Mellon
University, 2000.

2For example, see http://www.media.mit.edu/wearables/mithril/
3http://www.complex.com/art-design/2011/03/internet-contact-
lenses

226

	1 Introduction
	2 Related Work
	3 Conceptual Models
	3.1 Task-Based User Interfaces
	3.2 Context-Aware Task Recommendation
	3.3 Pointing & Tasking Metaphor
	3.4 Multi-level Location Model

	4 Architecture
	5 Implementation
	6 Discussion and Future Work
	7 Conclusion
	8 References

