
Declarative Programming for Mobile Crowdsourcing:
Energy Considerations and Applications

Jurairat Phuttharak and Seng W. Loke	

	

Department of Computer Science & Computer Engineering,
La Trobe Univerity, VIC, 3086, Australia

jphuttharak@students.latrobe.edu.au, s.loke@latrobe.edu.au

Abstract. This paper introduces LogicCrowd, a declarative programming
platform for mobile crowdsourcing applications (using social media networks
and peer-to-peer networks), developed as an extension of Prolog. We present a
study of energy consumption characteristics for our LogicCrowd prototype.
Based on the measurements, we develop an energy-crowdsourcing consumption
model for LogicCrowd on the Android platform and also extend the
LogicCrowd meta-interpreter for computing with an energy budget
corresponding to a certain battery lifetime.

Keywords: declarative programming language; mobile application; mobile
crowdsourcing; peer-to-peer; mobile energy consumption model

1 Introduction

Crowdsourcing is simply known as the power of the crowd [1]. There are successful
crowdsourcing services in the marketplace today, including Amazon’s Mechanical
Turk1, MicroWorker2 and MicroTask3 that has become more interesting. Those
products offer a framework to access the crowd which enables the employers to
submit individually designed tasks. To take advantage of the widespread mobile’s
opportunities for crowdsourcing, we attempt to engage social media networks and
bring the crowdsourcing model into mobile environments. The contribution of this
paper is an innovative approach to highlight the significance and advantages of using
declarative programming language for leveraging the knowledge of people through
mobile crowdsourcing contexts, and to study the energy implications of this.

We designed LogicCrowd (first briefly introduced in [2], and will be extended
here), a declarative crowdsourcing platform for mobile applications, which combines
conventional machine computation and the power of the crowd in social media
networks and peer-to-peer networks. With the advantages of expressive power (ease
of programming and compact code) and declarative semantics (ease of program
transformation and transparent parallelism), logic programming has benefits for our
framework. We integrate logic programming into a crowdsourcing mobile
middleware in order to provide a declarative programming platform for mobile apps
that can use crowdsourcing. In addition, given that energy is a crucial resource on

1 https://www.mturk.com/ 2 http://microworkers.com/ 3 http://www.microtask.com/

mobiles, energy consumed when using Wi-Fi and Bluetooth communication
technologies in Android phones for crowdsourcing is experimentally measured. In
this paper, we investigate relationships among energy consumption, two different
types of crowd execution (Synchronous and Asynchronous) and different kinds of
aforementioned network connections. We also explore the relationships between
energy consumption and the waiting period of crowdsourced queries; based on those
measurements, we develop an energy-crowdsourcing consumption model for the
Android platform and also implement the notion of computing with an energy budget
via an extension of the LogicCrowd meta-interpreter.

In the following, Section 2 introduces the concept of the LogicCrowd platform, its
architecture and several example LogicCrowd applications. Section 3 evaluates the
prototype and proposes an energy consumption model for mobile crowdsourcing.
Section 4 reviews related work, and Section 5 concludes with future work.

2 LogicCrowd and its Applications

LogicCrowd, at this stage, is designed for users or mobile developers who have a
basic background on Prolog, though syntactic sugar and UI forms can also be used.

Crowd Predicates. Queries to underlying crowds are abstracted as predicates. We
term crowd predicates of the form: <crowd_KW>?<(crowd_answer)>#[crowd_condi-
tions]. The request for a task for crowd computing is identified by a crowd keyword
(crowd_KW). The crowd_answer is an output from the crowd for each task
represented by a variable and crowd_conditions are the inputs or conditions when
asking the crowd represented by parameters. The crowd predicate has its own
operators “?” and “#” referring to crowd identity and crowd conditions, respectively.
An operational semantics for the language of pure Prolog is augmented by
crowdsourcing. We have clauses of the form: A :- G, where G is defined by G ::=
A | D | (G, G), A is an atomic goal and D is a crowd predicate; e.g., this crowd
predicate represents a person/user’s query about a place, sent to the crowd:

place?(Answer)#[asktype('photo'),question('Where is it?'),picture('a.jpg')]

The question and picture predicates are in the crowd’s conditions acting as
parameters for queries to the open crowd. In our work, we define the relevant crowd’s
conditions based on common question templates: what to ask, whom to answer, what
the location is (i.e., providing spatial scope), and when to receive the response.

Extending Meta-Interpreter in LogicCrowd. The LogicCrowd meta-interpreter is
presented in a simplified form as an extension of pure Prolog (in practice, we used
tuProlog7 which could be easily extended to accommodate calls to tuProlog via built-
in libraries. The LogicCrowd meta-interpreter is given as follows.

solve(true):-!. solve(not(P)):- !,\+solve(P). solve((P)):- builtin(P),!, P.
solve((P, Body)) :- !,solve(P), solve(Body). solve((P)):-clause(P,Body),solve(Body).
solve(Askcrowd?Result#Condition):- !,solvecond(Condition),
 (asyn,!,asynproc(Askcrowd,Result); synproc(Askcrowd,Result)),doretraction.
synproc(Askcrowd,Result):-
 checkcond(TypeQuestion,Question,Picture,Options,Askto,Group,Locatedin,Expiry),

askcrowd(Askcrowd,TypeQuestion,Question,Options,Picture,Askto,Group,Locatedin,Expiry,QuestionID),
 registercallbacksyn(QuestionID,Question,Askto,TypeQuestion,Expiry,Result).

7 http://apice.unibo.it/xwiki/bin/view/Tuprolog/

asynproc(Askcrowd,Result):-
 checkcond(TypeQuestion,Question,Picture,Options,Askto,Group,Locatedin,Expiry),
 askcrowd(Askcrowd,TypeQuestion,Question,Options,Picture,Askto,Group,Locatedin,Expiry,QuestionID),
 registercallbackasyn(Askcrowd,QuestionID,Question,Askto,TypeQuestion,Expiry,Result).
doretraction :-(asyn,!,retract(asyn);retract(syn)).
solvecond([]):- !. solvecond(Condition):- Condition =..[_H|[Head,Body]],asserta(Head),solvecond(Body).
checkcond(TypeQuestion,Question,Picture,Options,Askto,Group,Locatedin,Expiry):-

 (asktype(A),!, TypeQuestion = A; set(TypeQuestion)), (question(B),!, Question = B; set(Question)),
 (picture(F),!, Picture = F; set(Picture)),(options(G),!, Options =G; set(Options)),

 (askto(H),!,Askto = H; set(Askto)),(group(I),!,Group = I; set(Group)),
 (locatedin(J),!,Locatedin = J; set(Locatedin)),(expiry(K),!,Expiry = K; set(Expiry)).
set(X):- X = 'null'.
From the above rules, the solve/1 predicate is a meta-interpreter for pure Prolog

extended to evaluate goals with the crowd operators (? and #). This rule delegates
evaluation of such goals to solvecond/1, asynproc/2, synproc/2,
doretraction/0 predicates. The solvecond/1 predicate represents a meta-
interpreter for the crowd conditions. It will assert the new fact (the crowd conditions)
inserted into the knowledge base. The synproc/2 and asynproc/2 predicates
distinguish between synchronous and asynchronous executions (these will be
explained further in the next sub-section). Both rules contain calls to the
checkcond/8 predicate and askcrowd/10 predicate. The first is to bind the values
of the crowd conditions to actual variables and set “null” to variables in case that the
fact is not in the knowledge base and the latter is to connect to the crowd by passing
the crowd conditions to a process outside of the main tuProlog thread. The goal
registercallbacksyn/6 is called when the execution is synchronous and its
function is to register tasks (which have been sent to the crowd) and to manage
returned results. It should be noted that in terms of the general concepts,
registercallbackasyn/7 is rather similar to registercallbacksyn/6, but it
can solely operate in the asynchronous mode.

Synchronous vs Asynchronous Execution. One of the most important issues
about crowdsourcing is how to manage the answer(s) returned by the crowd. Since a
delay for the crowd to provide answers via social media networks and peer-to-peer
networks is expected. LogicCrowd has been designed to tackle this issue. We
developed two different methods to evaluate the rules: synchronous and asynchronous
execution. In the synchronous operation, we implement LogicCrowd according to the
standard Prolog program execution model. The model is running sequentially without
any parallel extensions when LogicCrowd is executing a crowd predicate, the
evaluation will be suspended until the system receives the answers from the crowd.
We support this mechanism via a small extension to the crowd predicate as shown in
the following form: <crowd_KW>?<(crowd_answer)>#[syn,crowd_condi-tions].The
query is issued in the synchronous mode when we have the atom “syn” in the crowd
conditions. In the asynchronous operation, the multi-threading capability available is
exploited since LogicCrowd is built on top of tuProlog which integrates seamlessly
with Java/Android. As such, a new thread is created for each such asynchronous
crowd predicate evaluation, to run independently. We have a crowd predicate of the
form: <crowd_KW>?<(crowd_answer)>#[asyn,crowd_conditions]. The asynchronous
execution takes place when we specify the atom “asyn” in the crowd conditions. In
contrast to synchronous processing, asynchronous operation would permit other goals
to continue before answers from the crowd return; when the asynchronous method
occurs, the evaluation of the crowd predicate will be in a newly created background
thread, and the next sub-goal can be executed without blocking the crowd predicate.

Design and Implementation. We have built a prototype implementation of
LogicCrowd integrating tuProlog with Android via our own custom-built Java program
called a Mediator. The execution process of LogicCrowd is as follows: the mobile user
sets up goals (in rules, or a LogicCrowd program) which can query either the local
facts database (i.e., conventional machine query) or the crowd. If the execution starts
on the conventional machine query, it interacts synchronously with the knowledge base
and returns the solutions to the main goal and/or continues to the next sub-goal(s);
otherwise, the crowd is queried. The architecture of LogicCrowd is detailed in [2].

LogicCrowd’s Example Applications. We illustrate how LogicCrowd can be
applied for the purpose of conveniences. The first scenario is the application of
LogicCrowd to ask for the meanings or clarifications of pictures. That is, one takes
pictures of the unknown things (i.e., any symbols or events) and then sends them to the
crowd via LogicCrowd (i.e., your friends or people of the area) to find out what they
exactly mean. The rule for this help can be written as below:

askcrowd:- picture?(_)#[asyn, asktype("photo"),question("Please translate to English?"),
 picture(“instruction.jpg”)askto([bluetooth]), expiry("0,30,0")].
handle_crowd_answer(picture,Instruction):- show_instruction(Instruction).

Fig. 1. Sending the requests to
Facebook and Bluetooth and
showing the results: (left
screen) Execute Goal, (middle
screen) Ask friends via
Bluetooth, (right screen) Display
Result.

The asktocrowd/1 aims to ask the question by sending the photo to peers via
Bluetooth connections and the crowd predicate identified using the crowd keyword
“picture” is called as the open predicate to peers. The crowd query is in
asynchronous mode with expiry in 30 minutes. With asynchronous operation, if there
are goals after the crowd predicate, these goals can execute without waiting for the
results from the crowd. After executing the crowd sub-goal, the question with the
above conditions then appears on peer mobiles as illustrated in Figures 1(a) and 1(b).
After a while, peers are supposed to answer the request by translating the instruction
to English. On expiry, the result is returned to the query originator in LogicCrowd,
where the handle_crowd_answer/2 predicate would be automatically executed,
which, in this scenario, is programmed to display the results, as shown in Figure 1(c).
Instead of only Bluetooth, Facebook could also be used. In the second scenario, a
LogicCrowd program can be applied to implement a recommendation system for a
couple shopping in a big mall. In the rule below, there are two crowd predicates, the
first one with crowd keyword “clothesShop” asks the crowd to recommend woman’s
clothes shops and the second with crowd keyword “shoeShop” asking about shoe
shops, both in the Westfield Doncaster shopping center, by sending the query to
friends via Facebook and Bluetooth and waiting up to 10 minutes.

recommend(Clothes,Shoes):-
 clothesShop?(Clothes)#[syn,asktype(“message”),
 question(“Which woman's closthes shops give discount in Westfield Doncaster?,
 and How much to discount?”),askto([facebook,bluetooth]), expiry(“0,10,0”)],
 shoeShop?(Shoes)#[syn, asktype("message"),
 question("Which shoes shops give discount in Westfield Doncaster?,
 and How much to discount?"),askto([facebook,bluetooth]), expiry(“0,10,0”)].

 (a) Execute Goal (b) Ask Question via Facebook (c)Ask Question via Bluetooth (d) Display Results
Fig. 2. Sending the requests to Facebook and to devices via Bluetooth and showing the results.

After executing the crowd sub-goal shown in Figure 2(a), the question then appears
on both Facebook over the Internet, and friends’ devices connected via Bluetooth, as
illustrated in Figures 2(b) and 2(c). A while later, several friends’ answer the question
by mentioning shop(s) which offer discount. Within 10 minutes, i.e. the expiry time,
the result is returned back to LogicCrowd in the originating device. The system then
returns the results to the main goal. Figure 2(d) displays the result consisting of a list
of the woman’s clothes shops and a list of the shoes shops with discount details. We
can extend the first scenario to be more flexible by using the asynchronous operation
mode in one program, as shown below. The recommend/1 rule is a goal to ask the
crowd for recommendations on the shops in a particular shopping mall.

recommend(Clothes,Shoes):-
 clothesShop?(_)#[asyn,asktype(“message”),
 question(“Which woman's closthes shops give discount in Westfield Doncaster?,
 and How much to discount?”),askto([facebook,bluetooth]), expiry(“0,10,0”)],
 shoeShop?(ShoeList,Sdiscount)#[syn, asktype("message"),
 question("Which shoes shops give discount in Westfield Doncaster?,
 and How much to discount?"),askto([facebook,bluetooth]), expiry(“0,10,0”)],
 select_shop(Shoes,ShoeList,Sdiscount), Sdiscount > 50%.
 handle_crowd_answer(clothesShop,ClothesList,Cdiscount,Clothes):-
 select_shop(List,ClothesList,Cdisconunt),Cdiscount > 30%,quicksort(Clothes,'@>',List).

After a while, several friends might answer the request by suggesting shop(s) that
offer discount. Within 10 minutes, the result is returned to LogicCrowd. Then, the
handle_crowd_answer/4 predicate would be automatically executed in the first
sub-goal and is programmed to first select woman’s clothes shops with offers of more
than 15% discount and then to sort the list of these shops in order from the highest to
lowest discount. The result from the second sub-goal was passed to the next sub-goal
(select_shop/3) that chooses the shoes shops with offers of more than 30%. Figure
3(left – asyn. mode) and 3(right – syn. mode) display the final results consisting of a
list of woman’s clothes and shoes shop – note that the display can, of course, be
pretty-formatted for the user.

Fig. 3. The complex scenario -
sending the requests to crowd
and showing the results.

3 Energy Considerations in LogicCrowd

In this section, we present a study of the energy consumption characteristics of our
LogicCrowd prototype and provide a model for managing energy consumption in
LogicCrowd program execution. Our approach can be divided into four phases.
The first phase: setup. We first designed experiments to obtain two sets of
measurements. In the first experiment, the aim was to compare the total power
consumption for asking crowd in different network connections: WI-FI, Bluetooth
and Mix (use both Bluetooth and Wi-Fi in the same crowd goal) and execution modes
(synchronous and asynchronous). We created simple programs using the crowd
predicate to send a query to the crowd as shown below. These rules show six main
kinds of crowd predicates used in the measurements: Synchronous–Bluetooth,
Synchronous–WIFI, Synchronous–Mix, Asynchronous–Bluetooth, Asynchronous–
WIFI, and Asynchronous–Mix. In each rule, the expiry time in the crowd condition is
set at 60 seconds. In this experiment, we increased the number of rules (and hence,
the number of crowd goals) by 5 each time, going up to 30 rules in order to study the
hypothesis that if the number of rules increase, the power consumption will constantly
increase in a simple linear form under the different connections and executions.
syn_bt:- findall(B,(thai(B),melbourne(B)),A),nice?(Ans)#[syn,asktype('choice'),question

 ('Which restaurant do you recommend?'),options(A),askto([bluetooth]),expiry('0,0,60')].
syn_wf:- findall(B,(thai(B),melbourne(B)),A),nice?(Ans)#[syn,asktype('choice'),question

 ('Which restaurant do you recommend?'),options(A),askto([facebook]),expiry('0,0,60')].
syn_mix:- findall(B,(thai(B),melbourne(B)),A),nice?(Ans)#[syn,asktype('choice'),question

 ('Which restaurant do you recommend?'),options(A),askto([facebook,bluetooth]),expiry('0,0,60')].
asyn_bt:- findall(B,(thai(B),melbourne(B)),A),nice?(_)#[asyn,asktype('choice'),question

 ('Which restaurant do you recommend?'),options(A),askto([bluetooth]),expiry('0,0,60')].
asyn_wf:- findall(B,(thai(B),melbourne(B)),A),nice?(_)#[asyn,asktype('choice'),question

 ('Which restaurant do you recommend?'),options(A),askto([facebook]),expiry('0,0,60')].
asyn_mix:- findall(B,(thai(B),melbourne(B)),A),nice?(_)#[asyn,asktype('choice'),question

 ('Which restaurant do you recommend?'),options(A),askto([facebook,bluetooth]),expiry('0,0,60')].

The second experiment was conducted to determine whether if there is an increase
in waiting period (expiry time) for answers to a query sent to the crowd, the energy
consumption will increase steadily in a simple linear curve. The rules from the first
experiment had been applied in this case. The expiry times in the crowd predicate had
been changed by increasing in 5 minute intervals up to 20 minutes. This experiment
leads up to the follow-up third phase of the study where we could estimate the power
consumption per query of LogicCrowd programs, under different communication
connections and execution methods. All tests in these two experiments were
performed on Nexus S running Android operating system version 4.1.2, Jelly Bean. A
Power tool called Little Eye8 was utilized for capturing the battery level and also for
monitoring the power consumption of the LogicCrowd program.
The second phase: measurements. Figure 4(a)-(e) shows total energy consumption
(for display, CPU and networking) as the number of rules (i.e., correspondingly the
number of crowd predicate calls) varies, when using different network connections
(Bluetooth, Wi-Fi and Mix) and different execution modes (Synchronous and
Asynchronous), compared with the baseline “no-communication” run of similar rules
but without crowd predicates, i.e., the baseline. According to the results, the
hypothesis of the first experiment has been shown in a way that all graphs display
similar trends - a linear increase, which is more scalable than an exponential increase.

8 http://www.littleeye.co/

 (a) Synchronous execution method (b) Asynchronous execution method

 (c) Bluetooth connection (d) Wi-Fi connection (e) Mix connection

Fig. 4. The relationship between energy consumption and the number of rules/queries in
different types of execution methods and communication technologies, x-axis is the number of
rules/queries; y-axis is power consumption (milliamps per hour).

As shown in Figure 4(a), asking the crowd by using Mix connection with
Synchronous mode consumes the most energy, accounting for 1.11 times of the total
power consumed for Wi-Fi, 1.27 times for Bluetooth, 15 times that of “no-
communication”. For each rule using a crowd predicate call with Mix connection, the
average power consumption is spent differently: 4.872 mAh (milliamps per hour) on
display (keeping the LogicCrowd front screen up), 0.378 mAh on CPU, and 0.018
mAh on Wi-Fi – display clearly dominates but if the application runs in the
background CPU and connectivity will be important. Crowd asking using the Wi-Fi
connection with the Synchronous method consumes around 1.14 times marginally
more power than crowd asking using the Bluetooth connection with the same method,
and spends about 13.46 times significantly more energy than using the rules. In each
rule with this Wi-Fi mode, the average power consumed for display, CPU, and Wi-Fi
varies: 4.674 mAh, 0.265 mAh, and 0.018 mAh respectively. Also, crowd asking
using Bluetooth with synchronous execution consumes around 11.93 times of the total
energy compared to rules without communication with the crowd - with no crowd
goals, 3.396 mAh of average power per rule is used for display and 0.281 mAh for
CPU. In compassion with no-communication mode, we can see that Wi-Fi, Bluetooth,
and Mix all consume much higher energy. This is because with the use of the crowd
predicate in crowd-communicative modes, it takes time to wait for crowd’s responses.
The more rules used, the longer the waiting period takes, and the higher the energy
consumed. Most energy has been found to be mostly used for display, accounted for
70-90% of the total spent on the foreground when asking the crowd (an optimization
this suggests is to wait for the crowd answers in the background). Figure 4(b) shows
the differences in power consumption when using Wi-Fi, Bluetooth and Mix

connections with Asynchronous mode, where the overall result is found similar to that
of Synchronous operation. That is, the total power consumed when using Mix
connection is around 1.245 times, and 1.463 times, slightly higher than the power
consumed when using Wi-Fi and Bluetooth connection with the same method. Its
energy spent 6.360 times more than the amount spent using the no crowd
communication rules. Here, for each rule with Mix connection, 4.676 mAh of the
mean power is spent on display, 0.489 mAh on CPU, and 0.018 mAh on Wi-Fi.
While, the total power consumed when using Wi-Fi connection is around 1.17 times
higher than the power consumed when using Bluetooth connection under the same
method. Still, the amount of energy Wi-Fi spent is about 5.09 times higher than the
energy for no crowd communication rules. The mean energy spent per rule on display,
CPU, and Wi-Fi is 3.740 mAh, 0.336 mAh, and 0.015 mAh respectively. In addition,
using Bluetooth with Asynchronous execution consumes around 4.26 times more
energy than “no-communication” with the crowd. Figure 4(c)-(e) presents the energy
consumption of different operation modes (Synchronous and Asynchronous) when the
rules have been increased with equivalent interval (every 5 rules). The result shows
that Synchronous execution remarkably consumes more energy than execution with
Asynchronous mode. Also, 20 executed rules with Synchronous-Bluetooth mode
consume 44.1 mAh whereas the Asynchronous-Bluetooth mode with the same size of
rules spends only 13.8 mAh. In this regard, we can say that the average of energy
consumed in Synchronous execution with Bluetooth, Wi-Fi, and Mix connection is
three times higher than the average of the energy used in the Asynchronous mode.
The findings of the above energy analysis cases is expected to contribute to the
strategic guidance for selecting the most appropriate energy-related conditions to
support the intelligent use of asking crowd in the LogicCrowd program. Figure 5
shows the relationship between the energy consumption and the approximate waiting
period of returned feedback from the crowd. According to the results, the hypothesis
of the second experiment has been shown in that all graphs display similar trends, the
regression line slopes upwards. The longer the waiting period, the more energy
consumed. In Figure 5(a), the comparison of energy consumption among Wi-Fi,
Bluetooth and Mix connection in Synchronous mode is demonstrated. The graph
shows that the energy of a rule using Mix connection consumes slightly more energy
than that using Wi-Fi and Bluetooth connections; the energy consumption of a rule
using Wi-Fi is approximately 1.11 times slightly higher than that using Bluetooth
connection. The similar trend is shown in Figure 5(b) in which the average power is
1.14 times more likely to be consumed by Wi-Fi than by Bluetooth connection’ with
Asynchronous operation. From the experiments, we can see that whether the method
is synchronous or asynchronous, the total rate of approximate power spent is not
much different. Compared with Wi-Fi and Bluetooth, Mix connection spends the most
energy, whereas Bluetooth consumes the least. It should also be noted that lots of
power is spent on display, accounting for around 60-90% of the total energy. Further,
the rate of energy consumption is congruent with the total amount of waiting time.
Simply said, the longer we wait for crowd responses, the more power is consumed.
However, Figure 5(c), 5(d) and 5(e) shows the energy consumption between
Synchronous and Asynchronous execution. With increasing waiting period in every 5
minutes, the energy consumption per rule of Synchronous version grows reasonably
around 1.32, 1.36 and 1.29 times more than the energy consumption per rule of

Asynchronous operation among Wi-Fi, Bluetooth and Mix communication
connections respectively. According to the second experiment, we designed simple
linear energy consumption models for each type of execution modes and
communication technologies. Those models will be explained next.

 (a) Synchronous execution method (b) Asynchronous execution method

 (c) Bluetooth connection (d) Wi-Fi connection (e) Mix connection
Fig. 5. The relationship between energy consumption and waiting period/expiry in different
types of execution methods and communication technologies, x-axis is waiting period
(Minutes); y-axis is power consumption (milliamps per hour).

The third phase: energy consumption models. Based on the measurements above,
we constructed a simple (linear) energy consumption model. Table 1 shows energy
consumption functions per rule with respect to the waiting period when using
Bluetooth, Wi-Fi and Mix communication with different execution methods.
Regarding the second experiment, these formulas have been designed in order to
predict the power usage of a LogicCrowd program given the waiting period/expiry
conditions in its crowd predicates. It means that these functions can estimate the
power (denoted by y), which is consumed when using a particular communication
technology with a particular execution method for a waiting period of T minutes.

Table 1. Energy consumption functions per rule with respect to the waiting period when using
Bluetooth, Wi-Fi and Mix communication in different execution methods.

Connections Synchronous Execution Asynchronous Execution
Wi-Fi y = 2.905 T + 2.150 y = 2.038 T + 2.321

Bluetooth y = 2.922 T + 0.483 y = 2.040 T + 0.855
Mix y = 2.991 T + 2.748 y = 2.047 T + 3.652

Functions, as mentioned above, can predict the energy usage for a rule with one
crowd predicate. The functions can be obtained for any Android device via a set of
benchmark measurements as we have done above on our test device. To predict the

energy usage for a group of crowd predicates, we created the applicable formulas as
shown in Table 2. Synchronous functions from Table 1 can only be applied to these
formulas. Because they are working sequentially without any parallel extensions, the
energy usage of rules could be then estimated one by one. On the other hand,
Asynchronous execution method is running in parallel without being blocked by
incomplete processing of a crowd predicate. Hence, a function for Asynchronous
method has been developed as shown in Table 2. This function can be used to calculate
the power of battery (i.e. y) which is consumed when using NWF rules of Wi-Fi, NBT
rules of Bluetooth and NMIX rules of Mix connections for a waiting period of TMAX
minutes. In order to possibly verify our energy consumption model, we made
additional measurements and compared the obtained results with the results calculated
with the energy consumption functions from Table 1 and Table 2. For instance, if we
execute the rule which the expiry crowd condition is 30 minutes by using Wi-Fi with
Synchronous mode, according to Table 1 and the following function y = 2.905 T +
2.150, for T = 30, we spend 89.3 mAh of the battery. Measurements in a real world
environment showed that the rule consumed around 88.821 mAh of energy, which is
similar to the energy consumption calculated by using the functions from Table 1.

Table 2. Energy consumption functions with respect to a group of crowd predicates

Execution Modes Connections Functions
 Wi-Fi 𝒚 = (𝟐.𝟗𝟎𝟓 𝑻𝒊𝑵

𝒊!𝟏 + 𝟐.𝟏𝟓𝟎)
Synchronous Bluetooth 𝒚 = (𝟐.𝟗𝟐𝟐 𝑻𝒊𝑵

𝒊!𝟏 + 𝟎.𝟒𝟖𝟑)
 Mix 𝒚 = (𝟐.𝟗𝟗𝟏 𝑻𝒊𝑵

𝒊!𝟏 + 𝟐.𝟕𝟒𝟖)

Asynchronous y = 0.537 NBT + 0.562 NWF + 0.754 NMIX + 2.01 TMAX - 0.446

Another verification example is that if we execute the rules which have 1 rule for Wi-
Fi, 2 rules for Bluetooth and 4 rules for Mix connection with Asynchronous method
and 5 minutes of maximum waiting period, according to Table 2 and the following
function y = 0.537 NBT + 0.562 NWF + 0.754 NMIX + 2.01 TMAX - 0.446, for NBT = 1,
NWF = 2, NMIX = 4, TMAX = 5, the power consumed is 14.256 mAh. Real
measurements showed the rule consumed around 14.375 mAh; which is not much
different from the energy consumption estimated from the functions in Table 2.
The fourth phase: extensions to the LogicCrowd metainterpreter. The proposed
models in the 3rd phase have been deployed here to manage energy consumption of
LogicCrowd programs. In this phase, we present the algorithm implemented in
LogicCrowd by computing the energy budget corresponding to a certain battery
lifetime. We modify the LogicCrowd’s meta-interpreter to use the energy estimations
during run-time to monitor application workload and adapt its behavior dynamically
to save energy. The estimated power per crowd goal/rule for each network connection
with a particular execution method is estimated via Table 1. Managing the energy
usage of LogicCrowd program can be defined as follows. Ecrowd(i)(ti) denotes the
energy consumption of a crowd predicate with waiting period of time ti, where 𝑖 is six
different aspects of querying the crowd (as mentioned in Table 1),where 𝑖 ∈ {𝑠𝑦𝑛 − 𝑏𝑡,
𝑠𝑦𝑛 − 𝑤𝑓, 𝑠𝑦𝑛 −𝑚𝑖𝑥, 𝑎𝑠𝑦𝑛 − 𝑏𝑡, 𝑎𝑠𝑦𝑛 − 𝑤𝑓, 𝑎𝑠𝑦𝑛 −𝑚𝑖𝑥}. Ecurrent denotes the current
energy level based on the current battery power remaining. Suppose that the energy
budget 𝛽 (%) is a user’s policy of energy usage allowed for the LogicCrowd
programs, i.e., a percentage of Ecurrent. To manage energy consumption of LogicCrowd

applications and enhance battery performance, we use the condition given as follows:
Ecrowd(i)(ti) ≤ 𝛽(%) × Ecurrent . Then, the crowd predicate goal is allowed to proceed
only when the energy estimated for that crowd predicate, i.e. Ecrowd(i) at ti minutes, is
less than or equal to the amount of energy budgeted, i.e., 𝛽Ecurrent. For example,
assume that the mobile user specified an energy budget of 25% of the current phone’s
battery level and the current battery power Ecurrent is 1200 mAh. When evaluating a
rule with a crowd predicate under Synchronous execution using Mix network
connection with a one hour waiting time, the energy consumed is estimated to be
182.2 mAh, which is less than the energy budget (300 mAh). As a result the system
then continues to process this rule, and the crowd goal is allowed to proceed. In
contrast, if the estimated energy of this rule is greater than the energy budget, the rule
will be skipped and the system will stop the process in order to maintain the battery
energy, thereby managing the energy spent on the application. This algorithm and the
modified rules in the meta-interpreter are as shown below.

Define G :- g1, g2,gi,…,gn where gi is sub-goal in Prolog.
 𝛽 where the energy budget (%)
for each gi do
 if gi is a crowd predicate then
 check for crowd’s conditions
 j ß (execution mode and connection type)
 where j ∈ {syn-bt,syn-wf,syn-mx,asyn-bt,
 asyn-wf,asyn-mx}
 tj ß expiry
 compute energy consumption = Ecrowd(j)(tj)
 get current energy level = Ecurrent
 if Ecrowd(j)(tj) ≤ (𝛽× Ecurrent) then evaluate gi
 else message “Not enough energy.”

 break

 .
 .
 .
 synproc(Askcrowd,Result):-
 checkcond(TypeQuestion,…,Expiry),
 enough_energy(syn,Askto,Expiry),
 askcrowd(Askcrowd,…,QuestionID),

 egistercallbacksyn(QuestionID,…, Result).

 asynproc(Askcrowd,Result):-

 checkcond(TypeQuestion,…,Expiry),
 enough_energy(asyn,Askto,Expiry),
 askcrowd(Askcrowd,…,QuestionID),
 registercallbackasyn(Askcrowd,…,Result).

 .
 .
 .

4 Related Work

CrowdDB [3] and Deco [4] proposed extensions, in different aspects, to established
query language and processing techniques in order to integrate human input for
processing queries that a normal database system cannot answer. A common approach
in such studies is to design small extensions to SQL so that the crowd can participate in
the process of SQL queries. Crowd4U [5] leveraged a declarative platform for database
abstraction by extending CyLog to issue open queries to the crowd. In LogicCrowd,
we, however, propose an alternative declarative style of programming for
crowdsourcing which leverages on Prolog and is more expressive than simple crowd
SQL queries and interfaces with social media and peer-to-peer networks in order to use
crowdsourced data within logic programs. Balasubramanian et al. [6] measured energy
consumption when using GSM, 3G, and Wi-Fi, showing that 3G and WiFi have high
tail energy use at the end of data transfer. Xiao et al. [7] investigated energy consumed
in mobile applications for video streaming, reporting that Wi-Fi used energy more
efficiently than 3G. The work on VoIP applications over Wi-Fi based mobile phones
[8] showed that using a power saving mode in Wi-Fi accompanied with intelligent
scanning techniques for networks can reduce consumed energy. Our focus is, however,
on the development of novel energy-efficient algorithms for managing energy
consumption in LogicCrowd applications that use Wi-Fi and Bluetooth.

5 Conclusion

We have presented LogicCrowd, a logic-programming language for declarative mobile
crowdsourcing, providing a practical and principled approach for query evaluation to
involve the crowd. We also conducted an energy analysis of LogicCrowd programs,
using the findings for strategically selecting the most appropriate energy-related
conditions for execution, and to design a simple energy consumption model for
LogicCrowd on Android phones. We showed how to manage the energy consumption
of LogicCrowd programs by implementing the notion of computing with an energy
budget via an extension of the LogicCrowd meta-interpreter.

References

[1] Howe, J.: The rise of crowdsourcing. Wired magazine 14, 1--4 (2006)
[2] Phuttharak, J., Loke, S.W.: LogicCrowd: a Declarative Programming Platform for Mobile

Crowdsourcing. Proc. of The 12th IEEE International Conference on Ubiquitous
Computing and Communications (IUCC-2013). IEEE, Melbourne, Australia (2013)

[3] Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: answering
queries with crowdsourcing. SIGMOD Conference, pp. 61--72. (2011)

[4] Parameswaran, A.G., Park, H., Garcia-Molina, H., Polyzotis, N., Widom, J.: Deco:
declarative crowdsourcing. Proc. of the 21st ACM international conference on
Information and knowledge management, pp. 1203--1212. ACM, Hawaii, USA (2012)

[5] Morishima, A., Shinagawa, N., Mitsuishi, T., Aoki, H., Fukusumi, S.: CyLog/Crowd4U: a
declarative platform for complex data-centric crowdsourcing. Proc. VLDB Endow. 5,
1918--1921. (2012)

[6] Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consumption in
mobile phones: a measurement study and implications for network applications. Proc. of
the 9th ACM SIGCOMM conference on Internet measurement, pp. 280--293. (2009)

[7] Yu, X., Kalyanaraman, R.S., Yla-Jaaski, A.: Energy Consumption of Mobile YouTube:
Quantitative Measurement and Analysis. Proc. of the 2nd International Conf. on Next
Generation Mobile Applications, Services and Technologies, pp. 61--69. (2008)

[8] Gupta, A., Mohapatra, P.: Energy Consumption and Conservation in WiFi Based Phones:
A Measurement-Based Study. Proc. of the 4th Annual IEEE Comms. Society Conf. on
Sensor, Mesh and Ad Hoc Communications and Networks, pp. 122--131. (2007)

