
Towards Declarative Programming for Mobile 
Crowdsourcing: P2P Aspects 

Jurairat Phuttharak and Seng W. Loke 
Department of Computer Science and Computer Engineering 

La Trobe University, VIC 3086, Australia 
e-mail: jphuttharak@students.latrobe.edu.au, s.loke@latrobe.edu.au 

 
 

Abstract— Peer-to-Peer technologies have been widely used in 
networks which manage vast amount of data daily. The 
proliferation of mobile devices strongly motivates mobile peer-to-
peer network (M-P2P) applications, with benefits from network 
effects. We argue that logic programming for crowdsourcing can 
be useful in peer-to-peer computing for querying and 
multicasting tasks shared over peer networks. We introduce a 
declarative crowdsourcing platform for mobile applications, 
which combines conventional machine computation and the 
power of the crowd in social networking, particularly in M-P2P 
networks. This paper discusses a simple extension of Prolog, 
which we call LogicCrowd, focusing on enabling goal evaluation 
over peers in mobile peer networks. Additionally, we 
demonstrate that logic programming for crowdsourcing can be 
useful in peer-to-peer computing for querying and P2P style of 
task sharing over short-range networks. In this paper, we 
illustrate the potential of our approach via programming idioms, 
a prototype implementation and scenarios. 

Keywords— declarative programming language; mobile 
application; mobile crowdsourcing; peer-to-peer network 

I.  INTRODUCTION  
Mobile Peer-to-Peer (M-P2P) networks are an increasingly 

popular kind of network adapted to mobile computing devices 
with wireless interfaces. From the physical layer’s aspect, 
mobile peers interact with each other in a peer-to-peer (P2P) 
fashion. The major characteristic of M-P2P networks is that no 
centralized server is required, meaning that each peer acquires 
and provides resources and services to other peers by direct 
exchange. Moreover, M-P2P networks can be regarded as an 
ad-hoc network supporting multi-hop routing. M-P2P 
technologies such as Bluetooth or Wi-Fi Direct are increasingly 
interesting in mobile applications today. Some M-P2P 
applications have been designed for providing location-based 
services. For example, suppose George wants to find a nice 
restaurant within 1 km of his current location. He could obtain 
this information by means of M-P2P interactions. Mobile users 
could check in, share nearby information (photos, news, or 
deals) and opinions with friends in a M-P2P manner. Indeed,  it 
is also possible for mobile users to discover friends nearby a 
café, parks, or to arrange meet-ups and conferences via M-P2P 
collaborations. Notably, some research utilize M-P2P networks 
contributing toward the crowdsourcing concept which refers to 
a distributed problem solving model where solutions are 
obtained by throwing it out to a relatively large, possibly 
undefined group of people for monetary or ethical benefits 

through an open call [1]. There have been explorations of 
crowdsourcing for the mobile environment [2-6]. 
Crowdsourcing via smartphones has been reviewed in [7], 
providing a taxonomy of mobile crowdsourcing in terms of 
new applications and similar services based on crowd-
generated data. Txtagle [2], MobileWorks [3], UbiAsk [4], 
CrowdITS [5] and Smart Mob [6] are crowdsourcing 
applications enhanced with a range of different sensors such as 
camera, GPS, communication signals, accelerometer and so on. 
Moreover, CrowdDB [8,9] proposed extensions, to establish a 
query language and processing techniques for crowdsourcing 
in order to integrate human input for processing queries that a 
normal database system cannot answer. 

The aim of our research is to investigate a declarative 
programming paradigm integrated with crowdsourcing for 
mobile environments. The use of logic programming is aimed 
at providing expressive power, declarative semantics, a higher 
level of abstraction and allowing query and manipulation of 
knowledge and reasoning. We designed LogicCrowd, a 
declarative crowdsourcing platform for mobile applications, 
which combines conventional logic-based machine 
computation and the power of the crowd from social 
networking, via centralized or M-P2P networks. We first 
introduced the key concept of logic programming in 
LogicCrowd and its architecture in [10], but this paper will 
expand on and focus on its M-P2P aspects. Furthermore, the 
study of energy consumption characteristics for our 
LogicCrowd prototype had been previously explored in [11] 
which showed the relationship between energy consumption 
and two different types of crowd executions with different 
kinds of network connections. In [11], an energy-consumption  
crowdsourcing model for the Android platform was developed 
and we also implemented the notion of computing with an 
energy budget via an extension of the LogicCrowd meta-
interpreter. In this paper, we focus on applying the declarative 
programming paradigm for P2P-style crowdsourcing. 

The rest of this paper is organized as follows. Section II 
gives a brief overview of the overall LogicCrowd platform. 
Section III introduces the M-P2P aspects of LogicCrowd. The 
working of the platform is illustrated in Section IV and Section 
V concludes with future work.  

II. AN OVERVIEW OF LOGICCROWD 
This section provides a brief outline of the LogicCrowd 

formalism, comprising the notion of the crowdsourcing 



programs and an extension of Prolog. At this stage, 
LogicCrowd is designed for users or mobile developers who 
have a basic background on Prolog, through syntactic sugar 
and UI forms can also be used. 

A. LogicCrowd - Logic Crowdsourcing Program 
A LogicCrowd program allows predicates to query the 

public (crowd) rather than a closed set of facts. Queries to 
underlying crowds are abstracted as predicates, which we term 
crowd predicates of the form: 

<crowd_KW>?(<crowd_answer>)#[<crowd_conditions>]. 
The request for a task for crowd computing is identified by 

a crowd keyword (crowd_KW). The crowd_answer is an 
output from the crowd for each task represented by a variable 
and crowd_conditions are inputs or conditions when asking 
the crowd. The crowd predicate has its own operators “?” and 
“#” referring to crowd identity and crowd conditions, 
respectively. An operational semantics for the language of pure 
Prolog can be augmented by an oracle representing the crowd. 
Such a language consists of clauses of the form A :- G, where 
G is defined by    G ::= A | D | (G, G), where A is an atomic 
goal and D is a crowd predicate. For example, the following 
shows a query to the crowd in order to ask for a nice Thai 
restaurant: 
     nice?(Answer)#[question(“Which restaurant do you recommend?”), 

         options([“Thai Sontaya”, “Baan Thai”, “Le Bangkok”])] 
The question and options predicates are in the crowd’s 

conditions acting as parameters for sending queries to the open 
crowd. In our work, we define the relevant crowd’s conditions 
based on common questions: what to ask, whom to answer, 
what the location is (i.e., providing scope); and when to receive 
the response. Below is a rule using a crowd predicate in a 
LogicCrowd program for recommending well-known 
restaurants. 
recommend(Restaurant):-thai(R), nice?(Restaurant)#[asktype(“choice”), 

       question(“Which restaurant do you recommend?”), 
       options(R), askto([facebook,bluetooth]),expiry(“0,30,0”)]. 

This rule can be interpreted as a Prolog rule in which the 
user decides on the goal to search for Thai restaurants. The first 
sub-goal, represented by thai(R), will start with searching for 
Thai restaurants in the existing (local on-mobile) knowledge 
base via the process of machine computation. The result of the 
search will be taken as an input to the crowd query. The input 
will be next sent to the crowd in the second sub-goal in order to 
find out which restaurants in the list of Thai restaurants would 
be recommended by the crowd. In the crowd condition, the 
parameter pertaining to the question (“Which restaurant do you 
recommend?”), options (choices), target addressees as well as 
the specific expiry time for returning the results are made 
explicit. We provide several options to ask the crowd: 1) 
sending the queries via a social network, i.e. Facebook, and 2) 
sending queries to a peer-to-peer network, i.e. via Bluetooth. 
Other potions include connecting to Amazon’s Mechanical 
Turk or other crowd platforms. LogicCrowd, hence, can 
provide a uniform programmatic interface to multiple 
crowdsourcing platforms, if required. 
B. LogicCrowd Goals 

In the previous sub-section (Section II A), the crowd 
operators “?” and “#” can be embedded into Prolog programs 
as a distinguished predicate, referring to crowd identity and 

crowd conditions. These operators encoded by extending the 
basic Prolog meta-interpreter (implemented on tuProlog for 
Android) have been specifically designed to have a number of 
capabilities relating to working with the crowd via social 
network(s) and peer-to-peer networks. The LogicCrowd meta-
interpreter is given as follows. 
solve(true):-!. 
solve(not(P)):- !,\+solve(P). 
solve((P)):- builtin(P),!, P. 
solve((P, Body)) :- !,solve(P), solve(Body). 
solve((P)):-clause(P,Body),solve(Body). 
 
solve(Askcrowd?Result#Condition):- !,solvecond(Condition), 
    (asyn,!,asynproc(Askcrowd,Result);synproc(Askcrowd,Result)), 
     doretraction. 
synproc(Askcrowd,Result):  
    checkcond(TypeQuestion,Question,Picture,Options,Askto,Group, 
              Locatedin,Expiry), 
    askcrowd(Askcrowd,TypeQuestion,Question,Options,Picture,Askto, 

    Group,Locatedin, Expiry,QuestionID), 
    registercallbacksyn(QuestionID,Question,Askto,TypeQuestion, 
              Expiry,Result). 
asynproc(Askcrowd,Result):- 
    checkcond(TypeQuestion,Question,Picture,Options,Askto,Group, 
             Locatedin,Expiry), 
    askcrowd(Askcrowd,TypeQuestion,Question,Options,Picture,Askto, 
             Group,Locatedin,Expiry,QuestionID), 
    registercallbackasyn(Askcrowd,QuestionID,Question,Askto, 
             TypeQuestion,Expiry,Result). 
doretraction :-(asyn,!,retract(asyn);retract(syn)). 
solvecond([]):- !. 
solvecond(Condition):-Condition =..[_H|[Head,Body]],asserta(Head), 

  solvecond(Body). 
checkcond(TypeQuestion,Question,Picture,Options,Askto,Group,Locatedin 
          ,Expiry):-(asktype(A),!,TypeQuestion=A; set(TypeQuestion)),  

(question(B),!, Question = B; set(Question)), 
          (picture(F),!, Picture = F; set(Picture)), 
          (options(G),!, Options =G; set(Options)), 

(askto(H),!,Askto = H; set(Askto)), 
(group(I),!,Group = I; set(Group)), 
(locatedin(J),!,Locatedin = J; set(Locatedin)), 
(expiry(K),!,Expiry = K; set(Expiry)). 

set(X):- X = 'null'. 

From the above rules, the solve/1 predicate is a meta-
interpreter for pure Prolog extended to evaluate goals with the 
crowd operators (? and #). This rule delegates evaluation of 
such goals to solvecond/1, asynproc/2, synproc/2, 
doretraction/0 predicates. The solvecond/1 predicate 
represents a meta-interpreter for the crowd conditions. It will 
assert the new fact (the crowd conditions) into the knowledge 
base. The synproc/2 and asynproc/2 predicates distinguish 
between synchronous and asynchronous executions (these will 
be explained further in the next sub-section). Both rules contain 
calls to the checkcond/8 predicate and askcrowd/10 
predicate. The first is to bind the values of the crowd 
conditions to actual variables and set “null” to variables in case 
the fact is not in the knowledge base and the latter is to connect 
to the crowd by passing the crowd conditions to a process 
outside of the main tuProlog thread. The goal 
registercallbacksyn/6 is called when the execution is 
synchronous and its function is to register tasks (which have 
been sent to the crowd) and to manage returned results. It 
should be noted that, in terms of the general concepts, 
registercallbackasyn/7 is rather similar to 
registercallbacksyn/6, but it can solely operate in the 
asynchronous mode. 

C. Synchronous and Asynchronous Executions 
One of the most important issues about crowdsourcing is 

how to manage the answer(s) returned by the crowd. Since a 
delay from the crowd in providing answers via social media 
networks and peer-to-peer networks is expected. LogicCrowd 
has been designed to tackle this issue. We developed two 



different methods to evaluate the rules: synchronous and 
asynchronous executions. 

In the synchronous operation, we implement LogicCrowd 
according to the standard Prolog program execution model. 
The model is running sequentially without any parallel 
extensions - when LogicCrowd is executing a crowd predicate, 
the evaluation will be suspended until the system receives the 
answers from the crowd. The query is issued in the 
synchronous mode when we have the atom “syn” in the crowd 
conditions. We support this mechanism via a small extension to 
the crowd predicate as shown in the following form below. 

<crowd_KW>?(<crowd_answer>)#[syn,crowd_conditions]. 

In the asynchronous operation, the multi-threading 
capability available is exploited since LogicCrowd. As such, a 
new thread is created for each such asynchronous crowd 
predicate evaluation, to run independently. We have a crowd 
predicate of the form: 

<crowd_KW>?(<crowd_answer>)#[asyn,crowd_conditions]. 

The asynchronous execution takes place when we specify 
the atom “asyn” in the crowd conditions. In contrast to the 
synchronous processing, asynchronous operation would permit 
other goals to continue before answers from the crowd return. 
In our case, when the asynchronous method is used, the 
evaluation of the crowd predicate will be in a newly created 
background thread, and the next sub-goal can be executed 
without blocking the crowd predicate that is waiting for results. 

III. CROWDSOURCING IN MOBILE P2P NETWORKS 
Crowdsourcing refers to a distributed problem-solving 

model in which the problems/tasks are propagated beyond the 
local database through public networks. Classical 
crowdsourcing approaches tend to be centralized, where a 
server collects and computes with answers generated by the 
crowd. Centralized methods are currently utilized by social 
networks such as Google+, Twitter and Facebook and so on. 
With the rapid growth of smartphone technologies over the 
past few years, a decentralized method of crowdsourcing has 
emerged. Mobile users can easily interact with each other in a 
Mobile Peer-to-Peer (M-P2P) fashion which can be regarded as 
an ad-hoc network supporting multi-hop routing, content 
forwarding, and distributed decentralized processing. In a M-
P2P network, each peer is fully autonomous with regard to its 
respective resources. For  crowdsourcing in mobile P2P ad-hoc 
networks, we should consider the key issues as follows. 

• Expressive query language and distributing content among 
peers: M-P2P networks are mainly used for data sharing, 
and typically support a simple query facility. To model 
crowdsourcing in peer networks obviously needs 
mechanisms including protocols and a query language for 
propagating tasks and performing searches over distributed 
resources and devices.  

• Resource constraints of mobile devices: M-P2P networks 
typically have resource constraints in term of battery power 
of the nodes. In the crowdsourcing approach, each mobile 
node can act as both a server and a client. A node acting as 
a client wishes to access a required task at a given 
frequency whereas the node acting as a server wishes to 
carefully broadcast tasks to mobile nodes with its limited 
battery level. Managing energy consumption is key. 

• Manipulating crowd answers over M-P2P networks: After 
propagating crowd tasks among mobile peers, the 
crowdsourcing technique has to provide a set of routing 
operators in order to distribute computation and aggregate 
results for the query-originating peer. Routing algorithms 
and backtracking search might be applied to this problem. 
Below, we discuss the three main issues above for P2P-

style crowdsourcing in mobile environments. 

A. Extending Prolog for mobile peer-to-peer quering 
As we mentioned previously, LogicCrowd allows 

predicates to query the crowd rather than a closed set of facts in 
a local database. Also, LogicCrowd in a M-P2P network 
queries among peers via mobile communication technologies 
such as Wi-Fi and Bluetooth. Each peer can identify itself with 
a unique identifier called a peer identifier which can be an IP 
address, a MAC address and a port number. Hence, peers can 
send the queries among each other using that identifier. While 
distributing queries among peers, LogicCrowd sends a query to 
discover other reachable running LogicCrowd programs, and 
then sends queries to the peers whom it discovers.  When 
receiving the query, a peer answers the query and replies to the 
requestor. Moreover, the peer is able to pass tasks on to his/her 
friends and this process might continue with subsequent peers. 
In our process, we define time-to-live and power-to-live value 
to limit the lifetime of tasks so that the action of forwarding 
tasks to other peers can been stopped. We explore an extension 
of Prolog in with new constructs that enable query evaluations 
to take place over multiple hops in M-P2P networks.  

1) Decentralized-control P2P crowdsourcing model 
In this model, we assume that each peer is able to process 

and distribute their tasks without any control from the 
query/task-originating peer.  Peers can convert a task/query it 
receives into another task when passing it on and the replies 
will be sent back along the same path as queries. In our case, 
Bluetooth connection has been used as a protocol for passing 
the tasks to peers. To propagate the tasks among peers, we 
introduce a new kind of crowd goal called global task written 
with a prefix “*” such as *task. This goal is evaluated by 
being propagated across the peer network. We assume that 
each peer on a M-P2P network has the means to receive, to 
process, and if necessary, to forward such goals to its peers. As 
an example, consider the following logic program which 
defines the task/query of asking the crowd about well-known 
Thai restaurants.  
  recommend(Restaurant):-thai(R), *nice?(Restaurant)#[syn,asktype 
  (“choice”),question(“Which restaurant do you recommend?”), 

       options(R), askto([facebook,bluetooth]),expiry(“0,30,0”)]. 

 The rule sends the query for restaurants voting via Wi-Fi 
and Bluetooth technologies. The last goal *nice?(Restaurant)# 
[syn,asktype(“choice”),question(“Which restaurant do you 
recommend?”),options(R),askto([facebook,bluetooth]),expire

(“0,30,0”)] will be evaluated as follows: the goal is first sent 
to the user’s friend list (both on Facebook and via Bluetooth 
connection) and then the user’s peers are permitted to forward 
this goal again to their friends. Typically, such a goal without 
the “*” operator will be evaluated only in the user’s friend list 
as mentioned in askto of crowd conditions. However, when 
the goal invokes the global task rule, the execution is not just 
only in the local friend’s list. The global task will be 
propagated to the friends of the peers to ask for their responses. 



Within a waiting period specified in crowd conditions, the peer 
waits for and collects the answers to the global goal.   

 However, there is an important flaw in this approach: peers 
may suffer from a high level of redundancy where the same 
task may be received or retransmitted by a peer multiple times. 
To alleviate this problem, we introduce a crowd algorithm 
where each peer records the tasks sent to his/her friends. In 
this case, the task’s ID has been acquired and compared with 
the peer’s known task IDs, and only a task with ID not found 
in the database is forwarded. The following algorithm shows 
the implementation in our LogicCrowd’s Mediator.   

  Define T :- t1, t2,…,ti  where T is a set of taskID in receiver’s DB 
      @ Initial state (sender)      // In original, mobile’s user creates a task 

          create taskID        // Generate new task’s identifier 
          broadcast(task, taskID) // Distribute a task to crowd with taskID 

      @ Listening state (receiver)     // On receiving side 
              receiving(task, taskID)  

          if (taskID ∉ T) then// Check if the received taskID is not in local DB 
           set T = T ∪ {taskID      // Store taskID 
                  broadcast(task,taskID)// Distribute a task to crowd with taskID 
          end 

In the crowd algorithm, at an initial state, a sender will 
create a task, generate the task’s ID, and then distribute the 
task and ID to the public.   

2) Centralized-control P2P crowdsourcing model 
In contrast to decentralized P2P crowdsourcing where each 

peer determines the relaying of tasks/queries, in this model, the 
origin peer (task’s owner) is able to fully control the 
distribution of tasks to peers. By obtaining the identifier of the 
friends of its friend, the original peer can query friends of 
friends by running a logic program in itself or remote peers, i.e. 
instead of friends passing the queries on, the origin peer gets its 
friends’ friends and passes the query on itself (providing they 
are in network range). For this, we implement a crowd 
predicate formulated with the following construct: 
PeerID*Task. We add the prefix of crowd task goal with the 
peer identifier and “*” in order to send a task to a specific peer. 
A peer asks for the friends of its friend as follows via a goal as 
follows. Where PeerID is the identifier of a peer and FL is a 
list of friend identifiers for the friends of the peer: 
PeerID*friends(FL). As an example, the following Prolog 
program supports the centralized-control P2P crowdsourcing 
model by allowing the task’s owner/original peer to access the 
friends list of friends recursively. In doing so, the original can 
handle the list of peer’s friends and find a peer which satisfies a 
given task. The task is evaluated against the peers in a peer 
network in a depth first search manner starting from the local 
peer until time-to-live (TTL) and power-to-live (PTL) values 
limit the lifetime of task propagation. In the first rule of the 
predicate eval/2, the task is firstly evaluated against the given 
peer (PeerID). Sometimes, we can use in the form: 
self*Task that means the task will be sent to the friends of 
the original peer. In the second rule, the peer PeerID is 
queried for its list of friends, and then one of the friends is 
selected via member/2 and the goal is recursively evaluated 
against the selected friend. The goal PeerID*friends(FL) 
will fail if either the peer PeerID cannot be contacted or its 
friends cannot be obtained, in which case, Prolog backtracking 
on the member/2 goal will result in another friend being 

chosen from the friend list. Evaluation completes when the 
result from crowd has been returned to the origin peer due to 
expiry as in the crowd conditions. 
  eval(PeerID,Task):-  
     PeerID*Task,       %send Task to the peer 
     PeerID*friends(FL),%get access to the  
                        %friends’ identifiers 
     member(Friend,FL), %select peer from friends list 
     eval(Friend,Task).%recursively send task to selected peer 

B. Peers propagation control mechanism 
To reduce or even avoid endless loops for propagating the 

task among peer networks, Power-to-Live (PTL) and Time-to-
Live (TTL) have been defined. PTL is a maximum value of 
energy which is determined by each peer in order to be able to 
propagate tasks through peer networks. The limited resources 
of mobile devices especially battery capacity can solve the 
infinite loop problem when propagating the tasks in peer 
networks. The PTL value is set by an energy budget 
corresponding to a current energy level. PTL can be calculated 
by the following equation: PTL = 𝛽 (%) ×  Ecurrent. Where, the 
energy budget 𝛽 (%) is a user’s policy of energy usage 
allowed for LogicCrowd programs to distribute tasks; Ecurrent 
denotes the current energy level based on the current battery 
power remaining. When a peer intends to broad/multi-cast a 
task, it must first estimate the average energy usage (Ebroadcast) 
(e.g., via preprogrammed benchmarks). To allow distributing 
tasks among peer networks, we use the condition given as 
follows:    Ebroadcast    ≤  PTL. According to this relation, the task 
is allowed to forward only when the energy estimated for that 
task, i.e. Ebroadcast , is less than or equal to PTL. For example, 
assume that the mobile user specified an energy budget of 
25% of the current phone’s battery level and the current 
battery power Ecurrent is 1200 mAh. When propagating a task 
to peers, the energy consumed is estimated to be 182.2 mAh, 
which is less than the energy budget (300 mAh); as a result, 
the system then continues to forward this task. In contrast, if 
the estimated energy of forwarding the task is greater than the 
energy budget, the process of forwarding will be stopped in 
order to maintain the energy levels. 

Another possible control is the TTL value which limits the 
lifetime of the task and each peer keeps track of the tasks, 
which it forwarded. Every task/goal is tagged with a TTL 
value which is modified (with time taken so far subtracted 
from it) across queries. In our case, the TTL value, which is 
the expiry/waiting period in LogicCrowd’s conditions, is 
reduced after the peer forwards the task to another. The 
following equation is used to calculate a TTL value for 
tagging queries when forwarding to peers:  

TTL = EndTimeoriginal – StartTimeforwarder - BufferTime 
According to the relation above, EndTimeorginal refers to 

the time of the original/task’s owner waiting for answers back 
from the other peers, while StartTimeforwarder defines the start 
time of the sender/forwarder who issued the query to other 
peers. BufferTime relates to the time for queuing, waiting, 
setting up or running the system. The BufferTime value could 
be a default value preset in the LogicCrowd program or a user-
defined value. A minimum value of TTL should be greater 
than or equal to the BufferTime of each device. TTL-tagged 
queries can solve or ameliorate the unbounded problem of 
distributing tasks on peer networks. Moreover, both 
mechanisms can be managed to work cooperatively by setting 



the priority of PTL to be higher than that of TTL. For 
example, in the case where we want to forward a task to other 
peers, the system will check whether the value of PPL is 
sufficient for such forwarding. Normally, when PPL is found 
sufficient, the forwarding process will run. However, if we 
lack sufficient TTL or  PTL, the task will not be fowarded.   

C. Manipulating crowd answers 
After waiting for a while (in our case, an expiry/waiting 

period in crowd conditions is set for a crowd query), the 
answers have been gleaned from the peer network. The replies 
go back along the same path that the query took in reaching the 
peer. We divided the methods to deal with peer responses into 
two abstract models as follows. 

1) Black-box crowd answering 
This method relates to the decentralized-control P2P 

crowdsourcing model as mentioned in Section III (A) in which 
every peer processes queries and distributes tasks 
independently, without the origin peer seeing this. Each peer 
individually propagates the tasks to its friends in order to ask 
them for their answers. Within a specified waiting period, the 
local peer waits for and collects answers from the origin peer, 
and finally the replies are sent back along the same route as the 
query. A peer is not able to see through all paths of peer 
networks. One advantage of this method is to reduce the 
workload of each peer assembling the crowd’s answers. In 
contrast, a disadvantage is also witnessed: the origin peer 
cannot take control of subsequent peers in order to distribute 
his/her tasks. Consequently, it might be difficult to determine 
the quality and reliability of the answers received. For 
reliability, we also introduce two programming abstraction to 
simplify controllable peer answers. Firstly, a goal of the form: 
[Number]*Task evaluates in such a way that the Task must be 
broadcasted to peers and the Number denotes the minimum 
required number of crowd responses with that answer for an 
answer to be valid. The LogicCrowd program will process and 
collect the responses from the crowd until the total number of 
responding peers reaches such a minimum. Also, the system 
can send query results back to origin peers regardless of the 
expiry of a wait which has been set by the crowd’s conditions. 
Secondly, a goal of the form: <Number>*Task evaluates in such 
the way that the Task must be broadcasted to peers and the 
Number denotes the majority of peers’ answers. In dealing with 
answers, those results from peers will be collected and 
calculated. If an answer is found where the number of peers 
with this answer is the majority requirement set by the origin, 
the system will automatically return those responses - there is 
no need for a delay until the expiry period imposed in the 
original crowd conditions. The two abstract mechanisms could 
control the return of peer responses and offer a more flexible 
approach. Meanwhile, the origin can have some control of the 
extent to which tasks are supposed to be sent to peers. 

2) Transparent crowd answering 
This method has been designed for the centralized-control 

P2P crowdsourcing model as mentioned in Section III(A) in 
which the origin peer fully controls the distribution of the task 
to peers. By acquiring peers’ IDs, the task can be propagated 
directly to the peer. Furthermore, the peer can return the list of 
his/her friends to the origin in order to choose appropriate 

friends to forward the tasks. Obviously, this relies on the origin 
peer being able to gather, in a transparent way, the identifiers 
of the friends of its friends (an their friends, etc). The 
advantage of this method is that the origin peer is able to 
control the peer network by selecting the peers who he/she 
would like to broadcast to. By this method, the results are 
likely to be promising - regarded as potentially more reliable 
and higher in validity. However, one possible drawback is that 
since an origin peer is the only one who processes all answers 
sent by peers,  the load is much heavier on the origin peer. 

IV. PROTOTYPE IMPLEMENTATION AND SCENARIOS 
In this section, our implementation is illustrated via 

scenarios. Currently, we have built a prototype implementation 
of LogicCrowd by designing and executing it on the Android 
platform. The prototype integrates tuProlog with Android via 
our own custom-built Java program called a Mediator which is 
the middleware between Prolog and our M-P2P protocols. We 
believe that the logic programming approach can go further 
than imperative approaches, as it would enable rule-based 
reasoning with resource descriptions and more expressive 
queries. Below, we describe examples in greater detail and 
point out several applications that relates to utilization of M-
P2P network in real world scenarios.  

A. Subjective Comparisons 
Comparing data is difficult or impossible to encode in 

computer algorithms. For example, if given photos, it is very 
simple for a person to tell anyone whether those pictures are 
the same or not. For LogicCrowd, we develop declarative 
crowd query operators which are lightweight extensions of 
Prolog for comparing items/tasks. The first scenario is the 
application of LogicCrowd to compare photos. For example, 
the photos of two models of cameras are sent to the crowd via 
LogicCrowd (i.e. people in a particular area) to ask for their 
comparative suggestions about which model would be regarded 
as better to buy. The query for this is: 
best_camera(Ans):-camera(X),camera(Y),photo(X,A),photo(Y,B),                       
    <10>*best?(Ans)#[syn,asktype('compare'),question('    
       Which one is the best?'),options([X,Y]), file([A,B]),  

    askto([bluetooth]),expiry('0,30,0')]. 

 The sub-goal camera/1 succeeds if X and Y are currently 
instantiated to a camera while sub-goal photo/2 succeeds if A is 
X’s photo and B is Y’s photo. In this rule, a crowd predicate is 
one sub-goal of the main goal. The crowd predicate identified 
using the crowd keyword “best” is called as the open predicate 
to peers. The crowd query has been sent via Bluetooth 
connection in a synchronous mode within expiry of 30 minutes. 
Here, LogicCrowd has two new crowd conditions built in: 
asktype(‘compare’) is a type of task and file([A,B])  is 
a list of related multimedia items which will be sent to the 
crowd. In this crowd predicate, the extra condition <10>* is 
added to enable peers to forward the task under the condition 
that, if any answer (in this case either camera as being “better”) 
has been sent by at least 10 people, that answer that has 10 
people’s support can be returned to the system autonomatically 
with no need to wait for the expiry time. After executing the 
crowd sub-goal, the question with the above conditions then 
appears on peer mobiles as illustrated in Figures 1(a) and 1(b). 
After a while, peers are supposed to answer the request by 
comparing camera’s features. Within 30 minutes,,the result is 



returned to the query origin in LogicCrowd. This scenario is 
programmed to display the results, as shown in Figure 1(c). 

     (a) Execute Goal      (b) Send Task to Crowd    (c) Display Result 
Fig. 1. Broadcasting comparison task via Bluetooth and showing the results. 

 
B. Destination and Boundary Finding Application 

Problems such as finding parking lots, looking for gift shop 
special offers and even finding disabled toilets or lifts in a 
particular area involve location finding. Apparently, it is 
difficult for anyone to be able to find the geo-position 
accurately and appropriately which could best serve individual 
users’ requirements. This problem is unavoidable since most 
data required is ‘real-time’ and thus needs to be updated all the 
time. Furthermore, in a situation like looking for a good seat in 
a big football stadium, we might find it difficult to find the best 
seating options located in the zone of the same team 
supporters. Also, in the face of natural disastrous situations, 
like a tsunami and bushfire, it is crucial to escape from the site 
as fast as possible. As such, finding the boundary of effective 
zones can be most challenging. These problems could be 
solved by seeking help from the crowd to provide the best 
answer. In LogicCrowd, one can send a query via Bluetooth or 
Wi-Fi Direct technologies to the crowd. We exploit GPS 
coordinates and Google map API in mobile devices to create a 
destination point or boundary area. Here is an example to show 
how the LogicCrowd program can be applied. In this scenario, 
a LogicCrowd program finds the boundary of a particular area. 
Suppose Jim is in a huge music concert. He wants to leave the 
concert for some reason. With a number of people around him, 
he needs to find out which way is nearest to the exit gate. The 
program can be written as the rule below.  
concertBound:-*inConcert?(Coordinates)#[syn,asktype('geo'), 
        question(Are you in concert?),option(['yes','no']),                   
        askto([bluetooth]),expiry('1,0,0'),                                
        bound(Coordinates,Bound),currentLoc(CurrentLoc),  

     showMap(CurrentLoc, Bound). 

The concertBound/0 aims to estimate the boundary of 
the concert by sending a question to the crowd via Bluetooth 
connections and the crowd predicate identified using the crowd 
keyword “inConcert” is called as the open predicate to peers. 
Also, the operator “*” added before the crowd keyword 
enables peers to distribute the question among people in a 
concert. We create new crowd conditions: asktype(‘geo’) 
is a type of question/task which could return the coordinates 
(Latitudes and Longitude) of peers at a current position. After 
executing the crowd sub-goal shown in Figure 2(a), the 
question with these conditions then appears on the friends’ 
devices connected via Bluetooth in Figure 2(b). A while later, 
each peer propagates this question among his/her friends. 

Within 1 hour, on expiry, the result is returned to the query 
origin via LogicCrowd, where bound/2 is programmed for 
drawing the boundary using the coordinates and 
currentLoc/1 uses GPS to get the current location and 
finally showMap/2 will display the boundary and current 
locations of responders on Google Map, as in Figure 2(c). 

       a) Execute Goal      (b) Ask Question to Crowd    (c) Display Result 

Fig. 2. Distributing geo task among peers via Bluetooth to find the boundary 

V. CONCLUSION 
We have presented an approach towards integrative use of 

crowdsourcing and mobile peer-to-peer networks within a 
declarative programming paradigm. We have also argued that 
logic programming for crowdsourcing can be useful in peer-to-
peer computing for querying and broadcasting tasks shared 
over peer networks. In LogicCrowd, Prolog has been used as a 
specification notation, as a rapid prototyping language, and for 
convenient coding of P2P queries.   

REFERENCES 
[1] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, pp. 1-4, 

2006. 
[2] N. Eagle, "txteagle: Mobile Crowdsourcing," in Internationalization, 

Design and Global Development. vol. 5623, N. Aykin, Ed., ed: Springer 
Berlin Heidelberg, 2009, pp. 447-456. 

[3] P. Narula, P. Gutheim, D. Rolnitzky, A. Kulkarni, and B. Hartmann, 
"MobileWorks: A Mobile Crowdsourcing Platform for Workers at the 
Bottom of the Pyramid,"   Human Computation,volume WS-11-11 of 
AAAI Workshops, AAAI, 2011. 

[4] Y. Liu, V. Lehdonvirta, T. Alexandrova, M. Liu, and T. Nakajima, 
"Engaging Social Medias: Case Mobile Crowdsourcing," SoME’11, 
2011. 

[5] K. Ali, D. Al-Yaseen, A. Ejaz, T. Javed, and H. S. Hassanein, 
"Crowdits: Crowdsourcing in intelligent transportation systems," Proc. 
of the  Wireless Communications and Networking Conference (WCNC),  
2012, pp. 3307-3311. 

[6] H. Rheingold. “Smart Mobs.” Perseus Publishing, 2003. 
[7] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-

Yazti, "Crowdsourcing with Smartphones," Internet Computing, IEEE, 
vol. 16, pp. 36-44, 2012. 

[8] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin, 
"CrowdDB: answering queries with crowdsourcing," SIGMOD 
Conference, 2011, pp. 61-72. 

[9] A. Feng, M. Franklin, D. Kossmann, T. Kraska, S. Madden, S. Ramesh, 
et al., "Crowddb: Query processing with the vldb crowd," Proceedings 
of the VLDB Endowment, vol. 4, 2011. 

[10] J. Phuttharak and S. W. Loke, "LogicCrowd: A Declarative 
Programming Platform for Mobile Crowdsourcing," Proc. of the Int. 
Conf. on Trust, Security and Privacy in Computing and Communications 
(TrustCom), 2013, pp. 1323-1330.  

[11] J. Phuttharak and S. Loke, " Declarative Programming for Mobile 
Crowdsourcing: Energy Considerations and Applications," Proc. of the 
10th Intern. Conf. on Mobile and Ubiquitous Systems: Computing, 
Networking and Services (Mobiquitous-2013), Tokyo, Japan, 2013. 


