
This article was downloaded by: [La Trobe University]
On: 31 January 2013, At: 22:44
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Cybernetics and Systems: An
International Journal
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/ucbs20

IMPROVING EFFICIENCY OF SERVICE-
ORIENTED CONTEXT-DRIVEN SOFTWARE
AGENTS
Kutila Gunasekera a , Seng Wai Loke b , Arkady Zaslavsky c & Shonali
Krishnaswamy a
a Faculty of Information Technology, Monash University, Caulfield
East, VIC, Australia
b Department of Computer Science & Computer Engineering, La
Trobe University, Bundoora, VIC, Australia
c Faculty of Information Technology, Monash University, Caufield
East, VIC, Australia, and ICT Centre, CSIRO, Canberra, Australia
Version of record first published: 11 Aug 2011.

To cite this article: Kutila Gunasekera , Seng Wai Loke , Arkady Zaslavsky & Shonali Krishnaswamy
(2011): IMPROVING EFFICIENCY OF SERVICE-ORIENTED CONTEXT-DRIVEN SOFTWARE AGENTS,
Cybernetics and Systems: An International Journal, 42:5, 324-340

To link to this article: http://dx.doi.org/10.1080/01969722.2011.595336

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/ucbs20
http://dx.doi.org/10.1080/01969722.2011.595336
http://www.tandfonline.com/page/terms-and-conditions

Improving Efficiency of Service-Oriented
Context-Driven Software Agents

KUTILA GUNASEKERA1, SENG WAI LOKE2, ARKADY ZASLAVSKY3,
and SHONALI KRISHNASWAMY1

1Faculty of Information Technology, Monash University, Caulfield East, VIC, Australia
2Department of Computer Science & Computer Engineering, La Trobe University,

Bundoora, VIC, Australia
3Faculty of Information Technology, Monash University, Caufield East, VIC, Australia, and

ICT Centre, CSIRO, Canberra, Australia

The case for integrating software agent and web service paradigms
has been well documented, and we believe that convergence of these
two paradigms, enhanced with context awareness, can enablemore
efficient and effective pervasive services. Software agents in
service-oriented environments have traditionally been limited to
either using, providing, or aggregating services. We propose that in
dynamic heterogeneous environments it would be sometimes ben-
eficial if the agent, in addition to invoking remote services, could
acquire the capacity to execute functionality provided by the service
and run it locally. To this end, we build a performance analysis
model that compares time consumption and network load of service
access with that of component use. We argue that such a model
would allow an agent to dynamically select the more efficient alter-
native. We present a multicriteria decision-makingmodel that helps
dynamic selection, describe experiments comparing the two
approaches, and discuss results and lessons learned.

KEYWORDS context-awareness, service oriented computing,
software agents

Address correspondence to Kutila Gunasekera, Faculty of Information Technology,
Monash University, Str. 900, Dandenong Road, Caulfield East, Caulfield, VIC 3145, Australia.
E-mail: kutila.gunasekera@infotech.monash.edu.au

Cybernetics and Systems: An International Journal, 42:324–340
Copyright # 2011 Taylor & Francis Group, LLC
ISSN: 0196-9722 print=1087-6553 online
DOI: 10.1080/01969722.2011.595336

324

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

INTRODUCTION

The case for integrating the software agent paradigm with the web services
paradigm has been well documented in the literature (Richards et al. 2004;
Bellifemine et al. 2007), with one of the main benefits being the use of
software agents to dynamically aggregate services. We believe that the con-
vergence of these two paradigms, enhanced with context awareness, can
lead to more efficient and effective service-oriented systems. Today’s mobile
computing devices are also seen as consumers and providers of services
(Berger et al. 2003; Medman 2006). Thus, software agents that produce
and consume these mobile services need to be context aware to successfully
execute in the face of changing environmental conditions.

The integration of web service and agent paradigms would allow
agents to access web services and web services to access agent services.
Also, in Richards et al. (2004), an agent factory for composing agents is used
to compose web services. Our focus in this article is on situations where an
agent is the end consumer or an intermediary that composes complex ser-
vices using other web services. Traditionally, the two main approaches of
allowing agents to access web services are either using an intermediary gate-
way agent to expose web service functionality as agent services to other
agents (e.g., JADE Web Service Integration Gateway; Bellifemine et al.
2007) or for each agent to directly invoke web services (e.g., JADE Web
Services Dynamic Client add-on; Scagliotti and Caire 2009). In the first
approach, individual agents are unburdened with web service know-how,
but the gateway agent could be a performance bottleneck. The second
approach removes this bottleneck but adds the requirement that each agent
should be able to discover and invoke web services. Selection of either
approach would generally be based on the merits and demerits of each
application situation.

With the current explosion in the number of mobile and embedded
devices and advances in wireless communication technologies, mobile
devices have become consumers as well as providers of services. Berger
et al. (2003) identified that the major advantage of these services is the ability
to reduce the need for user attention by program-to-program interaction.
However, when a service is run on a battery-powered mobile device, it is
faced with challenges such as poor processing capacity, irregular network
connectivity, and an increased need to be energy aware (Bojic et al. 2010).
Previous and ongoing research investigates methods to overcome these chal-
lenges. For example, the work by Preuveneers and Berbers (2008) attempted
to increase availability and accessibility of services by smart service mobility,
and Dustdar and Juszczyk (2007) proposed a solution based on dynamic rep-
lication and synchronization of web services in mobile ad hoc networks.
Similar to the service provider, the users of such services need to be able

Service-Oriented Context-Driven Software Agents 325

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

to take into consideration and deal with such eventualities. The solution we
describe in this article is one such approach using context-aware service-
oriented software agents.

Web service invocation could involve significant amounts of data being
exchanged between the provider and client (e.g., in data mining and infor-
mation retrieval domains). This can lead to huge communication costs and
performance issues when accessing mobile services over relatively
low-bandwidth and unreliable networks. Also, in the mobile service space,
when the service provider itself is a mobile device, it is more likely that ser-
vice provision would undergo frequent degradations or failures when the
provider is faced with adverse conditions such as high load, poor connectiv-
ity, or low resources.

We propose that in such situations it would be beneficial for the client
agent to acquire the web service’s functionality and execute it locally instead
of requesting the service to carry out the task. Such an alternative is beneficial
when the cost of web service invocation is significantly higher compared to
that of running the service locally. In particular, we believe that such situa-
tions could be encountered in the dynamic environments occupied by
mobile services. For example, consider a mobile agent traversing fixed and
mobile computing devices located within a building to discover context
sources and collect data from them. Because it may encounter different types
of data sources and formats, the agent depends on remote web services to
process the data. Though this is generally a good approach to keep the agent
lightweight and to avoid consuming too much device resources, when the
volume of data is quite high, local processing after acquiring the necessary
reasoning logic may be cheaper than transferring the data to a remote ser-
vice. We also note that this approach could be beneficial for nonagent
mobile web service clients. In this article, we build a model to analyze the
performance of our proposed approach in comparison to the traditional
approach of agent web service interaction. Our model could be used by soft-
ware agents to dynamically select the more efficient approach to fulfill its
goals. To this end, we also describe a multicriteria decision-making model
that helps agents make this selection by taking into account contextual data.
Experiments that compare the two approaches and performance of the multi-
criteria decision-making approach are presented and their implications
discussed.

We previously proposed and implemented the VERsatile Self-adaptive
AGents (VERSAG) agent framework (Gunasekera, Zaslavsky et al. 2009) as
a novel approach to build dynamically adaptive mobile software agents.
The network load behavior of VERSAG agents was analyzed and it was
shown that they can achieve higher network efficiency compared to nona-
daptive mobile agents. In this article we report the use of VERSAG agents
in the service-oriented paradigm to achieve greater efficiency through
dynamic processing scheme selections.

326 K. Gunasekera et al.

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

The rest of this article is structured as follows. The next section describes
our model to analyze performance of the two approaches of service use and
component use by agents. Then, we look at some previous research in com-
positionally adaptive mobile agents and provide a brief introduction to our
own work in the area. Next, we present a case study scenario and briefly
describe a model for dynamic selection of an efficient processing scheme
based on contextual input. Finally, we describe our experiments, discuss
the results, and conclude the article.

A PERFORMANCE ANALYSIS OF SERVICE
USE VS. COMPONENT USE

In this section, we build an analytical model that investigates the perform-
ance of service use with that of component use for an identical task. The per-
formance metrics used are time consumed and network load generated while
fulfilling the given task. The scenario consists of a software agent on a com-
puting device that is given a task to process a number of data items (located
on the same device) that are assumed to be of nonnegligible size. The agent
does not have the know-how to process the data by itself and has two
options to follow. In Case I, the agent uses a remotely located (web) service
to process data. For each datum, a service request encapsulating the datum is
sent and a result obtained until all the data are processed (Figure 1(a)). In
Case II, the agent acquires a component that has the know-how to process
the data from a remote provider. The agent then repeatedly executes this
component locally to process the data (Figure 1(b)).

FIGURE 1 (a) Service use: the agent uses a remote service to process data; (b) component
use: the agent acquires the service functionality as a component and processes the data at
its own location (color figure available online).

Service-Oriented Context-Driven Software Agents 327

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

The following symbols are used to build the analytical model. The num-
ber of data items is represented by n and the latency and bandwidth of the
network link are represented by k and bw, respectively. The size of data item
i is Bd

i ; Bres
i represents the size of the result from processing data item i. The

overhead of a single request or response is represented as Bovrhd. Bcap is the
size of a component and Bcreq is the size of a command requesting a compo-
nent. Tpli shows the time needed to process data item i at location l. T start_p is
the time needed to start processing at the agent’s site.

We also make the following assumptions. The message overhead due to
transmission control protocol (TCP) headers, fragmentation, retransmissions,
etc., is fixed. The time to marshal and unmarshal data, delays due to network
scheduling, and any waiting times before service processing starts are con-
sidered to be negligible. The time to start executing the component at the
agent’s site is fixed but nonnegligible and is therefore included in the model.
The time T tomoveB bytes over the network link can be represented as follows:

T ¼ kþ B

bw
: ð1Þ

Case I: The time to process a single datum consists of the time to send the
request to the server (T serv req

i), time taken to process the request at the ser-
ver (Tpsvri), and time to send the result back to the agent (T serv res

i). The
time taken to process all of the data is the sum of time taken to process
each datum.

TI ¼
Xn

i¼1

ðT serv req
i þ T serv res

i þ Tpsvri Þ: ð2Þ

From Eq. (1) we have

T serv req
i ¼ kþ ðBd

i þ BovrhdÞ
bw

and

T serv res
i ¼ kþ ðBres

i þ BovrhdÞ
bw

Substituting these in Eq. (2) we get

TI ¼ 2n kþ Bovrhd

bw

! "
þ 1

bw

Xn

i¼1

ðBd
i þ Bres

i Þþ
Xn

i¼1

Tpsvri ð3Þ

328 K. Gunasekera et al.

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

Case II: Here, the total time taken is made up of the time to request (T cap_req)
and retrieve (Tcap_res) the component, time to start the component
(Tstart_p), and the time to process (Tploci) all of the data items locally.

TII ¼ T cap req þ T cap res þ T start p þ
Xn

i¼1

Tploci : ð4Þ

From Eq. (1) we have

T cap req ¼ kþ ðBcreq þ BovrhdÞ
bw

and

T cap res ¼ kþ ðBcap þ BovrhdÞ
bw

Substituting these in Eq. (4) we get

TII ¼ 2 kþ Bovrhd

bw

! "
þ ðBcreq þ BcapÞ

bw
þ T start p þ

Xn

i¼1

Tploci ð5Þ

From Eqs. (3) and (5) it can be seen that time efficiency of the two
approaches depends on network parameters (bandwidth and latency), data
(number of items and total size), and processing (processing times and size
of processing component). In a high-bandwidth and low-latency network,
total processing time

Pn
i¼1 Tp

svr
i

#
or

Pn
i¼1 Tp

loc
i Þ would be the significant

component for both service use and component use cases. In contrast, in a
low-bandwidth, high-latency network, the other components of data size
and component size would come into consideration. For component use
(Case II), there is no direct influence from increasing data size, except that
it would most likely lead to longer processing times.

Network traffic generated between the agent and service provider in
Case I is made up of requests sent by the agent and responses received. Each
request encapsulates a datum and the response contains the corresponding
result. Together with the messaging overheads, this is expressed in Eq. (6).
For Case II, generated network traffic consists of the request from the client
and the response encapsulating the component, as shown in Eq. (7).

BI ¼ 2nBovrhd þ
Xn

i¼1

ðBd
i þ Bres

i Þ: ð6Þ

BII ¼ 2Bovrhd þ Bcap þ Bcreq ð7Þ

Service-Oriented Context-Driven Software Agents 329

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

It can be seen that though network load depends on the number and
size of data items in Case I, in Case II it is independent of data and is mainly
made up of the component being transferred.

COMPOSITIONALLY ADAPTIVE AGENTS

To realize the solution put forward in this article, we need an agent
implementation that allows agents to compositionally adapt their structure
at runtime. In this section, we briefly describe some previous research that
investigate compositionally adaptive mobile software agents and then intro-
duce our approach to compositionally adaptive mobile software agents.

Related Work

Though there has been a considerable amount of research on developing
adaptive agent systems recently (Marı́n and Mehandjiev 2006), in most of
these works, individual agents are not adaptive, and adaptivity is achieved
at the system level through mechanisms such as agent interactions,
migration, and learning. The work on dynamic agents by Chen et al.
(1999) views individual agents as carriers of components that provide the
agent with intelligence. When faced with tasks that require functionalities
beyond what it possesses, a dynamic agent is able to download new pro-
grams from a remote uniform resource locator (URL). However, the agent
has to be explicitly informed what components to obtain and does not have
the ability to dynamically evaluate its performance and adapt if required.
Agents in the generic adaptive mobile agent (GAMA) architecture (Amara-
Hachmi and Fallah-Seghrouchni 2005) are composed of multiple compo-
nents and are capable of adapting themselves to suit new environments.
However, a GAMA agent can select components only from what is available
at its current location and only adapts immediately after migration. The open
source Java Agent DEvelopment Framework (JADE) platform (Bellifemine
et al. 2007) also provides rudimentary support for runtime adaptation of
agent functionality through a JADE-specific application programming inter-
face (API) that provides limited control of the adaptation process. The
port-based adaptable agent architecture (PB3A) by Dixon et al. (2000) is built
with a port-based module (PBM) as the basic building block and has a
port-based agent as a self-adaptive structure. The component architecture
for service agents (CASA) by Sesseler and Albayrak (2001) also contain agents
that exhibit compositional adaptivity to some degree. Though these systems
provide various levels of support for compositionally adaptive mobile
software agents, we have proposed an approach that attempts to further
advance the state-of-the-art with a flexible component-based solution to

330 K. Gunasekera et al.

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

enable building intelligent adaptive agents suited for diverse tasks and
environments.

VERSAG Agent Framework

VERSAG (Gunasekera, Zaslavsky et al. 2009) is a novel approach to engineer
adaptive mobile software agents that are context-driven and can execute on
dynamic heterogeneous environments. A salient feature of VERSAG is the
ability of agents to acquire new functionality from peer agents without
depending on designated providers. An agent’s useful functionality is pro-
vided in the form of reusable software components termed capabilities. A
capability is agent platform independent and can be attached to and detached
from a software agent to provide the agent with a particular behavior. Further,
an agent is context driven and can execute on dynamic heterogeneous
environments. Its component-based structure allows it to have different func-
tionalities and agent architectures embedded in it during its lifetime, increas-
ing the agent’s versatility. A VERSAG agent’s primary task is to execute an
itinerary that specifies a list of locations the agent has to visit and activities
to carry out at each location. To carry out an activity, the agent may need mul-
tiple capabilities. Because it is self-adaptive, the agent decides when and from
where the necessary capabilities are acquired and discarded. Intelligence for
decision making is also provided to the agent in the form of capabilities.
Therefore, it is possible for a VERSAG agent to be intelligent and self-adaptive
when required and to be a simple and lightweight itinerant agent when
advanced intelligence and adaptation are not required.

VERSAG agents are built on top of existing agent toolkits and thereby
are deployable on existing agent-based infrastructure. Figure 2 shows the
structure of a prototype VERSAG agent based on the JADE agent toolkit.
Here, the JADE agent is a small layer that interfaces between the agent plat-
form services and the upper functionalities provided by VERSAG compo-
nents. The kernel is the agent’s core and provides it with the itinerant
behavior. The itinerary execution service provides the kernel with necessary
methods to interpret itinerary commands. Application-specific capabilities of

FIGURE 2 Structure of a JADE-based VERSAG agent.

Service-Oriented Context-Driven Software Agents 331

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

the agent are stored in the capability repository. The capability execution
service provides means to load, run, and stop capabilities that are available
in the repository. In the prototype, capabilities are defined according to the
OSGi framework (OSGi Alliance 2003), allowing them to be reused wher-
ever a compatible OSGi container is available. Further details of the
VERSAG agent internal architecture, algorithms, and implementation details
can be found in Gunasekera, Krishnaswamy et al. (2009). We find that
VERSAG agents are particularly suited to implement the described service-
oriented software agents due to their ability to change structure at runtime,
ability to acquire components from peers, and context-driven nature,
which allows them to dynamically evaluate the environment and adapt
accordingly.

IMPLEMENTATION OF DYNAMIC SCHEME
SELECTION USING VERSAG

Equations (1) to (7) show that performance of the two schemes considered
depends on multiple criteria and that preselection of one scheme over the
other may not be the most efficient. Thus, agents need to be able to dynami-
cally select the best scheme based on contextual information. An agent
should also be able to find and acquire new functionality at runtime such that
it can retrieve the web service’s functionality and execute it locally. Here we
provide a brief description of using VERSAG to implement such a scenario.

Case Study Scenario

We assume that a VERSAG agent playing the role of an information gathering
agent is assigned an itinerary where it is required to migrate to a number of
locations (i.e., computing devices) and process various types of data found
on them. The agent does not a priori have the necessary data processing
capabilities and can only decide on the processing needed after a preliminary
inspection of data at each location. Two examples of processing are to
extract information from a set of data files where the processing required
depends on the file type (e.g., TXT, PDF, DOC) and to read data generated
by sensors on the device and extract information. Thus, the processing
depends on the file types or on the sensor interface and nature of the infor-
mation extraction task.

Once the required processing is identified, the agent has to select an
appropriate capability with which to fulfill the task. It has two capabilities
to select from, either a capability that implements the necessary processing
logic or a web service client capability that lets it pass the data to a remote
web service for processing. Though the choice is between two capabilities
from the agent’s perspective, from the application’s perspective it is a choice

332 K. Gunasekera et al.

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

between component use and service use. The agent is equipped with a
scheme selector capability that helps it to select between these two schemes.
The inputs needed for scheme selection are network parameters, web service
service-level agreements (SLAs) and details of data (i.e., type, size, speed of
generation). Network information is obtained from a separate context-
monitoring capability and the web service client capability provides web ser-
vice parameters. Based on this information, the scheme selector decides
whether it is more efficient to use the web service or process locally. If the
local processing scheme is selected, the agent acquires the data processing
capability from a provider agent that is colocated with the remote web ser-
vice. The VERSAG agent shown in Figure 2 is equipped with context moni-
toring, scheme selection, and web service client capabilities.

In a task such as sensor data extraction, selecting a scheme before com-
mencing execution may not be feasible due to lack of sufficient knowledge
up front. In such cases, the scheme selector could select an initial scheme
without rigorous preselection, monitor task progress, and instruct the agent
to switch schemes if needed. There is also the possibility that dynamic
changes in the environment could lead to a selected scheme becoming inef-
ficient mid-way through execution. Continuous generation of data by a sen-
sor, changes in the network, or a change in the status of the web service are
several such changes. In these situations too, the agent could switch its selec-
ted scheme through the scheme selector.

Scheme Selector Capability

The aim of the scheme selector is to aid the agent in selecting the lowest cost
alternative when it has several groups of capabilities with which to fulfill a
given activity. It is assumed that to fulfill an activity, the agent has to execute
one or more capabilities in sequence. Thus, each alternative consists of sev-
eral capabilities. The scheme selector implements a multicriteria decision-
making model to sort the available capability groups in increasing order of
cost. Input to the cost model consists of cost criteria, the relative importance
of each criterion, any limits on cost values, and a list of available capability
groups that can be used to fulfill the activity. Time required for an activity,
generated network load, memory=CPU requirements, capability accuracy,
security, probability of reuse, monetary costs, and user preferences are some
of the possible cost criteria. The current implementation limits cost criteria to
time consumption and network load. The relative importance of cost criteria
can be explicitly specified by the user. First, the cost of each capability group
is evaluated against any limits and groups that fail to meet the necessary con-
straints discarded. Next, the weights of cost criteria are normalized to build a
priority vector. For remaining capability groups, costs are estimated for ele-
ments that were assigned weights. The reciprocals of estimated cost values
are used to create a utility matrix, where utility is an indicator of the benefit

Service-Oriented Context-Driven Software Agents 333

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

that can be gained by selecting a particular group. Thus, the lower the esti-
mated cost, the higher the utility gained. Rows in the utility matrix represent
capability groups and columns represent cost criteria. The utility matrix is
multiplied with the priority vector to arrive at a vector containing aggregate
utility values. The capability group with highest utility is then selected by the
agent.

When applying the scheme selector to our current scenario, we use time
as the only constraint and do not place any upper limit on time consumption.
Also, our capability group size is one. The time estimate for a group with
only one capability is the sum of the time to acquire that capability and time
to execute it. Equations (4) and (5) (Case II) further elaborate this as appli-
cable to the current scenario. Time to run the web service client capability
is elaborated in Eqs. (2) and (3) (Case I). The capability acquisition and data
transfer (to and from web service) times can be estimated once network
parameters and capability and data sizes are known. We assume that the
result from the web service is the same size as the data sent. The scheme
selector obtains network parameters from the context monitoring capability,
which measures actual network bandwidth and latency available to the
agent. It is assumed that time to process data is proportional to data size.
Thus, capability execution time can be expressed as follows:

Tploci ¼ ðsize of data item iÞ % ðprocessing speedÞ: ð8Þ

For the web service client capability, processing speed is part of the web
service’s SLA and is made available as part of the capability metadata. For the
capability that implements the processing logic, speed also varies depending
on the computing capacity of the location at which it is executing. Thus,
capability metadata could provide a formula for calculating processing speed
based on computing capacity. For experimental evaluations described in the
next section, processing speed was calculated in advance and included in
capability metadata.

EXPERIMENTAL EVALUATION

Experiments were conducted in order to evaluate our performance analysis
model by comparing the performance of service use and component use
approaches under varying conditions. For these experiments we consider
an agent that has already migrated on to a portable computer and has to pro-
cess a large number of text files located on it. As per our scenario description
earlier, it is assumed that the agent is unaware of the type of files prior to
arriving at the device. The processing involved is to convert the files to
PDF format. The agent already has with it a capability that allows it to access
a SOAP-based txt2pdf web service that can do the conversion. This web

334 K. Gunasekera et al.

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

service accepts a single text file in a Simple Object Access Protocol (SOAP)
request, converts it to a PDF, and sends it back to the client encapsulated
in a response message. The agent has to sequentially request the web service
to convert files. A component use alternative in the form of a txt2pdf capa-
bility is also available with a peer agent at the same location as the txt2pdf
web service. The agent’s itinerary requires it to minimize time taken for its
tasks. Thus, the agent uses its scheme selector capability to search for and
select the best alternative from the above two.

Our test environment is as follows. The web service is deployed on a
desktop PC with Windows XP and 2GB memory, and the client agent runs
on a slower notebook PC with 3GB memory and Windows Vista. Both com-
puters have Java SDK 1.6.0 and the agent toolkit used is JADE v. 3.7 with the
LEAP add-on (Bellifemine et al. 2007). The desktop PC is connected to a local
area network (LAN) that has high-speed Internet connectivity. The notebook
PC is connected first over an IEEE 802.11 g wireless local area network
(WLAN) in a university laboratory and subsequently over a high-speed
downlink packet access (HSDPA) network of an Australian telecom operator.
The measured network latency in the WLAN environment was less than
0.5ms and the observed bandwidth 15Mbits=sec. Over the HSDPA network,
the average latency was 158ms and observed average bandwidth was
300Kbits=s. The size of the txt2pdf capability is 1,070KB.

We test the time taken to complete the processing as the size of data
increases. We increase data size by increasing total file size from 250 to
3,000KB while keeping the number of files fixed at 10. The time measured
for web service use (Case I) approach is from the start of execution of the
client capability to its completion. In the component use (Case II) approach,
because the agent has to acquire the capability, we also measure the time
taken to acquire the capability in addition to capability execution (i.e., local
data processing) time. Time taken for scheme selection is not included.
Network load generated is also recorded and reported.

When the experiment was conducted on the WLAN network, the
scheme selector consistently selected the web service (Case I) approach,
whereas on the HSDPA network it selected the component use (Case II)
approach for the majority of the data sizes. Table 1 shows the utility values
computed for 3,000KB data on the two networks. The approach with higher
value is selected by the agent.

TABLE 1 Scheme Selector Computed Utility Values (Average Values
Shown) in the Two Networks for 3,000KB Data Files

Network Utility of web service use (I) Utility of component use (II)

WLAN 0.58 0.42
HSDPA 0.29 0.71

Service-Oriented Context-Driven Software Agents 335

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

The experiments were repeated by altering the agent’s itinerary to
bypass the scheme selector and preselect an approach. In Figure 3, we plot
the observed variation in response time as total data size increases for both
approaches. Figure 3(a) is on the WLAN network and shows that the web ser-
vice (I) approach consistently consumes less time than the component use
(II) approach. Figure 3(b) for the HSDPA network shows that the component
use (II) approach consumes less time for all cases except 250KB data size.
The behavior of these plots confirms that the scheme selector correctly pre-
dicted and selected the lowest cost approach.

In Figure 3(a) (WLAN) response times for both web service (I) and
component use (II) approaches start at similar levels but the component use
approach increases more rapidly. Examining the component use (II) time
breakdowns in (IIa) and (IIb), we observe that data processing time is themost
significant component. This behavior is consistent with the discussions based
on Eqs. (3) and (5) where it was identified that in a network with high band-
width (bw) and low latency (k) the total processing time

Pn
i¼1 Tp

loc
i

#
orPn

i¼1 Tp
svr
i Þ would be the significant component. It can also be seen that data

processing time for component use (IIb) is higher than the total time for web
service use (I). This is due to differences in processing speeds of the two com-
puters used. When the web service was deployed on the notebook computer,
it was observed that web service use (I) time increased significantly (e.g., from
18.4 s on desktop PC to 30.7 s on a notebook for 3,000KB of data) such that its
performance was far worse than the component use (II) approach.

Figure 3(b) shows response time variation when the tests were run on
the HSDPA network. The web service (I) approach consumes increasingly
more time with increasing data size compared to the component use (II)

FIGURE 3 Response time variation with increasing data size: (a) in WLAN network and (b) in
HSDPA network (for both graphs, the number of files is 10 and average values were used to
plot graphs) (color figure available online).

336 K. Gunasekera et al.

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

approach. Component acquisition (IIa) consumes more time than processing
(IIb) initially but remains constant and is overtaken by the processing time as
data size increases. In the web service (I) approach where each data file has
to be transferred, time consumption increases more rapidly with total data
size, and increases in the component use approach occur only as a result
of increases in processing time.

The Wilcoxon signed-rank test was used to test the statistical signifi-
cance of time consumption in the two approaches. Our null hypothesis
(H0) is that there is no significant difference between time consumption in
the two approaches. The alternate hypothesis (H1) for the WLAN network
is that the component use approach consumes more time than the web ser-
vice use approach. The null hypothesis was rejected at a significance level of
0.005. Therefore, it can be stated with a confidence value of 99.5% that the
component use approach consumes more time than the web service
approach on the WLAN network. For the HSDPA network our alternate
hypothesis (H1) states that the component-based approach improves
efficiency by reducing time consumed. Here, too, the null hypothesis was
rejected at a significance level of 0.005. Therefore, it can be stated with a con-
fidence value of 99.5% that the component use approach consumes less time
than the web service approach when tested on the HSDPA network.

Further examining the two experiments, in Figure 4 we show network
load variation corresponding to the two test scenarios. It should be noted
here that network load was not used as a selection criterion. It is, however,
evident that traffic generated in the component use (II) approach is inde-
pendent of data size as data items are not moved. In contrast, for the web
service (I) approach data has to be transferred to be processed and results
retrieved. Therefore, generated load increases with data size. This behavior
is common across both networks (WLAN and HSDPA) and is consistent with
observations made based on Eqs. (6) and (7).

FIGURE 4 Network traffic generation with increasing data size in (a) a WLAN network and (b)
an HSDPA network (average) (color figure available online).

Service-Oriented Context-Driven Software Agents 337

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

Based on these experimental results we observe that the web service
approach consumes less time compared to the component use approach
when executing on a high-bandwidth network. In contrast, on a low-
bandwidth network, as the size of data to be processed increases, the
component use approach becomes more attractive because there is no need
to transfer the data. With regards to network traffic generation, the compo-
nent use approach generates a constant load as it moves the code to where
the data is, whereas in the web service case, data has to be transferred to
where the code resides. Thus, once the data size increases beyond the size
of the code, the component use approach becomes preferable irrespective
of the network type. Another factor that contributes to such decision making,
which we did not consider in our experiments, is the computational capacity
of the two devices (where the agent and web service execute). We conclude,
based on our experimental results, that in some situations it can be beneficial
for a software agent to acquire a software component and execute it locally
instead of asking a remote provider to execute the service on its behalf.

Given information about its environment, including bandwidth, compu-
tational capacity of each location, size of data to process, as well as size of the
capability (if it is not already available with the agent), the agent can dyna-
mically choose the better scheme to improve its efficiency in terms of rel-
evant criteria. This also means that if the agent had chosen the web service
scheme to start with, but during processing the network performance
degrades (e.g., the user walks out from a WiFi area to a wide-area lower
bandwidth connection), the agent could switch schemes in order to maintain
performance levels.

CONCLUSIONS AND FUTURE WORK

In service-oriented computing, software agents have traditionally been
viewed as either service providers or service composers. In this article,
we argued that software agents can achieve greater efficiency and usability
by being able to dynamically select between web service use and compo-
nent use (i.e., acquiring the service’s functionality and executing it locally).
We presented a performance analysis model of the two approaches using
time consumption and network load as performance indicators. It was
identified from the performance analysis model that network parameters,
data, and processing are the three main factors affecting the performance
of each model. We described experimental evaluations that illustrated that
the two approaches can be beneficial under different circumstances. Thus,
we have solidified our argument that software agents enhanced with con-
text awareness can perform better by selecting the more efficient
approach from between service use and component use based on the
situation.

338 K. Gunasekera et al.

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

We also described a multicriteria decision-making model, the scheme
selector, that helps compositionally adaptive context-aware software agents
to select from among multiple alternatives to increase its efficiency in terms
of desired parameters such as execution time, generated network load, result
accuracy, and resource consumption. A brief discussion of this model and an
application scenario motivating its benefits were provided. Experimental
evaluations using our prototype implementation of the scheme selector con-
firmed that it is capable of accurately selecting between the two alternatives
(web service use and component use) by taking into account web service
parameters, size of data, and network parameters.

Security, privacy, and related issues are of significant importance in
mobile agent research. Though we acknowledge the significance of these
issues in relation to VERSAG agents and our proposed solution, they are out-
side the scope of the current research and therefore have not been discussed.
We are currently engaged in further evaluations to test the scalability of our
approach in environments with large numbers of agents. Implementing and
evaluating support for dynamic scheme selection after processing com-
mences is also being investigated. As future work, we plan to implement a
case study scenario to demonstrate the benefits of VERSAG agents playing
multiple roles in real-life heterogeneous distributed environments.

REFERENCES

Amara-Hachmi, N. and Fallah-Seghrouchni, A. E. 2005. Towards a generic archi-
tecture for self-adaptive mobile agents. Paper read at European Workshop
on Adaptive Agents and Multi-Agent Systems, Paris, France, March 21–22,
2005.

Bellifemine, F. L., Caire, G., and Greenwood, D. 2007. Developing multi-agent sys-
tems with JADE. Chichester, England: John Wiley & Sons.

Berger, S., McFaddin, S., Narayanaswami, C., and Raghunath, M. 2003. Web services
on mobile devices—Implementation and experiences. In Proceedings of the 5th
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA 2003),
IEEE Computer Society, Monterey, CA.

Bojic, I., Podobnik, V., and Kusek, M. 2010. Agent-enabled collaborative download-
ing: Towards energy-efficient provisioning of group-oriented services. Lecture
Notes in Computer Science 6071: 62–71.

Chen, Q., Chundi, P., Dayal, U., and Hsu, M. 1999. Dynamic agents. International
Journal of Cooperative Information Systems 8(2–3): 195–223.

Dixon, K. R., Pham, T. Q., and Khosla, P. K. 2000. Port-based adaptable agent archi-
tecture. Lecture Notes in Computer Science 1936: 181–198.

Dustdar, S. and Juszczyk, L. 2007. Dynamic replication and synchronization of web
services for high availability in mobile ad-hoc networks. Service Oriented Com-
puting and Applications 1(1): 19–33.

Gunasekera, K., Krishnaswamy, S., Loke, S. W., and Zaslavsky, A. 2009. Runtime
efficiency of adaptive mobile software agents in pervasive computing environ-

Service-Oriented Context-Driven Software Agents 339

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

ments. In Proceedings of the ACM International Conference on Pervasive Ser-
vices (ICPS’09), London: ACM Press.

Gunasekera, K., Zaslavsky, A., Krishnaswamy, S., and Loke, S. W. 2009. Component
based approach for composing adaptive mobile agents. Lecture Notes in Com-
puter Science 5559: 90–99.

Marı́n, C. A. and Mehandjiev, N. 2006. A classification framework of adaptation in
multi-agent systems. Lecture Notes in Computer Science 4149: 198–212.

Medman, N. 2006. Doing your own thing on the Net. Ericsson Business Review 2006:
48–53.

OSGi Alliance. 2003. OSGi Service Platform, Release 3: IOS Press, Inc. Amsterdam,
The Netherlands.

Preuveneers, D. and Berbers, Y. 2008. Pervasive services on the move: Smart service
diffusion on theOSGi framework. Lecture Notes in Computer Science 5061: 46–60.

Richards, D., van Splunter, S., Brazier, F. M. T., and Sabou, M. 2004. Composing web
services using an agent factory. In Extending web services technologies—the use
of multi-agent approaches, Editors: Lawrence Caredon, Zakaria Maamar, David
Martin Boualem Benatallab. New York: Springer.

Scagliotti, E. and Caire, G. 2009. Web services dynamic client guide. Accessed June
30, 2009. http://jade.tilab.com/doc/tutorials/DynamicClientGuide.pdf

Sesseler, R. and Albayrak, S. 2001. Service-ware framework for developing 3G
mobile services, in proceedings of the 16th International Symposium on Com-
puter and Information Sciences (ICSIS XVI), Edited by S. Kuru, F. Ince, and H. L.
Akin, 5–7 November, at Antalya, Turkey, Isik University Publications.

340 K. Gunasekera et al.

D
ow

nl
oa

de
d

by
 [L

a
Tr

ob
e

U
ni

ve
rs

ity
] a

t 2
2:

44
 3

1
Ja

nu
ar

y
20

13

