
LogicCrowd: a Declarative Programming Platform  
for Mobile Crowdsourcing 

Jurairat Phuttharak and Seng W. Loke 
Department of Computer Science and Computer Engineering 

La Trobe University, VIC 3086, Australia 
e-mail: jphuttharak@students.latrobe.edu.au, s.loke@latrobe.edu.au 

 
 
 

Abstract— We present an attempt to engage social media 
networks, bringing the crowdsourcing model into mobile 
environments. We introduce LogicCrowd, a declarative 
programming paradigm for mobile crowdsourcing 
applications, developed as an extension of Prolog. LogicCrowd 
aims at filling the gap between traditional machine 
computation, which operates upon its database, and social 
media, which is capable of interacting with real people. In this 
paper, we illustrate the potential of our approach via 
programming idioms, a prototype implementation and 
scenarios.  

Keywords - declarative programming language; mobile 
application; mobile crowdsourcing; social media network 

I.  INTRODUCTION 
In recent years, the emergence of the crowdsourcing 

paradigm has dramatically brought change in the landscape 
of solving complex problems. Often, tasks such as 
translation, audio transcription, rating products, photo 
tagging, and so on, seem to be difficult to do by only a 
machine. However, integrating human intelligence with 
machine computation is expected to provide a great promise 
for increasing capabilities to complete complex tasks. 

Crowdsourcing is simply known as the power of crowd. 
The term was originally coined in an article by Jeff Howe 
[1], and refers to the idea of outsourcing some kind of task 
to a larger group of people in the form of an open call. The 
success in the implementation of the idea has been 
evidenced in many business platforms, such as Amazon's 
Mechanical Turk (MTurk) 1 , iStockPhoto 2 , and 
Crowdflower 3 . Such platforms support crowdsourced 
execution of Microtasks or Human Intelligence Tasks 
(HITs), in which people do simple jobs requiring little or no 
domain expertise via the Internet, and get paid on a per-job 
basis when it is completed. Nowadays, the use of mobile 
phones is widespread in both urban and rural areas. It is 
common that people spend a large amount of time 
commuting or waiting for various events. Most of them are 
engaged in a variety of pleasurable activities, like playing 
with their mobile phones. Hence, mixing the mobile 

                                                             
1 http://www.mturk.com 
2 http://www.istockphoto.com 
3 http://www.crowdflower.com 

platform and the crowdsourcing model is expected to 
potentially offer vast resources for computation. 

In our work, we explore a crowdsourcing platform 
designed for mobile users. There are two main justifications 
for the exploration. First, crowdsourcing is still a relatively 
new research area in mobile computing and has not yet fully 
penetrated the mobile workforce. Second, mobile phones 
not only offer great functionalities including multi-sensing 
capabilities (e.g., geo-location, movement or audio and 
visual sensors) but also provide efficient ways to collect 
data and such capabilities can extend existing Web-based 
crowdsourcing applications.  

The aim of this paper is to propose a declarative 
programming paradigm for leveraging the knowledge of 
people through crowdsourcing. LogicCrowd is proposed as 
an innovative approach that integrates logic programming 
into crowdsourcing middleware in order to provide a 
declarative programming platform for mobile apps that can 
use crowdsourcing. The use of logic programming is aimed 
at providing ease of programming and maintenance. This 
approach comprises an interpreted Prolog based declarative 
language (including facts and rules) and crowdsourcing 
middleware; both of which will be presented in this paper. 

The rest of this paper starts with the introduction of 
motivating examples of LogicCrowd in Section II, and then, 
briefly sketches the syntax and semantics of LogicCrowd, 
focusing on an extension of the Prolog meta-interpreter in 
Section III. The architecture of our mobile crowdsourcing 
platform is explained in Section IV. The working of the 
platform is illustrated in Section V. Related work is given in 
Section VI. Section VII concludes with future work. 

II. MOTIVATING EXAMPLES 
LogicCrowd, a declarative crowdsourcing platform, is 

built on top of existing social networking infrastructure for 
bringing the crowdsourcing model into the mobile context. 
Here is a list of tasks/programs that we require that 
LogicCrowd should be able to support: 

• Given datasets including sensing data or interesting 
items, provide a recommendation to the user based 
on those datasets using the crowd to determine 
decisions.  



• Given a list of products, rank them by “quality” by 
asking for experts or users who have used the 
products. 

• Ask the crowd’s opinion on issues; identify/express 
sentiments such as like or dislike, and other 
feedback. 

Due to the fact that LogicCrowd is programmed based on 
Prolog, which is a popular logic programming language [2], 
there is opportunity for the applications to include reasoning, 
above and beyond the exemplified tasks. Other logic 
programming languages can be employed but we start with 
Prolog due to its relatively simple semantics and popularity. 
Since the mobile users/developers can fix/decide on facts and 
rules (users’ independence), the application becomes 
configurable and reprogrammable. In the present paper, we 
will provide some examples in the light of the three types of 
tasks mentioned previously, together with presenting a 
relevant prototype. 

III. PROGRAMMING IN LOGICCROWD 
Our working hypothesis is that, the programs, which are 

executed by both the machines and the crowd, can work well 
when people behave rationally. LogicCrowd’s three 
extensions to Prolog are as follows: (1) it allows some 
predicates which are open, i.e. to be answered by the crowd; 
rather than a closed set of facts; (2) new operators encoded 
by extending the basic Prolog meta-interpreter have been 
specifically designed to have a number of capabilities 
relating to working with the crowd via social network(s); and 
(3) it provides a choice between synchronous and 
asynchronous calls for crowd execution of queries, making 
computation more flexible when engaging the crowd. 

A. LogicCrowd – Logic Crowdsourcing Programs 
Queries to underlying crowds are abstracted as 

predicates, which we term crowd predicates of the form: 
<crowd_KW>?<(crowd_answer)>#[crowd_conditions]. 

The request for a task for crowd computing is identified 
by a crowd keyword (crowd_KW). The crowd_answer is an 
output from the crowd for each task represented by a variable 
and crowd_conditions are inputs or conditions when 
asking the crowd. For example, the following shows a query 
to the crowd in order to ask for a nice restaurant: 
delicious?(Answer)#[question(“Which restaurant do you recommend?”), 

         options([“Thai Sontaya”, “Baan Thai”, “Le Bangkok”])]	
 

The question and options predicates are in the crowd’s 
conditions acting as parameters for sending queries to the 
open crowd. In our work, we define the relevant crowd’s 
conditions based on the common questions: what to ask; 
whom to answer; what the location is (i.e., providing scope); 
and when to receive the response. Below is a rule using a 
crowd predicate in a LogicCrowd program for 
recommending well-known restaurants. 
recommend(Restaurant):- thai(R), delicious?(Restaurant)# 
                    [asktype(“choice”, 

                question(“Which restaurant do you recommend?”), 
                options(R), askto(“closed_friend”), 
                locatedin(“Bangkok”), expiry(“2,0,0”)]. 

This rule can be interpreted as a Prolog rule in which the 
user decides on the goal to search for Thai restaurants. The 
first sub-goal, represented by thai(R), will start with 
searching for Thai restaurants in the existing (local on-
mobile) knowledge base via the process of machine 
computation. The result of the search will be taken as an 
input to the crowd query. The input will be next sent to the 
crowd in the second sub-goal in order to find out which 
restaurants in the list of Thai restaurants would be 
recommended by the crowd. In the crowd condition, the 
parameter pertaining to the question (“Which restaurant do 
you prefer?”), options, target addressees and their current 
locations, as well as the specific expiry time for returning the 
feedback are made explicit. Apart from recommending a 
place, we can have rules for ranking the commercial 
products to serve business demands as follows:  
best_handbag(Bestbag):- brand(Handbag), besthandbag?(Popbag)# 

               [asktype(“choice”), 
                question(“What is the most popular handbag?”), 
                options(Handbag), askto(“public”), expiry(“@”)], 
                quicksort(Popbag,’@>’,Bestbag). 

The rule again shows the application of both machine and 
human computation in one single task. It starts with 
brand(Handbag) searching for brands (of the handbags) in 
the knowledge base. Once the search succeeds and the 
relevant result comes up, such a result will be directly sent to 
the crowd, which will then reply to the question (“What is 
the most popular handbag?”). In this case, the symbol “@” 
will be used to allow the non-expiration period of time for 
that question. The system will return feedback from the 
crowd according to the time set by the users. After that, the 
system will rank the handbags (derived from crowd) in order 
of their popularity.	
 
B. Extending Meta-Interpreter in LogicCrowd 

The LogicCrowd meta-interpreter is presented in a 
simplified form as an extension of pure Prolog (in practice, 
we used tuProlog) which could be easily extended to 
accommodate calls to tuProlog [3] via built-in libraries. The 
LogicCrowd meta-interpreter is given as follows. 
 
 
solve(true):- !. 
solve(not(P)):- !,\+solve(P). 
solve((P)):- builtin(P),!, P. 
solve((P, Body)) :- !,solve(P), solve(Body). 
solve((P)) :- clause(P,Body),solve(Body). 
 
solve(Askcrowd?Result#Condition):- !, 
   solvecond(Condition), 
   checkcond(TypeQuestion,Question,Options,Askto,Locatedin,Expiry), 
   askcrowd(Askcrowd,TypeQuestion,Question,Options,Askto,Locatedin, 
            Expiry,QuestionID), 
   registercallback(QuestionID,TypeQuestion,Expiry,Result). 
 
solvecond([]):- !. 
solvecond(Condition):-  
 Condition=..[_H|[Head,Body]], 
          asserta(Head), 
          solvecond(Body). 
 
checkcond(TypeQuestion,Question,Options,Askto,Locatedin,Expiry):-  
         (asktype(A),!, TypeQuestion = A; set(TypeQuestion)), 
         (question(B),!, Question = B; set(Question)), 
         (options(C),!, Options =C; set(Options)), 
         (askto(D),!,Askto = D; set(Askto)), 
         (locatedin(E),!,Locatedin = E; set(Locatedin)), 
         (expiry(F),!,Expiry = F; set(Expiry)). 
 
set(X):- X = 'null'. 

 



In the previous sub-section (Section III A), the crowd 
operators “?” and “#” can be embedded into Prolog 
programs as a distinguished predicate, referring to crowd 
identity and crowd conditions. From the above rule, the 
solve/1 predicate represents a meta-interpreter for pure 
Prolog extended to evaluate goals with the crowd operators. 
This rule delegates evaluation of such goals to 
solvecond/1, checkcond/6, askcrowd/8 and 
registercallback/4 predicates: 
solve(Askcrowd?Result#Condition):- !, 
   solvecond(Condition), 
   checkcond(TypeQuestion,Question,Options,Askto,Locatedin,Expiry), 
   askcrowd(Askcrowd,TypeQuestion,Question,Options,Askto,Locatedin, 
            Expiry,QuestionID), 
   registercallback(QuestionID,TypeQuestion,Expiry,Result). 

The solvecond/1 predicate represents a meta-
interpreter for the crowd conditions. It will assert the new 
fact (the crowd conditions) which has been put at the 
beginning of the knowledge base.  
solvecond([]):- !. 
solvecond(Condition):- Condition =..[_H|[Head,Body]], 
                       asserta(Head), 
                       solvecond(Body). 

As, the checkcond/6 predicate will bind the values of 
the crowd conditions to actual variables, and it will set “null”  
to variables in case that the fact is not in the knowledge base. 
checkcond(TypeQuestion,Question,Options,Askto,Locatedin,Expiry):-  
         (asktype(A),!, TypeQuestion = A; set(TypeQuestion)), 
         (question(B),!, Question = B; set(Question)), 
         (options(C),!, Options =C; set(Options)), 
         (askto(D),!,Askto = D; set(Askto)), 
         (locatedin(E),!,Locatedin = E; set(Locatedin)), 
         (expiry(F),!,Expiry = F; set(Expiry)). 
 
set(X):- X = 'null'. 

Regarding the askcrowd/8 predicate, it functions to 
connect to the crowd. The askcrowd/8 will pass the crowd 
conditions to a process outside of the main tuProlog thread; 
in our case, the particular social media network we currently 
use is Facebook4, though other social networking platforms 
can be integrated. The query is issued to the crowd (i.e., 
friends on Facebook) via the Mediator which is running on 
the Android platform (this will be explained further in 
(Section IV) The registercallback/4 predicate is also 
bound to the crowd via Mediator. It functions (1) to register 
tasks (which have been sent to the crowd) and (2) to return 
the called results. After posting the task on the crowd (i.e., 
Facebook), this predicate will register the task and return all 
results from the crowd back to main program after the 
expiration time. 

C. Synchronous/Asynchronous Execution 
One of the most important issues about crowdsourcing is 

how to manage the answer(s) returned by the crowd. 
Because there may be a delay for the crowd to provide the 
answers via social media networking (such as Facebook), 
LogicCrowd has been designed to tackle this delay. First, the 
registercallback/4 predicate is designed for registering 
and handling the returned results from the crowd by using 
Mediator as noted in the previous sub-section. Second, two 

                                                             
4 http://www.facebook.com 

methods are used to execute the rules: synchronous and 
asynchronous executions. 

In the synchronous operation, we implement LogicCrowd 
according to the standard Prolog program execution model, 
which is running sequentially without any parallel 
extensions; when LogicCrowd is executing a crowd 
predicate, the process or the evaluation will be suspended 
until the system receives the returned feedback from the 
crowd. We support this mechanism via a small extension to 
crowd predicate as the following form: 

<crowd_KW>?<(crowd_answer)>#[syn,crowd_conditions].	
 

The query was issued in the synchronous mode when we 
put the atom “syn” in the crowd’s conditions. For example, 
the list of restaurants in a particular area will be 
recommended through this goal comprising of two sub-goals 
that will be executed sequentially. After the first sub-goal 
querying restaurants in the local database, the result will be 
passed to the second sub-goal (crowd predicate). After 
receiving the list of restaurants, the crowd predicate will 
deliver this list and all conditions to ask for suggestions from 
the crowd. The system will then wait for a while before 
returning the results from the crowd. 
recommend(Restaurant):- findall(X,(thai(X),melbourne(X)),R), 
                    delicious?(Restaurant)#[syn, 

                question(“Which restaurant do you recommend?”), 
                asktype(“choice”), options(R), askto(“friend”), 

                    expiry(“2,0,0”)]. 

Another more sophisticated example below further  
illustrates the process of synchronous execution. We add 
three more sub-goals that extend the above example. The 
aim of the main goal is to show the location of the best 
restaurant, that is the one chosen as the most popular 
restaurant by the crowd. The selectOne/2 predicate will 
not be invoked until the results from the crowd is returned, 
i.e. the crowd predicate suspends until results come back or 
until expiry (in the synchronous mode); in this case, it may 
take about two hours. After that, getLocation/2 and 
show/1 predicates will be executed respectively.  
recommendOne:- findall(X,(thai(X),melbourne(X)),R), 
               delicious?(Restaurant)#[syn, 

           question(“Which restaurant do you recommend?”), 
           asktype(“choice”), options(R), askto(“friend”), 
           expiry(“2,0,0”)], 

     selectOne(Restaurant,BestOne),                    
           getLocation(BestOne,Loc), show(Loc). 

In contrast, the asynchronous operation exploits the 
multi-threading capability available since LogicCrowd is 
built on top of tuProlog which integrates seamlessly with 
Java/Android. As a result, a new thread is created for each 
such asynchronous crowd predicate evaluation, to run 
independently. For asynchronous mode, we have a crowd 
predicate of the form:  
  <crowd_KW>?<(crowd_answer)>#[asyn,crowd_conditions].	
 

The asynchronous execution takes place when we specify 
the atom “asyn” in the crowd’s conditions. In contrast to the 
synchronous operation, asynchronous processing enables 
methods to return immediately without blocking on the 
calling thread. It means that the crowd predicate is evaluated 
in the background, not blocking. As a result, the next sub-
goal can be executed. The rule below illustrates an 



asynchronous version of the recommendation example 
above. 
recommend:- findall(X,(thai(X),melbourne(X)),R), 
            delicious?(_)#[asyn, 

        question(“Which restaurant do you recommend?”), 
        asktype(“choice”), options(R), askto(“friend”), 
        expiry(“2,0,0”)],   doSomethingElse(A,B). 

handle_crowd_answer(delicious,Restaurant,Location) :-     getLocation(BestOne,Location). 

This example appends doSomethingElse/2 predicate 
at the end of the goal. This predicate is executed without 
waiting for results to come back from the crowd. In the 
asynchronous operation, the programmer needs to provide a 
rule that will be invoked when results come back from the 
crowd, namely, handle_crowd_answer/3, in order to 
receive the results and do further processing with the 
crowd’s answer. A predicate of exactly this name must be 
used since this will be recognized by the system. As found in 
the example above, handle_crowd_answer/3 is written to 
show the location of the best restaurant which gets the top 
score from crowd’s vote for the query delicious. 

IV. LOGICCROWD ARCHITECTURE 
LogicCrowd is a declarative programming paradigm for 

the mobile platform which is designed to combine 
conventional machine computation and the power of the 
crowd in social media networks. Currently, we have built an 
initial prototype implementation of LogicCrowd by 
designing and executing it on the Android platform. The 
prototype integrates tuProlog with Android via our own 
custom-built Java program called a Mediator. The 
corresponding high-level architecture of the prototype 
system is described in Figure 1. 

 

GPS
User	
  
Profile

Prolog

LogicCrowd
Interpreter

Mediator

Asking	
  
Crowd

Register
Callback

Result
Handler

Crowd/Community
(Facebook)

Social	
  API

Question Answer

Rules Solution

Knowledge	
  
Base

 
Figure 1.  A LogicCrowd prototype architecture. 

Our prototype implementation comprises three main 
components: (i) a Prolog system (i.e., tuProlog, running on 
Android), which contains the LogicCrowd interpreter and a 
knowledge base of the user profile and relevant information; 
(ii) Social API which is a software protocol to interact with 
the social media network; and (iii) a mediator between 
Prolog and Social API which is to (1) execute crowd queries, 
(2) register the issued tasks/queries, and (3) handle the 
results from the crowd. 

The execution process of LogicCrowd is as follows: the 
mobile user sets up goals (in rules, or a LogicCrowd 
program) which can query either the local facts database 
(i.e., conventional machine query) or the crowd. If the 
execution starts on the conventional machine query, it 
interacts synchronously with the knowledge base and returns 
the solutions to the main goal and/or continues to the next 
sub-goal(s). As mentioned, the crowd predicates with 
conditions will be executed via the Mediator using the 
“askcrowd” method to send those conditions to the social 
media platform, and the task will be registered by the 
“registercallback” method. During this step, there may be a 
time lag due to waiting for the return of feedback from the 
crowd. The answer from the crowd will be managed through 
the “resulthandler” method in order to display to the mobile 
user results, or to return the results by instantiating Prolog 
variables. Figure 2 illustrates the sequence diagram of 
LogicCrowd in the synchronous operation.  

Mobile	
  User Prolog	
  Engine Knowledge	
  Base Mediator Social	
  API

Upload	
  Theory

Consult	
  Goal(s) Evaluate	
  Goal(s)

Load	
  Theory

Show	
  Solution

[goal	
  =	
  crowd_id?(Answer)#[condition]]
Ask	
  Crowd Post	
  a	
  task	
  to	
  crowd

Crowd

Task	
  IDTask	
  ID

RegisterCallback Wait	
  for	
  Result

Query	
  Result

Ask	
  for	
  doing	
  task

Answer

Return	
  Result
Get	
  Crowd	
  Answer

[Else]
Find	
  Solution
Get	
  SolutionShow	
  Solution

 

Figure 2.  A sequence diagram for synchronous mode. 

The asynchronous operation mode is illustrated in Figure 3. 
The request for tasks can be run in parallel by creating a new 
thread containing an instance of the Prolog engine; hence, 
each such goal is executed without delay in waiting for the 
results from crowd. In Figure 3, the process is similar to that 
in the synchronous mode, but the difference happens after 
calling the “registercallback” method. A background thread 
has been created to wait for the returned results from the 
crowd, so that the original thread continues to execute, i.e., 
in the meantime, if there are further sub-goals, they will be 
executed simultaneously without being blocked by an 
incomplete processing of a crowd predicate. After the return 
of the results from the crowd, a corresponding 
handle_crowd_answer/3 rule will then be executed 



for doing further processing with the crowd’s result or 
simply displaying the results to the user. 

Prolog	
  EngineMobile	
  User Knowledge	
  Base Mediator Social	
  API

Upload	
  Theory
Consult	
  Goal(s) Evaluate	
  Goal(s)

Load	
  Theory

Show	
  Solution

[goal	
  =	
  crowd_id?(Answer)#[condition]]
Ask	
  Crowd Post	
  a	
  task	
  to	
  crowd

Crowd

Task	
  IDTask	
  ID

RegisterCallback

Query	
  Result

Ask	
  for	
  doing	
  task

Answer

Return	
  Result

Crowd	
  Answer

[Else]
Find	
  Solution
Get	
  Solution

New	
  Thread	
  &
Do	
  in	
  backgroundLoad	
  Next	
  Sub-­‐goal

Evaluate	
  
Next	
  Sub-­‐Goal(s)

Find	
  Solution
Get	
  Solution

Show	
  Solution

Evaluate	
  
handle_crowd_answer

Find	
  Solution
Get	
  SolutionShow	
  Solution

 

Figure 3.  A sequence diagram for asynchronous mode. 

V. PROTOTYPE IMPLEMENTATION AND SCENARIOS 
In this section, our implementation is illustrated via 

scenarios. As mentioned, we extended a meta-interpreter of 
pure Prolog and created our own Java built-in library called 
the Mediator between Prolog and social networks. In our 
case, tuProlog, which is an open-source and a light-weight 
Prolog framework, has been deployed, as previously stated, 
since it can be used with Android. Meanwhile, Facebook has 
been selected for a data-centric crowd computation in our 
application. API-based solutions for accessing social media 
platforms are also used. In the LogicCrowd framework, the 
features of the Facebook Graph API have been used (e.g., to 
create a new question and then to obtain several comments 
and answers to the question). Figure 4 shows screenshots of 
the LogicCrowd application. To start the prototype, the user 
must log on to LogicCrowd via his/her Facebook account as 
shown in Figure 4(a). The LogicCrowd’s home screen 
display is shown in Figure 4(b), that is waiting for a user 
query/command and the result would be shown in the 
textbox “Solution”. To execute the query/command, the 
relevant theories must be first loaded into the database 
theory, done by the user creating a new theory or by 
importing an existing theory as illustrated in Figure 4(c). 

We illustrate the application of our prototype in a real 
world scenario derived from our motivating example. 
Consider a mobile user who plans to go out for dinner with 
family after work. This person has specific requirements 
concerning the location and type of the restaurant. Here, we 
assume that the user’s particular location and a list of 
restaurants in any area would be obtained and stored in the 
local on-mobile knowledge base via GPS and other third 
party applications, though in practice, Internet queries to on-
line services can be also be used to obtain such information. 
The user’s profile and relevant information are held in 
Prolog form is shown in listing 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a) Login To LogicCrowd    (b) HomeScreen             (c) Load Theory 

Figure 4.  Screenshots of LogicCrowd application. 

 
 
 

 

 

 

 

 

 

Listing 1. The knowledge base in Prolog format. 

The rule below shows the rule/goal, say, programmed by 
the user.  
recommend(Restaurant):- findall(X,(thai(X),melbourne(X)),R), 
                    delicious?(Restaurant)#[syn, 

                question(“Which restaurant do you recommend?”), 
                asktype(“choice”), options(R), askto(“friend”), 

expiry(“3,0,0”)]. 

 
The aim of the goal is to request a recommendation of 

restaurants on the basis of the restricted conditions that only 
‘Thai restaurants in Melbourne’ are included. In this rule, a 
crowd predicate is one sub-goal of the main goal. It means 
that the user would like to ask the crowd by sending the 
query with conditions as follows: 

• Operation: syn (synchronous version). 
• Question: Which restaurant do you recommend? 
• Type of Question: Multiple choice. 
• Options:  

1) Le Bangkok  
2) Thai Sontaya  
3) Baan Thai  

• Ask to: Friend. 
• Expiry: In 3 hours. 

After executing the crowd sub-goal, the question with the 
above conditions then appears on Facebook as illustrated in 
Figures 5(a) and 5(b). A while later, several Facebook 
friends answer the question by voting the restaurant(s) they 
have found preferable. Within three hours, i.e. the expiry 
time, the result is returned back to LogicCrowd. The system 
then returns the results to the main goal. Figure 5(c) displays 
the result consisting of a list of the restaurants and the scores 
of the restaurants as voted by the crowd. 

thai('Le Bangkok').  italian('La Porchetta').  halal('Nandos'). 
thai('Baan Thai').   china('china bar'). indian('Red Pepper'). 
thai('Narai').       italian('Lupino').  indian('Bonfire Cafe'). 
thai('ThaiSontaya'). western('Basil').   western('Summer Hill'). 

melbourne('Le Bangkok').  melbourne('Basil'). 
melbourne('Baan Thai').  ivanhoe('Lupino'). 
melbourne('Thai sontaya').  preston('Red Pepper'). 
melbourne('china_bar').  preston('Bonfire cafe'). 
reservior('La Porchetta'). bundoora('Narai'). 
bundoora('Nandos').  kingsbury('Summer hill'). 



In this example running on synchronous mode, the crowd 
predicate is executed sequentially without any parallel 
extensions. The process will be suspended until the system 
receives the answers from the crowd. The results show that 
“Thai Sontaya” has 20 votes, “Le Bangkok” has 15 votes and “Baan 
Thai” has 13 votes. 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

     (a) Execute Goal      (b) Ask Question to Crowd    (c) Display Result 

Figure 5.  Sending a restaurant selection request to Facebook and showing 
the results. 

The second scenario invoking mobile crowdsourcing is 
about ranking products. This example can be applied in 
retail, e.g., in the research marketing field that determines 
how to market products. The following rule aims to rank 
popular handbags by aggregating the power of human and 
machine computation.  
best_handbag:- findall(X, brand(X), Handbag),  
               besthandbag?(_)#[asyn, asktype(“choice”), 

           question(“What is the most popular handbag?”), 
           options(Handbag),askto(“public”),expiry(5,0,0)]. 

handle_crowd_answer(besthandbag,CrowdResult,Bestbag):- 
               quicksort(CrowdResult,’@>’,Bestbag). 

We give the second scenario in asynchronous mode. 
First, all brands of the handbag, collected from inside a 
knowledge base, are put into the list, in the ‘Handbag’ 
variable. Then, the crowd predicate is called as the open 
predicate to the public; it means that the user would like to 
create the task and send that to the crowd. The conditions in 
the query would be explained as follows: 

• Operation: asyn (asynchronous version). 
• Question: Which is the most popular handbag? 
• Type of Question: Multiple choices. 
• Options: as in the list contained in the Handbag Variable  
• Ask to: Public. 
• Expiry: 5 hours. 

After executing the crowd sub-goal shown in Figure 6(a), 
the question with these conditions then appears on Facebook 
as illustrated in Figure 6(b). With asynchronous operation, if 
there are goals after the crowd predicate, these goals can 
execute without delay in waiting for the results from the 
crowd. After a while, several Facebook friends are supposed 
to answer the request by voting for the product(s) they have 
used or found preferable. Within five hours, on expiry, the 
result is returned to LogicCrowd. Then, the handle_crowd_ 
answer/3 predicate would be automatically executed. In 
this scenario, handle_crowd_answer/3 is programmed to 
sort the list of handbags in order by the highest to lowest 

voting score. Figure 6(c) displays the final results consisting 
of a list of the products and the scores of the handbag brands 
as voted by the crowd – note that the display can, of course, 
be pretty-formatted depending on the user.  

 
 

 
 
 
 
 

 
 
 
 
 
 

     

 (a) Execute Goal      (b) Ask Question to Crowd    (c) Display Result 

Figure 6.  Sending a handbag brand ranking request to Facebook and 
showing the results. 

Finally, we show a more complex LogicCrowd 
application. It shows how LogicCrowd works in both 
synchronous and asynchronous mode put into one program. 
The following rule aims to find the top ranked attractive-
tourist places to visit in Bangkok, Thailand, and to find the 
name of the place via its photo. 
asktocrowd(Name):-     

findall(Place,thailand(Place,bangkok),Attractive_places),
placetogo?(_)#[asyn,asktype('choice'), question('Where is 
a must-visit place in Bangkok for holiday?'), 
options(Attractive_places),askto('public'), 
expiry(24,0,0)]. 

handle_crowd_answer(placetogo,CrowdResult,_):-  
quicksort(CrowdResult,'@>',PlaceList), 
selectTop(1,PlaceList,MostPopPlace),  
photo(MostPopPlace,jpgfile), % get its photo 
place?(Name)#[syn,asktype('photo'), 
question('Where is the place?'), 
picture(jpgfile), askto('friend'), expiry(3,0,0)]. 

The asktocrowd/1 rule has a goal to ask the crowd for 
recommendations on the attractive places to visit, i.e. the 
crowd predicate identified using the crowd keyword   
“placetogo” is called as the open predicate to the social 
media network. Places get votes from the crowd, and the 
results are placed in a list. The conditions in the query 
would be explained as follows:  

• Operation: asyn (asynchronous version). 
• Question: Where is a must-visit place in Bangkok for 

holiday? 
• Type of Question: Multiple choices. 
• Options: as in the list contained in the 

Attractive_places variable  
• Ask to: Public. 
• Expiry: 24 hours. 

Asynchronous execution is used in this sub-goal. The 
handle_crowd_ answer/3 predicate is automatically 
executed by the system after the results are returned. In this 
case, the top place in the list from the crowd results 
(instantiated in CrowdResult) is selected within the 
handle_crowd_answer/3 predicate. Then, the photo (or 



its filename) for this place is retrieved via the photo/2 
predicate (assuming a database). The next sub-goal aims to 
ask the crowd for obtaining the name of the place in the 
posted photo, using the synchronous mode. The crowd 
predicate with crowd keyword “place” is called as the 
open predicate to the public. The conditions in the query 
would be explained as follows. 

• Operation: syn (synchronous version). 
• Question: What is the name of the place in this picture? 
• Type of Question: Photo. 
• Photo: a.jpg. // suppose this is jpgfile 
• Ask to: Friend. 
• Expiry: 3 hours. 

With synchronous operation, the process would be 
blocked until the crowd’s feedback has been returned to 
LogicCrowd (in this sub-goal taking up to 3 hours).  

In another variant of the example, consider two goals, 
one to get the top three places and another to get the name 
of a place given a photo (e.g., ‘a.jpg’).  
asktocrowd(Name):-     

findall(Place,thailand(Place,bangkok),Attractive_places),
placetogo?(_)#[asyn,asktype('choice'), question('Where is 
a must-visit place in Bangkok for holiday?'), 
options(Attractive_places),askto('public'), 
expiry(24,0,0)], 
place?(Name)#[syn,asktype('photo'), 
question('Where is the the place?'), 
picture('a.jpg'), askto('friend'), expiry(3,0,0)]. 

handle_crowd_answer(placetogo,CrowdResult,PopPlace):-  
quicksort(CrowdResult,'@>',PlaceList), 

 selectTop(3,PlaceList,PopPlaces). 

In Figure 7(a), executing the main goal is shown. We 
can see from this scenario that the results in the second (syn) 
sub-goal will be received prior to the first (asyn) sub-goal. 
The result is shown in Figure 7(b). After 21 hours, the 
results of the request in the first sub-goal is returned 
showing the top three attractive places, as in Figure 7(c). 
 

    

    (a) Execute Goal        (b) Result from 2nd sub-goal    (c) Result from 1st  
   sub-goal 

Figure 7.  Sending a place ranking request and asking for comments to 
Facebook and showing the results. 

VI. RELATED WORK 
In recent years, there has been increasing interest, 

especially in the data processing and database community, in 
using crowdsourcing as a part of database query processing 
[4-8]. CrowdDB [9,10], TurkDB [11,12,13], Deco [14] 
proposed extensions, in different aspects, to established 

query language and processing techniques in order to 
integrate human input for processing queries that a normal 
database system cannot answer. A common approach in such 
studies is to design small extensions to SQL so that the 
crowd can participate in the process of SQL queries. 
Meanwhile, Crowd4U [15] leveraged a declarative platform 
for database abstraction by extending CyLog to issue open 
queries to the crowd. By these approaches, a declarative 
paradigm has been employed to leverage crowdsourced data. 
In LogicCrowd, we, however, propose an alternative 
declarative style of programming for crowdsourcing which 
leverages on Prolog and is more expressive than simple 
crowd SQL queries. 

There has been prior work that has implemented 
crowdsourcing on Amazon’s Mechanical Turk (MTurk). 
Turkit[16] and HProc[17], Jabberwocky[18] are a procedural 
programming libraries designed to optimize worker 
productivity and tasks which enable programmers to 
interface with MTurk. In our framework, LogicCrowd is a 
logic-programming approach that allows programmers to 
create their rules via an event-driven approach and interface 
with social media networks to use crowdsourced data from 
within logic programs.  

Recently, there have been explorations of crowdsourcing 
for the mobile environment [19-24]. Crowdsourcing via 
smartphones has been reviewed in [25], providing taxonomy 
of mobile crowdsourcing in terms of new applications and 
similar services based on crowd-generated data. Txtagle 
[26], MobileWorks [27], UbiAsk [28], CrowdITS [29] and 
Smart Mob [30] are crowdsourcing applications enhanced 
with a range of different sensors such as camera, GPS, 
communication signals, accelerometer and so on. However, 
in our platform, we develop a novel mobile application that 
enables declarative programming with mobile crowdsourcing 
through the use of social media network – sensor data can 
also be incorporated such as GPS locations in queries, to 
scope queries. 

VII. CONCLUSION AND FUTURE WORK 
We have presented LogicCrowd, a logic-programming 

language for declarative mobile crowdsourcing. LogicCrowd 
offers a practical and principled approach for opening query 
evaluation to involve the crowd, and so, integrating crowd 
solutions with conventional machine computation. 
LogicCrowd basically extends the meta-interpreter of pure 
Prolog via Java built-ins. Due to these extensions; mobile 
users are able to program their own goals/rules in order to 
connect to (1) the crowd and (2) to available context 
resources such as mobile sensors, all in one language.  

In our framework, we exploit social platforms for 
LogicCrowd to provide seamless access to broad sets of 
people, enabling the crowd to eventually receive good 
responses. Either with individual/public relationships or 
short/long–term relationships with crowds, the social media 
network might motivate people to provide relevant responses 
and at the same time improve the quality of results provided 
by them. Experiments with LogicCrowd prototype on social 
media (Facebook) demonstrated that logic-based 
programming can achieve effective crowdsourcing. 



In future work, we will continue to create a larger variety 
of human crowd tasks/queries, such as comparing between 
pictures and answering incomplete data, and to use other 
social networks (Google+, etc). Also, we will attempt to 
extend LogicCrowd to query sensors with WiFi or Bluetooth 
interfaces that allow mobile-to-mobile connections in 
particular areas, enabling a mobile version of LogicPeer 
[31].  

ACKNOWLEDGMENT 
The first author is sponsored by the Royal Thai 

Government, through the Ministry of Science and 
Technology, Thailand. 

REFERENCES 
[1] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, pp. 

1-4, 2006. 
[2] L. Sterling, E. Shapiro, and M. Eytan, The art of Prolog vol. 94: 

Wiley Online Library, 1986. 
[3] E. Denti, "tuProlog Manual," Sep. 2012; http://amsacta.unibo.it/3451/ 

1/ tuprolog-guide.pdf. 
[4] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, "CrowdER: 

crowdsourcing entity resolution," Proceedings of the VLDB 
Endowment, vol. 5, pp. 1483-1494, 2012. 

[5] E. Simperl, B. Norton, and D. Vrandecic, "Crowdsourcing Tasks in 
Open Query Answering," in 2012 AAAI Spring Symposium Series, 
2012. 

[6] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang, "CDAS: a 
crowdsourcing data analytics system," Proc. VLDB Endow., vol. 5, 
pp. 1040-1051, 2012. 

[7] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. 
Ramesh, and J. Widom, "Crowdscreen: Algorithms for filtering data 
with humans," in Proceedings of the 2012 international conference on 
Management of Data, 2012, pp. 361-372. 

[8] A. Parameswaran and N. Polyzotis, "Answering Queries using 
Humans, Algorithms and Databases," presented at the Conference on 
Inovative Data Systems Research (CIDR 2011), Asilomar, 2011. 

[9] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin, 
"CrowdDB: answering queries with crowdsourcing," in SIGMOD 
Conference, 2011, pp. 61-72. 

[10] A. Feng, M. Franklin, D. Kossmann, T. Kraska, S. Madden, S. 
Ramesh, et al., "Crowddb: Query processing with the vldb crowd," 
Proceedings of the VLDB Endowment, vol. 4, 2011. 

[11] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller, 
"Crowdsourced databases: Query processing with people," in 5th 
Biennial Conference on Innovative Data Systems Research (CIDR 
'11)  Asilomar, California, USA, 2011.  

[12] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller, 
"Demonstration of qurk: a query processor for human operators," 
presented at the Proceedings of the 2011 ACM SIGMOD 
International Conference on Management of data (SIGMOD '11), 
2011. 

[13] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller, "Human-
powered sorts and joins," Proceedings of the VLDB Endowment, vol. 
5, pp. 13-24, 2011. 

[14] A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and J. 
Widom, "Deco: declarative crowdsourcing," presented at the 
Proceedings of the 21st ACM international conference on Information 
and knowledge management, Maui, Hawaii, USA, 2012. 

[15] A. Morishima, N. Shinagawa, T. Mitsuishi, H. Aoki, and S. 
Fukusumi, "CyLog/Crowd4U: a declarative platform for complex 
data-centric crowdsourcing," Proc. VLDB Endow., vol. 5, pp. 1918-
1921, 2012. 

[16] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, "Turkit: 
human computation algorithms on mechanical turk," in Proceedings 
of the 23nd annual ACM symposium on User interface software and 
technology, 2010, pp. 57-66. 

[17] P. Heymann and H. Garcia-Molina, "Turkalytics: analytics for human 
computation," presented at the Proceedings of the 20th international 
conference on World wide web, Hyderabad, India, 2011. 

[18] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, "The jabberwocky 
programming environment for structured social computing," 
presented at the Proceedings of the 24th annual ACM symposium on 
User interface software and technology, Santa Barbara, California, 
USA, 2011. 

[19] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. Corner, 
"mCrowd: a platform for mobile crowdsourcing," in Proceedings of 
the 7th ACM Conference on Embedded Networked Sensor Systems, 
2009, pp. 347-348. 

[20] M. Stevens and E. D’Hondt, "Crowdsourcing of pollution data using 
smartphones," in 1st Ubiquitous Crowdsourcing Workshop at 
UbiComp, 2010. 

[21] Y. Luon, C. Aperjis, and B. A. Huberman, "Rankr: A Mobile System 
for Crowdsourcing Opinions," Mobile Computing, Applications, and 
Services, pp. 20-31, 2012. 

[22] A. Gupta, W. Thies, E. Cutrell, and R. Balakrishnan, "mClerk: 
enabling mobile crowdsourcing in developing regions," in 
Proceedings of the 2012 ACM annual conference on Human Factors 
in Computing Systems, 2012, pp. 1843-1852. 

[23] M. Demirbas, M. A. Bayir, C. G. Akcora, Y. S. Yilmaz, and H. 
Ferhatosmanoglu, "Crowd-sourced sensing and collaboration using 
twitter," in World of Wireless Mobile and Multimedia Networks 
(WoWMoM), 2010 IEEE International Symposium on a, 2010, pp. 1-
9. 

[24] F. Alt, A. S. Shirazi, A. Schmidt, U. Kramer, and Z. Nawaz, 
"Location-based crowdsourcing: extending crowdsourcing to the real 
world," in Proceedings of the 6th Nordic Conference on Human-
Computer Interaction: Extending Boundaries, 2010, pp. 13-22. 

[25] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. 
Zeinalipour-Yazti, "Crowdsourcing with Smartphones," Internet 
Computing, IEEE, vol. 16, pp. 36-44, 2012. 

[26] N. Eagle, "txteagle: Mobile Crowdsourcing," in Internationalization, 
Design and Global Development. vol. 5623, N. Aykin, Ed., ed: 
Springer Berlin Heidelberg, 2009, pp. 447-456. 

[27] P. Narula, P. Gutheim, D. Rolnitzky, A. Kulkarni, and B. Hartmann, 
"MobileWorks: A Mobile Crowdsourcing Platform for Workers at the 
Bottom of the Pyramid," Association for the Advancement of 
Artificial Intelligence, 2011. 

[28] Y. Liu, V. Lehdonvirta, T. Alexandrova, M. Liu, and T. Nakajima, 
"Engaging Social Medias: Case Mobile Crowdsourcing," SoME’11, 
2011. 

[29] K. Ali, D. Al-Yaseen, A. Ejaz, T. Javed, and H. S. Hassanein, 
"Crowdits: Crowdsourcing in intelligent transportation systems," in 
Wireless Communications and Networking Conference (WCNC), 
2012 IEEE, 2012, pp. 3307-3311. 

[30] H. Rheingold. “Smart Mobs.” Perseus Publishing, 2003. 
[31] S. W. Loke, "Declarative programming of integrated peer-to-peer and 

Web based systems: the case of Prolog," Journal of Systems and 
Software, vol. 79, pp. 523-536, 2006. 

 
 

 


