

Conflict and Interference Resolution for Physical Annotation Systems

Ahmad A. Alzahrani
1
,
2
, Seng W. Loke

1
,Hongen Lu

1

1
Department of Computer Science and Computer Engineering,

La Trobe University, Melbourne, Australia
2
 Department of Computer Science, King Abdulaziz University, Saudi Arabia

{aaalzahrani@students., s.loke@, H.Lu@}latrobe.edu.au

Abstract. Physical Annotation (PA) systems have been
widely used in recent years. They help users to annotate
physical entities around them with digital data for different
purposes such as education, tourism or personal memories.
One of the main problems of the widespread uses of PA is the
conflict and the interference between different annotations for
the same entity. Therefore, this paper studies the conflict and
interference issues in PA systems. The paper first provides a
formal definition for PA conflict and interference, and then
explains the causes and sources of them. Based on that, we
propose detection techniques and then we provide policies to
resolve conflict and interference in PAs. Finally, we provide an
implementation of the techniques.

Keywords - Physical Annotation; conflict and interference,

pervasive computing, context-aware system.

I. INTRODUCTION

In our modern life, advanced development of
telecommunication technologies allows users to annotate
physical entities around them in digital form in a seamless
integration between the real world and the digital world.
Such a technology is generally called Physical Annotation
(PA) systems, where users can annotate small entities such as
a cup which often have a dynamic location that can be
changed frequently, or can annotate large geographical areas
such as a building which often have static locations. In recent
years, PA systems have been used increasingly and can be
used for different purposes – e.g., educational purposes
where a teacher can annotate entities such as a printer or a
class room with annotations to enrich the education process
such as explaining things to his/her students. PAs can be
used for tourism, health, telling stories or security purposes.

Generally, PA systems allow any user to annotate
anything around him/her. However; things can get
complicated by having a large number of annotations for the
same entities as has been discussed in our previous work [1,
2]. One of the potential problems is the conflict and
interference between annotated entities (targets) and their
annotations which could cause many problems such as
giving false information.

 Therefore, in order to have useful PA systems that avoid
conflict and interference, in this paper, we propose a
dynamic conflict and interference management technique
which is called CIRPA (short for Conflict and Interference
Resolution for Physical Annotations) to detect and resolve
conflicts and interference in PA systems. In this paper we
extend our previous work [3] on a physical annotation
system called ALPHAsys.

The rest of this paper is structured as follows: Section II
provides our formal model for PAs which is called ALPHA.
Then, we explain our location model that represents physical
entities and physical annotations, which is called DPVW-
model. In Section IV, we explain the causes and sources of
conflict and interference in PA systems. Then in Section V,
we provide techniques to discover and detect such a problem.
Also we proposed some policies that can be used to resolve
conflict and interference. In Section VI, we explain
implementation called CIPRA, which is an extension on our
previous work ALPHAsys. We discuss related work in
Section VII, and conclude in Section VIII.

II. ALPHA: THE ADVANCED LOCATION MODEL FOR

PHYSICAL ANNOTATION

In our previous work [1], we proposed a conceptual
model of Physical Annotation systems; in this section, we
briefly discuss the PA formal model and outline the main
conceptual model called the ALPHA model which comprise
three main parts: (A) the physical annotation (the link)
which associates annotations to annotated targets; the link
includes the context dependency, anchor properties, and so
on; (B) the annotation part, which includes the content, type,
and other attributes; and (C) the physical entity (the target)
being annotated such as a location, or a small object.

A. The Link (a Physical Annotation)

We define a PA as the link or the bridge that connects
the annotation component to the target component. The
annotation part or the target part can be independent entities
and can stand alone by themselves. However, the link is
dependent on both the annotation and the target
components. The following are the link’s properties.

 Definition A (physical annotation/link): A physical
annotation (or link) is a 4-tuple of the following form:

where is the unique number to identify each PA,
 describes all properties which belong to the annotation
(as given below in Definition B), refers to the target, which
is the annotated entity, i.e. (the set of all possible
targets as explained below in Definition C), and is the
annotation context dependency, i.e., = {location, time,
date, nearby person, nearby object, entity dependency} (in
practice are attributes with particular context values).

mailto:s.loke@,%20H.Lu@%7dlatrobe.edu.au

B. The Annotation

The annotation part comprises the following properties:
the annotation ID, annotation type, the annotation content
itself, users, groups, and author category.

 Definition B (annotation): An annotation is a 6-tuple
as the following form:

where is an annotation identifier, is the annotation
type, i.e. such as education, tourism, health,
ownership, security, entertainment, commercial or
application-specific annotation types (e.g., price, ownership,
comment, weight, and so on which are attributes relating to
an application/use of the annotation), is the content media
type (e.g., text, video), is the annotation’s author, is
the annotation’s intended user, is the annotation’s
intended group (i.e. annotations left for users in a group).
Any one of these values (except) can be null or defaulted
to a fixed value.

C. The Target

The target part describes the annotated entities (or
targets) which exist physically in the real world. Before
explaining the target properties, we would like to describe
the target’s different types. There are three different types of
annotated entities, the first one is the single entity or what
could be called an atom entity which always is one piece of
physical object such as a cup, a person, or even a building,
This type of annotated entity is the simplest type of entity,
which also means they are easy to represent in a location
model and easy to deal with in terms of creating, retrieving
and querying annotations. The other type of the target is
composed of more than one entity; this target type may be
called a collection of entities, and is often more complex in
terms of creating, retrieving, or querying their annotations.
Also, a collection of entities often have similar properties in
different ways which could be the colour, structure and so
on. For example, the user may conceptually “make” a
collection of cups in his/her room and give them a general
annotation “my cups”. So, a main feature of the collection is
that it should be located within the same physical location
(another example are books on the same bookshelf).

 Another target type is the virtual group which refers to
groups of entities physically existing in the real world, but
generally not physically grouped together in one location,
and may be far in distance from each other. The entities in a
virtual group are grouped together via relationships between
entities, or via sharing context, such as a virtual group that
comprises all the user’s possessions in the whole building in
his/ her workplace, independent of where these objects are
located in the building. This target type is associated with the
idea of the annotation mapping property in our PA formal
model, which means, for example, one annotation is linked to
three different entities at three different locations in the
location model. A virtual group is also associated with the
context dependency property in the PA formal model.
Context dependency means that one annotation is linked to a
target entity; but this linking depends on different contexts or
circumstances. For example, the annotation will be visible

only if the annotated entity is in the presence of another
specific entity, or person. So, a main feature of the virtual
group is that, unlike a collection, it shouldn’t need to have
entities in close physical proximity or existing within the
same small physical area (with respect to an a priori chosen
location model). Figure 1 shows examples of a collection and
a virtual group.

 Definition C (target): A target is a 4-tuple of the
form:

where is a target and is a set of all possible targets
(as defined with respect to a model that we explain later),
 is a set of all possible target IDs and is a
target identifier which can be a single value (or a set of
identifiers as explained below), is the set
of all target kinds, and ={geographical_location,
object, person}, denotes a target kind (or a set of target
kinds, i.e. or), is a set of all possible target
locations which includes the geometric or/and symbolic
locations (such a set might be predefined for a given system
using a DPVW-model described later), denotes
a target location, and denotes target
constraints, where denotes a target annotation type that
must be of unary value (i.e., should only have one valid
annotation of that type), so which can be
education, owner, tourism and so on. denotes a Boolean
value, which when true means that the constraint on the
target is that it accepts (or user is allowed to leave) only one
annotation of the annotation type at all times, whereas a
false value indicates the target can accept more than one
annotation for that particular annotation type , but only one
annotation at a time is allowed to be retrieved in a particular
context.

For example, a user can define a PC as an object as
follows, = (t102,”object”, t504, {owner, true}), so the
object was defined to prevent users from adding more than
one annotation of the type “owner” for the PC. However, if
the Boolean value is false, this means the PC can accept
more than one annotation of type “owner”, but only one can
be valid (and is shown) at retrieval time (the method to
decide which is valid/shown is discussed later). This could
mean that the PC can be owned by different users, but in
different times and context. Moreover, by having this
constraint, that doesn’t mean the target can’t accept many
annotations of some other annotation types.

III. DYNAMIC PHYSICAL AND VIRTUAL WORLD MODEL

(DPVW-MODEL)

In our previous work, we created a location model to
represent annotated entities. It is called DPVW-model. The
model can represent different types of targets (i.e., atomic,
collection and virtual group). Also, the DPVW-model can
represent entities in indoor or outdoor locations. Figure 1
shows an example of the model that represents the Beth
Gleeson building in Latrobe University. One of the
advantages of this model is that it allows PA systems to
retrieve annotations not only for the annotated entities, but
also to retrieve the parents’ annotations, i.e. such a model

can serve as a mean to browse “surrounding” annotations.
So, if you are in room 125, the PA system allows you to
retrieve annotations for level two as well. In Figure 2,
another DPVW-model shows the Doncaster shopping
centre, we can use this model to annotate a whole section
with one annotation to advertise a discount or a general
message, such as annotating the TV section in JB Hi-Fi
with a discount 10% which will be applied to all products in
that section.

Figure 1: DPVW-model for BG building.

Figure 2: DPVW-model of Doncaster SC.

IV. CONFLICT AND INTERFERENCE IN PHYSICAL ANNOTATION

SYSTEMS

As we noted before, there could be more than one
annotation for one target, these annotations could be of
different annotation types.

We may also have the same type of annotations for the
same target but with different context dependencies as we
discussed such as time, location and so on. Given a physical
annotation pa= <paID, ann, t, cxD>, then a user u in

context c can retrieve pa if (u = ann.user or u ann.gr) &
ann.cxD.loc = c.loc & ann.cxD.time = c.time.

However, users may get multiple annotations of the
same type for the same object which could cause
interference or even a conflict between annotations
especially if those annotations have conflicting data.

Therefore, in this paper we denote interference or a conflict
in a PA system as follows: a conflict and interference occurs
in a PA system if more than one annotation has been
retrieved at a time, and all of them have the same annotation
type. This definition may not capture all possible kinds of
conflict among annotations but provides a precise definition
that is easily detectable, and also permits developers to
enforce that certain annotations for a target must be singular
(that is, annotations that belong to an annotation type
specified in the target’s target constraint). In this paper, we
differ between conflict and interference in PA as follows:
both of them are detected when, in the same context (time,
and so on), users retrieve more than one annotation, but a
conflict has the additional condition that these annotations
belong to the same annotation type (ATmultiple), and this
annotation type is listed in the target’s target constraint. We
also handle interference and conflict differently: an
interference is handled by having the annotations combined,
i.e. those annotations are allowed to exist together, whereas,
for a conflict, only one, out of the many annotations
retrieved of type ATmutiple, is allowed to be used.

Also, before providing a formal definition of
interference and conflict, we need to discuss the possible
sources of conflict and interference.

There are different situations where the PA system has
interference and conflict problems, and so we categorized
the types of PA interferences and conflicts into two
categories.

1) Target conflict and interference
This type of problem happens between targets

themselves overlap, such as an overlap between two
geographical areas (street and district). So if a user stands on
the shared area between the two targets, he/she will get two
annotations, one from each target. Target conflict and
interference between annotations can be divided into objects
conflict and interference and regions conflict and
interference as follows.

Assume below that t1and t2 each refers to a collection of
targets, i.e. a target container object, and e is a target object,
the following points illustrate the interference and conflict
arising from such object “overlap”:

 e t1, such as a cup inside a picnic basket; the cup has

its annotations but the basket has annotations that apply

to what’s inside it.

 t1 t2, when the first container is effectively located

inside another container, i.e. objects of one are found in

the other.

 t1 t2, where there are objects located in both

containers at the same time, such as a cable on one end

of it deemed to be located in the first container and the

other end in the other container.

Now, for regions, assume t1 and t2 are regions and e is
an object, the following points illustrate the annotation
interference and conflict arising with regions overlap:

 e IN t2 an object inside a region such as a cup inside a

room; and we have annotations for the cup (e.g.,

“belongs to John”) which interfere with that in the room

(e.g., “All objects in here belong to Mary”).

 t1 PO t2, i.e. two target regions partially overlapping or

intersecting such as a street and a geographical block

(district), or a bridge between two buildings, as

illustrated in Figure 3.

 t1 NTPP t2, i.e. a target is a non-tangential proper part

of the other, such as higher level and lower level in a

location model, or a room inside a building, as illustrated

in Figure 2, the JB Hi-Fi shop is part of level 2 which is

also part of the Doncaster shopping mall.

If either of these six situations occur, we say that that
there is interference among the targets, inducing
interference among annotations, i.e., we use the operator
“⊗” combining two targets, and thinking of ⊗ as either

“”, “”, “”, “IN”, “PO”, or “NTPP”, we write |t1 ⊗
t2|>0 to mean that there is interference between objects or
regions in the above ways.

Figure 3: Examples of partial overlap between regions.

2) Annotations interference and conflict
This scenario can happen between annotations even if

there is only one target, i.e., when it has more than one
annotation, these annotations may vary in their meaning
toward that target, so getting all these different annotations
at the same time can make a false statement and causes a
conflict between them.

For example, assume that there is a computer lab in a
university. There are two annotations; the first one says
“this lab is for subject A”, and for the same time, the other
annotation says, “this lab is for subject B”. So it’s obvious
that the two annotations can’t be true at the same time and
this where a conflict between annotations can happen. The
developer can represent this by having an annotation type
called “activity” and then specifying this as a target
constraint for the target (the computer lab) – this means that
if there are more one annotations of the “activity” type, a
conflict is detected, and must be resolved; this is convenient
means of doing so without resorting to understanding the
semantics of annotations. Note that, if an annotation of a
type listed among the target’s constraint with a false

Boolean value, we may not simply stop the users from
leaving more than one annotation of that type since the
process of resolving the conflict can be useful and leaves
room for greater users’ expression and flexibility – we allow
users to leave more than one annotations, i.e. allow such
conflicts to occur, detect that, and then the system takes care
of usefully resolving it – we discuss this further later.

Definition D (interference).
Interference happens between two annotations pa1 and

pa2 in two cases; the first case if there is an intersection or
overlap between two targets (where the targets may be
objects or regions as we discussed earlier), or in the second
case when one target has two annotations and both
annotations have the same annotation type, annotation
context time and annotation context locations. Also, both
annotations’ context locations are the same as the target’s
location (this applies when a target can have a dynamic
location) and both annotation’s user group or user are the

same. More formally, let pa1, pa2 PA be physical
annotations, then interference is determined by a Boolean
function on two annotations as follows:

 {

where = {
| ⊗ |

 = (pa1.cxd.loc = pa2.cxd.loc & pa1.cxd.loc =

pa1.t.loc & pa1.cxd.time = pa2.cxd.time &

pa1.ann.type = pa2.ann.type &

(pa1.ann.user = pa2.ann.user

or pa1.ann.group = pa2.ann.group)).

Definition E (conflict).
Similar to interference, the only difference here is that the

each involved target has constraints, so it accepts only one
annotation of that annotation type at the same time.

Let pa1, pa2 PA be physical annotations, then conflict
is determined by a Boolean function on two annotations as
follows:

 {

where

(where is as defined above for interference). Effectively, a
conflict is an interference with an additional condition. So,
the difference here is that the tests if the target constraint
(TC) (for the two interfering targets, or just that target if pa1
and pa2 have the same target) has a value that prevents
having more than one annotation for a particular annotation
type at the same time as discussed earlier.

V. CONFLICT AND INTERFERENCE DETECTION AND

RESOLUTION FOR PA SYSTEM (CIRPA POLICY)

In this section we provide our proposed solution for
detecting and resolving annotation conflict and interference

in a PA system. It provides strategies for solving such a
problem.

A) Detecting interference and conflict in a PA system

In this section, we explain how and when a PA system
should detect and resolve conflicts or interferences. Two
approaches can be employed:

1) Initial Conflict Prevention when leaving annotations
(ICP): As the name implies, this approach aims to discover
and prevent the conflict and interference before the problem
occurs. This approach can be done on the server side when
the admistrator set policies for the PA system. One way of
doing this is by making constraints on targets by banning
leaving more than one annotation of the same type for one
target. So, the true value for the Boolean element in target
constraint (TC) prevents any user from leaving more than
one annotation of that type.

 An example for this approach is when an author of the
annotation defines some targets in a university to have only
one annotation of a particular annotation type at all time such
as building name..

Therefore, no one can leave more than one annotation of
type building name for those targets. Another example is in a
shopping centre, where a PA admistrator can define the
targets (which are products in this case) to have only one
annotation of commercial type, so when the staff leaves an
annotation on the product they can only have one annotation
of commercial type. This step doesn’t mean banning leaving
more than one annotation for same target if they have
different annotation types; so, for the product, there is only
one annotation of type commercial, but we can have many
annotations of type product information. The ICP approach
has the advantage of preventing conflicts in the early stage
which also will improve the efficiency of creating and
retrieving annotations. However, the ICP approach may not
be always the best solution for all targets especially when we
want targets to have different annotations associated with
different contexts.

2) Dynamic Conflict Detection when retrieving
annotations (DCD): This approach is done during run-time
when users retrieve annotations in the PA system. It allows
leaving more than one annotation for a target, even if they
are of the same annotation type. The PA administrator
doesn’t make any retrictions when leaving annotations on
targets. Therefore, there could be many conflicts and
interferences between annotations. The DCD approach aims
to only check and solve the problem at the time of retrieving
annotations by considering the current context of users and
targets. So, each time users retrieve annotations, the system
will first check if there is a conflict in the current context and
then check the specifications for resolving it. This technique
could consume some time and resources more than the ICP
technique. However, many benefits will be available to the
PA system such as having many annotations of one type
which could work in different contexts, and allowing
different ways of dealing with conflicting annotations
(improving expressiveness).

 For example, consider a scenario of having a meeting
room in a university, and there are two annotations of type

“meeting” for this room. The first one says “each Monday
there is PhD students’ meeting” so the context time is
Monday from 1pm to 2pm. Another annotation says “the
staff meeting is first day of each month”. So the context date
is first of each month from 12pm to 2pm.

The PA system allows having more than one annotation
of the same annotation type for the meeting room. However,
the conflict can happen when as specified in the room’s
target constraint that there should normally be only one
annotation of that type; i.e., if one Monday comes on the first
day of a month, this leads to having annotations saying this
room is booked for PhD students and also booked for the
department staff. At this stage the DCD approach will detect
this conflict and then solve it based on the policy as
explained in the next section.

B) Policy for resolution

In this section, we propose and discuss some strategies
for resolving and handling the problem of detecting a
conflict in a PA system.

The strategies below start from the more important one to
the less important, so that the PA system must apply the first
strategy to resolve the problem, but if unsuccessful (e.g.,
both targets and annotations have the same privileges for the
first strategy), then the PA system should move on to the
next one and so on. The strategies are as follows (given in
order but the PA system administrator may change their
order as he/she think it more suitable for the environment).

1) Privilege and higher role: PA systems allow having
different types of power and privilege for annotations’
authors so that when there is a conflict, the higher power and
privilege author’s annotation will get a higher priority and
will be the only one valid during the conflict. As an example
of different author privileges, consider a spot in Melbourne
CBD, there are many annotations for this spot for different
annotation types such as tourism, education and so on. Also,
for tourism annotations, there are many annotations, some
were created by the city council, others by “normal” people
(but assuming all in the same user group). The council author
has more privileges in the CBD than “normal” people, so
that when the PA system detects a conflict, the annotations
which were created by the council will get a higher priority
than others. Also, in the same example, if police officers
create annotations in the CBD, their annotations will get a
higher priority than others even the city council. This
strategy is also useful in an emergency situation, so that
police officers may annotate the spot to be evacuated, and
their annotation will override all other annotations and be the
only ones available to PA users.

2) Ownership of target: the second strategy allows the
PA system to give more advantage to the owner of targets
over other users. So, if the first strategy hasn’t resolved the
interference or the conflict, the PA system will check the
target’s ownership. An example of this is when there are
many annotations created by different users of type
education, the target here is a movie poster in a cinema.
When a conflict is detected, the PA system will check the
owner of that poster, and give the owner’s annotations a

higher priority than others users’ annotation (in this case the
cinema staff is the owner).

3) Last-come first-adapt: as the name implies, this
strategy gives the latest annotations a higher priority than
older annotations. There are many cases when this strategy is
the best solution when discovering interference or a conflict.
An example of using this strategy is as follows: in a
shopping store, assume there is a product “tablet note2”, the
first commercial annotation ann1 says “there is 10% discount
during December”; however, on Boxing Day which is 26th
of December, there is a new annotation ann2 about a further
discount saying “15% off the price”. As we can notice on the
26th of December there will be a conflict between the old
annotation and the new one, hence, to avoid the conflict
during the run-time, on 26th of December, the PA system
will make the last annotation ann2 the only valid annotation
on 26th of December without deleting the old annotation
ann1, it will be hidden on that date only and then after the
ann2 expires, ann1 will take higher priority and be active
again.

4) Parent annotation: in our location model, DPVLW-
model we allow the PA system to structure the annotated
entities in a hierarchal structure, this allows the users to
retrieve annotations for the parent nodes, such as a product in
a section in a shopping store. In some cases there could be
interference or a conflict between parents’ nodes and
children nodes, so this strategy simply gives the parent’s
annotations a higher priority than the children nodes. An
example of this situation is as follows: assume if there is a
Sony TV in the TV section in the DickSmith store, there is
an annotation for the Sony TV saying “10% off the price”,
and at the same time, there is another annotation for the
whole TV section saying “15% off the price”. As a result,
this strategy will avoid the child node’s annotation and give
priority to the section’s annotation, so the discount will be
15% only.

5) Child annotation: this strategy is the opposite of
parent annotation strategy, so the child node will get higher
priority than the parent nodes in the DPVLW-model.
Assume a user in a DVD store, and there is an annotation
saying “discount 10% on all DVD”. However, if the user is
in kids’ section, which is considered a child node of the
whole store, with annotation saying “20% discount”. Then,
the child node’s annotations will take priority over the
parent’s annotations.

6) Priority of the annotation (same user but in some
context one of the annotations will be better): an author may
make more than one annotation of the same annotation type
for the same target. The author may give different
importance levels for each annotation such as “urgent”,
“important”, “normal”, and “less important”. So when there
is a conflict, the more important annotation will be the only
valid one. For example, assume a user annotates his/her desk
with two annotations (defined to be of the same type listed in
the target constraint), the first one saying “call your friends
each Monday to check how is he/she doing” where the
importance of the annotation is “normal” and another
annotation says “the manager needs the financial report this
Monday” where the importance of the annotation is “urgent”.

So, both annotations apply at the same time and causes a
conflict, the urgent annotation will become the only one
available.

 7) Preferences priority (user’s precedence): this
strategy gives PA users the chance to prefer any type of
annotations or authors, so that when an interference or a
conflict occurs, this strategy will refer to his/her preferences,
i.e., the priority is simply specified explicitly by the user.

After the PA system detects a conflict or interference and
after referring to the policies, the system will deal with each
one of the interference or the conflict individually. So, in the
case of a conflict, only one annotation should be valid. In the
interference case, multiple annotations could be retrieved
because they could all make a consistent statement together;
we can express this outcome as the following. Here are three
outcomes from resolving PA interferences and conflicts,
represented as the function Comp (note that the binary
function can be repeatedly applied for more than two in
conflict or interference):

 For interference, we have: Comp(pa1, pa2) = pa1+pa2,
which means the contents of both annotations can be
retrieved together at the same time (e.g., they are simply
all displayed).

 For conflicts, we can have:
o Comp(pa1, pa2) = pa1 or pa2, i.e., they are mutually

exclusive, so we can have only one, as determined by
the strategies above.

o Comp(pa1, pa2) = pa1, where pa1 overrides pa2 at all
times (as explicitly specified by the user), regardless
of context dependencies.

VI. IMPLEMENTATION

In this section we describe our prototype PA system with
ability to detect and resolve interference. CIRPA is an
extension of our PA system called ALPHAsys [3].

Figure 4:High level architecture for ALPHAsys & the CIRPA component

A) ALPHAsys

ALPHAsys is a Mobile Context-Aware System for
Physical Annotations in the Physical World Model. As
shown in Figure 4, the ALPHAsys architecture was designed

based on our formal model, ALPHA, which has three main
parts; annotation, target and the PA linker that link
annotations to targets, basically enacting the physical
annotations. Figure 5 shows in detail the process of creating
and retrieving annotations and how components interact with
each other. The main parts in the system are as follows.

The first part is the Annotation Manager; this layer
contains the annotation content, stored in two repositories:
Annotation Repository, which contains the system’s own
annotations written by users, and External 3rd party
annotation repositories, where the annotation content can be
also provided by third party providers, such as social
network services. For example, Facebook can provide some
useful annotations as well as Wikipedia, so this layer refers
to such information services.

The second part is the target part which includes: (1)
Target Repository: this contains information about the
annotated entity, whether it is a small object, location or
person. The repository includes also the entity’s target type
which will help to determine the possible associated
annotations of this object. (2) DPVW-model repository:
stores the DPVW-model (which includes the location model
of spatial targets) and tracks the targets within the DPVW-
model, e.g., their locations in the location model (e.g.,
within a room on a floor in a building), giving the user the
option to browse the DPVW-model to retrieve the parent
node’s annotations as well. For example, if the user is in
room A on the 2nd floor in building B, we can present this
location model as a spatial tree to the user. The user may
then like to retrieve the annotations for that room and the
floor as well. So this will locate the entity in the location
model hierarchy and give the user the option to retrieve the
annotations belonging to the space containing the location,
not just the annotations for the spot/location.

The third part in ALPHAsys architecture, as in the formal
model, is the link part, which includes the PA Linker: the
role of this layer is to map annotations to entities/targets.
This tier includes conditions of the linking, and uses the PA
link properties such as context dependencies and mapping. It
also manages annotations linked to collections and virtual
groups.

B) CIRPA

The CIRPA is an extension of our previous ALPHAsys;
it is the interference and conflict manager: detecting
conflicts, checking policies, and resolving interferences and
conflicts. All this process is managed by the PA
Controller: this component controls the PA access; after the
system retrieves the annotation from the lower tiers, it
manages the interference/collision (if any), and all possible
situations that may affect annotations. CIRPA contains three
parts.

1)CIRPA detector manager: it is responsible for
detecting the interference and conflict between targets
and/or annotations. It will check if two targets overlap or if
one target has many annotations that conflict with each
other. In this section if there is no conflict, it will send an
approval to the PA controller which then sends users the
required annotations, but if a conflict is detected, it will
refer to the CIRPA resolution manager.

2)CIRPA resolution manager: after detecting a conflict,
this component will work to resolve it and avoid the
conflict. It refers to the CIRPA policies manager to get
instructions to deal with the conflict.

3)CIRPA policies manager: this component contains the
strategies and policies that were specified by the system
administrator in order to direct the CIRPA resolution
manager. The strategies, as we discussed in section 4.2, are
taken in order. We implemented our system by using an
Android phone platform 4.0.

Gateway Message Sequence

flow
Task

Legend

Tier 1=User

System User

System

Administration

Tier 2=Data management

Define Target

Retrieve

Target

Check

availability
Target name

Target

database
Target name

Try again

Available

Set Target

properties

Set Target

Store Target

Retrieve Target

Target ID

Target information

Try again

System User

System

Administration

Define

Annotation

Retrieve

Annotation

PA linker

database

Check

availability
Annotation name

Annotation

database
Annotation name

Try again

Available

Set annotation

properties

Set annotation

Store annotation

Link annotation to

target

Link annotation

Annotation

properties

Retrieve annotation

Annotation

 and target ID

Annotation information

Try again

Tier 3=Controller

Target

Analysis

Annotation

Analysis

Check

duplication

Availability

Conflict

Check

duplication

Availability

Conflict

New Target

Target information

New annotation

Annotation information

Association

Check

availability

Retrieve

annotation

Return

annotation

Retrieve

annotation

Annotation information

Conflict

detector

Conflict

resolution
Conflict

specification

Set policies

Figure 5: ALPHAsys architecture including CIRPA

VII. RELATED WORK

With the huge increase of using location based services
and multiple user annotations, in general, conflict detection
and resolution is one key point that challenges any system.
Therefore, in the last decade, there is much research on
conflict and resolution in pervasive computing environments,
e.g., [4, 5]. Also [6-8] describes the hanging services
framework that support ad hoc services.

There is much work on conflict techniques and policies
[9-11]. All previous research are focused on pervasive
computing in general. However, as the conflict and
interference in PA systems are different from other pervasive
systems, we found existing work not considering this
problem. So, we presented our definitions and approach to
cover interferences and conflict between annotations and/or
targets in different contexts.

VIII. CONCLUSION AND FUTURE WORK.

In this paper, we have presented CIRPA, which is
Conflict and Interference Resolution in Physical Annotation
Systems. We first explain how a conflict and interference can
occur when users create or retrieve annotations. We found
that the interference between annotated targets could result in
this problem. We also found that conflict can happen for one
target when it has many annotations with the same type and
context.

Then, we discussed two approaches to handle the conflict
and interference in a PA system, which are proactive (or
preventative) and dynamic conflict handling. Then, we
provided strategies with examples which aim to enable PA
systems to avoid and resolve conflicts and interference
between annotations and targets.

While our approach has been presented pairwise mostly,
n-way conflicts are resolved in pairs in a pairwise manner.

We also note that the above notions of interference and
conflict provide a means, effectively, to filter annotations
shown to the users.

We also note that other current augmented reality or
physical annotation systems do not fully exploit a real-world
model to position the annotations, i.e. using what we have
called DPVW-models. We note that over the same physical
environment, it is possible to build different DPVW-models,
e.g., for a shopping street, we have a set of DPVW-models
for tourists, another set for the police, and another set for
local residents.

Our formal model aims to provide a precise notion of
physical annotations (really as links between annotations and
physical targets), and our formal notions of conflict and
interference are just one conceptualization – there could be
others. But we find this current conceptualization useful in
resolving interfering or conflicting annotations without
having to deal with understanding the actual semantics of the
contents of annotations (which is generally difficult). Future
work could look into Natural Language Processing and
semantics analysis as another means to determine conflicting
or interfering annotations (though this would be
computationally very intensive).

Finally, we outlined our implementation and architecture
of CIRPA within ALPHAsys. Although these techniques
were designed for our PA system, it can be used for any PA
system or mixed reality system that is used to annotate
physical entities such as Wikitude, Junaio or Layar.

Future work will involve testing our approach with real
users and evaluating the usefulness of our strategies in a
larger application context, e.g., on a university campus, a
shopping mall and in a shopping street.

We will also study the efficiency of our approach, with
our evaluation and note any performance concerns.

REFERENCES

1. Alzahrani, A.A., S.W. Loke, and H. Lu. A Formal Model for
Advanced Physical Annotations. in 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing
(DASC),. 2011. Sydney, Australia.

2. Alzahrani, A.A., S.W. Loke, and H. Lu, A survey on internet-enabled
physical annotation systems. International Journal of Pervasive
Computing and Communications, 2011. 7(4): p. 293-315.

3. Alzahrani, A.A., S.W. Loke, and H. Lu, ALPHAsys: an Advanced
Location-aware PHysical Annotation system from models to
implementation. submited to a journal and still under reviw, 2013.

4. Tuttlies, V., G. Schiele, and C. Becker, COMITY - Conflict
Avoidance in Pervasive Computing Environments On the Move to
Meaningful Internet Systems 2007: OTM 2007 Workshops, R.
Meersman, Z. Tari, and P. Herrero, Editors. 2007, Springer Berlin /
Heidelberg. p. 763-772.

5. Tuttlies, V., G. Schiele, and C. Becker. End-User Configuration for
Pervasive Computing Environments. in Complex, Intelligent and
Software Intensive Systems, 2009. CISIS '09. International
Conference on. 2009.

6. Syukur, E., S. Loke, and P. Stanski, A Policy Based Framework for
Context Aware Ubiquitous Services, in Embedded and Ubiquitous
Computing, L. Yang, et al., Editors. 2004, Springer Berlin
Heidelberg. p. 346-355.

7. Syukur, E., S.W. Loke, and P. Stanski, Methods for Policy Conflict
Detection and Resolution in Pervasive Computing Environments, in
In: Policy Management for the Web Workshop in conjunction with
the 14th International World Wide Web Conference2005: Chiba,
Japan.

8. Jakob, H., C. Consel, and N. Loriant, Architecturing Conflict
Handling of Pervasive Computing Resources, in Distributed
Applications and Interoperable Systems, P. Felber and R. Rouvoy,
Editors. 2011, Springer Berlin Heidelberg. p. 92-105.

9. Chae, H., T. Kim, D.-h. Lee, and H.P. In. Conflict Resolution Model
Based on Weight in Situation Aware Collaboration System. in Future
Trends of Distributed Computing Systems, 2007. FTDCS '07. 11th
IEEE International Workshop on. 2007.

10. Dunlop, N., J. Indulska, and K. Raymond. Methods for conflict
resolution in policy-based management systems. in Enterprise
Distributed Object Computing Conference, 2003. Proceedings.
Seventh IEEE International. 2003.

11. Insuk, P., L. Kyungmin, L. Dongman, J.H. Soon, and Y. Hee Yong. A
Dynamic Context Conflict Resolution Scheme for Group-aware
Ubiquitous Computing Environments. in Proceedings of the 1st
International Workshop on Personalized Context Modeling and
Management for UbiComp Applications (ubiPCMM'05). 2005.

