
Incremental Awareness and Compositionality: a

Design Philosophy for Context-Aware Pervasive

Systems

Seng W. Loke

Department of Computer Science and Computer Engineering

La Trobe University

s.loke@latrobe.edu.au

October 8, 2008

Abstract

Context-aware pervasive systems are an important emerging category of software, in-

creasingly pervading into daily life, play and work. These systems are characterized by

capabilities for sensing the physical world and taking action, autonomously or in coop-

eration with users. This paper proposes an incremental approach to building context-

aware pervasive systems, with a particular emphasis on systematically extending over

time the contexts and situations a system can be aware of, and creating a formalism in

which these systems can be composed. We present a formalism of operators for build-

ing context-aware pervasive systems incrementally and in a compositional manner (by

combining multiple systems and subsystems), facilitating reuse in a formal way. The

formalism can serve as (i) a basis for a scripting language for programming composite

systems, and (ii) a language for specifying these systems (whether existing or to be

built) and then reasoning with specifications of these systems.

1 Introduction

There has been a growing excitement about context-aware pervasive systems, that is,

systems capable of knowing and understanding the physical and virtual context of users

1

and objects and respond intelligently to such knowledge. From context-aware services

to artifacts, there has been diverse efforts to build context-awareness into systems [16,

15]. Such systems are termed “pervasive” in the way that they can be ubiquitous and

pervade in daily living environments.

This paper proposes an incremental approach to building context-aware pervasive

systems, with a particular emphasis on extending over time what a system can be aware

of and creating a formalism in which these systems can be composed (perhaps old with

old or new with old, or new with new). The idea is that a system initially built might

only be capable of recognizing particular contexts or particular situations1 of entities,

but later, can be extended (by developers or even more technically savvy users) to

recognize more types of context and more situations. We do not deal with learning in

this paper, i.e., applying machine learning techniques to recognize more context and

situations, but our approach does not necessarily exclude applying machine learning

later. A key underlying assumption in our approach is that knowledge about situations

can be modularized or discretized, as in [17, 25].

More specifically, the contributions of this paper are twofold:

1. We propose an abstract model of a situation recognition system, influenced by

our discretized view of knowledge about situations. The model makes precise

what it means for a system to be more powerful (in recognizing situations) than

another system.

2. We then consider a language of operators for combining a mathematical model

of context-aware systems, and show how composite systems formed using these

operators results in greater recognition ability than individual systems. From

a software engineering perspective, this language can serve two purposes, pro-

gramming and specification:

• a basis for scripting or programming composite context-aware pervasive

systems: given an existing set of context-aware systems, the operators can

be used to compose any subset of them in a systematic way with well-

defined semantics, and

• a language for specifying these systems (whether existing or to be built)

and then composing specifications of these systems: at design time, a set

of context-aware systems can be represented in abstract form (in a way we

will demonstrate later). We can then reason with different possible com-

positions of these systems to explore the capabilities of these composites
1We take situation as being at a high level of abstraction than context as also done in other work [1, 25,

23, 8].

2

(or of their specifications). Moreover, the same system can be reused in

different composites, and hence, the formalism can be used to reason with

and represent modular designs.

Our approach has the following benefits:

• tailored formalism:we view this language as a first step towards a specialized

formalism tailored for building extensible and composable context-aware per-

vasive systems, in contrast to general specification formalisms for distributed

systems or ad hoc approaches.

• extensible: our approach supports the modular construction of context-aware

pervasive systems, not only by encouraging such systems to be built separately

and then composing them using operators (whether at run-time or design-time),

but also, the set of operators to be changed (more operators can be added over

time).

• high level of abstraction:our approach models systems either at the blackbox

level, or a whitebox level; but does not require details of the underlying imple-

mentation of the system.

By “context”, in this paper, we use Dey’s definition [10], which is “any informa-

tion that can be used to characterize the situation of an entity.” Although we have in

mind the typical sensors (from temperature to motion sensors), we also use a broad

definition of a sensor, which is any device (software and hardware) that can be used

to acquire context. By situation, we mean a state of affairs or from [9], “a structured

part of reality that it (the agent) somehow manages to ‘pick out’.” And this done by

directly perceiving the situation and some reasoning without requiring the agent to give

a complete or exact description.

We use an analogy with expert systems, where particular knowledge is added to a

generic reasoning engine in order to create a particular expert system, and such knowl-

edge can be updated or extended, thereby updating or extending the expert system.

Often, such knowledge might be structured into modules. The typical form of knowl-

edge represented as rules facilitates this process, in that knowledge is in a sense dis-

cretized into collections of units of knowledge, where a unit of knowledge is a rule or a

bunch of related rules. We suggest that what a system can be aware of can be similarly

discretized, and call thisawareness discretization; for example, a system capable of

recognizing situations A, B and C can be extended to recognize situations (i.e., physi-

cal situations of the world as well as computational and networking states) A, B, C and

3

D, or previously a system can only recognize three types of context (e.g., location, time

and nearby objects) but is extended to recognize temperature as well (another type of

context information). We have in mind a knowledge-based approach in this paper using

a representation of situations as units of knowledge, e.g.situation programsin [15],

but note that our approach is not restricted to only systems using situation programs.

The rest of this paper is organized as follows. Section 2 presents an abstract

model of incremental context-awareness, introducing a notion of monotonic extension

of context-aware pervasive systems. Section 3 dicusses a language of operators for

composing context-aware pervasive systems. Section 4 describes an examples of com-

position in a smart home context. Section 5 outlines a scheme to compose systems

running on different machines. Section 6 notes related work and Section 7 concludes

with directions for future work.

2 An Abstract Model of Incremental Context-Awareness

Following [16], we consider a typical context-aware pervasive system as having three

subsystems in order to recognize situations: a subsystem comprising sensors, a sub-

system mapping sensor readings to context or models of situations, and a subsystem

taking actions. If we are extending a context-aware system, we want to be able to say,

in some precise way, the sense in which one system extends another, in terms of the

ability to recognize situations, and the following subsections aim towards this.

2.1 Recognition Power

Suppose that, with respect to a systemR, we use the operatorR(K) ` S to mean, the

system with capabilityK is able to recognize situationS. By “capability” we mean

knowledge as well as perhaps sensors and reasoning components to make recognition

of situations possible.

We can define therecognition powerRR
K of the system with capabilityK as the

set of all situations that the system can correctly recognize, and write this as follows:

RR
K = {S | R(K) ` S}

While the recognition power of a system can be regarded as a property of the system,

we can also use a set of situations as a specification or requirement for a system: we

want to build a system that has to correctly recognize a given set of situations, i.e. the

recognition power of the system we build is either equal to or larger than the given set.

4

2.2 Breadth-Monotonic Extension

Now, if we add capability to the system, representing this additional capability by

δ, and suppose that this additional capability allows the system to recognizemono-

tonically more situations, i.e.,RR
K ⊆ RR

K∪δ. Then, we say that we havebreadth-

monotonicallyincreased the capability of the system, and write this as

R(K) ≤bm R(K ∪ δ)

or more generally, we simply writeR ≤bm R′, given two systemsR andR′ where

their capabilities are understood. Monotonicity is a useful property we would like to

have, which makes the system amenable to an incremental approach of construction.

2.3 Depth-Monotonic Extension

There are other means by which an extension can be monotonic, i.e., when there is an

uncertainty (e.g., a probability or confidence measure) associated with the recognition

of a situation. We assume that the system is able to provide a measure of how likely a

situation is occurring, albeit this measure is merely the system’s own estimate.

For example, on a certainty scale of 0 (totally uncertain) to 100 (totally certain),

and we writeR(K) ` S[u] to mean the system with capabilityK recognizes situation

S with a measure ofu (we assume that leastu > 0 for otherwise, we cannot say that

the system recognizes the situation). Then, another way in which we can extend the

capabilities of the system with respect to the situationS is to addδS to K such that

situationS is recognized with higher certaintyv(≥ u), written asR(K ∪ δS) ` S[v].
More generally, we can add capabilityδ toR so thatR recognizes the situations, at least

as estimated by the system, with no less certainty than previously or even with greater

certainty: δ is such that for eachS recognized byR with capabilityK, i.e. suppose

thatR(K) ` S[u] for some certainty measureu, we then haveR(K ∪ δ) ` S[v] for

somev ≥ u. We say that we havedepth-monotonicallyincreased the capability of the

system, and write this as

R(K) ≤dm R(K ∪ δ)

or more generally, we simply writeR ≤dm R′, given two systemsR andR′ where

their capabilities are understood.

Note that both the above monotonicities permit equality, i.e., it is possible that

RK = RK∪δ for someδ. But say, assuming that we are comparing unequal systems,

then an extension may be depth-monotonic but not breadth-monotonic, in that the ex-

5

tension does not allow any new situation to be recognized, but at least some situation(s)

is(are) recognized with greater certainty. We have the converse when the extension al-

lows more situations to be recognized but existing situations are not recognized with

greater certainty.

2.4 Effective Recognition Power

We can define theeffective recognition powerERK of the system with capabilityK

as the set of all situations that the system can recognize as follows together with their

certainty measure; for a systemR:

ERR
K = {(S, u) | R(K) ` S[u]}

and then,R(K) ≤dm R(K ∪ δ) means for each(S, u) ∈ ERR
K , we will have(S, v) ∈

ERR
K∪δ such thatu ≤ v.

2.5 Discussion

The idea of incremental awareness is, hence, to effectively ”grow” the system over time

in such a way as to preserve either or both of these monotonicity properties, the system

at a later time being a depth and/or breath monotonic extension of the previous version.

We make three further observations:

• These notions of monotonicity can also be used to compare two or more different

context-aware systems, in terms of their recognition power, or to clearly define

the intersection of two systems. For example, given two systemsR andR′, with

capabilitiesK andK ′ respectively, the difference between the two (say whatR

can recognize butR′ cannot) is as follows:

RR
K \ RR′

K′

and similarly, one can compute whatR′ can recognize andR cannot. Their

intersection provides the situations both can recognize.

We note, however, that such a comparison is only meaningful when the sit-

uations a system can recognize is enumerated based on an explicit or implicit

set of situations (expressed in some ontology, say), i.e. ifR recognizes a situa-

tion “Tom is in a meeting,” andR′ recognizes also the same situation, then both

6

systems should refer to the same situation in an ontology (or at least the two

situations must be represented as synonymous in the ontology).

• Note that we consider recognizing the occurrence of a situation as being at

the same level as the non-occurrence of a situation (the situation of the non-

occurrence of a situation is itself a situation). A system may be able to recognize

the occurrence of a situation but may fail to recognize the non-occurrence of a

situation. The fact that a system did not recognize the occurrence of a situation

does not necessarily mean that the system is certain that the situation is not oc-

curring. Note that, however, in a specific application, we might choose to use

the Closed World Assumption (as done for interpreting negation in many logic-

based languages), i.e., any situation that is not detected by the system is assumed

to be not occurring (at least from the system’s perspective).

• For comparison purposes, when one is developing towards an ideal (or desired)

system, we can define an imaginary system, called theoracle, which is the depth

and breadth monotonic extension of every other system, i.e. the oracle always

recognizes situations correctly, whether they occur or do not occur. Then, the

closer the (effective) recognition power of a system is to the oracle, the “better”

the system becomes. Practically, given a set of situations being considered as

the requirements on what a system should recognize, one can define anoracle

with respect to that set, i.e. the oracle for that set will always recognize all

the situations in that set correctly. The oracle is merely a formalization of the

intuitive notion of the required ideal system.

• Note that we have presented non-strict versions of the relations≥bm and≥dm,

but we can similarly define the strict versions of the relations (without equality),

i.e. >bm and>dm.

3 Composing Systems

We explore operators which combine two or more systems, and formalize the relation-

ship between the combined system and its component systems. We mentioned that the

situations must come from (or be mapped to) a common ontology; so that it makes

sense to say that two systems are recognizing the same or different situations. This is

assumed in the discussions which follow. Section 3.1 first presents simple composi-

tion operators, section 3.2 then discusses more sophisticated compositions, presenting

7

a language of operators in order to illustrate what is possible, and Section 3.3 discusses

completeness and expressiveness of sets of operators.

3.1 Simple Composition

Ideally, we would want the combined system to be a depth and/or breadth monotonic

extension of its component systems. We discuss two operators here analogous to set

union and set intersection.

Union. We can define theunion combination (denoted by⊕) of two systemsR and

R′, denoted byR ⊕ R′, each with capabilitiesK andK ′, respectively, as follows (the

combined capability denoted byK ⊕K ′):

RR⊕R′

K⊕K′ = RR
K ∪RR′

K′

Hence,R⊕R′ exactly recognizes all the situations thatR andR′ recognizes.

And considering uncertainty, an initial definition would be

ERR⊕R′

K⊕K′ = ERR
K ∪ ERR′

K′

This definition ofERR⊕R′

K⊕K′ is sensible if there are no situations recognized by bothR

andR′. Now, if some situationS is recognized by both systems, then both(S, u) and

(S, u′) would exists for measuresu andu′ estimated byR andR′, respectively. This

would be the correct definition and, operationally, eitheru or u′ would be applicable -

we nondeterministically choose one of them. In an operational definition of union we

give later, we nondeterministically choose eitheru or u′. This is because, practically,

if a situation is recognized by one of the systems (say, with certaintyu), using short-

circuit evaluation as an optimization for performance, we may not proceed to determine

if the situation is recognized by the other system.

But if we donot apply short-circuit evaluation, i.e., we still proceed to determine if

the situation is recognized by the other system, and possibly obtain another certainty

measure - we can then compute the greater certainty measure of the two (assuming the

measures are comparable, or if not initally comparable, perhaps mapped to a common

scale for comparison). Taking the greater of the two measures, denoted bymax(u, u′),
is conservative in that we would expect a situation recognized by two systems to have

greater certainty than if recognized by only one, so that the measure might actually be

greater thanmax(u, u′). Nevertheless, quantifying this greater certainty is not obvious

8

given two different systems and two different ways by which certainty values might

have been computed - such certainty values would have to be computed via a module

added when the systems are “glued” together.

Taking this conservative stance, the effective recognition power of this union of two

systemsR andR′ can then be given by the union of the set of situations recognized by

both systems (with certainty measure being the maximum of the two), the situations

recognized by onlyR and the situations recognized by onlyR′, i.e.:

ERR⊕R′

K⊕K′ = {(S, max(u, u′)) | R(K) ` S[u] andR′(K ′) ` S[u′]}

∪ {(S, u) | R(K) ` S[u] andR′(K ′) 6` S}

∪ {(S, u′) | R′(K ′) ` S[u′] andR(K) 6` S}

We review this version of union in Section 3.2.3.

Intersection. Similarly, we can define the recognition power of intersection, denoted

by⊗, of R andR′ as follows (if we leave out certainty measures):

RR⊗R′

K⊗K′ = RR
K ∩RR′

K′

The composite systemR ⊗ R′ recognizes only situations recognized by both its con-

stituent systems. This means thatR⊗R′ is not a breadth monotonic extension of either

of its constituents but recognition by both can serve a confirming role.

Taking into account uncertainty, and as before, taking a conservative stance, we

define the intersection of two systems (with certainty measures) as follows:

ERR⊗R′

K⊗K′ = {(S, max(u, u′)) | R(K) ` S[u] andR′(K ′) ` S[u′]}

Expressions of Compositions. With the two operators above, we can define a set of

composition expressions in EBNF form:

E ::= R | E ⊕ E | E ⊗ E

whereR here stands for an identifier of some system. Such expressions can either be

used as specifications of systems, or the operators represent different types of “glue”

for systems.

9

Discussion. A question is how can we extend a system, or combine two (or more)

systems, such that the extension, or composition, is a depth or breadth monotonic ex-

tension of the original system(s)? The answer is clearly in the affirmative if we apply

union. However, in general, this question can only be answered with respect to the

specific technologies we use to build the system.

Systems can be “glued” together synergistically. It might be possible to combine

two systems such that the situations the composite system recognize is more than the

union and the certainties are at least equal to its constituent systems or even greater.

Substantial engineering may be required but one way to achieve this synergy is when

situations are defined which are composite or comprising other situations (as done in

[23]). So, given that to recognize a situation S1, two other situations S2 and S3 need

to be recognized according to a knowledge base relating S1, S2 and S3, then, ifR

can recognize S2 andR′ can recognize S3, thenR ⊕ R′ can recognize S2 and S3

but if also extended with access to the knowledge base, also recognize S1. Such a

composition does not require engineering of the internals ofR andR′ but merely to

take their outputs and relate them via the knowledge base. The certainty measure with

which R1 is recognized would have to depend on the measures from R2 and R3, and the

procedure to compute the certainty measure for R1 would have to consider the details

of the mechanisms used to compute certainty measures inR andR′.

3.2 Deeper Composition

So far, our model of systems and their capabilities have been opaque (i.e., we assume

a blackbox) and based on their recognition power. Keeping the capabilities and the

system a blackbox means that the above definitions and terminology applies to systems

independently of their internal implementation. To model more varieties of composi-

tions, at the cost of generality, we consider now a more detailed yet abstract architecture

of context-aware systems.

3.2.1 A WhiteBox Model of a Context-Aware System

Based on the location stack model in [13], we generalize location to context in our

model, and define a context-aware systemR as a tuple (or a triple) comprising sen-

sors, an interpreter (which translates sensor readings to context information), and a

situation-reasoner (which takes the context information and infers possible situations,

or “aggregates” situations to infer more situations), and model each of these compo-

10

nents as a relation. More formally:

R = (Σ,Π,Θ)

In the above formulation,Σ is a finite set of sensors where each sensorσi is a function

which senses a part of the world (in which the sensor is situated at the time)W ∈ W

and produces a set of sensor readingsG ∈ G, i.e. σi : W → G. In the examples

later,G is represented in the form of equalities or inequalities (i.e., ranges) on sensor

readings, and we use the function symbolreading(σ, T) to denote the reading of a

sensorσ at some timeT (or simply,reading(σ) if time is implicit). We letW andG

remain opaque as our discussions do not require their details, but explicit and precise

definitions could be given for them; for example,W can be defined as a 3-dimensional

volume of spherical space (andW as a set of such spaces) at some location of a pre-

scribed size where the sensor is contained, andG can be a sensor stream comprising a

set of timestamped data samples as in [14], andG a set of such streams of readings.

The interpreterΠ can then be defined as a mapping from sensor readingsG to some

context (e.g., a symbolic location such as a room number)C ∈ C (which we assume

are concepts grounded in some ontology such as in work surveyed in [3, 2, 24] - again,

we do not need the details of this), i.e.,Π ⊆ (G×C). So, givenW ∈ W, and suppose

Σ = {σ1, . . . , σn}, andσ1(W) = G1, . . ., σn(W) = Gn (for Gi ∈ G), thenΠ can

be applied to interpret eachGi to obtain a set of contexts{C1, . . . , Cn}, denoted by

Π(Gi) = Ci (taken here to mean(Gi, Ci) ∈ Π).

The separation of sensors and interpreters is for the purpose of generality; the same

sensor readings can be mapped to different contexts (i.e., interpreted differently) by

different systems. This would allow us to model a composition, where one system

may utilize a sensor of the another system but interpret the readings of this sensor

differently, i.e. mapping the readings to another type of context. For example, a set of

GPS coordinates may be reverse geocoded to “Bob’s room” in one system and to “PS1

224” in another.

The situation reasonerΘ is a pair of relations(Θc,Θs) with Θc, mapping sets of

contexts to situations, andΘs, mapping sets of situations to other situations, where

Θc ⊆ (℘(C)× S)

whereS is a set of situations (again, which we assume grounded in some ontology),

and

Θs ⊆ (℘(S)× S)

11

Examples of aggregating context to infer situations can be found in the literature [1,

25, 23, 8, 12], as well as aggregating situations to infer situations [23, 25]. Ontologies

for what may constitute contexts exists such as SOUPA2, and CONON [22].

Our model makes the distinction between the notions of context and situation fol-

lowing the work such as [22, 23, 20, 15, 10], where as mentioned earlier, in Dey’s

definition [10], context information is used to “characterize the situation of an entity,”

modelled viaΘc. Hence, we see situation as the state of affairs that aggregated context

information aim to inform about. However, to maintain generality, we includeΘs since

relationships among situations also need to be captured (e.g., as noted in [25, 9]3).

We consider how examples from different sources, such as [22, 23, 20], can be

represented in our approach as follows.
Adapted from [22]; we can think of the following pairs as members ofΘc:

({u located in bathroom, waterheater located in bathroom,

bathroom-door status closed, waterheater status on},

u’s situation is showering)

({u located in kitchen, electric-oven located in Kitchen,

electric-oven status on},

u’s situation is cooking)

({u located in living room, tv-set located in living room,

tv-set status on},

u’s situation is watching tv)

From [23], we have

({u in conference room, room light on},

ready for meeting)

And from [20], we have

({more than 3 people in room 2401, powerpoint running in room},

presentation)

and

({more than 1 people in room 2401, mpegplayer running},

movie presentation)

2http://pervasive.semanticweb.org/soupa-2004-06.html
3We note in http://www.stanford.edu/˜kdevlin/HHLSituationTheory.pdf that one example of a relation-

ship between situations is “involves”, where if one (or more) situationinvolvesanother, then the occurrence
of the situation(s) may imply the occurrence of another situation, which is whatΘs can be used to represent.

12

We assume a “blackbox” in realizingΘc andΘs, even if there may be some so-

phisticated mechanism mapping context to situations or inferring a situation from other

situations and context.4 Hence, our approach can be used to model an existing context-

aware system, i.e. a triple represents the observable properties of the existing system,

or to model systems to be created, i.e. a triple represents the observable properties of a

system to be built.

3.2.2 Operators

Here, we define a context-aware system as effectively taking some part of the world and

mapping that to a set of situations. Based on this “whitebox” notion of a context-aware

system, we can define operators involving deeper interactions between systems, where

the output of the component of one system can become the input to a component of

another system and so on. In order to define these operators, we will employ the style

of Plotkin’s structural operational semantics for programming languages [19]; we will

use rules of the form
premises

conclusion

which means theconclusion holds whenever thepremises hold. In the discussions

which follow, we shall omit certainty measures for simplicity, until Section 3.2.4.

We first define the relation denoted bỳbetween systems and pairs of the form

(W,S) whereW ∈ W andS is some situation, such thatR ` (W,S) if and only

if R recognizesS when sensing part of the worldW . A situation that is recognized

by a system is then either computed from contexts (recognized by some sensors and

the interpreter) viaΘc or aggregated viaΘs from other recognized situations (it could

be from both context and situations as appropriately modelled). This meaning of the

4Note that inferring situations via a mix of situations and context can be represented by appropriate
definitions forΘ.

13

relation` can be expressed recursively as follows:

Where Θ = (Θc,Θs), either

(i) [({C1, . . . , Cm}, S) ∈ Θc

for somem, where for eachCi, i ∈ {1, . . . ,m},

Π(σj(W)) = Ci, for somej andσj ∈ Σ],

or

(ii) [({S1, . . . , Sk}, S) ∈ Θsfor somek,

where for eachSi, i ∈ {1, . . . , k}, (Σ,Π,Θ) ` (W,Si)]
(Σ,Π,Θ) ` (W,S)

(one− system)

Similarly, we would have context recognition, i.e.,R ` (W,C) for some context

C, whereΠ(σ(W)) = C, for someσ ∈ Σ. And one could generalize the definition of

recognition power to include not just situations but also contexts.

With this whitebox model of a system, we can define capabilities now in terms

of the three components of a system and be more specific about what extending the

capabilities of a system could mean. Given a systemR = (Σ,Π,Θ), extending the

capabilities of a system can mean either adding sensors to, extending the interpreters

or the situation recognizers. Note that based on the model of these components as

relations, extending the system could be adding sensors toΣ, with the need to extend

the relationΠ to interpret the larger range of sensor readings, and extendingΘ to now

consider the newly available context information.

Consider the operators defined on two systemsR = (Σ,Π,Θ) andR′ = (Σ′,Π′,Θ′).

Union. Then, the union can be given by the rule(r1):

R ` (W,S) or R′ ` (W,S)
(R⊕R′) ` (W,S)

(r1)

We discuss how union without short-circuit evaluation can be defined later in Section

3.2.3.

Intersection. Intersection is defined by the rule(r2):

R ` (W,S) and R′ ` (W,S)
(R⊗R′) ` (W,S)

(r2)

14

Tight-union. To model deeper “cooperation” among systems, we define an opera-

tor, which we calltight-union, denoted by+, recursively, which combines the use of

sensors, interpreters and situation recognizers from two systems in a tightly coupled

way:

WhereΘ = (Θc,Θs), andΘ′ = (Θ′
c,Θ

′
s), either

(i) [({C1, . . . , Cm}, S) ∈ Θc or ({C1, . . . , Cm}, S) ∈ Θ′
c

for somem, where for eachCi, i ∈ {1, . . . ,m},

Π(σ(W)) = Ci, or Π′(σ(W)) = Ci, for someσ ∈ (Σ ∪ Σ′)],

or

(ii) [({S1, . . . , Sk}, S) ∈ Θs or ({S1, . . . , Sk}, S) ∈ Θ′
s for somek,

where for eachSi, i ∈ {1, . . . , k}, ((Σ,Π,Θ) + (Σ′,Π′,Θ′)) ` (W,Si)]
((Σ,Π,Θ) + (Σ′,Π′,Θ′)) ` (W,S)

(r3)

From the above rule, defined recursively, we observe that at each step (of the recur-

sion) to provide context information, sensors and interpreters from either system can

be employed, and to infer situations, situation-recognizers from either system can be

employed.

The rule(r3) specifies a deep cooperation of the two systems, but declaratively, we

can also define tight-union equivalently as follows:

(Σ,Π,Θ) + (Σ′,Π′,Θ′) = (Σ ∪ Σ′,Π ∪Π′, (Θc ∪Θ′
c,Θs ∪Θ′

s))

whereΘ = (Θc,Θs) andΘ′ = (Θ′
c,Θ

′
s). From this definition, we also note that

tight-union is commutative and associative.

We can see that tight-union is hence more powerful than union since it involves a

tighter coupling of use of components - for example, context from the interpreters can

be fed into the situation recognizers of either system, and situations recognized in one

system can be fed into the situation-recognizers of the other system, and not merely

one of them. Hence, it is clear that:

(R⊕R′) ≤bm (R + R′)

but tighter integration may be more difficult to implement and involves more commu-

nication between the systems. For example, we can haveR = R′ + R′′ + R′′′, where

R = (Σ,Π,Θ), R′ = (Σ, ∅, ∅), R′′ = (∅,Π, ∅), andR′′′ = (∅, ∅,Θ), i.e. we can

15

further effectively decouple a system into its components via tight-union. Similarly,

we can model a systemR which acquires context from several sources and then rea-

son with such information using the expression:R′ + R′′ + R′′′, R′ = (Σ′,Π′, ∅),
R′′ = (Σ′′,Π′′, ∅), andR′′′ = (∅, ∅,Θ), i.e. R′′′ reasons with the contexts acquired

via R′ andR′′.

Extended Expressions of Compositions. With these three operators, we can define

a set of composition expressions in EBNF:

Q ::= R | Q + Q

E ::= Q | E ⊕ E | E ⊗ E

whereR represents a system and is of the form(Σ,Π,Θ). Then,E ` (W,S) can be

computed by using this rule for tight-union generalizing from(r3):5

(
⋃n

i=1 Σi,
⋃n

i=1 Πi, (
⋃n

i=1 Θic,
⋃n

i=1 Θis)) ` (W,S)
Q ` (W,S)

(tu)

wheren > 1, Q = (Σ1,Π1, (Θ1c,Θ1s)) + . . . + (Σn,Πn, (Θnc,Θns)), and using

generalized forms of the above rules for union (withR replaced byE in the ruler1)

and intersection (also withR replaced byE in the ruler2), as follows:

E ` (W,S) or E′ ` (W,S)
(E ⊕ E′) ` (W,S)

(union)

and
E ` (W,S) and E′ ` (W,S)

(E ⊗ E′) ` (W,S)
(intersection)

5An equivalent form of this rule, for any positive integern, is simply:

WhereΘ1 = (Θ1c, Θ1s), . . ., Θn = (Θnc, Θns), either

(i) [({C1, . . . , Cm}, S) ∈ Θ1c or . . . or ({C1, . . . , Cm}, S) ∈ Θnc

for somem, where for eachCi, i ∈ {1, . . . , m},

Π1(σ(W)) = Ci or . . . or Πn(σ(W)) = Ci, for someσ ∈ (Σ1 ∪ . . . ∪ Σn)],

or

(ii) [({S1, . . . , Sk}, S) ∈ Θ1s or . . . or ({S1, . . . , Sk}, S) ∈ Θns for somek,

where for eachSi, i ∈ {1, . . . , k}, ((Σ1, Π1, Θ1) + . . . + (Σn, Πn, Θn)) ` (W, Si)]

((Σ1, Π1, Θ1) + . . . + (Σn, Πn, Θn)) ` (W, S)

16

Then, we can compute a proof tree for(R + R′)⊕ (R′′ ⊗R′′′) ` (W,S):

:

(R + R′) ` (W,S)
or

:

R′′ ` (W,S)
and

:

R′′′ ` (W,S)
(R′′ ⊗R′′′) ` (W,S)

(R + R′)⊕ (R′′ ⊗R′′′) ` (W,S)

We can define an equivalence relationship among systems, denoted by overload-

ing “=”, which means having equal recognition power, i.e.R = R′ if and only if

RR = RR′
. For expressions, thisoperational equivalencebetween two composition

expressionsE andE′ can be stated simply as follows:

E = E′ if and only if E ` (W,S) wheneverE′ ` (W,S), and vice versa.

Also, we have thatR = R′ + R′′, wheneverR = (Σ,Π,Θ), R′ = (Σ, ∅, ∅),
andR′′ = (∅,Π,Θ), i.e. we can effectively decouple a system from its sensors via

tight-union. We can envisage systems with specific sensing, interpretationor reason-

ing capabilities. For example, we can compose a systemR = (Σ,Π,Θ), with each

component non-empty andR′ = (∅, ∅,Θ), which does not have any sensors or inter-

pretations, but reasons with context and situations to infer situations. So, the system

R + R′ has greater reasoning capabilities thanR alone. On the other extreme, we may

have thatR′ = (Σ, ∅, ∅), i.e., R′ is only a collection of sensors so thatR + R′ has

more sensors thanR, but maintaining the same reasoning capabilities. Representative

of such sensors (or sensor-only systems) would be those available and described using

SensorML,6 and these made public can be discovered and queried by any system.

3.2.3 Extending the Repertoire of Operators

We explore two further operators: we demonstrate how failure to recognize a situation

can also be used in defining an operator, and a variant of union where short-circuit

evaluation is forcibly avoided (at the same time showing how derived operators can be

defined in terms of existing operators).

Overriding-union and sure-union. GivenE, W andS, if the relationE ` (W,S)
does not hold, we denote this byE 0 (W,S).

We define a binary operator to represent a system which recognizes situations using

one of its operands, and only passes on situations it can’t recognize to another, which

6See http://www.sensorsmag.com/articles/0403/30/main.shtml and http://www.opengeospatial.org/standards/sensorml

17

we term,overrding-union, denoted byC:

R ` (W,S) or ((R 0 (W,S)) and (R′ ` (W,S)))
(R C R′) ` (W,S)

This means that even ifR′ can recognize the situation,R is preferred. Note that

overriding-union is equivalent to union in terms of the situations that can be recog-

nized, i.e. they have the same recognition power:RRCR′
= RR⊕R′

. Note that we can

generalize this rule to expressions by replacingR with E:

E ` (W,S) or ((E 0 (W,S)) and (E′ ` (W,S)))
(E C E′) ` (W,S)

(ou)

Note that even thoughor in the premise does not explicitly impose an order of eval-

uation, in evaluating such an expression, one should start withR ` (W,S) and if that

fails, only then do we need to consider trying to determineR′ ` (W,S). Assuming

this order of evaluation, we can use overriding union to “direct” evaluation to increase

depth monotonicity due to the above rule. For example, evaluating a composition such

as

(R⊗R′) C (R⊕R′) ` (W,S)

would mean we first try to recognize the situations recognized by the intersection of the

systemsR ⊗ R′, and only if this fails, do we then consider eachR andR′ separately,

i.e.

((R⊗R′) C (R⊕R′)) =bm R⊕R′

but

((R⊗R′) C (R⊕R′)) ≥dm R⊕R′

from the definition of intersection. Hence, while with union (and short-circuit eval-

uation), we stop as soon as the situation is recognized by either one system, with

(R ⊗ R′) C (R ⊕ R′), we continue to attempt to recognize the situation in the other

system even when it has been recognized in one (since we aim first for success with

R⊗R′) in order to attain a (possibly) higher certainty measure (e.g., as with the conser-

vative stance as mentioned in Section 3.1). And this is also different from onlyR⊗R′,

since if we fail to recognize the situation in both systems, we can still succeed with

either, individually.

We name such a compositionsure-unionand use5 to represent this, i.e.R5 R′

18

is (R⊗R′) C (R⊕R′), or more generally:

E 5 E′ = (E ⊗ E′) C (E ⊕ E′)

and state that

(E 5 E′) ≥dm (E ⊕ E′)

and

(E 5 E′) =bm (E ⊕ E′)

Sure-union effectively formalizes the union without short-circuit evaluation discussed

in Section 3.1.

More Expressions of Compositions. Adding these new operators yields an extended

language describing composite systems:

Q ::= R | Q + Q

E ::= Q | E ⊕ E | E ⊗ E | E C E | E 5 E

We use sure-union (5) as an example of a derived operator, being defined in terms of

the other operators. The list is not exhaustive, further useful operators can be defined

and similarly named, as we discuss further in Section 3.3. An operator combining two

or more systems captures in a succint form how these system effectively “cooperate”

in recognizing a situation.

Given an environment into which is embedded several such context-aware systems,

one can evaluate if a situation can be recognized by a composition of these systems,

perhaps even by different compositions of the same systems.

3.2.4 Uncertainty

At this point, we note that our computations of` relationships can be augmented to

return (un)certainty measures (in the subscript) though in general. For union, it depends

on which operand succeeds:

E `u (W,S)
(E ⊕ E′) `u (W,S)

or
E′ `u′ (W,S)

(E ⊕ E′) `u′ (W,S)

19

Note, unlike sure-union, where situations recognized by bothR andR′ have certainty

computed from the maximum of that fromR andR′, in this operational definition of

union, we nondeterministically take one of the measures from a successful evaluation

(if any).

For intersection, we have

E `u (W,S) and E′ `u′ (W,S)
(E ⊗ E′) `v (W,S)

wherev = max(u, u′), by definition (recall the definition of intersection from Section

3.1).

For the single system case,R `u (W,S), we assume that this is built into the

system andu is a property ofR given W andS. We model this abstractly using a

blackbox oracle functionO which takes a system (i.e., a triple) and a situation and

returns a certainty measure if the system recognizes the situation (i.e.,O(R,S) = u),

and is undefined, otherwise.

Then, for tight-union, the certainty measure is also given by the oracle function,

that is,(R1 + . . . + Rn) `v (W,S) is such that:

v = O(R1 + . . . + Rn, S) = O(R,S)

whereR = R1 + . . . + Rn.

For overriding-union, similar to union, the certainty measure is nondeterministi-

cally chosen from a successful evaluation:

E `u (W,S) or ((E 0 (W,S)) and (E′ `u′ (W,S)))
(E C E′) `v (W,S)

(ou)

wherev is eitheru or u′.

For sure-union, being a derived operator, the certainty measure is computed fol-

lowing the definitions of union, intersection and overriding-union.

3.2.5 Operational Algebraic Properties

We summarize the operational algebraic properties of the operators as follows; these

properties are operational in that they hold with respect to situation recognition. For

example, an operator� is said to beoperationally commutativewhenever:

R�R′ ` (W,S) iff R′ �R ` (W,S)

20

and similarly,operationally associativewhenever:

(R� (R′ �R′′)) ` (W,S) iff ((R�R′)�R′′) ` (W,S)

Following the above operational semantics or rules of evaluation, union, intersec-

tion, and tight-union are operationally commutative and operationally associative, but

overriding-union and sure-union are not.

3.3 Completeness and Expressiveness

A key question that arises is, given a well-delineated setC of composite systems,

whether there would be a set of simple systems together with a complete set of oper-

ators that could exhaustively model (or generate) this setC. The set of operators we

have presented so far have been guided by intuitions from set theory (e.g., union and

intersection) and Brogi’s work on compositional operators for logic programming [6]:

union and intersection are inspired directly by set theory, tight-union is a variant of

union arising from a whitebox modelling of systems, overriding-union is based on

Brogi’s work and inspired by inheritance from object-oriented programming, and sure-

union exemplifies a derived operator for controlling evaluation using overriding-union.

One could continue to define further variations, either new primitive operators or de-

rived operators. In theory, there is no limit to the range of operators one could define

(and in this sense, enabling extensibility). The larger the set of operators, the greater the

expressive power of the language, and the range of composites, but the more difficult it

is for programmers or designers to comprehend the full range of possible composites.

Figure 1 summarizes the set of operators and rules we have defined in this paper.

However, we can do the reverse more conveniently, which is, given a set of simple

systems and a set of operators, we can delineate the (possibly infinite) set of composite

systems definable using these operators, by providing an EBNF definition of the corre-

sponding set of expressions. For example, given a set of systems{R1, R2, R3} and a

set of operators{⊕,⊗}, we can define the following setF of expressions:

F ::= R1 | R2 | R3 | F ⊕ F | F ⊗ F

that corresponds to a well-defined set of composite systems which includesR. Hence,

classes of systems can be defined “bottom-up” this way.

21

Q ::= R |Q + Q

E ::= Q |E ⊕ E |E ⊗ E |E C E |E 5 E

[
Where Θ = (Θc, Θs), either

(i) [({C1, . . . , Cm}, S) ∈ Θc

for somem, where for eachCi, i ∈ {1, . . . , m},

Π(σj(W)) = Ci, for somej andσj ∈ Σ],

or

(ii) [({S1, . . . , Sk}, S) ∈ Θsfor somek,

where for eachSi, i ∈ {1, . . . , k}, (Σ, Π, Θ) ` (W, Si)]
]

(Σ, Π, Θ) ` (W, S)
(one − system)

(
⋃n

i=1 Σi,
⋃n

i=1 Πi, (
⋃n

i=1 Θic,
⋃n

i=1 Θis)) ` (W, S)

Q ` (W, S)
(tu)

wheren > 1 andQ = (Σ1, Π1, (Θ1c, Θ1s)) + . . . + (Σn, Πn, (Θnc, Θns))

E ` (W, S) or E′ ` (W, S)

(E ⊕ E′) ` (W, S)
(union)

E ` (W, S) and E′ ` (W, S)

(E ⊗ E′) ` (W, S)
(intersection)

E ` (W, S) or ((E 0 (W, S)) and (E′ ` (W, S)))

(E C E′) ` (W, S)
(ou)

E 5 E
′

= (E ⊗ E
′
) C (E ⊕ E

′
) (su)

Figure 1: Overview of operators and associated rules (without certainty measures).

22

4 Examples: Smart Home Scenarios

We consider incrementally constructing three context-aware systems, each stage ex-

tending it with additional context-aware behaviours. This section illustrates the ab-

stract formalism we provided in the previous section, providing a concrete example of

modelling context-aware systems using our notation and showing how a context-aware

system can be built incrementally in our approach.

So far, we have considered situation and context recognition separately from ac-

tions. On recognizing a situation or even a context, a system might perform an action.

Given a systemR = (Σ,Π,Θ) and its recognition powerRR, suppose thatR recog-

nizes the set of contextsC, then we can define an action moduleM which maps (sets

of) recognized situations and contexts to an action belonging to some set of actionsA,

i.e. M : ℘(C)×℘(RR) → A. So, acontext-aware system with actionsis denoted by a

pair(R,M). If different actions for the same system (and o, the same set of recognized

contexts or situations) is required, we can represent this as(R,M ′) whereM 6= M ′.

Consider a smart home with sensors and context-aware reasoning. We assume that

there is a central system which coordinates the sensing, reasoning and actions for this

home. Also, to start with, suppose the home has two types of sensors and context-aware

behaviours:

• living room lights turn on automatically when the user enters the living room,

and it is dark enough, and

• the bathroom light turns on and the day’s news is downloaded whenever the user

gets out of bed early in the morning (after 6am).

The above two behaviours can be represented by two separate context-aware systems

(R1,M1) and(R2,M2), respectively, each augmented with a module which maps sit-

uations or context to actions.

In more detail, we haveR1 = (Σ1,Π1,Θ1), where

Σ1 = {light sensor, user positioning system}

Π1 would contain mappings of sensor readings to appropriate contexts of being dark

23

enough or whether the user is or is not in a room:

(reading(light sensor, t) ≤ L, dark enough at t) ∈ Π1

(reading(user positioning system, t) = living room, user in living room at t) ∈ Π1

(reading(user positioning system, t) 6= living room,

user not in living room at t) ∈ Π1

L is a threshold below which the light sensor reading indicates dark enough. and
Θ1 = (Θ1c, ∅), where given(t2− t1) < ε, for ε less than several seconds, we have that
the user enters the living room at timet2 when s/he is not in the living room at timet1
and is in the living room shortly after at timet2:

({user not in living room at t1, user in living room at t2)},

user enters the living room at t2) ∈ Θ1c

Also, we turn the living room lights on when it is dark enough and when the user
is detected to have entered the living room (assumingt1 andt2 close enough):

(({dark enough at t1}, {user enters the living room at t2}),

turn on living room lights) ∈ M1

We also haveR2 = (Σ2,Π2,Θ2), where

Σ1 = {bed sensor, clock}

Π1 would contain mappings of sensor readings to appropriate contexts of the user get-
ting up from the bed:

(reading(bed sensor) ≤ W, user off bed) ∈ Π2

(reading(clock) > 6 : 00am, early morning) ∈ Π2

W is a threshold below which the bed sensor reading indicates that the user is now off
the bed, andΘ2 = (Θ2c, ∅):

({user off bed, early morning},

user up early morning) ∈ Θ2c

Also, we turn the bathroom room light and download news when the user gets up in

24

the early morning:

((∅, {user up early morning}),

turn on bathroom room light & download news) ∈ M2

Note that this is a composite action.

We can extend the smart home to include safety features, with additional sensors

and capabilities:

• the gas stove cannot be switched on without an adult present in the kitchen and

the kitchen window opened

• smoke and appliance on, turn on the fan ventilators, and alert user

• broken glass, intruder detected, and raise an alarm

We illustrate a system(R3,M3) for only the first of the above features.

We haveR3 = (Σ3,Π3,Θ3), where

Σ3 = {window sensor, user positioning system}

Π3 would contain mappings of sensor readings to appropriate contexts of the window
being closed or a user (an adult) being in the kitchen. For simplicity, here, we assume
that the user being tracked is an adult user:

(reading(window sensor, t) = open, kitchen window open at t) ∈ Π3

(reading(user positioning system, t) = kitchen, user in kitchen at t) ∈ Π3

We assume simplyΘ3 = (∅, ∅), and map the contexts to the action (wheret1 andt2
are close enough):

(({kitchen window open at t1, user in kitchen at t2}, ∅), enable gas stove) ∈ M3

Compositions. We have defined three context-aware systems with actions. A union

of the three can be written asR1 ⊕R2 ⊕R3. By definition of union, such a union rep-

resents a system that could recognize the combination of contexts and situations which

the constituents can recognize, i.e. the union can recognize the set of contexts such as:

dark enough, user living room, user not in living room, user off bed, early morning,

kitchen window open anduser in kitchen, and the set of situations:user enters the living room,

anduser up early morning.

25

We can then augment the system with an action moduleM ′ to act on the combina-
tion of these contexts and situations, denoted as(R1⊕R2⊕R3,M

′). For example, in
M ′, we have:

(({dark enough, kitchen window open, early morning},

{user enters the living room}),

display kitchen open window notice on tv)

which is an action to display a notice (about the kitchen window being open) on the

television in the living room, when (i) it is still dark, (ii) the kitchen window is open,

(iii) it is early in the morning, and (iv) the user enters the living room, The point of this

example is that the context and situation conditions required for the action comes from

all the three systems, rather than only a particular one.

Compositions to add reasoning. One could also form more “tightly-coupled” com-
binations using tight-union, e.g.,R1 + R2 + R3 + R4, whereR4 is a newly introduced
system of the form(∅,Π4,Θ4) which comprises an interpreter and a situation reasoner
but not sensors of its own.R4 will leverage on the sensors already inR1, R2 andR3

to acquire context and infer situations. For example, suppose that

(reading(bed sensor) ≥ W ′, user on bed) ∈ Π4

(reading(clock) > 11 : 00pm, late at night) ∈ Π4

and

({user on bed, kitchen window open, late at night},

home insecure) ∈ Θ4c

then, the compositionR1 + R2 + R3 + R4 can recognize a situation where the home

is insecure.

This process can continue with incremental additions of functionality, creating in-

creasingly complex composite systems. For example,R5 of the form(∅,Π5,Θ5) (for

non-emptyΠ5 andΘ5) may be added to form the five system compositionR1 + R2 +
R3 + R4 + R5, which has more recognition power than the previous composition, due

to the breadth-monotonic property of tight-union, i.e. for any integern, we have

R1 + . . . + Rn ≤bm R1 + . . . + Rn + Rn+1

and this property follows clearly from the definition of tight-union.

26

Compositions to add sensors. Also, suppose new sensors are now added, repre-

sented byR6 = (Σ6, ∅, ∅), and we want to determine if a situationS is occurring in

the current worldW , then we can pose a query of the form:

(R1 + R2 + R3 + R4 + R5 + R6) ` (W,S)

which will determine ifS is happening using the tight-union of the six systems.

5 Composing Context-Aware Systems from Different Ma-

chines

We note that our operators can be used to compose systems on different machines; our

model has been independent of the physical location of the component systems. An ap-

plication of our work is in integrating context-awareness capabilities on the cell phone

and the surrounding fixed infrastructure of sensors. Cell phones are changing from

mere communication devices to sensing devices.7 Future cellphones will be equipped

with on-board sensors delivering information to users and interested parties. Some of

these phones might be extensible with new sensors (as pluggable units). Our operators

can then be used to effectively assemble a system based on different sensors available.

One could think of some of the component systems as comprising only of sensors or

comprising additional knowledge that can take advantage of new sensors which have

been added (such asR5) in the example above, and these components could reside on

different hosts. For example, the following expression composes four systems, two

systems available locally on the mobile phone and two other systems residing on hosts

identified by the Web addressesURL1 andURL2:

(Local : R1) + (Local : R2) + (URL1 : R3) + (URL2 : R4)

We can implement the operators we have described the semantics of, by building

each system as a set of loosely coupled components, and providing a front end to

these systems, which realizes the semantics of the different operators. The future work

section discusses this further.
7For example, see http://www.urban-atmospheres.net/ParticipatoryUrbanism/index.html and

http://www.escience.cam.ac.uk/mobiledata/

27

6 Related Work

The recent years have seen much work in representing and reasoning with context and

situations, and in context-aware systems (including the specialized workshop series

on Context Modelling, Reasoning and Management (COMOREA)8 and Modeling and

Reasoning with Context (MRC)9).

A category of such work uses ontologies to help standardize the way context and

situations are described (e.g., [3, 2, 24, 22, 7, 23]). Situations have been used as

a key abstraction in context-aware systems such as in the work on situation hierar-

chies [25, 15]. Ontologies also provide a vocabulary of concepts to use, without the

developer having to start from scratch. The work here is complementary to the use of

such ontologies. We have assumed that two systems are comparable as the situations

they recognize come from the same ontology or can be mapped to the same ontolo-

gies since the same situation or contexts can be described in different ways (even using

different keywords).

There has also been work which uses simple first-order logic for reasoning about

context and situations, and for conveniently representing rules that map context to ac-

tions (e.g., [20, 15]). While the rule-based declarative paradigm helps in representing

knowledge about context and situations, in a way which facilitates reasoning, the work

here presents a componentized coarse-granularity view of systems. Both our blackbox

and whitebox models allow details to be encapsulated within each component system,

albeit with the blackbox model exposing less internal functionality.

Fuzzy logic have been employed (e.g., [1]) as well as other ad hoc formalisms to

deal with uncertainty (e.g., [18]). We have merely indicated how our operators manage

uncertainty measures, and will deal further with different types of uncertainty in future

work.

Middleware, frameworks and infrastructures for context-awareness have been de-

veloped in the past decade, including the Context Toolkit [21], the framework in [12],

and others as reviewed in [11]. Such frameworks aim to simplify the development of

context-aware applications by providing programming abstractions and reusable mod-

ules. Our work here aims to facilitate reuse and compositionality in a formal manner,

via the operators, as well as to encourage development of context-aware pervasive sys-

tems in an incremental manner (where the system can be systematically grown). This

paper aims to fill a gap as there has not been much work (to the author’s knowledge)

in attempting to specifically address the requirements on building context-aware per-

8See http://nexus.informatik.uni-stuttgart.de/COMOREA/2008/index.html
9See http://events.idi.ntnu.no/mrc2008/

28

vasive systems incrementally and in a formal compositional manner.

Another category of work relates to context-aware calculi (e.g., [5, 4]), providing

formal operational specifications of interacting context-aware systems in the spirit of

Milner’s process calculi and bigraphical models. Such calculi are useful for formalizing

context-aware behaviour but typically uses a process model of a context-aware system

and do not have elaborate representations of context and situations.

7 Conclusion and Future Work

We have demonstrated an approach to building context-aware pervasive systems in-

crementally and in a compositional manner, facilitating reuse in a formal way. While

there has been much work on software engineering composition of components and

in various algebraic composition formalisms (e.g., [6]), we think that this is a first pa-

per in attempting to provide a specialized formalism, tailored to an incremental and

compositional way of building sensor-based context-aware systems.

An implementation of our language of operators in this paper can be based on the

operational semantics given. An abstract architecture for a system which can be used

to realize the above composition operators is illustrated in Figure 2. The idea is to

have a front-end component which queries then component systems according to the

semantics of the composition operators. The architecture is abstract in that it does not

mandate any particular representation for contexts, situations, or sensor values, nor do

we mandate the use of any particular programming platform. We assume that this is

a distributed system with the front-end networked to the component systems. An in-

front

end

R1 R2
Rn

…

…
query

& answer

evaluates

expressions

Figure 2: Architectural sketch of a system for realizing composition operators.

terpreter for expressions in our langauge resides on the front-end. On evaluation of

29

expressions, the front-end queries the respective systems via an interface realized by

these systems. Each component system in composition should provide a three part in-

terface so that the (i) sensors, (ii) interpreter and (iii) situation reasoner of each system

can be exposed and be accessed by the front-end, especially to enable tight compo-

sitions. The interface can be specified loosely as a set of methods (or services) with

arguments, and can be be specified as Web services which the front-end can invoke. Ef-

fectively, a membership check in the rules such as({C1, . . . , Cm}, S) ∈ Θc translates

into a Web service query to the system(Σ,Π, (Θc,Θs)). Future work will address the

specific algorithms and architecture for building a distributed system that implements

these operators, including optimizations. The issue of scalability is also a concern

when possibly hundreds of systems are composed.

A situation is either occurring or not occurring. We have not explored unary oper-

ators analogous to negation. We think that failing to recognize a situation and recog-

nizing the non-occurrence of a situation are different matters, and systems might need

to be built which ascertains that a situation is not occurring. We intend to develop a

more comprehensive theory of systems which recognizes situations and those which

recognizes the non-occurrence of situations (but for now, indeed, the non-occurrence

of a situation can itself be treated as a situation to be recognized). Furthermore, other

operators can be explored that take into account temporal properties and uncertainty.

Acknowledgements. The author wishes to thank the reviewers for the detailed and

insightful comments which helped greatly to improve the paper.

References

[1] C. B. Anagnostopoulos, Y. Ntarladimas, and S. Hadjiefthymiades. Situational Computing:

An Innovative Architecture with Imprecise Reasoning.Journal of Systems and Software,

80(12):1993–2014, 2007.

[2] F. Ay. Context Modeling and Reasoning using Ontologies. 2007. Available at

http://www.aywa.de/cmaruo/cmaruo.pdf.

[3] N. Baumgartner and W. Retschitzegger. A Survey of Upper Ontologies for Situation Aware-

ness. InProceedings of Knowledge Sharing and Collaborative Engineering. ACTA Press,

2006.

[4] L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, and H. Niss. Bigraphical Models of

Context-Aware Systems. InProceedings of Foundations of Software Science and Compu-

tation Structure (FoSSaCS), pages 187–201. Springer Verlag, 2006.

30

[5] P. Braione and G.P. Picco. On Calculi for Context-Aware Coordination. InProceedings of

COORDINATION, pages 38–54, 2004.

[6] A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular Logic Programming.ACM

Transactions on Programming Languages and Systems, 16(4):1361–1398, 1994.

[7] H. Chen, T. Finin, and A. Joshi. An Ontology for Context-Aware Pervasive Computing

Environments.Knowledge Engineering Review, 18(3):197–207, 2004.

[8] P.D. Costa, G. Guizzardi, J.P.A. Almeida, L.F. Pires, and M. van Sinderen. Situa-

tions in Conceptual Modeling of Context. InEDOCW ’06: Proceedings of the 10th

IEEE on International Enterprise Distributed Object Computing Conference Workshops,

Washington, DC, USA, 2006. IEEE Computer Society. Available at http://www.loa-

cnr.it/Guizzardi/DockhornCosta-et-al-VORTE06final.pdf.

[9] K. Devlin. Situations as Mathematical Abstractions. In J. Barwise, J.M. Gawron,

G. Plotkin, and S. Tutiya, editors,Situation Theory and its Applications. CSLI, 1991.

[10] A.K. Dey. Understanding and Using Context.Personal and Ubiquitous Computing, 5(1):4–

7, 2001.

[11] C. Endres, A. Butz, and A. MacWilliams. A Survey of Software Infrastructures and Frame-

works for Ubiquitous Computing.Mobile Information Systems, 1(1):41–80, 2005.

[12] K. Henricksen and J. Indulska. Developing Context-Aware Pervasive Computing Appli-

cations: Models and Approach.Journal of Pervasive and Mobile Computing, 2(1):37–64,

2006.

[13] J. Hightower, B. Brumitt, and G. Borriello. The Location Stack: A Layered Model for

Location in Ubiquitous Computing. InWMCSA ’02: Proceedings of the Fourth IEEE

Workshop on Mobile Computing Systems and Applications, Washington, DC, USA, 2002.

IEEE Computer Society.

[14] H. Liu, J. Srivastava, and S.-Y. Hwang. PSRA: A Data Model for Managing Data in

Sensor Networks. InSUTC ’06: Proceedings of the IEEE International Conference on

Sensor Networks, Ubiquitous, and Trustworthy Computing -Vol 1 (SUTC’06), pages 540–

547, Washington, DC, USA, 2006. IEEE Computer Society.

[15] S.W. Loke. Representing and Reasoning with Situations for Context-Aware Perva-

sive Computing: a Logic Programming Perspective.Knowledge Engineering Review,

19(3):213–233, 2004.

[16] S.W. Loke.Context-Aware Pervasive Systems: Architectures for a New Breed of Applica-

tions. Auerbach Publications, 2006.

[17] S.W. Loke. On Representing Situations for Context-Aware Pervasive Computing: six ways

to tell if you are in a meeting. InPerCom Workshops, pages 35–39, 2006.

[18] A. Padovitz, S.W. Loke, and A. Zaslavsky. On Uncertainty in Context-Aware Computing:

Appealing to High-Level and Same-Level Context for Low-Level Context Verification. In

Proceedings of the International Workshop on Ubiquitous Computing, pages 62–72, 2004.

31

[19] G. Plotkin. A Structural Approach to Operational Semantics. Journal

of Logic and Algebraic Programming, 60-61:17–139, 2004. Available at

http://homepages.inf.ed.ac.uk/gdp/publications/sosjlap.pdf.

[20] A. Ranganathan and R.H. Campbell. An Infrastructure for Context-Awareness based on

First-Order Logic.Personal Ubiquitous Computing, 7(6):353–364, 2003.

[21] D. Salber, A.K. Dey, and G.D. Abowd. The Context Toolkit: aiding the Development of

Context-Enabled Applications. InCHI ’99: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 434–441, New York, NY, USA, 1999. ACM.

[22] X.H. Wang, D.Q. Zhang, T. Gu, and H.K. Pung. Ontology Based Context Modeling and

Reasoning using OWL. InPERCOMW ’04: Proceedings of the Second IEEE Annual Con-

ference on Pervasive Computing and Communications Workshops, pages 18–22, Washing-

ton, DC, USA, 2004. IEEE Computer Society.

[23] S.S. Yau and J. Liu. Hierarchical Situation Modeling and Reasoning for Pervasive Com-

puting. InSEUS-WCCIA ’06: Proceedings of the The Fourth IEEE Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems, and the Second International

Workshop on Collaborative Computing, Integration, and Assurance (SEUS-WCCIA’06),

pages 5–10, Washington, DC, USA, 2006. IEEE Computer Society.

[24] J. Ye, L. Coyle, S. Dobson, and P. Nixon. Ontology-Based Models in Pervasive Computing

Systems.Knowledge Engineering Review, 22(4):315–347, 2007.

[25] J. Ye, L. Coyle, S. Dobson, and P. Nixon. Using Situation Lattices to

Model and Reason about Context. InFourth International Workshop on Mod-

eling and Reasoning in Context (MRC 2007), pages 1–12, 2007. Available at

http://www.cs.ucd.ie/UserFiles/publications/1183397975555.pdf.

32

