
Device Ecology Workflows with Semantics:

Formalizing Automation Scripts for

Ubiquitous Computing

Gerry Butler, Seng Loke, and Sea Ling,∗†

Abstract

We envision collections of (smart) devices in a ubiquitous computing setting

working together for the user in the way as specified or programmed. We have

been exploring a high-level abstraction for programming interactions among

devices based on the workflow paradigm, akin to the automation scripts of

the late Michael Dertouzos.1 In doing so, we recognize the need for a precise

description of such an abstraction.

∗

†G. Butler and S. Ling are with Caulfield School of Information Technology, Monash

University. S. Loke is with Department of Computer Science and Computer Engineering,

La Trobe University.
1M. Dertouzos, The Unfinished Revolution: How to Make Technology Work for Us-

Instead of the Other Way Around, Collins, 2002.

1



We have developed a formal model for a device ecology: a collection of

communicating devices in a shared environment. Our model defines the com-

municating processes between a central controller, which we call a DecoFlow

engine, and the agents contained in the devices. The DecoFlow engine or-

chestrates the agents’ behaviour based on commands specified in a highly

concurrent language, eco. We demonstrate that an eco procedure ultimately

terminates by returning to its initial state. Our model is expressed in π-

calculus, as its message-passing semantics and its ability to express agent

mobility will be invaluable when we later extend the model.

The model provides semantics for eco procedures, and a foundation for

simulation and analysis (within an existing theory, i.e. π-calculus) of how a

collection of devices can work together as specified via eco.

Acknowledgements

We thank the Australian Research Council for financial support of this work

under grant DP0450092.

1 Introduction

We will be increasingly surrounded by a proliferation of devices (worn on

users and embedded into our everyday environments). There is a need and

opportunity to program how these devices could work together. Such devices

may exist in working relationships with one another in the sense of being

1



harnessed together towards a user-specified outcome and being situated in the

context of the user, forming a device ecology. A device ecology is a collection

of communicating devices in a common environment. The environment is

contained, in the sense that only authorized devices are able to communicate,

but its physical size may extend across a living room or across the world.

The devices’ raison d’être is to serve a user. We call the workflow asso-

ciated with the devices a Device Ecology Workflow (or DecoFlow, for short.)

A central controller, which we call a DecoFlow engine, allows the user to pro-

gram the collection of devices as if they are a single entity. The DecoFlow

engine serves to orchestrate the device collection: it issues pre-programmed

commands to devices at specified times and in the required order to achieve

the user’s goals. Devices may also communicate directly with each other and

with the user. The user specifies commands to the DecoFlow engine in an

English-like language. Our model supports any language that provides the

features described in Section 3. We say that any such language is a member

of the eco family of languages.

In this paper we develop equations in π-calculus for an ecology of devices

controlled by a set of DecoFlow engine instances. In the remainder of this pa-

per, the term instance means an instance of a DecoFlow engine. We describe

the ecology as if the devices are in a familiar home environment. However,

the environment could be an office, a factory, a hospital, a battlefield, or

anywhere.

The model we develop forms a foundation for Decoflows, making precise

what is often an informal and vague notion of “devices working together”. π-

2



calculus provides a convenient theoretical framework in which Decoflows can

be given semantics and studied (as expressions in the calculus). Our model

formalizes the analogy (or metaphor) of the workflow (traditionally meaning

business process) being applied to describe orchestrated devices working to-

gether. The model also provides a foundation for implementing Decoflows

based on existing workflow-oriented technologies such as BPEL4WS, as first

proposed in [10].

The rest of this paper is organized as follows. Section 2 briefly reviews

related work. Section 3 introduces the eco family of languages. Section 4

introduces a simple decoflow, which we use as a running example through-

out the paper. Section 5 outlines our formal notation, including the essential

features of π-calculus. Section 6 introduces the objects that form the founda-

tion of our model. Section 7 defines the core processes of our model and the

interactions between a DecoFlow engine and the agents. Section 8 lists the

transitions that occur as a DecoFlow evolves and proves that every sequence

of transitions must ultimately terminate. Section 9 concludes with our plans

for future work.

2 Related Work

There has been significant work in building the networking and integrative

infrastructure for such devices, within the home, the office, and other envi-

ronments and linking them to the global Internet. For example, UPnP [20],

SIDRAH [5] and Jini [13] provide infrastructure for devices to be inter-

3



connected, find each other, and utilize each other’s capabilities.

Embedded Web Servers [2] are able to expose the functionality of devices

as Web services. Approaches to modelling and programming such devices

for the home have been investigated, where devices have been modelled as

software components, collections of objects [1], and Web services [12].

Getting devices connected via Web services is the aim of the proposed

Device Profile for Web Services (DPWS)2 [7, 3] which can be viewed as the

next major version of UPnP (UPnP v2) with closer alignment to and taking

advantage of standardized Web Service protocols. The various prototypes of

DPWS led to embedded devices hosting Web services. In [7] is proposed the

Residential Device Controller device which manages a set of devices (three

devices mentioned are an alarm, a heater and a shutter), each such device

hosting Web services and implementing DPWS. In [3], applications of DPWS

enabled devices include cellular network equipment for telecommunications,

automotive in-car devices, home appliances, and cross-domain applications

(e.g., connecting home and in-car appliances). Hence, the idea of being able

to “talk to” and control devices by invoking their Web services is not new

and we can expect to see more advanced versions of these in time to come

and more of such devices. The gap that this paper fills is, given a collection

of such devices, each exposing Web services, how one can utilize collections

of these devices in a coordinated manner. The paper proposes eco scripts

with a π-calculus semantics for this purpose.

Recent work has developed frameworks for aggregating, composing and

2See http://specs.xmlsoap.org/ws/2005/05/devprof/devicesprofile.pdf

4



building connections among networked devices [16, 9, 4, 15, 8, 21, 19, 11].

However, there has been little work on specifying at a high level of abstrac-

tion (and representing this specification explicitly) how such devices would

work together at the user-task or application level, and how such work can be

managed. Our earlier work in [10] introduced device ecology workflows as a

metaphor for thinking about how collections of these devices (or devices in a

device ecology) can work together to accomplish a purpose. [17] investigates

mechanisms to permit a robot to recognize valid commands in spoken sen-

tences that may not be entirely grammatically correct. This forms a building

block for the input of device commands.

In [6], UPnP itself was formalized using an abstract state machine model

in AsmL. The aim of the formalization was to resolve ambiguities, incom-

pleteness, loose ends, or inconsistencies. Key entities used are agent, commu-

nicator, control point and device, and an application is modelled as combi-

nations of these key entities. UPnP communication protocols are formalized

in the paper. Our work formalizes device ecology workflows, rather than

low-level protocols, providing a semantics for the high-level eco family of

languages.

3 The eco family of languages

Construction of the formal model has been motivated by our work on mobile

processes. This has included the design of the DecoFlow engine to control a

collection of devices, and a family of languages, eco, to allow users to program

5



the engine. An eco language can have a grammar of any type: regular,

context-free, context-sensitive or phrase structured. It is considered that

ultimately a phrase structured language will offer the most natural means of

expressing commands. However, our work so far has been limited to context-

free languages.

An eco procedure consists of task statements and dependency statements

expressed in any language of the eco family. A task statement specifies a par-

ticular command to be sent to a particular agent. A dependency statement

specifies that a response from a certain task statement s1 is a prerequisite

for the execution of some other task statement s2. s1 is said to be an explicit

prerequisite for s2. An agent processes at most one command at a time.

When an instance attempts to execute a statement referencing a busy agent,

the statement is not executed; it remains eligible for execution later.

Eco task statements are executed concurrently subject to explicit pre-

requisites. An eco language is not an imperative programming language; it

does not have sequencing statements, and the lexical ordering of task state-

ments implies nothing about their execution order. An eco procedure can be

expressed as a directed acyclic graph, where each node is a task statement

and each edge represents an explicit prerequisite. A parser processes an eco

procedure to represent it as a DAG, which it passes to an instance of the

DecoFlow engine.

The eco language family and the parser lie outside the boundary of our

formal model. The DAG representing an eco procedure is a given input to

our model.

6



4 Example

We use this example to illustrate our model, comprising a series of commands

on devices:

make coffee; turn lights dim; wait for lights; show news on tv;

wait for tv; turn lights bright; wait for tv; make coffee.

This example is expressed in a particular member of the eco family of

languages which, for the purposes of this example, we call ecoA. Figure 1

shows the task statements in this procedure and their dependencies. In ecoA,

the wait for X dependency statement specifies that the most recent lexically

preceding task statement referencing agent X is an explicit prerequisite for

the task statement that lexically follows wait for X. Although ecoA is not

sufficiently expressive to specify a dependency between every pair of task

statements in an arbitrary procedure, it is adequate for our example.

In this example, the term coffee refers to the brewing agent in the coffee

machine. The coffee machine can make only a single style of coffee; if it

could make multiple styles of coffee, then the coffee style would need to be

an argument, for example make turkish coffee.

There is a tradeoff of expressiveness and simplicity in designing eco. The

language should not be too complex, as users will not be able to utilize

it, and the language should not be too simple, as users might be too re-

stricted in what they can do with the devices. We think that eco is simple

enough for users to write expressions involving up to four commands, but

7



more technically inclined users will be able to program more complex ex-

pressions. Technicians can program a library of complex expressions for a

given home, each such expression labelled with a simple command-phrase

for use by non-technical end-users. Other user interface designs can be em-

ployed; for example, speech recognized commands can be employed on the

user interface end with such speech mapped to eco commands.

Moreover, we envision that different types of environments (e.g., factory,

home, network equipment, car) might each utilize a specialized set of com-

mands or a specialized language, a member of eco, tailored to the particular

environment with suitable commands for the devices typically found in such

an environment or tasks typically carried out in the environment. How-

ever, similar commands in different environments need to be resolved into

its constituent Web service calls to the particular devices found in that en-

vironment. For example, a command such as turn on the lights can be

issued in different rooms, but will result in a different set of lights being

turned on each time the command is issued in a different room; this is the

application of the linguistic notion of the efficiency of language where similar

commands can be effectively reused between different environments, and cer-

tainly more so, between different environments of the same type (e.g., home

environments), than between environments of different types (e.g., reuse of

command-phrases between a home environment and a factory environment

might be expected to be less). We also note that there is opportunity to

develop dialects of eco not just for a type of environment but also for a class

of devices - for example, there could be a dialect of eco for typical commands

8



on a television or for display devices. We do not discuss development of eco

dialects extensively in this paper but note the generality and applicability of

our proposed semantics for such purposes.

5 Formalism

π-calculus is the calculus of communicating, concurrent, mobile processes

([14] and [18]). In this paper we use only a subset of π-calculus. We have

chosen π-calculus because of its message-passing semantics, and because its

ability to express agent mobility will be invaluable when we later extend our

model. We use the following notations of π-calculus and adapt them to meet

our needs. In the following, P , Q and R are processes, a is a communication

channel and n is command or control.

P
def
= ān · Q (1)

describes an action in which P sends n via a and evolves to Q.

P
def
= (x)a · Q (2)

describes an action in which P receives a name via a, evolves to Q, and

substitutes the received name for all occurrences of x in Q.

P
def
= Q + R (3)

describes an action in which either Q or R occurs and the other is voided.

P
def
= τ · Q (4)

9



describes an action in which P silently evolves to Q.

P
def
= [x = y]τ · Q (5)

describes an action in which P silently evolves to Q if x = y and does nothing

otherwise.

P
def
= Q

∣

∣

∣
R (6)

describes an action in which Q and R execute concurrently and communicate

via shared names. Σ notation is a shorthand for a series of terms separated

by +, and Π is a shorthand for a series of terms separated by |.

Transitions are represented as follows.

P
an
−→ Q (7)

describes a transition from P to Q by receiving n on a.

P
ān
−→ Q (8)

describes a transition from P to Q by sending n on a.

P
τ

−→ Q (9)

describes a silent transition from P to Q.

We also use the following notation. If X is a set, then x : X defines the

symbol x as a variable ranging over members of X; X̃ denotes the comple-

ment of X with respect to some superset of X, where the superset is usually

the set of all statements associated with a given eco procedure; card(X)

denotes the cardinality of X.

10



When a symbol denoting an atomic entity has more than one character,

the symbol is underlined; for example: the control start and the response

ok.

6 Foundations

6.1 Instances, agents and processes

In the real world there may be multiple instances. However, our model is

constructed in terms of a single instance, denoted by D. An instance has

a channel, denoted by b, through which it can receive controls and send

responses. Controls and responses are defined in Section 6.2.

An instance is initially free; it is busy while processing a procedure.

and, when it finishes, it sends a response and becomes free. We distinguish

between an instance and the process it contains. In π-calculus a process

becomes a different process when it changes state. Hence, in our model an

instance is associated with a sequence of processes: the instance’s initial

process evolves as its state changes.

Each device may contain multiple agents and each agent can perform one

operation at a time. Agents are free until they receive a command; they

are busy while processing the command and become free after sending a

response. If it is necessary for a physical device to perform multiple opera-

tions concurrently, then our model permits it to contain multiple concurrent

agents; the agents may be performing different tasks, or several agents may

11



be performing the same task. For example, the TV may have one viewing

agent (assuming it can show either the news or the sport, but not both at the

same time), and one volume control agent. Both the viewing agent and the

volume control agent may operate concurrently. The coffee maker may have

two brewing agents and one grinding agent, assuming it can brew two coffees

and grind the beans for another concurrently. Our model views a collection

of agent interfaces, with no regard to how the agents are grouped to form

physical devices. The agents forming a physical device may have internal

connections and user interactions unknown to the instances. For example,

a brewing agent may internally request the grinding agent to provide coffee,

and the user may request the brewing agent to pour previously brewed cof-

fee. We distinguish between an agent and the process it contains. Like an

instance, an agent contains a sequence of processes that evolve as the agent

changes state.

A process X is pending on a process Y when it has sent a command to Y

and it has not yet received a response; X may continue processing commands.

The agents forming each physical device are assumed to know how to

deal with nonsense commands. For example, assuming the drapes have only

one agent, that can accept either an open or close command, an instance

guarantees that it will not issue a close command while a previous open or

close command is in progress. However, if the drapes receive a close com-

mand when they are already closed, then we assume that the close command

knows whether to respond fail, or ignore the command and respond ok.

Each agent has a channel through which it accepts one command or

12



control at a time and sends responses. Every command eventually ends

by responding either ok or fail through its channel.

In the following, index set means a set of consecutive integers beginning

at 1. Let P be a finite set of agents. Let I be an index set for P . We denote

members of P by Pi, i ∈ I. Agent Pi contains an initial process which we

also denote by Pi. The context determines whether we are referring to agent

Pi or process Pi. If there is any doubt we explicitly refer to the agent or its

initial process, as in the previous sentence. Process Pi represents the initial

state of agent Pi, in which it is free. Process Pi evolves through a sequence

of subsequent processes, which we denote by parenthesized subscripts of the

form Pi(W,R,c)
. Section 7.2 defines the agent states.

In our example, P = {coffee, lights, tv}. In more detail, I = {1, 2, 3},

and P = {P1, P2, P3} where P1 = coffee, P2 = lights, P3 = tv.

We define a command as an operation-argument pair. Let O be a finite

set of operation names. An operation name need be unique only within each

agent. Let G be a finite set of argument values. G includes the value nullArg.

Definition 1 (Command) A command is a member of the set

{(o : O, g : G)|g is an argument of o}.

We denote the set of commands by C. Let J be an index set for C. We

denote members of C by Cj , j ∈ J . Although arguments play little part in

our model, they are included because they occur in the eco language family.

In our example, the set of operation names O is {make, turn, show}, the

set of argument values G is {nullArg, dim, news, bright} and the set of com-

13



mands C is {(make, nullArg), (turn, dim), (show, news), (turn, bright)}. J ,

the index set, is {1, 2, 3, 4}. C can be written C = {C1, C2, C3, C4}, where

C1 is (make, nullArg), C2 is (turn, dim), C3 is (show, news) and C4 is

(turn, bright).

We define a task as a particular command sent to a particular agent.

Definition 2 (Task) A task is a member of the set {(p : P, c : C)|c is a valid

command for p}.

We denote the set of tasks by T . We denote the member (Pi, Cj) ∈ T by Tij .

In our example, T = {(coffee, (make, nullArg)), (lights, (turn, dim)),

(tv, (show, news)), (lights, (turn, bright))}, or T = {T11, T22, T33, T24} where

T11 = (coffee, (make, nullArg)), T22 = (lights, (turn, dim)), T33 = (tv,

(show, news)), T24 = (lights, (turn, bright)).

Recall that an eco task statement specifies a particular command sent to

a particular agent (Section 3). A task statement can only specify a command

that is valid for the agent to which it is sent. Hence, each task statement is

associated with some task. Multiple task statements in an eco procedure may

be associated with the same task. For example, the task make coffee may

occur more than once; each occurrence is a distinct task statement. Each

task statement is associated with an ordinal number according to its order

in its procedure’s lexical sequence of task statements. For a given procedure,

let L be the set of ordinals. Since each procedure has a finite number of task

statements L is finite. A statement is the task-ordinal pair derived from a

given eco task statement.

14



Definition 3 (Statement) A statement is a member of {(t : T, l : L)|t′s

associated task statement has ordinal l}.

We denote the statement set by S. By definition, S is finite. We denote the

member (Tij, l) ∈ S by Sijl.

Note that the term task statement refers to a language construct in

any language of the eco family, while the terms task and statement, used

separately, refer to objects of our model. In our example procedure, the

task statement show news on tv corresponds to the statement ((tv, (show,

news)), 3), which references the task (tv, (show, news)).

In our example,

S = {((coffee, (make, nullArg)), 1),

((lights, (turn, dim)), 2),

((tv, (show, news)), 3),

((lights, (turn, bright)), 4),

((coffee, (make, nullArg)), 5)}.

Here, the set of ordinals L is { 1, 2, 3, 4, 5 }, and S can be written

S = {S111, S222, S333, S244, S115}, (10)

where S111 = ((coffee, (make, nullArg)), 1), S222 = ((lights, (turn, dim)), 2),

S333 = ((tv, (show, news)), 3), S244 = ((lights, (turn, bright)), 4), S115 =

((coffee, (make, nullArg)), 5).

We define a relation, prerequisite, on S (Section 3).

15



Figure 1: Example Statement Net

Definition 4 (Prerequisite) A prerequisite is a member of {(s1 : S, s2 : S)|

s1 is an explicit prerequisite for s2}.

We denote the prerequisite relation by ∆. By definition, ∆ is irreflexive. ∆+

denotes the transitive closure of ∆. Eco semantics constrain ∆ such that

there are no circular prerequisites.

Constraint 1 (Circular prerequisite) (s1 : S, s2 : S) ∈ ∆+ =⇒ (s2, s1)

/∈ ∆.

Figure 1 illustrates the prerequisite relation in our example; Here, ∆ =

{(S222, S333), (S333, S244), (S333, S115)}.

16



We define the postset of a statement as the set of statements for which it

is a prerequisite.

Definition 5 (Postset) The postset of a statement Sijl ∈ S is the set

{s : S|(Sijl, s) ∈ ∆}.

We denote the postset of Sijl by S•
ijl. Note that the postset operator •

operates on a statement Sijl and produces a set of statements.

We define the statement net of an eco procedure as the graph formed

from its statement set S and the prerequisite relation ∆.

Definition 6 (Statement net) The statement net of an eco procedure hav-

ing a statement set S and a prerequisite relation ∆ is the graph (S, ∆).

We denote a statement net by Ω = (S, ∆). Ω is an input to our model.

Theorem 1 Ω is a directed acyclic graph.

Proof: By definition, Ω is a directed graph. We need to show that Ω has

no cycles. Assume that Ω has a cycle and that s is a node in the cycle.

Then there is a node s′ in the cycle such that (s, s′) is an edge of Ω, that

is, (s, s′) ∈ ∆. Since s and s′ are in a cycle, there is a path from s′ to s.

From transitivity, (s′, s) ∈ ∆+, which contradicts the circular prerequisite

constraint (Constraint 1). Hence, Ω does not have a cycle. �

Ω is the directed acyclic graph mentioned in Section 3.

17



6.2 Controls, states and channels

Let control = {start, stop} be a set of controls, and response = {ok, fail}

be a set of responses. A control indicates that a statement net is to be

started or stopped, or a command is to be stopped. Responses report the

outcome of a statement net or a command. We distinguish between controls

and commands : controls are members of the set control; commands are

members of the set C. Controls, commands and responses may be sent on

the same channels. Responses flow in the opposite direction from controls

and commands.

We define three subsets of statements: the pending set, the responded

set, and the eligible set. A pending statement is currently being processed

by an agent. A responded statement has completed processing. An eligi-

ble statement is available for processing, that is, it is not pending, it has

not responded, and it is not in the postset of any statement that has not

responded. Note that S is not necessarily the union of these subsets since,

depending on the progress of the evolution, there may be statements that

have neither been processed nor are eligible to be processed.

Definition 7 (Pending set) The pending set of an instance is the set of

statements whose commands have been sent to their agents and whose agents

have not yet responded.

We denote the pending set by W . Then W ⊂ S.

Definition 8 (Responded set) The responded set of an instance is the

set of statements whose agents have responded.

18



We denote the responded set by R. Then R ⊂ S.

Definition 9 (Eligible set) If D is an instance, Ω = (S, ∆) is its associ-

ated statement net, W is its pending set, and R is its responded set, then its

eligible set is

E = S −
(

W ∪ R ∪
⋃

s : R̃

s•
)

. (11)

When instance D is created, it contains an initial process D. The con-

text determines whether we are referring to instance D or process D. If

there is any doubt we explicitly refer to instance D or process D. Process

D represents the initial state of instance D. Process D evolves through a

sequence of subsequent processes. D(W,R,c) denotes a process in the sequence,

as explained in the following paragraphs. A parenthesized subscript always

denotes a process, never an instance.

Instance D’s state may be free, in which case it may receive a start

control and begin to execute its statement net. If instance D is free, then it

contains the process D. If instance D is executing its statement net, then its

state is determined by its pending set W , its responded set R, and whether

it is stopping. Instance D then contains a process which we represent as

D(W,R,c), where c = 0 if the instance is not stopping, and 1 if it is. We call c

the stopping indicator.

Let ai, i ∈ I be a channel through which agent Pi can receive commands

and controls, and send the result of the last command it received. Hereafter,

the term channel means a channel through which an instance or an agent

receives commands and controls and returns responses. Agents may receive

19



commands and controls from an instance, another agent, or a user. For

example, an instance may send a command to a coffee brewing agent, the

brewing agent may request the grinding agent to provide coffee, and the user

may request the brewing agent to pour previously brewed coffee.

7 Definitions

7.1 Instance definitions

Instance D initially contains the process D, and in this state it can receive

a start control on channel b. The start control causes the process D to

evolve to D(∅,∅,0), in which state it can execute a statement net Ω = (S, ∆)

by sending commands to designated agents and receiving their responses,

evolving through a sequence of subsequent processes as it does so. We will

show later that it must ultimately return to the process D.

D
def
= b(x) · [x = start]τ · D(∅,∅,0) (12)

If D is executing its statement net, and it is not stopping, then it may

send a command from any eligible statement to the agent designated by the

statement; or receive a response from any agent associated with a statement

in the pending set; or receive a stop control on channel b. If it receives

stop on channel b, or it receives fail from any agent, it ceases processing its

statement net, and sends stop to all pending agents. When a statement net

has completed processing, that is, its state is (∅, S, c), the associated instance

sends a response on channel b and makes a transition to its initial state. We

20



express this by Equations 13 to 16. As a notational aside, note that we omit

the set constructors { and } that would normally enclose Sijl when it occurs

in subexpressions such as R∪Sijl and W −Sijl. Recall from Section 6.1 that

by notational definition Sijl = ((Pi, Cj), l).

D(W,R,0)
def
=

∑

Sijl : E

āiCj · D(W∪Sijl,R,0) +

∑

Sijl : W

ai(x) · [x = ok]τ · D(W−Sijl,R∪Sijl,0) +

∑

Sijl : W

ai(y) · [y = fail]τ · D(W−Sijl,R∪Sijl,1) +

b(z) · [z = stop]τ · D(W,R,1) (13)

D(W,R,1)
def
=

∑

Sijl : W

āistop · D(W−Sijl,R,1) +

∑

Sijl : W

ai(x) · [x = ok]τ · D(W−Sijl,R∪Sijl,1) +

∑

Sijl : W

ai(y) · [y = fail]τ · D(W−Sijl,R∪Sijl,1) (14)

D(∅,S,0)
def
= b̄ok · D (15)

D(∅,R,1)
def
= b̄fail · D (16)

An instance may attempt to execute a statement containing a command

referencing a busy agent. If so, no transition occurs, and the sets W , R and

E are unchanged. The statement remains in E and the instance attempts to

execute it later, unless it receives stop in the meantime. Our model does not

21



specify how an instance should attempt further execution. For example, an

instance may poll the agent until it becomes free, or it may register a desire

to be notified when the agent is free. This is an implementation issue.

Normally an instance executes every statement in S and evolves to D(∅,S,0),

and thence to D. However, if an instance receives stop or fail, then it evolves,

ultimately, to D without evolving through D(∅,S,0), and without necessarily

evolving through D(∅,S,1). That is, an instance receiving stop or fail, al-

though it always returns to D, generally does not execute every statement

in its statement net. This is expressed by Equation 16, which shows that

D(∅,R,1) evolves to D, although the responded set is not equal to S. Later,

we prove a termination theorem (Theorem 2), which states that an instance

that evolves from its initial process D to D(∅,∅,0), by receiving a start control,

continues to evolve to the process D.

When one or more actions may occur, π-calculus does not require that

any one of them must occur. However, our model requires that whenever

D(W,R,c) may evolve to one or more target processes, then it must evolve

to one of those processes. This ensures that an instance must ultimately

complete the execution of its statement net, or receive stop or fail, then send

a response on channel b. This does not apply to the process D; that is, there

is no requirement for a start control to be sent to D. This is expressed by

the following constraint.

Constraint 2 (Instances must evolve) If any action described by Equa-

tions 13, 14, 15 or 16 may occur, then one of those actions must occur.

22



7.2 Agent definitions

When agent Pi receives a command (on channel ai), it executes the command

and, in doing so, it may request services from other agents by executing an

internal statement net Ω; if it does not require services from other agents, its

statement net is Ω = (∅, ∅). Its statement net must not contain a command

addressed to itself. That is

Constraint 3 (Agent cannot send command to itself) If Ω = (S, ∆)

is the statement net of agent Pi, then for all j ∈ J and l ∈ L, there is no Sijl

in S.

When agent Pi has completed its statement net and its own work it sends ok

or fail on channel ai. In executing these actions, agent Pi evolves through a

sequence of states. The following paragraphs define its evolution.

Agent Pi’s state may be free, in which case it may receive a command on

channel ai and begin to execute it. To execute the command, agent Pi may

obtain the services of other agents by executing an internal statement net.

If agent Pi is free, then it contains the process Pi. If agent Pi is executing a

command, then its state is determined by its pending set W , its responded

set R, and whether it is stopping. Agent Pi then contains a process which

we represent as Pi(W,R,c)
, where c = 0 if the agent is not stopping, and 1 if it

is. If agent Pi is executing a command that does not require services of other

agents, then it contains the process P(∅,∅,0). Agent Pi receiving a command

on channel ai is represented as follows:

Pi
def
= ai(x) · Pi(∅,∅,0)

(17)

23



where i ∈ I, x /∈ {start, stop}.

If agent Pi receives a command, it silently executes the command and an

internal statement net (which may be (∅, ∅)). When it completes both, it

responds ok or fail on channel ai and becomes free.

The following agent definitions correspond to the instance definitions in

Section 7.1.

Pi(W,R,0)

def
=

∑

Sijl : E

āiCj · Pi(W∪Sijl,R,0)
+

∑

Sijl : W

ai(x) · [x = ok]τ · Pi(W−Sijl,R∪Sijl,0)
+

∑

Sijl : W

ai(y) · [y = fail]τ · Pi(W−Sijl,R∪Sijl,1)
+

ai(z) · [z = stop]τ · Pi(W,R,1)
(18)

Pi(W,R,1)

def
=

∑

Sijl : W

āistop · Pi(W−Sijl,R,1)
+

∑

Sijl : W

ai(x) · [x = ok]τ · Pi(W−Sijl,R∪Sijl,1)
+

∑

Sijl : W

ai(y) · [y = fail]τ · Pi(W−Sijl,R∪Sijl,1)
(19)

Pi(∅,S,0)

def
= āiok · Pi (20)

Pi(∅,R,1)

def
= āifail · Pi (21)

Note that if Pi received stop or fail, then it may not have evolved to the

process Pi(∅,S,0)
.

24



Our model requires that whenever Pi(W,R,c)
may evolve to one or more

target processes, then it must evolve to one of those processes. This ensures

that each agent must ultimately complete its internal work (which must end

with either success or failure), or it must receive stop or fail, then it must

respond ok or fail on channel ai. This does not apply to the process Pi; that

is, there is no requirement for a command to be sent to Pi. This is expressed

by the following constraint.

Constraint 4 (Agents must evolve) If any action described by Equations

18, 19, 20 or 21 may occur, then one of those actions must occur.

7.3 System definitions

We define the system consisting of an instance and agents as follows:

System
def
= D

∣

∣

∣

∏

i : I

Pi (22)

8 Transitions

8.1 Instance transitions

System evolves as transitions occur. The following transitions describe the

evolution of an instance. When process D receives start, on channel b it

evolves to D(∅,∅,0), whence its instance’s statement net can be executed.

Transitions 1 to 10 include every transition that can occur in the subsys-

tem described by Equations 12 to 16. This can be verified by enumerating

25



the actions described by Equations 12 to 16 and ensuring that there is a

transition corresponding to each action.

Transition 1 D
bstart
−→ D(∅,∅,0)

Process D(W,R,0) may perform any of the transitions expressed by Equa-

tion 13, evolving as shown by the following transitions.

Transition 2 Given Sijl ∈ E, D(W,R,0)
āiCj

−→ D(W∪Sijl,R,0)

Transition 3

Given Sijl ∈ W , D(W,R,0)
aiok
−→ τ · D(W−Sijl,R∪Sijl,0)

τ
−→ D(W−Sijl,R∪Sijl,0)

Transition 4

Given Sijl ∈ W , D(W,R,0)

aifail
−→ τ · D(W−Sijl,R∪Sijl,1)

τ
−→ D(W−Sijl,R∪Sijl,1)

Transition 5 D(W,R,0)

bstop
−→ τ · D(W,R,1)

τ
−→ D(W,R,1)

Process D(W,R,1) may perform any of the transitions expressed by Equa-

tion 14, evolving as shown by the following transitions.

Transition 6 Given Sijl ∈ W , D(W,R,1)

āistop
−→ D(W−Sijl,R,1)

Transition 7

Given Sijl ∈ W , D(W,R,1)
aiok
−→ τ · D(W−Sijl,R∪Sijl,1)

τ
−→ D(W−Sijl,R∪Sijl,1)

Transition 8

Given Sijl ∈ W , D(W,R,1)

aifail
−→ τ · D(W−Sijl,R∪Sijl,1)

τ
−→ D(W−Sijl,R∪Sijl,1)

26



Process D(∅,S,0) or process D(∅,R,1) may perform any of the transitions

expressed by Equation 15, or by Equation 16, evolving as shown by the

following transitions.

Transition 9 D(∅,S,0)
b̄ok
−→ D

Transition 10 D(∅,R,1)

b̄fail
−→ D

8.2 Process set

Definition 10 (Process set) The process set of a statement net Ω = (S, ∆)

is {D(w,r,c)|w ⊆ S ∧ r ⊆ S ∧ (c = 0 ∨ c = 1)}.

We denote the process set by Q. Note that D /∈ Q. Q is the set of processes

that can be constructed by allowing w and r to range over all subsets of

S, and the stopping indicator c to take the values 0 and 1. Q may contain

processes that cannot occur; for example, from Lemma 1, which we will later

prove, it can be deduced that the process D(S,S,0) cannot occur.

Definition 11 (Transition relation) The transition relation Ψ is a rela-

tion on the process set Q such that (qi, qj) ∈ Ψ if and only if there is a

transition from qi to qj.

We call the graph (Q, Ψ) the transition graph of Ω.

Definition 12 (Reachable process set) The reachable process set Q′ is

the subset of processes of Q reachable by a path from D(∅,∅,0).

27



8.3 Agent transitions

The following transitions describe the evolution of agents. Transitions 11

to 20 include every transition that can occur in the subsystem described by

Equations 17 to 21. This can be verified by enumerating the actions described

by Equations 17 to 21 and ensuring that there is a transition corresponding

to each action.

When process Pi receives any input (which can only be a command), on

channel ai it evolves to a process in which its agent’s statement net can be

executed, as follows

Transition 11 Pi
aix−→ Pi(∅,∅,0)

Process Pi(W,R,0)
may perform any of the transitions expressed by Equation

18, evolving as shown by the following transitions.

Transition 12 Given Sijl ∈ E, Pi(W,R,0)

āiCj

−→ Pi(W∪Sijl,R,0)

Transition 13

Given Sijl ∈ W , Pi(W,R,0)

aiok
−→ τ · Pi(W−Sijl,R∪Sijl,0)

τ
−→ Pi(W−Sijl,R∪Sijl,0)

Transition 14

Given Sijl ∈ W , Pi(W,R,0)

aifail
−→ τ · Pi(W−Sijl,R∪Sijl,1)

τ
−→ Pi(W−Sijl,R∪Sijl,1)

Transition 15 Pi(W,R,0)

bstop
−→ τ · Pi(W,R,1)

τ
−→ Pi(W,R,1)

Process Pi(W,R,1)
may perform any of the transitions expressed by Equation

19, evolving as shown by the following transitions.

28



Transition 16 Given Sijl ∈ W , Pi(W,R,1)

āistop
−→ Pi(W−Sijl,R,1)

Transition 17

Given Sijl ∈ W , Pi(W,R,1)

aiok
−→ τ · Pi(W−Sijl,R∪Sijl,1)

τ
−→ Pi(W−Sijl,R∪Sijl,0)

Transition 18

Given Sijl ∈ W , Pi(W,R,1)

aifail
−→ τ · Pi(W−Sijl,R∪Sijl,1)

τ
−→ Pi(W−Sijl,R∪Sijl,1)

Process Pi(∅,S,0)
or process Pi(∅,R,1)

may perform any of the transitions

expressed by Equation 20, or by Equation 21, evolving as shown by the

following transitions.

Transition 19 Pi(∅,S,0)

āiok
−→ Pi

Transition 20 Pi(∅,R,1)

āifail
−→ Pi

Table 1 shows a possible evolution of the system used in the running

example introduced in Section 4. Other evolutions are also possible. (The

silent transitions τ have been omitted.)

8.4 Statement net termination

Since every statement net is finite and by Constraints 2 and 4, either an

instance/agent receives stop, or every command ultimately ends in success

or failure, the process D(W,R,0) ultimately evolves to either D(∅,S,0) or D(∅,R,1),

both of which, by Equation 15 or 16, evolve to D. Similarly for agents,

the process Pi(W,R,0)
ultimately evolves to either Pi(∅,S,0)

or Pi(∅,R,1)
, which, by

29



Table 1: Example: a possible evolution

D
bstart
−→ D(∅,∅,0)

D(∅,∅,0)

ā1(make,nullArg)
−→ D({S111},∅,0)

P1

a1(make,nullArg)
−→ P1(∅,∅,0)

P1(∅,∅,0)

ā1ok
−→ P1

D({S111},∅,0)
a1ok
−→ D(∅,{S111},0)

D(∅,{S111},0)
ā2(turn,dim)

−→ D({S222},{S111},0)

P2
a2(turn,dim)

−→ P2(∅,∅,0)

P2(∅,∅,0)

ā2ok
−→ P2

D({S222},{S111},0)
a2ok
−→ D(∅,{S111,S222},0)

D(∅,{S111,S222},0)
ā3(show,news)

−→ D({S333},{S111,S222},0)

P3
a3(show,news)

−→ P3(∅,∅,0)

P3(∅,∅,0)

ā3ok
−→ P3

D({S333},{S111,S222},0)
a3ok
−→ D(∅,{S111,S222,S333},0)

D(∅,{S111,S222,S333},0)

ā2(turn,bright)
−→ D({S244},{S111,S222,S333},0)

P2

a2(turn,bright)
−→ P2(∅,∅,0)

D({S244},{S111,S222,S333},0)

ā1(make,nullArg)
−→ D({S244,S115},{S111,S222,S333},0)

P1

a1(make,nullArg)
−→ P1(∅,∅,0)

P2(∅,∅,0)

ā2ok
−→ P2

D({S244,S115},{S111,S222,S333},0)
a2ok
−→ D{(S115},{S111,S222,S333,S244},0)

P1(∅,∅,0)

ā1ok
−→ P1

D{(S115},{S111,S222,S333,S244},0)
a1ok
−→ D(∅,{S111,S222,S333,S244,S115},0)

D(∅,{S111,S222,S333,S244,S115},0)
b̄ok
−→ D

30



Equation 20 or 21, evolve to Pi. We formalize this with Theorem 2 at the

end of this Section. The theorem is stated in terms of an instance, but a

similar theorem can be proved for agents. Before stating the theorem, we

introduce the following lemmas, which will be useful in proving the theorem.

In the following, D is an instance; Ω = (S, ∆) is its associated statement net;

at some point in the evolution of Ω’s processes, W is its pending set, R is its

responded set, E is its eligible set, and c indicates whether it is stopping; Q′

is the reachable process set. To prove several of the lemmas, we inspect every

defined transition to verify whether or not it can occur under the conditions

that hold in the statement of the lemma.

We form the subsets of Q′ defined in Table 2. For example, Q5 is the set

of processes D(W,R,c) such that W = ∅, ∅ ⊂ R ⊂ S, c = 1 and D(W,R,c).

The pending set and the responded set are disjoint.

Lemma 1 W ∩ R = ∅

Proof: This follows from Definitions 7 and 8. �

Lemma 2 Q9 = ∅ and Q10 = ∅.

Proof: By Lemma 1, W and R are disjoint. Since R = S, there cannot

be a member of S in W . �

If there is at least one statement that has not responded, and no statement

is pending, then there is at least one eligible statement. This is expressed by

the following Lemma.

Lemma 3 (R ⊂ S and W = ∅) =⇒ E 6= ∅.

31



Table 2: A partition of Q′

Q1 W = ∅ R = ∅ c = 0 D(W,R,c) ∈ Q′

Q2 W = ∅ R = ∅ c = 1 D(W,R,c) ∈ Q′

Q3 W = ∅ R = S c = 0 D(W,R,c) ∈ Q′

Q4 W = ∅ R = S c = 1 D(W,R,c) ∈ Q′

Q5 W = ∅ ∅ ⊂ R ⊂ S c = 0 D(W,R,c) ∈ Q′

Q6 W = ∅ ∅ ⊂ R ⊂ S c = 1 D(W,R,c) ∈ Q′

Q7 W 6= ∅ R = ∅ c = 0 D(W,R,c) ∈ Q′

Q8 W 6= ∅ R = ∅ c = 1 D(W,R,c) ∈ Q′

Q9 W 6= ∅ R = S c = 0 D(W,R,c) ∈ Q′

Q10 W 6= ∅ R = S c = 1 D(W,R,c) ∈ Q′

Q11 W 6= ∅ ∅ ⊂ R ⊂ S c = 0 D(W,R,c) ∈ Q′

Q12 W 6= ∅ ∅ ⊂ R ⊂ S c = 1 D(W,R,c) ∈ Q′

Table 3: Simple cycles of Γ

A Q7, Q7 W+

B Q12, Q12 W−

C Q11, Q11 W+

D Q11, Q11 W−, R+

E Q8, Q8 W−

F Q11, Q5, Q11 R+

32



Proof: Assume E is empty. Then, from Definition 9, S = s•1∪s•2∪· · ·∪s•n

where R̃ = {s1, s2, . . . , sn}. Hence, each member of S occurs in at least one of

s•i , i = 1, 2, . . . , n. From Definition 5, s•i = {x : S|(si, x) ∈ ∆}, i = 1, 2, . . . , n.

Therefore, for each member y ∈ S there is a member y′ ∈ R̃ such that

(x′, x) ∈ ∆. There are two cases: (a) R 6= ∅ and (b) R = ∅.

Consider case (a). Choose an arbitrary member y ∈ R. Since R ⊂ S,

it follows that there is a member y′ ∈ R̃ such that (y′, y) ∈ ∆. Since y has

responded, its associated command has been sent to an agent, and therefore

no prerequisite path on which it lies contains a non-responded statement that

precedes y. However, (y′, y) is a component of a prerequisite path, and y′

precedes y, and y′ has not responded, since it is in R̃. It follows that, for

case (a), E is not empty.

Now, consider case (b), that is R = ∅. Choose an arbitrary member

y ∈ S. Then there is a member y′ ∈ R̃ such that (y′, y) ∈ ∆. Since R̃ = S,

y′ ∈ S. Hence, for all y ∈ S there is a y′ ∈ S such that (y′, y) ∈ ∆. Therefore

Ω is not acyclic. It follows that, for case (b), E is not empty. �

If the eligible set is not empty and the system is not stopping, then

transition 2 can occur and, if it does, then the cardinality of the pending set

increases, the responded set is unchanged, and the system is not stopping.

Lemma 4 If E 6= ∅ and c = 0, then transition 2 can occur and, if it does,

card(W ) increases, R is unchanged, and c = 0.

Proof: This follows from Transition 2. �

If the pending set is not empty, and the system is not stopping, then tran-

33



sition 3, or 4 can occur and, if either transition does, then the cardinality of

the pending set decreases and the cardinality of the responded set increases.

Lemma 5 If W 6= ∅ and c = 0, then transition 3 can occur and, if it does,

card(W ) decreases, card(R) increases and c = 0.

Proof: This follows from Transition 3. �

Lemma 6 If W 6= ∅ and c = 0, then transition 4 can occur and, if it does,

card(W ) decreases, card(R) increases, and c = 1.

Proof: This follows from Transition 4. �

If instance D is not stopping, then it may receive stop, which moves the

system to a state in which it is stopping; the pending set and responded set

are unchanged.

Lemma 7 If c = 0 then transition 5 can occur and, if it does, W is un-

changed, R is unchanged, and c = 1.

Proof: This follows from Transition 5. �

Lemma 8 If W 6= ∅ and c = 1, then transition 6 can occur and if it does,

card(W ) decreases, R is unchanged, and c = 1.

Proof: This follows from Transition 6. �

Lemma 9 If W 6= ∅ and c = 1, then transition 7 or 8 can occur and, if either

transition does occur, card(W ) decreases, card(R) increases, and c = 1.

Proof: This follows from Transitions 7 and 8. �

34



Lemma 10 Transition 1 cannot occur from any process in any of Q1, . . . , Q12.

Proof: Transition 1 cannot occur because the initial process is not D. �

Lemma 11 If E = ∅, then transition 2 cannot occur.

Proof: This follows from Transition 2. �

Lemma 12 If c = 1, then transitions 2, 3, 4 and 5 cannot occur.

Proof: This follows from Transitions 2, 3, 4 and 5. �

Lemma 13 If c = 0, then transitions 6, 7 and 8 cannot occur.

Proof: This follows from Transitions 6, 7 and 8. �

Lemma 14 If W = ∅, then transitions 3, 4, 6, 7 and 8 cannot occur.

Proof: Transitions 3, 4, 6, 7 and 8 cannot occur because there is no given

Sijl ∈ W . �

Lemma 15 Transitions 9 and 10 do not transit to any process in any of

Q1, . . . , Q12.

Proof: This follows from Transitions 9 and 10. �

Lemma 16 The subsets Q1, . . . , Q12 defined in Table 2 are a partition of Q′.

Proof: We need to show that Q1, . . . , Q12 are pair-wise disjoint, and their

union is Q′.

An inspection of each subset reveals that no member of Q′ occurs in more

than one subset. Hence Q1, . . . , Q12 are pair-wise disjoint.

Table 2 partitions the domain of values from which W is drawn into two

subsets: empty and non-empty; it partitions the domain of values from which

35



R is drawn into three subsets: empty, S and neither; it partitions the domain

of values from which c is drawn into two subsets: 0 and 1. If the triple

(W, R, c) is formed by drawing one value from each domain, then there are

12 distinct ways in which the triple can be formed. All 12 ways are represented

in Table 2. Q′ is the union of Q1, . . . , Q12. �

As a step in proving the termination theorem, we define the labelled graph

Γ as follows. Let Φ be a ternary relation such that (Qi, Qj, t) ∈ Φ if and only

if t is a transition from some process in Qi to some process in Qj . Let Γ be a

labelled graph representing Φ, where the nodes are members of {Q1, . . . , Q12}

and each edge (Qi, Qj) is labelled with t. Let each edge of Γ be labelled with

0, 1 or 2 additional labels as follows: W− if and only if t decreases card(W );

W+ if and only if t increases card(W ); and R+ if and only if t increases

card(R). We now prove that Γ is the labelled graph represented in Figure 2.

Lemma 17 The labelled graph represented in Figure 2 is Γ.

Proof: We verify that Figure 2 contains an edge for each transition that

can occur, and no other edge; and that the edges are labelled as described.

Consider Q1. Initially W = ∅ and R = ∅ and c = 0. By Lemma 7,

transition 5 can occur and, if it does, W = ∅, R = ∅ and c = 1. Hence the

labelled graph contains (Q1, Q2), which has none of the additional labels W+,

W− or R+. By Lemma 3, E 6= ∅; hence, by Lemma 4, transition 2 can occur

and, if it does, W 6= ∅, R = ∅ and c = 0. Hence the labelled graph contains

(Q1, Q7), which has the additional label W+ only. By Lemma 10, transition

1 cannot occur. By Lemma 14, transitions 3, 4, 6, 7 and 8 cannot occur.

36



By Lemma 15, transitions 9 and 10 do not transit to any process in any

of Q1, . . . , Q12. Hence the labelled graph contains no other edges emanating

from Q1.

Consider Q2. Initially W = ∅ and R = ∅ and c = 1. By Lemma 10,

transition 1 cannot occur. By Lemma 12, transitions 2, 3, 4 and 5 cannot

occur. By Lemma 14, transitions 6, 7 and 8 cannot occur. By Lemma 15,

transitions 9 and 10 do not transit to any process in any of Q1, . . . , Q12.

Hence the labelled graph contains no edges emanating from Q2.

Consider Q3. Initially W = ∅ and R = S and c = 0. By Lemma 7,

transition 5 can occur and, if it does, W = ∅, R = S and c = 1. Hence

the labelled graph contains (Q3, Q4), which has none of the additional labels

W+, W− or R+. By Lemma 10, transition 1 cannot occur. By Definition

9, E = ∅; hence, by Lemma 11, transition 2 cannot occur. By Lemma 14,

transitions 3, 4, 6, 7 and 8 cannot occur. By Lemma 15, transitions 9 and

10 do not transit to any process in any of Q1, . . . , Q12. Hence the labelled

graph contains no other edges emanating from Q3.

Consider Q4. Initially W = ∅ and R = S and c = 1. By Lemma 10,

transition 1 cannot occur. By Lemma 12, transitions 2, 3, 4 and 5 cannot

occur. By Lemma 14, transitions 6, 7 and 8 cannot occur. By Lemma 15,

transitions 9 and 10 do not transit to any process in any of Q1, . . . , Q12.

Hence the labelled graph contains no edges emanating from Q4.

Consider Q5. Initially W = ∅ and ∅ ⊂ R ⊂ S and c = 0. By Lemma 7,

transition 5 can occur and, if it does, W = ∅, ∅ ⊂ R ⊂ S and c = 1. Hence

the labelled graph contains (Q5, Q6), which has none of the additional labels

37



W+, W− or R+. By Lemma 3, E 6= ∅; hence, by Lemma 4, transition

2 can occur and, if it does, W 6= ∅, ∅ ⊂ R ⊂ S and c = 0. Hence the

labelled graph contains (Q5, Q11), which has the additional label W+. By

Lemma 10, transition 1 cannot occur. By Lemma 14, transitions 3, 4, 6, 7

and 8 cannot occur. By Lemma 15, transitions 9 and 10 do not transit to

any process in any of Q1, . . . , Q12. Hence the labelled graph contains no other

edges emanating from Q5.

Consider Q6. Initially W = ∅ and ∅ ⊂ R ⊂ S and c = 1. By Lemma 10,

transition 1 cannot occur. By Lemma 12, transitions 2, 3, 4 and 5 cannot

occur. By Lemma 14, transitions 6, 7 and 8 cannot occur. By Lemma 15,

transitions 9 and 10 do not transit to any process in any of Q1, . . . , Q12.

Hence the labelled graph contains no edges emanating from Q6.

Consider Q7. Initially, W 6= ∅ and R = ∅ and c = 0. If E 6= ∅, by

Lemma 4, transition 2 can occur, and, if it does, W 6= ∅, card(W ) increases,

R = ∅, and c = 0. Hence, the labelled graph contains (Q7, Q7), which has the

additional label W+. Whether E is empty or not, by Lemma 5, transition 3

can occur, and, if it does, card(W ) decreases, card(R) increases, and c = 0.

Hence the labelled graph contains (Q7, Q3) (if finally W = ∅ and R = S),

(Q7, Q5) (if finally W = ∅ and R ⊂ S), and (Q7, Q11) (if finally W 6= ∅ and

R ⊂ S), all of which have the additional labels W− and R+. Whether E is

empty or not, by Lemma 6, transition 4 can occur, and, if it does, card(W )

decreases, card(R) increases, and c = 1. Hence the labelled graph contains

(Q7, Q4) (if finally W = ∅ and R = S), (Q7, Q6) (if finally W = ∅ and

R ⊂ S), and (Q7, Q12) (if finally W 6= ∅ and R ⊂ S), all of which have

38



the additional labels W− and R+. Whether E is empty or not, by Lemma

7, transition 5 can occur, and, if it does, W is unchanged, R is unchanged

and c = 1. Hence the labelled graph contains (Q7, Q8), which has none of

the additional labels W+, W− or R+. By Lemma 10, transition 1 cannot

occur. By Lemma 13, transitions 6, 7 and 8 cannot occur. By Lemma 15,

transitions 9 and 10 do not transit to any process in any of Q1, . . . , Q12.

Hence the labelled graph contains no other edges emanating from Q7.

Consider Q8. Initially, W 6= ∅ and R = ∅ and c = 1. By Lemma 8,

transition 6 can occur, and, if it does, card(W ) decreases, R = ∅, and c = 1.

Hence the labelled graph contains (Q8, Q2) (if finally W = ∅) and (Q8, Q8)

(if finally W 6= ∅), both of which have the additional label W−. By Lemma

9, transitions 7 and 8 can occur, and, if either does, card(W ) decreases,

card(R) increases, ∅ ⊂ R, and c = 1. Hence the labelled graph contains

(Q8, Q4) (if finally W = ∅ and R = S), (Q8, Q6) (if finally W = ∅ and

R ⊂ S), and (Q8, Q12) (if finally W 6= ∅ and R ⊂ S), all of which have the

additional labels W− and R+. By Lemma 10, transition 1 cannot occur. By

Lemma 12, transitions 2, 3, 4, 5, cannot occur. By Lemma 15, transitions 9

and 10 do not transit to any process in any of Q1, . . . , Q12. Hence the labelled

graph contains no other edges emanating from Q8.

Consider Q9. Here, W 6= ∅ and R = S and c = 0. By Lemma 2, Q9 is

empty. Hence the labelled graph contains no edges entering Q9 or emanating

from Q9.

Consider Q10. Here, W 6= ∅ and R = S and c = 1. By Lemma 2, Q10 is

empty. Hence the labelled graph contains no edges entering Q10 or emanating

39



from Q10.

Consider Q11. Initially, W 6= ∅ and ∅ ⊂ R ⊂ S and c = 0. If E 6= ∅, by

Lemma 4, transition 2 can occur, and, if it does, W 6= ∅, card(W ) increases,

R ⊂ S, and c = 0. Hence, the labelled graph contains (Q11, Q11), which has

the additional label W+. Whether E is empty or not, by Lemma 5, transition

3 can occur, and, if it does, card(W ) decreases, card(R) increases, and c = 0.

Hence the graph contains (Q11, Q3) (if finally W = ∅ and R = S), (Q11, Q5)

(if finally W = ∅ and R ⊂ S), and (Q11, Q11) (if finally W 6= ∅ and R ⊂ S),

all of which have the additional labels W− and R+. Whether E is empty or

not, by Lemma 6, transition 4 can occur, and, if it does, card(W ) decreases,

card(R) increases, and c = 1. Hence the labelled graph contains (Q11, Q4)

(if finally W = ∅ and R = S), (Q11, Q6) (if finally W = ∅ and R ⊂ S), and

(Q11, Q12) (if finally W 6= ∅ and R ⊂ S), all of which have the additional

labels W− and R+. Whether E is empty or not, by Lemma 7, transition 5

can occur, and, if it does, W is unchanged, R is unchanged and c = 1. Hence

the labelled graph contains (Q11, Q12), which has none of the additional labels

W+, W− or R+. By Lemma 10, transition 1 cannot occur. By Lemma 13,

transitions 6, 7 and 8 cannot occur. By Lemma 15, transitions 9 and 10 do

not transit to any process in any of Q1, . . . , Q12. Hence the labelled graph

contains no other edges emanating from Q11.

Consider Q12. Initially, W 6= ∅ and ∅ ⊂ R ⊂ S and c = 1. By Lemma 8,

transition 6 can occur and, if it does, card(W ) decreases, ∅ ⊂ R ⊂ S, and

c = 1. Hence the labelled graph contains (Q12, Q6) (if finally W = ∅) and

(Q12, Q12) (if finally W 6= ∅). By Lemma 9, transition 7 or 8 can occur and,

40



if either does, card(W ) decreases, card(R) increases, and c = 1. Hence, the

labelled graph contains (Q12, Q4) (if finally W = ∅ and R = S), (Q12, Q6) (if

finally W = ∅ and R ⊂ S) and (Q12, Q12) (if finally W 6= ∅ and R ⊂ S).

By Lemma 10, transition 1 cannot occur. By Lemma 12, transitions 2, 3, 4

and 5 cannot occur. By Lemma 15, transitions 9 and 10 do not transit to

any process in any of Q1, . . . , Q12. Hence the labelled graph contains no other

edges emanating from Q12. �

We are now in a position to prove the following theorem.

Theorem 2 If instance D’s initial process D evolves to D(∅,∅,0) (by receiving

a start control), then it will continue to evolve to the process D.

Proof: Suppose D has evolved to D(∅,∅,0). Form the subsets Q1, . . . , Q12

of Q′ shown in Table 2. By Lemma 16, Q1, . . . , Q12 are a partition of Q′.

D(∅,∅,0) ∈ Q1. Consider the labelled graph Γ defined above. By Lemma

17, Figure 2 represents Γ. If instance D has evolved to some process in

Q1, Q5, Q7, Q8, Q11, Q12, then, by Constraint 2, it must continue to evolve. Its

continued evolution must take it to a process in one of Q1, Q5, Q7, Q8, Q11, Q12

or in one of Q2, Q3, Q4, Q6. If it continues indefinitely to evolve to processes

only in Q1, Q5, Q7, Q8, Q11, Q12, then it must traverse one or more of the

simple cycles of Γ. The simple cycles are shown in Table 3, which indicates

the effect on card(R) and card(W ) when the cycle is traversed. Each simple

cycle contains transitions that either increase card(R), or increase card(W ),

or decrease card(W ). card(R) has an upper bound (namely card(S)) and

cannot increase indefinitely. card(W ) has both lower and upper bounds (0

41



Figure 2: The labelled graph Γ

42



and card(S)). card(W ) can neither increase indefinitely nor decrease in-

definitely, but it may experience a series of increases intermingled with a

series of decreases. We now show that any cycle containing intermingled

card(W ) increases and decreases must also contain at least one card(R) in-

crease, and therefore cannot be traversed indefinitely. The simple cycles that

increase card(W ) are A and C. The simple cycles that decrease card(W ) are

B, D and E. (Note that cycle F leaves card(W ) unchanged, but increases

card(R).) Consider the simple cycles that increase card(W ). No cycle can

contain both the simple cycle A and any cycle that decreases card(W ), be-

cause, after leaving Q7, there is no path returning to Q7. Hence, any cycle

that contains intermingled card(W ) increases and decreases must contain

the simple cycle C. The only cycles that contain both C and a simple cycle

that decreases card(W ) also contain simple cycle D. This cycle increases

card(R) and cannot be traversed indefinitely. Hence, instance D must ulti-

mately evolve to a process in one of Q2, Q3, Q4, Q6. From Q3 it can evolve to

either process D or to a process in Q4 and, from Constraint 2, it must evolve

to one of these. A process in one of Q2, Q4 or Q6 can only evolve to process

D and, from Constraint 2, it must evolve to D. �

A deadlock occurs if a statement net, as defined in Section 7.3, evolves

to a process in which no further transition is possible. A livelock occurs if a

statement net evolves to a process from which there is no evolution to D.

Corollary 1 A statement net contains no deadlocks or livelocks.

Proof: Theorem 2 shows that it always evolves to D. �

43



8.5 Instance and agent comparisons

Instances and agents have simliarities and differences, as described below.

Given statement net. Instances and agents are both associated with a

given statement net.

start control. An instances executes its statement net when it receives a

start control. An agent executes its statement net when it receives a

command.

Control source. An instance receives a start control from outside the Sys-

tem (on channel b). An agent receives a command from inside the

System (from an instance or another agent).

Internal functionality. An instance has no internal functionality; it ex-

ecutes its statement net by sending commands and controls to des-

ignated agents. An agent has internal functionality; it executes its

received command by internally performing designated actions; to per-

form an action, it executes its internal statement net to send commands

to other agents.

User invocation. An instance is invoked by a user only to start or stop

execution of its statement net. An agent may be invoked directly by a

user with any valid command.

44



9 Conclusions and future work

Our model has provided a foundation for what it means to have devices

(e.g., appliances) working together in an orchestrated way, formalizing the

metaphor of workflow applied to device ecologies. On such a foundation, eco

languages can be designed as a high-level abstraction for programming de-

vice ecologies, with appropriate termination properties. We believe that our

model could provide a basis on which standards could ultimately be specified

for communication among devices. Such standards would enable manufac-

turers to incorporate features in their products that would add value to the

users’ experience when disparate devices are interconnected in a suitable en-

vironment.

There are several areas where our model can be extended. The set

response need not be limited to the members ok and fail. We have con-

structed an example in which other responses would be useful. Further, there

is little difference between an instance and an agent. If we regard an instance

as a special case of an agent (one that has a non-empty statement net and no

other internal functionality) then some simplification could be introduced by

combining the instance and agent equations and removing the distinction be-

tween them. Instances could then communicate with each other by treating

other instances as agents.

Fault handling could be introduced by defining actions that occur in the

presence of errors. For example, agents could be grouped in such a way that,

for certain commands, any agent in the group could be substituted for a

45



faulty agent.

We intend next to develop software to model an ecology by animating

potential message flows and transitions. As part of this work, we will compute

an upper bound on the number of messages that will be exchanged between

agents and instances for a given statement net.

References

[1] Association of Home Appliance Manufacturers. Connected Home

Appliances Object Modelling, CHA-1-2002, 2002. Available at

http://www.aham.org/.

[2] J. Bentham. TCP/IP Lean: Web Servers for Embedded Systems (2nd

Edition). CMP Books, 2002.

[3] H. Bohn, A. Bobek, and F. Golatowski. SIRENA - Service Infras-

tructure for Real time Embedded Networked Applications:a Service-

Oriented Framework for Different Domains. In Proceedings of the ITEA

2006 Conference, June 2004.

[4] M.H. Butler. Using Capability Profiles for Appliance Aggregation. Tech-

nical Report HPL-2002-173, HP Labs, June 2002.

[5] Y. Durand, S.P.J.-M. Vincent, C. Marchand, F.-G. Ottogalli, V. Olive,

S. Martin, B. Dumant, and S. Chambon. SIDRAH: A Software Infras-

46



tructure for a Resilient Community of Wireless Devices. In Proceedings

of the Smart Objects Conference (SOC’03), Grenoble, May 2003.

[6] U. Glasser, Y. Gurevich, and M. Veanes. High-Level Executable Speci-

fication of the Universal Plug and Play Architecture. In Proceedings of

the 35th Annual Hawaii International Conference on System Sciences

(HICSS’02)-Volume 9, 2002.

[7] F. Jammes, A. Mensch, and H. Smit. Service-Oriented Device Commu-

nications Using the Device Profiles for Web Services. In Proceedings of

the 3rd International Workshop on Middleware for Pervasive and Ad-

Hoc Computing (MPAC05), Nov-Dec 2005.

[8] N. Kohtake, K. Matsumiya, K. Takashio, and H. Tokuda. Smart Device

Collaboration for Ubiquitous Computing Environment. In Proceedings

of the Workshop on Multi-Device Interface for Ubiquitous Peripheral In-

teraction at the 5th International Conference on Ubiquitous Computing

(UbiComp’03), Oct 2003.

[9] R. Kumar, V. Poladian, I. Greenberg, A. Messer, and D. Milojicic. Se-

lecting Devices for Aggregation. In Proceedings of the WMCSA 2003 (to

appear), 2003.

[10] S.W. Loke. Service-Oriented Device Ecology Workflows. In M. Orlowska,

S. Weerawarana, M.P. Papazoglou, and J. Yang, editors, Proceedings of

the International Conference on Service-Oriented Computing, Lecture

47



Notes in Computer Science 2910, pages 559–574, Trento, Italy, Decem-

ber 2003. Springer-Verlag.

[11] R. Masuoka, B. Parsia, and Y. Labrou. Task Computing - the Semantic

Web meets Pervasive Computing. In Proceedings of the 2nd Interna-

tional Semantic Web Conference (ISWC 2003), Florida, USA, October

2003.

[12] K. Matsuura, T. Haraa, A. Watanabe, and T. Nakajima. A New Ar-

chitecture for Home Computing. In Proceedings of the IEEE Workshop

on Software Technologies for Future Embedded Systems (WSTFES03),

pages 71–74, May 2003.

[13] Sun Microsystems. Jini Network Technology, 2001. Available at

http://wwws.sun.com/software/jini/.

[14] Robin Milner. Communication and mobile systems: the π-calculus.

Cambridge University Press, 1999.

[15] M.W. Newman, J.Z. Sedivy, W.K. Edwards, T. Smith, K. Marcelo,

C.M. Neuwirth, J.I. Hong, and S. Izadi. Designing for Serendipity:

Supporting End-User Configuration of Ubiquitous Computing Environ-

ments. In Proceedings of the Conference on Designing Interactive Sys-

tems (DIS2002), 2002. Available at http://www.cs.

berkeley.edu/˜jasonh/publications/dis2002-speakeasy

-browser.pdf.

48



[16] O. Omojokun and P. Dewan. A High-Level and Flexible Framework

for Dynamically Composing Networked Devices. In Proceedings of the

5th IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA 2003), 2003.

[17] Mrio Rodrigues, Antnio Teixeira, and Luis Seabra Lopes. An Hybrid

Approach for Spoken Natural Language Understanding Applied to a

Mobile Intelligent Robot. In Bernadette Sharp, editor, Proceedings of

the 1st International Workshop on Natural Language Understanding and

Cognitive Science, Portugal, April 2004.

[18] Davide Sangiorgi and David Walker. The π-calculus: a theory of mobile

processes. Cambridge University Press, 2001.

[19] J.P. Sousa and D. Garlan. From Computers Everywhere to Tasks

Anywhere: The Aura Approach. In Submitted, 2003. Available at

http://www-2.cs.cmu.edu/

˜aura/docdir/sg01.pdf.

[20] UPnP Forum. UPnP Device Architecture, June 2000. Available at

http://www.upnp.org/.

[21] E. Vildjiounaite, E. Malm, J. Kaartinen, and P. Alahuhta. Networking of

Smart Things in a Smart Home. In Proceedings of the Workshop on the

Interaction of HCI and Systems Issues in UbiComp (UBIHCISYS 2003)

at the 5th International Conference on Ubiquitous Computing (Ubi-

Comp’03), Oct 2003. Available at http://ubihcisys.stanford.edu/online-

49



proceedings/

Ubi03w7-Vildjiounaite-final.pdf.

50


