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Abstract

We propose the EADRM (Explanation-Aware Dis-
tributed Reputation Management) framework for sharing
web services’ reputation in heterogeneous environments.
This framework advocates rationale extraction for mean-
ingful exchange of reputation and includes a decision sup-
port algorithm for combining rationale-fortified recommen-
dations.

1. Introduction

Reputation is recognized as a key factor for services se-

lection and reputation systems aid in this purpose. Cur-

rent reputation systems typically operate within a central-

ized context/domain or on the basis of a peer-to-peer so-

cial network. In the centralized approach [5, 6, 7, 4],

a single reputation server generates, stores and dissemi-

nates reputation data centrally. In the peer-to-peer approach

[8, 15, 1, 14, 3, 16], each user generates and manages rep-

utation data locally and distributes it to the users seeking

reputation information through its “social” network. The

centralized and peer-to-peer approaches complement each

other well, with the centralized approach providing ease

of use and the peer-to-peer approach providing personal-

ization. However, both of these approaches lack support

for excahnge of reputation information between heteroge-

neous reputation systems. This issue is particularly signif-

icant in the context of web services. Web services are in-

herently distributed and large-scale distribution of this do-

main is anticipated [8], hence it is reasonable to expect ex-

istence of distributed reputation systems, which may be het-

erogeneous (i.e., using different reputation evaluation algo-

rithms). Existing reputation systems fail to deliver in such

cases because they do not cater for sharing reputation in-

formation between heterogeneous systems. Hence, this pa-

per proposes a hybrid approach for managing reputation in

open distributed systems, which incorporates the benefits

and eliminates the limitations of the centralized and peer-to-

peer approaches, provides the users meaningful and relevant

evaluations of services reputation and facilitates exchange

and reuse of reputation information across heterogeneous

reputation systems.

For sharing of meaningful reputation information be-

tween heterogeneous reputation systems, in addition to the

reputation information, extra information that helps in un-

derstanding and using the reputation value should also be

included. This extra information is termed as rationale.

Rationale provides justification, explanation, meaning and

context to ratings and reputation values and plays an im-

portant part in understanding and using the reputation data.

Therefore, an important part of this framework is to deter-

mine how such reputation values and associated rationale

(obtained from various sources) can be meaningfully inte-

grated. Therefore, in this paper, we propose a decision sup-

port algorithm to combine recommendations and rationale

obtained from various reputation servers and with the help

of a case study demonstrate the operation and the feasibility

of the proposed reputation management framework and the

decision support algorithm.

The remainder of the article is structured in the following

way. We first discuss our proposed framework for sharing

reputation information in section 2. In section 3, we pro-

pose a decision support algorithm to combine recommenda-

tions with rationale. In section 4, we present a case study to

demonstrate the operation of the EADRM framework and

the decision support algorithm. Finally, we conclude and

highlight the contributions of our framework in Web Ser-

vices reputation management and point to future work in

Section 5.
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Figure 1. Overview of the Explanation-
Aware Distributed Reputation Management
(EADRM) Framework.

2. Overview of the Explanation-Aware
Distributed Reputation Management
(EADRM) Framework

In this section we describe our proposed hybrid ap-

proach for reputation management in open distributed sys-

tems, which we have named EADRM (Explanation-Aware

Distributed Reputation Management) framework. Figure 1

shows the conceptual overview of the EADRM framework.

The EADRM framework consists of a collection of

“Reputation Servers” interacting and exchanging meaning-

ful reputation information (i.e., with rationale). Web Ser-

vices register with one or more reputation servers for their

reputation management. Services that are willing to be eval-

uated on their QoS provision by third parties (reputation

servers) are regarded as reliable by the users. Therefore, ser-

vices have the incentive to register with reputation servers

for reputation management. However, some services may

not want to be evaluated, and therefore, will have the op-

tion not to register with any of the reputation servers. Ser-

vices that register with one or more reputation servers will

have their reputation computed by the corresponding repu-

tation servers. Services that register and allow their reputa-

tion to be computed will benefit from the value of openness

and willingness to be evaluated, and will be considered fa-

vorably by the users as opposed to those services that do

not want to be evaluated. This intuition provides the basis

for our assumption that services will register with one or

more reputation servers for their reputation management.

We note that service providers may register with service

registries such as UDDI for their service advertisements,

which is different from their registration with a reputation

server. Registration with the UDDI-like registries allows

the services the opportunity to advertise their products or

offerings whereas registration with reputation servers al-

lows the services to be evaluated for their performance and

thereby increases their likelihood of being selected by the

users (based on their reputation). In the EADRM frame-

work implementation, reputation servers could be associ-

ated with the service registries or operate independently of

the registries. Next, we describe the major components of

the EADRM framework.

Reputation Evaluation System (RES): The Reputation

Evaluation System (RES) component of a Reputation

Server is responsible for managing reputations of services

registered with the Reputation Server. Therefore, any rep-

utation system (based on centralized approach) existing in

the literature can be implemented as the RES component in

the EADRM framework.

Rationale Generation System (RGS): The Rationale Gen-

eration System (RGS) generates rationale for the reputation

information computed by the reputation evaluation system

(RES). Typically, three types of reputation information are

available for each entity: (i) ratings, (ii) reputation and (iii)

ranking. In each of these cases, the associated rationale gen-

eration is performed by the RGS. Therefore, three types of

rationale can be generated: (i) rating rationale, (ii) reputa-

tion rationale, and (iii) ranking rationale. Readers are re-

ferred to [12, 13, 11] for discussions on rationale types and

generation.

Rationale Representation System (RRS): The rationale

generated by the RGS has to be represented in a stan-

dard format so that it can be shared with other reputation

servers. The problem for the Rationale Representation Sys-

tem (RRS) is non trivial since various types of reputation

systems are in existence in literature, for which various

pieces of rationale can be generated. Therefore, represent-

ing a wide variety of reputation related rationale informa-

tion in a single standard format is a challenge. The Ra-

tionale Representation System (RRS) component is respon-

sible for performing this representation. We prescribe the

Reputation Rationale Markup Language (RaML) for this

representation. The output of the RSS is ready to be shared

with other reputation servers and to be used in decision

making by the Decision Support System (DSS).

Decision Support System (DSS): If a Reputation Server

does not contain reputation information regarding a partic-

ular service or is not confident on the information that it

contains, then the Reputation Server contacts other reputa-

tion servers and combines obtained information to provide

a comprehensive evaluation to the user. The evaluation and

aggregation of information obtained from various reputa-

tion servers is performed by the decision support system

(DSS). The DSS could be embedded within each Reputation

Server or within special web services that provide reputa-

tion service (i.e., reputation services). If a reputation server

does not have a DSS component, then it can outsource the
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decision making process to external services that provide

decision support service or to other Reputation Servers that

have the DSS component. The main objective of a DSS is

to combine reputation information plus rationale obtained

from various reputation servers. The problem is trivial if

all the reputation servers recommend the same service or

provide the same reputation value for a service. However,

this is highly unlikely, specially if the reputation servers are

heterogeneous, i.e., their RES component uses different al-

gorithms for computing reputation. When there is a signifi-

cant mismatch between the recommendations or reputation

evaluations from various Reputation Servers, the DSS plays

a decisive role and provides a mechanism for combining

conflicting recommendations. Any decision support system

can be implemented to work with the EADRM framework

as long as it has the capability to combine rationale with the

recommendations and reputation values and provide expla-

nations for its final recommendations.

Communication Protocol: The Reputation Servers com-

municating with each other form a Peer-to-Peer type

of network, therefore any standard communication pro-

tocol designed for Peer-to-Peer networks is suitable for

the EADRM framework. In addition, for exchange of

rationale-fortified reputation related information, we have

developed a specific language, the Reputation Rationale

Markup Language (RaML), which is available from

http://www.csse.monash.edu.au/∼wanitas/phd.html.

Each Reputation Server is centralized in its domain of

operation, therefore, the Reputation Server is responsible

for calculation, evaluation, updating and management of

reputation of Web Services registered with it and end users

are unconcerned about the computations and need not spend

their valuable resources on reputation management. This in-

corporates the benefits of the centralized approach into the

EADRM framework. If a user wants personalized reputa-

tion evaluation based on its own previous interactions or its

biases (i.e., incorporating the benefits of the peer-to-peer

approach), the user can register with one of the reputation

servers, which will then conduct all reputation management

on behalf of the user. User specific information such as the

user’s preference for certain attributes, quality requirements

and desired period of history to consider can be taken into

account for personalized reputation evaluation of the ser-

vices.

Four issues need to be addressed for the realization of

the EADRM framework: rationale generation, representa-

tion, communication and integration. Readers are referred

to [12, 13, 11] for discussions on rationale types and gener-

ation. In the next section, we address rationale integration

and present a decision support algorithm for combining ser-

vice recommendations with rationale. Representation and

communication of rationale is currently under study.

3. A Decision Support Algorithm for Combin-
ing Reputation Information Obtained from
Heterogeneous Sources

In this section, we discuss the Decision Support System

(DSS) component of the EADRM framework and present

an example decision support algorithm. Rationale refers to

information that is useful for understanding the context of

the provided information and helps in making an informed

decision. Therefore, information that constitute rationale

need to be analyzed and compared. The rationale accom-

panying a reputation value consists of various pieces of in-

formation such as the type of reputation value, the type of

information used to build the reputation value, the source

of the reputation value, the size and length of history in-

cluded in the computation of the reputation value and the

biases of the computation. The recipient of this information

can use its own discretion to use a subset of this informa-

tion to make decisions. For example, (say) a user distrusts

reputation computations based on subjective user ratings.

Then in this case, the DSS may choose to discard all repu-

tation information whose rationale state that the reputation

computation was based on subjective user ratings, and may

only include those based on objective performance metrics.

Similarly, a user may prefer that ratings older than a certain

date be excluded from the reputation evaluation. Another

user may prefer that only those ratings provided by users

with the same preference be included.

Alternatively, instead of using one piece of information

as the deciding factor, a Reputation Server may use several

pieces of rationale to make a decision. in such cases, the

pieces of rationale need to be combined in a meaningful

way so as to enable comparison of the rationale obtained

from several sources. This process is termed as rationale
strength evaluation. Evaluation of rationale strength could

be quantitative as well as qualitative. Quantitative rationale

strength evaluation refers to use of mathematical functions

for relating various pieces of rationale, whereas qualitative

rationale evaluation could be use of logic rules to relate var-

ious pieces of rationale. Therefore, DSSs vary according

to the way they present and process rationale information

and exact implementation and application of two DSSs may

vary greatly even though they use the same pieces of ratio-

nale for making decisions. The policies of the DSS and the

preferences of the user play a great role in the use of ra-

tionale and therefore it is unrealistic to prescribe a generic

decision support algorithm for use by everyone.

The decision support algorithm proposed in this section

uses rationale for a particular rank (or rank rationale) as the

basis for decision making. We selected rank rationale as the

basis because rank rationale is the discriminating factor to

consider when assessing rankings. Typically, two pieces of

information will always be available as part of the rank ra-
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tionale for each service (irrespective of their ranks): (i) the

number of past invocations of the service (size of history)

and (ii) the length of history of invocations of the service.

Typically, this information will be different for each service

in the ranking because it is unlikely that each service in the

ranking will be invoked the exact number of times and for

the exact duration. Hence these two pieces of information

are always the differentiating factors to consider. For exam-

ple, a service may be ranked highly by a reputation server,

but the associated rationale may indicate that the service

hasn’t been invoked for the last two months (i.e., ranking

was based on two months old information), in this case the

user may choose to give priority to another service ranked

lower but based on more recent information.

Next, we propose our decision support algorithm for the

following two scenarios:

Scenario 1: All the Reputation Servers provide one recom-

mendation each (with rationale).

Basic Algorithm: Select the recommendation with the

strongest rationale. So, the choice function is c =
strongest(Rationale), where Strongest is a function

which takes a set of Rationale and returns the strongest ra-

tionale, where strength of rationale is determined via some

algorithm. For example, if using quantitative evaluation, the

rationale strength evaluation algorithm could be a function

relating the pieces of rationale to obtain a quantitative value.

We present one quantitative rationale evaluation function in

section 4.1.

If rationale strength is evaluated as a quantitative value

(referred to as rationale points), the algorithm would take

the following form:

Let there be n Reputation Servers (RS1, ..., RSn). Each

Reputation Server provides one recommendation (with ra-

tionale). Let each service be represented by Si, and the

list of recommended services be S1, S2, ..., Sm. Also, let

Rationalei
RSj

be the rationale points associated with the

recommendation of service i by the Reputation Server j.
Then, for each web service, i, calculate the total rationale
points as the sum of the rationale points for each recom-

mendation of i by a Reputation Server. The Web Service

with the highest total points will be the final recommenda-

tion to the user.

Total points for service i, Pi =
∑k

j=1 Rationalei
RSj

where k is the number of Reputation Servers that recommended

service S,

Therefore, in this case the choice function is c = max(Pi)
Scenario 2: All the Reputation Servers provide a ranked

list of services (plus rationale) as recommendation. In this

case, we propose to combine our basic algorithm (described

above) with a voting system.

Algorithm: Select the recommendation with the strongest

combination of votes and rationale. So, the choice function

is c = Strongest(V ote,Rationale), where Strongest is a

function which takes a set of rationale and vote combina-

tions and returns the the strongest combination of rationale

and votes, where (again) the strength of the combination is

determined by an algorithm.

Vote captures the order of recommendation of the ser-

vices. Rationale strength refers to the support for the recom-

mendation. For example, a Reputation Server recommends

two web services in order WS1,WS2; then the votes for

WS1 will be higher than that for WS2. However, the corre-

sponding rationale for the recommendations may not reflect

the ranking order. Say, WS1 was recommended based on 10

invocations, and WS2 on 100 invocations. Then in this case

the size of history gives the quantitative rationale strength

and comprises the Rationale part of the choice function.

Again, similar to the basic algorithm, for quantitative ra-

tionale strength evaluation, the algorithm would take the

following form:

Algorithm: Sum the combination of the votes and “ratio-

nale points” to compute “total points” for each Web Service

and recommend the service with the highest “total points”.

One major benefit of combining “rationale” with voting is

resolving ties in case of equal number of votes for two or

more services (a typical case, cyclic preference for candi-

dates in situations where the number of voters equals the

number of candidates). In such situations, rationale serves

to differentiate among the Web Services even though they

receive equal number of combined votes from the Reputa-

tion Servers.

For the same situation as described in the scenario 1. Let

V otei
RSj

be the vote for Service i by Reputation Server j.
Then, in this case, total points is calculated as:

Total points for service i, Pi =
∑k

j=1 V otei
RSj

×
Rationalei

RSj

where k is the number of Reputation Servers that voted for the

service i

Similar to the basic algorithm, in this case also, the choice

function is c = max(Pi)
In both the cases, the final result or recommendation can

be provided as a recommendation for a single Web Service

(the one that has the highest total points), or a ranked list of

Web Services (say top 3 Web Services with the highest total

points). This recommendation can then be supported by its

own rationale. The rationale for the final recommendation

could include (1) average percentage of the recommended

service(s) in the ranked list out of the total set of services

supported by all the Reputation Servers, (2) percentage of

occurrence of the service in the Reputation Servers (say,

the service was ranked/available in 60% of the Reputation

Servers), (3) percentage of occurrence of the service in the

top 3 rank (say). This extra information allows the users

the flexibility to make their own decisions based on their

preferences. For example, a user may not be particularly

bothered about the rationale and may want to use a service
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that has been ranked topmost by most Reputation Servers.

Another user may prefer a Web Service that is ranked in

most Reputation Servers as it shows consistency in the Web

Service’s performance (because unranked implies that ei-

ther there was no information available or that the perfor-

mance was not good). Provision of rationale along with the

recommendation allows this flexibility to the users.

As can be seen from the above discussion, the algorithm

requires two distinct types of information: the rationale

points and the votes. The rationale points are computed us-

ing a rationale strength evaluation function and determined

by the pieces of rationale information available. The votes

are determined by a voting system and can be specified for

all decision support systems to use. Therefore, in the next

section, we discuss our choice of voting system to be used

in this decision support algorithm.

Choice of voting system: Voting systems are typical meth-

ods of making social choices by a collection of individuals

[9]. Many different kinds of voting procedures exist in the

literature. Among the various preferential voting systems,

we selected Borda count voting [9] as our choice of vot-

ing algorithm because it allows integration of rationale with

votes. The major focus of this paper is not in the devel-

opment of voting procedures. We merely wish to illustrate

how a voting system may be used with rationale to facilitate

decision making when using reputation and rationale.

In Borda count, each voter (i.e., Reputation Server in our

case) ranks the candidates in their ballot (i.e. the Web Ser-

vices). If there are n candidates, the first-place candidate

receives n points, the second place candidate receives n-1

points and so on with the last place candidate receiving 1

point. Another common variant is assigning n-1 points to

the first-placed candidate and so on with the last place can-

didate receiving 0 points. We prefer the former method as

the latter approach unfairly penalizes last place candidates,

and even though a candidate (here, a web service) is placed

last, it might be supported by stronger rationale so assigning

it at least 1 point ensures that rationale is considered. Yet

another variant exists for assigning points in which points

are assigned in increasingly smaller fractions: the first pref-

erence gets 1 point, the second preference gets 1/2 points,

the 3rd preference gets 1/3 points and so on. This method

favors the candidate with more first preferences as com-

pared to the normal Borda Count. We refer to this method

as Borda Count Variant.

In the next section, we demonstrate the operation of the

EADRM framework through a case study of a reputation

server employing relevant past performance based service

recommendation algorithm proposed in [10]. We explain

what constitutes rationale, discuss how rationale strength

could be evaluated and demonstrate how the the decision

support algorithm could be implemented in this case.

Figure 2. Operation of the EADRM Framework
(with Expanded View of a Reputation Server).

4. Case Study: Web Service Recommendations
with Rationale

The main aim of this case study is to demonstrate the fea-

sibility of EADRM framework by presenting the operation

of the EADRM framework. Hence, the sub aims are:

• to demonstrate rationale extraction and

• to demonstrate implementation of the decision support

algorithm through illustrative scenarios

In this case study, we consider a system of Reputation

Servers communicating and interacting with each other

and providing service recommendations to users within the

EADRM framework. Figure 2 depicts the components of

a Reputation Server that employs the personalized service

recommendation algorithm proposed in [10]. The figure

shows that the Reputation Server consists of the four com-

ponents - (i) the reputation evaluation system, (ii) the ra-

tionale generation system, (iii) the rationale representation

system and (iv) the decision support system. The Qual-

ity Assessment System comprises the relevant past perfor-

mance based quality evaluation algorithm [10]. This al-

gorithm is based on evaluating services’ quality / reputa-

tion according to the current (requestor) user’s QoS require-

ments. Therefore, first, a user’s request is divided into func-

tional requirements and QoS requirements. The functional

requirements are provided to the UDDI (Universal Descrip-

tion, Discovery, and Integration) like registry to obtain a
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list of services that provide the desired functionality (step

1). The QoS requirements are provided to the quality as-

sessment system (step 1). The list of web services obtained

from UDDI registry is then input to the quality assessment

system (step 2).

Taking the user’s QoS requirements and past perfor-

mance history of the services, the quality assessment sys-

tem then ranks the list of services (step 3). The Rationale

Generation System generates the rationale for the ranking

of the services and the Rationale Representation System ex-

plicates the generated ranking rationale. If the Reputation

Server does not have information regarding all the services,

it will then contact its neighboring Reputation Servers for

reputation information regarding some or all of the services

(step 4). The neighbor Reputation Servers provide the infor-

mation in the form of a ranked list (in the example shown

in the figure) and associated rationale. As a point to note,

the neighbor Reputation Servers may or may not implement

the same service recommendation algorithm to generate the

web service rankings.

The Decision Support System combines the ranked list

of services obtained from the neighbors and then computes

the final ranking for the user (step 5) using a decision sup-

port algorithm. The decision support algorithm should en-

able the Reputation Server to combine the ranked recom-

mendations with the associated rationale. The final ranking

(along with corresponding rationale) is then forwarded to

the user (step 6).

In the next section (4.1), we discuss how quantitative ra-

tionale can be given to complement the service recommen-

dations generated by a reputation server which implements

the relevant past performance based service recommenda-

tion algorithm. Then in the subsequent section (4.2), we

present the prototype implementation of the decision sup-

port algorithm followed by some illustrative scenarios ex-

tracted from the implementation in section 4.3.

4.1. Evaluation of Rationale Strength for
Algorithms using Similarity in User
Requests

Rationale extraction is specific to the reputation evalua-

tion algorithm. Hence there is no general method of extract-

ing rationale. Rationale constitutes any information that

is helpful in understanding the reputation data, especially

information that enables distinguishing between two web

services’ reputation. For examples of rationale generation,

readers are referred to [12] and [13]. In this section, we

discuss generation of rationale and evaluation of rationale

strength for algorithms that use similarity in user requests

(for example, algorithms proposed in [10] and [2]). Both of

these algorithms use similarity in user requests to segregate

invocations so that the services can be evaluated based on

their performance in similar requirement conditions. This

incorporates contextual information into the quality evalua-

tion process, making the evaluation tailored to user’s partic-

ular needs.

Inherent in the algorithms are two major factors that sup-

port recommendations/rankings: (1) Number of similar in-

vocations: n (higher n is desirable so that quality evaluation

is based on a large history of interactions), and (2) Simi-

larity threshold: δ (lower δ is desirable so that invocations

identified as similar are indeed very similar to the current

user request). Therefore, intuitively, a recommendation that

is supported by high n and low δ would be desirable, as

high n would mean that the service had many similar inter-

actions in which it performed consistently and low δ means

that these past interactions that were used to evaluate the

service’s quality were indeed very similar to the user’s re-

quirements (greater personalization). The strength of the ra-

tionale is higher for higher n and lower δ, therefore, a very

simple rationale strength evaluation function in this case is

f(Rationale) = n/δ.

Therefore, the decision support algorithm uses n/δ as

the rationale strength evaluation function. To note, use of

n/δ does not necessarily mean all reputation servers used

the relevant past performance algorithm to compute the

rankings. All algorithms that use similarity in invocations

as a basis for evaluation of service rankings would provide

n and δ as part of the rank rationale (for example, [2] and

[10]). Therefore, service rankings obtained from reputa-

tion servers that implement these algorithms can be com-

bined using our proposed decision support algorithm. We

would like to note that rationale obtained with the rank-

ings may contain other pieces of information besides n
and δ. However, this particular decision support algorithm

uses only n and δ as the major criteria for decision making

and therefore uses the rationale strength evaluation function

f(Rationale) = n/δ to compute rationale for each service

recommendation. Using this function and Borda count vot-

ing method, we developed a prototype implementation of

the decision support algorithm which we present in the next

section 4.2 followed by some illustrative scenarios in the

subsequent section (4.3).

4.2. The Prototype Implementation of the
Decision Support Algorithm

In our prototype implementation, we compared the oper-

ation of the following 4 algorithms:

(i) Rationale only (sum the rationale points (n/δ) for

each of the recommended Web Services, whichever has the

highest points will be recommended to the user):

Total points for Service i, Pi =
∑m

j=1(n/δ)j

where m is the number of Reputation Servers that voted for the

service i
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(n/δ)j is the rationale points corresponding to the recommen-

dation of i by the jth Reputation Server

Referring back to section 3, this algorithm corresponds

to scenario 1, i.e., all the reputation servers provide one rec-

ommendation each.

(ii) Voting only (sum the votes (using Borda count) for

each Web Service, the Web Service with highest vote will

be recommended to the user):

Total points for Service i, Pi =
∑m

j=1 V otej

where m is the number of Reputation Servers that voted for the

Service i,and

V otej is the vote provided by the jth Reputation Server to the

Service i

(iii) Borda Count with rationale (our algorithm com-

bining normal Borda count voting (votes from n to 1) with

rationale points), and

(iv) Borda Count Variant with rationale (our algo-

rithm combining Borda count variant voting (votes from 1

to 1/n) with rationale points)

For both algorithms (iii) and (iv):

Total points for Service i, Pi =
∑m

j=1 V otej × (n/δ)j

where m is the number of Reputation Servers that voted for the

Service i

V otej is the vote provided by the jth Reputation Server to the

Service i, and

(n/δ)j is the rationale points corresponding to the recommen-

dation of i by the jth Reputation Server

4.3. Illustrative Scenarios

The following test cases are selected from our prototype

implementation. In all of the following cases, the tables

show information (i.e, rationale strength and the votes) ob-

tained from 3 reputation servers RS1, RS2 and RS3 and the

results (ranked recommendations) after applying each of the

4 algorithms.

Table 1. Case 1
Case
Reputation Server δ Web Service Size of “similar” history (n) Rationale Strength (n/δ) Vote

WS1 70 583.33 1

RS1 0.12 WS2 50 416.66 2

WS3 160 1333.33 3

WS1 150 1250.0 3

RS2 0.12 WS2 80 666.66 1

WS3 70 583.33 2

WS1 160 1333.33 2

RS3 0.12 WS2 80 666.66 3

WS3 170 1416.66 1

Results
Algorithm Rationale Only Voting Only Borda Count(with rationale) Borda Count Variant(with rationale)

WS3

WS1,WS2,WS3

WS1 WS1

Ranking WS1 WS3 WS3

WS2 WS2 WS2

In the case shown in Table 1, each web service receives

equal combined votes, therefore, in this case, Voting Only

algorithm gives a 3-way tie. The tie is diffused and results

provided by all 3 algorithms that include rationale. How-

ever, note the different recommendation provided by the

different algorithms. In this case, Borda Count and Borda

Count Variant provide the same recommendation (WS1),

whereas Rationale Only provides a different recommenda-

tion (WS3).

Table 2. Case 2
Case
Reputation Server δ Web Service Size of “similar” history (n) Rationale Strength (n/δ) Vote

WS1 80 620.15 1

RS1 0.129 WS2 70 542.63 2

WS3 190 1472.86 3

WS1 50 193.05 2

RS2 0.259 WS2 60 231.66 3

WS3 70 270.27 1

WS1 50 128.86 2

RS3 0.388 WS2 60 154.64 3

WS3 70 180.41 1

Results
Algorithm Rationale Only Voting Only Borda Count(with rationale) Borda Count Variant(with rationale)

WS3 WS2 WS3 WS3

Ranking WS2

WS1,WS3

WS2 WS2

WS1 WS1 WS1

In the case depicted in Table 2, two Reputation Servers

RS2 and RS3 recommend WS2, however the recommen-

dation of RS1 (i.e.,WS3) is supported by stronger ratio-

nale. Therefore, all the algorithms that incorporate rationale

recommend WS3 (note Voting only algorithm recommends

WS2). This case illustrates the significance of rationale.

Table 3. Case 3
Case
Reputation Server δ Web Service Size of “similar” history (n) Rationale Strength (n/δ) Vote

WS1 70 542.63 1

RS1 0.129 WS2 50 387.59 2

WS3 60 465.11 3

WS1 70 542.63 2

RS2 0.129 WS2 50 387.59 3

WS3 80 620.15 1

WS1 70 542.63 2

RS3 0.129 WS2 50 387.59 3

WS3 60 465.11 1

Results
Algorithm Rationale Only Voting Only Borda Count(with rationale) Borda Count Variant(with rationale)

WS2 WS2 WS2 WS2

Ranking WS3

WS1,WS3

WS1 WS3

WS1 WS3 WS1

In the case depicted in Table 3, the recommendations

provided by all 3 Reputation Servers have equivalent “Ra-

tionale Strength”, therefore, the final recommendation is

guided by the votes each web service receives (in this case

two reputation servers support Web Service WS2, therefore

all the algorithms recommend WS2, however, note the dif-

ference in the lower order recommendations).

These illustrative test cases demonstrate that the com-

bined algorithms (integrating votes and rationale, i.e.,

Borda Count with rationale and Borda Count Variant with

rationale) provide a better means of providing a solution

to a potentially tied situation are superior to both voting

only and rationale only algorithms. These scenarios also

demonstrate the difference between the 4 algorithms.

Observations from the prototype implementation

1. The final recommendation is directly proportional to

the size of history ’n’ and inversely proportional to the

similarity threshold δ. If a recommendation is sup-

ported by larger ‘n’ and lower δ, then it is favored in

the final recommendation.
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2. The algorithms ordered with respect to increasing sen-

sitivity to ‘n’ and δ are: (1) Voting only, (2) Normal

Borda count voting with rationale, (3) Variant of Borda

count voting with rationale, and (4) Rationale only

3. Although a service is recommended by higher num-

ber of Reputation Servers, it may still be overlooked

over another service recommended by fewer Reputa-

tion Servers but supported by stronger rationale (n/δ).

4. Given two Web Services, if they get equal total votes,

the combined algorithms behave like the rationale-only

algorithm.

5. Given two Reputation Servers’ recommendations sup-

ported by “similar” rationale, the combined algorithms

behave similar to the voting-only algorithm.

6. In cases where voting gives a tie between two or

more Web Services, the combined algorithms provide

a means to break this tie (with the help of rationale).

5. Conclusions and Future Work

In this paper, we proposed a hybrid approach for Web

Services reputation management. The framework advocates

inclusion of rationale with reputation information for better

transfer, exchange and reuse of reputation information and

for informed aggregation of reputation obtained from var-

ious sources. The core of the framework consists of rep-

utation evaluation system, rationale generation system, ra-

tionale representation system, decision support system and

communication protocols. The reputation evaluation sys-

tem could comprise any existing reputation system or al-

gorithm based on the centralized approach, and the corre-

sponding rationale generation system would include ratio-

nale extraction mechanism for the algorithm. The ratio-

nale representation system would use a standard language

(RaML) for representing rational generated by the rationale

generation system. Within a case study, we demonstrated

how quantitative rationale can be included to complement

service recommendations. We presented and demonstrated

the operation of an example decision support system that

combines rationale with recommendations.

Standard communication protocols designed for Peer-

to-Peer networks are suitable for the EADRM frame-

work. In addition, for exchange of reputation rationale

information, we are currently working towards defining a

Reputation Rationale Markup Language (RaML) that pro-

vides a standard format for representation and communi-

cation of reputation-rationale between heterogeneous rep-

utation systems. Existence of a standard platform such as

RaML for representing rationale would facilitate compari-

son of rationale obtained from various sources and in vari-

ous formats. Provision of RaML would make rationale eas-

ily usable and applicable in not only reputation systems but

also in various other problem domains such as service and

product recommendations and multi-agent negotiations.
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