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Abstract—Traffic congestion becomes a cascading phenomenon4
when vehicles from a road segment chaotically spill on to succes-5
sive road segments. Such uncontrolled dispersion of vehicles can6
be avoided by evenly distributing vehicles along alternative routes.7
This paper proposes a practical multiagent-based approach, which8
is designed to achieve acceptable route allocation within a short9
time frame and with low communication overheads. In the pro-10
posed approach, which is called congestion avoidance and route11
allocation using virtual agent negotiation (CARAVAN), vehicle12
agents (VAs) in the local vicinity communicate with each other13
before designated decision points (junctions) along their route.14
Cooperative route-allocation decisions are performed at these15
junctions. VAs use intervehicular communication to propagate key16
traffic information and undertake its distributed processing. Every17
VA exchanges its autonomously calculated route preference infor-18
mation to arrive at an initial allocation of routes. The allocation is19
improved using a number of successive virtual negotiation “deals.”20
The virtual nature of these deals requires no physical commu-21
nication and, thereby, reduces communication requirements. In22
addition to the theory and concept, this paper presents the design23
and implementation methodology of CARAVAN, including experi-24
mental results for synthetic and real-world road networks. Results25
show that when compared against the shortest-path algorithm26
for travel time improvements, CARAVAN offers 21%–43% gain27
(when traffic demand is below network capacity) and 13%–17%28
gain (when traffic demand exceeds network capacity), demon-29
strating its ability to regulate overall system traffic using local30
coordination strategies.31

Index Terms—Cooperative systems, dynamic traffic assign-32
ment, multiagent systems (MAS), traffic congestion management.33

I. INTRODUCTION34

T RAFFIC congestion can be caused by physical bottle-35

necks, traffic incidents, work zones, and special events.36

Most of the existing congestion control techniques, such as37

variable message signs or traffic information systems, advise38

vehicles to detour, thereby dispersing them unevenly along39

alternative routes and often overloading only a few popular40

routes. For quick dissipation of traffic and congestion avoid-41

ance, the vehicles need to be evenly distributed along alternative42

routes; this requires a vehicle to have knowledge of the route43

choices of the surrounding vehicles to make an informed deci-44

sion about whether to take its intended route. This information45
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exchange can be facilitated by intervehicular communication 46

(IVC) and/or by installing a roadside infrastructure unit for 47

collecting and transmitting useful traffic information. However, 48

given the vast expanse of road networks, it is impractical to 49

have infrastructure units on every road segment/intersection 50

due to prohibitive costs. IVC allows efficient and real-time 51

information exchange where vehicles acting as mobile nodes 52

form a wireless vehicular ad hoc network (VANET). VANETs 53

employ single-hop and multihop topologies for communication 54

with vehicles in close proximity or in the surrounding area. IVC 55

can enable traffic safety applications, such as collision avoid- 56

ance and hazard detection, and nonsafety applications, such as 57

traffic and parking management and infotainment services. IVC 58

is facilitated by wireless communication technologies (e.g., 59

cellular networks and dedicated short-range communication). 60

Effective management of congestion requires timely pro- 61

cessing of traffic information (made available via IVC) and 62

coordinated execution of control actions via traffic control 63

entities. The control entities should be able to learn and adapt 64

from the effects of their previous control actions. In addition 65

to timely processing, coordination, and learning, any traffic 66

management solution should be also cost effective in terms 67

of communication overhead and infrastructure requirements. 68

Existing traffic management solutions that are implemented 69

within roadside infrastructure units and vehicular onboard units 70

lack some or most of these characteristics. Multiagent systems 71

(MAS), which are distributed systems consisting of a number of 72

autonomous agents (software entities), possess the characteris- 73

tics of being adaptive and collaborative. MAS, in combination 74

with IVC technology, can overcome the disadvantages of con- 75

ventional traffic management techniques. 76

The main contributions of this paper are 1) articulating the 77

need for cooperative route allocation for effective congestion 78

management; 2) proposing a multiagent-based collaborative 79

congestion management solution using IVC, which employs 80

a virtual negotiation technique to reduce communication over- 81

heads; and 3) presenting a detailed evaluation of the proposed 82

solution for synthetic and real road networks, demonstrating its 83

effectiveness for congestion management. 84

This paper is organized as follows: Section II reviews re- 85

lated work in cooperative traffic management. Section III de- 86

scribes the application of multiagent-based resource allocation 87

(MARA) to the route assignment problem and introduces the 88

concept of satisficing agents. Section IV presents the design 89

and implementation of congestion avoidance and route alloca- 90

tion using virtual agent negotiation (CARAVAN). Section V 91

presents a detailed experimental evaluation of CARAVAN. 92

Section VI concludes this paper with future research directions. 93

1524-9050/$31.00 © 2013 IEEE
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II. RELATED WORK94

This section reviews existing VANET- and MAS-based con-95

gestion management techniques and explains the relevance of96

satisficing solutions for the traffic assignment problem.97

A. Congestion Management Techniques Using VANETs98

Detailed information about the traffic conditions propa-99

gated using VANETs can be used for real-time prediction of100

travel time [1], which could be used by travelers to choose101

their preferred travel paths and by intelligent software entities102

to analyze travel routes and recommend best travel routes103

to drivers. Kraus et al. in [2] and Leontiadis et al. in [3]104

used VANET-based gossiping (communication) for traffic in-105

formation propagation. The simulation outcome in [2] showed106

that only 20%–30% of vehicles (gossiping agents) resulted in107

average travel time similar to that when the information was ob-108

tained from a centralized information center. However, further109

increase in the number of gossiping agents increased the travel110

time as most of the agents tried to follow the same alternate111

path. The results in [3] showed that 64% of gossiping agents112

save on time; however, due to lack of coordination, the vehicles113

can congest the second best path. In [4], vehicles exchanged114

their average speed information with other vehicles in their115

vicinity and updated their travel route based on the derived traf-116

fic situation. Simulation results showed 50% reduction in travel117

time with 80% equipped vehicles. However, this approach118

involves extensive use of IVC and does not consider driver119

preferences. In [5], a vehicle requests traffic information for120

its probable travel routes using vehicular communication and121

uses this to select the least congested travel route. Simulation122

results showed that such information propagation helps reduce123

congestion. In all these approaches, VANETs facilitate real-124

time information propagation. However, on getting congestion125

alerts, the vehicles may unevenly disperse along the same126

alternate routes, ultimately overcrowding them. Hence, for a127

robust solution, a cooperative route-allocation strategy that does128

not require excessive communication is needed.129

B. MAS-Based Congestion Management Techniques130

MAS are well suited to the problem of traffic management,131

which is geographically distributed, dynamic in nature, and132

requires coordination between constituent traffic entities [6]. In133

the bio-inspired MAS approach in [7], ants deposit a chemical134

substance called pheromones of varying intensities to mark the135

shortest path between the nest and the food. Computational136

results showed improvement in traffic flow with the application137

of this approach. Another approach in [8] is inspired by food138

foraging in ant colonies, where vehicle agents (VAs) use explo-139

ration ants to identify all possible paths between the source and140

the destination. Experimental results showed 35% gain in travel141

time when compared with normal drivers or those drivers using142

real-time data made available by traffic messaging channel143

services. The market-inspired road intersection management144

approaches in [9] and [10] consist of infrastructure agents,145

which provide intersection space reservation to driver agents.146

The driver agents choose the route based on the current prices 147

of the reservations, personal travel time preferences, and the 148

involved monetary costs. In [10], the intersection managers 149

compete for the supply of the reservations. The driver agents 150

participate in the allocation of road network capacity through 151

a combinatorial auction-based mechanism. Experimental eval- 152

uation showed 30% reduction in the delay for the drivers who 153

submitted high-value bids. The hierarchical cooperative MAS- 154

based route guidance approach in [11] consists of three types of 155

agents for 1) providing traffic information, 2) satisfying drivers’ 156

route choice, and 3) focusing on overall network stability. Here, 157

conflicting objectives of driver satisfaction and network sta- 158

bility were handled using an interagent negotiation technique. 159

Experimental results suggested that the negotiation can achieve 160

good network performance and increase driver satisfaction by 161

allocating drivers evenly along the network. 162

C. Satisficing Solutions for Traffic Assignment 163

Evenly distributing traffic is key to avoiding congestion. 164

The measure of evenly distributed traffic can be quantified in 165

terms of system equilibrium (SE) or user equilibrium (UE). UE 166

or user optimal (UO) flow is achieved when traveler’s route 167

choices are influenced so as to minimize the total trip time 168

[12]. System optimal (SO) flow minimizes the overall travel 169

time, resulting in SE. As stated in [13], the UE model is more 170

suited to a deterministic environment, and the SO flow pattern 171

cannot be achieved without coordinated decisions of motorists 172

to minimize the total system travel time. An even distribution 173

of traffic can be only obtained by evaluating permutations and 174

combinations of all possible assignments of routes to vehicles 175

while also considering road speed limit variations and driver 176

preferences. Overall, this process can take too long to reach an 177

optimal solution. Such an exhaustive search approach is com- 178

putationally intensive and not appropriate for dynamic traffic 179

scenarios, where the VA software running within an onboard 180

unit may have limited processing capacity, and the solution 181

must be generated in limited time. Moreover, as it is not prac- 182

tically feasible to get an accurate real-time view of the global 183

traffic situation, real-time decision-making is frequently based 184

on incomplete traffic information. Consequently, the SO and 185

UO flow patterns cannot be effectively applied to a stochastic 186

and dynamic traffic environment. In this case, the systematic 187

exploration of the entire search space for computing an optimal 188

solution can prove to be expensive; here, a practical approach 189

is to adopt a suboptimal satisficing solution [14]. 190

III. THEORY UNDERLYING CARAVAN: 191

MULTIAGENT-BASED RESOURCE ALLOCATION 192

AND VIRTUAL DEALS 193

A. MARA 194

CARAVAN addresses the problem of route allocation using 195

MARA. The resource-allocation problem can be defined as the 196

problem of allocating a set of resources among a set of entities 197

that have preferences over this resource set to maximize an 198

objective function [15]. In the context of MAS, the problem 199

of route allocation can be stated as a MARA problem, in which 200
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TABLE I
ALLOCATIONS RESULTING FROM ADD, SWAP, AND DROP DEALS FOR

INITIAL ALLOCATION: {v1−r5; v2−r5; v3−r2; v4−r1}

there is a finite number of agents (vehicles) and a finite number201

of indivisible but sharable resources (routes). Agents in the202

given traffic scenario have preferences for various assignments203

of the resources, which can be expressed as utility functions. An204

agent’s utility for a route depends on its own preference value205

for that route and the cost it incurs by taking that route. If the206

number of vehicles being assigned to a certain route is greater207

than its threshold capacity value, the cost incurred in traversing208

that route will increase with the number of vehicles.209

Centralized or decentralized MARA techniques are widely210

used in scheduling, network routing, logistics, and airport traffic211

management applications [16]. Centralized approaches will be212

less effective for the distributed traffic environment as these are213

primarily based on combinatorial auctions wherein the agents214

report their preference to a central auctioneer, which then does215

the final allocation. Allocation in decentralized approaches is216

facilitated by local deals (trading of resources) or negotiation217

between the involved agents as in [17]. Negotiation is a way218

of coordinating, resolving conflicts [18], and reaching a mutual219

agreement over a common goal [19].220

B. Virtual Negotiation Using Virtual Deals221

In the decentralized MARA approaches in [15], agents are222

interconnected in various topologies to facilitate the exchange223

of resources via extensive communication to reach a solution.224

This is difficult to realize in vehicular environments due to the225

dynamic nature of traffic flow with limited time for communi-226

cation and solution determination. To address these problems,227

we propose the concept of virtual negotiation by means of228

the so-called “virtual deals” that require actual communication229

only at the start and end of the route-allocation process. In a230

virtual deal, an agent does not actually communicate with other231

agents but only enacts the process of interagent communication232

in its “mind.” After the exchange of preferences, every VA233

is assigned a route in the form of an initial allocation. To234

improve the allocation in terms of the overall utility (social235

welfare), individual utility (rational welfare), or both (mixed236

welfare), every agent internally plays out the deals with other237

agents. A “deal” between agents i and j, which is represented238

as δ (i, j) = (σ, σ′), can be defined as the transition from239

allocation σ to σ′. An acceptable deal is one that results in gain240

in the utility, i.e., Δu > 0. Every VA autonomously carries out241

virtual negotiation in the form of ADD, SWAP, or DROP virtual242

deals. An example of the deals presented in Table I shows the243

final allocations obtained after performing each of the deals on244

a given initial allocation: 1) ADD deal, i.e., an agent virtually245

assigns itself one of its preferred routes (v1 assigns itself to246

route r2); 2) SWAP deal, i.e., an agent exchanges its route with247

another agent (v1 and v3 swap routes); 3) DROP deal, i.e., an248

agent assigns itself a route that has been currently assigned to 249

some other agent, whereas the other agent is assigned a random 250

route from the available set of routes (v1 is assigned the route 251

of v3, and v3 is assigned a random route r1). 252

As the actual communication only happens at the start and 253

end of the route-allocation process in virtual negotiation (to 254

exchange route preferences and final resulting allocations), 255

communication costs are not incurred for intermediate steps. 256

The post-deal acceptance of an allocation is based on the type of 257

welfare adopted by the system. A deal is acceptable if it results 258

in increased utility of the individual agent (for rational and 259

mixed welfare) and/or increased overall utility of the allocation 260

(for social and mixed welfare). The process of deals is iterative, 261

and eventually, better allocations result from successful deals. 262

The final allocations obtained by agents are exchanged among 263

them, and the best allocation in terms of utility value is accepted 264

by all agents. The virtual deal mechanism does not require a 265

central control entity for managing allocations, further reducing 266

the constraints on communication costs. 267

C. Problem Statement 268

The route-allocation problem can be expressed as a MARA 269

[20], in the form of a 5-tuple: (V,R, {ai | i ∈ V }, {ci,r | i ∈ 270

V, r ∈ R}, {pi,r | i ∈ V, r ∈ R}, where V is the set of n ve- 271

hicles (agents), R is the set of m routes, ai is the allocation 272

strategy for agent i, ci,r is the cost experienced by agent i 273

when using route (resource) r, and pi,r is a preference-based 274

utility value that agent i holds for route r. Every VA is assigned 275

a single route, provided that the assignment does not exceed 276

road capacity. Road capacity is defined as the potential number 277

of vehicles that can traverse a road at a speed that is either 278

equal to free-flow speed per unit time (if road capacity equals 279

the practical road capacity) or below free-flow speed per unit 280

time (if road capacity exceeds the practical road capacity). 281

Practical/threshold capacity of a road is the number of vehicles 282

that can traverse the road at free-flow speed per unit time, and 283

beyond which, congestion starts to build up. 284

To calculate the average travel time denoted by Sk(volk) for 285

a vehicle on link “k,” we use the link (arc) congestion function 286

provided by the Bureau of Public Roads [21], i.e., 287

Sk(volk) = tk

(
1 +

α

β + 1

(
volk
ck

)β
)

(1)

where parameter α is very small and 5 >= β > 1, tk is the 288

free-flow travel time on link “k” per unit of time, volk is the 289

volume of traffic on link per unit of time, and ck is the practical 290

or the threshold capacity of link “k” per unit of time. When 291

flow volk is much less than ck, ratio volk/ck is negligible, and 292

hence, Sk(volk) ≈ tk, which means that the average travel time 293

is equal to the free-flow travel time. For larger values of volk, 294

the effects of congestion start to become visible. 295

D. Utility of Allocation/Solution Space 296

Let nr(σ) be the number of agents that use resource (route) 297

r in allocation σ. The cost experienced by agent i on route r 298
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in allocation σ due to nr(σ) number of VAs is ci,r(nr(σ)), and299

pi,r(σ) is the preference utility index of agent i for route r in300

solution space σ. The cost depends on the number of vehicles301

taking the route and the average travel time on that route, which302

is calculated using (1). Here, p and c are the constant multipliers303

for pi,r(σ) and ci,r(nr(σ)), respectively. Hence, the utility ui304

of solution space σ for agent i can be given as305

ui(σ) = p ∗ pi,r(σ)− c ∗ ci,r (nr(σ)) . (2)

From (2), the utility of the allocation/solution space is given as306

the aggregate of the utilities of all the agents in that allocation,307

i.e.,308

u(σ) =

n∑
i=1

ui(σ). (3)

E. VAs as Satisficing Agents309

Amongst the negotiation models, the game-theoretic model310

aims to find an optimal strategy, whereas the heuristic model311

attempts to find a suboptimal strategy. As stated in [22], for312

computationally intractable problems (such as the traffic as-313

signment problem), adopting a suboptimal satisficing solution314

will be practical. The agents that try to achieve such a solution315

are called satisficing agents. Satisficing solutions are a result of316

tradeoffs that favor benefit over cost [23]. In our case, benefit317

refers to maximizing an agent’s preference utility index, and318

cost refers to minimizing the communication and computation319

time required to reach an acceptable allocation and the cost of320

using the assigned route.321

IV. CONGESTION AVOIDANCE AND ROUTE ALLOCATION322

USING VIRTUAL AGENT NEGOTIATION (CARAVAN)323

This section presents our proposed CARAVAN solution,324

which is designed for dynamic traffic management scenarios.325

It uses interagent communication to perceive the surrounding326

traffic situation and uses local neighborhood decision-making327

via interagent cooperation and negotiation.328

A. Functional Prototype329

Fig. 1 is a functional block diagram of CARAVAN, which330

describes the primary steps of the algorithm and the flow of331

information between its components. Here, every VA, starting332

from source A and destined to reach destination G, exchanges333

its autonomously calculated route preferences for routes be-334

tween decision points B and G and uses this information to335

arrive at an initial allocation of routes. For conflicting route336

allocations, each VA performs a given fixed number of virtual337

negotiation deals to improve upon the initial allocation. The re-338

sulting allocation is exchanged, and the final allocation is coop-339

eratively chosen based on the welfare type. The main modules340

of CARAVAN are 1) graphical user interface, which provides a341

user interface to visualize vehicular mobility; 2) mobility model,342

which works as the “perception unit” and detects the vehicles343

in range and controls the creation of VAs and their mobility;344

Fig. 1. Functional block diagram of CARAVAN.

3) notification manager, which conveys agent creation infor- 345

mation from VanetMobiSim [24] to Java Agent Development 346

Framework (JADE) [25] and route allocation information from 347

JADE to VanetMobiSim; 4) VA, which represents the core 348

software module residing within vehicle onboard units and is 349

responsible for analyzing perceived traffic conditions, deriving 350

traffic patterns, interagent cooperation, and carrying out virtual 351

deals for route allocation; and 5) data access layer, which is 352

responsible for interacting with the internal database for storage 353

and retrieval of user preferences, road network data, and final 354

route allocation information. 355

B. Route Preference Representation 356

Driver behavioral studies have shown that drivers do not 357

always choose quicker routes, and route preference also de- 358

pends on factors such as route familiarity, road conditions, road 359

characteristics (e.g., toll roads and route complexity), and driver 360

demographics [26]. Other than the preferred route, the most 361

common criterion for acceptance of an alternate route is that 362

it should not exceed the delay threshold (time limit to reach 363

the destination). In this paper, these route choices have been 364

characterized into more generic classifications, i.e., shortest 365

time (ST), shortest distance (SD), and familiar (F) routes. These 366

have been further classified into primary preference (PP) and 367

secondary preference (SP) routes. 368

In CARAVAN, vehicles exchange route preference informa- 369

tion that is used in negotiation and the route-allocation process. 370

Here, route preferences represented as weighted routes are first 371

classified into a number of preference bands. This basic prefer- 372

ence information is further processed to obtain relative ranking 373

between preferences, which is represented as the preference 374

utility index. Each vehicle computes and maintains a preference 375

list Li (where i ∈ V ), which is the list of preferred routes in 376

decreasing order of preference utility index. 377

Preference Utility Weight: pw is calculated by a VA for every 378

alternate route under consideration between the given source 379
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TABLE II
PARAMETERS FOR CALCULATION OF PREFERENCE UTILITY WEIGHT

and destination. Its value is calculated on the basis of a weighted380

combination of parameters, as described in Table II.381

The final preference utility weight pw (for all values of a �=382

−1) is calculated as383

pw=a ∗ w1+c ∗ w2+(1−i) ∗ w3+t ∗ w4+d ∗ w5+f ∗ w6
(4)

where w1, . . . , w6 are the respective weight multiplying factors384

such that w3 = w4 = w5 = w6, signifying that all of them are385

of equal importance. Constants w1 and w2 are equal to and386

greater than all of the other weight factors, signifying their387

relative importance. The sum of weights w1, . . . , w6 is 1, and388

the value of pw for valid routes ranges between 0 and 1. For the389

simulation experiments, the value for w3, . . . , w6 is assumed to390

be 0.1 and that for w1 and w2 to be 0.3. Thus, the higher the391

preference utility weight, the more preferable is that route.392

Preference Bands: Depending on the preference utility393

weights, the agent route choices are classified into preference394

bands. Preference bands convey the preferences in a succinct395

format without significant loss of information while also lim-396

iting the amount of information to be exchanged. Here, we397

classify the preference utility weights into six preference bands;398

the first five band values are between 0 and 1 (at intervals of399

0.2), and the sixth band value is −1, indicating an invalid route.400

Table III shows an example pw matrix for routes r5, r2, and r1401

according to the band classification for vehicles v1−v4.402

TABLE III
PREFERENCE UTILITY WEIGHT MATRIX WITH BAND VALUES

Preference Utility Index: To ensure fairness in allocation, 403

the importance of a route for a vehicle is determined not only 404

by the preference utility weight given by (4) but by the relative 405

importance of that route to a vehicle as well, as compared 406

with its other route choices. For example, vehicle vx with a 407

single route choice in band B1 should be given higher priority 408

than vehicle vy with three route choices in band B1, as vy 409

can choose from any of its three route choices, whereas vx 410

has only a single route choice. Moreover, this increases the 411

probability of driver compliance (driver following the assigned 412

route). In CARAVAN, each vehicle individually calculates the 413

preference utility index for every route in each band based on 414

the following parameters (see Table III): 1) rank—rank of the 415

route, e.g., rank of r5 for v1 is 1 as it is the most preferred route; 416

2) band—band number to which the route belongs, e.g., band 417

of r2 for v1 is B2, i.e., 2; 3) alt—number of alternate routes in 418

that band, e.g., number of alternatives to route r2 for v1 is 0; 419

and 4) dist—if the band number of the current route is 2 and 420

the next best route falls in band 3, the value of this term is 1. 421

Preference utility index pi is calculated as the weighted sum of 422

the given parameters having equal weight multiplying factors, 423

signifying equal importance. Thus 424

pi = 0.25 ∗ (rank + band+ alt+ dist). (5)

The value of the weighting factors sums to 1. The higher the 425

preference utility index, the more preferred is the route. The 426

index values calculated are “band values” for the vehicles. 427

C. Welfare Strategies 428

Welfare strategies (social, rational, and mixed) determine 429

which utility the agents tend to maximize—individual, group, 430

or a combination of both. In addition to utility evaluation, the 431

welfare strategies also govern the choice of final allocation. 432

Social welfare is related to social agents. A social agent is 433

an altruistic agent; it accepts only those deals that increase the 434

overall welfare of the allocation irrespective of its individual 435

welfare. For social agent i, if σ is the initial allocation and σ′ 436

is the final allocation, then the overall utility of final allocation 437

u(σ′) is greater than the overall utility of initial allocation u(σ), 438

which is given as u(σ′) > u(σ). In this type of welfare, every 439

agent performs negotiation deals to maximize the overall utility 440

of the allocation. The welfare of the allocation is evaluated as 441

the sum of the individual utilities of all agents in the allocation, 442

as given in (3). This is referred to as multilateral or group 443

decision-making and results in a multilateral satisficing set 444

[23]. At the end of negotiation deals, every agent exchanges 445

its obtained allocation, and the allocation with the maximum 446

utility value is chosen by all agents. 447

Rational welfare relates to rational agents. A rational agent 448

is a selfish agent. It accepts only those deals that increase its 449
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Fig. 2. Algorithm for CARAVAN.

individual utility value calculated using (2). If σ is the initial450

allocation and σ′ is the final allocation, then the individual451

utility ui(σ
′) of the rational agent in the final allocation is452

greater than its utility in initial allocation ui(σ), which is given453

as ui(σ
′) > ui(σ). In this type of welfare, every agent performs454

negotiation deals to maximize its own utility even at the cost455

of overall welfare. This is referred to as unilateral decision-456

making and results into a univariate satisficing set [23]. At the457

end of negotiation deals (iterations), every VA exchanges its458

allocation. The final choice of the allocation will depend on459

the egalitarian welfare criterion [16], which ensures individual460

welfare of the poorest agent in an allocation. Poorest agent in461

allocation σ refers to an agent with the least utility value.462

Mixed welfare aims to maximize both individual and overall463

welfare. An agent in mixed welfare performs negotiation deals464

to maximize its individual welfare but not at the cost of the465

overall welfare of the allocation. At the end of negotiation466

deals, every agent exchanges its obtained allocation, and the467

allocation with the maximum utility value is chosen by all468

agents.469

D. Algorithm470

Figs. 2 and 3 describe the functionality of CARAVAN. Fig. 3471

outlines the algorithms for each of the social, rational, and472

mixed welfares. The algorithm is initiated when the agents473

detect the necessity of coordinated routing after the initial ex-474

change of preference information on the road segment far prior475

Fig. 3. Algorithm for (i) social welfare, (ii) rational welfare, and (iii) mixed
welfare types of CARAVAN.

to the decision point (junction); this is termed the initiation cri- 476

teria. Every VA starts with an initial solution based on priority- 477

based allocation consisting of routes being ranked as per their 478

priority. The allocation for different values of constants p and c 479

in (2) is done as 1) c = p and c �= 0, i.e., the routes are ranked 480

in decreasing order of preferences and increasing order of travel 481

time; 2) p = 0 OR c �= 0, p �= 0 c > p, i.e., the routes are ranked 482

in increasing order of travel time; and 3) c = 0 OR c �= 0, 483

p �= 0 p > c, i.e., the routes are ranked in decreasing order of 484

preference utility value. Allocations are done starting with the 485

agent with the highest preference index value being assigned to 486

the highest priority route. The allocation can result in an agent 487

being assigned a route for which it has zero preference utility 488

with which to start. The algorithm terminates either after the 489

preset number of iterative deals or at a given distance before 490

the junction (based on the Global Positioning System location), 491

whichever is earlier; this is the termination criteria. Here, we 492

use 20 iterations preset as the termination criteria (empirically 493

found to be acceptable). At the end of all iterations, the agents 494

exchange the resulting allocation and its utility value. The best 495

solution, depending on the type of welfare chosen, is adopted 496

by all the agents. 497

V. EVALUATION OF CARAVAN 498

CARAVAN was simulated using JADE as the agent sim- 499

ulator and VanetMobiSim as the mobility simulator, as de- 500

scribed in Fig. 1. Various road networks were configured in 501

VanetMobiSim using scenario Extensible Markup Language 502

files, and agent behavior (embodying CARAVAN solution) was 503

simulated on JADE. CARAVAN was extensively simulated 504

in the following scenarios: 1) varying values of p and c for 505

a single-junction synthetic road network, 2) varying number 506

of junctions and vehicles for a multijunction synthetic road 507

network, 3) varying number of vehicles—below and above 508

the road capacity for a seven-junction real road network, and 509
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TABLE IV
PERFORMANCE OF CARAVAN FOR A SINGLE-JUNCTION SCENARIO

4) scaling to a wider real road grid network with high vehicle510

count.511

A. Scenario 1: Synthetic Road Networks512

Single-Junction Road Network: In this scenario, we com-513

pare the performance of CARAVAN with three noncooperative514

algorithms: shortest-path algorithm (where p = 0), preference-515

based algorithm (where c = 0), and preference-based shortest-516

path algorithm (where p and c are equal, and p �= 0). The517

simulation was carried out for a simple synthetic road network518

with 13 vehicles and with average capacity of 10 vehicles. For519

preference evaluation, the roads are characterized as being ST,520

SD, or F routes or a combination of them. Every VA is ran-521

domly designated a primary and a secondary route preference.522

The longest of the three road segments is taken to be 17%523

longer than the shortest time route and takes 16.87% more524

time to reach the destination than the shortest distance route.525

The travel speed of a road segment reduces if its occupancy526

exceeds threshold capacity, where the effects of congestion start527

to become visible. The travel speed further drops when road528

occupancy exceeds road capacity, and this is when the vehicles529

travel at an extremely slow speed.530

In the shortest-path algorithm, all vehicles take the path531

with the least amount of travel time between the source and532

the destination, disregarding absolute road capacity (i.e., traffic533

congestion cannot be avoided via cooperation as vehicles do534

not “talk” to each other in this algorithm). The utility of an535

allocation in CARAVAN is calculated using (2), and for this536

scenario, multiplier p is set to zero. Hence, the utility of taking537

a route solely depends on the cost of traveling on it.538

In preference-based allocation, routes are allocated to the539

VAs as per agent preferences. The vehicles take their best route540

choice, disregarding road capacity. There is no IVC involved.541

The utility of the allocation in CARAVAN is evaluated using542

(2), and for this scenario, multiplier c is set to zero. Hence, the543

utility of taking a route solely depends on the preference index544

of the route allocated to that agent.545

In preference-based shortest-path allocation, the vehicles546

take the shortest of their preferred route choices, disregarding547

road capacity. There is no IVC involved. The utility of an548

allocation in CARAVAN is calculated using (2), and for this549

scenario, both p and c are equal, and each has a nonzero value.550

Discussion: Table IV presents the results of the simulation551

with 13 vehicles and compares the total cumulative travel552

time gain obtained using CARAVAN against the three non-553

cooperative algorithms. It is evident that cooperative traffic554

assignment using CARAVAN leads to reduction in the overall555

travel time and offers the highest gains ranging from 22% to556

24% when compared against the shortest-path algorithm. In557

Fig. 4. Five-junction synthetic road network.

CARAVAN, the vehicles communicate and cooperatively dis- 558

tribute themselves along the alternate routes to minimize travel 559

time costs. All vehicles in the shortest-path algorithm only 560

resort to the shortest route (irrespective of road capacity con- 561

straints), which is the key cause of congestion. Preference- 562

based and preference-based shortest-path algorithms are driven 563

by user preferences (who may not always prefer one route). 564

This, in effect, tends to distribute a percentage of the vehicles 565

along the alternate paths instead of crowding the single shortest 566

route. Hence, for most cases, the gain obtained against the 567

shortest-path algorithm is seen to be better than the gain ob- 568

tained against the preference-based algorithm (which is around 569

15%) and the preference-based shortest-path algorithm (which 570

is 22.5%). For the preference-based allocation algorithm, the 571

percentage gain in travel time is slightly higher for mixed 572

welfare than for social welfare. Here, agents using the social 573

welfare strategy try to increase the overall value of the prefer- 574

ence utility index to satisfy more agents, leading to increased 575

travel times. However, the mixed welfare strategy is restrictive 576

as it accepts deals that increase the individual and overall utility. 577

Multijunction Road Network: In this scenario, the road 578

network was scaled up to five, 10, and 15 junctions to ob- 579

serve the performance of CARAVAN on a wider scale. Fig. 4 580

shows the five-junction road network with junctions M, B, 581

R, G, and K denoted by dark dotted circles. The roads in 582

this network are single-lane roads and run from left to right 583

and have speed limits. Every junction splits into two or three 584

alternate routes, each of which differs from the other in terms 585

of length, road capacity, and/or speed limit. The simulation 586

was run for one, three, five, 10, and 15 junctions with A, L, 587

D, and O as the source nodes and J as the destination node. 588

The vehicles exchange information and undertake negotiation 589

and route allocation before reaching each of the junctions. 590

Complexity of the road network, traffic dynamics, and absence 591

of infrastructure nodes make it impractical to predict the exact 592

number of vehicles arriving from different road segments that 593

would meet at a common junction at a given point in time. For 594

this scenario, accurate traffic information was assumed, and 595

vehicles assumed full knowledge of the traffic joining at the 596

forthcoming junctions. 597

Discussion: From the simulation results in Table V, it can 598

be seen that for the multijunction road network, CARAVAN 599

offers significant gain ranging from 21% to 43% in terms of 600
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TABLE V
PERFORMANCE OF CARAVAN FOR A MULTIJUNCTION SCENARIO

(% GAIN IN TRAVEL TIME OVER NONCOOPERATIVE SHORTEST PATH)

travel time over the noncooperative shortestpath algorithm. The601

percentage gain in travel time increases with more junctions602

available for negotiation and route optimization (it is 21%–26%603

for a single junction and around 36% for 15 junctions). This604

indicates that CARAVAN’s local decision-making at every605

junction helps to reduce the overall travel time as it leads to606

a better distribution of vehicles along the road network.607

For single-junction scenarios, when the number of vehicles608

increases, vehicles employing the shortestpath algorithm expe-609

rience increase in their travel time (as they tend to saturate their610

shortest paths). However, in CARAVAN, vehicles are allocated611

along the alternate paths instead of congesting the shortest path.612

Hence, for a single-junction scenario, the gain in percentage613

travel time increases with the number of vehicles (it is around614

21% for 10 vehicles and around 26% for 16 vehicles; the615

capacity of the key shortestpath segment is 10) when compared616

with the shortestpath algorithm. From the results of the social617

welfare strategy, it can be also noted that the gain increases from618

around 21% (single junction) for 10 vehicles to around 43%619

(five junctions) for 24 vehicles. The average network capacity620

being about 30 for the five-junction network, the gain decreases621

with the presence of 30 or more vehicles. Even in the case of622

increased vehicles (e.g., five-, 10-, and 15-junction scenarios623

with 36 vehicles), it can be observed that increasing the number624

of junctions offers tangible improvement in travel time when625

using CARAVAN.626

B. Scenario 2: Real Road Networks627

In this scenario, CARAVAN was applied to a model of a628

seven-junction real road network and an 8 × 4 real road grid629

network adjoining the Melbourne Central Business District. For630

the purpose of simulation, the network sizes were reduced to631

scale while maintaining the original topology and speed limits.632

The capacities of routes were also proportionally reduced to633

approximate values to simplify simulation and evaluation.634

Seven-Junction Real Road Network: Fig. 5 shows the635

Google maps traffic view of the area under simulation. The sim-636

ulations were carried out for a set of vehicles starting from ori-637

gin “A” and “C,” respectively, and traveling toward “B,” where638

the net road capacity of alternate routes (toward “B”) is 30. The639

simulations were carried out for two scenarios: 1) 22 vehicles640

Fig. 5. Road network near the Melbourne Central Business District. (Ovals)
Seven junctions. (Continuous line) Shortest path from A to B (A-C-D-E-F-G-
B). (Dotted lines) Paths from applying CARAVAN for random vehicles #13
(A-C-H-I-J-G-B) and #19 (A-C-D-K-E-F-L-M-B).

TABLE VI
PERFORMANCE (IN % GAIN) WITH CARAVAN FOR A SEVEN-JUNCTION

REAL ROAD NETWORK AS COMPARED WITH

THE SHORTESTPATH ALGORITHM

interacting at a single decision point “C” and 2) 25 and 33 641

vehicles for seven-junction scenarios. (Each decision point is 642

highlighted as an oval in Fig. 4.) These simulations evaluate 643

the performance of CARAVAN for single- and multijunction 644

decision-making and for network demands that are below and 645

above network capacity. To allow a more realistic evaluation 646

(unlike synthetic scenarios), vehicles on this network were not 647

allowed to have accurate real-time information about traffic 648

on forthcoming routes (further away from the neighborhood 649

negotiation zone) and used static traffic information about 650

average traffic on those road segments. Fig. 4 compares the 651

paths obtained by applying the shortestpath algorithm for the 652

randomly selected vehicles #13 and #19 (continuous line) and 653

also the paths taken by these vehicles after the application of 654

CARAVAN (dotted lines). 655

Discussion: Table VI presents the results obtained from 656

the application of CARAVAN with all three welfare types in 657

terms of percentage gain in travel time over the shortestpath 658

algorithm. For scenarios that involve vehicles less than the 659

network capacity, the gain in travel time obtained is around 660

23%–25%, whereas for the scenario involving vehicles that are 661

more than the network capacity, the percentage gain in travel 662

time is between 13% and 17%. It can be seen that for the seven- 663

junction scenario (unlike previous simulation scenarios), the 664

rational welfare strategy performs slightly better than the social 665

and mixed welfares. This can be attributed to the lack of avail- 666

able accurate traffic information about forthcoming routes and 667

corresponding successive local decision-making with estimated 668

information. Here, while the agents using the rational welfare 669
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Fig. 6. Comparing % Gain in travel time of 25 vehicles for the three welfare
types of CARAVAN with the shortest-path algorithm for the seven-junction real
road network.

Fig. 7. Comparing % Gain in travel time for the three welfare types of
CARAVAN with the shortest-path algorithm for the seven-junction real road
network.

strategy perform selfish allocation of least cost routes, the other670

two welfare types resort to a defensive allocation mechanism to671

avoid forthcoming traffic.672

In the 33 vehicles and the seven-junction scenario, the road673

network demand exceeds the network capacity of key roads674

leading toward destination “B.” In this scenario, vehicles will675

experience unavoidable congestion on arterial roads.676

However, CARAVAN performs well even in this situation,677

giving a gain of around 15% over the shortest-path algorithm.678

Fig. 6 presents the percentage gain in travel time for the679

three welfare types for all 25 vehicles from the seven-junction680

scenario from Table VI. It is expected that the lead vehicles681

(#6 to #10) enjoy smooth travel before congestion starts build-682

ing up and, hence, will see an insignificant or no gain. Vehicles683

#20 to #24 join the traffic flow at junction “C” and, thus, take684

less time to reach destination “B” as compared with the rest685

of the vehicles starting at junction “A,” and as a consequence,686

these vehicles showed less gain. Majority of the vehicles are in-687

dividually gaining from the adoption of the rational welfare. For688

the small percentage of vehicles not gaining from CARAVAN,689

the change is negligible. Fig. 7 compares the performance690

of the three welfare types in terms of aggregate percentage gain,691

average percentage gain, best percentage gain, worst percent-692

age gain, and the standard deviation in percentage gain. The693

standard deviation indicates high variability; however, gains694

obtained are significant, and worst percentage gains are low,695

TABLE VII
PERFORMANCE (IN % GAIN) WITH CARAVAN FOR FIVE RANDOM

ORIGIN–DESTINATION PAIRS FOR AN 80-VEHICLE REAL GRID NETWORK

indicating that vehicles not gaining from CARAVAN are not 696

heavily penalized. 697

The 80-Vehicle Real Grid Network: To validate the sta- 698

bility and scalability of CARAVAN, it was applied to a wider 699

8 × 4 real grid network with 80 vehicles. Five scenarios with 700

a random variety of origin–destination pairs were simulated. 701

Table VII compares the performance of CARAVAN (social 702

welfare strategy) and the shortestpath algorithm in terms of 703

percentage gain in travel time for five simulation scenarios. 704

Discussion: As seen in Table VII, even for a wider road 705

network with higher vehicle count, CARAVAN consistently 706

provides 23%–36% gain in travel time over the shortestpath 707

algorithm. It was also observed that the travel time gain in- 708

creased with the increase in total travel distance and the number 709

of junctions encountered as the vehicles got more opportunity 710

to negotiate and arrive at a better allocation. 711

VI. CONCLUSION AND FUTURE WORK 712

We have described CARAVAN, which is a cooperative MAS- 713

based congestion management algorithm, where the VAs ex- 714

change preference information and use virtual negotiation for 715

collaborative route allocation. Use of virtual negotiation is 716

aimed at reaching an acceptable suboptimal solution within 717

a short time frame with very low communication overhead. 718

Depending on the welfare type, the agents try to maximize 719

either the individual or overall utility or both. CARAVAN 720

involves complete autonomy of VAs where they individually 721

explore the solution space. The process of virtual deals is highly 722

individualistic, but it affects or sometimes increases the utility 723

of other agents involved in the deal. Thus, the utility of more 724

than one agent can be maximized using these one-step deals. 725

The simulation results for CARAVAN suggest that MAS- 726

based local cooperation and negotiation is a promising strategy 727

for the traffic route-allocation problem. The results presented 728

compare the performance of CARAVAN with the shortestpath 729

algorithm under different utility maximization conditions, such 730

as social, rational, and mixed welfares. For the single-junction 731

scenario, for different parameter values of p and c, CARAVAN 732

outperformed all three types of noncooperative algorithms. 733

For synthetic road network scenarios (with 3–15 junctions), 734

CARAVAN was seen to offer 21%–43% gain in travel time when 735

compared with shortest-path algorithm. In addition to the social 736

welfare strategy (which maximizes overall utility and was 737

expected to offer gains), even selfish strategies (rational/mixed 738

welfares) were found to offer consistent gains with CARAVAN. 739

When applied to real road networks, CARAVAN was shown 740

to offer around 23%–36% gain in travel time, where traffic de- 741

mand was below the network capacity. Furthermore, even when 742

traffic demand exceeded the network capacity, CARAVAN 743
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continued to offer consistent gains in the range of 13%–17%.744

It was also observed that, in congested network conditions, the745

performance of CARAVAN improves with the increase in deci-746

sion points (junctions) available for negotiation. In the absence747

of real-time accurate traffic information, the selfish rational748

welfare strategy was seen to perform slightly better than the749

“social” welfare strategy, showing the dependence of the latter750

on accurate traffic information. To validate the stability and751

scalability of CARAVAN, it was applied to a wider grid network752

with higher vehicle count (80 vehicles) and simulated for five753

random source–destination pairs. Here, CARAVAN was found754

to consistently perform, offering a gain of 23%–36% in travel755

time over the shortestpath algorithm. The results demonstrate756

that a series of local decision-making can consistently offer757

overall global gains. CARAVAN’s cooperative routing proves758

to be effective as it exhibits adaptive characteristics while acting759

autonomously and in a decentralized manner. This solution760

requires no infrastructure units and is based on a novel concept761

of virtual negotiation that reaches an acceptable solution in a762

short time frame and with low communication overheads. This763

makes CARAVAN a practical and a relatively low-cost solution,764

which can contribute toward overall traffic management.765

Future work will study the algorithm for various preference766

utility weight parameter configurations, varying number, and767

placement of junctions, studying the effect of varying the768

percentage of nonequipped vehicles and noncompliant drivers769

on total travel time.770
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