
Building Intelligent Environments
By Adding Smart Artifacts to Spaces:

a Peer-to-Peer Architecture
Seng W. Loke

Department of Computer Science and Computer Engineering
La Trobe University
VIC 3086, Australia

Email: s.loke@latrobe.edu.au

Abstract—We envision an intelligent environment comprising
collections of smart artifacts, each artifact with an embedded
processor, networking and sensing capabilities. The interactive
capabilities of the environment are due to the collective working
of the smart artifacts. This position paper proposes a rule-based
declarative programming model for programming intelligent en-
vironment behaviours involving a collection of smart artifacts. We
outline our language, provide examples and highlight issues. We
contend that a peer-to-peer architecture forms a useful approach
to building (and extending, over time) intelligent environments,
i.e., by adding (perhaps incrementally over time, a few artifacts
at a time) cooperative programmable smart artifacts to physical
environments.

I. INTRODUCTION

Intelligent environments are “physical environments in
which information and communication technologies and sen-
sor systems disappear as they become embedded into physical
objects, infrastructures, and the surroundings in which we live,
travel, and work.”1 Such physical objects may be everyday
objects such furniture, vases, picture frames, appliances or
simply the walls of the room.

We take the perspective that, while modern intelligent envi-
ronments can be built from scratch by embedding computers
and sensors into the room itself (e.g., the floor and walls), a
normal physical environment such as a living room can be
turned into an “intelligent environment” by adding smart arti-
facts. For example, consider an ordinary living room in an old
house, and add a collection of vases and digital picture frames,
each vase and picture frame with an embedded processor
and sensors, and can network/communicate with each other,
cooperatively monitoring the activities of the inhabitants and
adjusting the environment accordingly through the artifacts’
capabilities (e.g., showing the right photographs and music
according to sensed gestures of the user - where the artifacts
are embedded with cameras, touch sensors, motion sensors
and/or distance sensors, etc).

Programming such an intelligent environment reduces to
programming the distributed collection of computers within
the vases and the picture frames collectively forming “The

1http://en.wikipedia.org/wiki/Intelligent_environments

Computer” with, effectively, a peer-to-peer system architec-
ture. Such a peer-to-peer architecture is naturally extensible
to new artifacts added to the environment - all it takes is
for the new smart artifact (e..g., a new digital picture frame
added to the wall of the room) to make itself known (as a
friend) to one other artifact (e.g., via Bluetooth or other short
range networking technology) and then the network of artifacts
(including the new) is connected.

Further adding smart artifacts (e.g., smart furniture) into
the room (such furniture with sensors and the capabilities to
interact with the picture frames and vases) further enhances
the living room environment, adding behaviours that can be
described as intelligent - e.g., sensing the user sitting on
the chair and adjusting the music and pictures displayed
accordingly. The idea is that a collection of smart artifacts
can be added to almost any physical environment in order to
create intelligent environments. This idea is perhaps similar to
the notion of piling up technologies (or devices) at a place
McCullough [11], except that we also want these devices
to cooperate whether in sensing to recognize human activity
(e.g., [12], [17], [16]) or supporting the user in accomplishing
tasks [8].

What are smart artifacts? There has been rapid recent
developments in the notion of smart artifacts. Smart artifacts
are capable of computationally based behaviours, either by
virtue of sensing their physical property (e.g., position, pres-
ence, state, or how they are handled) and then intelligently
responding to that via some computation, or they might be
everyday objects (e.g., vases, books, furniture, clothings, etc)
endowed with embedded processors, networking and sensing
capabilities, or new types of devices [14]. The notions of
spime [13], context-aware smart artifacts, smart objects, and
things that think2 (e.g., as in [5], [1], [2], [6]) are changing the
way we view ordinary everyday objects and also defining new
kinds of things with networking, computational and sensing
capabilities.

A number of paradigms have been employed to program

2http://ttt.media.mit.edu/

such artifacts, including Web service based methods,3 that
assume each device has an embedded Web server that receives
and responses to invocations, UPnP service styles,4 JINI,5

and peer-to-peer based styles such as JXTA,6 and various
visual editors such as [4], [3], [10]. Recent times have seen
the application of rule-based programming for behaviours of
collections of smart artifacts, such as [15], [18], [4]. Basically,
context information gathered via sensors are reasoned with and
appropriate action taken based on these rules.

While work such as [15] did use a Prolog-based language
implemented on tiny computers, and reasoning was via Prolog
based rules, they did not consider cooperative reasoning among
artifacts by one artifact sending a query to another artifact to
continue reasoning. But in [5], is briefly sketched the vision
of goal evaluation using rules on one artifact that results in
a subgoal (or query) being sent to another artifact, initiating
another goal evaluation there. Subsequently, further subgoal
evaluations might yield another query being sent to a third
artifact and so on, resulting in a peer-to-peer goal evaluation
among a collection of artifacts. However, there are no details
of an implementation model or language.

LogicPeer [7] is a Prolog-based peer-to-peer distributed
programming model. In this paper, we propose ActiveArtifacts-
L, an adaptation of LogicPeer for smart artifacts as one way
of realizing the vision in [5]. The advantage is a semantically
sound basis for cooperative rule-based query processing for
a collection of artifacts, where each artifact has its own set
of rules (a logic program), and so, the artifacts are viewed
effectively as a collection of logic programs.

II. A LANGUAGE FOR ACTIVE ARTIFACTS

LogicPeer is an extension of Prolog with operators that
pass subgoal evaluations to peers. We provide the operational
semantics of ActiveArtifacts-L, which is a simple variation of
that of LogicPeer, with the main difference that each peer
is a smart artifact; ActiveArtifacts-L has two operators, logic
program union and peer-switching. First, the syntax of rules
are as follows:

A : −G

where A is an atom, and goal G is given by:

G ::= A | E ∗ G | (G,G)

where “∗” is the peer-switching operator which redirects
subgoal evaluations to a different peer, and E identifiers one
or more peers given by:

E ::= P | E + E

where P is a peer identifier, which is unique (at least within
the collection under consideration) for a given artifact (this
could map to a low-level identifier such as an IP address, a

3See http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01 and [9]
4See http://www.upnp.org/
5See http://www.jini.org/wiki/Main_Page
6See https://jxta.dev.java.net/

Bluetooh ID, an RFID tag ID, or a friendly name resolved to
a low-level identifier).

The Plotkin-style rules provide the semantics as follows
which extends that of pure Prolog:

[true]
E `ε true

[atom]
E `θ H : −G ∧ γ = mgu(A,Hθ) ∧ E `δ Gθγ

E `θγδ A

[peer − switching] F `θ G

E `θ F ∗G

[conjunction]
E `θ G1 ∧ E `γ G2θ

E `θγ G1, G2

[union]
E `θ H : −G

E + F `θ H : −G,
F `θ H : −G

E + F `θ H : −G

[clause from peer]
(H : −G) found at P

P `ε H : −G

The union operator selects, nondeterministically, one of the
peers to which goal evaluation is directed. In practice, several
peers might be selected until one succeeds. The peer-swtiching
operator effectively passes (in a message) evaluation of the
goal G from E to another peer(s) F and then retrieves the
results. Repeated uses of peer-switching leads to reasoning
chains in [5], but in our model, with multiple subgoals
performing peer-switching or the use of union, a reasoning
tree results involving multiple artifacts (or peers). We also
assume, for practical purposes, that conjunction proceeds one
goal at a time, first do G1 with E and then on completion
(and success), do G2 with the same composition E. Also, in
practice, for union, we might use short-circuit evaluation from
left to right, stopping when one succeeds.

III. AN ILLUSTRATIVE EXAMPLE

Consider a collection of vases, each with an embedded
processor fitted with an interpreter for ActiveArtifacts-L. We
assume that the vases can communicate with each other via
Bluetooth (A vase might not be able to maintain two Bluetooth
connections at a time, in which case, it needs to disconnect
from one, and reconnect to another, and then reconnect later).
Also, Bluetooth has a limit of up to seven other friends that
a peer can simultaneously connect to in a piconet, but this
can be overcomed (albeit with delays) by disconnecting and
connecting.

Let v1, v2 and v3 be three vases and suppose that each
is able to play a guitar chord: “d”, “g”, and “a” respectively.
A song typically comprises a sequence of such chords, each
chord being played for a certain period of time (say, in this
example four beats). Assume that we have a song “s” with
the following sequence “daadgdad”, each chord played for the
same duration of four beats. We can represent this by the
following rule:

play_song(s) :-
play(d), play(a), play(a),
play(d), play(g), play(d),
play(a), play(d).

where the play/1 predicate plays the given chord for four
beats (of a predefined tempo). With our three vases each
playing a different chord, our rule should then be:

play_song(s) :-
v1*play(d), v3*play(a), v3*play(a),
v1*play(d), v2*play(g), v1*play(d),
v3*play(a), v1*play(d).

Then, if one of the vases, say v1 plays the “lead” role which
receives a goal from the user: ?- v1*play_song(s),
then the song is played given the rule above residing in
the knowledge base of v1. But suppose that play(d) only
succeeds with v1, play(g) only succeeds with v2 and also,
play(a) only succeeds with v3, the rule could also be
written as:

play_song(s) :-
(v1+v2+v3)*(play(d), play(a), play(a),

play(d), play(g), play(d),
play(a), play(d)).

which is simpler for the user as s/he does not need to know
(or to specify) which vase plays which chord, and the system
“works out” which vase plays what (but with redundant wasted
messages to vases that don’t play the right chord). This is in
accordance with the semantics of conjunction above which
effectively means the evaluation goes

(v1+v2+v3)*play(d)

then

(v1+v2+v3)*play(a)

then

(v1+v2+v3)*play(a)

and so on.
This becomes a lot more useful if we have say twenty chords

and twenty vases, and have a song involving ten different
chords. Also, the expression (v1+v2+v3) is effectively the
logic program for the collection of three vases, formed from
the individual logic programs of the vases.

However, it could be that the lead vase v1 does not know
of all the other vases. Then, a peer-to-peer model is useful.
For example, consider another song represented by this rule:

play_song(s2) :-
play(d), play(a), play(a),
play(c), play(e), play(d),
play(g), play(a), play(d).

and suppose each vase has the additional rule for chords it
cannot play, say for v1:

play(Chord) :-
Chord \= a,

// chord is not ‘‘a’’
friends(Friends),
(+Friends)*play(Chord).

// pass on the subgoal

which determines that if the chord being asked to be played is
not “a”, it will retrieve a database of peers that it knows about
(or its friends, who are assumed to be stored in the relation
friends/1), and then passes the evaluation to the union of
its friends (the prefix notation +Friends means a union of
the friends in the list Friends).

The song s2 involves chords “c” and “e” which are not
playable by v1, v2 and v3. Hence, the rule on v1

play_song(s2) :-
(v1+v2+v3)*(play(d), play(a),

play(a), play(c),
play(e), play(d),
play(g), play(a),
play(d).)

would now result in friends of v1, v2 or v3 being consulted
for the two chords.

However, note that now, it is possible that the same chord
be played more than once. To ensure that every goal (or chord)
is only executed (or played) once, we can have each subgoal
sent from the lead vase v1 assigned a unique identifier in the
lead vase, so that a subgoal that is received and passed on to
friends is passed on with the same identifier. This means that
a fourth vase, v4 say, on receiving a subgoal (to play chord
“c” say) checks to see if it has executed the subgoal, and if
not, it plays the chord, and if it has, it drops the subgoal.

Vase v1 may have motion sensors and distance sensors that
recognize specific user movements and gestures, which result
in the goal play_song/1 being invoked.

In a living room with such vases placed around the room
(effectively now an intelligent environment), different user
gestures and movements can be recognized and appropriate
ActiveArtifacts-L rules triggered to coordinate a response to
the user.

IV. CONCLUSION

We have proposed a flexible approach to turning a normal
physical environment into an intelligent environment, that is,
by adding a collection of smart programmable artifacts to the
physical environment. We have also sketched ActiveArtifacts-
L, an extension of pure Prolog, based on LogicPeer, to program
behaviours of a collection of artifacts. The advantage is the
declarative programming style, and the simple semantics: the
program over a collection of artifacts can be viewed as the
program (formed by the union of the individual logic programs
residing in the collection of artifacts). Issues emerging include:

• trade-off efficiency and costs for abstraction: we saw that
the union operator can provide simplicity for program-
ming but involves overheads of messaging to implement.

• handling redundancies: our scheme works as we know
a priori that a chord can only be played by exactly one

vase (but would still work if a vase could play multiple
chords), but more general scenarios must be investigated,
certainly drawing on the existing extensive work on peer-
to-peer computing.

• small footprint interpreters: we have assumed vases with
the ability to contain an ActiveArtifacts-L interpreter, but
the impact of resource limitations on expressivity of
programs must be investigated further.

• incremental development: the programming model is scal-
able in that individual programs need not change as long
as the peers’ individual friend databases are updated to
record new artifacts - basically, an artifact need only to
make itself known to one other artifact to join the peer
network; however, bounds on execution times are then
needed to ensure that subgoal evaluations are bounded
by time and resources.

Future work will involve implementations and further exam-
ples of the above model, perhaps based on a JavaME or
Android platform. We aim to further prototype and explore
our notion of intelligent environments (as spaces endowed with
collections of programmable smart artifacts) in settings such
as shops and offices. While this paper proposes a peer-to-peer
approach, hybrid peer-to-peer and centralized infrastructure
techniques can also be employed.

REFERENCES

[1] Hans W. Gellersen, Albercht Schmidt, and Michael Beigl. Multi-sensor
context-awareness in mobile devices and smart artifacts. Mob. Netw.
Appl., 7(5):341–351, 2002.

[2] Neil Gershenfeld. When Things Start to Think. Henry Holt and Co.,
Inc., New York, NY, USA, 1999.

[3] C. Goumopoulos and A. Kameas. Ambient ecologies in smart homes.
Comput. J., 52(8):922–937, 2009.

[4] Achilles Kameas, Irene Mavrommati, and Panos Markopoulos. Com-
puting in tangible: using artifacts as components of ambient intelligence
environments. In In Ambient Intelligence: The evolution of Technol-
ogy, Communication and Cognition (G.Riva, F.Vatalaro, F.Davide and
M.Alcaniz,eds), pages 121–142. IOS Press, 2004.

[5] Gerd Kortuem, Fahim Kawsar, Vasughi Sundramoorthy, and Daniel
Fitton. Smart objects as building blocks for the internet of things. IEEE
Internet Computing, 14:44–51, 2009.

[6] Seng W. Loke. Context-aware artifacts: Two development approaches.
IEEE Pervasive Computing, 5(2):48–53, 2006.

[7] Seng W. Loke. Declarative programming of integrated peer-to-peer and
web based systems: the case of prolog. J. Syst. Softw., 79(4):523–536,
2006.

[8] Seng W. Loke, Sea Ling, Gerry Butler, and Brett Gillick. Levels of
abstraction in programming device ecology workflows. In ICEIS (4),
pages 137–144, 2005.

[9] Seng Wai Loke. Service-oriented device ecology workflows. In ICSOC,
pages 559–574, 2003.

[10] Nicolai Marquardt, Tom Gross, M. Sheelagh T. Carpendale, and Saul
Greenberg. Revealing the invisible: visualizing the location and event
flow of distributed physical devices. In Marcelo Coelho, Jamie
Zigelbaum, Hiroshi Ishii, Robert J. K. Jacob, Pattie Maes, Thomas
Pederson, Orit Shaer, and Ron Wakkary, editors, Tangible and Embedded
Interaction, pages 41–48. ACM, 2010.

[11] Malcolm McCullough. Digital Ground: Architecture, Pervasive Com-
puting, and Environmental Knowing. MIT Press, Cambridge, MA, USA,
2004.

[12] Matthai Philipose, Kenneth P. Fishkin, Mike Perkowitz, Donald J.
Patterson, Dieter Fox, Henry Kautz, and Dirk Hahnel. Inferring activities
from interactions with objects. IEEE Pervasive Computing, 3(4):50–57,
2004.

[13] Bruce Sterling. Shaping Things. MIT Press, 2005.

[14] Norbert A. Streitz, Carsten Rocker, Thorsten Prante, Daniel van Alphen,
Richard Stenzel, and Carsten Magerkurth. Designing smart artifacts for
smart environments. Computer, 38(3):41–49, 2005.

[15] Martin Strohbach, Hans-Werner Gellersen, Gerd Kortuem, and Christian
Kray. Cooperative artefacts: Assessing real world situations with
embedded technology. In Ubicomp, pages 250–267, 2004.

[16] Martin Strohbach, Gerd Kortuem, Hans-Werner Gellersen, and Christian
Kray. Using cooperative artefacts as basis for activity recognition. In
EUSAI, pages 49–60, 2004.

[17] Emmanuel Munguia Tapia, Stephen S. Intille, and Kent Larson. Portable
wireless sensors for object usage sensing in the home: Challenges and
practicalities. In AmI, pages 19–37, 2007.

[18] Tsutomu Terada and Masahiko Tsukamoto. Smart object systems by
event-driven rules. In Proc. of the 1st International Workshop on Smart
Object Systems, pages 100–109, 2005.

