
Task-Oriented Systems for Interaction with

Ubiquitous Computing Environments

Chuong C. Vo, Torab Torabi, and Seng W. Loke

Department of Computer Science, La Trobe University, VIC 3086, Australia
{c.vo,t.torabi,s.loke}@latrobe.edu.au

Abstract. We present the design and implementation of a task-oriented
system, that dynamically binds user tasks to available devices and ser-
vices within a ubiquitous environment. The system provides users with
a task-based interface for interacting with the environment. This inter-
face is re-oriented around user tasks, rather than particular functions
of individual devices or services. The system has two main feature: (1)
context-aware task recommendation and (2) task guidance, execution,
and management. The fundamental input into the system is task de-
scriptions, XML specifications that describe how tasks are executed. The
abstraction of these descriptions allows tasks to be executed in diversely
ubiquitous computing environments.

Key words: Task-Based Interface, Smart Space, Ubiquitous Computing

1 Introduction

A ubiquitous computing environment consists of a rich set of casually accessible,
and often invisible devices and software services [1]. They are expected to seam-
lessly integrate and cooperate in support of human tasks. However, it is often
difficult for users to use such the environment to accomplish their tasks. Accord-
ing to a recent study [2], half of all reportedly malfunctioning devices returned
to stores are in full working order; customers just couldn’t figure out how to
operate them. In another user study [3], some participants saw technologies as
something excessive, sometimes useless and invasive while others (particularly,
mature adults with non-technical backgrounds) only used them to perform basic
tasks. A study on usability of smart conference rooms [4] also found that the
users tended to rely on experts (wizards) for technical operations. This phe-
nomenon is often referred to as the usability crisis in digital products including
ubiquitous environments. There are at least two factors that lead to this crisis:
overload of functions and complexity of user interfaces [5].

As an environment is increasingly embedded with computers and devices,
together with the devices we carry with us, the range of available tasks will
explode. This explosion would overwhelm users, hindering them from recognis-
ing and performing available tasks. Since devices and services are distributed
and sometimes invisibly vanished into the environment’s physical infrastructure,
many of which users may not even be aware of [6]. Moreover, to accomplish a

2 Chuong C. Vo et al.

task, a user must determine how to split it into sub-tasks for each device or
service and then find particular functions of each device or service to accomplish
the sub-tasks [7]. The explosion of functions makes this work difficult for the
user, especially in unfamiliar environments.

The complexity of devices’ user interfaces essentially comes from three fac-
tors. First, since devices have no knowledge of what task a user intend to ac-
complish, they often provide the user with all functions which are often in form
of buttons and menus. The user needs to switch between the devices’ interfaces
and to appropriately combine buttons and menus for accomplishing the task.
This requires the user to understand the task decomposition and the devices’
capabilities. Second, since there is little or no goal-action consistency [8] between
the interfaces, the user must learn to operate them separately (i.e., there is no
“transfer of training”). Third, it is easy to add features to devices, hence result-
ing to complexity that has exceeded the capacity of user interfaces [5]. Therefore,
controls get overloaded, leading to heavily-moded interfaces, push-and-hold but-
tons, long and deep menus [9].

Our solution to these problems is based on the concept of task-driven com-
puting [10, 11, 12]. We have developed a task-oriented system called TaskOS,
acting as a bridge that links tasks and available functions of a ubiquitous environ-
ment and that shields users from variations in devices’ and services’ availability.
TaskOS provides users with a task-based user interface, interfaces are organised
according to users’ tasks. In particular, TaskOS has the following features:

– Context-aware task recommendation: recommend users for tasks based on their
context and available devices and services in the current environment.

– Proactive task guidance: provide users with instructions to complete a task.
– Task execution management: manage task execution, multi-tasking, resource
conflicts, and adaptation to variations in availability of devices and services.

The remaining of this paper is organised as follows. Section 2 presents an
overview of how TaskOS works. Section 3 presents a generic conceptual archi-
tecture for TaskOS. Section 4 presents an implementation and a performance
evaluation of TaskOS. Section 5 presents related work. The conclusion and
future work are given in Section 6.

2 Envisioned Operation of TaskOS

Developers create or modify a task in a task description, an XML specification
describing how the task is executed. They register the description with a task
repository, where it becomes available as a recommendation to users according
to their context. Fig. 1 shows a description of the “checkout a book” task.

Automatically or when asked by a user (e.g., let’s call Bob), TaskOS rec-
ommends him for relevant tasks possible in the current environment based on
his context. He can also issue queries to search for an intended task. Once Bob
selects a task to perform, TaskOS executes its description and guides him to

Task-Oriented Systems for Interaction with Ubiquitous Environments 3

<taskModel about="models:BookCheckOut"
xmlns="http://ce.org/cea-2018"
xmlns:dc="http://purl.org/dc/elements/1.1">

<task id="Borrow">
<dc:title>check out a book</dc:title>
<subtasks id="borrowing">
<step name="go" task="GoToCheckOutDesk"/>
<step name="identifybook" task="IdentifyBook"/>
<step name="identifyuser" task="IdentifyUser"/>
<step name="checkout" task="CheckOut"/>
<binding slot="$checkout.book" value="$identifybook.book"/>
<binding slot="$checkout.user" value="$identifyuser.user"/>

</subtasks>
</task>
<task id="GoToCheckOutDesk">
<dc:title>go to the checkout desk</dc:title>

</task>

<task id="IdentifyBook">
<dc:title>identify the book</dc:title>
<output name="book" type="String"/>
<subtasks id="IdentifyingBook">
<step name="scanbook" task="SwipeBook"/>
<step name="getbook" task="GetBook"/>
<binding slot="$scanbook.external" value="true"/>
<binding slot="$this.book" value="$getbook.book"/>

</subtasks>
</task>

<task id="IdentifyUser">
<dc:title>identify the borrower</dc:title>
<output name="user" type="String"/>
<subtasks id="IdentifyingUser">
<step name="scanidcard" task="SwipeIdCard"/>
<step name="getuser" task="GetUser"/>
<binding slot="$scanidcard.external" value="true"/>
<binding slot="$this.user" value="$getuser.user"/>

</subtasks>
</task>

<task id="SwipeBook">
<dc:title>swipe the book over the barcode reader</dc:title>
<script>Packages.TaskOS.callService("scanbookid");</script>

</task>

<task id="GetBook">
<output name="book" type="String"/>
<script>

$this.book = Packages.Event.getValue();
Packages.TaskOS.print("The book ID is " + $this.book);

</script>
</task>

<task id="SwipeIdCard">
<dc:title>swipe your ID card over the card reader
</dc:title>
<script>

Packages.TaskOS.callService("scancardid");
</script>

</task>

<task id="GetUser">
<output name="user" type="String"/>
<script>

$this.user = Packages.Event.getValue();
Packages.TaskOS.print("Your ID is " + $this.user);

</script>
</task>

<task id="CheckOut">
<input name="book" type="String"/>
<input name="user" type="String"/>
<script>

Packages.TaskOS.callService("checkoutbook " +
$this.book + " " + $this.user);

Packages.TaskOS.print("The book " + $this.book +
" is checked out by " + $this.user + ".");

</script>
</task>

</taskModel>

Fig. 1. Description for the “checkout a book” task written in CE-TASK [13].

Fig. 2. Task-based interface for executing the “checkout a book” task.

complete it via a task-based user interface. Fig. 2 shows a number of screens
TaskOS presents to him for completing the “checkout a book” task.

Bob can perform multi-tasks concurrently. When he comes back to an un-
finished task, TaskOS presents its current step to him, so he can continue it.
He can suspend the task interface on one interaction device and resume it on
another device. He can query status of a task to see what steps have or haven’t

4 Chuong C. Vo et al.

been done. For example, the screens 5 and 9 in Fig. 2 show two statuses of a task.
The user can also request TaskOS to cancel, undo, or redo an ongoing task.

3 Generic Conceptual Architecture

Computing
Services

Context Information
Manager (CIM)

Context-Aware
Task Recommender

Service & Device
Manager (SDM)

Task Execution
Engine (TEE)

Task-Based User
Interface (TaskUI) User

Computing
Devices

Task
Descriptions

manual operations

Fig. 3. Generic conceptual architecture for TaskOS. The components with grey-fill
and solid border are our focus in this paper.

Fig. 3 illustrates an architecture for TaskOS. The Service & Device Man-
ager (SDM) manages devices and services. The Context Information Man-
ager (CIM) manages context information and answers context queries to other
components. This paper focuses on the Task Execution Engine (TEE), Context-
Aware Task Recommender (TaskRec), Task-Based User Interface (TaskUI)
components and task descriptions.

TaskRec [14] suggests to users possible and relevant tasks based on their
context and environment capability. TaskUI is an interface for users to interact
with TaskOS. TEE loads, verifies, and executes task descriptions. While exe-
cuting a task, if TEE needs input from users or wants to present information
or instructions them, it sends an interface request to TaskUI. How TaskUI

presents this request depends on the current interface modality; it may be vi-
sual, spoken, tactile, or multimodal. If the users perform manual operations on
devices, TaskUI will simply present them necessary instructions.

A task description specifies steps involved in completing a task. It includes
user steps performed by humans and system steps performed by machines. A
primitive step is a manual operation on a device or an abstract call to a service
or device’s function. To execute a call, TEE passes it to SDM for reasoning about
an available service or device’s function. Hence, developers can abstractly specify
calls in a task description; so they can be executed in diverse environments where
the availability of devices and services is often unforeseen by the developers.

Task-Oriented Systems for Interaction with Ubiquitous Environments 5

4 Implementation

This section presents how we describe tasks, how we implement TaskRec that
recommends tasks based on user context, and how we implement TEE and
TaskUI that executes tasks and provides task guidance.

4.1 Task Description

To describe tasks, we use CE-TASK [13]. CE-TASK allows us to describe high-
level, multi-device tasks abstractly from networking technologies and interaction
modality. Since it is a mark-up language, CE-TASK descriptions are human-
readable and machine-interpretable. Its key expressive features include tasks,
input and output parameters, preconditions and postconditions, grounding, task
decomposition, temporal order, data flow, and applicability conditions. Fig. 1
shows a CE-TASK description for the task “checkout a book”.

4.2 Task Recommendation

To recommend tasks for users, we implement place-based and pointing-based task
recommender called TaskRec. We model a place as a hierarchy of sub-places.
The lowest level in the place hierarchy is device’s zone. Then we associate a task
with one or more places. TaskRec keeps inquiring CIM, that monitors users’
locations, to get a user’s current place for every second. Then it recommends
tasks which are associated with that place. In our experiment, it took no longer
two seconds for a user to get task recommendations once s/he changed the place.
This latency includes the network latency for sending location information to
CIM, the time for updating location at CIM, the one-second interval for each
place enquiry at TaskRec, and the time for generating recommendations and
sending them to the user device. In the following, we present how to estimate
users’s current place and pointing directions.

To identify outdoor places, we use the global positioning system. We
represent a location of an outdoor place by two attributes: a geo-coordinate
(latitude and longitude) representing the place’s centre and a radius representing
the place’s area. So, if the distance between a user’s and a place’s geo-coordinates
is less than its radius, s/he is seen located in that place, hence s/he is also seen
located in its ancestors in the place hierarchy. The user can switch between these
places to get different task recommendations.

To estimate outdoor pointing direction, we use compass heading. For
each place (called i) in the user’s surrounding, CIM computes an angle (βi)
formed by three points: north pole (P0), user’s current geo-coordinate (Pu), and
place’s geo-coordinate (Pi) using Formula 1. It then compares βi with the current
compass heading (α) to get a difference (δi). The smaller δi the more likely the
user is pointing at the place i. Therefore, if the smallest difference δj found is
less than an angle threshold, CIM infers that the user points at the place j.

6 Chuong C. Vo et al.

βi = arccos

(−−−→
PuP0 ·

−−−→
PuPi

|
−−−→
PuP0|× |

−−−→
PuPi|

)

= arccos

(

(x0 − xu)(xi − xu) + (y0 − yu)(yi − yu)
√

(x0 − xu)2 + (y0 − yu)2 ×
√

(xi − xu)2 + (yi − yu)2

)

, (1)

where (xu, yu), (xi, yi), and (x0, y0) represent the latitude and longitude of
Pu, Pi, and P0 respectively. In our implementation, we selected P0 at (90, yu).

To identify indoor places, we use the Bluetooth and RFID technologies.
In our experiment, each user registers with TaskOS for one or more Bluetooth
addresses and each place is associated with a Bluetooth scanner. The scanner
keeps enquiring for Bluetooth devices. Once it discovers a Bluetooth device,
it sends to CIM a three-tuple of 〈place’id, discovered Bluetooth address, time-
stamp〉 allowing CIM to infer a user’s current place. However, if a user is in an
overlapped coverage of two or more scanners, CIM changes the user’s place as
frequently as it receives a report from one of these scanners; causing the task
list to be unstable. To address this problem, CIM uses a time threshold for
which if a user’s current place keeps changing within this threshold, CIM will
use their nearest ancestor in the place hierarchy as the current place. To avoid
these overlapping cases, we use short-range RFID technologies. Accordingly, a
place is associated with a 10cm-range RFID reader. A user swipes a passive
RFID tag over the reader to update her/his current place.

To estimate indoor pointing direction, we use the Cricket system [15].
Cricket consists of beacons and listeners. It uses Time-Difference-Of-Arrival be-
tween radio frequency and ultrasound to estimate a distance between a beacon
and a listener (the accuracy is between 1cm and 3cm). A beacon is worn by a
user or fixed to the user’s personal device. A device is attached with a listener
(devices are places at the lowest level in our place hierarchy). The listener keeps
scanning for beacons within its range. Once it discovers a beacon, it sends CIM
a four-tuple of 〈device’id, discovered beacon’id, distance, time-stamp〉. CIM keeps
comparing fresh distances (within last two-seconds in our experiment) between
the same beacon and the listeners, that report these distances to CIM, to infer
the device currently nearest to the user. The tasks which are associated with
this device are recommended to the user.

4.3 Task Execution & Task-Based User Interface

We implement TEE based on a reference implementation of a task engine in [5].
TEE can listen to CIM for external events and react accordingly. For example,
the “checkout a book” task has three user sub-tasks: “go to the checkout desk”,
“scan the book’id”, and “scan the ID-card”. For the first sub-task, assume that
the system cannot recognise the user is already at the checkout desk, it needs
her/him to confirm once s/he has done this. So, it asks TaskUI to present
her/him a button “I’ve done this” (see Step 2 in Fig. 2). For the second and
third sub-tasks, CIM notifies TEE once the user has done each of them. There
is no button “I’ve done this” on TaskUI as shown in Steps 3 and 6 in Fig. 2.

Task-Oriented Systems for Interaction with Ubiquitous Environments 7

By introducing SDM in TaskOS, a service call in a task description is ab-
stractly defined as TaskOS.callService(‘<service name and arguments>’).
TaskOS will pass the call to SDM for reasoning about a specific service.

We implement TaskUI as a web-page using Ajax technologies [16]. An ad-
vantage of using web-based user interface is the portability of interface from one
computer to another computer without a need of installing the system on them.
Ajax allows us to hide communication between TaskUI and other components
of TaskOS from the user, and to update TaskUI autonomously.

5 Related Work

InterPlay [17] allows users to express their tasks via a pseudo-English interface,
then the system does the rest to achieve them. But the users must learn how to
express their tasks properly. Similarly, a task execution engine [18] can discover
and bind the best available resources for executing a task. However, these systems
do not recommend users possible tasks or provide the users task guidance.

Huddle [7] automatically generates interfaces for tasks involving multiple con-
nected devices, yet it only supports multimedia tasks that rely on data flows.

A Task Computing Environment (TCE) [11] assists users in completing tasks.
It represents a task as a composition of web services. Since like workflows,
web services and compositions thereof are autonomous, TCE only supports au-
tonomous, one-step, or batch tasks1, such as “exchange e-business card”. In
particular, the task of exchanging e-business cards is a batch execution of two
services: one returning someone’s contact, the other adding this contact into
someone else’s contact list. TCE does not support multi-step, interactive tasks
such as ‘borrow a book ’. To complete this kind of tasks, users must interact with
several devices and/or with an interactive user interface to provide inputs (e.g.,
user identity and book call number) and to get instructions for completing tasks,
e.g., where the book is located and how to get there.

The Aura system [19] supports the migration of tasks between environments.
Since Aura’s task description language is designed only for capturing the status
of tasks, it cannot describe envisioned tasks, which will be executed in the future.

6 Conclusion

This paper has presented the concept, design, and implementation of a task-
oriented system calledTaskOS for ubiquitous computing environments.TaskOS

provides users with a task-based user interface called TaskUI. The system is
able to recommend users with possible tasks based on users’ location, surround-
ing devices, and users’ pointing gestures. It can execute task descriptions and
guide users through the task executions.

The future work includes developing a graphical tool for authoring task de-
scriptions, implementing other features of TaskOS such as undo, redo, task-
recording- replaying, why menus, and adaptation to variations in resource avail-
ability, developing algorithms and techniques for efficient and effective storing,

1 A batch task requires its inputs to be given before being executed.

8 Chuong C. Vo et al.

retrieving task descriptions, extending CE-TASK to support recognising possible
tasks in an environment, and mining task instructions on the internet.

References

1. M. Weiser. The computer for the 21st century. Sci. American, 3(265):94–104, 1991.
2. E. Den Ouden. Developments of a Design Analysis Model for Consumer Com-

plaints: revealing a new class of quality failures. PhD thesis, Technische Universiteit
Eindhoven, 2006.

3. M. C. Brugnoli, J. Hamard, and E. Rukzio. User expectations for simple mobile
ubiquitous computing environments. In Proceedings of the Second IEEE Interna-
tional Workshop on Mobile Commerce and Services, pages 2–10, 2005.

4. G. Golovchinsky, P. Qvarfordt, B. van Melle, S. Carter, and T. Dunnigan. DICE:
Designing conference rooms for usability. In Proceedings of the 27th International
Conference on Human Factors in Computing Systems, pages 1015–1024, 2009.

5. C. Rich. Building task-based user interfaces with ANSI/CEA-2018. Computer,
42(8):20–27, 2009.

6. S. A. N. Shafer, B. Brumitt, and J. J. Cadiz. Interaction issues in context-aware
intelligent environments. Hum.-Comput. Interact., 16(2):363–378, 2001.

7. J. Nichols, B. Rothrock, D.H. Chau, and B.A. Myers. Huddle: Automatically
generating interfaces for systems of multiple connected appliances. In Proceedings
of the Symposium on User Interface Software and Technology, pages 279–288, 2006.

8. A Monk. Noddy’s guide to consistency. Interfaces, 45:4–7, 2000.
9. H. Lieberman and J. Espinosa. A goal-oriented interface to consumer electronics

using planning and commonsense reasoning. Know.-Based Syst., 20(6):592–606,
2007.

10. Z. Wang and D. Garlan. Task-driven computing. Technical report, School of
Computer Science, Carnegie Mellon University, 2000.

11. R. Masuoka, B. Parsia, and Y. Labrou. Task computing—the semantic web meets
pervasive computing. In Proceedings of the Second International Semantic Web
Conference, pages 866–881, Florida, USA, 2003.

12. S.W. Loke. Building taskable spaces over ubiquitous services. IEEE Pervasive

Computing, 8(4):72–78, 2009.
13. Consumer Electronics Assoc. Task model description (CE Task 1.0), ANSI/CEA-

2018, Mar. 2008.
14. C.C. Vo, T. Torabi, and S.W. Loke. Towards context-aware task recommendation.

In International Conference on Pervasive Computing, pages 289–292, 2009.
15. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket location-

support system. In Proceedings of International Conference on Mobile Computing

and Networking, pages 32–43, 2000.
16. J. Garrett. Ajax: A new approach to web applications. Online, Feb. 2005.
17. A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song, P. Kumar, P. Nguyen,

and K.H. Yi. InterPlay: A middleware for seamless device integration and task
orchestration in a networked home. In Proceedings of International Conference on

Pervasive Computing and Communications, pages 298–307, 2006.
18. A Ranganathan. A Task Execution Framework for Autonomic Ubiquitous Com-

puting. PhD thesis, University of Illinois at Urbana-Champaign, 2005.
19. D. Garlan, D.P. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura: To-

ward distraction-free pervasive computing. IEEE Pervasive Computing, 1(2):22–
31, 2002.

