
Towards Context-Aware Task Recommendation
Chuong Cong Vo, Torab Torabi and Seng W. Loke

Department of Computer Science & Computer Engineering, La Trobe University
{c.vo, t.torabi, s.loke}@latrobe.edu.au

Abstract—Pervasive computing environments can provide a di-
verse range of computing capabilities. But they are overwhelming
for us as we attempt to accomplish our daily tasks. We need
to know what resources are at hand and what tasks a PCE
supports. Our ongoing research aims to minimise this overload
by proposing a context-aware task recommender system named
TASKREC which can recommend or automatically accomplish
feasible and relevant tasks for users according to user’s situation
and environment capabilities. This paper formalises the problem
of task recommendation, presents a system architecture for
TASKREC, and an early prototype implementation. Finally, we
suggest open opportunities for future research on adaptation
techniques for context-aware systems.

Index Terms—Recommender Systems, Task Recommendation,
Pervasive Computing, Context-Awareness, Task Computing

I. I NTRODUCTION

The world is moving towards universally connected spaces
where “technologies weave themselves into the fabric of every-
day life. . . ” [1]. Spaces in such a world are often referred toas
pervasive (or ubiquitous) computing environments (PCEs) [2].
However, a challenge of adding intelligent technologies toour
lives is to “support our activities, complement our skills,and
add to our pleasure, convenience, and accomplishments, but
not to our stress” [3].

Adding technologies into everyday settings, on one hand,
facilitates our activities but on the other hand, overwhelms
our perception and cognition ability by the overload of infor-
mation, services, and configurations [4], [5]. To exploit such
an environment, users must (1) recognise capabilities of the
environment to issue feasible tasks; (2) map their high-level
goals of tasks to low-level operational vocabularies; and (3)
properly specify constraints for tasks subject to contextual
information and available capabilities. These requirements
may be beyond ordinary users as complexity, diversity, and
sheer number of devices (as well as different combinations of
ways they can work together) continually rises.

Invisibility is a goal of PCEs, where devices should operate
naturally and unobtrusively, and blend well into the environ-
ment. However, the invisibility can pose problems. People
may not recognise the presence of facilities available to them.
For example, there could be thirty to a hundred computing
devices inside a future meeting room. They may provide
various capabilities (some capabilities perhaps providedby a
combination of such devices), some of which the user may not
even be aware and some of these devices may not be visible
to him/her.

To address the overload and invisibility problems, there
have been research efforts onubiquitous recommendation

systems[6] and context-aware recommender systems[7] that
aim to recommend relevant information and services to users.
However, users are still required to integrate the recommended
information and services to achieve their intended tasks [8].
This calls forcontext-aware task recommender systemswhich
can recommend or even automatically accomplish relevant
tasks for users subject to current context and available services.
In other words, the context-aware task recommender system
can deal with the question of “What tasks should I do with
devices, information, and services I currently have?”

This paper presents a context-aware task recommender
system (TASKREC). Derived from the behavioural psychology
science which assertspeople behave similarly in similar situ-
ations[9], we assume thatpeople accomplish similar tasks in
similar situations. Our task recommendation applies multiple
strategies:collaborative filtering based on situation similarity,
knowledge-based filtering, andutility-based filtering.

The paper is organised as follows. Section II presents a
motivating scenario for which TASKREC is useful. Section III
formulates the task recommendation problem. Strategies for
recommendation are elaborated in Section IV. Section V
presents an architecture for TASKREC. The implementation
and simulation of the scenario are described in Section VI.
Section VII outlines the related work. Finally, a conclusion
and an ongoing research agenda are given in Section VIII.

II. M OTIVATING SCENARIO

This section describes applications of TASKREC via a
scenario involving places:house, car park, andoffice.

“At 7am on a cold, rainy Monday morning, when Bob has
stepped out towards his office,TASKREC on his smartphone
recommends him a task ‘Drive to work’. As Bob selects this
task, the heater and the TV are turned off; his smartphone is
switched to outdoor mode; all calls to his home phone will
now be forwarded to his smartphone; the doors of his house
are closed. The car’s radio is turned to news channel while
he is driving. . .

When Bob is about to approach the car park at the uni-
versity,TASKREC recommends ‘Find a parking place’ task
which guides him to an available parking spot. The car is
parked, he walks to his office. The door is opened as he is
nearly in the font of it. The room’s overhead lights and the
heater are turned on and adjusted to his preference as he steps
into the room. His smartphone is now changed to quiet mode.
The teapot is on because he always has a cup of tea in early
mornings before focusing on the work. . . ”



III. PROBLEM FORMALISATION

A. Ideas and Assumptions

The main questions are: what tasks to be recommended;
how to determine them; and in what sequence they should
appear. To answer these questions, we make the following
assumptions.

(i) User always prefers tasks which are highlyrelevant to
his current situation. A task is called relevant to the user
if accomplishing the task will satisfy the user’s intention.

(ii) For tasks having the same degree of relevance, the more
feasiblethe task is, the more preferred it is. The feasi-
bility for accomplishing a task depends on the current
capabilities of the environment.

(iii) If two tasks are equally feasible, then the task which is
more autonomousis more preferred. The autonomy of
task operation expresses user’s intervention required to
accomplish the task (without concern about the capability
of the environment).

Accordingly, the problem of task recommendation now be-
comes the problem of ranking tasks based on three measures:
the relevance of task to user’s situation, the feasibility to ac-
complish a task in the current environment, and the autonomy
of task performance. In the following, we define concepts used
in our methodology for task recommendation and how these
measures are computed.

B. Tasks

A task is a unit of work. Tasks are classified to places
and devices which are calledplace-relatedanddevice-related
tasks. For example,room-related tasksareMake room bright,
Make room warm, andMake tea. The list of all potential tasks
in a given environment is called atask repository.

Fulfillment of a task may require capabilities from the
environment in which the task will be carried out. For example,
the task ofMake room warm requires capabilities for increasing
temperature which can be provided by, e.g.,heater-like

devices. We call themrequired capabilities.
A description of how a task should be executed is calledtask

flow. A task flow decomposes a task intosub-tasks. The sub-
tasks are then decomposed further until they can be executed
directly by invoking services.

To measure how the operation of a task being intrusive
to a user, we introduce the concept oftask autonomy. The
autonomy of a task indicates to what extent the task can be
accomplished automatically and how much user intervention
is required. Obviously, the degree of autonomy depends on the
autonomy of sub-tasks of a task.

For measuring the feasibility of a task, we take into account
the capabilities of the environment which refers to software
services and device functionalities. The PCEs are highly
dynamic environments, hence, it is significant to measure the
feasibility of tasks for recommendation.

Time (15:00 4/4/2009)

Hour (15) Date (4)
Day-of-Week
(Saturday) Month (4) Year (2009)

Time-of-Day
(afternoon)

Time-of-Week
(weekend)

Season
(Autumn)

Fig. 1. The decomposition of the time context.

C. Context and Situation

We adopt an operational definition ofcontext by
Dey et al. [10]: “Context is any information that can be used
to characterise the situation of an entity.”

Ontology-based context modelling [11] is widely accepted
thank to semantic expressiveness and knowledge sharing of
ontologies. As designers, we model contexts asattribute-
value pairs, e.g. (Time-Context, ‘15:00 4/4/2009’). Each
context attribute can be decomposed into different levels of
generalisation (seeTime-Context in Fig. 1). The system can
query for values at arbitrary levels of generalisation. The
reasoning is done by the context manager.

Situationsare characterised by contextual information. We
argue that for any matters a situation is modelled and repre-
sented (e.g.,formal logics [12]), we are able to convert the
models into thevector-based situation model. Formally, letst

be a situation at timet, we definest as a vector of contexts
at time t: s

t = (ct
1
, ct

2
, . . . , ct

n), where
• n is the number of context attributes;
• c

t
i is value of context attributei (i ∈ 1..n) at time t;

• Ci is the set of possible values of context attributei;
• S = C1 × . . . × Cn denotes space of possible situations.
In this definition, for simplicity, we usect

i to represent
a context attribute-value pair. The indexi represents for
the name of a context attribute. For example, givenS =
Day-Of-Week× Place-Type, thens = (‘Monday’, ‘Library’)
is a possible situation. Note that a context value can be
a single number (e.g.,Temperature) or a structured object
(e.g.,Location, Time). A special value for all context attributes
is null value. For a given situation, context attributes with
values ofnull will be treated as unknown or insignificant for
characterising the situation.

IV. STRATEGIES FORRECOMMENDATION

To find tasks relevant to an active user in his current
situation, we apply a combination of collaborative filtering,
knowledge-based, and utility-based filtering.

A. Collaborative Filtering Based on Situation Similarity

The tasks similar to tasks previously accomplished by
similar usersin similar situationsare considered relevant to
the active user. In what follows, we will introduce the measures
for task similarity, situation similarity, anduser similarity.

1) Task Similarity:Similarity between two tasks is identi-
fied based on their effects on the situation. For example,Open

windows and Turn overhead lights on are similar as they
are both for increasing the brightness of a room. Formally, we
denote the similarity between two taskst andt

′ asTS(t, t′).



TABLE I
AN EXAMPLE OF TASK-BASED SITUATION SIMILARITY.

t
′

1
t
′

2

t1 0.7 0.6
t2 0.6 1.0
t3 0.1 0.9

2) Situation Similarity: Pure similarity between situations
is inferred from the similarity of their local values of context
attributes. In our system, this measure is used to find previous
situations similar to a newly unknown situation. Given two
situationss = (c1, c2, . . . , cn) ands

′ = (c′
1
, c′

2
, . . . , c′n) (note

that all situations are defined using the same context attributes
and the orders are significant), the pure similarity betweens

ands
′, SSP(s, s′), is defined by

SSP(s, s′) =

n∑

i=1

wi ∗ simi(ci, c
′

i), (1)

where wi ∈ [0, 1] (
∑n

i=1
wi = 1) denotes the significance

weight assigned to the context attributei; simi(ci, c
′

i) is the
per-context attribute similaritybetween two valuesci andc

′

i

for the context attributei. Many techniques can be used to
calculate the per-context attribute similarity (e.g., [13], [14]).

A limitation of the pure situation similarity is the need for
explicitly specifying significance weights assigned to context
attributes (i.e.,wi) while there is no unified method to deter-
mine such the weights. Therefore, we propose a new measure
for computing similarity between situations calledtask-based
situation similarity. Specifically, two situations are similar if
the tasks typically accomplished in these situations are similar.
For example, the situation of “In-Meeting” and “In-Theatre”
are similar with respect to the task of “Change mobile to

quiet mode” because people usually change their mobile to
quiet mode when they are in these situations.

Formally, let (ti), i ∈ 1..k, and (t′j), j ∈ 1..l, be tasks
which are accomplished ins and s

′, respectively, the task-
based similarity betweens ands

′, SST(s, s′), is defined by

SST(s, s′) =

k∑
i=1

l∑
j=1

TS(ti, t
′

j)

k ∗ l
. (2)

For example, there are three tasks accomplished ins and
two in s

′. The mutual similarities of these tasks are given in
Table I. By applying (2), we haveSST(s, s′) = 0.65.

3) User Similarity:Pure similarity between users is the sum
of the similarity of their characteristics such asage, gender,
and occupation. This measure is used to find previous users
similar to the active user who is new to the system. For
measuring similarity between known users, we proposetask-
based user similarity. Particularly, the similarity between two
users is calculated based on similarities between tasks they
have previously accomplished in similar situations. Formally,
let u andu

′ be two users in consideration; let(si), i ∈ 1..k,
and(s′j), j ∈ 1..l, be situations in which, respectively,u andu

′

have experienced and accomplished some tasks. The similarity

betweenu andu
′ is defined by

UST(u,u′) =

k∑
i=1

l∑
j=1

SST(si, s
′

j)

k ∗ l
. (3)

B. Knowledge-Based Filtering

It is observed that individual tasks are often associated
with context (e.g.,places and devices). Therefore, context
may determine potential tasks. We propose to constructtask
repositories oriented to places and devices as previously
discussed in Section III-B.

Task frequency, task sequences, task groups, and task hi-
erarchiesare good sources for prediction of next tasks. The
knowledge-based filtering enables us to overcome the problem
of new users and new tasks which is an inherent issue of the
collaborative filtering method.

C. Utility-Based Filtering

1) Task Feasibility: The feasibility of a task (calledtask
feasibility) defines the degree of feasibility to accomplish the
task in a given environment. It is calculated by matching
required capabilitiesof the task withprovided capabilitiesof
the environment.

2) Task Autonomy:The autonomy of a task (task autonomy)
indicates to what extent the task must be accomplished by the
environment. We calla1, a2, . . . , am (wherem is the number
of sub-tasks within the taskflow) the autonomy of the sub-
tasks, then the autonomy of the taskt is

∑m

i=1
ai/m.

V. SYSTEM COMPONENTS

The system has five main components.Context Manageris
for management of contextual information.Resource Manager
is responsible for discovery and management of available
devices and services in the environment.Task Execution Man-
ager is to execute selected tasks and manage their executions.
Task Recommendation Engine(TRE) is our core component.
It use knowledge about environment capabilities, contextual
information, and history data provided by Context Manager
and Resource Manager for reasoning about the relevances of
tasks. The final is TASKREC Clientsrunning on smart devices
(e.g., PDA, smartphone) which continuously listens to TRE
for receiving recommendation.

VI. I MPLEMENTATION

We illustrate the operation of TASKREC via a Context
Simulator. We use Socket Communicationtechnology for
exchange messages between TRE and TASKREC Client. The
components of TASKREC are written inJ2SEwhile TASKREC

Client is written usingJava MEand deployed onS40 Platform
Nokia Emulator.

Consider a situation: “At 8am on a cold, rainy Monday
morning, ... when Bob steps into his office”. By applying the
knowledge-based filtering, the system can reduce the universe
of tasks (perhaps hundreds of tasks) toOffice-related tasksand
Mobilephone-related tasks.



Fig. 2. Reduced list of task recommended on the user’s mobiledevice.

Next, by applying situation similarity-based collaborative
filtering, the list is reduced to 4 tasks. These tasks are then
ranked based on their feasibility and autonomy as shown on
the left image of Fig. 2. The user can specify his preference
of how each task can be recommended in the future using
options as given in the right image of Fig. 2.

VII. R ELATED WORK

There has been research on task computing [4], [5], [8].
However, few have focused on task recommendation in PCEs.

Chenget al. [15] propose a system which compares past
situations with the current situation to find similar situations.
Then, applications typically performed in these similar situa-
tions are ranked and recommended. This approach actually
recommends single applications while our approach is to
recommend tasks which would require multiple applications
and services for accomplishment.

Messeret al. [16] present a middleware calledInterPlay for
seamless device integration and task orchestration in a net-
worked home. It asks users to express their tasks via a pseudo-
English interface and assumes that the users have knowledge
about feasible tasks. In contrast, our approach can recommend
relevant, feasible tasks without these requirements.

Ni et al. [17] introduce an algorithm for discoveringactive
tasks. The algorithm matches the current context of a user with
required context of tasks. Their solution can discover feasible
tasks but potentially irrelevant tasks. Fukazawaet al. [18]
propose a system which uses object names specified by
users (e.g.,cafe shop, theatre) for retrieving tasks which are
associated with these names. Our approach has integrated this
knowledge intoplace-related task repository.

TheHomebirdsystem [19] automatically discovers features
of other devices in the surrounding and suggests the user
certain tasks that can be performed together with those devices.
Because this approach does not consider user situation, it can
recommend feasible tasks which may be not relevant.

VIII. C ONCLUSION AND FUTURE WORK

This paper introduced the problem of context-aware task
recommendation in PCEs. Our solution for task recommenda-
tion uses collaborative filtering and knowledge-based filtering
together with reasoning about task feasibility and task auton-
omy. We proposed a new measure for task-based situation sim-
ilarity. We presented the architecture and an implementation
for the task recommender system called TASKREC.

The next step should evaluate the system via user studies.
Future research will also investigate potential benefits from
applying task recommendation as an adaptation technique
for context-aware systems. Another issue is to use learn-
ing techniques and data mining for computing importance
weights assigned to context attributes towards individualtasks.
Furthermore, the conflicts of recommendations in multiuser
environments bring up challenges that we are also aware of.

ACKNOWLEDGMENT

The research was carried out whilst the first author was
supported by a La Trobe University Tuition Fee Remission
and Postgraduate Research Scholarship.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 3, no. 265, pp. 94–104, 1991.

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,”Per-
sonal Communications, IEEE, vol. 8, no. 4, pp. 10–17, 2001.

[3] D. A. Norman,The Design of Future Things. Basic Books, 2007.
[4] Z. Wang and D. Garlan, “Task-driven computing,” School of Computer

Science, Carnegie Mellon University, Tech. Rep., 2000.
[5] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, “Project Aura:

toward distraction-free pervasive computing,”Pervasive Computing,
IEEE, vol. 1, no. 2, pp. 22–31, Apr-Jun 2002.

[6] D. W. McDonald, “Ubiquitous recommendation systems,”Computer,
vol. 36, no. 10, pp. 111–112, 2003.

[7] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, “In-
corporating contextual information in recommender systems using a
multidimensional approach,”ACM Trans. Inf. Syst., vol. 23, no. 1, pp.
103–145, 2005.

[8] R. Masuoka, B. Parsia, and Y. Labrou, “Task computing – the semantic
web meets pervasive computing,”The SemanticWeb - ISWC 2003, pp.
866–881, 2003.

[9] D. Magnusson and B. Ekehammar, “Similar situations–similar be-
haviors? a study of the intraindividual congruence betweensituation
perception and situation reactions,”Journal of Research in Personality,
vol. 12, pp. 41–48, 1978.

[10] A. K. Dey, “Understanding and using context,”Personal and Ubiquitous
Computing, vol. 5, no. 1, pp. 4–7, Feb. 2001.

[11] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware
pervasive computing environments,”Knowl. Eng. Rev., vol. 18, no. 3,
pp. 197–207, 2003.

[12] J. Barwise and J. Perry, “Situations and attitudes,”The Journal of
Philosophy, vol. 78, no. 11, pp. 668–691, 1981.

[13] S. W. Loke, “Representing and reasoning with situations for context-
aware pervasive computing: a logic programming perspective,” Knowl.
Eng. Rev., vol. 19, no. 3, pp. 213–233, 2004.

[14] C. B. Anagnostopoulos, Y. Ntarladimas, and S. Hadjiefthymiades, “Rea-
soning about situation similarity,” in3rd International IEEE Conference
on Intelligent Systems, Sept. 2006, pp. 109 –114.

[15] D. Cheng, H. Song, H. Cho, S. Jeong, S. Kalasapur, and A. Messer,
“Mobile situation-aware task recommendation application,” in The Sec-
ond International Conference on Next Generation Mobile Applications,
Services, and Technologies, 2008.

[16] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song, P. Kumar,
P. Nguyen, and K. H. Yi, “InterPlay: A middleware for seamless
device integration and task orchestration in a networked home,” in
PERCOM’06. IEEE Computer Society, 2006, pp. 296–307.

[17] H. Ni, X. Zhou, D. Zhang, and N. Heng, “Context-dependent task
computing in pervasive environment,”Ubiquitous Computing Systems,
pp. 119–128, 2006.

[18] Y. Fukazawa, T. Naganuma, K. Fujii, and S. Kurakake, “A framework
for task retrieval in task-oriented service navigation system,” in OTM
Workshops 2005. Springer Berlin/Heidelberg, 2005, pp. 876–885.

[19] O. Rantapuska and M. Lähteenmäki, “Homebird–task-based user expe-
rience for home networks and smart spaces,” inPERMID 2008, 2008.


