
FESCA 2004 Preliminary Version

Formally Characterizing
Device Ecology Workflows

with Predictable Observable Effects

Seng W. Loke 1

School of Computer Science and Software Engineering

Monash University

VIC 3145, Australia

Abstract

We envision a computing platform of the 21st century that takes the form of de-
vice ecologies consisting of collections of devices interacting synergistically with one
another, with users, and with Internet resources. These devices will perform tasks
and work together perhaps autonomously but might need to interact with the user
from time to time. We consider device ecology workflows as a type of workflow
describing how the devices work together. It would be ideal if one can model the
devices in a computer and analyze the effects when such workflows are executed
in the device ecology. However, we cannot assume that we know much about the
details of each device in order to predict and analyze their behaviours. This paper
provides a formalization of what it means for a device ecology workflow to have
predictable observable effects. This characterization is based on the assumption
that the devices in the device ecology are also predictable in a similar sense. The
use of this work is as a step towards formal reasoning and analysis about device
ecologies, which are normally only constructed ad hoc and using informal software
engineering techniques.

Key words: device ecologies, device ecology workflows,
observable, labelled transition systems

1 Introduction

The current Internet and networking technologies are enabling smart devices
to communicate with one another and with Internet or Web resources. The
devices might need to interact effectively in order to accomplish desirable
effects for their user(s), and such interaction can occur across the living room
or across continents.

1 Email: swloke@csse.monash.edu.au

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Loke

The American Heritage Dictionary defines the word “ecology” as “the rela-
tionship between organisms and their environment.” We envision a computing
platform of the 21st century that takes the form of device ecologies consisting
of collections of devices (in the environment and on users) interacting synergis-
tically with one another, with users, and with Internet resources, undergirded
by appropriate software and communication infrastructures that range from
Internet-scale to very short range wireless networks. These devices will per-
form tasks and work together perhaps autonomously but will need to interact
with the user from time to time.

There has been significant work in building the networking and integrative
infrastructure for such devices, within the home, the office, and other environ-
ments and linking them to the global Internet. For example, AutoHan [17],
UPnP [12], OSGI [10], Jini [18], and SIDRAH (with short range networking
and failure detection) [4] define infrastructure and mechanisms at different
levels (from networking to services) for devices to be inter-connected, find
each other, and utilize each other’s capabilities. Embedded Web Servers [2]
are able to expose the functionality of devices as Web services. Embedding
micro-servers into physical objects is considered in [14]. Approaches to mod-
elling and programming such devices for the home have been investigated,
where devices have been modelled as software components [6], as collections
of objects [1], as Web services [11], and as agents [16,3]. However, there has
been little work on specifying at a high level of abstraction (and represent-
ing this specification explicitly) how such devices would work together at the
user-task or application level, and how such work can be managed.

Our earlier work [9] explored the workflow (which we call device ecology
workflows) as a metaphor for thinking about how collections of these devices
(or devices in a device ecology) can work together to accomplish a purpose.
It would be ideal if one can model (and simulate aspects of) the devices in a
computer and analyze the effects when workflows are executed in the device
ecology. Such analysis is useful in order to predict the effects of workflows
before they are actually executed (e.g., to see if too much resources will be used
or undesirable effects will occur) which will then feedback into the design of
the workflow. However, in order to predict the behaviours of these workflows,
we might require detailed knowledge of the device. Realistically, we can only
assume some knowledge about the device such as some of their observable
properties.

This paper presents a formalization of what it means to say that the be-
haviour of devices and device ecology workflows are predictable. Our approach
is based on Labelled Transition Systems (LTS) [13] as a basis for predicting
behaviours. We show how to formally relate what is predictable of a device
ecology workflow to what is predictable of the devices within the device ecol-
ogy. Our formalization captures the intuition that the more predictable each
individual device is, the more predictable the workflows in the device ecology
will be. We also briefly describe analysis that can be done when device ecology

74

Loke

workflows are predictable.

The next section explains the notion of workflows in device ecologies. Then,
§3 explains how we define predictability of devices and device ecology work-
flows. We conclude in §4.

2 Workflows in Device Ecologies

The environment of a device is not only other devices but also human users
and the Web resources that it can connect to. We consider several examples
of devices working together and interacting with Web resources (e.g., Web
services).

Mentioned in the UPnP whitepaper is a script that, on detecting that
a master switch has changed to “on”, will turn the heater on to a preset
temperature, start the answering machine playing new messages, turn the
stereo system on set to a favourite station, raise the window blinds, turn the
TV to the news station, and turn on the light in the foyer. In this case, the
devices effectively work together, as orchestrated by some central coordinator,
in order to create the right atmosphere and provide the right services (of
informing the user of the new phone messages and news), even though the
individual devices might not be aware of this global goal.

Devices might interact directly with one another and with the user. An ex-
ample is quoted from Berger 2 concerning Thalia appliances, short for Think-
ing and Linking Intelligent Appliances: “When you set your Thalia alarm
clock to wake you at a certain time, it will notify the coffee maker to adjust
the time for your morning cup of java. The alarm clock will let you know if you
forgot to put the water in the coffee maker. It will also tell the blanket with
a brain when to turn off. In the morning, the alarm clock will greet you with
the current news and weather. As you are making the pancakes, the kitchen
console will automatically adjust the recipe for the number of portions you
need. Your HomeHelper kitchen console will store shopping lists, calendars,
and telephone numbers that can be downloaded to your HandHelper PDA.”
The phone might turn the volume of a television down when the user receives
an incoming call. Also, an indoor positioning system can be consulted in order
to select the most appropriate screen to show news.

Smart appliances might interact with applications and services across the
Internet. For example, the fridge can order food that has run out by connecting
to a Web service or negotiate with other appliances about resource (e.g., power
and networking) consumption. A smart bookshelf can know what books are on
its shelf and receive updates on interesting books by connecting to a bookshop
Web service or connect to a neighbours smart bookshelf (and even order books
based on a user profile and a budget shared with the smart medicine cabinet).

2 http://www.aarp.org/computers-features/Articles/a2002-07-10-
computers features appliances.html

75

Loke

Devices might seek human approval for more critical tasks. An automatic
lawn sprinkler can check the weather forecast on the Internet to see if it needs
to do its watering, and an umbrella after receiving its daily weather forecast
can warn of an approaching shower if it recognizes that a particular pair of
shoes is leaving it behind. Cars entering particular wireless network cells
can begin to connect to electronic services in the area to, for example, get
local information of interest to the user and suggest that the user bring an
umbrella when leaving the car, have the cars fuel tank be queried by nearby
service stations about the fuel level and receive special fuel offers, or find the
nearest and cheapest parking spots.

Devices can work together with other devices, the user or Web resources
in accomplishing its goals, either as initiated by users or by proactive smart
devices. Such workflows might or might not involve devices, users and Web
resources, depending on the application semantics. The simpler workflows
might involve only one device or two devices, but larger workflows can involve
a larger number of devices, as we saw in the examples above.

As an illustration, we consider a workflow device ecology workflow involv-
ing a television, a coffee-boiler, bedroom lights, bathroom lights, and a news
Web service accessed over the Internet. Figure 1 describes this workflow. The
dashed arrows represent sequencing, the boxes are tasks, the solid arrow rep-
resents a control link for synchronization across concurrent activities, and free
grouping of sequences (i.e., the boxes grouped into the large box) represents
concurrent sequences.

This workflow is initiated by a wake-up notice from Janes alarm clock
which we assume here is issued to the Device Ecology Workflow Engine (which
we call the Decoflow Engine) when the alarm clock rings. This notice initiates
the entire workflow. Subsequent to receiving this notice, five activities are
concurrently started: retrieve news from the Internet and display is on the
television, switch on the television, boil coffee, switch on the bedroom lights,
and switch on the bathroom lights. Note the synchronization arrow from
Switch On TV to Display News on TV, which ensures that the television
must be switched on before the news can be displayed on it. After all the
concurrent activities have completed, the final task is to blink the bedroom
lights, in order to indicate to Jane that the workflow tasks have completed.
This scenario was inspired by and extends that by Berger. This workflow can
be described using BPEL4WS and executed using a corresponding workflow
engine as outlined in [9].

3 Characterising Device Ecology Workflows with Pre-

dictable Observable Effects

Device ecology workflows can be decentralized (ad hoc and peer-to-peer be-
tween devices), coordinated by a central engine or hybrid, initiated by a user
or a device. Regardless of the architecture or the language used to express the

76

Loke

Fig. 1. An Example Device Ecology Workflow.

workflow, we have, in essence, a workflow and a device ecology in which the
workflow is executed. Inspired by Hoare’s view of programs [5], we consider
the execution of workflow in a device ecology as having effects observable via
values of a set of attributes. We assume that the values of the variables are ob-
served before the workflow executes and after it terminates (we consider later
the situation when the values are observed at intermediate points in time).

3.1 Describing Observable Effects of Device Ecology Workflows

For example, suppose we have a device ecology comprising a table lamp, a
room light, and a televsion (or tv). The initial state θ where the table lamp
is off, the room light is on and the television is on channel 7 can be described
as follows:

θ : (< table lamp = off >,< room light = on >,< tv = on; channel = 7 >)

After a workflow terminates, we can represent the final state θ′ of the table
lamp being on, the room lights remaining on, and the tv status unchanged,
as follows:

θ′ : (< table lamp = on >,< room light = on >,< tv = on; channel = 7 >)

77

Loke

More generally, the observable state of a device is represented by a vector
of attribute-value pairs, where the attributes refer to observable properties
of the device. The choice of attributes might depend on the application at
hand and so, it is meant to be an abstraction of the device. Each device
will also have an internal state - we are only concern with the observable
properties of the devices here. Moreover, we assume that each device has a
set of operations which can be performed on it, each of which might update
the device’s observable state (and internal state). Given a device d, let opns(d)
denote the set of operations which can be performed on it. Note that this can
also be seen as an abstraction mechanism - the set of operations we consider
might only be those relevant to an application at hand. One way to view this
is that each device offers a collection of Web services which can be invoked by
a workflow. We also assume that each operation on a device is introvertive in
that it only affects the device’s own internal state and own observable state
only. An operation is extrovertive if the operation on the device also affects
the observable states of other devices.

Given that a device ecology D comprises n devices, the observable state
of the device ecology is represented by a tuple (d̄1 = v̄1, . . . , d̄n = v̄n) of n

vectors representing the observable states of the devices, i.e. d̄i = v̄1 rep-
resents the observable state of device i. For short, we shall sometimes use
(v̄1, . . . , v̄n), leaving out the attributes. The set of all operations that can be
performed on the device ecology, which we denote by opns(D), is given by
⋃

i∈{1,...,n} opns(di).

3.2 Describing Device Ecology Workflows

In the discussions which follows, we shall assume a device ecology workflow
is expressed in a variant of the Web service workflow language DysCo [15],
which is valid if we assume that each device can be operated on via invocation
of Web services. The EBNF syntax of this language is as follows:

W ::= ε empty workflow

| T o
i task (e.g., Web service invocation)

| W ◦W sequence

| W +W choice

| W || W concurrency

For simplicity, we have considered choice without a condition. In describing a
task T o

i above, given a device ecology D of n devices, o is an operation on a
device which can update its observable state (and possibly the internal state),
and i identifies a device. For a workflow W , we write opns(W) to denote all
the operations that have been mentioned in W .

Each workflow also has an internal state representing a temporary store
of results from operations and as a means to provide inputs for operations.
Such an internal state might be stored with a centralized workflow engine or

78

Loke

within the device orchestrating the workflow. An operational semantics of all
the operators are given in [15] which shows how to evaluate a given workflow
expression.

Each step of the execution of the workflow transforms the observable
state of the device ecology, i.e. given a device ecology comprising n de-
vices, the workflow W starts execution with an initial device ecology state
θ0 = (v̄0

1, . . . , v̄
0
n), then after termination of the workflow, the final device ecol-

ogy state is θk = (v̄k
1 , . . . , v̄

k
n), where k is the number of intermediate steps

(each step denoted by→ and is executed according to the operational seman-

tics of the workflow). Also, let θ0
(w0,W)
→ θk denote that θk is an observable

state reached after W terminated starting from θ0 and internal state w0.

3.3 Predictable Device Ecology Workflows

The question we seek to answer is the following: can a workflow (with a
given internal start state) be executed in the device ecology, terminating with
desired effects, where desired effects might be expressed as a property on the
final observable state?

One way to solve this problem is to consider a simulation of the execution.
But in order to perform a simulation, one must have a model of each device.
In general, it is difficult to predict the effects of a workflow if we do not know
much about the devices. But we assume that each device in a device ecology is
a grey box, i.e., the device has an observable state and an internal state. Since
the internals of a device is hidden (which is realistic to assume), it might not
be possible to fully determine the behaviour of the device after a workflow’s
operation. However, if we assume that each device is predictable in the sense
that we describe later, then possibly, the effects of the workflow on the device
ecology might also be predictable in some sense. Below, we make this two
senses precise, which is in terms of representability of their behaviours via an
LTS.

We first introduce a criteria of predictability for each device, where we
assume each device has a set of operations on it.

Definition 3.1 A device with a finite set of operations O is externally pre-

dictable iff its observable behaviour can be characterized by a labelled transi-
tion system L over O given by a pair (S, T) where S is the set of observable
states of the device (where a vector of attribute-value pairs represents an ob-
servable state of the device), and T is a ternary relation where T ⊆ (S×O×S),
and T covers all cases in the sense that ∀s ∈ S and o ∈ O, there is some s′ ∈ S

such that (s, o, s′) ∈ T .

In the above, we formalize “predictability” as the existence of an LTS
which would allow the device’s observable behaviour to be predicted, and “ex-
ternal” is in the sense that the LTS is based on observable states of the device
(without knowing details of the internals of the device). Thus, if L describes

79

Loke

the observable behaviour of a device, then given that one observes that the
device is in some (observable) state, one can predict what observable state the
device will go to next after an operation, by using L. Note that L is nondeter-
ministic in that there might be more than one possible next states. Moreover,
we have assumed that operations do not have parameters. Realistically, some
would have. For example, operations o(input) and o(input′) use the same op-
eration o but with different inputs, and so might result in different transitions.
In such cases, where it is possible to enumerate the operation with different
inputs, i.e. we treat o(input) and o(input′) as different operations in O, and
the above definition can be used without change. In cases where such an enu-
meration is not finite, we can use nondeterminism to model the operations.
For example, if whatever the inputs to o starting from s, the device only goes
to s, s′ or s′′, then the behaviour of o can be represented by (s, o, s′), (s, o, s′),
and (s, o, s′′). With this, the above definition is applicable for operations with
whatever inputs.

We introduce a corresponding definition for the predictability of a workflow
executed in a given device ecology.

Definition 3.2 Given a device ecology (i.e., a set of n devices) D and a device
ecology workflow W , where opns(W) ⊆ opns(D) (i.e. W doesn’t require an
operation that does not exist in D) with initial internal state w0, written
(w0,W), (w0,W) is externally predictable with respect to D iff there exists
a labelled transition system L(w0,W) over {(w0,W)} given by a pair (S, T),
where S is the set of observable states of the device ecology (each observable
state of the device ecology is given by a tuple of n vectors), and T is a ternary
relation where T ⊆ (S × {(w0,W)} × S), and T covers all cases in the sense
that ∀θ ∈ S, there is some θ′ ∈ S such that (θ, (w0,W), θ′) ∈ T .

Note that the only action in L(w0,W) is the workflow (w0,W). So, a work-
flow (w0,W) is externally predictable with respect to D means that regardless
of what observable state the device ecology is currently in (say θ ∈ S), if
(w0,W) is started in state θ, then one can consult L(w0,W) to see what ob-
servable state the device ecology will be in after (w0,W) terminates, having
started in θ.

Now we prove the following theorem.

Theorem 3.3 Given a device ecology D, a workflow (w0,W), where opns(W) ⊆
opns(D), is externally predictable with respect to D iff each device in D is ex-

ternally predictable.

Proof. Given a device ecology D comprising n devices, we prove the theorem
by showing how to construct L(w0,W) for any (w0,W) as follows. Let L(w0,W) =
(S, T), for some S and T which we will construct below. Since each device in
D is externally predictable, for device i ∈ {1, . . . , n}, we have its LTS denoted
by (Si, Ti). S can then be given by the Cartesian product S1 × . . .× Sn. Let
θ = (d̄1 = v̄1, . . . , d̄n = v̄n) ∈ S, i.e. each vector of pairs d̄i = v̄i ∈ Si. We

80

Loke

need to derive θ′ ∈ S such that θ
(w0,W)
→ θ′. We show that, in fact, there are

many possibilities for θ′.

For a device i, in W , there might be operations on device i and there
might be operations on other devices. After (w0,W) has terminated, device i

would have moved through a number of observable states according to what
operations in W were on device i, and since we have (Si, Ti), we can compute
the observable states of device i after (w0,W) has terminated. In other words,

we want to show that we can derive one or several possible v̄ ′
i such that v̄i

(w0,W)
→

v̄′i using (Si, Ti). We show this by induction on the syntax of workflows as
follows.

(i) If W = T o
i , then we have v̄i

(w0,T o

i
)

→ v̄′i, where (v̄i, o, v̄
′
i) ∈ Ti. Since we

might also have (v̄i, o, v̄
′′
i) ∈ Ti where v̄′i 6= v̄′′i , we actually have a set of

possibilities. Denoting this set by Fi, we write v̄i

(w0,W)
→ Fi to mean the

workflow W brings the observable state to the possible states in Fi.

(ii) If W = W ′ ◦ T o
i , and suppose that v̄i

(w0,W ′)
→ Fi, then for any s ∈ Fi, and

suppose w1 is the internal state after W ′, by (1) we have s
(w1,T o

i
)

→ F s
i . So,

we have v̄i

(w0,W)
→

⋃

s∈Fi
F s

i .

(iii) If W = W ′ + W ′′, and suppose that v̄i

(w0,W ′)
→ F ′

i and that v̄i

(w0,W ′′)
→ F ′′

i .

Then, we have v̄i

(w0,W)
→ F ′

i ∪ F ′′
i .

(iv) In the case of W = W ′||W ′′, without lost of generality, we can consider
the special case W = T o1

i ||T
o2
i . In such a case, we assume that the device

handles the concurrency by serializing the operations. Hence, T o1
i ||T

o2
i is

interpreted as either doing o1 first and then o2 or in the reverse order,
i.e.

T o1
i || T o2

i = (T o1
i ◦ T o2

i) + (T o2
i ◦ T o1

i)

And so, from (1), (2) and (3), we can work out some Fi such that v̄i

(w0,W)
→

Fi.

Now, we can do the above for all the devices, and since the operations
are introvertive, we can construct θ′ by forming the tuples of final observable
states (by Cartesian product) from the constituent devices’ final observable

states, namely, θ′ ∈ F1 × . . . × Fn, where for each i, v̄i

(w0,W)
→ Fi. In other

words, for the given θ, we have a set of tuples

{(θ, (w0,W), θ′) | θ′ ∈ F1 × . . .× Fn}

where the Fis are as defined above. 2

As an example, we consider a device ecology with devices d1, d2 and d3.
Suppose all the devices are externally predictable. Then, let the LTSs captur-
ing the observable behaviours of the devices be given as follows:

81

Loke

d1: S1 = {s1(1), s1(2)}

O1 = {o1(1)}

T1 = {(s1(1),o1(1),s1(2))*, (s1(2),o1(1),s1(1)),

(s1(2),o1(1),s1(2))}

d2: S2 = {s2(1), s2(2), s2(3)}

O2 = {o2(1)}

T2 = {(s2(1),o2(1),s2(2)), (s2(2),o2(1),s2(1))*,

(s2(3),o2(1),s2(2))}

d2: S3 = {s3(1), s3(2)}

O2 = {o3(1), o3(2)}

T3 = {(s3(1),o3(1),s3(2)), (s3(2),o3(1),s3(1)),

(s3(1),o3(2),s3(2))*, (s3(2),o3(2),s3(2)),

(s3(1),o3(2),s3(1))}

Then, for a given start observable state of the device ecology such as
(s1(1),s2(2),s3(1)), and workflow o1(1).(o2(1)+o3(2)).o3(2), we can
work out the (final) observable state after the workflow completes by following
the above transitions. In this case, a possible final state is (s1(2),s2(1),s3(2))
(when o2(1) was chosen) using the transitions marked *.

3.4 Analyzing Device Ecology Workflows

Given a device ecology D, and that a workflow (w0,W), where opns(W) ⊆
opns(D), is externally predictable with respect to D, we can then start to
analyse the properties of W with respect to D. For example, we can define
preconditions, postconditions, and invariants. Such assertions will be pred-
icates over the values of the attribtes (d̄1, . . . , d̄n). We can also define an
invariant I where θ ²C I for any θ, where θ ²C P means the assignment
of values to attributes in θ satisfies the predicate P via some procedure C.
The invariant might be a measure on the device ecology such as number of
lights turned on at any given point of the workflow execution - we might have
the invariant num lights on < 20, where C is a procedure that processes the
values in θ to compute the value of num lights on. A similar relation can
be defined with procedures C ′ and C ′′, and predicates for precondition P and

postcondition Q: θ ²C′ P and θ′ ²C′′ Q, where θ
(w0,W)
→ θ′. Given such asser-

tions, workflows can be compared similar to programs, but we can use this
mechanism to characterise properties of device ecologies.

Robustness analysis is useful when one wishes to examine the capabilities
of a new device ecology obtained by adding new devices to the existing de-
vice ecology, removing particular devices, or replacing particular devices. We
envision a future where when one (say Jane) who has a device ecology D at
home buys a new device d, he or she would like to know what new workflows
can execute on the new device ecology D ∪ {d}, whether the new device d

can work with D, or what observable effects of a workflow executed in an
updated device ecology (D ∪ {d})\{e} where d replaces e. Moreover, Jane
might also want to know if a workflow can still be executed after a device

82

Loke

has been removed from the device ecology. Such analysis can be done using
some abstraction of the devices, and in this case, it is the LTS describing the
observable behaviour of devices.

4 Conclusion and Future Work

We have provided a formalization in terms of the existence of an LTS of
what it means for a device ecology workflow to have predictable observable
effects. This characterization is based on the assumption that the devices in
the device ecology are also predictable in a similar sense. Theorem 1 formalizes
the relationship between the predictability of a device ecology workflow and
the predictability of the devices. An implication here is that if the LTSs of
the devices are very detailed, then an LTS for a device ecology workflow can
be constructed which is also very detailed. Hence, our formalization captures
the intuition that the more predictable the devices in a device ecology are (or
the richer or larger their LTSs), the more predictable a workflow executed in
the device ecology will be (i.e., the richer or larger its LTS).

This work is an initial step towards a formal theory of predictable device
ecology workflows, with myriad practical uses. Based on such mechanical
analysis, smart devices or users can check the effects of workflows they intend
to initiate. A user might keep a store of workflows which can be checked just
before invocation. The real world is, of course, not quite fully predictable, even
with nondeterminism to represent possibilities (since there will be unforeseen
possibilities) but we seek to provide a level of predictability for the collective
behaviour of devices. Interactive simulation can be used to fine-tune workflows
so that they produce desired effects and to study such workflows for different
scenarios of devices. We are currently building a grahpical simulator for device
ecology workflows. A more comprehensive study of properties of workflows can
be done using model checking (e.g., [7]).

Further work will consider workflows with operations not only on devices
but also general Web services and operations that ask the user questions, work-
flows with conditional choice, workflows with synchronization for concurrency,
and devices with extrovertive operations which can be modelled as dynami-
cally extensible workflows. This means that when an extrovertive operation
is invoked on the device, the workflow is augmented with further operations
that capture the effects of the operation on other devices. Dynamically ex-
tensible workflows might become non-terminating - we will need to explore
conditions that lead to terminating dynamically extensible workflows. We
will also explore automated means of constructing L(w0,W) = (S, T) given
the LTS of the devices observable behaviours. We note that the problem can
become intractable with a large number of states. Experimentation is needed
to understand the sizes of problems tractable. However, we recall that the
LTS model of devices is an abstraction and need only capture relevant aspects
of the device that are to be analyzed. Moreover, the relation T can perhaps

83

Loke

be intensionally defined via an algorithm instead of extensionally detailed.
Given all that, for ad hoc and unanticipated behaviours, we see the limita-
tions of our theory for ad hoc workflows and on-the-fly decisions that devices
might make (though nondeterminism in a workflow supports representation
of (albeit) foreseen possibilities). For scalability, we can consider a device-
and-conquer and abstraction approach where a workflow and device ecology
can be partitioned and analyzed separately. Techniques for combining sepa-
rately constructed LTSs from parts of workflows and device ecologies, and for
combining results of analysis can be investigated. Our guess is that sizable
workflows and device ecologies can be analyzed with our approach, but admit
that different methods are required for larger scale finer granularity collec-
tions of complex systems of devices - this will be an avenue of future work
once the scalability of our approach has been more precisely defined. Finally,
our condition of opns(W) ⊆ opns(D) is a first test to see if a workflow can
execute in a device ecology. We admit that this condition can be a lot more
elaborate and that semantic matching might be used to match workflow tasks
to the actual devices that will carry the tasks out. Other work such as [8]
has addressed this issue of selecting devices to be aggregated in order to meet
a user request.

References

[1] AHAM, “Connected Home Appliances Object Modelling,” AHAM CHA-1-
2002, 2002.

[2] Bentham, J., “TCP/IP Lean: Web Servers for Embedded Systems (2nd
Edition),”, CMP Books, 2002.

[3] Carabelea, C. and Boissier, O., “Multi-agent Platforms for Smart Devices:
Dream or Reality?,” Proceedings of the Smart Objects Conference (SOC’03),
Grenoble, May 2003.

[4] Durand, Y., Vincent, S.P.J.-M., Marchand, C., Ottogalli, F.-G., Olive,
V., Martin, S., Dumant, B., and Chambon, S., “SIDRAH: A Software
Infrastructure for a Resilient Community of Wireless Devices,” Proceedings
of the Smart Objects Conference (SOC’03), Grenoble, May 2003.

[5] Hoare, C.A.R., “Unified Theories of Programming,” 1994. Available at
ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Tony.Hoare/theory94.ps.

[6] Jahnke, J.H., d’Entremont, M., and Stier, J., Facilitating the Programming of
the Smart Home, IEEE Wireless Communications, December, (2002), 70-76.

[7] Karamanolis, C., Giannakopoulou, D., Magee, J., and Wheater, S., “Model
Checking of Workflow Schemas,” Proceedings of the 4th International
Enterprise Distributed Object Computing Conference (EDOC), Makuhari,
Japan, September 2000.

84

ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Tony.Hoare/theory94.ps

Loke

[8] Kumar, R., Poladian, V., Greenberg, I., Messer, A., and Milojicic, D., “Selecting
Devices for Aggregation,” Proceedings of the 5th IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA 2003), 2003.

[9] Loke, S.W., “Service-Oriented Device Ecology Workflows,” Proceedings of the
International Conference on Service-Oriented Computing, Italy, pages 559-574,
December 2003, Springer-Verlag.

[10] Marples, D. and Kriens, P., The Open Services Gateway Initiative: An

Introductory Overview, IEEE Communications, December, (2001), 2-6.

[11] Matsuura, K., Haraa, T., Watanabe, A., and Nakajima, T., “A New
Architecture for Home Computing,” Proceedings of the IEEE Workshop on
Software Technologies for Future Embedded Systems (WSTFES03), pages 71–
74, May 2003.

[12] Microsoft Corporation, “Understanding UPnP TM : A White Paper”
Available at
http://www.upnp.org/download/UPNP UnderstandingUPNP.doc.

[13] R. Milner., Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[14] Nakajima, T., “Pervasive Servers: A Framework for Creating a Society of
Appliances,” Proceedings of the 1AD: First International Conference on
Appliance Design, pages 57–63, May 2003.

[15] Piccinelli, G., Finkelstein, A., and S.L. Williams, S.L., “Service-Oriented
Workflows: the DySCo Framework,” Proceedings of the Euromicro Conference,
Antalya, Turkey, 2003. Available at
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/papers/euromicro2003.pdf.

[16] Ramparany, F., Boissier, O., and Brouchoud, H., “Cooperating Autonomous
Smart Devices,” Proceedings of the Smart Objects Conference (SOC’03),
Grenoble, May 2003.

[17] Saif, U., Gordon, D., and Greaves, D.J., Internet Access to a Home Area

Network, IEEE Internet Computing, Jan-Feb, (2001), 54-63.

[18] Waldo, J., The Jini Architecture for Network-Centric Computing,
Communications of the ACM, July, (1999), 76-82.

85

http://www.upnp.org/download/UPNPprotect unhbox voidb@x kern .06emvbox {hrule width.3em}UnderstandingUPNP.doc
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/papers/euromicro2003.pdf

	Introduction
	Workflows in Device Ecologies
	Characterising Device Ecology Workflows with Predictable Observable Effects
	Describing Observable Effects of Device Ecology Workflows
	Describing Device Ecology Workflows
	Predictable Device Ecology Workflows
	Analyzing Device Ecology Workflows

	Conclusion and Future Work
	References

