
Future Generation Computer Systems 28 (2012) 619–632
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Supporting ubiquitous sensor-cloudlets and context-cloudlets: Programming
compositions of context-aware systems for mobile users
Seng W. Loke
Department of Computer Science and Computer Engineering, La Trobe University, Victoria 3086, Australia

a r t i c l e i n f o

Article history:
Received 28 April 2011
Received in revised form
7 September 2011
Accepted 17 September 2011
Available online 7 October 2011

Keywords:
Composition operators
Context-aware pervasive systems
Sensor-cloudlets
Context-cloudlets

a b s t r a c t

Increasing widespread use of sensor and networking technologies are yielding ubiquitous sensors
and applications that pervade daily life. At the same time, context-aware pervasive computing has
experienced tremendous developments in terms of context modelling and reasoning, and applications.
Such developments coupled with a cloud computing model are yielding sensor-cloudlets and context-
cloudlets based on sensors and applications deployed as services that can be harnessed in applications
on-demand, ad-hoc and on a pay-per-use model. Sensor-cloudlets and context-cloudlets depend on and
adapt to the available resources at the time, and involve context-aware systems (including sensors) that
need to be dynamically composed as needed. This paper first outlines current trends and key issues and
challenges in sensor-cloudlets and context-cloudlets. We then present a key contribution of this paper,
which is an application of an abstract model of context-aware systems for specifying compositions of
context-aware systems used in sensor-cloudlets and context-cloudlets. We show how expressions in our
formalism can be embedded into a programming language (which we show via an example extending
the logic programming language Prolog). We then present numerous examples illustrating applications
expressed in our extended Prolog language. We also show how compositions specified in our formalism
supports estimating the reliability and cost of using such compositions of resources in computations,
in a well-defined semantics. Finally, we describe meta-level control operators on evaluation of queries
posed to compositions of resources and specify a service-based interface on context-aware systems. We
conclude with issues to be tackled in the future.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

For an application to adapt to the physical environment in
which it inhabits, there must be a means to acquire sensory
and context information. Numerous sensor network applications
have emerged over the last decade, from habitat monitoring
to structural monitoring, indoors and outdoors [1–4]. But the
range of sensor based applications are moving from specialized
narrow domains to domains useful for the general public, from
hazard detection, local real-time traffic jam information, to crowd
sensing. As sensors increase in variety and daily applications,
sensing will become ubiquitous, providing unprecedented real-
time knowledge of the physical world [5].1 In the same way that
one might utilize IT resources, and even more so, individuals
might utilize such sensing information or context knowledge.
Indeed, the notion of sensor grids [6] and sensor Webs [7,8] have

E-mail address: s.loke@latrobe.edu.au.
1 As an example, the goal of Hewlett Packard Labs’ Central Nervous Sys-

tem for the Earth, or CeNSE, project is to ‘‘build a planetwide sensing net-
work using billions of tiny, cheap, tough and exquisitely sensitive detectors’’.
http://www.hpl.hp.com/news/2009/oct-dec/cense.html.

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.09.004
emerged where users should be able to link into sensor network
infrastructures anywhere and anytime as needed.

Sensor data often needs to be analyzed and interpreted. From
raw sensor data, we can obtain context information. According
to Dey [9], context is information about the situation of entities,
including an individual, object or place. The essential element
of such context is sensory information. Data from sensors must
be interpreted and fused in order to provide useful context.
Such interpretation of sensor data yields meaningful context,
perhaps represented in some ontology [10,11]. In context-
aware computing, a general definition of sensors is hence, any
device or mechanism that can provide context information [12].
There has been work on general infrastructures for providing
context information (e.g., [13,14]), where users can tap into such
infrastructures to acquire context information. Reasoning with
context [15] then yields further context or knowledge about
situations [12,16,17], or aggregated context. Two different systems
can reasonwith the same sensor data and provide slightly different
context information, or the same contexts may be inferred from
different sensors and different sensor data [18]. Also, in response
to the same context or situation inferred, different actions might
be taken.

http://dx.doi.org/10.1016/j.future.2011.09.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:s.loke@latrobe.edu.au
http://www.hpl.hp.com/news/2009/oct-dec/cense.html
http://dx.doi.org/10.1016/j.future.2011.09.004

620 S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632
Amobile device can utilize sensors on itself or sensors from the
surrounding infrastructure. Similarly, a mobile device can reason
about sensor data and context using its own resources [19,20], or
query infrastructure context sources (and other mobile sources)
for such information (e.g., by abstracting context as data items
in a distributed tuple space model implemented over a network
of peers [21,22]). In fact, resources and infrastructure around the
mobile user andhis device(s)maybeutilized on anon-demand, ad-
hoc basis, andmixed-and-matched to suit themobile user’s need at
the time. This notion of combining resources as needed and having
resources available as-a-service on a pay-per-use basis relates to
the notion of cloud computing.

There are many definitions of cloud computing [23] but they
share similarities. From [24], cloud computing refers to ‘‘a pay-per-
use model for enabling available, convenient, on-demand network
access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, services) that can be
rapidly provisioned and releasedwithminimalmanagement effort
or service provider interaction’’. Commercial offerings of platform
or applications as a service are already available, such as EC2 and
S3 fromAmazon [25], Google’s AppEngine,2 Microsoft’s Azure3 and
Manjrasoft’s Aneka [26]. The idea of resource pooling as needed is
an important elasticity characteristic of cloud computing, and then
the resources are mixed and matched to meet end-user needs.

Generally, a context-aware system employs sensors, reasoning
(or thinking) components, and components mapping context to
actions. Sensing and reasoning resources might be mixed and
matched in an ad-hoc and on-demand manner for an end-user
application. To recognize or detect a given situation, a set of sensors
might be selected and consulted on demand, and composed
with appropriate context and situation reasoning components,
to provide a context-aware application for the end-user. Such
resources form a cloud of resources which have been called sensor
clouds [27] comprising a collection of sensors pooled together and
governed to provide a service directly to end-users or application
providers, and if the cloud also includes components to fuse sensor
data into context or higher level situation knowledge, we call such
combinations of sensors and reasoning components context clouds.
Hence, a context cloud may utilize a sensor cloud. In sensor clouds
and context clouds for context-aware applications formed in an
ad-hoc and on-demand manner, resources needed may include
not only storage and computational resources, but also sensors
and context reasoning components. Such sensors and reasoning
components might be exposed as services (e.g., with REST or SOAP
interfaces).

In recent times, the notion of cloudlets has been proposed that
relates more to the mobile user’s perspective, where a cloudlet is
‘‘a trusted, resource-rich computer or cluster of computers that’s
well-connected to the Internet and available for use by nearby
mobile devices’’ [28]. In this paper, when such a resource includes
primarily sensors (e.g., a sensor network, or even positioning
technology infrastructure), we call such cloudlets, sensor-cloudlets,
and when surrounding context sources or servers of context
information, context reasoning engines, and situation inference
applications, are packaged with the cluster of computers available
for use by a mobile device, we call these context-cloudlets. Our
notion of cloudlet refers to the set of resources (which could
include clusters of computers nearby a mobile device and other
sensor-enhanced mobile devices) used in an application by a
mobile device. Both the notions of sensor-cloudlets and context-
cloudlets relate to SaaS and might be thought of as a subset of
SaaS where sensors and context are provided as services. As noted
in [28], a cloudlet is different from a cloud in that a cloudlet

2 http://code.google.com/appengine/.
3 http://www.microsoft.com/windowsazure/.
tends to be (1) transient, (2) localized to the current environment
of the mobile user (which could even be a business premise or
coffee shop), as opposed to some air-conditioned machine room,
(3) ownership is decentralized (e.g., owned by local business or
current site such as a museum), rather than centralized ownership
by a large provider, (4) network is via LAN and WLAN instead of
Internet scale, and (5) there are fewer users at a time, instead
of thousands. Also, in our case, as the name implies, a sensor or
context cloudlet makes use of a relatively small set of (typically
local) sensors, context servers, or or context-aware systems,
compared to the large (Internet-scale) set of resources as typical
in a cloud model.

This paper discusses the notion of sensor-cloudlets and context-
cloudlets, and outline challenges associated with the widespread
usage of such a cloudlet model of context-aware systems. In
tackling one of the challenges, we also highlight a formalism for
composition of sensors and key components supporting a mix-
and-match approach for assembling resources to build a context-
aware system - such ‘‘elasticity’’, and ad-hoc mix-and-match of
selected resources are typical of the cloud computing model.

The key point of this paper is that a language specifying
sensor-cloudlets and context-cloudlets greatly helps the use and
composition of resources because

• compositions of resources can be described declaratively using
expressions at a high level of abstraction, useful for program-
ming applications;

• the declarative descriptions of composed resources facilitates
the analysis of the cost and reliability of compositions; and

• meta-level operators are useful for managing the execution of
expressions (representing compositions of resources).

Wedemonstrate all of the above features in a languagewepropose,
and outline how this language of operators for sensor/context-
cloudlets can be implemented via a service-oriented interface.

In the rest of this paper, we first provide an overview of
trends towards the emerging infrastructure of ubiquitous sensors
in Section 2, and in Section 3, we discuss scenarios and challenges
with sensor and context cloudlet computing. In Section 4, we then
provide a formalism for mix-and-match of resources specialized
for context-aware cloudlet applications, giving their operational
semantics, with examples of compositions forming cloudlets; we
also describe meta-level control operators over computations
involving compositions of resources and their semantics, and
describe a service-based interface for context-aware systems for
our model. Section 5 concludes with future work.

2. Background and related work

This section provides background for our work and introduces
related work.

2.1. The emerging infrastructure for sensor-cloudlets and context-
cloudlets: ubiquitous sensing

There is a growing infrastructure of sensors, some of which will
become publicly available for use and integrated into applications.
Sensor grids. The notion of the sensor-grid was proposed in [29,30]
which integrated sensor networks with grid computing, so that
computational resources from the grid can be employed to process
sensor data real-time. This idea will become extremely important
as sensor networks become more widespread. Services can be
deployed over such combined infrastructures overWeb standards,
such as the NICTA Sensor Web architecture, which provides
stateful SensorWeb services to clients [31]. With the development
of cloud platforms [32], the integration of sensing infrastructures
with cloud resources to offer services via Web/Internet standards

http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/

S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632 621
is the next step (e.g., sensor clouds noted earlier [27]), and for
example as already demonstrated in the ECG data analysis service
in [33]. Indeed, such a paradigm for large scale sensing with cloud-
based processing will continue to be important. Our work here
complements such work by allowing descriptions of compositions
of resources in sensor-cloudlets and context-cloudlets in specific
applications.
Sensing on the mobile. Many mobile devices (e.g., smartphones or
on-car computers) now are equipped with sensors (or can be aug-
mented with sensors) and an API to access sensor outputs, and
we imagine greater sophistication and variety of sensors on mo-
bile devices on the user as well as on cars, buses, trams and trains
(as we describe below). There has been work on acquiring and us-
ing context information on mobile platforms [34,35,19,20,36,37],
and a trend towards sharing such aggregated context information
via what can be called sensor mashups [38] and context mashups
[39–41], where information from geo-tagged sensors are aggre-
gated and ‘‘pushed out’’ to the Web to be visible.
Urban sensing. There have been a number of Web sites providing
map-based visualization of real-time data acquired via sensors
at different geographical locations, many of which have been
contributed by the public and are community-based. There
are others with more specific information such as real-time
information about bus arrivals in the Cambridge TIME project,4
and in the Melbourne trams tracking project.5 Some sites provide
visualizations of GPS tracked cycling and walking routes from
voluntary contributors, and car routes. Other projects examine
traffic loads in real-time6 making such information available from
mobile devices.

In addition, urban sensors including air pollution monitors
(e.g., as mentioned in mobiscopes [42,43]), noise sensors, traffic
monitoring services, and construction work detection cameras,
around the city might be able to help pedestrians choose the best
and most pleasant path through a part of the city, without causing
anyone to miss the bus. The urban sensors might be queried by
users on an on-demand basis, at reasonable costs (yet this can be
significantly profitable with thousands of users per day).
Citizen science. An emerging development where individuals can
make a difference is what has been termed citizen science where
‘‘networks of volunteers perform ormanage research-related tasks
such as observation, measurement or computation’’. In citizen
science, according to Paulos et al. [44], ‘‘we need to expand our
perceptions of our mobile phone as simply a communication tool
and celebrate them in their new role as personal measurement
instruments capable of sensing our natural environment and
empowering collective action’’. Urban sensing [45–48], where
urban environments are probed and tracked using a participatory
‘‘Web 2.0’’-style collaboration can be facilitated by the rightmobile
tools. There are also research projects that use electronic street
signs to communicate air quality outdoors [49] and sensors to
monitor air quality indoors [50], which can be made accessible
to mobile devices. Cyclists allergic to pollens might employ (and
maybe pay for) pollen sensors in the environment to help them
avoid such hazards.
Social network sensing. Social networks of sensors (on mobile
devices of networked users) might also be employed to detect
one another’s presence. The project that links Bluetooth proximity
sensing to facebook social networks,7 and Bluetooth presence

4 http://www.cambridgeshire.gov.uk/transport/around/buses/-realtime.htm.
5 http://tramtracker.yarratrams.com.au/.
6 For example, the iPhone App TrafficAU provides real-time traffic information in

Australia.
7 http://news.bbc.co.uk/2/hi/technology/6949473.stm.
sensing [51,52] and friend location detection provides another
kind of context information for users. Activity recognition via
sensor data gathered using mobile devices can be shared as done
in [34] and used in applications, whether it is to compete with
one another to encourage fitness or to provide a greater sense
of closeness, groups of sensors and contexts can be utilized for
such social enhancement purposes. Such peer-to-peer tracking
might on-demand, on a pay-per-use basis, tap in to the current
positioning infrastructure of an environment, or utilize wide-area
GPS-based solutions, depending on indoor and outdoor features.
Bubble sensing. In bubble-sensing [53], a mobile device initiates a
sensing task and the presses a button on the phone to affix the
task to a location, which persists until a timeout. Themobile device
can register the sensing task with a bubble server. Sensors at that
location or othermobile phones (with sensors)might be employed
to service the sensing task. Sensed data from phones servicing
the sensing task can be uploaded via the cellular network or
WiFi. The notions of sensor-cloudlets and context-cloudlets have
similarities with the notion of bubble-sensing. However, learning
from the ContextToolkit,8 a context-aware application comprises
sensors, an encapsulation of sensors as context widgets, context
aggregators and context interpreters, and so, our proposal involves
heterogeneous resources (not only sensors, but also sensor data
interpreters, reasoning modules, etc.) composed on-demand for a
user’s context-aware application.Moreover, in our approach,while
we assume appropriate resources can be discovered as needed,
we also provide operators to compose resources and show how to
embed these compositions within the full expressive power of a
programming language. Also, with our cloudlets, a billing model is
required.
Possibilities. Hence, mobile devices act as sensor devices and be-
come portals to access sensory information from sensors in the
environment, acting as aggregation points. Mobile devices act as
sensors in two ways: via sensors on those devices uploading sen-
sor data or interpreted context information, or users of those de-
vices manually providing such data (e.g., uploading video feeds, or
annotations of events and spots for tourists). There will be an in-
creasing amount of information available at a particular location,
which users might want to be aware of, or which can be analyzed
to infer semantic context or knowledge about situations.

Within the cloudlet computing model, intermediaries might
work with third-party sensor network administrators, context
information providers and application developers, and package
context-aware applications that end-users can employ on a pay-
per-use basis. A key idea is that such sensor-intensive context-
aware applications can be configured and delivered as a service to
end-users on an ad hoc and on-demand basis. The opportunities
lie in the multiple categories that services can be provided.
In the typical cloud computing model, we may have storage,
database, information, process, application, platform, integration,
security, management or governance, testing and infrastructure
as-a-service [24]. In selling usage of context-aware applications,
a question is what might be offered as a marketable or chargeable
service?

Here, we might be more specific and a sensor, a whole sen-
sor network, context information, context reasoner, context-
models/context ontology, situation reasoner, situation models/
situation ontology can be as-a-service, and also a packaged
context-aware application can be provided as-a-service. Even
more specifically, we might have positioning-as-a-service where
an environment might sell its tracking infrastructure on a pay-as-
you-use basis. In fact, multiple parties might be involved in the de-
livery as-a-service of a particular context-aware application for a
user.

8 http://contexttoolkit.sourceforge.net/documentation/UserGuide.html.

http://www.cambridgeshire.gov.uk/transport/around/buses/-realtime.htm
http://tramtracker.yarratrams.com.au/
http://news.bbc.co.uk/2/hi/technology/6949473.stm
http://contexttoolkit.sourceforge.net/documentation/UserGuide.html

622 S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632
3. Scenarios and challenges

In this section, we describe scenarios for the cloudlet comput-
ing model we are focusing on in this paper, and then outline chal-
lenges.

3.1. Example scenarios

In shopping malls, indoor positioning will become increasingly
commonplace, paving the way for context-aware advertising and
allowing the user to connect to ambient infrastructure sensors
and product information databases on-the-fly. A cloud of sensors,
context providers and database resources can be pooled together,
for example, to support a father’s shopping task to find something
for his daughter’s birthday. Such a cloudlet formedwith the current
sensors and computers around the user is transient, adapted to the
current available resources and personalized for the user.

Consider a ‘‘Christmas social shopping’’ assistant application
for Mary and her friends shopping in Taipei during the week
before Christmas. With this application as a service, the locations
of friends, navigational maps within the shopping areas, location-
based advertisements, crowd and traffic real-time data, weather
reports (including rain, temperature are included) are integrated
and provided as a package. Different parties might be aggregated
to provide such a service, including some delivering raw sensor
data as a service, others positioning and people tracking services,
and others retail information. A cloudlet of resources is formed
to provide the whole-packaged service to the end-user. There
are issues of privacy when context information, such as location
of users, are shared. In fact, there may be an incentive model
for users to share their context information, in exchange for
monetary or other kinds of benefits such as free access to other
services, essentially being not just a consumer but a provider
when joining a cloudlet. Mary and her friends might choose to
opt-in to have their locations tracked, yet maintaining a privacy
policy with the company. There could also be a case where
competitors are present, each providing a similar kind of service,
where end-users then need a way to choose from a selection
of service providers. For example, there could be two or more
providers for a ‘‘Christmas social shopping’’ assistant (each with
their own points of differentiation), who may utilize the same
positioning infrastructure (delivered as a pay-per-use service by
another party).

Consider another example of integration-as-a-service in the
sensor-cloudlets context. Wider area hostpots-based networking
and positioning might be provided by means of an overlay over a
collection of WiFi hotspots. Several parties provide hotspot access
and another party provides a layer of integration and transparency
of a service to end-users that spans multiple hotspots. Sensors
connected to different hotspots might be accessed by the end-user
uniformly via this layer.

There are numerous sensor-based context-aware applications
that can be delivered as services to end-users. Consider event
awareness and delivery of video feed for events. When a local
event happens (e.g., a Japanese culture dance in an open air mall
in association with a cultural festive season), certain providers
might be able to provide live video feeds accessible via hotspots to
nearby users or beyond. There could be multiple providers able to
provide such a service, some just a plain video feed and otherswith
running commentary (to add value), such feeds sold as a service
to end-users viewable from their mobile devices on a pay-per-use
basis. Some end-users, willing to spend more, might be able to get
multiple video feeds of the same event at the same time, delivered
via multiple providers, thus having a better (but more expensive)
experience of multiple perspectives concurrently—the video feed
providers might be companies or even individuals (who simply
managed to get a good seat in front of the open air stage for the
performance and decided to actually capitalize on that).

The combination of sensors on mobile devices (e.g., smart-
phones, cars and bicycles) and in the surrounding infrastruc-
ture, together with reasoning algorithms (e.g., data mining or
knowledge-based), will yield a platform that can be tapped-in by
mobile users on an on-demand and ad-hoc (and even pay-per-use)
basis. Markets can form where resources from multiple providers
are integrated as needed ormultiple providers offering similar ser-
vices over an area might compete.

3.2. Challenges for sensor-cloudlets and context-cloudlets

Similar challenges as those found in normal cloud compu-
ting arise with sensor-cloudlets and context-cloudlets. When
providers collaborate to provide sensory and context information,
and context-aware applications-as-a-service, issues arising in-
clude pooling of resources when needed (including dynamic
discovery and reservations of dynamically provisioned resources
possibly frommultiple parties), agility and adaptations to available
resources and changing user needs, costs and (static and dynamic)
pricing structures and appropriate business models, billing, re-
source metering, accessibility from different platforms, scalability,
security, trust, privacy of usage, sustainability, maintenance, gov-
ernance of services, QoS negotiation and guarantees, reliability of
services, service level agreements, application development com-
plexity, composability of clouds and services, and user experiences.

In particular, from the perspective of assembling a set of resou-
rces (e.g., sensors and context reasoning engines, and computers
on which to do processing) and in order to discover appropriate
context-aware systems, whether they contain all three compo-
nents of sensors, interpreters and situation reasoners or only some,
there is a need for

• representation of sensors, sensor networks, sensor data, context
information, context ontologies/models, situation knowledge,
and situation ontologies to facilitate their discovery and usage;

• representation of components that reason with and interpret
sensor data and processes and components that aggregate
contexts to infer situations;

• mechanisms for composition or mix-and-match combinations
of sensors and components that yield a particular context-
aware application as a service to end-users, and the associated
representations of compositions, creation of compositions
together with adaptations and recomposition mechanisms;

• search and discovery infrastructure for components from
sensors, context providers, to context reasoners; and

• a system for governance of services delivered (be it delivering
sensor data as a service, context information delivery as a
service, situation reasoning as a service, or a whole context-
aware application-as-a-service).

In the next section, we present a formal abstract model of
context-aware systems, and a formalism for representing composi-
tions of context-aware systems, sensors and applications.We show
how ourmodel maps to the service-oriented computing paradigm.
Note that we do not focus on resource discovery in this paper but
assume that there is an infrastructure for finding (appropriately de-
scribed) resources required for a composition.

4. Composition for sensor-cloudlets and context-cloudlets

The above challenges are numerous. In this section, we address
one aspect of the above challenges, that of providing a mechanism
to compose sensors and other components to create a context-
aware application (to be delivered as a cloudlet service to end-
users). More specifically, we focus on representations of such

S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632 623
compositions in a formal way which allows reasoning with such
compositions, changes to such compositions, and cost analysis, as
we demonstrate below.

A formalism for representing compositionswas first introduced
in [54], but not used in cloudlets. Here, in this paper, and not in
previous work:

• we provide a subset of the operators and demonstrate how
we can extend the formalism to make location explicit and to
perform cost analysis; and

• we show how to embed compositions into a programming
language and provide numerous examples of compositions
for use in cloudlets. Our operators are not merely composing
services9 but composing context-aware systems, each of which
may expose its functionalities as a set of services.

4.1. A general model of a context-aware system

Here, we use context-aware system as a general term to refer to
three types of systems:

• systems comprising only of sensors,
• systems comprising only of context interpretation and reason-

ing components, and
• systems with sensors and context interpretation and reasoning

components.

The general model of a context-aware system R is of the form
(Σ, Π, Θ). Σ is a finite set of sensors where each sensor σi is a
function which senses a part of the world (in which the sensor is
situated at the time)W ∈ W and produces a set of sensor readings
G ∈ G, i.e. σi : W → G. G is represented in the form of equalities
or inequalities (i.e., ranges) on sensor readings, and we use the
function symbol reading(σ , T) to denote the reading of a sensor
σ at some time T (or simply, reading(σ) if time is implicit). We
letW and G remain opaque as our discussions do not require their
details, but explicit and precise definitions could be given for them;
for example, W can be defined as a three-dimensional volume of
spherical space (and W as a set of such spaces) at some location
of a prescribed size where the sensor is contained, and G can be a
sensor stream comprising a set of timestamped data samples, and
G a set of such streams of readings.

The interpreterΠ can then be defined as amapping from sensor
readingsG to some context (e.g., a symbolic location such as a room
number) C ∈ C (which we assume are concepts grounded in some
ontology such as SOUPA10 and CONON [57], or other ontologies as
surveyed in [58,59,10]), i.e., Π ⊆ (G × C). So, given W ∈ W, and
suppose Σ = {σ1, . . . , σn}, and σ1(W) = G1, . . . , σn(W) = Gn
(for Gi ∈ G), then Π can be applied to interpret each Gi to obtain a
set of contexts {C1, . . . , Cn}, denoted by Π(Gi) = Ci (taken here to
mean (Gi, Ci) ∈ Π). The situation reasoner Θ is a pair of relations
(Θc, Θs) with Θc , mapping sets of contexts to situations, and Θs,
mapping sets of situations to other situations, i.e.

Θc ⊆ (℘(C) × S)

where S is a set of situations (again,whichwe assume are grounded
in some ontology), and

Θs ⊆ (℘(S) × S).

Examples of aggregating context to infer situations can be found
in the literature [60,10,61–63]. Our model makes the distinction
between the notions of context and situation following the work
such as [57,61,64,12,9], where as mentioned earlier, in Dey’s
definition [9], context information is used to ‘‘characterize the

9 There is much work on service composition such as [55,56].
10 http://pervasive.semanticweb.org/soupa-2004-06.html.
situation of an entity’’, modeled via Θc . While we do not commit
to any ontology here, in practice, we assume that systems do
return inferred contexts or situations using concepts from a ‘‘well-
known’’ ontology in order to facilitate interoperability.

Moreover, we define the relation denoted by ⊢ between
systems and pairs of the form (W , S) where W ∈ W and S is
some situation, such that R ⊢ (W , S) if and only if R recognizes
S when sensing part of the worldW . A situation that is recognized
by a system is then either computed from contexts (recognized
by some sensors and the interpreter) via Θc or aggregated via Θs
fromother recognized situations (it could be fromboth context and
situations as appropriately modeled). This meaning of the relation
⊢ can be expressed recursively as follows in a rule written in the
form premises

conclusion :

Where Θ = (Θc, Θs), either
(i) [({C1, . . . , Cm}, S) ∈ Θc

for somem, where for each Ci, i ∈ {1, . . . ,m},
Π(σj(W)) = Ci, for some j and σj ∈ Σ],

or
(ii) [({S1, . . . , Sk}, S) ∈ Θs for some k,
where for each Si, i ∈ {1, . . . , k}, (Σ, Π, Θ) ⊢ (W , Si)]

(Σ, Π, Θ) ⊢ (W , S)
(one-system).

Similarly, we can represent context recognition by a system R,
i.e., R ⊢ (W , C) for some context C , where Π(σ (W)) = C , for
some σ ∈ Σ . And one could generalize the notion of recognition
to include not just situations but also contexts.

4.2. Syntax of expressions and operational semantics of operators

We consider a language of expressions representing composi-
tions of context-aware systems involving three binary operators
we call union, intersection and tight-union.

A relevant question here is why an operator approach? We
adopt an operator approach in the spirit of and drawing inspiration
from software engineering for large logic programs [65].Moreover,
each operator provides abstraction, encapsulating a pattern of
interaction or cooperation among the composed systems, and has
a well-defined semantics. Such an approach is also extensible,
e.g., by introducing new operators to the language, each with its
own meaning. Composing context-aware systems (abstracted as
triples as shown above) is different from composing individual
services, and hence, we defined operators on systems rather than
services. We show later that such operators would map to specific
ways of invoking services, with each context-aware system having
functionality exposed as services.

We can define a set of composition expressions in EBNF:

Q ::= R | Q + Q
E ::= Q | E ⊕ E | E ⊗ E.

Informally, themeaning of the operators are as follows, extend-
ing our relation ⊢ given above. The union of two context-aware
systems used in attempting to recognize C , denoted by R1⊕R2 ⊢ C ,
means that context C is recognized either using R1 or R2, succeed-
ing if either succeeds. Note that this can be nondeterministic but
one could employ short-circuit evaluation in practice, that is, try
R1 first, and only on failure try with R2.

The intersection of two context-aware systems used in
attempting to recognize C , denoted by R1 ⊗ R2 ⊢ C , means that
context C is recognized using both R1 and R2, succeeding if both
succeed.

The tight-union of two context-aware systems used in attempt-
ing to recognize C , denoted by R1 ⊗ R2 ⊢ C , means that context C

http://pervasive.semanticweb.org/soupa-2004-06.html

624 S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632
is recognized using both R1 and R2 working in a tightly coupled co-
operative manner (as we define below).

Here, we extend these expressions, beyond those in [54] by
prefixing the systemswith a location designator and incorporating
evaluation costs. The new EBNF of expressions is as follows.

Q ::= [L :]R | Q + Q
E ::= Q | E ⊕ E | E ⊗ E.

We assume that L is a label for a possible location of a context-
aware system, an element of a predefined set of location labels.
The set of location labels would be application dependent;
the following discussions make no commitments to this set,
maintaining generality. The location prefix ‘‘L :’’ is optional
in expressions, and so enclosed in square brackets. By default,
location would be the local host on which the expressions are
evaluated. For example, the expressionm : R1+d : R2 could denote
that system R1 resides on themobilem and R2 resides on a desktop
d. If the expression is evaluated on the mobile device m, then it is
equivalent to R1 + d : R2, leaving out the prefix ‘‘m :’’ for R1.

The rules in Fig. 1 in Plotkin-style operational semantics [66]
define the modified relation ⊢δ more precisely, where evaluation
returns δ as the evaluation cost. Even if the situation or context is
not recognized, the cost is still incurred, i.e. we write ̸ ⊢δ to denote
that evaluation has failed but cost of δ has been incurred.

In the rule for tight-union (tu), we can observe a tighter
coupling of the three components of sensors, interpreter and
situation reasoner compared to union, in that a tight-union
composition behaves as an integrated system at all three levels
(white-box integration), whereas the union employs multiple
systems but each as a blackbox. While the rule specifies that the
union of the corresponding components (union of sensors, union
of interpreters and union of situation reasoners) are employed in
recognizing a situation (or context), this happens conceptually,
and does not necessarily imply the actual textual integration of
software components. Tight-union represents a type of interaction
among two systems. The generalized form of tight-union to n-ary
is given by the rule (gtu). Note that (gtu) with two operands is
equivalent to (tu).

The two rules of union rely on the success of one or the other -
operationally, (union1) would first be used for evaluations. If rule
(union1) succeeds, then (union2) is not needed. Note that costs are
added up for evaluations. The rules (relocate) and (gtu, relocate)
count the cost of using remote system(s) R, which is modeled
via a function cost. Such a cost may be monetary and/or in
terms of network connection time. The rule (gtu, relocate) reduces
the evaluation to (gtu) after counting the costs (here, we count
the costs only once for a consultation, though more fine-grained
costing might be possible).

The rules above can be used in a backward-chaining fashion to
determine if a particular context or situation currently holds. For
example, (R1 + R2) ⊢ (W , S) determines if situation S holds with
respect to the composition (R1+R2), by patternmatching. The rules
can also be used in as a query to ask what contexts or situations
currently hold (or are happening), if S is a variable instead of a given
situation. For example, (R1 + R2) ⊢ (W , S?) asks what situations
may be happening with respect to (R1 + R2), resulting in one or
more possible instantiations for S? (we denote a variable by an
identifier post-fixed by a ‘‘?’’).

Note that compositions of systems using the above operators
provide as output contexts and situations inferred, and not the
actions to be taken. In discussionswhich follow, we use the symbol
α⟨description⟩ to represent systems (or services) that take contexts
(e.g., location of a user) and/or situations, as well as possibly other
input (e.g., user profile), as input and performone ormore action(s)
(e.g., sending advertisements).
We also assume that the above expressions can be embedded
within some existing programming language, whether imperative
or declarative, and hence, in effect, the context-aware systems can
be queried from within the logic of a program. In the discussions
which follow, for readability, we will use an embedding within
a simple logic programming language with typical Prolog-like
constructs, with rules of the form A : −G, where A is a Prolog term
(which may be a predicate representing a service invocation), I is
an identifier which is constant symbol, and G is a goal of the EBNF
form

G ::= [L :]A | E ⊢ I[?] | G,G

where I is an identifier, with an operational semantics that is a
simple extension of Prolog’s [67], with the additional type of goal
E ⊢ I , or for variables E ⊢ I?, evaluated using the rules given
earlier.

4.3. Example compositions

4.3.1. Example 1
Consider a scenario of a mobile device user in an open air

shopping area that aims to utilize a sensor-cloudlet in order to
understand the surrounding environment, in terms of air quality,
substances that can trigger allergies, crowd and vehicle traffic
conditions, and in terms of shops of interest which are in close
proximity (say within 20 m), using two types of positioning
technologies, via WiFi signal triangulation and GPS. The WiFi
positioning mechanism is used just for the time the user is in the
area, and in fact, not all the available access points in an area
needs to be used for positioning (at least three say if a system
such as Ekahau11 is being used). When the user moves from one
area to another a different set of access points might then be
employed to provide positioning, i.e. there is a need for resource
reservation, utilization and then release, resources used in one
area is released and another set of resources are then employed
in another area. Moreover, the mobile user may be connected
to air quality monitors and crowd, traffic and event monitors in
one area, and then the corresponding local monitors of another
area. There may be a component downloaded onto the mobile
device (perhaps on demand) for discovery and connection to the
local sensor-cloudlet for this purpose. Each use of sensors and/or
collections of sensors might then incur a charge on the user.
The changing resources employed in such a scenario corresponds
to what Satyanarayanan in [68] calls localized scalability where
density of interactions, and so, utilization of local resources, with a
place reduces as one moves away from a place and increases with
the place one moves into. In other words, the context- or sensor-
cloudlet that was formed initially might need to adapt as the user
moves, with resources released and other resources bound.

We provide a description of this application as follows. Let
Rair
a , Rair

b , and Rair
c represent air quality sensor systems in three

adjacent areas a, b and c , respectively, Rcrowd
a , Rcrowd

b , and Rcrowd
c

represent corresponding crowd monitoring systems, Rwpos
a and

Rwpos
c represent two positioning systems that can return the

location of the user using WiFi triangulation in two areas a and c ,
assuming there is no WiFi positioning coverage for area b. Now,
suppose that the user’s mobile device has a local GPS system
providing the user’s location Rgpos, and a system RadsOptIn that infers
whether the user is in a suitable situation to receive an ad. Now,we
assume that the user is moving around within the adjacent areas
a, b and c . We assume that the remote (with respect to the user’s
mobile device) sensor systems for area a is at location La (identified

11 http://www.ekahau.com.

http://www.ekahau.com

S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632 625
Fig. 1. Overview of operators and associated rules.
via aURL, say), for area b is at location Lb, and for area c is at location
Lc . The good_to_go/1 predicate returns a location that is good to
go if air quality is good and there is no crowd:
good_to_go(a) :-

La : Rair
a ⊢ good_air_quality, La : Rcrowd

a ⊢ no_crowd.
good_to_go(b) :-

Lb : Rair
b ⊢ good_air_quality, Lb : Rcrowd

b ⊢ no_crowd.
good_to_go(c) :-

Lc : Rair
c ⊢ good_air_quality, Lc : Rcrowd

c ⊢ no_crowd.

The following rule returns appropriate ads for the user,
assuming apredicatedisplay/1 that shows ads to theuser,αads is
a system (or service) located at Ladserver that, given a user’s location,
returns an ad that is most relevant to the user’s location, user_loc?
is a variablewhichwill be instantiatedwith the user’s location, and
ad? is a variable which will be instantiated with an advertisement:
see_ad :-

RadsOptIn
⊢ ok_for_ads, // check user in situation to

receive ads
(La : Rwpos

a ⊕ Lc : Rwpos
c ⊕ Rgpos) ⊢ user_loc?, //get user
location
Ladserver : αads(user_loc?, ad?), // retrieve relevant ads
display(ad?).

We assume such rules being invoked on the user’s mobile
device, which in turn will query remote context-aware systems.
Note that the above rule uses the union composition of the
three positioning systems to get the user’s location; due to the
semantics of union, any one system returning a user location will
be acceptable. The use of our intersection operator on multiple
positioning systems can be used tomodel confirmation of locations
by different systems, as suggested in [69], where redundant
positioning can help to prevent errors. We have assumed, for
simplicity, that the systems return location information in the
same format, based on some ontology as we noted earlier, and
that the argument for αads accepts this format as well; if this is not
the case, an additional intermediate step of format conversion is
required.

The identifiers good_air_quality, no_crowd, and ok_for_ads are
situations recognized via the respective systems, and can be

626 S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632
concepts from some ontology, i.e. there could different systems
recognizing the situations specified in an ontology. For example,
using the Semantic Web OWL style of encoding ontologies, the
identifiers are then concepts within an ontology, and we could
reference these ontologies via prefixing the identifierswith theURI
identifying the ontology.

Note that the remote context-aware systems and their locations
La, Lb and Lc can be preprogrammed, or discovered via a system
discovery phase (not shown above), and the local (on-mobile)
systems used in good_to_go/1 and see_ad/0 can also be
discovered via a local registry. Details of sensor and system
descriptions for purposes of discoverywill not be discussed further
in this paper.

From the rules, we can see that a set of resources (or context-
aware systems) {Rair

a , Rair
b , Rair

c , Rcrowd
a , Rcrowd

b , Rcrowd
c } are required

for good_to_go/1 and another set of context-aware systems
{RadsOptIn, Rwpos

a , Rwpos
c , Rgpos, αads} for see_ad/0. These two sets

of resources form the cloudlets for the two predicates, and
collectively form the cloudlet for the mobile device supporting
these two predicates. These resources can be obtained on-demand
during goal evaluation, when a query to a context-aware system
is to be issued, or all reserved before the goal evaluation begins,
and the cost is computed at run-time using the rules in Fig. 1, by
considering each subgoal.

4.3.2. Example 2
In recent times, Bluetooth sensing has been considered for

tracking, withmany people leaving their Bluetooth enabledmobile
phones in discoverable mode [70,71].12 Consider another example
of utilizing Bluetooth sensing infrastructure.

We have two cafes c1 and c2, each with a device capable of
Bluetooth discovery—we call each of these devices a Bluetooth
scanner, denoted by σc1 and σc1. Given the limited range of today’s
Bluetooth of around 10 m, each scanner scans periodically (every
10 s, say) to discover the Bluetooth addresses of devices in the cafe.
This is a rough guide as to the number of people in the cafe at
different times of the day since not everyone will have a Bluetooth
device, and have it on discoverable mode. Suppose each scanner
runs daily, over several months, a database of Bluetooth addresses
(time-stampedwith the time of scan) is created.While the identity
of a person is not generally integrated with a particular Bluetooth
address so that anonymity can be preserved, the same Bluetooth
address might be detected in more than one scan (e.g., when the
person is in the cafe for more than 20 s) or the person is a regular
visitor to the cafe (so that the person’s device is detected often
over the span of several months). Let Rbt

c1 and Rbt
c2 be systems of

the form ({σc1}, ∅, ∅) and ({σc2}, ∅, ∅), respectively, where each of
the Bluetooth scanners, in effect, returns a stream of time-stamped
Bluetooth addresses.
Case 1. Now suppose that a user’s mobile device has a system with
an interpreter that can map his/her friends’ Bluetooth addresses
into names (viewed as context information indicating that the
friend was present) and recognize certain groups of people,
denoted by Rgrp

= (∅, Π, (Θc, ∅)), where given a set of friends’
Bluetooth addresses Bt and friends’ names NamesPresent, Π :

Bt → NamesPresent , and a mapping Θ that maps names of family
members present (say, Dav, May, Mary and Tim) to the situation
family_here:

((DavPresent,MayPresent,MaryPresent, , TimPresent),
family_here) ∈ Θ

12 Also see Jabberwocky http://www.urban-atmospheres.net/Jabberwocky/ on
Bluetooth discovery of familiar strangers.
and maps the presence of Sam, Zoe, and Joe to the situation
bestfriends_here:

((SamPresent, ZoePresent, JoePresent), bestfriends_here) ∈ Θ.

The composition (Lc1 : Rbt
c1 + Rgrp) forms a context-aware

system where the sensors are the Bluetooth scanners from cafe c1
(assumed at remote location Lc1), and the interpretation and rules
tomap people present to situations are provided by the system Rgrp

on the mobile device.
So, we can consider a scenario where themobile user steps into

c1, and then runs the query (Lc1 : Rbt
c1 + Rgrp) ⊢ family_here, which

will be true if family is present in cafe c1, and the query (Lc1 :

Rbt
c1 + Rgrp) ⊢ group_here?, depending on who is present, will yield

the variable group_here? instantiated accordingly, to family_here
if all the family members are present, and to bestfriends_here if
the best friends are present, or none, if the query fails. Now if
the user steps into cafe c2, the system might adapt to a different
composition using the current local resources, i.e., the query (Lc2 :

Rbt
c2+Rgrp) ⊢ family_here is used instead,whichwill be true if family

is present in cafe c2.
Note the use of the tight-union operator ‘‘+’’ here which would

combine the different components from the systems as though
there was one systemwith all the components (as specified in rule
(gtu) in Fig. 1).
Case 2. Now, a cafe may be small enough so that who is present is
easily identified. But considering people present in both the two
cafes, the query (Lc1 : Rbt

c1 + Lc2 : Rbt
c2 + Rgrp) ⊢ family_here

will determine if family is present in the two cafes, and the query
(Lc1 : Rbt

c1 + Lc2 : Rbt
c2 + Rgrp) ⊢ group_here? will return some group

(family or best friends) present in the two cafes (if any).
The cafe c1 owner, who is, away from his/her cafe, may want

to know if his/her cafe is currently crowded, that is, has more than
40 people, say, and has a system Lcomp : Rcrowded residing on some
compute server, which interprets the readings from the Bluetooth
scanner in cafe c1 to see if the number of unique addresses
detected currently is more than 40, and decides to post the query

(Lc1 : Rbt
c1 + Lcomp : Rcrowded) ⊢ crowded

which results in either true or false, depending on the current
number of detected addresses. What we aim to illustrate here is
that the output of the Bluetooth scanner in c1 is used differently by
different people, by composing with different systems, with Rgrp in
Case 1 and Lcomp : Rcrowded in Case 2.
Case 3. Rather than a cafe, consider a set of n Bluetooth scanners
distributed throughout a shopping mall, denoted by Rbt

s1, . . . , R
bt
sn,

at remote locations Lsi, the composition

(Ls1 : Rbt
s1 + · · · + Lsn : Rbt

sn + Rgrp) ⊢ group_here?

determines if the situation of some group (family or best friends)
might be present in the shopping mall. Of course, the cost of these
queries can be summed up if the use of the scanners Lsi : Rbt

si and
Lci : Rbt

ci are made available as services on a pay-per-use basis.

4.3.3. Example 3
Rather than Bluetooth scanners, other types of scanners or

tracking sensors can be packaged as services. For example, in retail
stores in a shopping mall, there may be a set of RFID readers that
track collections of products, denoted by Lri : Rrfid

ri , and the mobile
user has a system that maps RFID ids to products in a shopping
wish list Rwishlist , then, a query to stores 1, 5 and 8 such as

(Lr1 : Rrfid
r1 + Lr5 : Rrfid

r5 + Lr8 : Rrfid
r8 + Rwishlist) ⊢ all_found

can be used to determine if all the products in the wish list are
currently found just from the combined set of products tracked
(via RFID scanning) in stores 1, 5 and 8. Connections from the

http://www.urban-atmospheres.net/Jabberwocky/

S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632 627
user’s mobile device to the retailers’ remote servers Lr1, Lr5 and
Lr8 (forming a cloudlet around the mobile device) may be made by
WiFi or Bluetooth and are not specified here. The mobile user may
be somehow charged for interrogating the stores’ databases in this
way, or retailers may make this service available free to users.

Now, stores 1, 5 and 8might be the nearest relevant ones to the
user. As the user moves, a different set of stores might be queried
instead. We have the following rule which queries stores 1, 5 and
8 if the user is in area a and stores 2, 7 and 9 if the user is in area c
(using Prolog’s if-then-else construct):
all_found_area(X) :-

(La : Rwpos
a ⊕ Lc : Rwpos

c) ⊢ user_loc?, // get user location
((user_loc? == a) →

(Lr1 : Rrfid
r1 + Lr5 : Rrfid

r5 + Lr8 : Rrfid
r8 + Rwishlist) ⊢ all_found, X = a

; // else user in area c
(Lr2 : Rrfid

r2 + Lr7 : Rrfid
r7 + Lr9 : Rrfid

r9 + Rwishlist) ⊢ all_found, X = c
).

Hence, even the resources to be used can be adapted to the current
context (in this case, location) of the user. We have assumed that
theuser_loc? obtained is an area, but it could be of finer granularity,
in which case we assume an in/2 predicate which can determine
if the user is currently within a given area:
all_found_area(X) :-

(La : Rwpos
a ⊕ Lc : Rwpos

c) ⊢ user_loc?,
(in(user_loc?,a) →

(Lr1 : Rrfid
r1 + Lr5 : Rrfid

r5 + Lr8 : Rrfid
r8 + Rwishlist) ⊢ all_found, X = a

;

(in(user_loc?,c) →

(Lr2 : Rrfid
r2 + Lr7 : Rrfid

r7 + Lr9 : Rrfid
r9 + Rwishlist) ⊢ all_found,

X = c.
).

).

A more dynamic form of this is to query a ‘‘location to stores’’
database, denoted by Lstores : αstores which provide the stores given
a location. Now, writing +[Lr1 : Rrfid

r1 , . . . , Lrn : Rrfid
rn] to mean

(Lr1 : Rrfid
r1 + · · · + Lrn : Rrfid

rn), we have the rule:
all_found_location(X) :-

(La : Rwpos
a ⊕ Lc : Rwpos

c) ⊢ user_loc?,
Lstores : αstores(user_loc?, storelist?), //query for stores at

user loc
+ (storelist?) ⊢ all_found, X = user_loc?.

A pay-per-usemodelmakes even better sense here since the actual
servers queried depends on context.

4.4. Reliability and cost analysis on compositions

An advantage of our programming language approach to declar-
atively describing compositions of resources is that static analysis
can be facilitated.

Below, we demonstrate this by defining reliability and cost
operators on composition expressions, and state observations on
the reliability and cost trade-off.

We use a simple reliability model. There are a number of rea-
sons why a query to a system might fail, from connection failure
to the system crashing. For simplicity, we denote by prel a function
returning the probability of success of using one or a composition
of systems, e.g., prel(L : R) is the probability that L : R can be suc-
cessfully queried to return a reliable result.

Given the semantics of the operators, we can define prel in-
ductively as follows, by following the syntax of expressions given
earlier:
prel(L : R) = known_probability_for_L : R
prel(Q1 + Q2) = prel(Q1) · prel(Q2)

prel(E1 ⊕ E2) = 0.5 · prel(E1) + 0.5 · prel(E2)
prel(E1 ⊗ E2) = prel(E1) · prel(E2).
Basically, we multiply probabilities when both systems are re-
quired to be available for a binary composition to work, and for
union, we add the probabilities sincewe employ an ‘‘or’’ semantics,
but weigh the probabilities in that, roughly, the chance of connect-
ing to either one is 0.5 (assuming a random choice). The above can
be easily generalized to tight-union of n systems.

So, suppose prel(La : Rwpos
a) = 0.6 and prel(Lc : Rwpos

c) = 0.9,
then prel(La : Rwpos

a ⊕ Lc : Rwpos
c) = 0.5 · 0.6 + 0.5 · 0.9.

One can estimate the probability of success or determine an
upper bound for costs before attempting a given goal.

Several implications of the above are observed:
• tighter cooperation (using tight-union or intersection) among

more systems tend to decrease the overall probability of
success;

• redundancy tends to increase the probability of success—this
means that if two systems are available for the same query, it is
better to use a union of the two than just one, butwith a possible
increase in costs if more than one system in the union needs to
be consulted (upon failure);

• given a fixed overall cost C , and a union of a set X of systems
from which to choose from, one can maximize the overall
success probability by trying systems from a subset X ⊆ X such
that we maximize:
1/|X | ·

Ri∈X

prel(Ri)

subject to
Ri∈X

cost(Ri) ≤ C

• given a required fixed overall success probability Prel, and a
union of a set X of systems from which to choose from, one
can minimize the overall cost by trying systems from a subset
X ⊆ X such that we minimize:
Ri∈X

cost(Ri)

subject to

1/|X | ·

Ri∈X

prel(Ri) ≥ Prel

• given a Prolog program with embedded compositions, we can
estimate an overall cost and probability of success of a goal as
follows (assuming no cycles): for a given goal g , assume r is a
rule whose head unifies with g , extract all expressions used in
the evaluation of subgoals B in the body of the rule (including
subgoals in the other rules which may be used), call this set of
expressions Eg . Let subgoals(g) denote the set of subgoals in the
body of a rulewhose head unifieswith g and any other subgoals
that might be used in rules used to prove the subgoals in the
rule, recursively, i.e.

subgoals(g) = B ∪

b∈B

subgoals(b)

where there exists a rule g : −B (if there is more than one rule,
choose the first rule as in normal Prolog evaluation).
subgoals(g) = ∅

if there is no rule whose head unifies with g or g is a fact. Then,
Eg = {E | (E ⊢ I) ∈ subgoals(g)}.
Then, the probability of success of a goal (as far it depends on
the external resources mentioned in Eg = {E1, . . . , Ek}) is then
prel(E1) · . . . · prel(Ek).
If there is more than one rule whose head unifies with g , the
probability increases since there are then more possibilities of
success, and so, the above is aminimumprobability (with order
in which Prolog selects rules to use).

628 S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632
4.5. Meta-level control of evaluation in cloudlets

The embedding and evaluation of compositions within a pro-
gramming language as we have shown for Prolog enables ma-
nipulation of the compositions as first-class objects in programs.
This means that compositions can be constructed programmati-
cally and then its evaluation controlled programmatically. More-
over, it is possible to add meta-level control operators on goals of
type E ⊢ I mentioned in Section 4.2; these control operators are
viewed as meta-level as they are at a higher level than the compo-
sitions themselves.

To represent the evaluation of a goal E ⊢ I and the different
states of the computation (as we show later), we introduce the
notion of an evaluation object (or eval object for short). An eval
object encapsulates the evaluation of a goal E ⊢ I , and is operated
on by operators (predicates) given below.

We can call the predicate create/2 which takes a goal of type
E ⊢ I and returns an eval object, bound to a given variable, i.e. a
call create (E ⊢ I, X) binds X to an eval object representing the
goal X = E ⊢ I . We can then allow control operators to a created
eval object X as follows:

• start: which starts the evaluation (according to the operational
semantics in Fig. 1) asynchronously on a separate thread, so that
start(X, X1) takes an eval object X and returns a new version of
the eval object which has started X1,

• finish: which waits for an evaluation to complete and returns
the results, so that finish(X, R) waits for X to complete and
returns the results bound to variable R,

• stop: which stops a given evaluation without necessary
completing it, so that stop(X, F) stops evaluation represented
by the eval object bound to X and returns a new eval object
bound to F representing a stopped evaluation,

• pause: which pauses a given evaluation, so that pause(X, X1)
takes an eval object X (which is running) and returns a new
version of the eval object which has paused evaluation in X1,

• resume: which resumes a given evaluation, so that re-
sume(X, X1) takes an eval object X (which has paused) and
returns a new version of the eval object which has resumed
evaluation in X1.

The above control operators are distinguished, extending the
syntax of our Prolog programs:

G ::= [L :]A | E ⊢ I[?] | G,G | M
M ::= create(X, Y) | start(Y , Z) | finish(Y , R) |

stop(Y , Z) | pause(Y , Z) | resume(Y , Z)

where in the EBNF above, X denotes a variable bound to a goal of
the form E ⊢ I[?], R represents a term representing the result of
the evaluation which is either true or false, or a term containing
the result R = I?, and Y and Z denote variables representing an
eval object. For example, consider the following program which
is a rewriting of an earlier program, this time using the control
operators with the new syntax:
see_ad :-

// check user in situation to receive ads
create(RadsOptIn

⊢ ok_for_ads,X), start(X ,X1), finish(X1,true),
//get user location

create((La : Rwpos
a ⊕ Lc : Rwpos

c ⊕ Rgpos) ⊢ user_loc?,Y),
start(Y ,Y1),finish(Y1,L),

Ladserver : αads(L, ad?), // retrieve relevant ads
display(ad?).

In the above program, two eval objects were created and used,
one for the goal RadsOptIn

⊢ ok_for_ads (bound to variable X), which
evaluated to true or false, and another for the goal (La : Rwpos

a ⊕ Lc :

Rwpos
c ⊕ Rgpos) ⊢ user_loc? (bound to Y), which evaluated to the
user’s location (i.e., L = user_loc?). Note that it is possible to start
several eval objects at the same time and wait for them to finish
later.

The semantics of the control operator can be given as follows
as transitions in a state machine representing the lifecycle of the
evaluation of a goal of the form E ⊢ I[?] and is given in Fig. 2. The
states represent the states of an eval object. Any other application
of an operator not detailed in the diagram will have no effect,
e.g., applying a stop to an eval object in the stop state has no
effect, resuming an eval object that is not in the paused state has
no effect, and stopping a finished eval object has no effect (and
all these applications are not represented in the diagram). Also,
some transitions in the Fig. 2 happen automatically such as ‘‘return
results’’ or ‘‘reserved resources’’ (transition happens automatically
after resources are successfully acquired).

Evaluation can happen in two modes:

• conservative: in conservative evaluation, all the resources are
acquired before evaluation begins. For example, in the example
above, in the goal to find the user’s location, the systems La :

Rwpos
a , Lc : Rwpos

c , and Rgpos are all contacted and resources
reserved before evaluation begins. Hence, there is no need to
use the transition ‘‘request resources’’ in Fig. 2. This transition
is dotted in Fig. 2 since it is not taken in the conservative mode.

• bold: in bold evaluation, resources are acquired only when
needed. For example, in the goal where the resources La :

Rwpos
a , Lc : Rwpos

c , and Rgpos are mentioned but are unioned,
evaluationmight proceedwith querying La : Rwpos

a first inwhich
case only this resource is acquired first (and the two resources
might never be contacted or acquired if this succeeds according
to the semantics of union). Hence, bold evaluation might result
in the transition ‘‘request resources’’ in Fig. 2 several times as
the process switches fromevaluating to reserving resources and
back again to evaluating.

A small extension with a new parameter to create can be used
to specify this mode, e.g. create(E ⊢ I, bold, X) specifies a bold
evaluation for the given goal.

Note that hanging evaluations are possible—the programmer
has to make sure they are completed, by invoking the predicate
finish, for example. Two other ‘‘housekeeping’’ predicates are
defined:

• status: which takes an eval object and returns its current state
(i.e., returns a string denoting one of the states in Fig. 2),
i.e. status(X, S) returns S = ‘‘paused’’ if X is a valid existing
eval object in the paused state, and

• exception_callback: which register a callback predicate to be
invoked in order to handle exceptions when they are encoun-
tered, i.e. exception_callback(X, handle_excp), where
handle_excp(Error) :- display_message(Error).
where handle_excp always has an error object (containing an
error code and related information) as an argument—we do not
detail the error object here.

4.6. An abstract architecture and service-based interfaces for realizing
composition operators

We describe an abstract architecture for a systemwhich can be
used to realize the above composition operators. The idea is to have
a front-end component (on a mobile device, say) which queries
the remote component systems (in the surrounding infrastructure
of stationary computers and perhaps other mobiles) according to
the semantics of the composition operators. Our architecture is
abstract in that our description does not mandate any particular
representation for contexts, situations, or sensor values, nor do we
mandate the use of any particular programming platform.

S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632 629
Fig. 2. The states of an eval object, and the corresponding control operators and automatic transitions.
Fig. 3. When evaluating a composition on a mobile device, queries might be sent to remote sensors, and services, according to a specified composition expression. A
boundary around resources constituting a sensor/context-cloudlet is also illustrated.
We assume an architecture with n component systems and a
front-end component (typically, on a mobile device). We assume
that this is a distributed system with the front-end networked
to the remote component systems. From the mobile device,
queries are issued to servers that connect to infrastructure sensors.
Evaluating a composition then involves sensors on the mobile
device and/or sensors from the infrastructure. Fig. 3 illustrates the
idea of a mobile device in the midst of local nearby resources and
querying these resources as needed as specified in context-aware
system compositions.

Computation for evaluating queries can proceed in a backward-
chaining manner, resulting in a proof tree if evaluation succeeds.
However, computation, can also proceed in a forward-chaining
manner where sensor readings are first detected and interpreted,
and then context are acquired, and then inferences about situations
are made from the contexts acquired and situations recognized.
The definitions of the operators allow for such forward chaining
reasoning on the rules given earlier.
Each component system in a composition should provide an
interface (which we prescribe here) so that the sensor, interpreter
and situation reasoner can be accessed by the front-end. The
interface can be specified loosely as a set of methods (or services)
with arguments and return values as follows (Fig. 3):

%%%%% whitebox interface
% retrieving raw sensor data given published sensor
identifiers <Value> reading(<sensor_identifier>)

% interpret(<sensor_data>,<condition>,<Context>)
<Context> fwd_interpret(<sensor_data>,<condition>)
<BooleanValue> bwd_interpret(<Context>)

% situation_reasoner_c(<SetOfContexts>,<Situation>)
<Situation> fwd_situation_reasoner_c(<SetOfContexts>)
<SetOfContexts> bwd_situation_reasoner_c(<Situation>)

% situation_reasoner_s(<SetOfSituations>,<Situation>)

630 S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632
<Situation> fwd_situation_reasoner_s
(<SetOfSituations>)
<SetOfSituations> bwd_situation_reasoner_s
(<Situation>)

%%%%% blackbox interface
<Situation> fwd_recognize()
<BooleanValue> bwd_recognize(<Situation>)

The abovemethods basically expose the sensors, the interpreter
and the situation reasoning capabilities of a context-aware system.
Not all context-aware systems will have all the above methods
implemented. For example, a system of the structure (Σ, ∅, ∅)
with only a non-empty set of sensors Σ without interpreter
and situation reasoning capabilities would only have reading
implemented in its interface.

The first method returns a sensor reading given an identifier for
a sensor (realizing σ : W → G), assuming that sensor identifiers
for a given context-aware system are published and so can be used
in arguments.

The next three pairs of methods can be viewed as implementa-
tions of reversible predicates.

The fwd_interpret method returns context given sensor
data, and a condition on the sensor data (realizing Π ⊆ (G × C)),
and the bwd_interpret method determines if sensors confirm
the given context, returning true if so, and false, otherwise. Note
that we assumed here that Π is a function rather than a relation,
but the method is easily generalizable to return more than one
computed context.

The next two methods realize the pair of functions Θ =

(Θc, Θs). The fwd_situation_reasoner_c method returns
an inferred situation given a set of contexts, and bwd_situa-
tion_reasoner_c method, given a situation, returns a set of
contexts which yields that situation. Note that we assume calls to
the reasoners are stateful, that is, for example, if after the first call
to bwd_situation_reasoner_c(S) with a given situation S, a
set of contexts yielding that situation is returned, a subsequent call
to the same method might return another set of contexts that also
yields that situation. Thereafter, a third call may return another
set until an empty set is returned in which no other sets of con-
texts that yield that situation are found. Similarly, thefwd_*meth-
ods are similarly stateful. The fwd_situation_reasoner_s
method returns an inferred situation given a set of situations,
and bwd_situation_reasoner_s method, given a situation,
returns a set of situations which yields that situation. bwd_
situation_reasoner_s(S) is also assumed to be stateful.

So far, the methods are to allow tight-union composition by
exposing the internal components of the system.

The last two methods treat the system as a blackbox. The
fwd_recognize method asks the system to return a situation
it currently recognizes (if any), and the bwd_recognize method
asks if the system recognizes a given situation. A system imple-
menting only the last two methods cannot participate in tight-
union, but will be adequate for union and intersection.

While our abstract architecture does not depend on any
particularities of Web services technology, one can imagine these
methods being specified as Web services which the front-end can
invoke; the prefix L in L : R of a system R can then be a URL.

For instance, consider a query such as (R1 + R2) ⊢ (W , S)
to determine if the situation S is occurring, being evaluated
on the front-end component. Each component Ri will provide
the above methods. From the definition of tight-union, the
sensors, interpreter or situation reasoner of each component are
consulted during evaluation, and so, the methods (or services)
corresponding to the particular component will be invoked by
the front-end. Based on the above interface and rule (tu), to
evaluate this query, we have the following algorithm (ignoring
costs) using backward-chaining reasoning, conveniently expressed
in Prolog-like recursive rules, and we assume that calls to
situation_reasoner_s/2 and situation_reasoner_c/2
map to corresponding bwd_* method calls above:

evaluate_binary_tight_union(R1,R2,S) :-
(R1:situation_reasoner_s(SSet,S),
; R2:situation_reasoner_s(SSet,S)
),

foreach T in SSet: evaluate_binary_tight_union(R1,R2,T).
evaluate_binary_tight_union(R1,R2,S) :-

(R1:situation_reasoner_c(CSet,S)
; R2:situation_reasoner_c(CSet,S)
),
foreach C in CSet: (R1:bwd_interpret(C) ;
R2:bwd_interpret(C)).

For union, based on rules (union1) and (union2), to evaluate
(R1 ⊕ R2) ⊢ (W , S), we would have the following algorithm:

evaluate_binary_union(R1,R2,S) :-
R1:bwd_recognize(S) ; R2:bwd_recognize(S).

And for an intersection query (R1 ⊗ R2) ⊢ (W , S), we would have:

evaluate_binary_intersection(R1,R2,S) :-
R1:bwd_recognize(S), R2:bwd_recognize(S).

Hence, as long as each context-aware system exposes its compo-
nents, sensors, interpreters or situation inference rules, they can be
interrogated for values. Theway inwhich two systems in a compo-
sition are queried are determined by the semantics of the operator.
Each operator, in effect, captures a way in which the two systems
‘‘cooperate’’ in answering queries.

5. Conclusion and future directions

This paper has proposed the concept of sensor-cloudlets and
context-cloudlets, for providing sensor information and context
information on an on-demand (pay-per-use) basis. Because
sensor-cloudlets and context-cloudlets essentially involves the
composition of context-aware systems (an abstraction over
sensors, context interpreters and situation reasoning engines)
within applications, we provided a set of operators for this
purpose.We startedwith the basic intuitive operators of union and
intersection, which simply follows from ‘‘and’’ and ‘‘or’’ of systems.
But we also demonstrated an operator ‘‘tight-union’’ which allows
a tighter integration of systems in evaluating queries, which has a
declarative semantics in our abstract model, which is the union of
the respective internal components.

We do not aim to be exhaustive in the set of operators that
one can define, but aimed to provide a starting point for operators
that might be employed in composing resources for cloudlets. Our
examples also serve to illustrate what can be achieved with only a
small set of operators.

A prototype implementation of our system, with the language
as operators, is being implemented.We also notedmany questions
and challenges that are not addressed in this paper relating to
sensor-cloudlets and context-cloudlets, summarized below:

• discovery of resources to fulfill a user’s need, expressed in
a program with embedded compositions: this will involve
appropriate (preferably standardized) descriptions of resources
and algorithms to match such descriptions with the user’s
needs; algorithms to bind available sensors to that specified in
a composition is required;

• managed execution of evaluations when compositions are
being used, and user program’s are executed: resources
discovered must be reserved and allocated for the user for a
given period, and during execution, unexpected failures and

S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632 631
metering of resource usage must be included; on the resource
provider side, scheduling of resources to meet multiple user
needs is required;

• there is a need for trust and security models, in that handling
of context information of users must be privacy-respecting and
context informationprovidedmust be reliable and trustworthy;

• creation of a database of useful user programs, and useful com-
positions, so that users who are not technical can immediately
benefit;

• wrapping of provider resources according to a resource descrip-
tion standard, in order to be made available for user programs
and compositions;

• billing and service level agreements framework, that is efficient
enough for transient usage (e.g., some resources may only be
used for several minutes while the user is in the area); our cost
model integrated into our operational semantics rules is coarse-
grained especially for tight-union—finer-grained cost models
are needed that could even bill for each individual service
invocation;

• the need for a regulatory framework for the emergence of mar-
kets involving multiple resource providers;

• ontology support for interoperability when sharing context
and situation knowledge; for example, given a composition
of resources, different resources might come from different
providers, and as seen in the examples earlier, the context in-
formation from one provider might be used as input to services
or as premises in the rules of a context-aware system belong-
ing to a different provider, or context information from differ-
ent providers need to be combined; we envision that context
ontologies that have already been developed can be employed,
and new ontologies developed as new types of context infor-
mation and situation knowledge are provided to users;

• mechanisms for adaptations of compositions can be investi-
gated—for example,when one resource is lost or becomes out of
range, a replacement can be found, or a better alternative for a
resource (e.g., a better positioning technology is foundwhen the
user walks into a new area) might be employed; there is a need
to release resources and bind to newly discovered resources,
with a composition expression acting as a specification of what
resources are needed and how they are obtained (e.g., rather
than having a composition bind to specific sensors and
systems at program-specified locations, a composition could
bind to resources discovered at evaluation time as needed).
Indeed dynamic context-aware resource binding for mobile
applications between clients and services has been considered
previously (e.g., [72]), though not in this context.

References

[1] I. Akyildiz, S. Weilian, Y. Sankarasubramaniam, E. Cayirci, A survey on
sensor networks, IEEE Communications Magazine 40 (8) (2002) 102–114.
doi:10.1109/LCN.2005.123.

[2] F. Zhao, L. Guibas, Wireless Sensor Networks: An Information Processing
Approach, Morgan Kaufmann, 2004.

[3] K. Martinez, J. Hart, R. Ong, Environmental sensor networks, IEEE Computer 37
(8) (2004) 50–56.

[4] W.S. Conner, J. Chhabra, M. Yarvis, L. Krishnamurthy, Experimental evaluation
of topology control and synchronization for in-building sensor network
applications, Mobile Networks and Applications 10 (4) (2005) 545–562.
doi:10.1145/1160162.1160177.

[5] G. Borriello, K. Farkas, F. Reynolds, F. Zhao, Special issue on building a sensor-
rich World, IEEE Pervasive 6 (2) (2007).

[6] H.B. Lim, Y.M. Teo, P. Mukherjee, V.T. Lam, W.F. Wong, S. See, Sensor grid:
integration of wireless sensor networks and the grid, in: Proceedings of the
Annual IEEE Conference on Local Computer Networks, IEEE Computer Society,
Los Alamitos, CA, USA, 2005, pp. 91–99. doi:10.1109/LCN.2005.123.

[7] M. Balazinska, A. Deshpande, M.J. Franklin, P.B. Gibbons, J. Gray, M. Hansen, M.
Liebhold, S. Nath, A. Szalay, V. Tao, Data management in the worldwide sensor
web, IEEE Pervasive Computing 6 (2007) 30–40. doi:10.1109/MPRV.2007.27.

[8] A. Kansal, S. Nath, J. Liu, F. Zhao, Senseweb: an infrastructure for shared
sensing, IEEE Multimedia 14 (4) (2007) 8–13.

[9] A.K. Dey, Understanding and using context, Personal and Ubiquitous
Computing 5 (1) (2001) 4–7. doi:10.1007/s007790170019.
[10] J. Ye, L. Coyle, S. Dobson, P. Nixon, Ontology-based models in pervasive
computing systems, Knowledge Engineering Review 22 (4) (2007) 315–347.
doi:10.1017/S0269888907001208.

[11] H. Chen, F. Perich, T. Finin, A. Joshi, Soupa: standard ontology for ubiquitous
and pervasive applications, in: Proceedings of the International Conference on
Mobile and Ubiquitous Systems: Networking and Services, 2004, pp. 258–267.

[12] S.W. Loke, Representing and reasoning with situations for context-aware per-
vasive computing: a logic programming perspective, Knowledge Engineering
Review 19 (3) (2004) 213–233. doi:10.1017/S0269888905000263.

[13] G. Judd, P. Steenkiste, Providing contextual information to pervasive
computing applications, in: PERCOM’03: Proceedings of the First IEEE
International Conference on Pervasive Computing and Communications, IEEE
Computer Society, Washington, DC, USA, 2003, p. 133.

[14] C. Endres, A. Butz, A. MacWilliams, A survey of software infrastructures and
frameworks for ubiquitous computing, Mobile Information Systems 1 (1)
(2005) 41–80.

[15] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan,
D. Riboni, A survey of context modelling and reasoning techniques,
Pervasive and Mobile Computing (2010). doi:10.1016/j.pmcj.2009.06.002.
URL: http://dx.doi.org/10.1016/j.pmcj.2009.06.002.

[16] C. Anagnostopoulos, S. Hadjiefthymiades, Enhancing situation-aware systems
through imprecise reasoning, IEEE Transactions on Mobile Computing 7 (10)
(2008) 1153–1168. doi:10.1109/TMC.2008.34.

[17] J. Ye, L. Coyle, S.A. Dobson, P. Nixon, Representing and manipulating situation
hierarchies using situation lattices, Revue d’Intelligence Artificielle 22 (5)
(2008) 647–667.

[18] S.W. Loke, On representing situations for context-aware pervasive computing:
sixways to tell if you are in ameeting, in: Pervasive Computing and Communi-
cations Workshops, IEEE International Conference on, IEEE Computer Society,
Los Alamitos, CA, USA, 2006, pp. 35–39. doi:10.1109/PERCOMW.2006.102.

[19] M. Raento, A. Oulasvirta, R. Petit, H. Toivonen, Contextphone: a prototyping
platform for context-aware mobile applications, IEEE Pervasive Computing 4
(2) (2005) 51–59. doi:10.1109/MPRV.2005.29.

[20] J. Kukkonen, E. Lagerspetz, P. Nurmi, M. Andersson, Betelgeuse: a platform
for gathering and processing situational data, IEEE Pervasive Computing 8 (2)
(2009) 49–56. doi:10.1109/MPRV.2009.23.

[21] C. Julien, G.-C. Roman, Egospaces: facilitating rapid development of context-
aware mobile applications, IEEE Transactions on Software Engineering 32
(2006) 281–298. doi:10.1109/TSE.2006.47.

[22] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing
applications: the tota approach, ACM Transactions on Software Engineering
and Methodology 18 (4) (2009) 1–56. doi:10.1145/1538942.1538945.

[23] L.M. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, A break in the clouds:
towards a cloud definition, SIGCOMM Computer Communication Review 39
(1) (2009) 50–55. doi:10.1145/1496091.1496100.

[24] D. Linthicum, Cloud Computing and SOA Convergence in Your Enterprise,
Addison-Wesley, 2010.

[25] J. Varia, Best practices in architecting cloud applications in the AWS cloud,
in: R. Buyya, J. Broberg, A. Goscinski (Eds.), Cloud Computing: Principles and
Paradigms, John Wiley & Sons, Inc., 2011, pp. 457–490.

[26] C. Vecchiola, X. Chu, M. Mattess, R. Buyya, Aneka—integration of private and
public clouds, in: R. Buyya, J. Broberg, A. Goscinski (Eds.), Cloud Computing:
Principles and Paradigms, John Wiley & Sons, Inc., 2011, pp. 249–274.

[27] M.M. Hassan, B. Song, E.-N. Huh, A framework of sensor-cloud integration op-
portunities and challenges, in: ICUIMC’09: Proceedings of the 3rd International
Conference on Ubiquitous Information Management and Communication,
ACM, New York, NY, USA, 2009, pp. 618–626. doi:10.1145/1516241.1516350.

[28] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based
cloudlets in mobile computing, IEEE Pervasive Computing 8 (4) (2009) 14–23.
doi:10.1109/MPRV.2009.82.

[29] C.-K. Tham, R. Buyya, Sensor grid: integrating sensor networks and grid
computing, CSI Communications 29 (1) (2005) 24–29.

[30] H.B. Lim, Y.M. Teo, P. Mukherjee, V.T. Lam, W.F. Wong, S. See, Sensor grid:
integration of wireless sensor networks and the grid, in: Proceedings of
the The IEEE Conference on Local Computer Networks 30th Anniversary,
LCN’05, IEEE Computer Society, Washington, DC, USA, 2005, pp. 91–99.
doi:10.1109/LCN.2005.123. URL: http://dx.doi.org/10.1109/LCN.2005.123.

[31] T. Kobialka, R. Buyya, C. Leckie, R. Kotagiri, A sensor web middleware
with stateful services for heterogeneous sensor networks, in: 2007 3rd
International Conference on Intelligent Sensors, Sensor Networks and
Information, IEEE, 2007, pp. 491–496. doi:10.1109/ISSNIP.2007.4496892.
URL: http://dx.doi.org/10.1109/ISSNIP.2007.4496892.

[32] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging it platforms: vision, hype, and reality for delivering computing as the
5th utility, Future Generation Computer Systems 25 (2009) 599–616. doi:10.
1016/j.future.2008.12.001. URL: http://dl.acm.org/citation.cfm?id=1528937.
1529211.

[33] S. Pandey, W. Voorsluys, S. Niu, A. Khandoker, R. Buyya, An autonomic
cloud environment for hosting ECG data analysis services, Future Generation
Computer Systems 28 (1) (2012) 147–154. URL: http://www.sciencedirect.
com/science/article/pii/S0167739X11000732.

[34] E. Miluzzo, N.D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S.B.
Eisenman, X. Zheng, A.T. Campbell, Sensing meets mobile social networks:

http://dx.doi.org/doi:10.1109/LCN.2005.123
http://dx.doi.org/doi:10.1145/1160162.1160177
http://dx.doi.org/doi:10.1109/LCN.2005.123
http://dx.doi.org/doi:10.1109/MPRV.2007.27
http://dx.doi.org/doi:10.1007/s007790170019
http://dx.doi.org/doi:10.1017/S0269888907001208
http://dx.doi.org/doi:10.1017/S0269888905000263
http://dx.doi.org/doi:10.1016/j.pmcj.2009.06.002
http://dx.doi.org/10.1016/j.pmcj.2009.06.002
http://dx.doi.org/doi:10.1109/TMC.2008.34
http://dx.doi.org/doi:10.1109/PERCOMW.2006.102
http://dx.doi.org/doi:10.1109/MPRV.2005.29
http://dx.doi.org/doi:10.1109/MPRV.2009.23
http://dx.doi.org/doi:10.1109/TSE.2006.47
http://dx.doi.org/doi:10.1145/1538942.1538945
http://dx.doi.org/doi:10.1145/1496091.1496100
http://dx.doi.org/doi:10.1145/1516241.1516350
http://dx.doi.org/doi:10.1109/MPRV.2009.82
http://dx.doi.org/doi:10.1109/LCN.2005.123
http://dx.doi.org/10.1109/LCN.2005.123
doi:10.1109/ISSNIP.2007.4496892
doi:10.1109/ISSNIP.2007.4496892
doi:10.1109/ISSNIP.2007.4496892
doi:10.1109/ISSNIP.2007.4496892
doi:10.1109/ISSNIP.2007.4496892
doi:10.1109/ISSNIP.2007.4496892
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
doi:10.1016/j.future.2008.12.001
doi:10.1016/j.future.2008.12.001
doi:10.1016/j.future.2008.12.001
doi:10.1016/j.future.2008.12.001
doi:10.1016/j.future.2008.12.001
doi:10.1016/j.future.2008.12.001
doi:10.1016/j.future.2008.12.001
doi:10.1016/j.future.2008.12.001
http://dl.acm.org/citation.cfm?id=1528937.1529211
http://dl.acm.org/citation.cfm?id=1528937.1529211
http://dl.acm.org/citation.cfm?id=1528937.1529211
http://dl.acm.org/citation.cfm?id=1528937.1529211
http://dl.acm.org/citation.cfm?id=1528937.1529211
http://dl.acm.org/citation.cfm?id=1528937.1529211
http://dl.acm.org/citation.cfm?id=1528937.1529211
http://dl.acm.org/citation.cfm?id=1528937.1529211
http://www.sciencedirect.com/science/article/pii/S0167739X11000732
http://www.sciencedirect.com/science/article/pii/S0167739X11000732
http://www.sciencedirect.com/science/article/pii/S0167739X11000732
http://www.sciencedirect.com/science/article/pii/S0167739X11000732
http://www.sciencedirect.com/science/article/pii/S0167739X11000732
http://www.sciencedirect.com/science/article/pii/S0167739X11000732
http://www.sciencedirect.com/science/article/pii/S0167739X11000732
http://www.sciencedirect.com/science/article/pii/S0167739X11000732

632 S.W. Loke / Future Generation Computer Systems 28 (2012) 619–632
the design, implementation and evaluation of the cenceme application,
in: SenSys’08: Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, ACM, New York, NY, USA, 2008, pp. 337–350.
doi:10.1145/1460412.1460445.

[35] O. Riva, Contory: a middleware for the provisioning of context information on
smart phones, in: Middleware’06: Proceedings of the ACM/IFIP/USENIX 2006
International Conference onMiddleware, Springer-Verlag NewYork, Inc., New
York, NY, USA, 2006, pp. 219–239.

[36] S.B. Eisenman, E. Miluzzo, N.D. Lane, R.A. Peterson, G.-S. Ahn, A.T. Camp-
bell, The bikenet mobile sensing system for cyclist experience mapping,
in: SenSys’07: Proceedings of the 5th International Conference on Embed-
ded Networked Sensor Systems, ACM, New York, NY, USA, 2007, pp. 87–101.
doi:10.1145/1322263.1322273.

[37] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, N. Triandopou-
los, Anonysense: privacy-aware people-centric sensing, in: MobiSys’08:
Proceeding of the 6th International Conference on Mobile Systems, Ap-
plications, and Services, ACM, New York, NY, USA, 2008, pp. 211–224.
doi:10.1145/1378600.1378624.

[38] S. Neely, M. Stabeler, P. Nixon, Sensormash: exploring system fidelity through
sensor mashup, in: R. Mayrhofer, A. Quigley, J. Kay, G. Kortuem (Eds.), Adjunct
Proceedings of the Sixth International Conference on Pervasive Computing,
2008, pp. 83–86.

[39] L. Costabello, O.R. Rocha, L.W. Goix, Sharing mobile user experiences with
context-based mashups, in: Mobiquitous’08: Proceedings of the 5th An-
nual International Conference on Mobile and Ubiquitous Systems, ICST
(Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), ICST, Brussels, Belgium, Belgium, 2008, pp. 1–4.
doi:10.4108/ICST.MOBIQUITOUS2008.3978.

[40] A. Brodt, D. Nicklas, S. Sathish, B. Mitschang, Context-aware mashups for
mobile devices, in: WISE’08: Proceedings of the 9th International Conference
onWeb Information Systems Engineering, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 280–291. doi:10.1007/978-3-540-85481-4_22.

[41] S.W. Loke, Towards declarative programming for sensor-based situation-
aware applications: the logiccap approach, in: Proceedings of the International
Conference on Intelligent Sensors, Sensor Networks and Information Process-
ing, ISSNIP, 2008, pp. 447–452.

[42] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin, L. Guibas, A. Kansal, S.
Madden, J. Reich, Mobiscopes for human spaces, Pervasive Computing, IEEE 6
(2) (2007) 20–29. doi:10.1109/MPRV.2007.38.

[43] Y. Ma, M. Ghanem, Y. Guo, M. Richards, Air pollution monitoring and mining
based on sensor grid in London, Sensors: Special Issue onUrban Environmental
Monitoring 8 (2008) 3601–3623. URL: http://pubs.doc.ic.ac.uk/Sensors/.

[44] E. Paulos, R. Honicky, B. Hooker, Citizen science: enabling participatory
urbanism, in: M. Foth (Ed.), Handbook of Research on Urban Informatics: The
Practice and Promise of the Real-Time City, IGI Global, 2008.

[45] O. Riva, C. Borcea, The urbanet revolution: sensor power to the people! IEEE
Pervasive Computing 6 (2) (2007) 41–49. doi:10.1109/MPRV.2007.46.

[46] D. Cuff, M. Hansen, J. Kang, Urban sensing: out of the woods, Communications
of the ACM 51 (3) (2008) 24–33. doi:10.1145/1325555.1325562.

[47] A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A. Peterson, People-
centric urban sensing, in: WICON’06: Proceedings of the 2nd Annual
International Workshop onWireless Internet, ACM, New York, NY, USA, 2006,
p. 18. doi:10.1145/1234161.1234179.

[48] M. Gerla, Vehicular urban sensing: efficiency and privacy, in: MSWiM’08:
Proceedings of the 11th International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, ACM, New York, NY, USA, 2008,
doi:10.1145/1454503.1454504. 1–1.

[49] B. Hooker, W. Gaver, A. Steed, J. Bowers, The pollution e-sign, in:Workshop on
Ubiquitous Sustainability, UbiComp, 2007.

[50] S. Kim, E. Paulos, inAir: measuring and visualizing indoor air qual-
ity, in: Ubicomp’09: Proceedings of the 11th International Conference
on Ubiquitous Computing, ACM, New York, NY, USA, 2009, pp. 81–84.
doi:10.1145/1620545.1620557.

[51] A.F. gen. Schieck, A. Penn, E. O’Neill, Mapping, sensing and visualising the
digital co-presence in the public arena, in: In 9th International Conference
on Design and Decision Support Systems in Architecture and Urban Planning,
2008, pp. 38–58.

[52] J. Perkio, V. Tuulos, M. Hermersdorf, H. Nyholm, J. Salminen, H. Tirri, Uti-
lizing rich Bluetooth environments for identity prediction and exploring
social networks as techniques for ubiquitous computing, in: WI’06: Pro-
ceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intel-
ligence, IEEE Computer Society, Washington, DC, USA, 2006, pp. 137–144.
doi:10.1109/WI.2006.185.

[53] H. Lu, N.D. Lane, S.B. Eisenman, A.T. Campbell, Bubble-sensing: Binding sensing
tasks to the physical world, Pervasive and Mobile Computing 6 (1) (2010)
58–71. URL: http://dl.acm.org/citation.cfm?id=1716217.
[54] S.W. Loke, Incremental awareness and compositionality: a design phi-
losophy for context-aware pervasive systems, Pervasive and Mobile
Computing 6 (2) (2010) 239–253. doi:10.1016/j.pmcj.2009.03.004. URL:
http://dx.doi.org/10.1016/j.pmcj.2009.03.004.

[55] J. Rao, X. Su, A survey of automated web service composition methods, in:
SWSWPC, 2004, pp. 43–54.

[56] Q.Z. Sheng, B. Benatallah, Z. Maamar, A.H.H. Ngu, Configurable composition
and adaptive provisioning of web services, IEEE Transactions on Services
Computing 2 (1) (2009) 34–49.

[57] X. Wang, D. Zhang, T. Gu, H. Pung, Ontology based context modeling and
reasoning using OWL, in: PERCOMW’04: Proceedings of the Second IEEE
Annual Conference on Pervasive Computing and CommunicationsWorkshops,
IEEE Computer Society, Washington, DC, USA, 2004, pp. 18–22.

[58] N. Baumgartner, W. Retschitzegger, A Survey of Upper Ontologies for
Situation Awareness, in: Proceedings of Knowledge Sharing and Collaborative
Engineering, ACTA Press, 2006.

[59] F. Ay, Context modeling and reasoning using ontologies. Available at:
http://www.aywa.de/cmaruo/cmaruo.pdf.

[60] C.B. Anagnostopoulos, Y. Ntarladimas, S. Hadjiefthymiades, Situational
computing: an innovative architecture with imprecise reasoning, Journal of
Systems and Software 80 (12) (2007) 1993–2014.

[61] S. Yau, J. Liu, Hierarchical situation modeling and reasoning for pervasive
computing, in: SEUS-WCCIA’06: Proceedings of the The Fourth IEEEWorkshop
on Software Technologies for Future Embedded and Ubiquitous Systems, and
the Second International Workshop on Collaborative Computing, Integration,
and Assurance, SEUS-WCCIA’06, IEEE Computer Society,Washington, DC, USA,
2006, pp. 5–10.

[62] P. Costa, G. Guizzardi, J. Almeida, L. Pires, M. van Sinderen, Situations in
conceptual modeling of context, in: EDOCW’06: Proceedings of the 10th
IEEE on International Enterprise Distributed Object Computing Conference
Workshops, IEEE Computer Society, Washington, DC, USA, 2006, Available at:
http://www.loa-cnr.it/Guizzardi/DockhornCosta-et-al-VORTE06_final.pdf.

[63] K. Henricksen, J. Indulska, Developing context-aware pervasive computing ap-
plications: models and approach, Journal of Pervasive and Mobile Computing
2 (1) (2006) 37–64.

[64] A. Ranganathan, R. Campbell, An infrastructure for context-awareness based
on first-order logic, Personal and Ubiquitous Computing 7 (6) (2003) 353–364.

[65] A. Brogi, P. Mancarella, D. Pedreschi, F. Turini, Modular logic programming,
ACM Transactions on Programming Languages and Systems 16 (4) (1994)
1361–1398. doi:10.1145/183432.183528.

[66] G. Plotkin, A structural approach to operational semantics, Journal of
Logic and Algebraic Programming 60–61 (2004) 17–139. Available at:
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf.

[67] L. Sterling, E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA, 1986.
[68] M. Satyanarayanan, Pervasive computing: vision and challenges, IEEE Personal

Communications 8 (4) (2001) 10–17 [see also IEEEWireless Communications].
[69] T. Pfeifer, Redundant positioning architecture, in: Wireless Sensor Net-

works and Applications—Proceedings of the Dagstuhl Seminar 04122,
Computer Communications 28 (13) (2005) 1575–1585. doi:10.1016/j.
comcom.2004.12.042. URL: http://www.sciencedirect.com/science/article/
B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f.

[70] T. Kindberg, T. Jones, Merolyn the phone: a study of Bluetooth naming
practices, in: J. Krumm, G.D. Abowd, A. Seneviratne, T. Strang (Eds.), Ubicomp,
in: LNCS, vol. 4717, Springer, 2007, pp. 318–335.

[71] T. Nguyen, S.W. Loke, T. Torabi, H. Lu, Placesense: a tool for sensing communi-
ties, in: 4th International Symposium onWireless Pervasive Computing, 2009.
ISWPC 2009, 2009, pp. 1–5. doi:10.1109/ISWPC.2009.4800601.

[72] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, Dynamic binding in mobile
applications: a middleware approach, IEEE Internet Computing 7 (2) (2003)
34–42. doi:10.1109/MIC.2003.1189187.

SengW. Loke is Reader and Associate Professor at the De-
partment of Computer Science and Computer Engineering
in La Trobe University. He leads the Pervasive Computing
Group at La Trobe, and has authored ‘Context-Aware Per-
vasive Systems: Architectures for a New Breed of Appli-
cations’ published by Auerbach (CRC Press), Dec 2006. He
has (co-)authored more than 210 research publications,
with numerous works on context-aware computing, and
mobile and pervasive computing. His research has been
published in journals such as IEEE Pervasive, Knowledge
Engineering Review, Elsevier’s Pervasive andMobile Com-

puting Journal, IEEE Transactions on SMC,MONET, Journal of Systems and Software,
and Theory and Practice of Logic Programming.

http://dx.doi.org/doi:10.1145/1460412.1460445
http://dx.doi.org/doi:10.1145/1322263.1322273
http://dx.doi.org/doi:10.1145/1378600.1378624
http://dx.doi.org/doi:10.4108/ICST.MOBIQUITOUS2008.3978
http://dx.doi.org/doi:10.1007/978-3-540-85481-4_22
http://dx.doi.org/doi:10.1109/MPRV.2007.38
http://pubs.doc.ic.ac.uk/Sensors/
http://dx.doi.org/doi:10.1109/MPRV.2007.46
http://dx.doi.org/doi:10.1145/1325555.1325562
http://dx.doi.org/doi:10.1145/1234161.1234179
http://dx.doi.org/doi:10.1145/1454503.1454504
http://dx.doi.org/doi:10.1145/1620545.1620557
http://dx.doi.org/doi:10.1109/WI.2006.185
http://dl.acm.org/citation.cfm?id=1716217
http://dl.acm.org/citation.cfm?id=1716217
http://dl.acm.org/citation.cfm?id=1716217
http://dl.acm.org/citation.cfm?id=1716217
http://dl.acm.org/citation.cfm?id=1716217
http://dl.acm.org/citation.cfm?id=1716217
http://dl.acm.org/citation.cfm?id=1716217
http://dx.doi.org/doi:10.1016/j.pmcj.2009.03.004
http://dx.doi.org/10.1016/j.pmcj.2009.03.004
http://www.aywa.de/cmaruo/cmaruo.pdf
http://www.loa-cnr.it/Guizzardi/DockhornCosta-et-al-VORTE06_final.pdf
http://dx.doi.org/doi:10.1145/183432.183528
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
doi:10.1016/j.comcom.2004.12.042
doi:10.1016/j.comcom.2004.12.042
doi:10.1016/j.comcom.2004.12.042
doi:10.1016/j.comcom.2004.12.042
doi:10.1016/j.comcom.2004.12.042
doi:10.1016/j.comcom.2004.12.042
doi:10.1016/j.comcom.2004.12.042
doi:10.1016/j.comcom.2004.12.042
http://www.sciencedirect.com/science/article/B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f
http://www.sciencedirect.com/science/article/B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f
http://www.sciencedirect.com/science/article/B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f
http://www.sciencedirect.com/science/article/B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f
http://www.sciencedirect.com/science/article/B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f
http://www.sciencedirect.com/science/article/B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f
http://www.sciencedirect.com/science/article/B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f
http://www.sciencedirect.com/science/article/B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f
http://www.sciencedirect.com/science/article/B6TYP-4G4WYH1-1/2/acf2af0c25405340067ff1891de54a0f
http://dx.doi.org/doi:10.1109/ISWPC.2009.4800601
http://dx.doi.org/doi:10.1109/MIC.2003.1189187

	Supporting ubiquitous sensor-cloudlets and context-cloudlets: Programming compositions of context-aware systems for mobile users
	Introduction
	Background and related work
	The emerging infrastructure for sensor-cloudlets and context-cloudlets: ubiquitous sensing

	Scenarios and challenges
	Example scenarios
	Challenges for sensor-cloudlets and context-cloudlets

	Composition for sensor-cloudlets and context-cloudlets
	A general model of a context-aware system
	Syntax of expressions and operational semantics of operators
	Example compositions
	Example 1
	Example 2
	Example 3

	Reliability and cost analysis on compositions
	Meta-level control of evaluation in cloudlets
	An abstract architecture and service-based interfaces for realizing composition operators

	Conclusion and future directions
	References

