
The Journal of Systems and Software 86 (2013) 501– 519

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Building ubiquitous computing applications using the VERSAG adaptive
agent framework

Kutila Gunasekeraa,∗, Arkady Zaslavskyb, Shonali Krishnaswamya, Seng Wai Lokec

a Faculty of Information Technology, Monash University, Caulfield East, VIC, Australia
b ICT Centre, CSIRO, Canberra, ACT, Australia
c Department of Computer Science & Computer Engineering, La Trobe University, Bundoora, VIC, Australia

a r t i c l e i n f o

Article history:
Received 23 March 2012
Received in revised form 10 August 2012
Accepted 17 September 2012
Available online 25 September 2012

Keywords:
Agent architecture
Ubiquitous computing
Mobile agents

a b s t r a c t

In this article, we describe a novel approach to build ubiquitous computing applications using adaptive
software agents. Towards this, we propose VERSAG, a novel agent framework and architecture which
combines agent mobility with the ability to dynamically change the internal structure and capabilities of
agents and leads to highly versatile and lightweight software agents. We describe the framework in depth
and provide design and implementation details of our prototype implementation. A case study scenario
is used to illustrate the functional benefits achievable through the use of this framework in ubiquitous
computing environments. Further experimental evaluation confirms the efficiency and feasibility of the
VERSAG framework which outperforms traditional mobile agents, and also demonstrates applicability of
the proposed framework to agent based systems where varying capabilities are required by agents over
their lifecycle.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Ubiquitous computing applications need to be part of their
users’ physical environment and seamlessly integrate with their
daily activities. In order to achieve these goals, such applications
need to possess special characteristics. For example, they have to
support heterogeneous devices which are purpose built, battery
powered, mobile, have poor processing capacity in comparison to
desktop computers, have limited input/output mechanisms, and
contain diverse hardware and software (Barton et al., 2004; Saha
and Mukherjee, 2003; Satyanarayanan, 2001). In addition, they
have to be able to adapt in response to changes in user activ-
ity, goals and environment. Banavar and Bernstein (2002, 2004)
identify semantic modelling, building software infrastructure, devel-
oping/configuring applications and validating the user experience to
be key challenge areas that have to be addressed in ubiquitous com-
puting. The challenge of building necessary software infrastructure
is the focus of our current research. Banavar and Bernstein (2002,
2004) further state that a suitable software infrastructure for ubiq-
uitous computing should be able to unobtrusively determine most
relevant tasks to be addressed, find and synthesize applications
to fulfil these tasks, be able to migrate if required, robust enough
to operate in resource constrained environments, and scalable to
support large numbers of devices, users and applications.

∗ Corresponding author. Tel.: +61 423 588770.
E-mail address: kutila@gmail.com (K. Gunasekera).

While different approaches to the challenge of software infra-
structure have been investigated (e.g. autonomic computing and
adaptive software (Kephart and Chess, 2003; Salehie and Tahvildari,
2009)), mobile agent technology too is seen as an attractive option
(Braun and Rossak, 2004; Cardoso and Kon, 2002; Lange and
Oshima, 1999; Satyanarayanan, 2001). Recent works such as the
ODDUGI mobile agent platform (Choi et al., 2009), the (Irish) Agent
Factory (Muldoon et al., 2007) and MobiSoft (Erfurth et al., 2008) are
representative of efforts to harness this suitability. We previously
proposed VERSAG (Gunasekera et al., 2009a, 2010) as an approach
to harness the potential of mobile agents for building ubiquitous
computing applications. VERSAG combines agent mobility with the
ability to dynamically change the internal structure and capabili-
ties of agents to generate highly versatile and lightweight software
agents. A further contribution of VERSAG is the concept of shar-
ing functional components amongst peer agents as a mechanism
to increase efficiency and utility of agents in ubiquitous computing
environments.

In this study, we propose, implement and evaluate the VERSAG
framework and agent architecture. An in depth description of the
framework and details of our prototype design and implementa-
tion are presented. As a further contribution, we use a case study
scenario of a personal assistant agent to demonstrate the advan-
tages that VERSAG brings to ubiquitous computing applications.
We also present experimental results which illustrate the increase
in efficiency that can be achieved through VERSAG.

The rest of this article is structured as follows. In Section 2 we
describe the VERSAG framework in detail followed by prototype

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.09.026

dx.doi.org/10.1016/j.jss.2012.09.026
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:kutila@gmail.com
dx.doi.org/10.1016/j.jss.2012.09.026

502 K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519

Fig. 1. Scenario of a ubiquitous personal assistant agent.

design and implementation descriptions in Section 3. We present
our empirical evaluations in Section 4. Section 5 briefly covers some
related work and highlights how VERSAG improves on the state-of-
the-art. Section 6 discusses the significance of VERSAG in domains
other than ubiquitous computing. We conclude the article in Sec-
tion 7.

2. The VERSAG agent framework

We start this section with a scenario to motivate the need for
VERSAG and then proceed to describe the agent framework.

2.1. Motivating scenario

Let us consider the use of mobile agents as ubiquitous and virtual
personal assistants of human users as seen in Erfurth et al. (2008).
A personal assistant agent encapsulates a profile of the user includ-
ing details such as identity, preferences, personal calendar and
reminders, and is the user’s representative in the virtual pervasive
world. As shown in Fig. 1, the agent can “live” on computing devices
that its owner uses (e.g. smart phone, tablet computer, desktop PC)
and also migrate to other devices when required. It is desirable that
this agent is long-lived and capable of carrying out different tasks
on behalf of its owner. This in turn implies that the agent should
contain a large skill set, which would make it bulky and unsuit-
able for execution on resource constrained devices and migration
over wireless links. It is advantageous in such situations if the agent
can adapt itself by dynamically loading and shedding functional-
ity based on its needs. Such an agent could be lightweight when
it resides on resource constrained devices (e.g. a smart phone),
and when assigned a task, migrate to a more powerful computer,
acquire necessary skills and carry out the requested task. Also, with
the ability to take up new functionality as needed, the agent could
extend itself to take advantage of new applications/resources found
on its host devices.

When realising such a solution, several issues related to agent
adaptation need to be addressed. First, agent functionality needs to
be represented as software components that can be attached to and
detached from agents at runtime. Secondly, an agent faced with a
task for which it does not have the necessary functionality should
be able to search for and obtain components implementing this
functionality from nearby agents which possess the same. Thirdly,
while working towards its goal, the agent should be able to adapt
its activities based on the outcomes of previous activities as well
as environmental states. Adaptation here includes agent migration

as well as acquiring and discarding components. The adaptation
process should take into account multiple criteria including con-
textual conditions, user preferences, application requirements and
available alternatives. Therefore, agents need to possess sophisti-
cated adaptation decision making techniques in order to perform
their tasks in a cost-efficient manner. We next describe the VERSAG
agent framework which is our proposal to address these challenges.

2.2. Versatile self-adaptive agents

The VERsatile Self-adaptive AGents (VERSAG) framework is cen-
tred on a component-based agent architecture that allows agents
to dynamically share components with peer agents and adapt
based on contextual needs. Application-specific functionality of a
VERSAG agent is provided in the form of reusable software compo-
nents termed capabilities. This facilitates an agent to gain diverse
behaviours by using appropriate capabilities. The two salient fea-
tures of the proposed solution are as follows.

• Simple primitive operations. An agent in VERSAG is modelled as
an active mobile entity with a simple set of primitive operations
which allow it to migrate (move), search for and acquire capabil-
ities from external sources (get), execute capabilities it possesses
(start/stop), discard unwanted capabilities (discard) and termi-
nate itself (terminate). An itinerary (Price et al., 2007) in VERSAG
defines an agent’s migration path and activities in terms of these
primitive operations. Agent adaptation too is achieved through
these primitive operations and can be either driven by environ-
mental context or triggered by functional requirements.

• Peer capability sharing. A VERSAG agent does not depend on a sin-
gle capability source. Instead, when it does not possess required
capabilities, an agent is able to search for, select and acquire
appropriate capabilities from peer agents who are willing to share
their capabilities (as well as from a centralized capability repos-
itory).

The six primitive operations and the peer capability sharing fea-
ture form the nucleus of a VERSAG agent as shown in Fig. 2. Around
this nucleus is a flexible outer layer where new functionality can
be dynamically attached to or detached from the agent in the form
of capabilities. This approach allows building complex and sophis-
ticated agents which are also highly versatile.

A VERSAG agent, in addition to dynamically gaining new
application-specific functionality, is capable of increasing its auton-
omy through acquisition of new capabilities which improve its core

K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519 503

Fig. 2. Overview of VERSAG agent features.

functions such as reasoning ability, context-awareness and capabil-
ity sharing protocols. For example, an agent can acquire a capability
which implements a reinforcement learning strategy (Kaelbling
et al., 1996) in order to handle new situations that it encoun-
ters. Alternative implementations of basic agent services such as
communication and migration too could be implemented as capa-
bilities. This enables an agent to dynamically adapt its behaviours
such as communication, migration, capability sharing protocols,
sensing and context-awareness based on application and environ-
mental needs.

VERSAG agents are therefore lightweight by default and can
dynamically increase/decrease their sophistication based on needs
by acquiring and discarding capabilities accordingly. We argue that
these features make VERSAG agents especially suited for ubiqui-
tous computing scenarios where heterogeneous environments and
rapidly changing requirements are commonplace. We describe the
reference architecture of a VERSAG agent in the next sub-section.

2.3. VERSAG reference architecture

The conceptual architecture of a VERSAG agent is shown in
Fig. 3. The core modules which make up a VERSAG agent are shown
in a darker shade while two auxiliary services are shown in a
lighter shade with dashed lines. We describe each of the modules
below.

2.3.1. Platform specific agent
It is expected that VERSAG agents will be used to build applica-

tions on top of existing agent platforms such as JADE (Bellifemine

et al., 2003) and Voyager (2007). Hence, each agent consists of a
base, platform specific agent module which is the point of con-
tact with the underlying agent runtime environment. Through it,
basic services provided by the platform such as agent naming, com-
munication and mobility are made available to the upper layers of
the agent. It also provides the upper layers with methods to save
and retrieve their state related data which needs to be maintained
across agent migrations. These services are exposed through inter-
faces defined by the base agent so as to avoid any dependency on the
underlying agent platform. While not within the scope of this study,
by developing base agent implementations for different agent plat-
forms, and cross-platform mobility mechanisms, it is possible to
support VERSAG on multiple agent platforms with agents able to
migrate between different platforms.

2.3.2. Kernel
The kernel is the agent’s main controller. A VERSAG agent at its

most basic level is itinerary driven and it is the agent kernel which
implements this itinerant behaviour. The kernel’s main responsibil-
ity is thus to retrieve itinerary commands from the itinerary service
module and execute them. For this purpose, the kernel makes use
of other modules and passes control to them when required. This
behaviour of the kernel is implemented according to the “process
coordinator” pattern (Gorton, 2006) as shown in Fig. 4.

An itinerary command consists of a primitive operation (one of
move, terminate, get, start, stop and discard) that the kernel has to
carry out. Thus, the kernel module implements support for exe-
cuting an agent’s primitive operations. The agent kernel cyclically
executes itinerary commands that it retrieves from the itinerary
service. Fig. 5 presents an algorithmic description of the kernel
execution cycle.

2.3.3. Capability repository
The repository is the agent’s personal storage space where its

own and acquired capabilities are kept. It is part of the agent’s data
state and is carried along as the agent migrates. Capabilities held in
the repository can be executed by the agent and transferred to other
agents when requested (i.e. shared with peers). When an agent
no longer requires a particular capability, or needs to migrate in
lightweight mode over a slow link, it can discard capabilities from
the repository.

2.3.4. Itinerary service
The itinerary service is a helper service to the kernel. It holds

the agent’s itinerary and provides methods to access itinerary com-
mands and also to update the itinerary. Updating itineraries during
execution is an important function as it is the approach in which
an agent can change its actions during runtime. Another main pur-
pose of this module is to hide the itinerary syntax and present other

Fig. 3. Reference architecture of a VERSAG agent.

504 K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519

Fig. 4. The kernel implements the process coordinator pattern.

Fig. 5. VERSAG agent kernel execution algorithm.

K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519 505

modules (including capabilities) with a standard interface which
remains unchanged in the event of changes to the itinerary syntax.

2.3.5. Capability execution service
The capability execution service provides the runtime envi-

ronment for capabilities and is a key module of the agent. It
enables starting and running multiple capabilities in parallel, pro-
viding each with its own execution space, and stopping them when
required. The module is also responsible for providing communi-
cation mechanisms for capabilities. This module possesses its own
execution thread and is called by the kernel when it is necessary to
start or stop capabilities.

2.3.6. Capability exchange service
The important feature of peer capability sharing is provided

by this module. It fulfills the dual roles of a capability requestor
and provider. In its provider role, the module listens for capabil-
ity requests from peer agents and responds as appropriate. The
requestor role gives an agent the ability to request capabilities from
peers. In most situations this service would run as a low priority
process secondary to the agent’s main tasks, and may be disabled
when not required. The protocols used for capability exchange can
be changed by replacing this module.

2.3.7. Auxiliary modules
In addition to the above, an agent can have many auxiliary

modules. Auxiliary modules need to be implemented as VERSAG
capabilities and two examples shown in Fig. 3 are an adaptation
service and a context service.

The adaptation service contains the know-how to help an agent
make its adaptation decisions. The adaptation process involves
removing and acquiring capabilities, making changes to running
capabilities and selecting suitable capabilities from multiple avail-
able ones. It takes input from the agent’s itinerary, capability
repository and context service to decide on the adaptation steps.
This module incorporates multiple triggers for agent adaptation,
leading to VERSAG’s integrated view of agent adaptation. It is pos-
sible, in scenarios where agent adaptation is not required, for the
module to be removed from an agent.

The context service is another auxiliary module which aids
the execution of an agent. Since an agent is primarily a con-
sumer of context information, this module consumes external
context services to obtain contextual information about the agent’s
environment and also maintains internal agent-specific context
information. For example, the context service can inform the agent
of network parameters (e.g. bandwidth, latency, jitter) and device
resource levels (CPU, memory, battery) to facilitate adaptation
decisions/strategies. The module could be replaced with different
implementations or removed when not needed.

An itinerary generator is another possible auxiliary service of an
agent (not shown in Fig. 3). While a VERSAG itinerary is human-
readable, it is not desirable to expose end users to a verbose and
complex itinerary language as the method for interacting with
agents. Thus, it is desirable to automate as much of the itinerary
generation as possible in order to simplify the user’s task of issu-
ing requests to the agent. Preferably, users should be able to issue
declarative requests to the agents without worrying about the step-
by-step details of how it is to be carried out (e.g. similar to an
SQL select statement). We envision that such a feature could be
implemented in VERSAG via an itinerary generator capability. The
capability takes a declarative user request as input, and produces a
detailed itinerary for the agent as output. That is, an itinerary gen-
erator capability implements a function fgenerate: U → I where U is
a high-level declarative user request and I is an itinerary. Further
investigation of itinerary generation is however beyond the scope
of this study and is therefore not discussed in this article.

2.4. VERSAG capabilities

Capabilities are essentially reusable software components for
which the necessary runtime environment is available within
each agent (i.e. the capability execution service). Capabilities are
important elements of the VERSAG framework as they provide
agents with various application-specific behaviours and advanced
features such as context-awareness and self-adaptability. Develop-
ing VERSAG based solutions involves designing and building new
capabilities, rather than new agents as is the case normally with
developing agent based systems. And, when new requirements
arise, new capabilities can be developed and seamlessly introduced
into the system. Since capabilities can be shared amongst agents,
they also provide a fine-grained entity for migration and reuse in
VERSAG based agent systems. It is through the dynamic acquisition,
discarding and sharing of capabilities that VERSAG agents achieve
their versatility.

A capability model defines how capabilities interact with other
software elements and the runtime environment required to sup-
port their execution. A capability model is thus analogous to a
component model as defined in (Councill and Heineman, 2001). We
identify seven requirements and desirable features of a capability
model for VERSAG.

• Life cycle. The capability model should define a standard mecha-
nism for an agent to start and stop a capability without adversely
affecting the agent’s functioning or that of other independent
capabilities executing on the agent. It should also be possible for
an agent to execute multiple capabilities simultaneously.

• Transportable/portable. Capabilities should be packaged in a man-
ner such that they are transportable over a computer network,
allow agents to migrate while carrying them and to share them
with other agents. They should also be portable across multiple
platforms.

• Interfaces. Since application-specific capabilities would be built
by third-party developers, a well-defined interface according to
which they can be developed is essential. This interface should
however be minimal, defining only what is required for the com-
ponent to be executed by the underlying runtime environment.
Capability developers would then have the opportunity to define
custom interfaces which allow the capability to interact with
other entities as needed.

• Communication. A capability should be able to communicate with
other capabilities when needed and also access services provided
by the agent. Support for such interactions should be enabled via
the capability interfaces.

• Naming and meta-data. It should be possible to describe
a capability with associated information such as a unique
identifier, functionality contained within, input/output param-
eters, dependencies on other capabilities if any, hardware and
software environment requirements and further descriptive
meta-data.

• Evolution support. It may sometimes be necessary for different
versions of a capability to co-exist in an agent, possibly for conti-
nuity during upgrading or to deal with conflicting dependencies
(e.g. capability X and Y depend on versions 0.9 and 1.1 of capa-
bility Z respectively). Evolution support is therefore a desirable
feature of a capability model.

• Standards. Standards allow capabilities to be reused in envi-
ronments beyond VERSAG agents. Similarly, components from
a wider environment would be available for use in VERSAG.
Thus, a capability model underpinned by standards is a desirable
feature.

During execution, capabilities can display different runtime
behaviours. For example, while some capabilities would simply run

506 K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519

to completion, some may need to run continuously. To represent
these differing runtime behaviours we group capabilities into three
execution types as follows.

• Oneshot. A oneshot capability executes as a separate process (i.e.
thread) inside the agent which runs to completion. For example, a
capability which searches an SQL database for a particular record
could be implemented as a oneshot capability. Typically, it is not
necessary to explicitly stop a oneshot capability. The kernel is able
to remove it from the list of active capabilities once the process
terminates.

• Cyclic. A cyclic capability executes as a separate continuously run-
ning process inside the agent. For example, a context sensing
capability which needs to continuously sense the environment
could be implemented as a cyclic capability. It is necessary to
explicitly request the agent to stop when such a capability needs
to be terminated.

• Passive. A passive capability does not have a separate exe-
cution process. It only makes new functionality available for
use by other modules. A passive capability, for example, could
implement a data mining algorithm, but does not execute by
itself. Instead, it makes its methods available for use by other
modules.

A capability, as it is executed by an agent proceeds through sev-
eral life cycle states. The first step is for the capability execution
service to load a capability from the agent’s repository and create
an executable instance of it. Upon this initial creation, a capability is
in a CREATED state. Then, as the capability starts running, it moves
to a STARTED state for a cyclic or passive capability and to an EXE-
CUTING state for a oneshot capability. A capability that completes
successfully moves to an EXECUTED state. While a oneshot capa-
bility makes this transition without any external input, passive and
cyclic capabilities need to be explicitly stopped through an itinerary
command. If an error occurs at any stage of this process, the capa-
bility moves to a FAILED state. FAILED is a collection of states that
are used to represent different causes of failures. These state tran-
sitions are illustrated in Fig. 6 with the many possible FAILED states
grouped together for clarity. After a capability has been stopped or
failed, it is removed from being an active entity inside the agent.
However, it remains in the agent’s repository as an inactive element
and may be reused later.

2.5. Peer capability sharing

The second salient feature of VERSAG, as identified at the begin-
ning of this section, is the ability of agents to share their functional
capabilities with other agents in the environment. With this fea-
ture VERSAG agents avoid dependence on a centralized component
source. This is advantageous in ubiquitous computing environ-
ments where dynamic variations can disrupt communication with
the component source (e.g. due to network connectivity issues and
possible source failure (Niemelä and Latvakoski, 2004; Spyrou et al.,
2004)). Consider, for example, a scenario where a group of agents
form an ad hoc network but are out of reach of the designated capa-
bility source. An agent in this network, which needs to acquire
a capability, is unable to do so even if another agent in the net-
work has the required capability since it can only be acquired from
the designated source. An agent depending on a single component
source can therefore experience performance degradation or task
failure when it is unable to acquire required components. Further-
more, even when agents are able to communicate with the central
source, the costs involved may be high. For example, if the commu-
nication path contains severely resource limited nodes, frequent
and large data transfers may not be feasible. The ability of agents
to request and acquire capabilities from multiple sources including
nearby agents becomes highly valuable in such situations.

A VERSAG agent’s GET primitive operation invokes the peer
capability sharing process to search for and acquire a needed capa-
bility. The typical process consists of querying nearby agents for
the needed capability(s), sorting the received responses to select
a suitable capability/provider pair and requesting it from the rel-
evant provider agent. Fig. 7 illustrates this sequence of steps in
which an agent ‘Bob’ searches for and acquires a capability match-
ing a given specification csx. A key issue associated with capability
sharing is how an agent can make cost-efficient capability selec-
tions when multiple alternatives are available. In Gunasekera et al.
(2010) we described and evaluated a multi-criteria cost model for
making such decisions.

While peer capability sharing overcoming issues associated
with a centralized component source, we recognize that it also
introduces new concerns. The distributed and decentralized nature
of peer capability sharing increases the complexity of managing
capabilities. For example, it is necessary to ensure that capabili-
ties do not disappear from the environment (e.g. due to all agents
discarding their copies of a particular capability), keep track of

Fig. 6. State transitions for capabilities.

K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519 507

Fig. 7. Sequence of steps in capability search and acquisition without a directory service.

their usage and manage upgrades of capabilities. Discovering peer
agents that are willing capability suppliers, searching through
them and selecting suitable instances also incurs additional over-
heads on agent itinerary execution (in terms of time/network
load/processing and so on).

Such concerns related to decentralization, performance and
resource discovery are commonly identified within the peer-to-
peer computing paradigm (Milojicic et al., 2002; Steinmetz and
Wehrle, 2005) and have been addressed in a multitude of ways.
Addressing these issues is not the focus of the current study. In
Gunasekera et al. (2009b), as an extension of VERSAG, we proposed
the use of agent teams rather than purely ad hoc sharing of capa-
bilities in order to improve the performance of capability sharing
agents. It should also be noted here that since VERSAG agents are
expected to be deployed on top of an existing agent platform, it is
possible to make use of infrastructure provided by the platform to
solve some of these issues.

3. Design and implementation

We now proceed to describe our prototype implementation
of the VERSAG framework. The prototype implementation was
shaped by the following objectives and scope. The framework
should be application-agnostic allowing it to be used to build
applications in any suitable domain by incorporating necessary
capabilities. It should also define a capability model that allows
third-party developers to build capabilities that improve the core
functions of agents as well as implement application-specific func-
tions. The framework should be a lightweight layer on top of a
current agent toolkit to avoid creating yet another agent toolkit
(Carzaniga et al., 2007) and to enable reusing agent services pro-
vided by the underlying toolkit. Furthermore, this allows VERSAG
agents to be introduced to existing multi-agent environments with
minimum disruption. Finally, the prototype should be able to run
on diverse hardware and software platforms, the likes of which are
commonly encountered by ubiquitous computing applications.

3.1. Development platform and tool selection

The language of choice for mobile agent programmers, and con-
sequently the platform used for developing most current agent
toolkits (Alberola et al., 2010) is Java. JADE (Java Agent Develop-
ment Framework) (Bellifemine et al., 2003) is one of a handful
of currently active mobile agent toolkits, is compliant with FIPA
(2011) standards for software agents and also provides support for
the subsets of Java aimed at mobile devices (albeit with certain

limitations in functionality due to device constraints). Therefore,
JADE was chosen as the basis of our prototype. Programs written
in Java are compiled to an intermediate bytecode format that is
targeted towards a virtual machine rather than any specific hard-
ware or operating platform. Consequently, these programs can be
executed on any platform for which a compatible virtual machine
implementation is available. Thus, the selection of Java and JADE
is aligned with the objective of building a platform-independent
prototype.

In Sub-section 2.4 we identified seven requirements of a VER-
SAG capability model. We now describe the choice of a capability
model implementation for use with the prototype and justify its
selection. The option of developing a capability model from ground
up was not considered as the effort involved could not be justified
considering there are already many candidates available. In addi-
tion, a custom developed capability model is unlikely to meet the
requirement of being compatible with a widely used standard. We
therefore investigated the possibility of reusing an existing com-
ponent model for defining VERSAG capabilities.

The three possibilities we considered (Gunasekera et al., 2009c)
are JADE, !Code and OSGi. We did not consider popular component
models such as EJB (Enterprise Java Beans) and CORBA (Common
Object Request Broker Architecture) (Emmerich and Kaveh, 2002)
which target enterprise applications because they are too unwieldy
for use inside a software agent and also not suitable for the types
of resource constrained environments targeted by VERSAG.

• JADE.The JADE agent toolkit (Bellifemine et al., 2003) allows
dynamic loading of functionality on to agents. A JADE
agent’s functionality is represented as programmer devel-
oped Behaviours (i.e. sub-classes of jade.core.behaviours.
Behaviour) and adaptation support is provided with the aid of
the LoaderBehaviour class and agent messaging. An agent that
runs the LoaderBehaviour receives code for new Behaviours
over ACL (Agent Commuication Language) messages and sched-
ules them co-operatively with other Behaviours already in the
agent. This approach results in the JADE agent behaviour life
cycle and interface becoming that of the capability model. It
thus results in the capability model becoming JADE specific
and only allows limited control over the adaptation process.
Furthermore, there is no built in meta-data support or support
for evolution. Thus, JADE was not selected as the capability
model implementation for VERSAG.

• !Code. !Code (Picco, 1998) is a flexible and lightweight Java
toolkit for code mobility which could be used as the basis for
building a capability model. A group, which can contain classes

508 K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519

and objects, is the unit of mobility in !Code. Code could be
pushed to a destination or pulled by the destination as needed.
It also allows multiple versions of the same class to co-exist
within a single Java virtual machine, which could be the basis
for building capability evolution support. It is possible to apply
a standard for capabilities on top of !Code while other features
required of a capability model have to be custom developed. It
is no longer actively maintained and also requires considerable
developments on top of it to meet our requirements. Hence,
!Code too was not selected.

• OSGi. OSGi (2007) (originally the Open Services Gateway Initia-
tive (Marples and Kriens, 2001)), known as the “dynamic module
system for Java”, is a standard component framework targeted
at devices ranging from mobile phones and embedded devices to
vehicles and high-end servers. It provides life cycle management
of components, a well-defined contract for component develop-
ment, supports co-existence of multiple versions of components
and is an industry standard. OSGi components, named bundles,
need to be developed in accordance with a simple API and are
packaged as Java archive (JAR) files, making them transportable
over networks. Bundles are named hierarchically as per java
package naming conventions and a limited set of headers are
supported by default, with the possibility of further extension by
developers (OSGi, 2003). While heavier (in computational terms)
than !Code, OSGi provides more features and is still lightweight
as it supports small and embedded devices. In addition to a large
population of available bundles (OSGi, 2007) (i.e. components),
there are also multiple implementations of the OSGi framework
(i.e. containers) available. Therefore, OSGi was selected as the
basis for building the VERSAG capability model.

Once OSGi was selected as the basis for the VERSAG capability
model, it was necessary to select a suitable OSGi implementation for
use within the prototype. Five of the popular OSGi implementations
currently available are as follows.

• Apache Felix (http://felix.apache.org/) is an open source imple-
mentation of the OSGi specifications and can be embedded within
other applications.

• Knopflerfish (http://www.knopflerfish.org/) is an open source
OSGi implementation with commercial support available.

• Equinox (http://eclipse.org/equinox/) is the reference implemen-
tation of the OSGi framework specification. It is also an open
source project.

• ProSyst (http://www.prosyst.com/) provides commercial OSGi
implementations that are used on devices ranging from mobile
phones to vehicles.

• Concierge (http://concierge.sourceforge.net/) is an open source
OSGi implementation that specifically targets resource con-
strained devices (Rellermeyer and Alonso, 2007).

Of the above, we limited our selection process to the four open
source implementations. Apache Felix, Knopflerfish and Equinox
target OSGi based applications on full powered computers (i.e.
desktop and server computers) whereas Concierge was designed
with resource constrained devices in mind. At less than 100 KB,
the Concierge runtime also has a smaller file footprint than the
other three open source implementations. It is however no longer
actively maintained and only implements the OSGi specification
release 3 (R3) whereas release 4.3 (R4.3) is the current version.
This limitation notwithstanding, we decided to use Concierge for
the capability model implementation of VERSAG as it provides the
smallest and most resource friendly alternative. Furthermore, since
OSGi R3 bundles are compatible with later releases, the possibility
of later switching to a newer release remains open.

Fig. 8. Launching Concierge programmatically.

Several significant modifications needed to be carried out on the
Concierge OSGi distribution in order to use it within VERSAG. The
three main changes which were required are as follows.

1. Enable embedding Concierge within an application/agent. Since
each VERSAG agent should have its own capability execu-
tion environment, each agent should have an OSGi container
embedded within it. Concierge however does not come with
support to embed it within another application. Therefore it
was necessary to modify the Concierge source code to enable
embedding. Starting a Concierge container is done by running
the ch.ethz.iks.concierge.framework.Framework class. A
new class ch.ethz.iks.concierge.framework.FrameworkV
was developed to wrap around this with support to embed it
within other applications. The code fragment in Fig. 8 shows how
an OSGi container can be launched programmatically using this
wrapper. The wrapper also contains methods to stop a container,
install/uninstall bundles from the container, register external
objects as OSGi services to make them accessible from within
bundles, and to retrieve details of installed bundles and services
as shown in Fig. 9.

2. Remove dependency on configuration files at start up time. When
a Concierge container starts up, it requires certain configuration
parameters, such as a list of bundles to start, locations of bundles,
logging levels and buffer sizes to be provided to it. Concierge, like
most software, was developed to be installed on and executed
from a fixed location. Therefore it makes use of files on disk for
reading initialization data. However, since we want to embed
our OSGi container inside an agent that is mobile, the container
cannot depend on files on disk for initialization (since it will
be started at different computing devices with no access to any
stored files). Therefore, we modified the Concierge source code
to remove the dependency on configuration files and have all
necessary parameters programmatically injected into it at start
up time.

3. Disable caching of bundles and temporary files on disk. Similar to
the use of configuration files, caching of bundles is useful only
when the OSGi container is stationary and can rely on the disk
being available as a long-term storage medium. This, clearly is
not so in our situation. Furthermore, due to security and con-
sistency needs, an agent migrating out of a device should not
leave behind any residual information from its execution on the
device’s disk. Thus, we had to modify Concierge source code and
disable the bundle caching.

Fig. 9. Wrapper class to enable embedding Concierge.

http://felix.apache.org/
http://www.knopflerfish.org/
http://eclipse.org/equinox/
http://www.prosyst.com/
http://concierge.sourceforge.net/

K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519 509

Fig. 10. Types of interfaces for VERSAG capabilities.

These three modifications were carried out on source code of
the most recent release of Concierge OSGi (version 1.0.0RC3). While
the modified container is no longer compliant with the OSGi spec-
ification, it still presents the same interface for bundles and is
therefore compatible with standard OSGi bundles. Therefore, our
bundle based capabilities still adhere to the OSGi standard. It is
noteworthy that the modified version of Concierge still has a file
footprint less than 100 KB which is an important requirement for
VERSAG.

3.2. Interfaces for capability development

In Section 2.4, a set of well-defined and minimal interfaces
according to which capabilities can be built was identified as a
desirable feature of a VERSAG capability model. In our prototype
implementation, three types of interfaces can be observed as illus-
trated in Fig. 10.

The minimum requirements of a capability are that it should
be an OSGi release 3 (R3) (2003) compliant bundle supplemented
with the meta-data required by VERSAG. An OSGi bundle consists
of Java classes and other resources (e.g. icons, help files), which
combine to provide some functionality, packaged as a Java ARchive
(JAR) file. A bundle also has a manifest file (named MANIFEST.MF)
that describes the bundle’s contents and configuration information
required to run it. A sample manifest file of a VERSAG capability
is shown in Fig. 11. The OSGi specifications (2003) provide further
details aiding development of bundles.

Fig. 11. Capability bundle manifest.

A capability is described with a unique identifier, function
descriptions, list of supported platforms, execution type and var-
ious meta-data. In our prototype, these have to be separately
specified as name-value pairs and associated with capabilities
when they are loaded into VERSAG.

While the requirements for an OSGi bundle described above are
the minimum requirements for a VERSAG capability, if a capabil-
ity needs to interact with the agent and make use of its services,
it needs to make use of the following interfaces and classes of a
VERSAG agent.

• mma2.AgentIF
• mma2.capability.Repository
• mma2.capability.Capability
• mma2.bundles.common.ServiceIF
• mma2.bundles.common.RequesterIF
• mma2.bundles.common.AbstractOneShotClass
• mma2.itinerary.ItineraryService

These interfaces are required for tasks such as making use
of agent services (AgentIF), retrieving/updating data stored in
the agent’s state (Repository) and modifying the agent itinerary
(ItineraryService). Capabilities such as context and adaptation
services which enhance agent autonomy are more likely to need
such functionality as they need to make use of and manipulate
agent internals while application-specific capabilities are less likely
to need to use these interfaces.

In addition to the above two types of interfaces, capabilities can
define their own interfaces in order to enable interactions between
capabilities. VERSAG does not provide any guidelines on the gran-
ularity or functions implemented per capability. However, it is
beneficial to build capabilities in a manner that promotes reuse. In
order to facilitate this, we recommend a service-oriented approach
with capabilities classified into two types as follows:

• Service capabilities. These implement generic functionality that
can be reused in multiple domains and applications (e.g. a
database driver capability, SQL client, statistical function library,
Graphical User Interface library). These types of capabilities are
developed by third parties and made available for use by applica-
tion developers. For a given functionality, there would be multiple
capabilities (potentially developed by different parties) that dif-
fer in terms of their features such as speed, system requirements,
supported data types, license, price and so on. Thus, service
capabilities are a form of commercial-off-the-shelf (COTS) com-
ponents.

• Coordinating capabilities. The purpose of a coordinating capability
is to join multiple service capabilities together in order to fulfil
tasks that an agent has to carry out. For example, a coordinating
capability implementing an information extraction function may
combine different “document reader” capabilities in order to read
different file formats on a computer. This type of capability has
less scope for reuse and is expected to be developed by applica-
tion developers who are aware of the different types of activities
that the application may need.

Fig. 12 shows the involved capabilities and their dependencies
for an information extraction capability set. The File Processor is the
coordinating capability and requires appropriate Reader capabili-
ties implementing the ReaderIF interface to do the actual reading
of a data source. An appropriate reader is selected based on the
type of file and invoked. Three readers for reading text and PDF files
are shown. The File Processor then stores any extracted information
in the agent’s Repository. An independent Result Handler capabil-
ity reads this information from the repository and handles it (e.g.
display or do further processing).

510 K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519

Fig. 12. Component diagram for information extraction capability set.

For this service-oriented approach to succeed, it is necessary
to define interfaces that service capabilities adhere to and accord-
ing to which coordinating capabilities can be programmed. This
then allows different service implementations to be plugged-in
based on capability availability and other needs (e.g. speed, envi-
ronment requirements, and monetary limits). These are therefore
application-specific interfaces that capability developers may need
to adhere to. We note that while it is possible to have monolithic
capabilities which combine these two types of functionality, they
do not promote reusability and therefore should be limited for use
in special circumstances.

3.3. Operational tools

We now provide a brief overview of the tools available for
monitoring and managing a VERSAG based multi-agent platform.
The JADE agent toolkit provides several tools for administration
of agents/platforms and foremost amongst them is the graphi-
cal user interface agent (RMA agent/Remote Monitoring Agent).
The RMA shows the agent platform, its containers (locations) and

agents executing at each container in a tree view and allows creat-
ing/deleting/moving agents and sending ACL messages to agents. It
is possible to launch other tools provided by JADE such as the Sniffer
agent and Introspector agent from the RMA. These tools allow view-
ing agent internal details and monitoring communication amongst
agents. Further details of these tools are available from the JADE
Administrator’s Guide (Bellifemine et al., 2007a).

As part of our study, we developed the Controller Agent (CA) and
the Remote Monitoring Console (RMC) to control and monitor agent
activity.

3.3.1. Controller Agent (CA)
The Controller Agent (CA) is a special (non-VERSAG) agent

developed to conveniently control VERSAG agents through a
command-line interface when running tests. While the RMA agent
and associated JADE tools allow creating agents and sending mes-
sages via graphical interfaces, they can be cumbersome when a
large number of agents have to be created and messaged to in a
test environment. Furthermore, they cannot be used when a Win-
dowing system is not available (e.g. on headless Linux machines and

Fig. 13. The Controller Agent (CA) interface.

K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519 511

Fig. 14. VERSAG Remote Monitoring Console.

when remotely logging in using the SSH protocol). The CA provides
a more convenient command-line and script file based approach
to create, terminate and message agents. With the CA, agents can
be controlled using simple text based commands, and multiple
commands can be encapsulated in a script file that can then be exe-
cuted through the CA’s interface. The script file commands allow
creating/moving/terminating agents, sending messages to agents,
terminating a JADE container (i.e. a location), shutting down the
agent platform, requesting agent status and pausing script exe-
cution for a desired number of seconds. A screen capture of the
running CA listing its command syntax is shown in Fig. 13.

3.3.2. Remote Management Console (RMC)
The Remote Monitoring Console (RMC), shown in Fig. 14, is a

graphical tool executed outside the agent system which displays
specially formatted messages to provide a bird’s eye view of the
functioning of a VERSAG multi-agent system. JADE containers are
configured to send selected log statements to the RMC over the
network. Capability developers can incorporate appropriate log
statements to describe their actions and any exceptional situations
via the RMC.

4. Empirical evaluations

Having described the design and implementation details of our
prototype, we now proceed to present empirical evaluations con-
ducted to validate the usefulness of the VERSAG framework. We
start this section with a justification for the selection of OSGi as
the basis of a capability model and follow it up with a case study
scenario which illustrates the functional benefits of VERSAG. The
section ends with an experiment which compares the network effi-
ciency of VERSAG agents with that of conventional mobile agents.

4.1. Performance justification for OSGi

Our selection of OSGi in Sub-section 3.1 raises an important
issue of performance overheads. OSGi is targeted towards a wide
range of devices and application domains and has many features
required by them, which can be overheads when used in VERSAG.

To compare the possible overheads due to the use of an OSGi
container instead of a custom developed capability model, a spike
solution was built. The solution consisted of creating two simple

Table 1
Comparison of custom-developed Vs OSGi based capabilities.

Capability Average execution
time (ms)

Source code
statements

Class size
(KB)

A – Custom version 34 46 1.75
A – OSGi version 35 86 4.56
B – Custom version 287 43 1.73
B – OSGi version 286 83 4.55

capability models, one OSGi based and one custom built, on top of
JADE agents. Two sample capabilities (A and B) were also devel-
oped for testing. The number of source statements, class sizes and
average capability execution time were measured. The results of
the performance comparison are shown in Table 1.

The results show that capability execution times are similar
for both the OSGi version and the custom version. This is impor-
tant since it indicates that the extra functionality of OSGi does not
translate into slower execution of custom loaded classes.

In terms of size, we observe that the OSGi source code has more
source statements and that its binary version (i.e. JAR file) too is
larger. This is due to the additional OSGi wiring code required. For
example, an OSGi bundle needs to have a Bundle Activator class
that implements the org.osgi.framework.BundleActivator
interface. This class contains methods which are invoked by the
container in order to start and stop the bundle. This wiring code
however is fixed (40 source statements in the examples above) and
will be an insignificant contributor to the capability’s size as the size
of the functional logic increases. The class size follows the trend of
source statements and is unlikely to be significant.

Furthermore, since mobile devices are one class of devices tar-
geted by OSGi, resource constraints of such environments have
been taken into account in its design. The modular nature of the
OSGi specification, where additional services themselves are imple-
mented as OSGi bundles that can be added and removed from the
container assists our objective of keeping the OSGi container as
lightweight as possible. Thus, we can conclude that the use of OSGi
as the capability model implementation does not compromise our
objective of building a lightweight agent framework.

4.2. Case study

A fundamental advantage VERSAG agents have over conven-
tional agents is the ability to acquire new behaviours for situations
which are not anticipated at design time. As a result of this fea-
ture, a VERSAG agent is able to continue execution in situations
where a conventional agent would have to be replaced. This ability
makes them especially suitable for use in dynamic and heteroge-
neous environments. We now describe a case study scenario in
order to demonstrate and establish this functional benefit of VER-
SAG agents. Specifically, we demonstrate the ability of an agent to
dynamically acquire new capabilities and use them to fulfil an allo-
cated itinerary. The ability of an agent to search for and acquire
capabilities it needs from other agents and the ability to make
a cost-efficient selection when multiple suitable capabilities are
available is also demonstrated.

Our case study builds on the motivating scenario from Sub-
section 2.1. A human user Bob uses his virtual personal assistant to
automate some office work on a typical workday morning. While
on his way to work by train, Bob types a memo, which needs to be
uploaded to the office virtual noticeboard, on his mobile comput-
ing device. Once he arrives at the office, Bob instructs his trusted
virtual personal assistant agent (also named “Bob”) to upload this
memo to the noticeboard. The agent is also assigned a second
task: to search two file servers in the office Intranet for documents
which refer to the phrase “mzone kiosk”. Bob indicates that he

512 K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519

Table 2
Locations of the case study agent environment.

Location Description

VNServer2 Virtual noticeboard access device
Server5 File server 1
Server6 File server 2
BobLap Agent Bob starts and ends his itinerary here
DavePC Agent Dave resides here
AnnPC Agent Ann resides here
TimPC Agent Tim resides here
loc0 Controller Agent deployed here
loc1 Main container of distributed JADE platform

would like to access this list of documents from his laptop com-
puter.

We use a laptop computer to represent Bob’s mobile comput-
ing device on which the agent initially resides. This is due to the
limited support for deploying mobile agents on current devices
such as mobile phones and personal digital assistants (PDA). The
laptop computer is connected to the rest of the network over an IEEE
802.11g wireless network and is resource-restricted in comparison
to desktop computers. The virtual noticeboard is represented by an
XWiki (http://www.xwiki.org) page named “NoticeBoard”. XWiki
was chosen since it allows REST style (Richardson and Ruby, 2007)
client interactions and therefore is representative of a large group
of similar resources that an agent may have to interact with. We
use a distributed JADE agent platform with nine locations (i.e. JADE
containers (Bellifemine et al., 2007b)) for the experiment. Table 2
lists these locations and their purposes. A graphical representation
of the environment, agents and the migration path to be taken by
agent Bob is provided in Fig. 15. In this setup, agents Dave, Ann and

Tim are the peer agents with whom agent Bob may share capabili-
ties.

4.2.1. Upload memo to office virtual noticeboard
We instruct agent Bob (via an itinerary sent using the CA) to

carry out the first task assigned by Bob, which is to migrate to the
office network and upload the typed memo to the virtual notice-
board.

The RMC log messages shown in Fig. 16 indicate the steps in
carrying out this task. (We note that differences in time and time
format are due to the messages coming from computers with dif-
ferent system times and time formats.) Lines 4 and 5 of the logs
show that agent Bob unloads the editor capability and migrates
to VNServer2. After arrival at VNServer2, Bob queries its peers for
the necessary capabilities, namely httpclient, xwiki and vnclient as
shown in lines 11 and 12. The three peer agents Dave, Ann and
Tim all respond to the query (lines 13–15) with responses of “type
21” containing details of matching capabilities they possess. Agent
Bob then deliberates on these responses and selects a capability
provider (agent Dave in this case) as shown in lines 22 and 23. Lines
24–29 show the capabilities being acquired (A response of “type
22” contains a capability). Finally, the capabilities are executed in
sequence to complete the task. A screen capture of the messages as
seen on the RMC is shown in Fig. 14. The updated XWiki page with
Bob’s memo is shown in Fig. 17.

This step illustrates the ability of a VERSAG agent to dynamically
search for and acquire new capabilities from other agents within
the environment and use them to fulfil its assigned itinerary. When
agent Bob was assigned the itinerary at the beginning of this step, it
did not contain the necessary know-how to update the office virtual
noticeboard. Thus, this is an itinerary that a conventional mobile

Fig. 15. Overview of case study agent environment.

http://www.xwiki.org/

K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519 513

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

19:48 - BOB execu ting <start ed itor:BobLap :CREA TED :STAR T:ed itor:null >
19:50 - BOB Editor accep ted use r con ten t.
19:50 - BOB rece ived a ne w itine rary
19:50 - BOB exec uting <un load edit or:BobL ap:CR EATED:UN LOA D:edit or:null >
19:50 - BOB exec uting <mov e VNServer2:BobL ap:CR EATED:MOVE :null :VNServer2>
19:50 - BOB is mov ing else whe re
7:50 - BOB arr ived at VNS erver2
7:50 - BOB execu ting <start con tex tap i:VNS erver2:CREA TED :STAR T:con tex tapi:null >
7:50 - BOB execu ting <start ahpcos tmode l:VNS erver2:CREA TED :STAR T:ahp costmode l:null >
7:50 - BOB rece ived a ne w itine rary
7:50 - BOB exec uting <find spec con st; TIME:5;LOA D:4 HTT P;htt p_cli ent_method s;JADE3_5
XWIKI;xwiki_cli ent_method s;JADE3_5
VN;vir tual_no ticebo ard_cli ent_agg regator;JADE3_5 :VNS erver2:CREATED :FIND :null :null >
7:50 - BOB (i Reques ter) sea rching by spec
19:52 - DAVE (i Prov ider) se nt response of t ype 21
7:50 - ANN (iProv ider) se nt response of typ e 21
19:52 - TIM (iProv ider) se nt response of typ e 21
7:50 - BOB (iReques ter) found 1 remote matches .
7:50 - BOB (iReques ter) found 1 remote matches .
7:50 - BOB (iReques ter) found 1 remote matches .
7:50 - BOB (iReques ter) found 2 remote matches .
7:50 - BOB (iReques ter) fou nd 1 remote matche s.
7:50 - BOB (iReques ter) found 1 remote matches .
7:50 - BOB exec uting <s tart ise lec tor:VNServer2:CR EATED:START :ise lec tor:null >
7:50 - BOB (i Selec tor) has 2 sorted alt ernati ves
7:50 - BOB (i Reques ter) sea rching f or vn cli ent
19:52 - DAVE (iProv ider) se nt response of typ e 22
7:50 - BOB (i Reques ter) sea rching f or htt pcli ent
19:52 - DAVE (i Prov ider) se nt response of t ype 22
7:50 - BOB (i Reques ter) sea rching f or xwiki
19:52 - DAVE (i Prov ider) se nt response of t ype 22
7:50 - BOB execu ting <start HTTP :VNServer2:CREATE D:STA RT:htt pclient:null >
7:50 - BOB execu ting <start XWIKI:VNS erve r2:CREA TED :STAR T:xwiki:null >
7:50 - BOB execu ting <start VN :VNS erver2:CREA TED :STAR T:vnclient:null >
7:50 - BOB suc ces sfull y upda ted VN .

Fig. 16. Complete RMC log message.

Fig. 17. Bob’s memo on the virtual noticeboard.

agent would not be able to fulfil. The peer capability sharing feature
allowed Bob to first search nearby agents for the necessary know-
how (i.e. capabilities which implement the relevant functionality),
acquire these capabilities and execute them in order to fulfil the
itinerary.

4.2.2. Search and locate documents containing specific search
query

The second task assigned to agent Bob is to search through doc-
uments in two Intranet file servers and identify documents which
contain the phrase “mzone kiosk”. Once again agent Bob does not
have the required capabilities and needs to acquire them from
peer agents. A tabular format of the itinerary to follow is shown
in Table 3. The get operations encapsulate VERSAG’s cost-efficient
capability acquisition process which in this instance takes network
load and time as relevant cost criteria.

Table 3
Itinerary to search documents.

Location Operations

VNServer2 discard vnclient xwiki httpclient, move Server5
Server5 get [2common pdfreader txtreader 2matcher]

start 2common, start pdfreader, start txtreader, start 2matcher
move Server6

Server6 start 2matcher, move BobLap
BobLap get [resultgui], start resultgui

Agent Bob searches for the relevant capabilities and finds mul-
tiple instances available from the peer agents. Agent Dave has two
pdfreader capabilities, namely: 2pdfboxreader and 2jpodpdfreader.
Also, the txtreader capability is available with agents Dave and
Ann. This leads to four possible combinations of capabilities (i.e.
capability groups). A multi-criteria decision making cost model

514 K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519

 24/07 /11 20 :35 [21] FINE bund le.costmodel.ahp1 .Ahp CostModel - Aft er sorting :
2matche r[130 .194 .70 .98 :1230] 2jpodpd freade r[130 .194 .70 .98 :1230]
2txtreade r[130 .194 .70 .98 :1230] 2common [130 .194 .70 .98 :1230]) = 0.353139 1
2matche r[130 .194 .70 .98 :1230] 2jpodpd freade r[130 .194 .70 .98 :1230]
2txtreade r[130 .194 .70 .183 :1230] 2common [130 .194 .70 .98 :1230]) = 0.3528825 6
2matche r[130 .194 .70 .98 :1230] 2pd fbo xreade r[130 .194 .70 .98 :1230] 2txtreade r[130 .194 .70 .98 :1230]
2common [130 .194 .70 .98 :1230]) = 0.147032 2
2matche r[130 .194 .70 .98 :1230] 2pd fbo xreade r[130 .194 .70 .98 :1230]
2txtreade r[130 .194 .70 .183 :1230] 2common [130 .194 .70 .98 :1230]) = 0.1469460 9

Fig. 18. Agent Bob’s logs showing utilities of sorted capability groups.

(Gunasekera et al., 2010) is used by agent Bob to select the most
cost-efficient capability group. The sorted groups and their corre-
sponding utility values as logged by agent Bob are shown in Fig. 18.

It could be observed that the 2jpodpdfreader, which is roughly
one fourth the size of the 2pdfboxreader (i.e. 824 and 3176 KB
respectively), was selected by agent Bob. Since no network traffic is
generated during execution of these two capabilities, network load
is only due to capability acquisition. Therefore, the smaller size of
the 2jpodpdfreader puts it at a significant advantage. Considering
time estimates also, according to capability meta-data 2jpodpdf-
reader is deemed the faster of the two. Thus, we see that the
agent has selected the more cost-efficient alternative. This there-
fore illustrates the ability of a VERSAG agent to make a cost-efficient
selection based on contextual input and user preferences.

Agent Bob migrates to Server6 carrying these acquired capabil-
ities and reuses them there for searching the file system. These
capabilities are then discarded prior to migrating to the laptop
(BobLap) to display results. There again agent Bob searches for a
suitable capability to display results. A screen capture of the result
displaying GUI capability presented in Fig. 19 shows the phrase that
was searched for, files containing the search phrase and the word
count of each file.

This scenario demonstrated the ability of VERSAG agents to
locate nearby agents and share capabilities with them when

Fig. 19. Agent displaying search results to Bob on the laptop.

required. It also showed that when several alternative capabilities
are available, a VERSAG agent has the ability to select the most
cost-efficient alternative to fulfil its itinerary, taking into account
user preferences, capability details and contextual inputs. It is this
versatility of VERSAG agents that make them suitable in uncertain
situations where conventional mobile agents cannot be applied.

4.3. Efficient migration through capability sharing

A key advantage of VERSAG is the ability of an agent to acquire
and discard capabilities based on needs, which allows it to stay
lightweight despite the diverse behaviours displayed and hetero-
geneous conditions encountered during its lifetime. This ability can
lead to reductions in overall network traffic generated by migrat-
ing agents. We now describe a set of experiments which illustrate
this behaviour. Specifically, our objective is to demonstrate that a
VERSAG agent performing a task which requires it to carry out dis-
tinct sub-tasks at different locations generates less network traffic
compared to a conventional mobile agent assigned with the same
task (Gunasekera et al., 2009a).

4.3.1. Experimental setting
Let us consider that Bob’s personal assistant agent from the

case study scenario has to migrate to computers in the office
Intranet searching different document sources for specific con-
tent. We assume that the agent has identified a sequential itinerary
(migration path) which takes it through n locations (i.e. computers).
At each location, the agent has to search a different type of docu-
ment source. For example, it has to search a MySQL database at one
location, a collection of PDF files at another location, an LDAP direc-
tory at another and so on. The final task is for the agent to move to
Bob’s laptop computer and display aggregated search results. Since
the tasks are distinct, the agent requires a different capability for
each task. Even though the agent does not have any of the required
capabilities up front, they are available with other agents in the
Intranet and can be acquired from them.

Fig. 20 illustrates our test setup for the above scenario. The num-
ber of locations is n and the agent’s starting and terminating point
is identified as location N0. At each intermediate location Ni, where
0 ≤ i ≤n, the agent has to perform taski which is only required at
that location. The final task, taskn is performed at location N0 after
having traversed all locations. We denote migration from location
Ni −1 to Ni as migi. The final migration from Nn − 1 to N0 is specified
as mign.

We use two types of agents to fulfil this task as described below.
Case I: The itinerary is assigned to a conventional mobile agent with all

the functions required to execute the various tasks coded into it
Case II: The itinerary is assigned to a VERSAG agent with a “light-travel”

policy. That is, at location Ni the agent acquires capabilities
necessary to perform taski , uses them and discards them before
migrating to the next location. Hence, the agent always migrates
as an empty agent without carrying any capabilities

For Case II, functions required for taski are implemented as
a single capability. In the experimental setup, a separate agent

K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519 515

Fig. 20. Agent migrates to n locations, performing a distinct task at each location.

residing at location N0 contains all these capabilities and supplies
them to our working agent when requested. It is assumed that the
task results which are carried by the agent are negligible in size. The
task at each location consists of searching through a collection of
files (located on the file system at that location) for a given phrase
and then recording the name and word count of the files which
contain the phrase. At the final location, taskn is to display the col-
lected results on the computer console. As stated earlier, different
types of files have to be read at each location and the agent there-
fore requires a different capability at each location. For Case I, the
conventional mobile agent is built with the necessary functions to
search all the types of files and display results.

The JADE agent platform implements a pull-per-class migration
strategy where the destination container (i.e. location) pulls classes
from the agent’s home container as and when required (Braun et al.,
2005). As a consequence, only classes that are required at a particu-
lar location are transferred. Furthermore, due to the higher number
of network connections, migration overheads are higher in com-
parison to mechanisms where a collection of classes are moved
together as a single unit. To negate the effects of these JADE spe-
cific behaviours, we instantiate all custom developed classes in
the agent’s main class to ensure that they are always moved. In
addition, in the conventional mobile agent (i.e. Case I), third-party
libraries required by it are artificially carried as agent data.

The experiments are carried out in a high-speed Local Area
Network (LAN), using computers running Windows and Solaris
operating systems and Java SDK 1.6.0. The agents are implemented
using JADE version 3.5.

The number of locations n, is varied from 2 to 10. The total
number of tasks, and therefore capabilities, for a test run is also
equal to n. The number of file types supported by the conventional
agent increases with n, making the agent larger as n increases. In
each test run, a conventional mobile agent (Case I) and a VERSAG
agent (Case II) are allowed to complete the itinerary. The agent plat-
form is restarted between test runs to ensure that any code caching
mechanisms do not affect the measurements. Total network traffic
generated and time taken to complete the itinerary are measured.

4.3.2. Results and analysis
A graphical representation of mean network load variation with

number of locations is provided in Fig. 21. The results clearly indi-
cate that VERSAG agents generate less network load in comparison
to a conventional mobile agent as the number of locations traversed
increases.

To aid further analysis and interpretation of the experiment
results, we build an analytical model of network load for the two

0.0

50.0

100.0

150.0

200.0

250.0

300.0

2 3 4 5 6 7 8 9 10

Ne
tw

or
k

Lo
ad

 (M
B)

No. of locations (n)

Case I (co nventio nal)

Case II (VERSAG)

Fig. 21. Network load Vs number of locations.

cases. We assume that overheads for migration and capability
exchange (Bovrhd

mig and Bovrhd
c ex) are constant values and that the size of

the accumulated result carried along with the agent is negligible.
We also assume that the total size of classes implementing the tasks
in the conventional mobile agent is equal to the sum of capability
sizes in the VERSAG agent.

4.3.2.1. Case I. Network traffic generated due to agent migration
migi can be represented as the sum of the agent’s class size (BC

MA),

size of the serialized agent (Bobj
MA) and migration overheads (Bovrhd

mig).
When the agent migrates to its home location (N0), there is no need
to send the agent classes since they are already available at the
destination.

Bmigi
= {

BC
MA + Bobj

MA + Bovrhd
mig if i < n

Bobj
MA + Bovrhd

mig if i = n
(1)

We further breakdown the agent’s classes as those of the base
agent (Bc

ma) and those of the various capabilities (BC∑
capi

). That is,

BC
MA = BC

ma+
∑

capi
(2)

Total network load for a conventional mobile agent can be rep-
resented as follows.

BI = Bmig1
+ Bmig2

+ . . . + Bmign

516 K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519

Expanding this with Equations (1) and (2),

BI = (n − 1)

(
BC

ma+
∑

capi
+ Bobj

ma+
∑

capi
+ Bovrhd

mig

)
+

(
Bobj

ma+
∑

capi
+ Bovrhd

mig

)

BI = (n − 1)BC
ma+

∑
capi

+ n

(
Bobj

ma+
∑

capi
+ Bovrhd

mig

) (3)

4.3.2.2. Case II. Total network traffic for the VERSAG agent includes
the cost of n migrations and n capability exchanges.

BII =
(

Bmig1
+ Bmig2

+ . . . + Bmign

)
+

(
Bc−ex1 + Bc−ex2 + . . . + Bc−exn

)

(4)

Network traffic due to a capability exchange consists of capabil-
ity class size (BC

capi
) and the exchange overhead (Bovrhd

c−ex), or is zero
when capability provider and requester are co-located (i.e. at loca-
tion N0). Here the exchange overhead includes capability request
response message sizes.

Bc−exi
=

BC
capi

+ Bovrhd
c−ex where i = 1 . . . (n − 1)

0 where i = n
(5)

With Bv representing size of a VERSAG base agent, total network
load is:

BII = (n − 1)
(

BC
v + Bobj

v + Bovrhd
mig

)
+

(
Bobj

v + Bovrhd
mig

)
+

(
(BC

cap1
+ Bovrhd

c−ex) + . . . + (BC
capn−1

+ Bovrhd
c−ex)

)

BII = (n − 1)BC
v + n

(
Bobj

v + Bovrhd
mig

)
+ BC∑

cap1
+ (n − 1)Bovrhd

c−ex

(6)

Equations (3) and (6) enable us to understand the trends dis-
played by the two plots in Fig. 21. The plot for Case I (conventional
agent) displays a quadratic increase where as the plot for Case
II (VERSAG agent) only increases linearly. In the experiment, the
base agent class/object sizes and overheads are constants while
the number of locations (n), class size of all capabilities (BC∑

capi
)

and object size of all capabilities (Bobj∑
capi

) are variable. Thus, we

observe that Equation (3) for a conventional agent contains prod-
ucts of the variable terms leading to a quadratic plot while Equation
(6) for a VERSAG agent only contains the variable terms in isolation
leading to a linear increase. Furthermore, we note that for VERSAG
to produce lower network load than a conventional mobile agent,
we should have BII ≤ BI.

While we do not formally analyse time consumed for itinerary
completion, our experimental data shows that the conventional
agent consumes more time as the number of locations increases.
We note though that time taken by VERSAG agents would increase
as more complex protocols are used for capability discovery and
acquisition.

The results from our empirical and analytical evaluations clearly
demonstrate and validate the performance gains from using a VER-
SAG agent to carry out distinct sub-tasks at a set of distinct locations
as opposed to a conventional mobile agent assigned with the same
task.

If we relax the requirement of a distinct capability at each loca-
tion and consider that there are m capabilities which could possibly
be used over n locations, a conventional agent would still need all
m capabilities embedded in it. If the VERSAG agent in this situation
continues to discard each capability after use, it ends up requesting
the same capability multiple times and may end up being less effi-
cient than the conventional agent. Instead, the VERSAG agent could
further improve its efficiency by using more sophisticated capa-
bility management mechanisms which take into account criteria
such as the probability that a capability would be required again,

cost of links to be traversed, ease of reacquiring the capability at
another location and throughput requirements of the application.
In (Gunasekera et al., 2010), we proposed a cost model which allows
agents to make cost-efficient capability selection decisions. This
cost model was used by the agents in the case study of Sub-section
4.2 for their decision making.

5. Related work

There exist a number of related projects where mobile agent
technology has been used to build software for ubiquitous com-
puting environments. MobiSoft (Erfurth et al., 2008) is one such
project which investigates the use of mobile agents in the role of
personal assistants to human users. They use a custom-built Java
like language named TAL (The Agent Language) to aid agent migra-
tion on J2ME mobile devices. MobiSoft agents are however not

functionally adaptive and therefore have fixed functionality unlike
VERSAG agents. ODDUGI (Choi et al., 2009) is a Java based mobile
agent system which emphasizes reliability, security and fault toler-
ance as important features in ubiquitous computing environments.
AFME (Agent Factory Micro Edition) (Muldoon et al., 2007) is a
BDI mobile agent framework targeting resource constrained J2ME
mobile devices. A survey and classification of mobile agents in ubiq-
uitous computing are presented in (Zhang et al., 2012). While there
is a considerable amount of literature on the use of mobile agent
technology in ubiquitous computing environments, research where
mobile agents exhibit ability to dynamically adapt their internal
structures, as seen in VERSAG, is extremely rare in the literature.
Below, we briefly introduce the important works in this area.

Dynamically Configurable Software (DynamiCS) (Tu et al.,
1998) pioneered the idea of mobile agents being containers for
application-specific plug-in components. A DynamiCS agent by
default contains basic mobility and persistence capabilities while
most application semantics are implemented as plug-in compo-
nents that can be loaded and unloaded from an agent at runtime.
It was targeted towards ecommerce applications and specifically
limited itself to adapting agents to support different negotiation
schemes. The research on negotiating agents by Parakh et al. (2002)
shares similar objectives to DynamiCS but is implemented using
different base technologies.

The dynamic agent infrastructure (Chen et al., 1999) is
another pioneering effort which provides agents with dynamic-
modifiability of behaviours. A dynamic agent is composed of a fixed
carrier part that provides housekeeping services and a dynamic
part which contains useful capabilities. An agent presented with
a task that requires capabilities beyond what it has at present can
dynamically load new programs from a specified remote location.
Thus, their adaptation is for functional requirements and has to be
explicitly specified in the task assigned to the agent.

The work on dynamically adaptable mobile agents (DAMA)
(Brandt, 2001) investigates how mobile agents can dynamically

K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519 517

adapt their functionality to suit different computational environ-
ments they encounter. A DAMA mobile agent is made up of a
small non-adaptable (environment independent) core, adaptation
framework and adaptable parts that depend on the environment.
Adaptation in DAMA agents therefore occurs only as a result of
agent migration to a different environment.

The Generic Adaptive Mobile Agent architecture (GAMA)
(Amara-Hachmi and Fallah-Seghrouchni, 2005) is another such
project where agents adapt to suit new environments. GAMA tar-
gets ubiquitous computing environments and an agent in GAMA is
composed of multiple components and adapts itself after migration
to suit its new environment. In adaptation, components can only
be selected from a collection available at the agent’s destination.

Roam (Chu et al., 2004) is a framework where applications
can be dynamically synthesized using agent-like migratory enti-
ties termed Roamlets. The Port-Based Adaptable Agent Architecture
(PB3A) by Dixon et al. (2000) has a port-based module (PBM) as
its core building block and has a port-based agent (PBA) as an
autonomous entity. The Self-Configuring Personal Agent (SCPA)
platform (Feng et al., 2008) is a recent effort targeted towards
creating personal assistant agents in ubiquitous computing envi-
ronments. These agents can adapt in response to application
requirements as well as environmental changes.

VERSAG improves the state-of-the-art in several directions. A
key weakness observed in existing literature is the dependence of
an agent on a single component source. DAMA is the only exception
to this with its use of proxy repositories in an attempt to overcome
this limitation. In VERSAG, we eliminate dependence on a single
component source through the concept of sharing functional capa-
bilities among peer agents. This not only increases the utility and
efficiency of mobile agents but is also of significant value in ubiqui-
tous computing environments where network connectivity issues
and high communication costs can make dependence on a central-
ized component source undesirable. Another weakness observed
in existing research is their fragmented view of adaptation, where
adaptation is necessitated by either having to fulfil application tasks
for which the required know-how (i.e. functionality) is not avail-
able with the agent, having to meet the requirements of a new
device that the agent is migrating to, or as a result of environmental
changes (sensed by itself or another context-aware agent). How-
ever, all these are valid needs for adaptation and it is necessary
for agents in ubiquitous computing environments to possess an
integrated view which takes into account all possible adaptation
triggers. With VERSAG, we present a holistic view of adaptation
allowing agents to adapt in response to any of these different trigg-
ers. A third improvement over the state-of-the-art is increased
reusability of components in VERSAG. In previous research, agent
components can only be reused within that particular framework.
By adopting the widely accepted OSGi specification as the basis of
our capability model, VERSAG expands the scope of reuse for its
capabilities to the many other situations where OSGi is used.

6. Discussion

While VERSAG was designed primarily as a framework for build-
ing ubiquitous computing applications, its applicability extends to
other domains where software agents are deemed useful. For exam-
ple, in (Gunasekera et al., 2011) we described how VERSAG agents
can improve the efficiency of service-oriented software agents. In
many agent based systems, agents are not migratory and their
environments are not severely resource-restricted as in ubiqui-
tous computing. Therefore, we briefly introduce two scenarios to
illustrate how VERSAG brings significant values in such situations.

Let us first consider a long-lived software agent designed to
carry out a fixed set of tasks and residing in a non-resource con-
strained environment. Tasks allocated to such agents are generally

complex (e.g. negotiation and purchase in electronic auctions,
control and monitoring of industrial equipment). Over time, bet-
ter implementations of these tasks appear making the agents
inefficient and sometimes obsolete. For example, a negotiating
agent would be at a significant disadvantage if rival agents use
improved negotiation strategies. In such a situation, the agent
needs to be replaced with another agent that has the improved
strategies. Similarly, a software agent that controls and moni-
tors industrial equipment would have to be replaced if equipment
upgrades/additions result in changes to the software interfaces and
functionality. Designing and developing new software agents is
costly and time consuming, and is therefore undesirable. VERSAG is
able to address this challenge by enabling agents to autonomously
search for and acquire software components which implement
such new functionality.

Even in non-resource constrained environments, energy con-
servation is imperative to reduce costs and to be environmentally
friendly. Processing capacity is also a limited resource since sup-
ply often exceeds the demands of applications. Thus, it is desirable
for an agent to have the ability to become lightweight and con-
sume less resources when it has fewer responsibilities (e.g. for a
control/monitoring agent when the controlled equipment is idle).
The VERSAG framework addresses this challenge in two ways. First,
agents have the ability to discard unwanted software components
(i.e. capabilities) and become lightweight. Second, they are able
to search for and acquire improved implementations of software
components as they become available.

7. Conclusion and future work

We have proposed the VErsatile Self-adaptive AGents (VERSAG)
framework as a suitable software infrastructure to build ubiquitous
computing applications. VERSAG agents, through their adaptive
nature, are able to determine which tasks to address, find suit-
able capabilities with which to fulfil these tasks, and migrate if
required. Furthermore, they are able to operate in resource con-
strained environments and display the scalability inherent to the
agent paradigm. Thus, the VERSAG framework exhibits the desir-
able features of a software infrastructure for ubiquitous computing
as identified by Banavar and Bernstein (2002, 2004).

In this article we presented an in depth description of the
VERSAG framework and agent architecture. A key contribution of
VERSAG is the ability to share functional components (i.e. capa-
bilities) with peer agents, which makes them highly versatile
and suitable for ubiquitous computing environments. We also
presented design and implementation details of our VERSAG proto-
type. We note that the formal underpinnings of VERSAG have been
previously described in (Gunasekera et al., 2010).

To illustrate the functional benefits VERSAG brings to ubiqui-
tous computing environments, we described a case study scenario
implementation where VERSAG agents are used as personal assis-
tant agents. Further empirical evaluations demonstrated that
efficient agent migration can be achieved with the aid of peer capa-
bility sharing between agents.

In building ubiquitous computing applications with VERSAG,
there are challenges related to adaptation decision making, capa-
bility management and itinerary generation that are not addressed
by the core framework. These need to be addressed at the level
of capabilities, and one such example is the multi-criteria decision
making cost model we proposed in (Gunasekera et al., 2010). One
of our future directions for investigation along these lines is gen-
erating detailed agent itineraries from high-level declarative user
requests.

Other future directions in which this research could be extended
are as follows. At present our prototype implementation is limited
to a single agent platform (i.e. JADE). Since the framework has

518 K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519

been developed with the intention of supporting multiple agent
platforms and cross-platform agent migration, a natural future pro-
gression is to extend support to new platforms and environments.
Along the same line of development, we envision that creating a
stand-alone version of the framework such that VERSAG agents
can execute in environments without any agent infrastructure to be
highly valuable. Since there is limited mobile agent toolkit support
for hand-held mobile devices like smart phones, personal digital
assistants (PDA) and tablets, this will be a first step in expanding
VERSAG’s reach to such devices. Upgrading the capability model to
support the latest OSGi release is another implementation focused
future direction of our research.

Acknowledgements

The first author acknowledges support received from the
Monash University Postgraduate Publications Award.

References

Alberola, J.M., Such, J.M., Garcia-Fornes, A., Espinosa, A., Botti, V., 2010. A perfor-
mance evaluation of three multiagent platforms. Artificial Intelligence Review
34, 145–176.

Amara-Hachmi, N., Fallah-Seghrouchni, A.E., 2005. Towards a generic architecture
for self-adaptive mobile agents. In: European Workshop on Adaptive Agents and
Multi-Agent Systems, Paris, France.

Banavar, G., Bernstein, A., 2002. Software infrastructure and design challenges for
ubiquitous computing applications. Communications of the ACM 45, 92–96.

Banavar, G., Bernstein, A., 2004. Challenges in design and software infrastructure for
ubiquitous computing applications. Advances in Computers 62, 179–202.

Barton, J.J., Cerqueira, R., Fontoura, M., 2004. Ubiquitous computing. Journal of Sys-
tems and Software 69, 207.

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G., 2003. JADE – a white paper. TILAB
Journal “EXP – in search of innovation” Special issue on JADE 3, 6–19.

Bellifemine, F., Caire, G., Trucco, T., Rimassa, G., Mungenast, R., 2007a. JADE Admin-
istrator’s Guide, p. 37.

Bellifemine, F.L., Caire, G., Greenwood, D., 2007b. Developing Multi-agent Systems
with JADE. John Wiley and Sons, Chichester, UK.

Brandt, R., 2001. Dynamic Adaptation of Mobile Code in Heterogeneous Environ-
ments Institute of Informatics. Technical University of Munich, Munich, p. 79.

Braun, P., Rossak, W., 2004. Mobile Agents Basic Concepts, Mobility Models and the
Tracy Toolkit. Morgan Kaufmann Publishers.

Braun, P., Trinh, D., Kowalczyk, R., 2005. Integrating a new mobility service into the
Jade agent Toolkit. In: Karmouch, A., Pierre, S. (Eds.), Mobility Aware Technolo-
gies and Applications: Second International Workshop, MATA 2005, Montreal,
Canada, October 17-19, 2005. Proceedings. Springer-Verlag, Heidelberg, pp.
354–363.

Cardoso, R.S., Kon, F., 2002. Mobile agents: a key for effective pervasive computing.
In: ACM OOPSLA 2002 Workshop on Pervasive Computing, Seattle, Washington,
USA.

Carzaniga, A., Picco, G.P., Vigna, G., 2007. Is code still moving around? Looking back
at a decade of code mobility. In: 29th International Conference on Software
Engineering: (ICSE’07 Companion), IEEE Computer Society, Minneapolis, MN,
USA, pp. 9–18.

Chen, Q., Chundi, P., Dayal, U., Hsu, M., 1999. Dynamic agents. International Journal
of Cooperative Information Systems 8, 195–223.

Choi, S., Choo, H., Baik, M., Kim, H., Byun, E., 2009. ODDUGI: ubiquitous mobile agent
system. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova,
M.L. (Eds.), Computational Science and Its Applications – ICCSA 2009 Inter-
national Conference, Seoul, Korea, June 29-July 2, 2009. Proceedings, Part II.
Springer-Verlag, Berlin Heidelberg, pp. 393–407.

Chu, H.-h., Song, H., Wong, C., Kurakake, S., Katagiri, M., 2004. Roam, a seamless
application framework. Journal of Systems and Software 69, 209–226.

Councill, B., Heineman, G.T., 2001. Definition of a Software Component and Its Ele-
ments Component-Based Software Engineering: Putting the Pieces Together.
Addison-Wesley Longman Publishing, Boston, MA, USA, pp. 5–19.

Dixon, K.R., Pham, T.Q., Khosla, P.K., 2000. Port-based adaptable agent architecture.
In: Robertson, P., Shrobe, H., Laddaga, R. (Eds.), Self-Adaptive Software: First
International Workshop, IWSAS 2000, Oxford, UK, April 2000. Revised Papers.
Springer-Verlag, pp. 181–198.

Emmerich, W., Kaveh, N., 2002. Component technologies: Java Beans, COM, CORBA,
RMI, EJB and the CORBA Component Model. In: 24th International Conference
on Software Engineering (ICSE 2002). ACM Press, Orlando, Florida, USA, pp.
691–692.

Erfurth, C., Kern, S., Rossak, W., Braun, P., Leßmann, A., 2008. MobiSoft: net-
worked personal assistants for mobile users in everyday life. In: Klusch, M.,
Pechoucek, M., Polleres, A. (Eds.), Cooperative Information Agents XII 12th Inter-
national Workshop, CIA 2008, Prague, Czech Republic, September 10-12, 2008.
Proceedings. Springer-Verlag, pp. 147–161.

Feng, Y., Cao, J., Lau, I.C.H., Liu, X., 2008. A self-configuring personal agent platform
for pervasive computing. In: IEEE/IFIP International Conference on Embedded
and Ubiquitous Computing (EUC’08), IEEE Computer Society, Shanghai, China,
pp. 438–444.

FIPA, 2011. The Foundation for Intelligent Physical Agents. Accessed February 2011.
http://www.fipa.org

Gorton, I., 2006. Essential Software Architecture. Springer-Verlag, Berlin Heidelberg.
Gunasekera, K., Krishnaswamy, S., Loke, S.W., Zaslavsky, A., 2009a. Runtime

efficiency of adaptive mobile software agents in pervasive computing environ-
ments. In: ACM International Conference on Pervasive Services (ICPS’09). ACM
Press, London, UK, pp. 123–132.

Gunasekera, K., Loke, S.W., Zaslavsky, A., Krishnaswamy, S., 2009b. Runtime
adaptation of multiagent systems for ubiquitous environments. In: 2009
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT
2009), IEE Computer Society, Milan, Italy, pp. 486–490.

Gunasekera, K., Zaslavsky, A., Krishnaswamy, S., Loke, S.W., 2009c. Component based
approach for composing adaptive mobile agents. In: Håkansson, A., Nguyen,
N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (Eds.), Agent and Multi-Agent Systems:
Technologies and Applications 3rd KES International Symposium, KES-AMSTA
2009, Uppsala, Sweden, June 3-5, 2009. Proceedings. Springer-Verlag, Heidel-
berg, pp. 90–99.

Gunasekera, K., Krishnaswamy, S., Loke, S.W., Zaslavsky, A., 2010. Adaptation sup-
port for agent based pervasive systems. In: 7th International ICST Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQ-
uitous 2010), Sydney, Australia.

Gunasekera, K., Loke, S., Zaslavsky, A., Krishnaswamy, S., 2011. Improving efficiency
of service oriented context-driven software agents. Cybernetics and Systems 42,
324–340.

Kaelbling, L.P., Littman, M.L., Moore, A.W., 1996. Reinforcement learning: a survey.
Journal of Artificial Intelligence Research 4, 237–285.

Kephart, J., Chess, D., 2003. The vision of autonomic computing. Computer 36, 41–50.
Lange, D.B., Oshima, M., 1999. Seven good reasons for mobile agents. Communica-

tions of the ACM 42, 88–89.
Marples, D., Kriens, P., 2001. The open services gateway initiative: an introductory

overview. IEEE Communications Magazine 39, 110–114.
Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins,

S., Xu, Z., 2002. Peer-to-Peer Computing. HP Laboratories, Palo Alto, USA, p. 51.
Muldoon, C., O’Hare, G.M.P., Bradley, J.F., 2007. Towards reflective mobile agents for

resource-constrained mobile devices. In: 6th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’07). ACM Press, Honolulu,
Hawai, pp. 932–934.

Niemelä, E., Latvakoski, J., 2004. Survey of requirements and solutions for
ubiquitous software. In: 3rd International Conference on Mobile and
Ubiquitous Multimedia (MUM2004). ACM Press, College Park, Maryland,
pp. 71–78.

OSGi, 2003. OSGi Service Platform, Release 3. IOS Press, Inc., Amsterdam, The
Netherlands.

OSGi, 2007 About the OSGi Service Platform: Technical Whitepaper. OSGi Alliance,
pp. 1–19.

Parakh, G., Paprzycki, M., Nistor, C.E., 2002. Dynamically loaded reasoning models in
negotiating agents. In: 3rd European Conference on E-Commerce, E-Activities, E-
Working, E-Business, E-Learning, E-Health, On-line Services, Virtual Institutes,
and their Influences on the Economic and Social Environment (E-Comm-Line),
Bucharest, Romania, pp. 199–203.

Picco, G.P., 1998. !Code: a lightweight and flexible mobile code toolkit. In: Rother-
mel, K., Hohl, F. (Eds.), Mobile Agents: Second International Workshop, MA’98
Stuttgart, Germany, September 9-11, 1998 Proceedings. Springer-Verlag, Berlin
Heidelberg, pp. 160–171.

Price, R., Krishnaswamy, S., Arora, N., 2007. Current research in conceptual mod-
elling of agent mobility: an ontology-based evaluation. International Journal of
Metadata, Semantics and Ontologies 2, 79–93.

Rellermeyer, J.S., Alonso, G., 2007. Concierge: a service platform for resource-
constrained devices. In: 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems. ACM Press, Lisbon, Portugal, pp. 245–258.

Richardson, L., Ruby, S., 2007. RESTful Web Services, First ed. O’Reilly Media,
Sebastopol, CA, USA.

Saha, D., Mukherjee, A., 2003. Pervasive computing: a paradigm for the 21st century.
Computer 36, 25–31.

Salehie, M., Tahvildari, L., 2009. Self-adaptive software: landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4 14,
01–42.

Satyanarayanan, M., 2001. Pervasive computing: vision and challenges. IEEE Per-
sonal Communications 8, 10–17.

Spyrou, C., Samaras, G., Pitoura, E., Evripidou, P., 2004. Mobile agents for wireless
computing: the convergence of wireless computational models with mobile-
agent technologies. Mobile Networks & Applications 9, 517–528.

Steinmetz, R., Wehrle, K., 2005. What is this “Peer-to-Peer” about? In: Steinmetz,
R., Wehrle, K. (Eds.), Peer-to-Peer Systems and Applications. Springer-Verlag,
Berlin Heidelberg, pp. 9–16.

Tu, M.T., Griffel, F., Merz, M., Lamersdorf, W., 1998. A plug-in architecture pro-
viding dynamic negotiation capabilities for mobile agents. In: Rothermel, K.,
Hohl, F. (Eds.), Mobile Agents: Second International Workshop, MA’98 Stuttgart,
Germany, September 9-11, 1998 Proceedings. Springer-Verlag, Heidelberg, pp.
222–236.

Voyager, 2007. Voyager Edge. Accessed November 2007. http://www.recursionsw.
com/Products/voyager.html

http://www.fipa.org/
http://www.recursionsw.com/Products/voyager.html
http://www.recursionsw.com/Products/voyager.html

K. Gunasekera et al. / The Journal of Systems and Software 86 (2013) 501– 519 519

Zhang, D., Wan, J., Liu, Q., Guan, X., Liang, X., 2012. A taxonomy of agent technolo-
gies for Ubiquitous computing environments. KSII Transactions on Internet and
Information Systems 6, 547–565.

Kutila Gunasekera received his PhD in Information Technology from Monash Uni-
versity, Australia in 2012. He also holds an MSc in Computer Science (2006) and a
BSc in Engineering (2002) from University of Moratuwa, Sri Lanka. Kutila’s research
interests are in the areas of mobile and pervasive computing, mobile agents and the
semantic web. He currently works as a software engineer with the e-research group
in University of Queensland.

Professor Arkady Zaslavsky is Science Leader of Semantic Data Management at
the CSIRO ICT Centre. Previously, he was Chaired Professor in Pervasive and Mobile
Computing at Luleå University of Technology, Sweden and a full-time academic staff
member at Monash University, Australia from 1992 to 2008. Arkady received MSc
in Applied Mathematics from Tbilisi State University (Georgia, USSR) in 1976 and
PhD in Computer Science from the Moscow Institute for Control Sciences (IPU-IAT),
USSR Academy of Sciences in 1987. Arkady has published more than 300 research
publications throughout his professional career and supervised to completion more
than 30 PhD students.

Shonali Krishnaswamy is Deputy Head of the Data Mining Department at the Insti-
tute for Infocomm Research (I2R), Singapore. She is also an Associate Professor at
Monash University, Australia. Her research interests are in the areas of Mobile, and
Distributed Data Mining, and Real-time Data Stream Mining. She is increasingly
interested in Energy Analytics, and Mobile User Analytics. Shonali has published
around 150 research papers and has been the recipient of many awards includ-
ing: Monash University Vice-Chancellors Award for Excellence in Research by an
Early Career Researcher, IBM Innovation Award, and an Australian Post Doctoral
Fellowship from the Australian Research Council.

Seng Wai Loke is a Reader and Associate Professor at the Department of Computer
Science and Computer Engineering in La Trobe University. He leads the Pervasive
Computing Group at La Trobe, and has authored ‘Context-Aware Pervasive Sys-
tems: Architectures for a New Breed of Applications’ published by Auerbach (CRC
Press), 2006. He has (co-)authored more than 220 research publications including 40
journal papers, 10 book chapters, and over 150 conference/workshop papers, with
numerous work on context-aware computing, and mobile and pervasive comput-
ing. He has been on the program committee of numerous conferences/workshops
in the area, including Pervasive’08 and Percom’10 (and 2011).

	Building ubiquitous computing applications using the VERSAG adaptive agent framework
	1 Introduction
	2 The VERSAG agent framework
	2.1 Motivating scenario
	2.2 Versatile self-adaptive agents
	2.3 VERSAG reference architecture
	2.3.1 Platform specific agent
	2.3.2 Kernel
	2.3.3 Capability repository
	2.3.4 Itinerary service
	2.3.5 Capability execution service
	2.3.6 Capability exchange service
	2.3.7 Auxiliary modules

	2.4 VERSAG capabilities
	2.5 Peer capability sharing

	3 Design and implementation
	3.1 Development platform and tool selection
	3.2 Interfaces for capability development
	3.3 Operational tools
	3.3.1 Controller Agent (CA)
	3.3.2 Remote Management Console (RMC)

	4 Empirical evaluations
	4.1 Performance justification for OSGi
	4.2 Case study
	4.2.1 Upload memo to office virtual noticeboard
	4.2.2 Search and locate documents containing specific search query

	4.3 Efficient migration through capability sharing
	4.3.1 Experimental setting
	4.3.2 Results and analysis
	4.3.2.1 Case I
	4.3.2.2 Case II

	5 Related work
	6 Discussion
	7 Conclusion and future work
	Acknowledgements
	References

