
Mobile Crowd Computing with Work Stealing

Niroshinie Fernando, Seng W. Loke and W. Rahayu
Department of Computer Science and Computer Engineering

La Trobe University, VIC 3086, Australia
tnfernando@students.latrobe.edu.au, {s.loke,w.rahayu}@latrobe.edu.au

Abstract—By pooling together the processing power of
mobile devices within a crowd to form a ‘mobile cloud’, these
devices be efficiently utilized to help realize the full potential
of mobile computing. However, the dynamic nature of mobile
computing makes sharing and coordinating work non-trivial.
Although never been used before in the mobile computing
domain, the concept of work stealing possesses useful traits
such as self adaptiveness, and decentralized nature that can
help with these issues. Here we explore this concept of ‘work
stealing’ for crowd computing on an opportunistic network
of mobile devices, for both machine and human computation.
We also present experimental data and discuss the findings.

Keywords-mobile crowd computing, mobile cloud comput-
ing; work stealing; bluetooth

I. INTRODUCTION

Mobile computing can provide a computing tool when
and where it is needed irrespective of user movement,
thereby supporting location independence. However, the
inherent problems of mobile computing such as resource
scarcity, finite energy and low connectivity [21] pose
problems for most applications. These problems can be
addressed by ‘sharing’ resource intensive work with a
resource rich server. However in situations concerning
mobile devices, connecting to a remote resource cloud via
WiFi or 3G is not feasible because of bandwidth issues,
data access fees, and the battery drain [22]. Increasing
usage and capabilities of smartphones, combined with
the potential of crowd computing [19] can provide a
collaborative opportunistic resource pool to solve these
problems. We define ‘mobile crowd computing’ as a local
‘mobile resource cloud’ comprising of a collection of local
nearby mobile devices, utilized to achieve a common goal
in a distributed manner.

Work distribution in a mobile environment poses a
different set of issues than a typical distributed/grid en-
vironment:

1) Less processing power on a mobile device than on
s node in distributed processing system.

2) A mobile node has on a finite energy source.

3) A resource pool made up of mobile devices is highly
volatile, and hence node availability is inconsistent.

4) In a mobile cloud, the devices will be unknown to
each other a priori, unlike in a grid environment
where nodes are established and approved before-
hand. Therefore a mobile cloud calls for a more
opportunistic and ad hoc behavior.

5) A mobile cloud is most likely to be heterogeneous.

Therefore, a mobile resource pool requires a dynamic load
balancing method that is decentralized, proactive and self-
adaptive instead of the static master-slave work farming.
‘Work stealing’ [3] is a good candidate for this since it
possesses the aforementioned characteristics, and the aim
of this paper is to present a work stealing approach to

dynamically load balanced mobile crowd computing. By
mobile crowd computing, we mean machine computation
as well as human computation on a crowd (pool) of
mobile devices. Here, machine computation refers to work
done purely on computers without human intervention,
and human computation refers to work done on computers
using human expertise.

Although ‘work stealing’ method has been employed
for job scheduling with load balancing in distributed
environments such as Cilk ([2], [13]), and Parallel XML
processing [17], it has not yet been used in mobile
computing domain, as far as we know. The need for
dynamic load balancing was demonstrated in [10], where
distributed Mandelbrot set generation was done over a set
of mobile devices. Mandelbrot set generation is one of
the two applications used here as well, but here, we use
the work stealing mechanism to efficiently distribute tasks.
Work stealing in a ‘mobile cloud’ would mean connecting
opportunistically to unfamiliar devices, while considering
the demands of connectivity on the limited battery as
well. Therefore, our implementation employs an adjusted
version of the traditional work stealing scheme to better
suit mobile computing. We show that this mechanism will
always give a speedup gain, provided the devices are in
no great distance from each other.

II. MOTIVATION

Consider the following scenario as explained in [9]:
After a natural disaster such as an earthquake, searching
for missing persons is an excruciating task, especially
since access to computers and data is limited.

One way of dealing with this is to photograph every
person found, gather all images to a central location,
and perform search and match operations. However, this
is not very realistic considering the limited human and
machine resources. Questions that need to be answered
in this scenario are, how and who would capture the
images?, how would the captured images be collected?,
and how would the collected images be processed? Al-
though acquired images could be uploaded into a remote
server, connectivity would be a problem, and require a
centralized server. Images could be processed locally, but
mobile devices are not equipped with enough resources to
carry out such operations.

Let us now consider employing a local mobile cloud,
where photographs taken by various individuals would
constitute the data against which the missing persons will
be matched. Relief workers and communities working to-
gether could collaboratively ‘lend’ their mobile resources
to a ‘local mobile cloud’, to do this work.

These kinds of situations call for a system that can
function without a priori knowledge of available resources,
while load balancing the work among heterogeneous and
inconsistent resources.

2012 15th International Conference on Network-Based Information Systems

978-0-7695-4779-4/12 $26.00 © 2012 IEEE

DOI 10.1109/NBiS.2012.122

660

In [10], we explored processing on the mobile cloud for
Mandelbrot set generation, using static work farming. The
Mandelbrot image was partitioned, and each partition was
assigned to a device, as in Figure 1. This is not efficient
because,a)the jobs are not uniform, and b)the participating
devices are not of the same processing power. Hence, in
a scenario when a stronger Delegator finished its partition
before the workers, it has to wait for them. The need
for a load balancing method is, therefore evident. Work
stealing was chosen since it has shown to be an efficient
and scalable load balancing technique for shared and
distributed memory systems [7]. Also, it is able to achieve
this without a centralized control, and no prior information
about the participating devices. As shown in [13] work
stealing is efficient even with different processors with
dynamically changing speeds.

Mobile crowd computing is applicable for any instance
where a group of people are likely to work in close
proximity to each other. Although it is not necessary that
the group of people are not total strangers, users could
be reluctant to share their mobile resources with strangers
due to security and privacy reasons. Therefore, a situation
consisting of a ‘known’ community is most likely to
succeed. It needs to be noted that we only suggest the
users are ‘known’ to each other, not the devices.

III. WORK STEALING IN THE MOBILE CROWD

The concept of Work Stealing on multi processors was
first introduced in [4] and [11]. Each process maintains
a double ended queue containing the jobs. Each process
executes jobs from the head of the queue, and when the
queue is empty, attempts to steal jobs from the tail of
a queue that belongs to another process. The concept
of work stealing in the context of mobile cloud can be
explained by Figures 1 and 2 below. Figure 1, illustrates

Figure 1. Distributed Mandelbrot set generation using mobile devices

how the Mandelbrot image is initially partitioned into rows
and, how these rows are assigned as jobs to the devices
in the mobile cloud. Let us say the job pool consisted of
nine jobs. As seen in Figure 2, at t1 time, the delegator
has distributed the nine jobs equally among all three
participating devices. In this example, we will assume

Figure 2. Concept of work stealing in mobile crowd

that worker devices are faster than the delegating device,
in the following order; Worker 1>Worker 2>Delegator.
After t2 − t1 time, the delegator has finished one jobs,
worker 2 has finished two jobs, and worker 2 all three
jobs. Since Worker 2’s job queue is now empty, it will try
to steal jobs from the delegator, which has two jobs in its
job queue.

IV. ALGORITHM AND IMPLEMENTATION

A. Honeybee: Work Stealing implementation
We now give a high level description of our work

stealing method for mobile cloud - Input: A non-empty
list of job parameters. This shall be referred to as the ‘job
list’. Output: An array of computed results corresponding
to each job. In the device where the jobs originate from
(delegator),

1) Construct job list, and connect to workers.

2) Distribute jobs equally among nodes.

3) Start executing the remaining jobs on the list, while
listening for incoming results from workers.

4) If a worker device signals that it wants to steal,
examine stealing conditions. If met, assume the role
of ‘victim’ and let the worker ‘steal’.

5) If own job list is empty, assume the role of ‘thief’,
select a worker device and try to steal jobs. If
stealing attempt is successful, run acquired jobs. If
not, select a different worker.

6) Continue this process until the conditions of job
completion are met. Upon completion, signal to
all workers that the job has been completed and
terminate.

In a worker device,

1) Connect to a delegating device, and receive job list.

2) Start executing the job list. Store the results in the
completed buffer.

3) If the completed buffer is full, transmit the com-
pleted list to the delegator.

4) If the delegator signals it wants to steal, examine the
stealing conditions. If met, assume role of ‘victim’
and let the delegator ‘steal’.

5) If own job list is empty, assume the role of ‘thief’,
and try to steal jobs from the delegator. If the
stealing attempt is successful, run the acquired jobs.
If not, keep trying until delegator sends a termination
signal.

Overall, the delegator can steal from ‘slow’ workers
and fast workers can steal from the delegator. In principle,
workers could steal from workers, but this requires work-
ers knowing about all other workers, which could affect
scalability and have other complications.

B. Constraints and Parameters
1) The jobs are defined by ‘Work chunks’. ‘Work

chunks’ define how the total job is partitioned, and
determine how many jobs are in the pool.

2) Each device has a ‘Steal chunk’ specified. Usually, it
is advantageous if slower devices have a steal chunk
that is greater than faster devices. For example, when
a particular device’s Steal chunk = 2, a ‘thief’ can
steal upto 2 jobs at a given time.

3) Each device has a unique ‘Steal limit’ specified. For
example, say a device’s Steal limit = 1, with a Steal
chunk of 5 and has 5 jobs on the list. When it

661

assumes the role of victim, it will first check the
Steal limit, and only release four jobs for stealing.
This helps to ensure that a victim will not starve and
computations will eventually terminate.

4) The ‘Completed jobs buffer’ is the number of done
jobs stored in a worker, before they are sent back.

5) In our current version the worker devices can not
steal from each other. The workers can only steal
from the delegator, and the delegator steals from any
Worker.

6) The worker that the delegator selects to steal from,
is random. Currently, it is the order in which the
workers were connected. The delegator will keep on
stealing from the first connected worker until it has
no more jobs, and move on to the next connected
worker.

7) The delegator sends a ‘No more jobs to steal’ signal
if it runs out of jobs. However, a worker will
keep on querying the delegator until it receives the
‘Termination’ signal.

8) The delegating device keeps track of the results it
receives/completes by itself, and sends the ‘Termi-
nation’ signal when all jobs are done.

It should be noted that these constraints are not actually
constraints on work stealing, but on our particular imple-
mentation. Constraint (5) is placed thus for two reasons
that are key issues in mobile cloud: minimize the battery
drain on a worker, and to minimize the security and pri-
vacy issues. Constraint (6) determines our victim selection
policy. Existing work on victim selection in non-mobile
computing domains such as [16] suggest randomized and
round robin selection methods and in [17], a ‘Pick-The-
Richest’ policy has been suggested. However, considering
the need to conserve energy with the least amount of
communication, we have decided against the ‘Pick-The-
Richest’ policy.

The stealing mechanism is initiated by a device(thief)
sending a steal request to a potential victim. When a device
receives such a transmission, depending on its available
job queue, it can decide to become a victim. The victim
then removes a certain number of jobs from its own job
list, and transmits them back to the thief. A device can be
both a victim and a thief.

V. EXPERIMENTS

In this section we discuss results from two applications
employing work stealing on mobile cloud. Firstly, we
discuss our findings from Mandelbrot generation (machine
computation). Next we discuss an image acquisition ap-
plication using human computation.

A. Device specifications

Our test bed contains two Nexus S phones, one Ideos
phone and one Nokia X6 phone.

1) Device relative power: Table I provides a com-
parison of device capabilities for running Honeybee’s
Mandelbrot implementation. From these results, it can
seen that Nexus S is almost the same as Nokia X6, and
that Nexus S is roughly 6 times faster than Ideos.

B. Machine Computation: Mandelbrot set generation

We now discuss the results obtained in Mandelbrot
set generation. We ran the experiments on a number

Table I
BENCHMARK RESULTS USING MANDELBROT ALGORITHM

200 iterations 500 iterations 1000 iterations
X6 38,295.00 ms 87,824.00 ms 172,267.00 ms
Nexus 33,194.52 ms 82,480.32 ms 160,413.26 ms
X6/Nexus 1.153654 1.064787 1.073895

200 iterations 500 iterations 1000 iterations
Ideos 208,438.06 ms 540,866.00 ms 1,176,953.50 ms
Nexus 33,194.52 ms 82,480.32 ms 160,413.26 ms
Ideos/Nexus 6.2792905 6.5575161 7.337008654

of configurations; Nexus-Nexus, Nexus-Ideos and Nexus-
X6(alternating each device as delegator and worker),
Nexus-Nexus-Ideos, and Nexus-Nexus-X6. Table II pro-
vides an overview of each test, and its purpose. In the

Set Configuration Purpose of test

S1 Two devices: Nexus-Nexus Performance on equal devices
S2 Two devices: Nexus-Ideos,

Ideos as delegator
Delegator weaker than worker

S3 Two devices: Nexus-Ideos,
Nexus as delegator

Delegator stronger than worker

S4 Two devices: Nexus-X6,
Nexus as delegator

Heterogeneous platforms

S5 Three devices: Nexus-Nexus-
Ideos, Ideos as delegator

Delegator weaker than two workers

S6 Three devices: Nexus-Nexus-
Ideos,Nexus as delegator

Delegator stronger than two work-
ers

S7 Three devices: Nexus-Nexus-
X6, Nexus as delegator

Heterogeneous platforms, with two
workers

Table II
THE EXPERIMENT SETS ON MANDELBROT SET GENERATION

context of Mandelbrot set, ‘Work chunks’ represent rows
of the 300 x 300 Mendelbrot image (see Figure 1), that are
grouped together. Therefore, when Work chunk = 10, the
total number of jobs in the job pool is 30, with each job
consisting of 10 rows of the image. The average speedups
for each configuration is displayed in Figure 3. We define
a speedup as the time taken to complete job in the cloud
divided by the time taken to complete the job on delegating
device alone. As can be seen, every configuration has
given a speedup greater than 1. Next we display the results

Figure 3. Average Speedups gained in different configurations

obtained for each configuration. The total time spent on the
delegating device consists of the calculation time, piconet
time, job distribution time, time to set up job pool, time
spent on reading results from workers, time spent waiting
for results, and time spent on stealing. ‘Tc’ stands for
the time spent on calculation, and ‘Tnc’ stands for the
remaining time. As can be seen, the speedups gained for

662

various steal chunks only vary slightly, and Tc accounts
for the major part of the total time.

1) S1 - Two devices : Nexus S and Nexus S: We first
examine the results concerning two identical devices; a
Nexus S as the delegating device, and another Nexus
S as the worker device. The highest average speedup
recorded at 200 iterations was when the steal chunk was
10, at 1.673. For 500 iterations, highest average speedup
recorded was when steal chunk was 5, at 1.721.

2) Two devices : Nexus S and Idoes: Experiments with
Nexus S and Ideos were twofold; the roles of delegator and
worker were assigned interchangeably to both devices.

S2 - Ideos as delegator, Nexus S as worker: An
average speedup of 5.92 was recorded for 200 iterations.

S3 - Ideos as worker, Nexus S as delegator: An
average speedup of 1.025 at 200 iterations and 1.094 at
500 iterations were recorded.

3) S4 - Two devices : Nexus S and Nokia X6: For this
setup, where Nexus S was the delegator and Nokia X6 was
thw worker, an average speedup of 1.551 at 200 iterations
and 1.659 at 500 iterations were recorded.

4) S5 - Three Devices : Nexus S, Nexus S and Ideos
- Ideos as delegating device: Figure 4 shows the results
for this setup, with an average speedup of 10.172 at 200
iterations and 10.487 at 500 iterations.

Figure 4. Mandelbrot set generation on Nexus, Nexus and Ideos

5) S6 - Three Devices : Nexus S, Nexus S and Ideos
- Nexus as the delegating device: An average speedup
of 1.501 was achieved with steal chunk of 5, for 500
iterations, when Nexus S was the Delegating device, and
another Nexus S and Ideos were the Worker devices.

6) S7 - Three Devices : Nexus S, Nexus S and Nokia
X6 - Nexus S as delegating device: When Nexus S was
the Delegator for Workers Nokia X6 and another Nexus
S, an average speedup of 2.173 was recorded.

7) Discussion: Here we discuss the findings, regarding
primary focus of each experiment set (Table II).

• S1: Two equal Nexus S devices were used to neutral-
ize the effects of heterogeneity and provide an accu-
rate reading of work stealing. This configuration gave
an average speedup of 1.697, which is considerably
close to the maximum possible speedup of 2 (for this
setup). Both devices have spent similar times on job
calculation, showing efficient load balancing (Figure
5).

• S2: Work is shared by the weaker Ideos with the
stronger Nexus S, giving an average speedup of
5.92. Nexus S is roughly 6.5 times faster than the
Ideos (Table I). The effect of a powerful worker is

apparent, with performance gain being comparable to
the relative speeds between delegator and worker.

• S3:Work is shared by the stronger Nexus S with the
weaker Ideos, giving an average speedup of 1.094.
Performance gain is negligible, and since the worker
is quite slower than delegator, it fails to make an
impact. But it should be noted that it still gives a
slight gain, even with the overheads of stealing.

• S4: Even across heterogeneous platforms Android
and Symbian, work stealing performs well, although
the speedup is slightly lower than for two homoge-
neous devices (set S1).

• S5: A weaker device is sharing work with two
stronger devices. This is comparable to experiment
S2, where weak Ideos shared work with one stronger
device. Comparing the two speedups, it can be seen
that by doubling the computational resources, the
speedup also increased by almost twofold.

• S6: This is comparable to S3, in that a strong device
shares jobs with a weak device. But here, stronger
Nexus S shares work with one weak device and one
equal device. In S3, adding a relatively weaker device
almost had no effect. Here too that seems to be the
case, since the average speedup here is 1.5, which is
almost the same as S1. In fact in this case, even with
slightly more computational resources than in S1, the
addition of weaker device has slightly downgraded
the speedup.

• S7: From Table I it is evident that Nexus S and
Nokia X6 performs almost the same, for Mandelbrot
algorithm. Compared to S1, when the number of
similar devices was two, this configuration with three
devices gives a higher speedup of 2.17, showing a
performance increase when scaled up.

Load balancing: Figure 5 shows the time spent on
each job on on one execution instance when work chunk
was five and run on two Nexus S devices. Since both

Figure 5. Mendelbrot generation on Nexus breakdown: Time spent on
each job

devices are the same, this scenario is useful to show the
nature of each job in Mandelbrot generation. Initially, rows
0-149 were assigned to the delegator (N1) and rows 150-
299 to the worker (N2). However, rows 225-229 were
stolen back by the delegator and more number of jobs
have been done by the delegator. Furthermore, it can
be seen that each job takes different times to execute,
illustrating that jobs are not equal. For example, time to
generate rows 0-5 takes 90 ms while rows indexed 145-150
takes 2117 ms. Since jobs are not uniform, time spent on
job calculation is the best benchmark for load balancing.
When examining the accumulated time spent on jobs by

663

each device, the calculation times on both devices are
almost the same; 46490 ms on the delegator, and 46867
ms on the worker, thus showing that both devices were
evenly utilized. This shows the ability of the work stealing
approach to deal with non-uniform jobs.

Heterogeneous platforms: The application was im-
plemented on Nokia and Android, and results involving
the Nokia device with the Android devices show the suc-
cessful speedups obtained across heterogeneous platforms.

No prior information on participating devices: One
advantage of using the work stealing method is that it re-
quires no prior information about the participating devices.
In this implementation, we have not facilitated a meta data
exchange between devices, or a benchmarking process to
select workers or to assign jobs to them. Furthermore, we
have followed a decentralized scheduling approach, and
as a whole, the method is self adaptive, which is another
key requirement of a mobile cloud, including crowds of
mobile devices that are a priori unknown.

Work chunk size (Granularity): Figure 6 shows the
results for varying granularity in which the job was parti-
tioned into different chunk sizes. These particular results
are for two Nexus S devices executing a 300x300 image
for 200 iterations. Although it seems to suggest that greater
granularity supports a high speedup in general, the best
speedup was received at a medium work chunk size of
10. However, the differences between the speedups are
minimal, suggesting that chunk size affects performance,
but only slightly, since finer granularity might lead to more
even load balancing, but incurs communicating jobs (more
stealing).

Figure 6. Effect of Granularity on Average Speedup

C. Human Computation: Picture acquisition
Our implementation is based on the following scenario;

Consider a setting such as a carnival where many people
gather. Typically, visitors are mobile, but stay within a
certain boundary for time period. Let us say a person
John needs photographic coverage of a parade in the
carnival. He would like photographs taken from different
perspectives, so he uses his mobile to create a ‘job list’
that consists of requests for photographs of the parade. In
his job requests he specifies parameters such as quality,
time interval, deadline to send the photos etc. He then
transmits these jobs to nearby mobile ‘worker’ devices
who are willing to do his jobs.

1) Human computation: Instead of machine compu-
tation (as in Mendalbrot application), this uses human
intervention. When a worker device receives the photo
requests, human interaction is needed to comprehend the
job parameters and execute the jobs i.e, take photographs.
The jobs are grouped by ‘interest points’ by which,
different vantage points for the photographs to be taken
are noted. For example, in the parade, these could be given
as ‘the head of the parade’, ‘marching band’, ‘rear of the

parade’ etc. GPS co-ordinates specifying a locations for
photos to be taken can also be used.

2) Work stealing: The job distribution and co-
ordination is done according to the work stealing algorithm
described in Algorithm section. A worker device that
can take photographs quickly, can travel to view the
parade from different interest points, is able to finish
his/her job list faster than others. Once a worker’s job
list is exhausted, he/she can send the photographs to the
originating device, and has the option of stealing photo
jobs from the delegator’s job list, and vice versa. Hence
our approach of work stealing can be used to load balance
jobs done via crowd-sourcing or human computation. For
example, a human who can take photographs faster would
be on a higher skill level than one who is slower. The faster
human can then, finish his/her job queue and steal more
jobs from the delegator. In this scenario too, the system
has no a priori knowledge of worker capabilities (human
skills in photo taking) and work stealing method ensures
the system adapts accordingly.

VI. RELATED WORK

Partitioning applications and VM migration are two
common methods of offloading and/or sharing work from
mobile devices. These include the approach of cyber
foraging by Satyanarayan [22]where the work is offloaded
a local cloudlet, ensuring better response time. The cyber
foraging method is also used by ‘Scavenger’ framework
[15] where jobs are partitioned and distributed via a
mobile code approach. CloneCloud [5] uses VM migration
to offload through either 3G or WiFi while MAUI [6]
uses a combination of VM migration and code parti-
tioning. The [14] ‘Cuckoo’ framework offloads mobile
applications onto local and remote cloud servers, and
have re-implemented two existing applications ‘eyeDen-
tify’ and ‘PhotoShoot’ to demonstrate the effectiveness
of the framework reporting gained speedups and reduced
battery consumption. Marinelli [18]’s ‘Hyrax’ based on
Hadoop1 presents a central server that coordinates data and
jobs on connected mobile devices. In [23] Hyrax is further
extended to enable searching for and sharing multimedia
content on mobile devices. In [20], Palmer et al. proposes
to use the Ibis grid computing platform to address similar
problems in mobile computing, which enables users to
integrate their mobile devices onto the grid.The Mobile
Message Passing Interface (MMPI) framework [8] is a mo-
bile version of the standard MPI over Bluetooth. Focusing
on ‘common goals’, Huerta-Canepa and Lee [12] present
a framework for virtual mobile cloud. Their results do not
show a speedup however, although they suggest an energy
saving. In [24], different alternatives of implementing a
mobile cloud is discussed, and introduce ‘Icarus’, a mobile
storage cloud.

VII. CONCLUSIONS AND FUTURE WORK

Our results with work stealing on mobile devices show
that it is a viable method for efficient work distribution in
a mobile cloud. We have demonstrated the possibility of a
self adaptive and decentralized mobile computation cloud,
that is able to obtain performance gains even without prior
information about the participating devices. These results
are valid for the ‘generative’ class of applications, where
both the machine and human computation applications

1http://hadoop.apache.org

664

shown are ‘generative’ type, in that the job description
is rather small, but the output results in a large amount of
data that needs to be transmitted back.

One of the main assumptions in our work so far, is
that all the workers are ‘well behaved’. In our future
work, we hope to address ‘rouge workers’, to guarantee
security and integrity. Redundancy and ‘mugging’[13] are
possible avenues. Privacy concerns in the mobile cloud
are also discussed in [23], who suggest annonymising
the source name, or not to record the source name at
all. Device participation is an important factor to the
success of mobile crowd, and participation depends on
the incentives. We hope to include incentive management
in our framework in future work, where incentives could
be in the form of social contract such as in a group
of friends, common goals such as discussed in [12], or
monetary as in the case of crowd sourcing done in [1].
Although current experiments have involved only three
devices this can further be scaled up to involve many
more devices by implementing hierarchical stealing, where
workers themselves become delegators. We aim to extend
our implementation to use the Amazon cloud as well, since
this would provide a comparison between offloading to
local versus remote devices.

REFERENCES

[1] Amazon mechanical turk. https://www.mturk.com/.

[2] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kusz-
maul, Charles E. Leiserson, Keith H. Randall, and Yuli
Zhou. Cilk: an efficient multithreaded runtime system.
SIGPLAN Not., 30:207–216, August 1995.

[3] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM,
46(5):720–748, September 1999.

[4] F. Warren Burton and M. Ronan Sleep. Executing func-
tional programs on a virtual tree of processors. In Proceed-
ings of the 1981 conference on Functional programming
languages and computer architecture, FPCA ’81, pages
187–194, New York, NY, USA, 1981. ACM.

[5] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur
Naik, and Ashwin Patti. Clonecloud: elastic execution
between mobile device and cloud. In Proceedings of the
sixth conference on Computer systems, EuroSys ’11, pages
301–314, New York, NY, USA, 2011. ACM.

[6] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho,
Alec Wolman, Stefan Saroiu, Ranveer Chandra, and
Paramvir Bahl. Maui: making smartphones last longer
with code offload. In Proceedings of the 8th international
conference on Mobile systems, applications, and services,
MobiSys ’10, pages 49–62, New York, NY, USA, 2010.
ACM.

[7] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Kr-
ishnamoorthy, and Jarek Nieplocha. Scalable work stealing.
In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09,
pages 53:1–53:11, New York, NY, USA, 2009. ACM.

[8] Daniel C Doolan, Sabin Tabirca, and Laurence T Yang.
Mmpi a message passing interface for the mobile envi-
ronment. In Proceedings of the 6th International Confer-
ence on Advances in Mobile Computing and Multimedia,
MoMM ’08, pages 317–321, New York, NY, USA, 2008.
ACM.

[9] N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud
computing: A survey. Future Generation Computer Sys-
tems, 2012.

[10] N. Fernando, S.W. Loke, and W. Rahayu. Dynamic mobile
cloud computing: Ad hoc and opportunistic job sharing. In
Utility and Cloud Computing (UCC), 2011 Fourth IEEE
International Conference on, pages 281 –286, dec. 2011.

[11] Robert H. Halstead, Jr. Implementation of multilisp: Lisp
on a multiprocessor. In Proceedings of the 1984 ACM
Symposium on LISP and functional programming, LFP ’84,
pages 9–17, New York, NY, USA, 1984. ACM.

[12] Gonzalo Huerta-Canepa and Dongman Lee. A virtual cloud
computing provider for mobile devices. In Proceedings
of the 1st ACM Workshop on Mobile Cloud Computing &
Services: Social Networks and Beyond, MCS ’10, pages
6:1–6:5, New York, NY, USA, 2010. ACM.

[13] N. Jovanovic and M.A. Bender. Task scheduling in
distributed systems by work stealing and mugging - a
simulation study. In Information Technology Interfaces,
2002. ITI 2002. Proceedings of the 24th International
Conference on, pages 259 – 264 vol.1, 2002.

[14] R Kemp, N Palmer, T Kielmann, and H Bal. Cuckoo:
a computation offloading framework for smartphones. In
Proceedings of The Second International Conference on
Mobile Computing, Applications, and Services, MobiCASE
’10, 2010.

[15] M.D. Kristensen. Scavenger: Transparent development of
efficient cyber foraging applications. In Proceedings of the
IEEE International Conference on Pervasive Computing
and Communications (PerCom), pages 217 –226, april
2010.

[16] Vipin Kumar, Ananth Y. Grama, and Vempaty Nageshwara
Rao. Scalable load balancing techniques for parallel com-
puters, 1994.

[17] Wei Lu and Dennis Gannon. Parallel xml processing by
work stealing. In Proceedings of the 2007 workshop on
Service-oriented computing performance: aspects, issues,
and approaches, SOCP ’07, pages 31–38, New York, NY,
USA, 2007. ACM.

[18] Eugene E. Marinelli. Hyrax: Cloud Computing on Mobile
Devices using MapReduce. Carnegie Mellon University,
Masters thesis, 2009.

[19] Derek G. Murray, Eiko Yoneki, Jon Crowcroft, and Steven
Hand. The case for crowd computing. In Proceedings
of the second ACM SIGCOMM workshop on Networking,
systems, and applications on mobile handhelds, MobiHeld
’10, pages 39–44, New York, NY, USA, 2010. ACM.

[20] Nicholas Palmer, Roelof Kemp, Thilo Kielmann, and Henri
Bal. Ibis for mobility: solving challenges of mobile com-
puting using grid techniques. In Proceedings of the 10th
workshop on Mobile Computing Systems and Applications,
HotMobile ’09, pages 17:1–17:6, New York, NY, USA,
2009. ACM.

[21] M. Satyanarayanan. Fundamental challenges in mobile
computing. In Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, PODC
’96, pages 1–7, New York, NY, USA, 1996. ACM.

[22] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies.
The case for vm-based cloudlets in mobile computing.
Pervasive Computing, IEEE, 8(4):14 –23, 2009.

[23] Vincent Teo. Mobile cloud computing for data-intensive
applications. Technical report, Carnegie Mellon University,
2011.

[24] Paul Woods. Towards a lightweight mobile cloud. Master’s
thesis, University of Dublin, Trinity College, 2011.

665

