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Abstract—In this paper, we propose and develop a platform
to support data collection for mobile crowdsensing from mobile
device sensors that is under-pinned by real-time mobile data
stream mining. We experimentally show that mobile data mining
provides an efficient and scalable approach for data collection
for mobile crowdsensing. Our approach results in reducing the
amount of data sent, as well as the energy usage on the mobile
phone, while providing comparable levels of accuracy to tradi-
tional models of intermittent/continuous sensing and sending. We
have implemented our Context-Aware Real-time Open Mobile
Miner (CAROMM) to facilitate data collection from mobile
users for crowdsensing applications. CAROMM also collects and
correlates this real-time sensory information with social media
data from both Twitter and Facebook. CAROMM supports
delivering real-time information to mobile users for queries that
pertain to specific locations of interest. We have evaluated our
framework by collecting real-time data over a period of days
from mobile users and experimentally demonstrated that mobile
data mining is an effective and efficient strategy for mobile
crowdsensing.

I. INTRODUCTION

Mobile devices are increasingly becoming the central com-

puting and communication device in people’s lives. Devices

today are equipped with a growing number of sophisticated

embedded sensors such as an accelerometer, digital com-

pass, gyroscope, GPS, microphone, light intensity sensor, and

camera. This creates the opportunity to develop applications

that leverage on the sensing capability of these mobile de-

vices. These applications can be broadly classified into two

categories- personal and community sensing, based on the type

of entity being monitored and the purpose of monitoring. In

personal sensing applications, the focus is on monitoring an

individual or the context surrounding an individual for the

individual’s benefit. For example, activity recognition (e.g.,

running, walking, exercising) of an individual for personal

record-keeping or health monitoring. Typically, the sensed

information is not shared with anyone. In community sensing,

also referred to as group sensing [1] and mobile crowdsensing

[2], the focus is on monitoring of large-scale phenomena

that cannot be measured using information from a single

individual. The purpose is to collect information from a large

group of people and analyse and use that information for the

benefit of the group. For example, intelligent transportation

systems that use traffic congestion monitoring and air pollution

level monitoring require speed and air quality information

from a large number of individuals. Such systems would be

able to provide accurate and useful information only when

there is a critical mass of people providing information from

their daily commutes, which can be aggregated to determine

congestion and pollution levels in cities.

Personal sensing combined with social networks has given

rise to ‘mobile social networks’ where sensed user context

information is shared with the user’s social network. Most

of these applications use social networks as a means for

disseminating sensed information such as in CenceMe [3],

or obtaining user preferences such as in Serendipity [4],

WhozThat [5] and SocialFusion [6]. To the best of our knowl-

edge, using social networks/media themselves as a source of

information for community sensing is an emerging focus in

this area. Social media provides another source of information

that can be valuable for information services, where the goal is

to monitor not only sensory data regarding a location, but also

user opinions and experiences regarding that location. This

provides the opportunity to create a real-time holistic view of

entities such as places of interest. To this regard, we propose

a framework for mobile crowdsensing, Context- Aware Real-

time Open Mobile Miner (CAROMM), to facilitate sensor

data collection from mobile users and correlate this real-

time information with social media data from both Twitter

(http://twitter.com/) and Facebook (http://www.facebook.com/).

An integral part of a mobile crowdsensing framework such

as CAROMM is sensing and sending of information. Both

personal and community sensing require mobile devices to

continuously sense, process and upload sensed data to the

cloud/remote servers. Since mobile devices are continuously

sensing, processing and/or uploading sensed data, several

issues become significant due to the mobile device and its

operational and computational context. There are several key

factors that need to be considered and addressed in order for

mobile crowdsensing to be effective [2]. Firstly, it is imperative

that the data collection process from mobile devices is cost-

efficient for both the device performing the sensing, as well

as the networks that need to scale for large volumes of users

sending sensed data. Secondly, mobile crowdsensing needs

to have infrastructure to receive, manage and analyse large

volumes of real-time data streams using the pay-per-use cloud
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computing platforms. Thirdly, sensing using mobile devices

requires participation from the user and willingness to allow

collection of sensor data, and hence use preferences and

privacy-preserving operations for mobile crowdsensing need

to considered. In this context, there need to be incentives

in place to facilitate such large-scale mobile crowdsensing.

For example, an incentive of reduced data transfer costs for

supporting citizen surveillance operations and so on need to

be considered.

The focus of this paper is on the data collection dimen-

sion as it is the first step for mobile crowdsensing. We

propose and develop a mobile data mining driven approach

for highly scalable and cost-efficient data collection for mobile

crowdsensing. The local analytics that we perform results in

reduced data transfer and reduced energy utilisation on the

mobile device, and yet, captures information at the same level

of granularity/accuracy as continuous sensing-transmission.

Furthermore, the mobile analytics techniques that we lever-

age are themselves resource-aware and energy-efficient [7].

Furthermore, to minimise costs associated with frequent data

transfer between mobile devices and the cloud, we explore

intelligent techniques such as using sensor data to determine

when to collect data, e.g., not capturing videos/pictures when

the light intensity is too low. We implement our proposed

CAROMM system to leverage cloud technologies to enable

collation and processing of huge amounts of real-time data

generated by mobile phone sensors, as well as correlation of

information feeds from social media to specifically support

real-time queries pertaining to locations of interest. The CAR-

OMM system forms the basis for evaluating the feasibility

and validity of mobile analytics as an effective mechanism for

supporting large-scale mobile crowdsensing.

The rest of this paper is organised as follows. Section II

discusses related work and compares and contrasts our work

with the current state-of-the-art. Section III presents our pro-

posed CAROMM framework. Section IV describes the data

collection module of CAROMM which is the core contribution

of this paper, and also includes cost models for bandwidth

usage, energy usage and accuracy of data collection for mobile

crowdsensing. Section V presents the implementation and

evaluation of the data collection model. Finally, Section VI

presents the conclusions and future directions.

II. RELATED WORK

The aim of the review is to focus on context inference using

mobile sensing and energy efficient strategies for sensing and

uploading in mobile crowdsensing applications.

A variety of research projects have focused on extracting

user context with the help of mobile devices enabling the

emergence of personal, group, and community-scale sensing

applications such as Citysense [8], Serendipity [4], WhozThat

[5], CenceMe [3], and SocialFusion [6]. These mobile sensing

applications can be broadly categorised into two types. The

first type focuses on importing social context into the user’s

local context using mobile devices. Serendipity [4], WhozThat

[5] and SocialFusion [6] can be considered of this type. In all

of these works, use of social network information is limited to

obtaining user’s preferences from their social network profiles.

The second category of mobile sensing applications export

user’s local context to their social networks, e.g., Citysense

and CenceMe. Citysense [8] utilises users’ GPS locations to

provide a visualization of mobile user concentration in an

area. No social media is involved in this work. CenceMe [3]

mines mobile data provided by iPhone sensors to infer user

actions and allows publishing of the mined data to the social

networks. In contrast to the literature, CAROMM exports

user’s local context from mobile devices to social context in

the cloud, where this information is aggregated with social

media data to create a holistic view/context of the user as well

as the user’s environment. In addition, it performs mobile data

mining (learning from the data on-board the device) to reduce

the overheads of data collection.

With respect to addressing resource-constraints in mobile

phone based continuous sensing systems, [9] proposes a

framework called EEMSS that uses a hierarchical sensor

management strategy to recognize user states and detect state

transitions. It aims to improve device battery life by powering

only a minimum set of sensors and optimizing the sensor

duty cycles. Musolesi et al. [10] propose different techniques

to optimize the user state uploading process. The focus is

on maintaining stable/reliable user state updates regardless

of network connectivity. Our approach is comparable to the

online strategies. We use continuous on-device clustering of

sensed data to identify changes in clusters and upload only

when change is detected. We compare the efficiency and

accuracy of this approach with upload of raw data streams.

In contrast, in [10], uploading strategies are based on a set of

fixed user state data and therefore not compared with upload of

raw data. Techniques proposed in [9] and [10] are orthogonal

to ours and can coexist with our solution to provide a holistic

approach to energy-efficient mobile crowdsensing.

III. THE CONTEXT AWARE REAL-TIME OPEN MOBILE

MINER (CAROMM) FRAMEWORK

A. Motivational Scenario

Nowadays, everyone carries a mobile device with them.

Most of these mobile devices come with increasingly sophis-

ticated list of sensors that are able to capture various context

information pertaining to the user and their environment.

Prevalence and wide uptake of social media such as Facebook

(http://www.facebook.com/) and Twitter (http://twitter.com/) and

photo sharing sites such as Flickr (http://www.flickr.com/) have

shown that users are willing to share information. Mobile

crowdsensing aims to leverage these phenomena with a view

to delivering real-time sensory information to a range of

applications such as location-based service delivery, location-

based social networking and citizen surveillance.

We propose and develop our CAROMM system to support

the scenario where people use a mobile application to upload

sensory data to the cloud. The sensory data could have mixed

input such as multimedia/videos, twitter/social media streams,

text, activities, location, temperature, time, device orientation,
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speed, and movement of the device. An application on the

cloud processes this mixed data to operate as a real-time

location information service. Thus, CAROMM supports the

provision of collated information to users who request for

real-time information about specific locations of interest. The

real-time information delivered includes aggregation of sensor

feeds from mobile users in that location pertaining to physical

phenomena such as light levels, temperature, estimates of

crowd intensity, as well videos/photos (and the context in

which those photos were taken such as day, night), and recent

social media posts.

This scenario is motivated by future application scenarios

where telecommunication providers could offer real-time in-

formation services to users. Such information services would

require real-time sensory data from a critical mass of mobile

users. To motivate users to share their context information

using a mobile application, the provider could offer users

access to personalised services, or promote offers such as

free texting or discounts if the user allows the application

to obtain a certain number of feeds within a given time

period. The sensory information thus gathered can then be

used by the provider to offer information services to other

users who will be charged for accessing this information.

Users of the information services will have access to real-time

information pertaining to places of interest. For example, a

user interested to go skiing in a particular location might want

to have access to the real-time temperature, wind speed and

humidity information, and real-time experience updates from

people already in that location. The provider benefits because

it is cheaper to collect real-time updates from mobiles/people

already in that location, hence the set-up cost is low. Users

of these information services benefit from access to real-

time information that includes not only sensory data from

the location but also user experience data. Other potential

applications could be citizen surveillance where video analysis

in the cloud can be used to detect unusual/suspicious activity

in a location, and geo-fencing and tracking of personnel, for

example policemen on the beat using this application to send

information regularly to their headquarters.

B. Overview of the CAROMM System

In this section, we present an overview of the Context Aware

Real-time Open Mobile Miner (CAROMM) framework for

enabling mobile crowdsensing applications. CAROMM has

several features: (i) capture different types of stream data from

mobile devices, (ii) process, manage and analyse this data

along with the relevant contextual information associated with

them (e.g. associate light-intensity levels with pictures/videos,

and social media information pertaining to locations of inter-

est), and (iii) facilitate real-time queries from mobile users on

the collected (and analysed) data.

While we have implemented the software system for collect-

ing, collating and information retrieval of such real-time data

for mobile crowdsensing, the core theoretical contribution of

this paper is in the data collection model. Given the limited

resources on the mobile devices and the fact that users need

Fig. 1. The CAROMM Framework

the devices to perform their normal functionality along with

data collection, the data collection needs to be highly resource

efficient. Furthermore, given that mobile crowdsensing needs

to be large scale in terms of the number of users involved,

it also needs to be efficient in terms of the data transfer and

bandwidth use. Therefore, simply sensing and uploading all

data to the cloud is not a preferred solution for data collection.

To address both of these issues, we propose to leverage real-

time mobile data stream mining on the sensed data to reduce

the amount of data sent and the energy consumption on the

device. We describe our mobile data stream mining based

solution for mobile crowdsensing in detail in Section IV.

In fact in [2], “local analytics” has been suggested as a

key enabler for mobile crowdsensing. Our work is the first

evaluation of the feasibility of local analytics/mobile data

mining for this domain.

Figure 1 shows the Context Aware Real-time Open Mobile

Miner (CAROMM) framework. The framework consists of

three main modules- a Data Collection Client and a Querying

Client residing on the mobile devices, and a Data Processing

Module residing on the cloud. The Data collection Module

captures sensory data, performs local continuous real-time

stream mining on the data and uploads analysed information

to the Data Processing Module in the cloud where further

analysis, management, and fusion of the incoming multiple

streams needs to be performed. To intelligently send only

analysed information from each device, we use resource-aware

clustering on the sensory data to identify significant changes in

the situation. This reduces the frequency and amount of data

transferred from each mobile device to the cloud, while at

the same time ensuring that important information is not lost.

Clustering provides fine-grained control over when to send

updates. For example, with GPS data, subtle changes which

are not viewed as significant enough to warrant an update will

be ignored but significant changes can be detected and used to

perform updates. Furthermore, the resource-aware mobile data

stream clustering technique that we have developed [7] can be

controlled via its parameters to tune the sensitivity to change

detection. This total control over ‘granularity’ of change is one

major advantage of using CAROMM.

The Querying Client on mobile devices send user queries to
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the Data Processing Module and receive and display the results

obtained. The Data Processing Module consists of Social

Media Data Collection and Query Processing. This module

aggregates information obtained from all sources (mobile

devices and social media) to provide contextual information

in response to the user queries obtained from the Querying

Client. Various approaches and analytics can be used for

combining mixed media data. This opens interesting avenues

for future research and the stream analytics for cloud platforms

to support mobile crowdsensing is planned as further research

in this project.

The proposed CAROMM framework aims to answer these

research questions: How can different types of data obtained

from different sources be used to define context for an entity

such as a place of interest? How can such data be meaningfully

integrated to infer what is happening in any given place

of interest? What kinds of analytics can be done based on

mobile sensor data and social media data? Does it make sense

to do mobile mining to reduce the energy and bandwidth

consumption? In answering these questions, the focus of

this paper is on leveraging mobile data mining for mobile

crowdsensing. We consider energy efficient and bandwidth

efficient mobile data mining that can give an acceptable level

of granularity. We compare the cost of sending raw sensed

data at specified time intervals to the cloud for processing

versus our mobile analytics based approach. We discuss the

cost models for data transfer, energy usage and accuracy for

these two approaches in Section IV-B. We implement and

evaluate our data collection framework using these cost models

in Section V.

IV. CAROMM DATA COLLECTION MODULE

A. Data Collection Module Architecture

In this section, we describe the architecture of the data

collection module within the CAROMM framework. The data

collection module of CAROMM addresses the challenges in

collecting, processing/analysing and uploading data sensed

from user environments. We take advantage of the mobile

device’s processing capabilities and the plethora of embedded

sensors to perform on-the-move mining of collected sensor

data. The proposed data collection module enables, as demon-

strated later, cost-efficient collection and processing of mobile

device sensor data using data stream mining. Figure 2 presents

the architecture of the data collection module.

The data collection module has five main components,

namely, Interface Controller, Data Analysis-Cluster engine,

Data Collection Manager, Cloud Upload Manager, and Sensor

and Media Manager. The data collection module runs on

the mobile device interfacing with sensors available on the

device. The proposed approach does not require any additional

hardware sensors other than sensors available on the mobile

device.

Interface Controller: This component is the graphical user

component presented to the user. This component instantiates

the Data Collection Manager. The interface controller provides

the user with data collection options namely sensing interval,

Fig. 2. CAROMM-Data Collection Module Architecture

upload interval and sensor selection (to choose which sensors

are accessed by the module).

Data Analysis-Cluster Engine: The data analysis-cluster

engine is the core component of the proposed data collection

module. It handles all processing and analysis of data. The

analysis engine performs continual mining over the sensed

data. For continual data mining, we use the generic open

source toolkit for mobile data mining (OMM)[11]. We have

used the Light Weight Cluster (LWC) algorithm implemented

in OMM toolkit to perform clustering over sensed data.

OMM is a powerful resource aware mobile data miner. OMM

adapts its functioning depending on resource availability on

the mobile device. The LWC algorithm uses data adaptation

techniques to match high-speed data streams and achieves

optimum accuracy based on available resources [7]. The LWC

algorithm is an outcome of our previous works in the area

of mobile data stream mining. The LWC algorithm extracted

from [7] is presented in a pseudo code format in Figure 3.

The data analysis engine uploads periodic updates of clustered

data to the cloud using the Cloud Manager. Moreover, the data

analysis engine incorporates change detection, i.e., it has the

ability to determine significant change in sensed data. Any

significant change in the sensed data results in the data being

uploaded to the cloud. Further, we have also implemented

a timeout procedure that will upload clustered data to the

cloud if no change is detected over a certain period of time.

We chose a periodic upload interval to enable data uploads

when no change is detected in the environment. The periodic

upload interval for the clustering approach is set to a much

higher value as against the raw data collection approach. The

analysis engine performs data mining on multiple attributes.

Hence, the change detection works across a multitude of

sensed data. The use of on-the-move mining helps the data

collection module upload data to the cloud only when a change

in the environmental context is detected. We show in our

experiments that this can result in significant savings in energy

and bandwidth usage while still retaining a high level of data

accuracy.

Data Collection Manager: The data collection manager

acts as a coordinator between the components of the data
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Fig. 3. LWC Algorithm [7]

collection module. It instantiates the various sensors on the

phone using the sensor manager. It forwards sensed data to

the analysis engine for on-the-move mining, and clustered

datasets from the analysis engine to the cloud manager for

further processing. The data collection manager also handles

timers and asynchronous call backs from other components.

Cloud Storage Manager: The cloud storage manager is

responsible for uploading data to the cloud using the mobile

device’s network connection.

Sensor and Media Manager: The sensor manager is respon-

sible for interfacing with the device’s sensors. It periodically

queries the device’s sensors for data and passes it to the

data collection manager. The media manager handles any

communication between the data collection module and the

device’s camera and microphone. The data collection module

has the capability to collect various types of data such as

sensory, photos, videos and voice. The data collected from

the camera, namely photos and videos, are passed to the data

analysis engine before uploading to the cloud.

The algorithms implemented in the proposed data collection

module are presented in pseudo code format in Figure 4. The

algorithm dataCollection includes the functions performed by

the Data Collection Manager, Sensor and Media Manager and

Cloud Manager initiated by the interface controller. The algo-

rithms dataAnalysis and changeDetect include the functions

of the data analysis module performing on-the-move mining.

A key objective of a good data collection architecture is to

significantly reduce battery and network bandwidth usage by

taking advantage of on-mobile device capabilities and at the

same time attaining high level of data accuracy. The proposed

data collection module of CAROMM framework achieves the

above objectives. We now present cost models to validate the

efficiency of the data collection module in terms of energy

and bandwidth consumption and data accuracy.

B. Cost Models for Mobile Data Stream Mining

In this section, we develop cost models for two data

collection approaches for mobile crowdsensing:

1) Model 1: all processing in the cloud: In this mode,

the mobile devices sense context data periodically and

upload to the cloud. No processing is done on the device.

2) Model 2: local mobile data analytics on-board the

device: In this mode, each mobile device performs

Fig. 4. Data Collection Module Algorithms

continuous sensing and local data stream mining on the

collected sensor data and only mined data is uploaded

to the cloud. This aims to reduce costs related to energy

usage and data transmission.

We develop two cost models: a data transmission cost model

and an energy usage cost model. These cost models aim to

compare the cost related to the above two data collection

approaches. Therefore, in these models we do not consider the

cost associated with mining social media data. Social media

data is only mined on the cloud.
Data Transmission Cost Model: We evaluate the cost of

data transmission in terms of consumed bandwidth for any
time period t. The cost of data transfer is directly proportional
to the amount of data transferred between the mobile device
(M) and the cloud (C).

Costdt ∝ total data transferred from M to C (1)

Therefore, the data transmission cost Costdt can be repre-
sented as follows:

Costdt = x * total data transferred from M to C (2)

where x is a constant.

• Model 1: All processing in the cloud: amount of data

transferred total data transferred from M to C is high as all

sensed data is uploaded.

• Model 2: Local processing on the mobile should result in

lower total data transferred from M to C, and hence, lower

data transmission cost.

Let, Costdtraw be the data transmission cost for Model 1 (
i.e., using raw data), and Costdtclust be the data transmission
cost for Model 2,( i.e., using on-device clustering). Then,
assuming that for similar devices the constant x is same in
the case of both raw and clustering approaches, the savings
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on the data transmission cost for mobile data mining can be
evaluated as

Bandwidth Gain =
Costdtraw

Costdtclust

=
(total data transferred from M to C)raw

(total data transferred from M to C)clust

(3)

As part of the evaluation of CAROMM data collection mod-

ule, we compute the average data transmission cost savings

using Model 2 versus Model 1 in Section V-B.
Energy Usage Cost Model: We model the cost of energy

usage in terms of battery drain for any time period t. Cost
incurred due to energy drain is composed of drain due to
sensing, drain due to processing/mining in the device and drain
due to data transfer.

Costed = CostedS + CostedPr + CostedDt (4)

CostedS represents energy drain due to sensing. It is directly
proportional to the frequency of sensing. Energy expended due
to sensing is the same in both modes of operation and can
therefore be discounted.

CostedS ∝ freq. of sensing (5)

CostedS = a * freq. of sensing (6)

where a is a constant.
Using the same bandwidth, larger amount of data transfer

requires more time and hence hence results in more energy
drain. Similarly, more frequent data transfer requires more
energy. These relationships can be expressed as follows:

CostedDt ∝ total data transferred from M to C (7)

CostedDt ∝ num. of data transfers from M to C (8)

CostedDt = y * total data transferred from M to C
* num. of data transfers from M to C

(9)

where y is a constant. From 4, 6 and 9, the energy drain cost
can be represented as follows:

Costed = a * freq. of sensing + CostedPr

+y * total data transferred from M to C
* num. of data transfers from M to C

(10)

• Model 1: All processing on the cloud: In this mode, there
is no processing on the mobile, therefore, CostedPr � 0.
Therefore, the energy drain cost consists of only the data
transfer cost and the sensing cost. In this instance, the
cost can be represented as:

Costrawed = a * freq. of sensing
+y * total data transferred from M to C

* num. of data transfers from M to C
(11)

• Model 2: Local processing on the mobile. In this case,
the energy drain cost due to mobile data mining CostedPr

becomes significant. Typically, energy drain due to pro-
cessing is directly proportional to the amount of data
being processed. Energy drain may also be affected by the
clustering algorithm used, however, we do not consider
this in these cost models.

CostclustedPr ∝ total size of data accumulated on M (12)

CostclustedPr = z * total size of data accumulated on M (13)

where z is a constant. From 10 and 13, the energy drain
cost for clustering can be computed as:

Costclusted = a * freq. of sensing
+z * total size of data accumulated on M
+y * total data transferred from M to C

* num. of data transfers from M to C

(14)

The total size of data accumulated on M depends on the freq.
of sensing and caching mechanisms used. This variable

may not vary much in the two models. Similarly, for fair

comparison, freq. of sensing would be the same in the two

models. Therefore, significant reduction of total size of
data accumulated on M and num. of data transfers from M to
C in any given time period t will result in reduction of

energy drain cost. Performing mobile data mining aims

to reduce these variables.

For energy usage evaluation of the CAROMM data col-
lection model, we use the ratio of energy usage cost for raw
approach versus the clustering approach. This is evaluated as:

Energy Gain =
Costrawed

Costclusted

(15)

We run several experiments to test and validate our cost

models. The experimental evaluations are presented in Section

V-B

In addition to the cost models, we also develop data accu-

racy model for evaluating CAROMM data collection model.

Let sf be the sensing frequency, and uf be the data upload

frequency. With raw approach, all sensed data are uploaded,

i.e., sf = uf . If sf is high enough, it results in high accuracy

as sensing and upload of data are real-time. However, this

results in higher data transmission cost Costrawdt and higher

energy usage cost Costrawed . For the same sf , the role of

mobile data mining is to reduce the upload frequency uf
such that there is no significant reduction in accuracy. In the

raw approach, if uf is reduced significantly, it will decrease

Costrawdt and Costrawed , but it may also reduce the data accuracy

as the uploaded data is no longer current. This is especially

applicable in cases of frequent changes in sensed data. With

the use of clustering, the uf is affected only by changes in the

sensed values, and therefore, may result in higher accuracy as

all major changes are detected and reflected. We compare the

data accuracy of the CAROMM clustering approach with the

raw approach in Section V-B.

V. IMPLEMENTATION

In this section, we present the implementation and the

experimental evaluation of the data collection module with

respect to the cost models presented in Section IV-B.

A. Implementation Details

The CAROMM data collection module has been imple-

mented on android-based smart phones using android SDK

v2.2 (http://developer.android.com/sdk/index.html). The software

development was done in Eclipse using the Android Devel-

opment Tool (ADT) plug-in. In this section, we use the term

collector to refer to the data collection module that performs
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Fig. 5. Data Collection Module Main Screen Screenshots

Fig. 6. Amazon Cloud Service Upload Architectures

the operations of interfacing with smart phone sensor to collect

sensor data, process and analyse the sensed data and upload

the analysed data to the cloud. Figure 5 shows a set of

screen dumps of the collector’s graphical user interface. As

illustrated, the user has the option to choose different param-

eters including collection interval, upload interval, clustering

parameters and cloud setting. The interface also provides an

option to take photos and view data collection statistics when

required. The clustering parameter threshold is used to control

the granularity of the cluster. By changing the granularity of

the cluster, we can control the cluster’s sensitivity to change in

sensed data. For example, having a very high threshold will

make the system insensitive to significant change in sensed

data and having a low threshold will make it very sensitive

to minor changes in sensed data. The threshold value directly

influences the data accuracy.

The cloud service provider used for our imple-

mentation is Amazon. We used Amazon SimpleDB

(http://aws.amazon.com/simpledb/), a non-relational highly

scalable data store. To store objects namely photos, videos

and voice data, we used Amazon Simple Storage Service

(S3) (http://aws.amazon.com/s3/). Our implementation uploads

objects to S3 and maintains a key to the upload in SimpleDB.

Figure 6 shows the architecture of the interaction between the

mobile device’s data collection module and Amazon cloud

services.

As highlighted in the beginning of this paper, the key

focus of this paper is to propose, evaluate and validate the

on-the-move mining-based data collection module of CAR-

OMM. Hence, we focus on the analysis on the mobile

device and do not detail the analysis on the cloud. Our

current implementation uses Amazon Elastic Compute Cloud

(EC2)(http://aws.amazon.com/ec2/) to host a web service that can

be used to query information pertaining to a location consisting

of data from different sources namely mobile device sensors

collected by users and social media including Facebook and

Twitter. The web service answering user queries is a REST

web service developed in JAVA using Net beans and Glassfish

v3. This service is hosted on the cloud to answer queries in

real-time. It performs simple data aggregation before returning

the query results. Further, we have also developed a simple

querying client to validate the accuracy of our proposed

approach for performing on-the-move mining. The query client

is developed for android-based smart phones using android

SDK v2.2 (http://developer.android.com/sdk/index.html) and has

the capability to query the web service to retrieve and visualise

the results. Figure 7 shows some screen dumps of the android

client making a query to the Amazon cloud service. The screen

dumps in Figure 7 show the result of a query for the suburb

Carnegie in Melbourne, Australia. The current implementation

has some basic analytics which converts sensor readings into

some meaningful values. For example, based on the light sen-

sor values, photos are classified as taken on Good, Moderate
and Poor lighting conditions.

B. Experimental Evaluation

The key challenge in mobile crowdsensing is to enable

cost-efficient collection of environmental data from multiple

sources over long periods of time. The term cost-efficiency

is used to represent energy spent in collecting, analysing

and uploading data, bandwidth usage while uploading data

and data accuracy. A good approach to save bandwidth and

energy usage is to reduce the number of uploads as research

shows that communication is a major factor affecting battery

usage. On the other hand, reducing data uploads might result

in loss of data accuracy. Hence, it is imperative for a data
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Fig. 7. Screenshots of CAROMM Client Querying the Cloud (Web service)

collection module to have a balance between these two fac-

tors ensuring high data accuracy while reducing battery and

bandwidth usage. In this section, we evaluate and validate

the data collection module’s ability to perform on-the-move

mining resulting in reduced battery and bandwidth usage, at

the same time maintain a high level of accuracy. To this

end, we have performed elaborate experiments involving real-

time data collection from users over a period of several

days under varying environmental conditions to validate the

cost-efficiency of the proposed data collection module. We

conducted experiments over 5 days involving 5 devices and

5 users. The devices comprised of two Acer Iconia tablets,

two Google Nexus S smartphones and one Samsung Galaxy

Tab 7.1. The devices were all running the same version of the

data collection client compiled using android SDK v2.2. The

results of the experimental evaluations are presented in two

parts. In the first part, we present the results of experiments

observing battery and bandwidth usage. In the second part,

we present the results of the data accuracy using the proposed

data collection module. The results of the proposed data

collection module (we use the term CAROMM data collection)

is compared against a continuous data collection approach (we

use the term raw data collection to represent data collection

on mobile devices without any device-based processing). The

data collected from both approaches are uploaded to the cloud

at consecutive intervals.

1) Data Transmission and Energy Usage: The results pre-

sented in this section is computed from data collected over a

period of 5 days. Table I presents the parameters used for the

experiments. These experiments were performed on identical

devices, and heterogeneous devices, i.e., the device performing

raw collection and device running CAROMM data collection

were not identical. In most cases, one of the devices was a

tablet and the other was a mobile phone.

Figures 8, 9 and 10 present the results of our experiments

comparing CAROMM approach to the raw data collection

approach. The results presented here are outcomes of 4 ex-

periments conducted over 5 days. For each trial, we repeated

the experiment two times and the outcomes presented are

the average of those experiments. Experiments 1 and 2 were

TABLE I
CAROMM EXPERIMENT PARAMETERS

Parameter Raw Data Collection CAROMM Data
Collection

Duration 2 and 3 Hours 2 and 3 Hours

Sense Interval 30 seconds 30 seconds

Upload Interval 1 minute
15 minute (when no
change in cluster is
detected)

Cluster Threshold NA 12000

Fig. 8. Data Items Sent (Raw vs. CAROMM)

conducted for a duration of 2 hours on different mobile devices

(a tablet and a mobile phone) and experiment 3 and 4 were

conducted for a duration of 3 hours on identical mobile devices

(two Google Nexus S smartphones). Each experiment was

performed under varying real-time environment conditions

including poor network conditions, user movement, device

usage and same/different mobile devices. We chose differ-

ent conditions to observe and validate the performance of

the proposed data collection module within the CAROMM

framework. Due to different conditions, we observe different

amount of data collected and battery usage among experiments

1 and 2 (2 hour run) and experiments 3 and 4 (3 hour run).

The cluster granularity threshold of 12000 was determined to

be most suitable by experimental trials with good sensitivity

to change.

Figure 8 presents the number of data items sent by the

mobile device. Figure 9 presents the total amount of data sent

(in bytes) from the device to the cloud and Figure 10 presents

the battery consumption. The battery consumption is presented

as a percentage of battery drain from the start to the end of

the experiment. We note, for experiments 3 and 4, the mobile

devices were also used by the user to perform other activities
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Fig. 9. Total Data Uploaded (Raw vs. CAROMM)

Fig. 10. Battery Depletion (Raw vs. CAROMM)

like browsing, listening to music etc. Hence, to avoid skewing

of battery depletion, we normalised the results for experiment

3 and 4 by assigning weights to each experiment depending

on device usage by the user. The data size computation was

within the application and hence was not affected by other

data-intensive activities. The weights were assigned in the

range of 1 to 5 with 1 representing no user usage while 5

representing very high user usage. The value 1 to 5 was chosen

by questioning the user participating in the trial and based on

experimental trials where the device was only uploading data

to the cloud. In experiments 3 and 4, for CAROMM we used

a weight of 3 and for the raw approach we used a weight of

1.5
The results clearly validate the significant gain in energy

and reduced bandwidth usage using the proposed CAROMM
approach. We compute Energy Gain for CAROMM from
Equation 15 of the cost model defined in Section IV-A. We
adapt the equation to represent energy drain cost as the % of
battery depletion, as follows:

Energy Gain =
Costrawed

Costclusted

=
% battery depletion using raw

% battery depletion using clustering
∗ 100

This computation showed that the reduction in battery usage
is 3 times the raw data collection approach, Energy Gain is
300%. This is a significant savings in battery usage achieved
by the proposed data collection module. Similarly, we use
Equation 3 to experimentally evaluate the Bandwidth Gain.

Bandwidth Gain =
Costdtraw

Costdtclust

=
(total data transferred from M to C)raw

(total data transferred from M to C)clust

This computation showed that on average, the Bandwidth
Gain is 17 times that of the raw approach. This is due to lower

size and number of uploads using clustering in CAROMM data

collection.

Fig. 11. Timestamps of query result (Raw vs. CAROMM)

Fig. 12. Difference in Sensed Data (Longitude) - Raw vs. CAROMM

2) Data Accuracy: In the previous section, we experi-

mentally evaluated and validated the energy efficiency and

the reduced bandwidth usage of CAROMM data collection

module primarily attributed to lesser number of data uploads.

Another important evaluation is to validate the proposed data

collection approach’s ability to maintain high level of accuracy

while reducing battery and bandwidth usage. To this end,

we performed experiments by executing queries in real-time

over the raw and the CAROMM datasets. The queries were

issued while the data was being collected using the raw and

the CAROMM approaches. The queries were issued every 3

minutes over a period of 40 minutes. At each interval, three

queries were executed on the raw and the CAROMM datasets.

In all our experiments, we assume the raw data represents the

most accurate value of the phenomenon being sensed. We note

that the clustering performed by CAROMM was over multiple

dimensions including latitude, longitude, accelerometer and

light sensor. If any of these sensor values change significantly,

the data collection module detects this change. Due to space

constraints, we restrict our results to longitude only. To per-

form our comparison, we analyse the result of the queries by

computing the difference in timestamp and the actual data of

the query response between the raw and CAROMM datasets.

The results of two independent experiments are presented in

Figures 11 and 12.

The results presented in Figures 11 and 12 show the plot

of timestamps and actual longitude data returned for a query

made at a given time. We made some interesting observations

during our experiments. We note that the longitude and latitude

values reported by devices in the same location had a minor

difference. This is well observed in Figure 12 between times

4.27 and 4.51. we see that the timestamp of the query response

from CAROMM has not changed while the raw query response

has changed. This is due to the fact that there is no significant

change in the longitude value during these time periods. When

a change is detected at time 4:54, we note that the timestamps
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Fig. 13. Timestamps of query result (Raw vs. CAROMM)

Fig. 14. Difference in Sensed Data (Longitude) - Raw vs. CAROMM

in both CAROMM and raw data are same. The results in Fig-

ures 11 and 12 validate the fact that our proposed CAROMM

data collection module significantly reduces communication

bandwidth without losing data accuracy. The results presented

in Figures 11 and 12 are outcomes of experiments where

the user movement was moderate over time (note time 4:54

- 5:00). Further validation of the ability of CAROMM data

collection module to detect change and thereby maintain high

levels of data accuracy is demonstrated in results presented

in Figures 13 and 14. Figures 13 and 14 present the results

of the experiments where the user was changing locations

frequently. As stated earlier and again observed in the results,

there is a small difference in the sensed longitude value due

to GPS error. The most interesting observation is the ability

of the CAROMM data collection module to detect changes

indicated at time intervals 11:8 - 11:17 and 11:29 - 11:41.

This change detection further validates CAROMM’s ability to

work efficiently without loss of data accuracy.

Finally, to validate the outcomes of our experiments statisti-

cally, we chose F-Test to determine if there is any significant

change in longitude computed by raw and CAROMM data

collection approaches. The F-Test is designed to compare if

two population variances are equal [12]. We used a confidence

interval of 95%. In both experiments, the null hypothesis was

accepted with a p value of 0.05 concluding that, statistically,

the variance in the observed datasets is not significantly

different. This further validates the performance of CAROMM

data collection module’s ability to maintain a high level of data

accuracy while consuming less battery and bandwidth.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented our CAROMM system to support mobile

crowdsensing and focused on developing an efficient and

scalable data collection model that aims to reduce energy

and bandwidth consumption related to continuous sensing

and uploading in such applications. We implemented and

evaluated our system for a location-based information service

application. Our evaluation demonstrated that our mobile data

mining approach is able to achieve 300% reduction in energy

usage and 17 times reduction in bandwidth usage with the

same level of data accuracy as traditional sensing-uploading

techniques.

The work presented in this paper is the first step and an

important component of the overall CAROMM framework.

We now intend to enhance our work by investigating cloud

data management approaches for mobile crowdsensing. This

includes data analysis and query processing on the cloud.

Further, we plan to extend our work by incorporating mobile

activity recognition using sensor data on mobile devices to un-

derstand the context in which the sensing is occurring. Finally,

we aim to investigate and address privacy issues surrounding

participatory and opportunistic data sensing applications.
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