2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing

Gesture-Based Easy-Computer Interaction
using a Linear Array of Low Cost Distance Sensors

Guan Huang and Seng W. Loke
Department of Computer Science and Computer Engineering, La Trobe University
Melbourne, Australia
Email: bosonhuang@gmail.com, s.loke@latrobe.edu.au

Abstract— In this paper, we introduce the concept of Easy
Computer Interaction (ECI), and describe our design and
implementation of an ECI application prototype using a
collection of IR distance sensors. Performance and
limitations of the application are analyzed.

Keywords-easy-computer interaction; gestures; IR sensors;
low cost

1. INTRODUCTION

In Human-Computer Interaction (HCI), improvements on
both the computer interface and human input modalities
have been explored in order to achieve more efficient and
easier interaction [1]. By using Human Interface Devices
(HIDs), such as sensors, the interaction space between
human and computer can be extended to a wider physical

boundary, from a plane surface to three-dimensional space.

In addition, easy plug-in use and convenient adaptation of
sensors to applications are helpful. In this paper, we
introduce a low cost concept of a sensor-based interactive
equipment, where low cost means low price, low power
consumption and low barriers to usage. Here, we define
Easy-Computer Interaction (ECI) as a kind of interface
that focuses on low cost, ease of use and efficiency of
functions.

IR distance sensors can be attached to any physical
surface converting the surface into a computer interface,
such as a wall, around a box, on a table, etc. As a result of
this simple implementation, a user could perform quick
and straightforward interactions with the sensors which
are connected to a computer. For example, performing a
gesture over the arm of an armchair (i.e., over the sensor
attached to the arm) could control the volume of an

entertainment application or operate = Microsoft
PowerPoint slide shows.
II. RELATED WORK

A. Approaches Using IR Sensors

Kratz and Rohs [2] equipped a mobile device with distance
sensing capabilities that aims to allow interaction with the
mobile device or wearable devices via gestures. In their
prototype, they demonstrated an Apple iPhone equipped
with six IR distance sensors, in order to read and recognize
coarse hand movement-based gestures.

Pinak Parekh [3] installed a wuser gesture
interactive interface called Dunhill Diary with distance
sensing function and image projection. A user could
browse Dunhill’s history and its luxury stories though a
display board. Simple hand movement from right to left is

978-0-7695-4612-4/11 $26.00 © 2011 IEEE
DOI 10.1109/DASC.2011.61

246

recognized and used to change the slide show on the
projected film display.

Ishikawa et al. [4] introduced a touchless input device
and gesture commands for controlling simple applications
on a PC. A distance sensor is used for touchless
convenience and avoiding distractions when the user
communicates with computers.

Sphere is a multi-touch-sensitive spherical display
system enabling an easy 360-degree access for multiple
users. It provides functionalities for displaying and scaling
pictures, displaying movies, and spherical painting [5].

B. Approaches Using Other Types of Sensors

Funky Wall [6] is an interactive wall-mounted display
system that presents mood boards using gesture, speech
and visuals. It helps designers communicate their ideas to
the clients through the mood boards that are created or
used in the early stages of the design process. ThinSight
[7] is a multi-touch optical sensing system. It was fully
integrated in a thin form-factor screen, to capture finger
pointing and multi-touch detection. WUW [8] is a
wearable gestural interface, which attempts to bring
information out into the tangible world. Through a
wearable camera and projector, a user could interact with
the system using gestures and gain information via the
projected information on walls, hands, or physical objects.
Wang et al. [9] presents an interactive game using speech
and gesture recognition. User use a wand equipped with an
accelerometer to perform gestures in front of a display
board. This system allows the user to play games, such as
spelling words using wand movement and speech. Lee [10]
invented a low-cost multi-point interactive whiteboard
using the WiiMote. By using a WiiMote equipped with a
projection screen or LCD display, the application can track
the IR light based pen, and follows the track to perform
writing or painting on the screen or LCD display.
MirrorBoard [11] is an interactive billboard that allows
users to interact with it, such as switching between
advertisements and placing participants’ pictures into the
screen.

III. CONCEPTS AND DESIGN

In the operation of our application, the user could perform
preset tasks with the computer which is attached with IR
sensors. The user interacts with the system through hand
movement over a number of sensors and gains responses
from a display board or a projector screen. Gestures will be
captured and analysed by the application. Successful
gestures will be recognized and matched with supported

IEEE
computer
psoue

ty

gesture patterns in the system after the user’s input events
have been analysed and the application will perform
corresponding tasks such as displaying particular contents.
Gestures design and recognition will be discussed in the
following subsections.

A. Sensors Used

There are several types of IR distance sensors currently
available on the market. One of the most widely
implemented and comparatively low-priced IR distance
sensor is from Sharp. In our design, we used eight
GP2D120X model IR distance sensor from Sharp [12].

Power Consumption and Cost Analysis

The supply voltage of eight sensors working together
during a normal indoor temperature ranges from -0.3 to
+7.0 volts, which means any PC or laptop could provide
enough power supply through the USB cable to sensors. In
our design, we use IR distance sensors connected to a
distance sensor adapter (motherboard controlling the IR
sensor). Phidgets [14] provides the adapter at a reasonable
price with a development kit. The characteristic of low
power consumption and inexpensive equipment
installation meets our low cost and ease of use goals.

Reading Performance
The Sharp 2D120X IR distance sensor offers a valid range
of detection from 10cm to 80cm. the sensor produces an
analog output value that varies according to the distance of
an object from it within the valid detection range. For the
ease of programming and recognizing, the produced analog
output SensorValue could be translated into Distance. The
formula [13] below shows the translation and is only valid
for a SensorValue from 80 to 500:.

Distance (cm) = 4800 / (SensorValue — 20)
In addition, the sensors read distances in a particular time
slot. The time slot for a single measurement is 38.3ms +
9.6ms, with a gap between each measurement at maximum
of 5.0 ms.

B. Supported Gestures

In our design, sensors are placed in an array on a
horizontal plane like on a table as a line controller.
Gestures or movements of user’s hand palm are mapped in
the following ways. Figure 1 shows the supported gestures.

» /= @
—r = - =

A Static B. Horizontal C. Vertical

Figure 1: Supported gestures
e Static position-based gesture:
Palm stays over a single sensor for a particular period
of time to perform preset tasks.
e Horizontal palm movement-based gesture:
Hand palm movement over a number of sensors in one
direction from left to right and reverse.

e Vertical palm movement-based gesture:
Hand palm movement over a single sensor in one
direction from up to down and reverse.

e A composition of the above movement-based
gestures:
Hand palm movement over a number of sensors in
directions comprising a combination of vertical and
horizontal gestures, such as a “box” movement.

Each gesture effectively generates a sequence of sensor
input readings, and we regard these sequences of readings
as events to the application. Each event is regarded as a
sequence of data records sensors information in which we
named it “reading sequence”, such as sensor number,
sensor reading values and time gaps between readings.
Distance and time measurements are two aspects that we
considered as vital for gesture recognition algorithms that
analyse those data sequences. Thus, event fire conditions
are the conditions where a data sequence matches preset
gesture data patterns. It is calculated in two steps according
to distance and time measurements.

C. Distance Measurement in Event Fire Conditions

The first step is to analyse the distance (of detected hand
from sensor) readings of each event change. Distances at a
similar level over a single sensor will be considered as a
static position-based gesture. Detected distance changes on
a single sensor will be considered as a vertical hand palm
movement and further analysed to determine whether it is
an up-down or down-up movement-based gesture.
Distances at a similar level over a number of sensors will
be considered as a horizontal hand palm movement and
further analysed to determine whether it is a right-left or
left-right movement-based gesture. Figure 2 below shows
the distance measurement range of each section and valid
maximum distances in gesture recognition.

D. Time Measurement in Event Fire Conditions

The second step is to analyse whether those recognized
movements from step one are within a valid reading period
of time. We initially set the time gap between each
successful readings to be less than or equal to 500
milliseconds. This means that the next reading will be
discarded if the time gap between the reading and the
previous one is longer than 500 milliseconds, in order to
ensure that only valid reading sequences are interpreted.

|.l———4>

a3
I
&
fw
H

Dictanca 20
overa
sansor(cm)

L

n

F oo !
T
]

i]

]

3
1————.J4———-|<———- »
P

Figure 2: Actual measurement range of distance considered in our design.
Red arrows are indicating the range of valid distance section and
maximum distance is 40cm.

In general, we have the following -condition for
consecutive readings at time t,,; and t, in a valid reading
sequence of two: (ty+1—t,) <= Tw (Time window)

E. Reading Sequences

The length of a reading sequence is set to a particular
number for the purpose of reducing error rates. In Phidgets
[15], changing the sensitivity of a sensor is used to filter
the number of events that are returned to an application, by
setting a minimum amount of activity before a sensor
reading change event is sent to the application for data
collection. This is a simple reading lag — a minimum
amount of change has to occur since the last event before
another event will be fired. On this basis, changing
sensitivity can be used to reduce redundant sensor readings
in order to eliminate the “noise” of a sequence of sensor
reading values. We use this technique to adjust the speed
of detectable hand movements applied to the application,
by setting a minimum number of event change of sensor
readings. Data rate is a refresh rate of each reading of a
particular sensor, from a sensing event change to the next
sensing event change. It is calculated by milliseconds and
can be controlled based on application requirements. We
consider varying data rates in our sensor data processing
algorithms in order to maximise accuracy of gesture
recognition. Research and experiments on adjusting the
sensitivity and data rate of sensors have been done to find
the appropriate sensitivity and data rate settings that could
be best applied to our application (more results shown
later). One of the results from our data rate and sensitivity
experiments is that a successful gesture would take about 1
second to complete with the data rate set at 80. As a result,
there will be likely twelve sensor readings for a gesture. In
our design, the number of readings in a sequence is set to
10 for ease of calculation. Figure 3 represents a successful
reading sequence for a given valid time window (Tw).

A successful reading sequence, as Figure 3 shows,
contains a sequence of 10 sensor readings including sensor
numbers, sensor reading values and time gaps. Time gaps
for every reading in a successful reading sequence must be
within the time window, by definition. However, an
unsuccessful reading sequence could happen during every
sensor reading. Figure 4 shows an unsuccessful reading
sequence where one of the time gaps between two reading
time points is longer than the time window, which is equal
to 500 milliseconds. The red bar in Figure 4 represents the
end of range of the valid time window from the previous
reading time point ts, whereas ts is out of range of the valid
time window and will be considered as the end of the last
reading sequence and the reading sequence will be
discarded due to lack of readings (less than 10). Besides,
sensors detect incoming signals at time point ts, so that ts is
considered as the starting point of another reading
sequence. A single sensor reading record contains
information about a successful sensor reading: sensor
number which identifies the sensor, sensor value and time
gap. A single reading sequence is a collection of 10 sensor
reading records, one for each sensor reading.

248

Startpoint

Tw
Tw
- -
Tw
Tw
Tw
Tw {—Aﬂ

Tw

t tz t3 ty ts ts t7 tg tg t1o

Figure 3: Successful readiné sequence gvién a valid time window

Start point Start point

Y
Valid T
Figure 4: Unsuccessful reading sequence

IV. IMPLEMENTATION AND EVALUATION

A. Gesture Detection Implementation

When the application starts up, the application will create a
sensor change event object to listen to sensor reading
change events. Phidgets [15] has API in for creating such
an object.

Sensor Reading Condition and Movement Direction
Check

The range of detection distances was studied, and we
considered best for the convenience of the user to have a
valid distance range from 10 cm to 40 cm. After a
successful reading sequence, the application will process
the reading sequence to determine which movement has
occurred. The application will conduct a sequential
conditions check in order of horizontal movement check,
static positioning check and vertical movement check. This
ordering is important due to the order in which we store the
reading sequence records.

Recall that the first digit of every sensor reading record
contains the sensor number. The algorithm for horizontal
movement check, hence, checks whether the first digits (of
the records in the reading sequence) are the same, or
different. Also, a height level was introduced into this
gesture positioning and movement condition. The actual
reading value from sensors may vary frequently according
to the incoming analogue signal. So, we divided the valid
distance ranges into segments, each segment representing a
range of readings corresponding to a particular height
level. As a result of that, the static positioning recognition
algorithm is simplified. A horizontal movement would
then mean that in the reading sequence, the sensors are
different but the sensor readings all correspond to the same
segment, i.e., the same height level.

After a horizontal movement check is completed and if it
is found to be false, that is, no horizontal movement is
recognized, the application will then proceed to a vertical
height level check, in order to match and distinguish at
which height level the hand movement was performed.

The third step of direction movement check is vertical
movement check. A hand movement over more than one
height level will be considered as a vertical movement.

Time Window Check

The concept of the Time Window enables a reading
sequence to be viewed as recording a continuous
movement. A time window check consists of two steps,
which are, setting a start time and then calculating the time
gap between sensor readings.

Reading Sequences Recording and Analysis

Reading sequences are pivotal to the application. They are
recorded and analysed by the algorithms which affect the
whole application performance in the application. Only
successful/valid reading sequences (i.e., a succession of 10
readings satisfying the time window checks) are stored and
analysed.

In the horizontal movement recognition algorithm, it
will firstly detect the direction of the movement based on
the first sensor number in the reading sequence. Since the
sensors with lower sensor number are physically
implemented to the right of the operating panel, a
movement from sensors with lower sensor number to
sensors with higher sensor number will be regarded as a
right-to-left horizontal movement, whereas, a movement
from sensors with higher sensor number to sensors with
lower sensor number will be regarded as a left-to-right
horizontal movement. Secondly, based on the detected
directions, a sequence of comparisons of sensor numbers is
recorded for later gesture recognition analysis.

By comparing sensor numbers in sensor reading records
within a valid reading sequence, a mathematical algorithm
is used to calculate the probability of a possible movement
direction (left-to-right or right-to-left). As there are 10
records of sensor readings stored in a reading sequence,
there will be 9 comparisons between those records. The
purpose of the algorithm is to calculate the percentage of
the number of expected results in the total number of
sensor number comparisons, in order to meet the preset
percentage threshold. The threshold is set to be at least 8 of
9 correct comparisons (i.e., mostly increasing/decreasing
order of sensor numbers), which is 89%, for the reason that
though sensor numbers tend to change smoothly, there
may be several error readings which can be ignored.

In the vertical movement recognition algorithm, it will
firstly record comparisons of sensor reading values in the
reading sequence. An algorithm is used to compare the
sensor reading values between one record and the next one
from the first to the last record in the reading sequence.
Here, we use a threshold of 5 out of 9, which is 56% (i.e., a
majority of the sensor reading values are
increasing/decreasing) for the reason that sensor values
fluctuate due to sensors’ reading sensitivity.

The last analysis for a reading sequence is the static
position-based gesture recognition. The algorithm for static
position gesture recognition was described earlier.

249

B. Other Implementation Issues

We initially intended to use eight Phidgets distance sensors
organized as a linear array panel to capture gestures.
However, our experiments show that using eight sensors
reduces accuracy in recognition. We show our results
below with an array of 2, 3 and 4 sensors (more than 4 led
to inaccuracies).

Also, Agnihotri et al.’s research [16] studied adult hand
palm dimensions which showed that the average breadth of
an adult hand palm is 84mm for males and 74 mm for
females. Based on Agnihotri’s research, we implemented
our application with three sensors with a distance of 85
mm between two sensors to avoid detection by two sensors
at the same time. Figure 5 below shows the sensors’
positions in our evaluation.

85 mm 85 mm

A

Sensor 1 Sensor 2 Sensor 3

Figure 5: Position of sensors

C. Performance Evaluation

Our performance evaluation focused on response times and
accuracy of gesture recognition.

Response Time Evaluation

By measuring and recording response times over repeating
gestures, the average response times for gesture
recognition could be generated. Then, we compare the
results with our intended design objective.

In our design, the Time Window is set to 500
milliseconds. Since a valid reading sequence contains 10
sensor readings, the maximum response time to recognize
a gesture could be calculated as follows, to be roughly:

Time Window * Number of Readings = 0.5 * 10
=5 seconds

(ignoring any calculation times which would be
negligible). In fact, according to tests we performed,
almost invariably, for a successful reading sequence, the
average time spent between sensor readings with normal
hand gestures (vertical or horizontal) is far less than the
Time Window we set. The result was that the average time
gap (between successive readings in a valid reading
sequence) is 150 milliseconds, and so, the actual time to
recognize a gesture is much less than 5 seconds: for each
successful gesture detection, it takes only about 1.5 to 2
seconds to gather the (ten) sensor readings required.

Accuracy Evaluation

In this evaluation, we focused on accuracy of gesture
recognition of the application based on our implemented
recognition algorithms. We expected an accuracy of 95%
gesture recognition rate in our design phase. By
performing gesture recognition tests with all types of
supported gestures, we recorded the result of the

recognition rates. We generated an average rate of
recognition for each supported gesture.
Figure 6 below shows our results on initial experiments to
determine sensor readings accuracy on various data rates
and sensitivities. This enables us to choose the right data
rate and sensitivity for our application.

The first two column charts in Figure 1 shows the
accuracy of sensors reading in percentage based on
sensitivity levels of 80 (left) and 100 (right). The
horizontal bar represents the data rate of sensors. Each
bundle of three columns represents the accuracy of sensors
reading in percentage for two, three and four IR distance
sensors arranged in order from left to right. The results
show that using two sensors at a data rate of 96 provides
the most accurate readings in either sensitivity of 80 or
100, with accuracy over 95%.

100004

100 0%

100.00%

1
L
% an 0%

90.00% 2300028 (il

L

il

mhAy

--[--‘--—--—--J

I
=
i
I
I
H
1
I
I

!

0009 11

128 e 112 18 $6 112 128

Sensor Data Rate at Sensitivitv of 100

Figure 6: Sensor reading accuracy based on data rate and sensitivity

In the third chart, we also found that another set of
sensitivity and data rate settings for sensors readings are
appropriate for our recognition algorithm, by setting
default sensitivity of 10 and data rate of 80; we get an
accuracy of 100% for two sensors, 95% for three sensors
and 100% for four sensors.

Our results for average recognition rate of supported
gestures is as follows:

. 99% for static position-based gestures;

96% for vertical movement-based gestures;

96% for horizontal movement-based gestures;
And 60% for combination gestures.

From those results, we could conclude that static position-
based, vertical movement-based and horizontal movement-
based gestures are in high accuracy of recognition over
95% and close to our target recognition rate. However,
combination gestures perform far worse than the other
three. Combination gestures were hard to recognize
accurately as two (or more) successive valid reading
sequences needed to be obtained, without a time gap
between them, and it was found that it was natural to have
a “rest period” between two gestures (e.g., in doing a box
gesture clockwise, there is a rest period between after
completing a horizontal right-to-left gesture, and the next
upward vertical gesture, and between upwards and left-to-

250

right, and between left-to-right and downwards). Our tests
did not take this rest period into account. The tests were
done by the first author, who developed the system.

D. User Inexperience

A limited usability study was conducted by two different
groups of participants based on prior knowledge of using
sensors, which are categorized as known and unknown.
The procedures and tasks performed for each group are the
same. The known group consists of three computer science
students and the unknown group consists of two business
students.

Experimental results show that the known group
performed well using the application. They presented high
accuracy, which is over 95%, and showed quick learning
of the application. Those results are close to our
expectations. However, the unknown group took a bit
longer to use the application. They were also unable to
perform very successful interactions with the application,
with accuracy below 60% in the initial stages. Mistakes in
gesturing led to consecutive readings out of range of the
half-second Time Window and lack of sensor readings to
constitute valid reading sequences were the main problems
with these participants using the application.

V. CONCLUSION AND FUTURE WORK

We have implemented a simple gesture based recognition
system for controlling applications using an array of
Phidgets distance sensors (we used it to control Powerpoint
slides in a university Open Day event). We note the
following findings:

e Reading sequences: reading sequences are an
important part of our application for the reason that
the successful sensor reading records and the gesture
recognition algorithms affect the application
performance.

Supported gestures: basic gesture recognition can be
designed and implemented using a linear array of
distance sensors, in horizontal, vertical, and static
positions and combinations of movements based
gestures. Horizontal gestures are from left to right and
right to left. Vertical gestures are from up to down and
down to up.

Sensor sensitivity and data rate: sensor sensitivity is
used to adjust the detection of speed of hand
movements applied to the application, whereas, sensor
data rate is to control the number of sensor readings in
a particular time window. We found suitable data rates
and sensitivity for normal, comfortable and natural
hand gesture movements.

Sensor reading conditions and movement direction
check: our use of heuristics (without machine
learning) based processing of sensor reading
sequences was adequate to obtain good performance,
but mainly for more experienced/practiced users.
Future work will involve improving the accuracy in
recognizing gestures constituted by a combination of
movements. Compositional gesture recognition will

provide a key to supporting a whole (potentially infinite)
range of complex gestures made up of simpler gestures.

REFERENCES

[1] Hewett, T., Baecker, R., Card, S., Carey, T., Gasen, J., Mantei, M.,
Perlman, G., Strong, G. and Verplank, W., 2003, “ACM SIGCHI
curricula for Human-Computer Interaction”, Association for
Computing Machinery, pp. 5, Michigan, USA.

[2] Kratz, S. and Rohs, M., 2009, “Hoverflow: expanding the design
space of around-device interaction”, Proceedings of the 1l1th
International Conference on Human-Computer Interaction with
Mobile Devices and Services: Demos & experiences, article No. 4,
Bonn, Germany.

[3] Parekh, P., 2010, “Dunhill Diary installation for world expo
2010 display”, http://pinakparekh.wordpress.com/2010/07/16/our-
first-gesture-interface-with-pir-sensors-and-no-camera/

[4] Ishikawa, T., Horry, Y. and Hoshino, T., 2005, “Touchless input
device and gesture commands”, Proceedings of international
conference on Consumer Electronics, ICCE. 2005 Digest of
Technical Papers, pp. 205-206, Las Vegas, USA.

[5] Benko, H., Wilson, A.D. and Balakrishnan, R., 2008, “Sphere:
Multi-Touch Interactions on a Spherical Display”, Proceedings of
the 21st annual ACM symposium on User interface software and
technology, pp. 77-86, Monterey, CA, USA.

[6] Lucero, A., Aliakseyru, D. and Martens, J.B., 2008, “Funky Wall:
Presenting Mood Boards Using Gesture, Speech and Visuals”,
Proceedings of the working conference on Advanced visual
interfaces, pp. 425-428, Napoli, Italy.

[71 Hodges, S., Izadi, S., Butler, A., Rrustemi, A. and Buxton, B.,
2007, “ThinSight: Versatile Multi-touch Sensing for Thin Form-
factor Displays”, Proceedings of 20th annual AMC Symposium on

251

[8]

[

[10]

[

[12]

[13]

[14]

[15]

[16]

User interface software and technology, Vol. 252, No.6, pp. 259-
268, San Diego, California.

Mistry, P., Maes, P. and Chang, L., 2009, “WUW — wear ur world:
a wearable gestural interface”, Proceedings of the 27th
international conference extended abstracts on Human factors in
computing systems, pp. 4111-4116, Boston, MA, USA.

Wang, C., Liu, Z. and Fels, S., 2010, “Everyone Can Do Magic: An
Interactive Game with Speech and Gesture Recognition”,
Proceedings of the 9th ICEC International Conference on
Entertainment Computing, pp. 32-43, Seoul, Korea.

Lee, J., 2008, “Low-Cost Multi-point Interactive Whiteboards
Using the WiiMote”, http://johnnylee.net/projects/wii/

Schonbock, J., Koénig, F., Kotsis, G., Gruber, D., Zaim, E. and
Schmidt. A., 2008, “MirrorBoard - An Interactive Billboard”,
Mensch & Computer, pp. 217-226.

Sharp distance sensor GP2Y0A21YKOF, 2006, “data sheet”,
http://document.sharpsma.com/files/gp2y0a21yk e.pdf

Acroname Robotics, 2000, “Sharp Distance Sensors Comparison”,
http://www.acroname.com/robotics/info/articles/sharp/sharp.html#e
8

Greenberg, S., 2001, “Phidgets: Easy Development of Physical
Interfaces through Physical Widget”, Proceedings of the 14th
Annual ACM Symposium on User Interface Software and
Technology, pp. 209-218, Orlando, Florida, USA.

Phidgets, 2010, “Phidget Programming Manual”,
http://www.phidgets.com/documentation/LiveCode API Manual.p
df

Agnihotri, AK., Purwar B., Jeebun N., Agnihotri S., 2006,
“Determination of Sex by Hand Dimensions”, The Internet Journal
of Forensic Science,
http://www.ispub.com/ostia/index.php?xmlFilePath=journals/ijfs/v
olln2/hand.xml

