

 1

On Mapping Sensor Inputs to Actions on Computer
Applications: the Case of Two Sensor-Driven Games

Seng W. Loke

La Trobe University

Australia

ABSTRACT

We discuss general concepts and principles for mapping

of sensor inputs to actions on computer applications, as

based namely on experiences with two implemented and

trialed sensor-driven games. While our work is based on

two games, the ideas can be generalized to computer

applications where a fixed set of operations can be

identified, and algebraic properties for the operations

specifiable.

INTRODUCTION

There has been interest on using sensors to drive

computer applications, including games. Recent

developments such as GestureTek Mobile
1
 allows one to

rock, tilt or move the phone to control a mobile game.

Sony’s Wii aims to… One can control a game using the

normal keyboard and mouse, but replacing the keyboard

and mouse with sensor inputs (even for exactly the same

game) adds a new dimension to the game in a number of

ways: e.g., what was easy to do by pressing a key is now

more challenging since some gesture is required (to be

captured by sensors), what was boring to do with mouse

clicks now involves whole body movements, and what

involved finger coordination now involves hands and legs

coordination (or even coordination of two or more

persons). The use of sensors itself provides a new level of

engagement, new challenges, and novelty of interaction,

adding value to game playing. A mundane game can be

made more interesting by changing the mechanism of user

1
 http://www.gesturetekmobile.com/

interaction – the sensor-based interaction is part of the fun

itself. Given a fixed set of sensors, changing the mapping

from sensor inputs to game actions produces another

variant of the game – many variations of the same game

can be produced by varying this mapping from sensor

inputs to game actions. Two categories of sensor-driven

games can be considered: games playable with ordinary

keyboards and mouse but instead use sensor inputs, and

games specifically tailored for the sensors to use.

Virtual reality and haptic interfaces can capture human

gestures and movements and effectively replicate that in

the virtual world, e.g., a grasping action is mirrored as a

virtual grasping action, or waving a hand-held sensor

corresponds to a racket swing. While virtual mirroring of

physical actions, or exploiting commonsensical coherence

between physical actions and virtual actions, is one way

to employ sensor inputs, this need not be the rule – a

waving of a hand-held sensor may be mapped to be

simply firing a bullet, waving the sensor to the left may

not result in a virtual swing to the left but a virtual swing

to the right – the confusion adding a challenge feature to

game play, or one sends an email by switching on a lamp.

In general, using sensors enables capturing of more of

what we can do in the world and provides more degrees of

freedom in interaction. It also enables more people to be

involved at the same time, even on a single computer –

e.g., multiple players controlling a tank.

In the rest of this paper, we describe two games which we

have prototyped which relies on sensor inputs. We

describe the interaction design of the games with the

underlying philosophy, how we realize the two systems,

and outline experiences in putting the games out for

public trial and demonstration.

TWO SYSTEMS

The sensor-driven games were originally conceived for

pedagogical reasons, as a means to demonstrate sensor

technology to a non-computing literate audience and to

get the audience to engage with the technology (and gain

an appreciation for the technology itself), rather than

games development. It was not adequately interesting if

sensor inputs were simply used to drive cartoon figures on

the screen, but a game can provide a storyboard or a

reason for continuously interacting with the sensors -

sensor-based interaction was the end, rather than the

means, and the game was the means.

We worked with several Phidgets sensor toolkits,
2
 and so,

had an array of sensors to work with, including distance

sensors, force sensors, sliders, motion sensors, RFID tags,

etc, which means a vast set of possible combinations of

sensor inputs can be generated. A game typically has a

finite set of operations, and a design issue is how and

what sensor inputs to map to each operation. A guiding

principle is commonsensical coherence as mentioned

(e.g., physical left wave corresponds to a virtual left

swing) but we also considered intentional incoherence in

two ways: antithetical incoherence (e.g., physical left

wave corresponds to a virtual right racket swing),

orthogonal incoherence (e.g., rubbing the hands to

produce heat (as detected by a temperature sensor)

corresponds to a virtual right racket swing) which adds a

challenge feature to the game. Sometimes the coherence

may only be tangential (e.g., given two distance sensors,

simply placing the hand over the right sensor results in a

virtual right racket swing). Also, the mapping from sensor

inputs to operations can be persistent (fixed throughout

the game) or non-persistent (does change during game

play, each mapping triggered by some event in the game).

Depending on the game, the set of operations possible

might change at different stages of the game. It is also

possible for more than one combination of sensor inputs

to trigger the same operation or one combination of sensor

inputs to trigger different operations at different stages of

the game. The difficulty of the game can also be

customized according to what combinations of sensor

inputs are required to produce an operation, since in the

physical world, certain combinations of physical actions

are harder to produce than others.

Tank Warrior

Tank warrior is about a team of three people driving a

tank through a hostile (in the sense that there are enemies

firing at the tank) terrain, to rescue another tank. Figure 1

shows the screen (which we projected on a large wall),

and the three stations (for three players) comprising:

(i). two force sensors for steering the tank (forward, left or

right) [left screen],

(ii). two sliders to control the tank’s turret (and cannon)

(up & down, left & right) and a touch sensor for firing the

cannon [what the gun is currently aiming at is in the top

2
 http://www.phidgets.com

right screen]; aiming the cannon is not easy if the tank is

moving and so this player needs to coordinate with the

tank driver in (i) above so that the tank slows down or

moves in a consistent path when the tank is aiming at

something, and

(iii). a distance sensor and a rotation knob to load the gun

or cannon, together with a motion sensor to unjam the

cannon (which becomes jammed if the cannon is fired

unloaded, the 2
nd

 player firing the cannon must coordinate

with this player loading the weapon) [bottom right

screen]. The player raises his hand over the distance

sensor to “pick up” a shell; the rotation knob is used to

shift between the shell store and a hole (in which the shell

is loaded); the player unjams the weapon by waving

his/her hands in front of the motion sensor rigorously

enough.

The game is, thus, a team game where physical

coordination among team members is manifested in the

smooth operation of the tank. Because of the actions

required for each station, it is not physically possible for

one person to effectively play all three stations.

The game was exhibited and trialed by a group of about a

dozen high school students (teenagers) (in turns), with

very positive feedback about the way one interacts with

the game and its novelty.

(a) projected screen for the tank controllers

(b) set up of sensors and screen; (c) the sliders and touch

sensor

 3

(d) the two force sensors; (e) the distance sensor, etc.

Figure 1. Set-up for Tank Warrior

In Tank warrior, generally, we used commonsensical

coherence as a guide in mapping sensor inputs to tank

controls, e.g., the harder the force sensors are pressed, the

faster the tanks move and pressing only one of them will

move the tank in one direction and pressing both will

move the tank straight. However, to increase challenge,

we also experimented with antithetical coherence, we

swap the left button with the right button so that pressing

left turns the tank right and conversely. The physical form

of the sliders immediately suggest limitations on the

extent the turret can moved whether vertically or

horizontally and also the relative position of the cannon

(i.e., how much further it can be moved up/down/left/right

relative to its current position). Waving the hands

“feverishly” over the motion sensor to unjam it is an

example of orthogonal incoherence, but the rigorous

action matches the excitement of the game since one

cannot fire the weapon without doing this (even in the

heat of being shot at by the enemy).

Pokemanz

Figure 2 shows the Pokemanz card game,the screen and

the control sensors. A series of seven distance sensors is

used, each for selecting one of the seven cards displayed

on the screen – passing a hand over the 2
nd

 sensor will

cause the 2
nd

 card (from the left) to be selected (this card

is raised on the screen); passing a hand again over a

selected card will put it down. In the game, each player, at

each turn, selects a set of cards to play out of seven

possibilities. Each card that is selected represents a

weapon used against the other player. The play, is hence,

similar to the typical Pokemon trading card game
3
 and

was, in fact, inspired by it. Each player selects his/her

representative team characters via passing a selected set

of cards over an RFID reader, each card embedded with

an RFID tag, and each character being represented by a

card (and its embedded tag with a unique ID). The figure

below shows the kids at a Departmental Open Day

playing the game after only a few words of instruction –

hence, the game interface, though different from anything

that the young kids (roughly in range 8 to 12) have ever

seen, can be learned in a very short time. The kids then

3 http://en.wikipedia.org/wiki/Pok%C3%A9mon_Trading_Card_Game

played unsupervised.

Figure 2. Pokemanz being played by two kids.

Moving the hand over the right distance sensor to pick up

a card is an example of tangential coherence (to pick up a

card physically, one has to not only move the hand over

the card but also then pick it up – here, it is sufficient to

simply move the hand over the right distance sensor).

Selection of a character is by choosing the right card and

passing the RFID embedded card over the reader. While

this action has pedagogical value, suggesting to the kids

that each card (or tag ID) uniquely identifies a character,

the action is more than what one may do in making a

selection (compared to simply pressing a key on the

keyboard).

ALGEBRAICALLY FORMALIZING THE MAPPING

Inspired by [7], the set of operations in a game (whether

controlling a tank or selecting cards) can be formalized

into an algebra of operations, where two or more more

operations can be composed or where certain operations

have inverses (continuously effective actions can be

discretized into a series of operations) so that the

composition of an operation and its inverse results in an

identity action. Some pairs of operations may commute

and others may be idempotent.

Similarly, a set of sensor actions can be identified and

their algebraic properties formulated – certain actions may

cancel each other out (e.g. left and right force sensor

actions leading to left and right tank movements),

commute (it does not matter what order the actions are

carried out) etc. The algebraic structure of the sensor

actions (including the algebraic properties of sensor

actions) can be induced by the algebraic structure of the

game operations (since each sensor action map to a game

operation).

The mapping from sensor actions to the game operations

should be exhaustive (or surjective), i.e. there should be

some way (some sensor action) to perform every game

operation, and without clashes (i.e., a bijective mapping).

Also, unless greater challenge is required, the mapping

should be persistent so that the players are not too

confused (we used persistent mapping in both games).

Also, the mapping and compositions of should be

physically realizable, in the sense that, for example, if a

sequential (in time) composition of two game operations

is required to perform a task in the game, then it should be

physically possible within time constraints to perform the

sensor action for the first game operation and then the

next sensor action for the second game operation (e.g.,

one action is to pass a hand over the distance sensor and

the other is to pass a hand over another distance sensor

some distance away from the first, one should be able to

do the first action, and then, within the allowed period, the

second action; the period must not be too short for

otherwise this task cannot be performed, unless another

person is involved). Given a set of game operations, all

legal compositions should be physically realizable. While

there is no tool to automatically check for such properties,

the designer would have to consider these issues.

RELATED WORK

Since their inception, there has been much work using

Phidgets not only for tangible inputs to computer

applications
4
 but also for physically tangible outputs

[1,2,3,4,5]. The notions of Tangible User Interfaces and

Pervasive Gaming rely on sensors for their realization.

Games have also been developed in [6,1]. However, we

see that the mapping between sensor actions and

operations on computer applications have not been

comprehensively discussed in the literature as we do here.

CONCLUSION

We have discussed modes of coherency and incoherency

in mapping actions in the physical world as picked up by

sensors to operations in two game applications. We have

also outlined an algebraic perspective in this mapping,

characterizing, mathematically, favourable properties of

such a mapping. From scratch, the Phidgets toolkit

4
 http://grouplab.cpsc.ucalgary.ca/phidgets/

enabled three persons to develop the games (in a part time

manner) over a total span of roughly eight weeks.

The space of possible user actions which can be picked up

by sensors is remarkable – and limited only by the

imagination. For example, one could kick a soccer ball to

fire a cannon shot, albeit being purposefully orthogonally

incoherent, this could add a different dimension to a

game. Or, one could pedal a bicycle to keep the tank’s

fuel up – complementing the game with a fitness element,

and making visits to a particular store (and these visits

being permitted to be tracked by a GPS system) can

enable ammunition to be added to a tank (adding an

incentive to visit a store). Real world movements and

interactions can be mapped to appropriate game

operations, over long term or short term, but in a way that

is commonsensically coherent, purposefully incoherent,

and respecting the algebraic structure of the set of game

operations.

ACKNOWLEDGMENTS

The author thanks Courtney O’Sullivan, Gordon

Pedersen, Alister Smith and Brendan for implementing

the games here and contributing ideas.

REFERENCES

1. Jung, B., Schrader, A. and Carlson, D. Tangible

Interfaces for Pervasive Gaming. Proceedings of Digital

Games Research Association International Conference

(DIGRA), 2005.

2. Kimura, H., Tokunaga, E., Okuda, Y. and

Nakajima, T. CookieFlavors: Easy Building Blocks for

Wireless Tangible Input. Proceedings of the Conference

on Human Factors in Computing Systems (CHI), ACM

Press, pp. 965 – 970, 2006.

3. Klemmer, S.R., Li, J., Lin, J., and Landay, J.A.

Papier-Mâché: Toolkit Support for Tangible Input. CHI

Letters, Human Factors in Computing Systems 6(1),

2004.

4. Koleva, B., Benford, S., Ng, K. and Rodden,T. A

Framework for Tangible User Interfaces. Proceedings of

the Workshop on Physical Interfaces, at the 5th

International Symposium on Human Computer

Interaction with Mobile Devices and Services (Mobile

HCI, September, 2003, Udine, Italy

5. Mazalek, A. Tangible Toolkits: Integrating

Application Development across Diverse Multi-User

and Tangible Interaction Platforms. Proceedings of the

Let's Get Physical Workshop, at the 2nd International

Conference on Design Computing and Cognition, 2006

6. Rogers, Y., and Muller, H.L. A Framework for

Designing Sensor-Based Interactions to Promote

Exploration and Reflection in Play. International Journal

 5

of Man-Machine Studies 64(1), pp. 1-14, 2006.

7. Thimbleby, H.W. User Interface Design with

Matrix Algebra. ACM Transactions on Computer Human

Interaction 11(2), pp. 181-236, 2004.

