
 

 1

On Mapping Sensor Inputs to Actions on Computer 
Applications: the Case of Two Sensor-Driven Games 

  

Seng W. Loke 

La Trobe University 

Australia 

 

 

 

  
ABSTRACT 

 

We discuss general concepts and principles for mapping 

of sensor inputs to actions on computer applications, as 

based namely on experiences with two implemented and 

trialed sensor-driven games. While our work is based on 

two games, the ideas can be generalized to computer 

applications where a fixed set of operations can be 

identified, and algebraic properties for the operations 

specifiable. 

  

INTRODUCTION 

There has been interest on using sensors to drive 

computer applications, including games. Recent 

developments such as GestureTek Mobile
1
 allows one to 

rock, tilt or move the phone to control a mobile game. 

Sony’s Wii aims to…  One can control a game using the 

normal keyboard and mouse, but replacing the keyboard 

and mouse with sensor inputs (even for exactly the same 

game) adds a new dimension to the game in a number of 

ways: e.g., what was easy to do by pressing a key is now 

more challenging since some gesture is required (to be 

captured by sensors), what was boring to do with mouse 

clicks now involves whole body movements, and what 

involved finger coordination now involves hands and legs 

coordination (or even  coordination of two or more 

persons). The use of sensors itself provides a new level of 

engagement, new challenges, and novelty of interaction, 

adding value to game playing. A mundane game can be 

made more interesting by changing the mechanism of user 
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interaction – the sensor-based interaction is part of the fun 

itself. Given a fixed set of sensors, changing the mapping 

from sensor inputs to game actions produces another 

variant of the game – many variations of the same game 

can be produced by varying this mapping from sensor 

inputs to game actions. Two categories of sensor-driven 

games can be considered: games playable with ordinary 

keyboards and mouse but instead use sensor inputs, and 

games specifically tailored for the sensors to use.  

Virtual reality and haptic interfaces can capture human 

gestures and movements and effectively replicate that in 

the virtual world, e.g., a grasping action is mirrored as a 

virtual grasping action, or waving a hand-held sensor 

corresponds to a racket swing. While virtual mirroring of 

physical actions, or exploiting commonsensical coherence 

between physical actions and virtual actions, is one way 

to employ sensor inputs, this need not be the rule – a 

waving of a hand-held sensor may be mapped to be 

simply firing a bullet, waving the sensor to the left may 

not result in a virtual swing to the left but a virtual swing 

to the right – the confusion adding a challenge feature to 

game play, or one sends an email by switching on a lamp. 

In general, using sensors enables capturing of more of 

what we can do in the world and provides more degrees of 

freedom in interaction. It also enables more people to be 

involved at the same time, even on a single computer – 

e.g., multiple players controlling a tank.   

In the rest of this paper, we describe two games which we 

have prototyped which relies on sensor inputs. We 

describe the interaction design of the games with the 

underlying philosophy, how we realize the two systems, 

and outline experiences in putting the games out for 

public trial and demonstration. 

 

TWO SYSTEMS 

The sensor-driven games were originally conceived for 

pedagogical reasons, as a means to demonstrate sensor 

technology to a non-computing literate audience and to 

get the audience to engage with the technology (and gain 

 



 

 

an appreciation for the technology itself), rather than 

games development. It was not adequately interesting if 

sensor inputs were simply used to drive cartoon figures on 

the screen, but a game can provide a storyboard or a 

reason for continuously interacting with the sensors - 

sensor-based interaction was the end, rather than the 

means, and the game was the means.  

We worked with several Phidgets sensor toolkits,
2
 and so, 

had an array of sensors to work with, including distance 

sensors, force sensors, sliders, motion sensors, RFID tags, 

etc, which means a vast set of possible combinations of 

sensor inputs can be generated. A game typically has a 

finite set of operations, and a design issue is how and 

what sensor inputs to map to each operation. A guiding 

principle is commonsensical coherence as mentioned 

(e.g., physical left wave corresponds to a virtual left 

swing) but we also considered intentional incoherence in 

two ways: antithetical incoherence (e.g., physical left 

wave corresponds to a virtual right racket swing), 

orthogonal incoherence (e.g., rubbing the hands to 

produce heat (as detected by a temperature sensor) 

corresponds to a virtual right racket swing) which adds a 

challenge feature to the game. Sometimes the coherence 

may only be tangential (e.g., given two distance sensors, 

simply placing the hand over the right sensor results in a 

virtual right racket swing). Also, the mapping from sensor 

inputs to operations can be persistent (fixed throughout 

the game) or non-persistent (does change during game 

play, each mapping triggered by some event in the game).  

Depending on the game, the set of operations possible 

might change at different stages of the game. It is also 

possible for more than one combination of sensor inputs 

to trigger the same operation or one combination of sensor 

inputs to trigger different operations at different stages of 

the game. The difficulty of the game can also be 

customized according to what combinations of sensor 

inputs are required to produce an operation, since in the 

physical world, certain combinations of physical actions 

are harder to produce than others.  

Tank Warrior 

Tank warrior is about a team of three people driving a 

tank through a hostile (in the sense that there are enemies 

firing at the tank) terrain, to rescue another tank. Figure 1 

shows the screen (which we projected on a large wall), 

and the three stations (for three players) comprising:  

(i). two force sensors for steering the tank (forward, left or 

right) [left screen],  

(ii). two sliders to control the tank’s turret (and cannon) 

(up & down, left & right) and a touch sensor for firing the 

cannon [what the gun is currently aiming at is in the top 
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right screen]; aiming the cannon is not easy if the tank is 

moving and so this player needs to coordinate with the 

tank driver in (i) above so that the tank slows down or 

moves in a consistent path when the tank is aiming at 

something, and  

(iii). a distance sensor and a rotation knob to load the gun 

or cannon, together with a motion sensor to unjam the 

cannon (which becomes jammed if the cannon is fired 

unloaded, the 2
nd

 player firing the cannon must coordinate 

with this player loading the weapon) [bottom right 

screen]. The player raises his hand over the distance 

sensor to “pick up” a shell; the rotation knob is used to 

shift between the shell store and a hole (in which the shell 

is loaded); the player unjams the weapon by waving 

his/her hands in front of the motion sensor rigorously 

enough. 

The game is, thus, a team game where physical 

coordination among team members is manifested in the 

smooth operation of the tank. Because of the actions 

required for each station, it is not physically possible for 

one person to effectively play all three stations. 

The game was exhibited and trialed by a group of about a 

dozen high school students (teenagers) (in turns), with 

very positive feedback about the way one interacts with 

the game and its novelty. 

 

(a) projected screen for the tank controllers 

 

(b) set up of sensors and screen; (c) the sliders and touch 

sensor 
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(d) the two force sensors; (e) the distance sensor, etc. 

Figure 1. Set-up for Tank Warrior 

In Tank warrior, generally, we used commonsensical 

coherence as a guide in mapping sensor inputs to tank 

controls, e.g., the harder the force sensors are pressed, the 

faster the tanks move and pressing only one of them will 

move the tank in one direction and pressing both will 

move the tank straight. However, to increase challenge, 

we also experimented with antithetical coherence, we 

swap the left button with the right button so that pressing 

left turns the tank right and conversely. The physical form 

of the sliders immediately suggest limitations on the 

extent the turret can moved whether vertically or 

horizontally and also the relative position of the cannon 

(i.e., how much further it can be moved up/down/left/right 

relative to its current position). Waving the hands 

“feverishly” over the motion sensor to unjam it is an 

example of orthogonal incoherence, but the rigorous 

action matches the excitement of the game since one 

cannot fire the weapon without doing this (even in the 

heat of being shot at by the enemy).  

Pokemanz 

Figure 2 shows the Pokemanz card game,the screen and 

the control sensors. A series of seven distance sensors is 

used, each for selecting one of the seven cards displayed 

on the screen – passing a hand over the 2
nd

 sensor will 

cause the 2
nd

 card (from the left) to be selected (this card 

is raised on the screen); passing a hand again over a 

selected card will put it down. In the game, each player, at 

each turn, selects a set of cards to play out of seven 

possibilities. Each card that is selected represents a 

weapon used against the other player. The play, is hence, 

similar to the typical Pokemon trading card game
3
 and 

was, in fact, inspired by it. Each player selects his/her 

representative team characters via passing  a selected set 

of cards over an RFID reader, each card embedded with 

an RFID tag, and each character being represented by a 

card (and its embedded tag with  a unique ID). The figure 

below shows the kids at a Departmental Open Day 

playing the game after only a few words of instruction – 

hence, the game interface, though different from anything 

that the young kids (roughly in range 8 to 12) have ever 

seen, can be learned in a very short time. The kids then 
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played unsupervised.   

 

 

Figure 2. Pokemanz being played by two kids. 

Moving the hand over the right distance sensor to pick up 

a card is an example of tangential coherence (to pick up a 

card physically, one has to not only move the hand over 

the card but also then pick it up – here, it is sufficient to 

simply move the hand over the right distance sensor). 

Selection of a character is by choosing the right card and 

passing the RFID embedded card over the reader. While 

this action has pedagogical value, suggesting to the kids 

that each card (or tag ID) uniquely identifies a character, 

the action is more than what one may do in making a 

selection (compared to simply pressing a key on the 

keyboard).  

 

ALGEBRAICALLY FORMALIZING THE MAPPING 

Inspired by [7], the set of operations in a game (whether 

controlling a tank or selecting cards) can be formalized 

into an algebra of operations, where two or more more 

operations can be composed or where certain operations 

have inverses (continuously effective actions can be 

discretized into a series of operations) so that the 

composition of an operation and its inverse results in an 

identity action. Some pairs of operations may commute 

and others may be idempotent.   

Similarly, a set of sensor actions can be identified and 

their algebraic properties formulated – certain actions may 

cancel each other out (e.g. left and right force sensor 

actions leading to left and right tank movements), 



 

 

commute (it does not matter what order the actions are 

carried out) etc. The algebraic structure of the sensor 

actions (including the algebraic properties of sensor 

actions) can be induced by the algebraic structure of the 

game operations (since each sensor action map to a game 

operation).  

The mapping from sensor actions to the game operations 

should be exhaustive (or surjective), i.e. there should be 

some way (some sensor action) to perform every game 

operation, and without clashes (i.e., a bijective mapping). 

Also, unless greater challenge is required, the mapping 

should be persistent so that the players are not too 

confused (we used persistent mapping in both games).  

Also, the mapping and compositions of should be 

physically realizable, in the sense that, for example, if a 

sequential (in time) composition of two game operations 

is required to perform a task in the game, then it should be 

physically possible within time constraints to perform the 

sensor action for the first game operation and then the 

next sensor action for the second game operation (e.g., 

one action is to pass a hand over the distance sensor and 

the other is to pass a hand over another distance sensor 

some distance away from the first, one should be able to 

do the first action, and then, within the allowed period, the 

second action; the period must not be too short for 

otherwise this task cannot be performed, unless another 

person is involved). Given a set of game operations, all 

legal compositions should be physically realizable. While 

there is no tool to automatically check for such properties, 

the designer would have to consider these issues. 

 

RELATED WORK 

Since their inception, there has been much work using 

Phidgets not only for tangible inputs to computer 

applications
4
 but also for physically tangible outputs 

[1,2,3,4,5]. The notions of Tangible User Interfaces and 

Pervasive Gaming rely on sensors for their realization. 

Games have also been developed in [6,1]. However, we 

see that the mapping between sensor actions and 

operations on computer applications have not been 

comprehensively discussed in the literature as we do here.    

 

CONCLUSION 

We have discussed modes of coherency and incoherency 

in mapping actions in the physical world as picked up by 

sensors to operations in two game applications. We have 

also outlined an algebraic perspective in this mapping, 

characterizing, mathematically, favourable properties of 

such a mapping. From scratch, the Phidgets toolkit 

                                                           

4
 http://grouplab.cpsc.ucalgary.ca/phidgets/ 

enabled three persons to develop the games (in a part time 

manner) over a total span of roughly eight weeks. 

The space of possible user actions which can be picked up 

by sensors is remarkable – and limited only by the 

imagination. For example, one could kick a soccer ball to 

fire a cannon shot, albeit being purposefully orthogonally 

incoherent, this could add a different dimension to a 

game. Or, one could pedal a bicycle to keep the tank’s 

fuel up  – complementing the game with a fitness element, 

and making visits to a particular store (and these visits 

being permitted to be tracked by a GPS system) can 

enable ammunition to be added to a tank (adding an 

incentive to visit a store). Real world movements and 

interactions can be mapped to appropriate game 

operations, over long term or short term, but in a way that 

is commonsensically coherent, purposefully incoherent, 

and respecting the algebraic structure of the set of game 

operations.   
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