
Towards Device-Blending: Model and Challenges

Harinder Seera, Seng Wai Loke and Torab Torabi

Department of Computer Science and Computer Engineering

La Trobe University, Australia

Email: {s.loke, t.torabi}@latrobe.edu.au, hpseera@students.latrobe.edu.au

Abstract

This position paper proposes a device-blending architecture

for aggregating device functionality via inter-device peer-to-

peer relationships, effectively forming a multi-device

“distributed computer”, as a collective for processing tasks

for users. The system would provide users with more freedom

when using the devices by hiding low level details of device

interconnections and automating such connectivity. We

describe the concept of device-blending, point out benefits of

the architecture and examine implementation and software

issues related to the model. We contend that inter-device

relationships, as we introduce in this paper, forms an

important platform for subsequent inter-device collaborations

in fulfilling user tasks.

1. Introduction

In near future every home environment will be populated by

different kinds of computing devices and each device varying

in energy resources, memory capabilities, processing power

and different means of user interaction. For example, we may

have single task devices (example Toaster, washing machine)

and multipurpose devices such as Computer, Mobile phone,

Electrolux Screen Fridge [14], NCR microwave bank [14]. As

pointed out by Mark Weiser [1],”the real power of the concept

[of Ubiquitous Computing] comes not from any of these

devices; it emerges from the interaction of all of them.”

Therefore, one of the core challenges is how the user will

know how these devices will interact with each other and how

s/he can configure these devices for his/her own liking.

Another challenge is how to uses devices which have similar

functions as others when those devices do not work and the

final challenge is building applications that are generic enough

to be used by most of the devices in an environment.

Different devices use different protocols, for example UPnP

[2], Jini [3], Bluetooth [4], Salutation [5], SLP [6] and most of

the devices only interact with devices of similar protocols but

not with devices of different protocols. To solve this problem

researchers have proposed different systems such as Interplay

[7], EasyLiving [8], Cogma [9] , Infostick[10], Touch and

Connect [11].

Interplay [7] is a middleware which allows users to simply

select what activities they want to perform at home by means

of pseudo sentence. This middleware requires a centralized

server (current implementation uses TV as the control point).

It is implemented in Java, it uses Owl (web ontology

language) and RDF (resource description framework) to

define the device and task description schemas. It currently

has plug-ins to support UPnP protocols with AV

(Audiovisual), content and printing services. This system has

the following issues: Firstly, if the centralized system crashes

then devices can not interact. Second, it can only be used in a

home environment and not outside and lastly, the system has

only been tested with UPnP devices.

EasyLiving project [8] is a “Microsoft research that is

concerned with the development of architecture and

technologies for intelligent environments.” The EasyLiving

system consists of an InConcert middleware, geometric

modelling, sensing capabilities and service description. The

InConcert middleware provides asynchronous message

passing, machine independent addressing and XML- based

message protocols so that programs can handle offline and

queued operation more naturally.

Geometric modelling [8] “provides a general geometric

service for ubiquitous computing, focusing on in-home or in-

office tasks in which there are myriad I/O, perception and

computing devices supporting multiple tasks.” Sensing

capabilities (sensors) are used as the source for the geometric

model. Currently, this system has problems with the number

of connection between services, which if increases, causes the

polling to cease. The current lookup table is not robust enough

to handle thousands of services continuously. The current

system is not extensible enough to track the users between

different disjoint spaces and the current system does not let

user create and edit automatic behaviours.

Cogma [9] stands for Cooperative Gadget for mobile

appliances. It has the following features [14]:

• de-centralized system,

• lightweight middleware,

• allows dynamic code/state transfer,

• simultaneously use two or more different type of

network-link, and

• autonomous discovery mechanism of other nodes

simplicity of management and communication

mechanism of mobile software

This system currently doesn’t handle the home devices which

have already been installed.

Infostick[10] allows the user to transfer information between

different information appliances or physical objects. It acts as

information carrier. For Infostick to work, each object/device

needs to have a visual marker which allows Infostick to give

appropriate action to user that he can perform based on what

that object is. The drawbacks with this system are: if the

marker gets washed away/removed than the Infostick can not

recognize the appliance or the object and also the user needs to

know where the marker is located.

Touch and Connect [11] is a simple management framework

which connects two networked devices by simply touching

them. This framework does not require a server and consists of

a lock mechanism which prevents incorrect connections

caused by the users. Currently, devices that use this system

may have a single button or multiple buttons on it to perform

the task and this is one of the drawbacks as it requires the user

to know all the steps involved when pressing these buttons.

Also, the connect ability-relationship and the application

between two device types are defined beforehand.

Based on the issues related to the above systems, this position

paper introduces the concept of device-blending, together with

its formalization (a mathematical model) and architecture for

the home environment. The mathematical model shows how

different devices interact in the environment, which devices

do not interact and what kind of inter-device relationships

exists between these devices. The device-blending architecture

uses the mathematical model as the conceptual foundation for

the implementation of a decentralized system that all the

devices can use.

The rest of the paper is organised as follows. Section 2

outlines some of the scenarios that are common in the home

environment. Section 3 outlines the key inter-device

relationships which are the building blocks for the device

blending mathematical model as well as our architectural

design for the home environment. It also outlines the issues

related to the mathematical model and the architecture.

Section 4 concludes the paper with future directions.

2. Future Home Computer Scenarios and
requirements

This section gives three different scenarios in a home

environment and show different choices that a user can make.

In the first scenario, Harry finishes typing a document using

his laptop and now he wants to print the document, he finds

out that his laptop is not connected to the printer but his

desktop computer is. Harry has two choices to make:

• He can copy his document to the desktop computer

• He can connect the printer to the laptop

In the second scenario, Harry is in a sitting room and he

wants to check his bank details and the only input device that

he has with him is mobile phone which is not connected to the

internet. So the only option is to log on to a device which has

Internet connection in order to check his bank details, for

example, a personal PC.

In the last scenario, Harry is watching, “the Secret window”

movie on his computer and due to some hardware

malfunction, his monitor stops working, so Harry can either:

• Wait till he gets a new monitor or gets his old one fixed

• Use his DVD player to watch his movie

From the above three scenarios, we believe the following

issues are important when designing devices for the home

environment.

• Devices should have a knowledge about devices that have

similar services

• Devices need not have a direct connection with other

devices to use their services

• Most of the devices should be able to perform a user task

• User need not have deep knowledge about how devices

are connected in order for him/her to take advantages of

the services they provide

In this paper, we propose a mathematical model that

• allows the user to know how many devices interact in an

environment, how they are interacting and what devices

are not interacting, and

• serves as a building block for the decentralized device-

blending architecture.(more on the device blending

architecture in section 3.3)

3. Device-Blending

In this section we discuss the key technical concept of device

blending and a mathematical model for device blending.

Before we define what is device blending is we define inter-

device relationships which are the building block for device

blending.

The assumptions that we make for the model are as follows:

• Each device in the environment consists of services.

• A device can have none, one or more than one network

connections.

• A device can make use of the services of another device

to which it is connected.

3.1 Key Concepts – Inter device
Relationships

In the real world or the environment we see different kinds of

relationships that exist between human beings or objects. For

example, A PhD student has to have at least two supervisors

(main and co supervisor). So based on this we can have

different possibilities:

• The main supervisor is absent for the meeting and

therefore the co supervisor substitutes him

• Both supervisors are present and in that case each one can

enhance the other by elaborating on an idea or on a

suggestion

If we consider the devices as objects which interact with other

objects based on some relationship, we can have the following

inter-device relationships using the metaphor of relationships

that exist in the real world.

Substitute (sb): A device is said to substitute another device

if there exists a similar service that both devices provide and

in the case where one of them cannot provide that service then

the other one can. For example, both the TV and computer

monitor are used for viewing movies; so in the case where the

computer monitor stops working then the TV can substitute

the monitor.

Dependent/Bridge (br): A device is said to be a bridge

between two or more device when it is able to relay or pass a

message/service back and forth between devices which are not

directly(physically) connected together. For example, a

computer can be a bridge between a mobile phone and a

printer.

Enhance (eh): A device is said to enhance another device if it

can provide a service which can be used by another existing

service for its betterment or to enhance user pleasure. For

example, an extra woofer & sub woofer can be used along

with existing speakers for more enjoyment but they are not

necessary to have.

Complement (cm): A device is said to complement another

device, if one device’s service can use another device’s

service and vice/versa to complete a given task.

Enable (cm): A device is said to enable another device, if the

use of service in one device enables a service provided by

another device. For example, when you open the door the

alarm goes off.

Disable (ds): is similar to enable except it is the opposite. For

example, when you leave your house, the kettle should

automatically stop boiling the water.

Therefore we can say a device is blend-able with the

environment if it satisfies the following criteria:

• A network connection exist between it and any other

device and it is recognizable by that device

• There exists some services which can

complement/enhance/substitute/bridge/enable/disable
the existing services in the environment

Note that we do not make underlying assumptions about the

actual network technology- the model is more general than

that. We have a relationship model for devices having the

blending properties.

Let D denote the set of devices in an environment.

D= {d1, d2, d3,…,dn} and Let R denote the set of blending

relations that exist in an environment R= {eh, en, cm, sb, br,

ds}.

Let F denote a device ecology involving devices in D having

relationships from the possible relations in R. Therefore, we

have F, defined over D and R, as follows:

F(D,R) ⊆ (DxR’xD ∪ Dx{br, br*,br�}xDxD)

where R’ = R\{ br, br*,br� }, i.e. bridging relations involve

three devices whereas the other relations are binary. The

device ecology F(D, R) can be represented using what we call

an inter-device relationship matrix (IDR matrix, for short).

Each inter-device relationship can be sub categorized as r, r*

and r�. The r stands for a uni-directional relationship between

devices. The r* means that the relationship is bi-directional

based on a single service that the devices provide to each

other, and r� means that there exists a bi-directional

relationship between devices but this relationship is based on

different services they provide to each other and not the same

service. For example, consider that, the computer monitor can

substitute the TV but not vice versa. In this scenario we have a

uni-directional substitution relationship (sb). If both devices

can substitute each other for the same service than we have a

sb* relationship; if one can substitute the other but on

different services, then we have a sb� relationship.

Let D be a set of devices and R blending relations. Then an

environment E is defined as a set of device ecologies F1, F2

..., Fn over D and R. We have

E = {F1(D,R), F2(D,R), … , Fn(D,R)}, where Fi ≠ Fj for i ≠j.

IDR matrix is a matrix that shows different types of

relationships that exist between different devices in an

environment. The IDR matrix looks as follows (for example):

Figure 1: IDR matrix

Bridging relationships involve three devices and are

represented by entries in two cells (one for the two devices

being bridged and another for the bridge device).

D1, D2, D3, Dn are the devices in the environment (D1, D2,

D3… Dn ∈ D). R1, R2, R3 are different relationships that

exist between the devices (R1, R2, R3 ∈ R). In an IDR matrix

the row shows the direction in which the relationships exist.

For example, figure 2 is an IDR matrix for an environment E

consisting of 2 devices A and B.

Figure 2: IDR matrix for 2 devices

From the matrix, we can write down the device relationship

F(D,R) which in this case is, say, F({A,B},{sb}) = {BsbA},

we will often write “BsbA” or “B sb A” to denote “(B,sb,A)”.

Also, E= {{BsbA}}.

The following two rules are used in the mathematical model

for simplifying the expressions:

• Joining rule: If there exists a device D1 which has

relationship R1 with device D2 that is D1R1D2 and R2

with device D3 that is D1R1D3 and if R1=R2=R’ where

R1, R2, R’ ∈ R and D1,D2,D3 ∈ D then we have

D1 R’ (D2, D3)

• Distributive rule: Suppose D1R1D2D3 and D1R2D2D4,

and R1=R2=R’ then from the joining rule we have

D1R’(D2D3,D2D4) and therefore since D2 is common in

(D2D3,D2D4) we write D1R’D2(D3,D4). Similarly if we

had D1R’(D3D2,D4D2) we write D1R’(D3,D4)D2.

Note that from the above distributive property

D1R’D2(D3,D4) ≠ D1R’(D3,D4)D2 because the way

devices are written in the equation tells us in which

direction the relationship exists. This is shown in figure 3

below. The figure on the left represents D1R’(D3,D4) D2

and the figure on the right represents D1R’D2(D3,D4).

Figure 3: Different meanings for similar kinds of

representations in mathematical model

3.2 Mathematical Model - A Case Study

Consider the following case study in figure 4 which is taken

from the paper called “Challenge of Invisible Computing”

written by G. Boriello [13]. The above concept of device

blending is not restricted to the home environment it can be

used anywhere. In this case our environment will be the

(imaginary) boundary that surrounds the devices.

Figure 4: Digital photography in a world of invisible

computing [13]

The arrows represent the direction in which the information or

the data packets flow can be transferred. The following is the

explanation taken from the Invisible Computing paper [13],

“After the user takes a picture, (1) the camera forwards the

data to a body server (shown as a cell phone), or to an interim

carrier (shown as a wristwatch) and then to the body server.

Along the way, (2) the picture picks up the photographer’s

identity from a personal item the user is wearing (such as

ring). (3) The cellular connection lets the picture data travel

into the information infrastructure (shown as a mainframe

computer), where (4, 5) it uses computational resources to

find the services (in this case, a photo album and printed

pictures) to which the user is registered. Finally, (6) an

acknowledgement that the services have received the data

goes to the user’s PC, which (7) later informs the camera that

it can reuse the space occupied by that photograph.”

Based on the explanation given we have the following

different relationships that exist between these devices.

Ring: ring provides either the camera or the body server with

the user identification so that the photos can be transferred to

the appropriate user account. If the camera is used by its

owner than there is no need for user identification but if it is

used by a different user than in the user identification is

needed since the information will be transferred to a different

user account. Hence, the ring enhances the camera and mobile

phone by providing user identification which can be used as

an extra step for data security.

Watch: it is considered as an interim carrier in case the body

server is busy so that the camera can send the photos to it and

then later on pass it to the body server. Here, the watch is

acting as a bridge between the camera and the body server.

Mobile phone: Mobile phone acts as a bridge between the

camera and the main computer, that is, there is no direct

connection between the main computer and the camera but

there exists an indirect connection via the mobile phone. It is

used for transferring the data as well as the acknowledgement

from the main computer.

Laptop: Laptop is used as a bridge between the main

computer and the camera for letting the camera know the data

has been received or not received.

Main Computer (Server): It is used as a bridge between the

mobile phone, laptop, photo album and printer.

Figure 5 shows the above relationships.

Figure 5: Relationships between different devices

Let R be ring, C be camera, M be mobile, S be the server, W

be watch, L be laptop, A be the album and P be the printer.

From the above figure we have the following relationships, as

expressed in our notation:

1: RehC

2: RehM

3: Mbr*CS

4: Wbr*CM

5: Mbr*WS

6: SbrML

7: SbrMA

8: SbrMP

9: LbrSC

We can use a matrix which represents the different

relationships described above, as follows (in figure 6):

Figure 6: Matrix representation of devices and their

relationship

From the matrix, we can now simplify the relationships by

combining expressions, and so, we now have:

1: R eh(C, M)

2: M br(C, W) S

3: S br(ML, MA, MP)= S br M (L,A,P)

4: W br* CM

5: L br SC

From 1 and 2 we replace M in 1 by M in 2 so we have

6: R eh(C, M br*(C, W)S)

If we replace S and W in 6 with S and W in 3 and 4

respectively we have

7: R eh(C,M br*(C,(W br*CM))(Sbr M(L,A,P)))

And lastly replacing L in 7 with 5 we have the following

equation

8: R eh(C,M br*(C,(W br*CM)) (Sbr M((L br SC),A,P)))

Therefore, environment E = {F1(D,R)} where F1(D,R) is

effectively:

R eh(C,M br*(C,(W br*CM)) (Sbr M((L br SC),A,P)))

i.e. In this case, the set of relationships collapses into one

complex relationship by following the Web of relationships

(this is a strongly blended environment).

Then, given only one device ecology in E, E is also effectively

R eh(C,M br*(C,(W br*CM))(Sbr M((L brSC),A,P)))

From the above equation, we notice that all the devices in the

environment have at least one relationship with another device

and there is no device that does not have a relationship; hence,

we can say that we have a fully blended environment. If we

have a device which has no relationship with any other device

in the environment, then we will have a partially blended

environment, i.e.

Fully blended Environment: an environment is said to be

a fully blended environment if there exists at least one

blending relationship for each device in the environment.

Partially blended Environment: an environment is said

to be a partially blended environment if there exists a device

in the environment which does not have a blending

relationship with other devices in the environment.

Uses of the mathematical model
The expressions formalize the relationships among devices

(i.e., the device blending). There are at least four uses of

above model:

• One of the basic uses of this model is as a basis to show

the user how many devices in the environment are

connected, how they are connected (since the

relationships as captured in an IDR matrix, can be

depicted in a graphical format) and what relationships

exist between the devices.

• Another use of this model is to enable the user to tell the

devices how to interact, i.e. the user devices an IDR

matrix and then let’s the system attempt to form the

connections as prescribed in the matrix.

• This model also lets user know which devices are using

more resources and which ones are not. These resources

can be represented as the inter-device relationship. For

example, let A, B be two devices such that device A

substitutes device B based on service X. That means B is

using A’s resources and device B is also using the

resources from other devices without providing its own

resources to other devices. This information can be used

by the user to reconfigure his/her devices so that they

provide optimum resources to its friends.

• Companies that manufacture more than one device (or

product) can use this model to design the interaction

between all their devices (or products) when they are

located in the same environment. Via device-blending,

we, therefore, enable devices to “pile up” at a place, to

form a more effective collection of blended devices as

devices are added.

3.3 Device Blending and Tasking
Architecture

The device blending architecture is divided into three layers

each component in the layer has a clear specific responsibility

as show in the Figure 7. These three layers provide the

modularity between different processes in a device as well as

extensibility to the model. The basic layer is the Blending

layer that stores the information of devices which provide

services to their “friends”. The Task layer does the

composition/decomposition of a task and stores information

about user preferences.

The final layer is the device layer which is similar to the

Seamless Device Integration layer in Interplay [7]. This layer

provides the connectivity, discovery of devices; storage of

content or aggregate contents and keeps track of device

functionality.

Figure 7: Device blending Architecture

Blending Layer

• Blending manager. The blending layer manager’s

sole purpose is to store the information about devices

which share a blending property (or relationship) with

other devices. To perform this task, for each device, the

blending manager collects the profile of the devices

which are connected to the device and compares each

device profile with this device’s profile and assigns a

blending property between (or among) them if their exist

one. For example, consider the following device profile

for a desktop PC and a PDA respectively.

Figure 8: HP laptop device profile

Figure 9: Samsung desktop device profile

The blending manager compares the devices’ services in the

profile of each of the devices and finds that there exists a

common service called “Display”, which implies that these

devices can substitute each other based on the Display service.

Figure 10 shows a sample XML file of how the blending

manager will store this information.

Figure 10: An XML file with the device blending

relationships

Task Layer

• User Context manager: the sole purpose of the user

context manager is to store the user preferences and when

a need arises, use the user preference to complete the user

task. Context manager reduces the user- device

interaction. Consider a scenario where the user wants to

print a document. The user doesn’t need to go through all

the process of selecting which printer s/he wants the

document to be printed or how far the user needs to go to

pick up the document (Location), but instead the task is

sent over the network and the system figures out how to

do it. If there is an ambiguity then the system refers to the

user context manager to get the user preferences of that

given task on order to complete the task, instead of going

back to the user. For example, a document can be printed

on two different printers, so the system can refer to the

user context manager and see what the preference are.

The preference could be stated as rules such as “If the

document has a figure or a diagram then use the colour

printer else user the printer which is free.” Such default

behaviours represented with rules reduces the need for

user intervention but the user might still be called in as

and when required and indicated by the rules.

• Task composer: The task composer is responsible for

composing the task description in the system. This task is

then advertised by the device so that devices which are

connected to it can check if they can perform the whole

task or part of the task. For example, a user types a

document in a mobile phone and tells the system to save

it in a server and print it as well. In this case the task is

then passed through different devices (in a peer to peer

approach via peers “friends”) till it reaches the server.

Then, the server checks that it can perform the saving task

but not the printing. The server performs the saving task

but passes the remaining task, that is, “printing the

document” to its friend devices till it reaches a printer

which can print the document. We envision that this is

done automatically, so that, effectively, this is a

constrained (by knowledge of about peers) peer-to-peer

search for a device that can do part of or the whole task.

• Task decomposer: The task decomposer works with

the task composer when a device receives the task, the

task decomposer checks out the functionality

requirements of the task with the functionality of the

device. If it matches and the device is available to

perform the task (the task decomposer checks with the

session manager for the availability of the device) then

the device performs the task else it passes on the task to

its neighbour device.

Device Layer

• Session manager: the session manager keeps track of

which devices are using what services of a device or

which device is offering services to other devices so that

if a new request comes via the task decomposer it checks

the status of the services and based on that it will either

accept the task or it will not.

• Device and content manager: the device and

content manager manages the content in a device, groups

the content based on certain criteria, keeps track of all the

devices that are connected and acts as a temporary storage

system for data that needs to be passed on to other

devices in case those devices are busy.

• Device context manager: the device context

manager stores the information of the environment so that

based on the environment context some services provided

by the device can be used or they can not. For example, a

mobile phone goes on silent mode if it notices that there

is a lot of noise in a room or it can increase the volume of

the ring tone.

The benefits of our automatic device blending architecture can

be viewed as follows:

• Easy Human-Device Interactions. The device blending

architecture provides a simple and convenient way of

providing an uninterrupted service to a user wherever

he/she is at home. The user does not need to worry about

how the devices are going to interact to complete a task;

s/he just expects the task to be completed or a response if

the task is not completed. For example, the user need not

worry if his/her laptop is not connected to printer; as long

as there exists an indirect network connection between the

laptop and the printer the task should be completed. For

example, figure 9 and 10 show two different connections

that may exist between the laptop and the printer.

Figure 11: Mobile phone and Computer providing the

indirect connection between Laptop and Printer

Figure 12: Computer providing the indirect connection

between Laptop and Printer

• De centralized system: Since the system is de centralized

if even one of the devices (in a given collection) is not

working, other tasks could be completed which are not

related to the non functioning device. With a centralized

system, if the server or the central system stops working

than the user can not perform any task.

This architecture not only helps the user but also helps

companies that have more than one product that they

manufacture. For example, a company like Sony has many

products and as part of product design, they can make a

relationship model for their products, that is, if these products

come into an environment, the model specifies how they are

going to interact with each other. In this case, products add

value to one another i.e. an accumulation products in a place

will result in a more powerful “user task processor”; adding

products to a place will result in a new relationships being

formed between the new products and the existing products at

the place, yielding a more powerful multi-device task

processor for the user. For example, a Sony mobile phone can

be an Interim Carrier between Sony Camera and a Server.

Here, the mobile phone acts as a bridge between Camera and

Server.

3.4 Implementation and Software
Infrastructural Issues

There are four implementation issues for the device blending

architecture which we are currently working on:

• Device driver: Since the architecture is a distributed

architecture, a criterion has to be defined about which

device needs to store/download the device driver of a

device. For example Harry bought a new smart clock [12]

which has a Bluetooth connection. His computer also has

a Bluetooth connection. In this case, do both the devices

need to get the drivers or only the computer needs to have

it? This issue could be solved by checking which device

has resources to do it. For example, if the smart clock

does not have a connection to the internet but computer

does than there is no need for the clock to download the

driver since it can be done by the computer

• Device profile matching and device relationship

generation: Another issue that we are looking in to is how

to determine from the device profile which services

complement, enhance, substitute, enable and disable each

other. Bridging two or more devices doesn’t require the

checking of the profiles of the devices since the bridging

devices are there just to relay the information from one

device to the other.

• Device ambiguity: For example, which printer to select, if

there is more than one printer available to print a

document? This problem could be solved by associating

context or rules with the task for example you can specify

“use only the colour printer”.

• User involvement: The third issue leads to another issue,

and that is when to use the user requirement to complete a

task? Does the task need to check the user requirement

before it is performed or to use it later when it runs out of

options?

These issues are not the only considerations we are exploring;

we are also looking into software infrastructures which can

support this concept. The requirements here include:

• Maintainability: we imagine the home environment to

be dynamic in the sense that some devices will be added

or removed from the environment over time and therefore

the relationships that have been established needs to be

updated. This problem could be solved by using protocols

such as UPnP, and Jini.

• Usability: not only that device can connect to other

devices but how much information it needs to have so that

a user can use the services provided by these devices

easily.

• Resource usage conflict resolution. we are also looking

into the issue of resource usage conflicts. For example,

the TV in John’s room is not working so he comes

downstairs to watch his movie in the sitting room and

Alice was watching her movie in her room and she comes

down to cook and watch the remaining part of the movie

but she finds John is watching the movie. So who should

be given the preference to finish watching the movie?

One manual solution is to let John and Alice talk it out,

but could system based solutions solve easy conflicts

automatically?

4. Conclusion

In this paper, we have described the motivation, a

formalization and an architectural design of our device-

blending model. The model allows the user to design his/her

environment which consists of different devices and these

devices can interact with other devices based on inter-device

relationships. It also lets the user know which devices do not

interact with other devices and which devices are using more

or less resources (in the sense of being involved in many

relationships and using many services or having many of its

services being used by other devices).

The idea is that, given a collection of devices, through a

process of what we call device-blending, relationships (of the

types we specified) are automatically formed (via device

profile matching as we noted) among the devices. Such inter-

device relationships are represented via the expressions we

introduced, and such expressions can be depicted graphically

or via an IDR matrix (and shown to the user in such a format).

These IDR expressions can also be used for formal, automated

analysis – to discover important devices, for example, which

forms bridges among smaller collections of devices.

Alternatively, the user can specify such IDR expressions and

have the system (i.e., the set of devices) attempt to form such

relationships, or given a generated IDR expression, the user

modifies it and submits that to the system to reconfigure the

system.

Our proposed device blending architecture consists of three

layers: task, blending and device layer. Such a layered

architecture provides a separation of concerns – note that the

architecture is distributed and peer-to-peer, with each peer

having such layers (perhaps to different complexities

according to their computational capabilities).

Our notion of blending is, hence, at a level of abstraction

above low-level device connectivity and discovery, and after a

collection of devices have formed relationships with one

another (i.e. have blended with one another), they can be

collectively tasked by users - the user is effectively issuing

tasks to, or being served by, a collection of blended devices.

A novelty of the notion of device-blending is that such inter-

device relationships are above the level of network

connectivity, and provides a general abstract description of

how devices might or can work together, independently of

particular domain-specific tasks. Our previous work [15] was

on a centralized workflow metaphor for coordinating devices;

the work here takes a novel decentralized peer-to-peer

approach instead. After relationships have been formed among

the devices, i.e. after device-blending, the devices can then be

tasked and work with one another to fulfil user tasks – the

metaphor here considers human relationships where tasks are

typically performed effectively over an existing web of human

relationships. We are working on the task language for the

user to specify such tasks over a collection of blended devices.

The above mentioned issues are part of our future work but

also we will be looking into making our mathematical model

more general and looking into capturing connectivity details.

For example, the model does not explain what kind of

connection exists between different devices, or record the

criteria for assigning the relationship (i.e., remember the

results of matching the device profiles).

We will also be looking into what is a feasible way of using

this architecture in a device. If a separate chip with the

architecture build in it is needed or whether installing device

blending software is enough.

5. References

[1] M.D. Weiser. The Computer for the 21
st
 Century.

Scientific American, 265(3):66-75, September 1991

[2] UPnP, http://www.upnp.org/

[3] JINI, http://www.sun.com/software/jini/

[4] Bluetooth, http://www.bluetooth.com/

[5] Salutation, http://www.salutation.org/

[6] SLP,

http://openslp.org/doc/html/IntroductionToSLP/index.html

[7] Messer, A. Song, H. Kumar, P. Phuong Nguyen

Kunjithapatham, A. Sheshagiri, M. 2006. Interplay: a

middleware for integration of devices, services and

contents in the home networking environment. In

Proceedings of the 3
rd

 IEEE international conference

Consumer Communications and Networking Conference.

(CCNC 8-10 Jan. 2006). pp. 1083 – 1087

[8] Brumitt, B. and Shafer, S. 2001. Better Living Through

Geometry. Personal Ubiquitous Computing. 5, 1 (Jan.

2001), pp. 42-45

[9] Kawaguchi, N., Cogma: A middleware for cooperative

smart appliances for ad hoc environment. In Proceedings

of the International Conference on Mobile Computing and

Ubiquitous Networking (ICMU2004), pp.146–151, 2004.

[10] Kohtake, N., Rekimoto, J., and Anzai, Y. 1999.

InfoStick: An Interaction Device for Inter-Appliance

Computing. In Proceedings of the 1
st
 international

Symposium on Handheld and Ubiquitous Computing

(Karlsruhe, Germany, September 27 - 29, 1999). pp. 246-

258.

[11] Iwasaki, Y., Kawaguchi, N., Inagaki, Y. 2003. Touch-

and-connect: a connection request framework for ad-hoc

networks and the pervasive computing environment. In

Proceedings of 1
st
 IEEE International conference on

Pervasive Computing and Communications. (PerCom 23-

26 March 2003). pp. 20 - 29

[12] Smart Personal Object Technology (SPOT), DotNet

Developer’s Journal,

 http://dndj.sys-con.com/read/46614.htm

[13] G. Borriello, “The Challenges to Invisible Computing,”

IEEE Computer, Integrated Engineering column, vol. 33,

no. 11, pp. 123-125, Nov. 2000.

[14] Huang, A. C., Ling, B. C., and Ponnekanti, S. 1999.

Pervasive computing: what is it good for?. In Proceedings

of the 1st ACM international Workshop on Data

Engineering For Wireless and Mobile Access (Seattle,

Washington, United States, August 20 - 20, 1999). pp. 84-

91.

[15] Loke, S.W. Service-Oriented Device Ecology

Workflows. Proceedings of the International Conference

on Service-Oriented Computing, (eds.) M. Orlowska, S.

Weerawarana, M.P. Papazoglou, and J. Yang, Trento,

Italy, December 2003, Springer-Verlag, Lecture Notes in

Computer Science 2910, pp. 559-574.

