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Abstract. Efficient collection of data represents one of the key chaks for
sparsely deployed wireless sensor networks, due to iskagésnclude heavily
imposing particular nodes to relay sampled data and alsnidgasensor energy
due to possible transmissions over long distances. A pessdiution is to use
existing data carriers, also known as data mules, in the@mvient. Though the
application is often that of delay-tolerant networks, thehhique is cost-efficient
as it maximizes the use of existing network nodes. The dowfaiur interest is
random mobility, where certain sensor nodes move with aaiameelocity as ob-
served in real-life application scenarios. We believe thatuse of data mules for
real-life sensor networks require a unique solution. Thushis paper, we pro-
pose the use of a context-aware framework for data mulinghimng randomly
mobile data mules. As a comparison, we have implementedghlneirr detec-
tion protocol for data muling and contrast it with an implertagion that uses a
context-aware approach with RFID sensors. The experirheggalts show that
the use of contextual information derived from RFID sensdisvs coordination
of more reliable transmissions to be achieved in minimaétim

1 Introduction

Ongoing efforts in the development of radio transceivers iategrated circuits have
enabled the production of small and affordable sensor dstltat can exchange datain
wireless environments. Past and present applicationsxsbs@etworks have included
deployments that monitor for interesting phenomena in tiveeenment including habi-
tat monitoring on remote islands [17], monitoring weathmnditions in vineyards [20],
environmental monitoring in Antarctica [6], etc. Primgrihe aim of these applications
is to relay sampled readings from the sensors to nearbydiagen(s) through ad-hoc
multihopping of data between sensors. However, for spadsployed networks, this
implies costly data transmissions over long instances aad Imbalance on sensor
nodes responsible for routing data packets.

As a solution, various researchers have proposed mobiligrvwdata is not imme-
diately required in real time. The notion of using mobilig/that mobile entities, or



Dat a Mul es, can be used to gather data from static nodes when they coonaimge
and deliver the data gathered to a central station. Thisalews us to recharge data
mules when they return to the central station and elimifreated to use intermediate
nodes to relay data. In retrospect, research in the arealufitpdas mainly focused on
controlled mobile entities with only some work on using mel@ntities with random
motion.

On the other hand, real life applications manipulate existiarriers in the envi-
ronment as data mules such as animals and cars. As an examfil8], data mule
motes are mounted onto spades so that when workers use spadewvineyard, data
would be transmitted from static motes in the vineyard torthdes on spades when
both are in physical proximity. Another application is adregeneous sensor network
deployed underwater [27] where an AUV is used as a data malalect readings from
underwater sensors. The AUV then uses a camera mountedmdétéct the location
of nodes and upon detection, stops and collects the dathebe tscenarios, external
environmental information affects how data mules are tonfy@émented in a sensor
network application. Here, we believe that such informatieither formed by exter-
nal environmental conditions or later gathered internbifysensors, create contextual
information that could trigger sensors themselves to awesenergy in their sensing
operations.

In this paper, we examine the use of contextual informaticiotm useful triggers
for data mules by utilising a context-aware framework. Aganmentation, we initially
propose a basic muling approach for data muling in an enetpiy shed environment
and compare the method to using our context-aware framefe@omuling when ad-
ditional context information is available. An instance loé tadditional context that we
have used is location context by RFID sensors that detegoiriing data mules and pro-
vide information when mules are in range. We discover thinomigy observations that,
for a data muling sensor network application, several avétiee application would be
enhanced through the use of context-aware monitoring setisat will eliminate de-
tection costs and associated transmission costs betwesorseFurther investigations
of our context-aware approach in data muling also show tleatan achieve energy
savings by eliminating repeated acknowledgements senteleet the sender and re-
ceiver. The rest of the paper is organised in the following.\Wasection 2, we present
an overview of past and current research in relation to oukwbhe model of our
framework is presented in section 3. In section 4, we desdhk basic muling and
context-aware implementations for a data muling applicatind compare the costs
involved in the two implementations. Finally, we conclude studies in section 5.

2 Related Work

A key challenge in wireless sensor networks is to consergeggrdue to limited battery
energy in sensors and the difficulty of a battery replacerirehtird-to-reach terrains
where they might be deployed in. As indicated by performaneasurements in [10],
the main resource overhead lies in radio communication n$aereadings between
sensors or from sensors to a central base station. In theo€aparsely deployed sen-
sors in WSN applications, this further stresses some seiosias to relay data to neigh-



bouring nodes that are distant. As shown in [9], mobility baran important primitive
to optimise network communications. In the same way, tlesfifin of a sensor network
would also be significantly improved if we can use mobilityréaluce the amount of
data relaying necessary.

One form of mobility is controlled mobility with mobile enigés such as robots,
granting us the benefit of control over the reliability of @&tansfer through motion
control and the ability to establish shorter data routesef studies have evidenced
the advantages of using mobile entities in the sensor n&tdamain. For instance, in
a study by [24], the authors discussed a network infrasiradtased on controllably
mobile nodes. The implementation involves the use of a radizike station that moves
in a near fixed path, collecting data from cluster heads fdrfnrem embedded static
nodes. The implemented system prototype utilises thedtrfreture to improve the en-
ergy performance for battery constrained sensors. Prihigavork, [25] has suggested
scheduling of mobile entities for efficient data collectiniWSNs to visit sensor nodes
before their buffers are full. Controlled mobility has als®en examined in the area of
ad-hoc networks, such as [29] and [16]. In [29], they addredise issue of efficient data
delivery in sparse mobile ad hoc networks. The techniqueriméd by the authors as
Message Ferrying, in which special mobile nodes moving inrarandom fashion are
used to carry data for nodes in the network. It exploits the-remdomness to provide
physical connectivity among nodes. Also, in [16] we noteule of mobile hosts that
are able to modify their trajectories actively to transméssages in order to transmit
messages in disconnected ad-hoc networks.

In contrast, we are interested in the applicability of melgihtities for real-life sen-
sor applications where data mules would be carriers thaadjr exist in the environ-
ment. These entities can be medical wearable sensors foarigjreensors mounted
on pigs or mounted on vehicles. In this environment, seatdltional challenges are
present due to issues such as changing speeds of mulingeatit unforeseeable mule
arrival times. Predictability of mule path is also anottemuie and has been studied in
[3].

The concept of using random mobile entities has been stumidd0], [12], [16]
with applications as shown in [23], [14] in the domain of aatmetworks. In [10],
the authors demonstrated the use of intermediate relaysnodearry data between
source and destination so as to maximise the throughputeimétwork. Moreover,
programmed/unrealistic movement models as stated aboyeaffext the real perfor-
mance of protocols, for instance, the reliability of datnsfer. Through simulations,
[12] has shown that the mobility model has a significant effecthe routing protocol
employed. The concept of random mobility have been exploregveral ad-hoc net-
works systems, as examples, [23] that uses whales as théemoblies in the network
where data is replicated and spread as whales surface; dtd]jrthe use of track-
ing collars on zebras and the use of peer-to-peer netwohnkigges to forward data to
mobile base stations.

Extending existing ad-hoc routing protocols to sensor netg; however, presents
further challenges due to different requirements in terfrnthe allowable bandwidth
and network scalability [2]. Sensor networks also shareffaerdint energy optimisa-
tion goal because for sensor networks, sensor networknligebptimisation is also



concerned with duty-cycling sensor nodes [22]. Recentarebers that have studied
random mobility for sensor networks include [11], [13] arid.[In [11], the authors
proposed DataMULE, a three-tier architecture for collegtiata in sparse sensor net-
works. The DataMULE architecture uses mobile entitiesgmes the environment to
transport data from sensor nodes to access points. Thergrama of the architecture
is to achieve energy savings in sensor nodes by using mattitées with short range
radios as low power transport medium for sensor data. Theegirof using multiple
data mules as transport is detailed in [13] with simulatiesuits. In another study, [1]
explored data muling with an experimental test beds usirgathimotes and reported
results on the effect of moving speed of mobile entities iatien to muling perfor-
mance.

Our initial implementation of a data muling applicationlfats closely the study in
[1]. Nevertheless, while the aim of [1] is to evaluate thefpenance of a data MULE
model based on the architecture in [11], we aim to furthedytand detail possible
experimental challenges of data muling in an envisagedlifeadcenario. The obser-
vations from the experiments prompted the idea of harngssintext-awarenessinto a
data-muling application. Particularly, we are motivatgaekisting work and interesting
uses of contextual information in other applications. Dgsed in [19], different data
managementissues are involved in this context managenaress, from collection to
processing of data, these issues include storing abundasiént sensor data, process-
ing data in real time and obtaining useful knowledge fromdata processed. Analysis
of the data would then yield contextual information whewatext[7] in our work gener-
alises sensor data derived from sensors. Context couldthened to provide different
forms of services to the user, as relevant to the current{&skEome examples of the
context-aware applications can be found in [28, 15, 21, 4].

Our approach involves obtaining relevant context and ugitg assist a mule in
data collection. In the next section, we describe our cdraaareness methodology
and our context-aware framework for muling.

3 Context-Aware Sensors

3.1 Sensor Roles

We manipulate relevant contextual information in a senstwark application to con-
trol the operations of sensors in a data muling applical@a.consider that, for sen-
sors in any heterogeneous sensor network, sensors wouddlifearent computational
power and radio range, allowing them to perform a multitutleotes within a sensor
network. Figure 1 shows the partitioning of the roles a seoan perform.

In this partitioning, we note that certain sensors can bd setely for the purpose
of providing useful contextual input to the system (3. some sensors for monitoring
which can be controlled by context (i®) and others that can provide both functionality
(i.e.a + (). For instance, in a pig shed, monitoring sensors such asreanthat track
animals coming in and out of the shed will initiate how oftemperature sensors are
to relay temperature conditions in the shed, i.e. maybe wfign pigs are in shed.
Sensors that provide this contextual input is thostext-aware. In the next section, we
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Fig. 1. Sensor Monitoring Roles

describe quantitatively, the different forms of contexinput that can be manipulated
in a sensor network.

3.2 Contextual Input

Drawing upon definitions of context in [4] and [21], contertgensor networks can
broadly be classified into five categories:@dmputing context: information describ-
ing the computing status of sensors such as network comitgatommunication costs
and remaining battery power. (Bensor contextRelative to sensors, this form of con-
text refers to the sensors’ profile, such as the group theynigeto, their location in
a sensor network and a common situation they face (e.g. eemtiot). (iii) Physi-
cal Context: Physical Context refers to external conditions that can basuared by
sensors, for instance, the lighting of a room, the tempegadnd the sound levels of
surroundings. (iv)Time Context: time would refer to the time of day, week or month
when sensor readings are obtained and which further desastber sensor context. (v)
Historical Context: in most cases, a history of sensor readings accumulateaesr
tain time span could describe additional information atibatcurrent situation being
sensed. Coupled with information about readings of sugnsensors, this yields
historical context, which can be used to predict future sensadings. The different
types of contexts described above, be it a derivation framglsiraw sensor readings or
collections past sensor readings can be further classiftecdtwo main levels of con-
text. In line with the observation by Dey in [7], they are: Rfjmary context: Basic
information that answers directly what is sensed from therenment (e.g. tempera-
ture and date), which can be used to deduce further confextiation. (b)Secondary
context: Information derived from primary context (e.g. temperatand date could
describe weather information)



3.3 A Context-Aware Framework for Data Muling

We first introduced a context-aware framework to consenez@@nin wireless sensor
networks in [5]. To apply this framework to data muling, weewithe RFID detec-

tion of mules as a form of contextual input to the frameworid aignal events sent
to mules/sensors to initiate transmissions as the coraktrtggers in this framework.

The diagram below depicts our modified context-aware fraonk\or the data-muling

application scenario:
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Fig. 2. Context Aware Muling Framework

Summarising our earlier paper, the framework is made up Bbwa components
from the collection of contextual information to appliaatiof triggers to sensors. In-
stances of this framework would run on a centralised systér@reby data would be
processed. As an overview, tB®mmunication Serveris responsible for the receiv-
ing of raw readings from sensors and relaying the messagdks tipplication. Control
messages are also sent from this server. In the diagrammthdsile is isolated from
the framework because different sensors require a differ@mmunication interface
(for instance, SerialForwarder in java under TinyOS). Tuntext Locator Service
andContext Trigger Engine are the key components in the framework. The function
of the Context Locator is to abstract raw sensor readingsdohtext labels that can
be internally recognised within the system. A method focoiering the context label
is through if-else condition rules. Otherwise, the systan try to learn from data-



readings, and discover patterns, which could potentiadhjve a particular context we
are interested in, for instance, historical context frorstpaadings of sensors.

When a valid context is present (when there is at least ontexbto action map-
ping), theContext Trigger Engine checks the data stores to determine the sensor op-
erations that the system has to trigger based on the cortext gnd the profiles of the
sensors in the database. To make this approach genericrfopllimg sensors, we can
employ the use of action macros on sensors, which we definalaw$ using a form
of BNF rules:

S->M
M->M+ M| OP+ M| OP
P -> 0P + OP |

i nstruction

where M represents the set of macros, conditional that ewagro cannot be defined
in terms of itself, and where instruction is the actual comchaent to sensors. For
instance,

REDUCE_TEMP_GRP_1 -> CHANGE_TEMP_RATE 100 _a
+ CHANGE_TEMP_RATE_100_b
+ REDUCE_TEMP_GRP_0

where theREDUCE macro translates tBHANGE_TEMP operations and anothBEDUCE
macro (but on a different group of sensors). A sensor canveseich a macro com-
mand and then perform operations as described by the macro.

The representation can be done in an XML language. For exarfgulthe context
mul e_i n_range:

<cont ext |abel ="nul e_in_range"
sensor_group="nul e" detected_tine="3m ns">
<title>Signal </title>
<macr o nane="si gnal sensors">
<operation> SEND MJULE | D</operati ons>
<macr o name="si gnal _nul es">
</ macr o>
</ macr o>
</ cont ext >

Thie above rule states that when the mule is in range, ussitigmal _sensor s
macro, which in turn initiates thei gnal _nul es macro.

4 Implementation and Issues

To evaluate our context-aware approach to muling, we egeiagig farm scenario and
outline the process of muling in this scenario with flow degs. We first perform a
nearest neighbour basic muling approach on this scenaditatar, compare our results
with a context-aware approach.



4.1 Application Scenario

Consider the AWSN test system comprising a group of pigs éairgdividually in an
experimental pig facility [18] to measure the effect of ertd stressors in a shed(e.g.
temperature) on the core body temperature of pigs. Thengetinsists of Mica2Dot
wireless sensors mounted on four pigs to measure each pigstemperature below
the skin and a combination of Mica2/Mica2dot motes in thedsioeemeasure internal
shed temperatures. Environment sensors are placed Byatidhe shed and supports a
multi-hop network. Nevertheless, as stated by the authssjch an environment, the
network quality is often quite poor. In deployment, thoughaese station was placed
centrally in the shed, the range of reception at high powey ovdy a few meters and
often suffered packet loss due to noise in the shed and myodilthe pigs.

In this scenario, we consider the use of data mules in thisseretwork to improve
network performance by maximising the use of existing miltd® mounted on pigs. In
the diagram below, the scenario depicts mules A, B, C thaableto move randomly
within the shed to collect data from static sensors when #ineyn close proximity and
offload data when they are outside the shed (Refer Figure 3).

l,-—lnside the shed

Sensor Sensor
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Sensor A Sensor

(2) (4)

B
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Fig. 3. Muling Scenario

Theoretically, a data muling approach in this scenarionallas to minimise in-shed
communication by having pigs save data into internal flasmorg in motes and of-
floading the data outside the farm where communication iemediable. Additionally,
by using the pigs to transport data from environmental ssrsthe same time as they
move out of the shed, we hope to save communication costaugethe mules to phys-
ically transport data over the distance). The trade-ofhig technique is the delay in
receiving the data but we foresee the possibility of using dauling at least to some
extent. For instance, pigs might carry only some historadiatm static environment
Sensors.



4.2 A Basic Muling Approach - Sensors “Polling” for the Mule

Modelling the scenario we proposed above, we configured & inase connected to a
laptop running MacOSX on a/c power source, mica2dots as thesmith limited bat-
tery power, and static mica2s as the sensors that reguéariple temperature and light
readings in the environment, running on two AA batteriese Tiotes are programmed
in nesC under the tinyOS[26] operating system, with Seoialfarder running at the
base station to provide the serial interface. We apply alresarest neighbour detection
technique. The decision flows for the mule, sensor and béest#os) for this technique
are in Figures 4, 5 and 6.
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Fig. 4. Mule Decision Flow Diagram

In the flow diagrams, packets are sent by the sensor once mardes range, i.e.
when acks can be received from the mule by the sensor. Ndtewba when this starts
to happen, the communication between the mule and sensbt nugbe stable enough
for reliable transmission of logged readings (i.e., thdiappon data). The mule, in fact,
has to come within a “safe distance” of the sensor for datestrassion to be reliable.
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Fig. 5. Sensor Decision Flow Diagram

Due to the isotropic nature of the radio range, we use linkllacks provided by tinyOS
to determine if a sensor/base is still at range during pacesmission. Although not
used due to radio communication costs, one way to establisledle communication
is for a sensor/basestation to send repeated acks when asrddéected so that we
reduce the amount of packets loss when a mule falls out oferdrgr instance, if we
can receive 8 acks out of 10 that have been sent, then we hagkexr honfidence that
the mule is within range. The sensors (with the data or loggadings) are, in effect,
polling to determine if the mule is there and whether the nmiteear enough. This can
be resource wasting.

In this implementation, data mules are only responsiblecfidlecting data indi-
vidually. We avoid duplicate copies of the log to be sent bly@illowing exclusive
send/receive transmissions between a single sensor amrd iImaither words, a sensor
will only process one mule at any time. This implementat@ves us from the complex-
ities of manipulating multiple read/write pointers to tlog Idata in the case of servicing
multiple motes. Another possibility is manipulate mule talencommunication so that
data can be multi-hopped between mules and allowing, paitketach the base-station
sooner.

To conserve network radio energy, static sensors can datsmate between packet
broadcasting and sleep mode, while mules are in constanptmver listening mode.
The basestation, on the other hand, will be constantly lmastthg signals. We can also
operate the static sensors and the mules at different skgggscto more efficiently
conserve energy, for instance, sleep sensors at 5 secdadsls and mules at every 2
seconds intervals, but the adjustment of the sleep cycleddviae application-specific
and dependent on the mobility of the data mules, and so, baré&hually fine-tune.
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4.3 Context Aware Muling Approach

With reference to the pig farm scenario above, we now modektnsors (to be data
muled) as “the sensors that are to be controlled by contiggers,” additional RFID
sensors as “sensors that can provide the contextual infmmf@r control” (about the
whereabouts or proximity of the mule in this case) wherelasratensors in the farm can
provide both contextual information and be controlled. Westrate this arrangement
for the context-aware application in the farm environmertb@low (Refer Figure 7):
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Fig. 7. Context Aware Muling Scenario

Our context-aware approach differs from the earlier apgh@a contextual informa-
tion provided by the RFID readers is used to trigger muleat&te. The RFID readers



are also connected to a PC that launches the context-awplieadjon (or CAP, for
short) that, based on its preprogrammed rules, can send@ie macro commands
to sensors (designated to be controlled) depending onxdoaieénput received (from
another group of sensors designated as those providingsuntéxtual information). In
the given scenario, with RFID tags attached to the data matee mule C enters the
shed, the RFID readers located at the entrance of the shiedetéct mule C on entry
and send the detection information to the context-awarécgtion. Signals will then
be sent from the PC to sensor 2, to initiate and establisheatdatsfer connection with
mule C. Basically, sensor 2 will only send logged readingatte C upon a trigger sent
from the base node. After mule C is in safe distance of sensou® C will receive
data from sensor 2 and send acknowledgements to sensor Mamains in listening
mode if there are no more packets from sensor 2. When mulev€ddhe shed again,
the context-aware application sends a trigger to sensaog@pimg the communication.
Note that, in this approach, the sensors don't need to “dol'the mule but is told
when they are near enough by the CAP.

4.4 Results and Evaluation

In this section, we report our results in using the nearegthieur approach and our
results from applying the context-aware framework in tieisrgrio with RFID sensors.
As a performance measure, for both experiments, we noteutmbder of packets sent
from the sensor, the number of packets that have been recatvimhe mule and the
distance between the two sensor nodes. We measure the péxitetelative to the
distance between a single sensor and mule.

In both experiments, we assume a static sensor whereby the mmaves in the
direction of the sensor. As the mule approaches the sensahem note the distance
from the sensor when it is first detected, the number of padket has been received
by the mule since the first detection until the packet lossiismal (i.e., when readings
stabilise and the mule synchronises with the sensor) antbthenumber of packets
received with minimal packet loss. Three sets of readingsaltected. For the context-
aware approach, the experimentis carried out in the sambutaye set a safe distance
of 78cm where we place the RFID reader. The logged readimjs@mmarised results
are shown in tables 1 and 2.

|Basic Muling Experimenlis

Result Sets A B C
Distance in cm, 1st detectigh43 157 153
Packets Sent, unstabld6 46 25
Packets Received, unstaplé4 42 24
Safe Distance in cm88 105 99
Packets Sent, stahlell 48 38
Packets Received, stabld0 48 38

Table 1. Table of experimental results



Context-Aware Experimept

Resul Context-Aware

Distance in cm, mule detected 78
Packets Sent, stahle 40

Packets Received, stable 40

Table 2. Table of experimental results

In the basic muling experiments, we observe that, whilegthee only a few packets
lost until a more stable connection has been establishetk 6 the packets that have
been recorded are erroneous and arrive at an unstable fonrumate at the mule.
Our context-aware approach addresses this issue by imitidata communication to
occur only when the mule is within range of the sensor. Thévident from our results
which show that we can achieve zero to minimal packet lossgulsication context.
Also, energy is conserved, since no packets need to be sdin¢ lsgnsors to “poll” for
the mules or to estimate how close the mules are (or whetieemtiie is within the
safe distance for stable transmission of logged readidgs) this can be achieved via
the CAP notifying the sensors about the proximity of the muiliéh only one message
from the CAP (and no further overhead from the sensors wehafged readings).

5 Conclusion

In this paper, we have presented a context-aware frameworgfficiently collecting
data in wireless sensor networks in the context of randomilihoe enforce mod-
ularity and generality in our framework so that the diffarerodules are independent,
by using different levels of abstraction for data from usamgion macros to classify-
ing different levels of context within the system. For exdenpther sensor devices can
substitute RFID sensors being used to provide the locatatext for detection. Our
context-aware approach is evaluated through comparidqaskets lost incurred when
using our context-aware model to a basic nearest neighlebection technique for data
muling. The observations from the readings obtained fromexperiments show that
our framework avoids packet loss as we automate the pro¢esale detection from
the use of context triggers whereas, although the neariggtlyaur approach allows us
to send more readings since first detection, the connectiobserved to be unstable
and packets are often corrupted. Initial results also ssighat energy is conserved by
eliminating the need to broadcast signals continuouslyemgsrs as noted in the near-
est neighbour approach. To summarise, our framework pes\adyeneric data-oriented
approach that can apply knowledge in any muling applic&ienvironment to enhance
its operations. As a consequence, this eliminates netwasts éncurred for sensors to
broadcast signals in detection to achieve considerablggravings. Also, our context-
aware approach works even for mules that move without depgrmah a pre-specified
schedule - the nearness of mules (some animal) are deteéat€AR (using RFID) and
logged readings transmitted opportunistically. Finakkg, note that this paper presents
only one application of this notion of context-aware seadan this case for energy



efficient data muling). Figure 2 shows one application of cointext-aware sensors
framework as specialized to data muling; we are working athér applications of our
framework.
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