

Policy Based Control of Context Aware
Pervasive Services

Evi Syukur1 and Seng Wai Loke2

1School of Computer Science and Software Engineering
Monash University, Melbourne, Australia

evi.syukur@csse.monash.edu.au
2Department of Computer Science and Computer Engineering

La Trobe University, Melbourne, Australia
s.loke@latrobe.edu.au

Abstract. While mobile computing technology is becoming more
and more mature, the demand of having context sensing ability on
any mobile or embedded systems is increasing rapidly. Context
awareness is important if we want to give a mobile user
autonomous, responsive and attentive services depending on his/her
current contexts. To date, much research work have been developed
to address some issues regarding location modeling, system design
and implementation of simple awareness scenarios. A simple
awareness system displays a set of useful services to the mobile user
based on the primitive context information (i.e., a user’s location). It
does not take into account a rule or policy that specifies when and
where the user wants the particular service to be executed.
Designing a context aware pervasive system with additional policy
information is a new research challenge that needs to be addressed.
This paper introduces the idea of using a policy mechanism to
control context-aware behaviour for pervasive services. The paper
also discusses the usefulness, design architecture and prototype
implementation of the Mobile Hanging Services framework that
supports proactive and ad hoc awareness services in pervasive
environments. An approach for contextual services that uses a set of
rules or policies to govern the service execution is illustrated
through a sample Mobile Windows Media Player application.

Keywords: Context awareness, pervasive services, policy, mobile
code, Web service-oriented development, location modeling, and
handheld devices.

1. Introduction

Over the last decade advances in mobile computing, including
the efforts towards reducing the size of the computer and the
invention of wireless technology, have made it possible for
mobile users to access information at any time and any
location that they wish. Through sensor devices and software
systems which are invisibly installed in the environment of
our everyday lives, the embedded or non-embedded
computing devices communicate and exchange messages with
each other. The availability of sensor devices, plus embedded
systems in the environment is known as “pervasive

computing”. Pervasive computing has a broad view of
providing computing devices everywhere in the environment
and at any time [1]. The idea is that a mobile or non-mobile
user can communicate with any embedded or non-embedded
computing devices, which are invisibly integrated into the
environment as soon as s/he steps into that particular space.
To date, a good pervasive system is no longer determined by
the exceptional number of functionalities that it supports.
Instead, it is determined by the design and architecture of the
system itself i.e., either it is a system centric or a user centric
design.

System centric here refers to a traditional computing system
that delivers a set of services to the user without taking into
account information regarding the user’s contexts or current
activities. It is more focused on the system or developer point
of view. Hence, the service that is delivered may or may not
be useful to the user. A user centric system, on the other hand,
refers to a system that places the end-user as the main priority
in deciding on what type of services should be delivered. It is
designed in such a way as to serve the user’s needs in
different situations by taking into account the user’s context
information. Designing a system based on the user centric
approach has now become a key factor that plays a significant
role in improving the user’s experience, realising the aims of
pervasive computing and to empower users to be more
effective in completing their daily activities.

A context aware system has the ability to usefully adapt
services or applications to the user’s current situation,
intention, needs or environment. This would enable users to
receive a relevant set of services that fit his/her current
context, instead of a barrage of irrelevant services. The notion
of context here refers to any information that is considered
useful to the user and usually related to the user’s current
activities. Context is mainly used by our system to suggest on
behalf of the user what services would be useful and relevant
with respect to the user’s current situation, as well as to
control aspects of an application. Contextual information can
include location, time, a user’s intention, current activities,
history file, device resources [2]. Some other authors
including those of [4, 5, 6] have explored much richer
contexts that involve a variety of different physical sensors in
the environment e.g., sound, temperature, light, touch,
movement and so on.

mailto:@csse.monash.edu.au

Some work has also been done in [3] that presents a
dynamic conceptual model of context that supports cognitive
activities other than just location, time and some other parts of
physical contexts. Currently, contexts in our work comprise a
user identity, location, time and system behaviour according
to context that is specified in a user’s policy document. A
location context is represented by an indoor logical model
such as room location. Sensing the user’s context (i.e., a user’s
location), the system then proactively discovers and computes
a list of services that may be useful to the user at that
particular context. This list of services is then dropped into the
user’s mobile device. In our definition, a service simply means
a software tool, which is delivered onto the user’s mobile
device for the purpose of suggesting or helping users to
complete their tasks.

As the user selects a particular service name on the mobile
device, the highly compact (with respect to limited device
resources) mobile code that provides control for the service is
then downloaded. This sensing ability that can be found in
context-aware applications distinguishes them from existing
traditional applications. Here, “traditional application” refers
to a primitive stand-alone application that does not have or
utilize any context sensing ability.

To clearly understand the usefulness of context sensing
behaviours in the pervasive environment, we first consider the
following system scenario that uses a traditional Windows
Media Player as an example:

“Every day after lunch (around 1:30PM), user
A feels like listening to the instrumental music
in his office (room A). After finishing his lunch
at Merlins Café, he wants his favourite
instrumental music to be played on his desktop
machine, as soon as he opens the door and
steps into his office. However, since a
traditional Windows Media Player application
does not use and utilize the knowledge of the
user’s context information, this smart activity
cannot be performed implicitly by the system.
Hence, user A needs to manually start the
Windows Media Player application, select the
music name and start the music on his desktop
machine”.

To manually start the music each time the user wants to

listen to it can be quite tedious and annoying, and perhaps
unnecessary, especially if there is regularity in the user’s
behaviours, for example, the user always listens to the same
music everyday at the same time and location.

Now, we look at another scenario of a context-aware
Windows Media Player application. The following scenario
uses context-sensing behaviours with the traditional Windows
Media Player application. By sensing the user’s context i.e., a
user’s current location, the system then automatically starts or
stops playing the music on the user’s desktop machine:

“By identifying a user’s identity and sensing a
user’s current location (e.g., user A is now at the

corridor and walking towards his office), the
context-aware Windows Media Player
application will then start playing the user’s
favourite instrumental music on the desktop
machine, as soon as the system senses that user
A is now stepping into the office (room A). The
music playing depends on who the user is. This
instrumental music will be playing until the
system detects that the user has walked out of the
room (i.e., go out for a meeting)”.

Adding context sensitivity to a traditional Windows Media

Player application certainly maximises the user’s experience
in using Windows Media Player. This is due to the intelligent
behaviours of the system that frees the user from all the
manual computation tasks. Hence, this empowers the novice
or even the non computer literate users to be more effective in
performing their daily tasks.

Now, consider another scenario of context based policy
control of Windows Media Player application. This sample
scenario extends the idea of intelligent context based
Windows Media Player application as discussed above by
allowing the end user to define a rule or policy that specifies
when, where, what type of information (e.g., music) that s/he
wants to be played or stopped at each particular situation.

A policy might define a set of activities that a user is
allowed, prohibited or obligated to do in an organization (e.g.,
a staff may only be able to read the company’s message but
not to modify it) [25, 26]. Integrating the concept of policy
into the development of a pervasive system has impact on the
way entities access services. There are several main roles
policy can play in pervasive environments:

a. The policy defines the visibility of the services in particular
contexts i.e., two users with different roles may see different
services available in that context.

b. To help the user to perform a task automatically within a
certain situation (i.e., a policy rule can say “automatically start
the music (service) at 12:30PM at room A, playing The First
Noel”). The rules or policies here can be used to restrict the
behaviour of a service (e.g., a music service) at the specific
context, for example: start the music at 12PM and pause it for
15 minutes at 12.15PM. Having a policy document certainly
helps to improve the user’s experience, especially if there is
regularity in the user’s activities.

c. To constrain the behaviours of the foreign agents or visitors
[27] accessing services in the user’s room (i.e., to protect a
user’s privacy [28] and give the owner of the room the ability
to control the activities of visitors in his/her room).

The scenario below illustrates the usefulness of having a
policy document via which the user can specify control
behaviour for the music service at each particular situation.
The policy is applied when a context is satisfied.

“User A defines the following intentions
(rules) in his policy document

Intention: During lunch time from 12PM to
12:30PM start the instrumental music service
at room A.
Action: As soon as the system detects that user
A is entering room A and the current time now
shows that it is 12PM, the system then
automatically starts the instrumental music on
his desktop machine for 30 minutes until
12:30PM.

Intention: Pause the music for 10 minutes
(from 12:31PM to 12:41PM) as the user needs
to go to the post office to mail a letter.
Action: As the current time shows that it is
12:31PM, the system then pauses the song for
10 minutes until 12:41PM.

Intention: Resume (continue playing) the
music from 12:42PM to 1:00PM as the user is
done with the mailing task and will arrive at
the office approximately at 12:40PM.
Action: The system then resumes the music at
12:42PM and plays the song for 18 minutes
until 1:00PM.

Intention: Stop the music at 1:01PM as the
user is going to have a regular meeting at
1:05PM
Action: When the current time shows 1:01PM,
the music will be stopped”.

Some other scenarios illustrating the use of policy for
governing use (e.g., via a user’s mobile device) of mobile
services.
1. Intention: I don’t mind other users starting a media player
service in my room on Wednesday from 12 to 2 PM, as I am
somewhere else at that time.
Action: All visitors can start media player service and play
any song that they wish on Wednesday from 12 to 2PM at
room A.

2. Intention: Don’t let anyone bother me at my office from 2
to 3PM every Wednesday, as I am preparing for my meeting.
Action: No service is allowed to be executed on Wednesday
from 2 to 3PM at room A.

3. Intention: All services especially an online browsing
service or a mobile pocket pad service are not allowed to be
executed by the student during the exam on 22/12/04,
Wednesday, from 12 to 2PM at exam room A.
Action: No service is allowed to execute or all students are
prohibited to execute any service on 22/12/04, Wednesday
from 12 to 2PM at exam room A.

4. Intention: Every day during lunch time from 12 to
12:30PM, I want the media player service automatically start
my favourite instrumental music at tea room.

Action: The system will automatically start the
specified music on any day (Monday-Friday) from 12-
12.30PM at tea room.

5. Intention: I only allow my colleagues (i.e., all other
lecturers) to start media player service at my room on
Wednesday, 1-3PM.
Action: Only visitors who have the same role (i.e., a power
user role), can start media player service. Other roles can only
listen to the running music without being able to start his/her
own music or stop, pause and resume the currently running
music.

Apart from adding context awareness and a policy
document to a traditionally designed Windows Media Player
application, it is also useful to provide computing support to
the mobile user to access the Windows Media Player
application and control the music from a mobile device while
being on the move (e.g., if in a museum with headphone
music). Here, computing support simply means a mobile code
that is proactively downloaded to the user’s mobile device,
whenever the system detects that the user is in the context
where such code is relevant.

Such a mobile code implements a service which is enlisted
as the user needs it, which takes care of how the task gets
done [19]. The ability to, in an ad hoc fashion, download and
execute mobile code on the mobile device where the code can
be used to control the Windows Media Player application
(such as selecting the target device, music name and action
types: playing, pausing, resuming or stopping the music) gives
the user convenient control over the application. To achieve a
situation where the system can benefit and improve the mobile
user’s experience in an ad hoc network requires a
comprehensive model and design architecture for the context
aware pervasive system. Implementing the idea of enabling
context-sensitive services for mobile users has raised seven
challenges.

One challenge is to have a location positioning system that
can determine the user’s current location accurately. Another
challenge is that the system needs to proactively discover
services that fit the user’s current context as well as
spontaneously deliver and execute the relevant services on the
user’s mobile device. The third challenge is to create a generic
mobile context framework that can support many different
applications including a traditional mobile or non-mobile
application. The fourth challenge is the mobile framework
also needs to exploit the system design and implementation of
policies or rules in pervasive context-aware environments.
The fifth challenge is to develop mobile code encapsulating
user interface to embedded devices or applications in the
environment, e.g., which allows a user to control the Windows
Media Player application from a mobile device. The sixth
challenge is how the communication among a mobile device,
embedded software applications and a desktop device can be
performed.

The seven challenge is how we separate the control
between a user and a system, once we include a user’s policy
into our pervasive system i.e., who should be in control? Is it a
user or the system? The system is context-aware and so should

take action autonomously but the user also needs to be in
control (or have the sense of being so).

The research presented in this paper attempts to tackle the
above issues in our framework for Mobile Hanging Services
(MHS). The MHS supports context-sensitivity and mobile
code in order to provide useful services for the user with
minimal or no effort for service set up prior to use [19]. The
MHS is a framework that supports development of context-
aware mobile services along with a policy to govern the
service execution in pervasive computing environments. It
also provides a generic mobile framework that can be adapted
into any existing traditional application. Using our MHS
system, we can easily add context sensitive behaviours to
almost any existing traditional applications such as a stand-
alone Virtual Network Computing (VNC) application [18,
24], and Windows Media Player application [29].

Apart from being generic, our MHS framework also
permits a remote Web service call from a mobile client device
to a server or vice versa and from a server to the desktop
machine. Hence, with the addition of remoting mechanism on
top of our existing framework and having the extra policy
document for the traditional application that specifies when
and where to start the Windows Media Player application, we
can control the way the application is executed on the target
machine. MHS supports policy mechanisms (i.e., handing the
request from mobile users up to solving the conflict if any) by
having several policy software components. These are policy
manager, policy interpreter, policy conflict detection and
policy conflict resolution which all reside on the server side.
Each of these software components is published via the
system as a web service, in order to support interoperability.
In addition, MHS also has a simple rule that separates a
control between a user and a system (i.e., when the user or
system should be in control).

The rest of this paper is organised as follows. In section 2,
we discuss the conceptual model of the system. In section 3,
we present our MHS policy language design. In section 4, we
discuss several types of conflicts that may occur in pervasive
computing environments. In section 5, we present techniques
used to resolve conflicts. In section 6, we present an
implementation of our MHS policy based system with a
logical view of the components architecture. In section 7, we
present our system evaluation. In section 8, we discuss the
end-user’s perspective of the system. In section 9, we discuss
advantages and disadvantages of using policy in pervasive
systems based on our experience in designing, implementing
and testing of MHS based policy system. In section 10, we
present related work and conclude in section 11.

2. Conceptual Overview of Mobile Hanging
Services

Having an additional policy mechanism in a pervasive
system certainly benefits and maximises the user’s experience.
However, there are challenges to developing such a system:

a. To handle possible conflicts that may occur in pervasive
environments. The possible conflicts may vary from one
pervasive system to another, and depends on the system
design such as the contexts, entities, policies, and services
used. For example, user A has a policy to start the music
service at B536, from 12-1PM, and, user B also has a policy
to stop all the running music at B536 from 12-12.30PM. The
environment needs to be in control, but in some situations, the
user might want control (or have the sense of being so).

b. To have a scalable mobile framework that can support a
number of different policies (i.e., a policy from a user, system,
service or physical room) and have an interoperable
framework where the policy functionalities can be easily
invoked and accessed from different platforms and languages.

c. To develop a simple and robust policy language that can be
easily understood and used with context aware services.

This section provides the most important components and
high level architecture of our MHS system that supports
context awareness for computing relating services and policy
in pervasive environments. We divide our system components
into two major parts: a) contextual services and b) policy
software components (see Figure 1 below).

Figure 1: System Components of MHS based Policy

Framework

We have discussed in detail in [19] each of our software
components that support contextual services in pervasive
systems. This paper focuses mainly on the policy mechanisms
which are implemented on top of our existing mobile
contextual framework that can be used to control the entities’
behaviours in pervasive environments. The policy component
focuses on the policy related queries i.e., handling a user’s
request whether or not s/he has a permission to perform some
actions on the specified service. If the user is permitted, the
system then continues to check whether there is a conflict
between users or between a user and a room when s/he
executes this particular service with the requested action and
lastly, the system resolves the conflict if any. Most of the
policy software components reside on the server side. The
only policy component that resides on the client side is mobile
client query manager. We now describe each of these policy
components:
a. Mobile client query manager (on the client side)

The query manager handles the request from the user and
sends this request to the policy manager. Once the result is
returned (from the policy manager), it then performs the

action whether prohibiting the user from executing the
specified action or allowing the user. For example, a user
clicks on the “start button” to start music A. This query
manager then contacts the policy manager to check whether
the user is permitted to start the music service at the given
context. If the user is permitted, the query manager then starts
music A, otherwise it displays a warning message to the user.
b. Policy manager (on the server side)
Policy manager manages the interaction with the mobile
client, where the mobile client sends a request to the policy
manager and the policy manager processes the request and
returns the result back to the client. A user’s request here can
be a query about the user’s right, obligation or prohibition –
e.g., whether or not the user can start “service A” when in
room A at 3PM on Wednesday. To respond to this query, the
policy manager needs to call the policy interpreter to gather
the user’s relevant contexts and policy.
c. Policy interpreter (on the server side)
The policy interpreter component computes a set of rights,
prohibitions and obligations which are useful for the user in
the particular context. The policy interpreter component first
retrieves the relevant user’s contexts information (e.g., a
user’s identity, location, current time and day). After
retrieving the relevant context information, the policy
interpreter then parses the policy document that specifies the
user’s rights, prohibitions and obligations concerning (e.g.,
when to start or stop) the service.

d. Policy conflict detection module (on the server side)

The policy conflict detection module is called by the policy
interpreter to detect potential or actual conflicts that may
occur between entities (e.g., between users or between a user
and his/her environment (i.e., a room)) [14]. A potential
conflict is a conflict that could happen, i.e., the conflict has
not happened yet at the time the system detects that such a
conflict can happen, as the context or condition for the
conflict to occur has not been met. The potential conflict can
be further classified into two different types: possible potential
conflict and definite potential conflict.

The possible potential conflict is a potential conflict which
can still not happen even in the right user contexts of location
and time - the possibility of occurrence is less than definite
potential conflict. For example, a system (as in its policy)
allows the user to “start any service” but the room (as in its
policy) only allows the user to “start media player service”.
“Any” here means all services which are available for the user
in that context. It includes the media player service and some
other services in the context. The conflict only occurs if the
user starts any service other than the media player service. The
conflict will not occur if the user starts the media player
service. Hence, we categorise this conflict as a potential
conflict with the type possible. Possible potential conflicts are
only run-time detectable.

The definite potential conflict, on the other hand, refers to a
conflict that will definitely occur if the context is met. For
example, a system allows the user to “start media player
service” but the room prohibits the user from “starting media
player service”. Once the context is met, the conflict will
definitely occur, as one allows the user and the other prohibits

the user from doing so. Definite potential conflicts can be
detected statically - clear from inspection of the policies.

e. Policy conflict resolution module (on the server side)

As each entity (e.g., a user) in the system is allowed to create
its own policy and each entity may have different sets of rules
in their policies, there is a chance of conflicts occurring. The
policy conflict resolution component here handles the
conflicts between entities in the system if it occurs. There are
five possible techniques that we propose to resolve the
conflict: role hierarchy overrides policy, activity hierarchy
overrides policy, room holds precedence policy, obligation
holds precedence policy and precedence overrides policy. The
details on each of these conflict resolution techniques are
discussed in section 5.

To decide which technique to use, the policy conflict
resolution component first analyses the type of the role that
the user has. Role here refers to a level of the privileges for an
entity in the system (i.e., a general user, power user and super
user). Basically, the purpose of role is to group and assign
different levels of authority and privilege to each entity. The
grouping here is based on the type of the entity i.e., in a
pervasive campus environment, an entity with a type student
has a general user role, a lecturer entity has a power user role
and a head of school has a super user role. A super user is at
the top of the hierarchy in our system, followed by a power
user and a general user. An entity with a higher level of role
can do more things compared to the entity with a lower role.
For example: a super user can choose either to stop the music
execution at any place that s/he goes if s/he does not like the
music or play his/her own favourite music. A power user can
only stop the music and a general user is not allowed to stop
the current playing music.
f. Policy language
A policy language is used to express rules that govern the
entity’s behaviours in pervasive environments. It specifies the
rights, prohibitions and obligations of an entity in the specific
context. We discuss in detail our policy language in section 3.

Our system provides an infrastructure that mediates the
interaction between the client device and the application logic
via Web service calls. The MHS system provides an
infrastructure that simplifies the task of developing and
maintaining context-aware applications for mobile clients. The
system relieves the developers from the low-level task of
matching services with the location as it handles the
computing of the set of relevant services given contextual
information about the user. This high level architecture is
illustrated in Figure 2 below.

Figure 2: High Level Architecture of Mobile Hanging Services

3. Design of the MHS Policy Language

 Most existing policy languages have constructs which are too
domain specialized, which we feel made their direct use in our
system complex. So, we developed a simple policy language
for specifying policies for all kinds of entities in the system
(room, user, etc). We try to keep our policy design as simple
as possible so that it can be easily integrated into the existing
or future implementation of context aware services. Moreover,
we also focus on the interoperability aspect, in which, all the
policy software components need to be easily accessed by the
system itself or by external systems that have disparate
platforms and languages.

Having an interoperable policy system further supports an
extensibility of the framework as we can easily add more
services, entities and policies in the future or perhaps
integrating the existing system with some other external
systems (assuming they both have similar design and
architecture). In our system, a policy is a rule that is defined
by an entity (i.e., a user, room or system) and it bounds any
associated entities as specified in the policy document. The
rule specifies a list of activities that the entity can perform
(permission), must perform (obligation) and can not perform
(prohibition) in the given contexts. Having a set of rules or
policies in pervasive environments is considered useful as it
can help to restrict the user’s behaviors or constrain the
activities that the user can do in the particular context as
specified in the policy document. In addition, the policy can
put a user in control of the surrounding activities that happens
in his/her room. For example, a user that owns an office (e.g.,
B556 room) can write a room policy to control the activities of
other users (visitors) in his/her room.

Several criteria that need to be taken into account in
designing a good and robust policy language are:

a. Easy to use and understand
b. Has a simple policy design that is not tied to any

specific applications or services

c. Has a loose coupling policy designed architecture
(separate the abstraction layer between the policy and
the service implementation). Hence, updating the
system functionalities on one component will have
minimal impact on the rest of the system components.

d. Supports both simple and complex situations

e. Extensible and allows a new rule to be added without
any modification to the existing rules

f. Can be used to describe situation in expressive and
concise way

g. Have a standard policy language i.e., conforms to a
policy language schema.

h. The policy constructs should be flexible enough to not
over constrain the domain (should be reusable across
domains).

i. Supports basic deontic logic concepts (i.e.,
permissions, obligations and prohibitions).

j. Supports consistency in answering the user’s query
(every request is either allowed or denied, not both).

3.1 Policy Design Considerations

There are several factors that need to be considered in
designing a comprehensive policy model for context-aware
services. Some of these factors are:

1. Who should be in control in the system i.e., whether the
user, the system, or the room?

2. How to support partial control between entities in the
system? For example, at a particular situation, we would like
to let the user be in control but at some other situations, we
may want to let the room, or the system is in control.

3. The best technique to detect the conflict? For example, we
can detect the conflict reactively or proactively. In deciding on
which technique to use, we need to consider the:
• System performance i.e., how long it takes to detect the

conflict.
• System resources i.e., how often we need to update the

conflict detection result.
• Accuracy i.e., how accurate we want the conflict

detection result to be.
• Scalability i.e., can the conflict detection technique still

be used to detect the conflict if the number of entities in
the system increases (i.e., we have more entities in the
system than before)? If so, would it have any impact on
the performance?

• Extensibility i.e., can the conflict detection technique still
be used to detect new conflicts that may happen in the
future?

• Simplicity i.e., how easy is it to maintain the conflict
detection result?

4. The best way to resolve the conflict? For example, we can
resolve the conflict as soon as the system detects that there is a
conflict or resolve it only when the conditions for the conflict
to happen have been met. Several considerations in deciding
which technique to use are
• System performance i.e., how long it takes to resolve the

conflict
• System resources i.e., do we need to store the conflict

resolution result for future re-use or remove it from
memory as soon as it has been used or when a system
detects that the conflict resolution result may no longer be
relevant to the user’s current contexts?

 •
 • c. Actions

• Satisfaction i.e., how do we ensure that the resolution
technique that we use will satisfy both conflicted entities?

• Scalability i.e., can the conflict resolution technique
handle a number of conflicts at a time or only a limited
number of conflicts?

• Extensibility i.e., can the conflict resolution technique
resolve new conflicts that may occur in the future (due to
more services and contexts are employed)?

• Simplicity i.e., how easy is it to maintain the conflict
resolution result?

5. Decide the best technique for communication between a
mobile client that is requesting to execute a service or
requesting to perform some actions on the service and the
server. For example, whether the client needs to request
periodically (polling method) or the server pushes the updated
result to the client (publish subscriber method).

3.2 Policy Elements

Our policy language is written in an XML language tha
conforms to a policy schema. Our policy includes several
elements for describing permissions, prohibitions and
obligations of an entity in the system. Each of these elements
is described as follows:

t • d. Contexts (domain constraints)

a. Policy objects
Policy objects are based on the logic of norms for representing
the concept of rights, obligations and prohibitions in our
system. Right (R) refers to a permission (positive
authorization) that is given to the entity to execute a specified
action on the service in the particular context. Obligation (O)
is a duty that the entity must perform in a given context.
Prohibition (P) is a negative authorization that does not allow
the entity to perform the action as requested in the given
context.

 • e. Target entities

b. Target services
Target service refers to a particular service that the user wants
to execute. Some interesting mobile applications that can be
delivered as mobile services are (a). Handheld Tourist guide
service that displays different types of information on the
device as the tourist enters different rooms in a museum or
areas in a shopping mall. (b). Timetable service: as the user B
walks into a user A’s room, the system then spontaneously
displays a list of user A’s activity into user B’s device. (c).

Pocket pad service, where the mobile user can leave an
electronic message for a particular user in a particular room.
(d). Library service, where the system can guide the user to
find the specific book in the library. (e) Mobile VNC service
that allows a user to teleport his/her desktop information to
any nearby machine in the current location. (f) Mobile media
player service that allows a user to start/control any music on
a desktop machine from his/her mobile device.

Currently, there are five different actions with services that
our system employs. These actions are start, stop, pause,
resume and submit. The types of actions applicable to one
service might vary from another, and would depend on what
the service does. For example, media player service that is for
playing music on any target machine supports four different
actions (start, stop, pause and resume), teleporting service that
is for displaying a user’s desktop information on any nearest
machine may only require to have start and stop actions, and
pocket pad service that allows users to type in any information
and stores that information back to the server only requires
submit action. The five actions we identified, we found,
occurs frequently among a number of MHS services we
considered. Depending on the policy that has been defined by
the room or the system for a particular user in the specific
location, two different users may have different privileges for
a certain action on the same service at the same place.
Specifying different privileges to legitimate users is a way to
restrict the mobile user’s behaviors in a pervasive
environment. For example, user A that has a general user role,
is only allowed to start a media player service. User B who is
a power user has the privileges to start and stop any services at
that location.

Contexts are conditions that must be met before a list of
services can be displayed on the mobile device or before the
user’s request to perform an action is approved. In our work,
contexts consist of a user’s identity, location, day and time.
The location context is represented by a model of an indoor
logical area (e.g., a room). Sensing the user’s context, the
system computes a list of useful services, and these lists are
effectively “dropped” into the user’s mobile device.

There are three types of entities in our system.

i. The System: The system entity controls users and rooms’
behaviours in accessing or executing services in the system.
The system policy is created by the developer or the top user
in the system. It specifies what users and rooms can do in the
specific location and time contexts depending on the role of an
entity. This default system policy will be automatically
inherited by all registered users in the system according to the
role that s/he has.
ii. User: A user is an active entity that is always on the move
(able to move from one geographical place to another). By
default, the system imposes on the user certain rights (denoted
by sRu), obligations (sOu) and prohibitions (sPu) for each
physical location in the system based on the users’ role. On

top of this default system policy, users can also specify a set
of obligations on the system (denoted by uOs), created via a
user policy application that we have. Imposing a set of
obligations on the system is a means for the user to have the
system perform tasks automatically on behalf of the user at
certain location, day and time. This then helps to reduce the
user’s task especially if there is regularity in the user’s
activities. Our system also checks for the conformance of uOs
against the permission that the system gives to the user for that
location. This is to ensure that the uOs is still within the scope
of the user’s permissions. In summary, depending on the
user’s current location and current contexts, each of the users
in the system will have: sRui, sPui, sOui, and uiOs

Note: i denotes a specific user i.e., user i, say. We now explain
each of the policy object notations above: sRui is a set of
permissions (Rights) that a system gives to a user (say i). In
contrast, sPui is a set of actions which the system prohibits the
user from doing. The permissions or prohibitions given to the
user depend on the role that s/he has, location that s/he is
visiting and the ownership of the location. This would mean
that two users who have the same or different roles will have
different permissions in executing a service depending on the
place that s/he is visiting and whether or not the user is the
owner of the place. For example, the user with the higher level
of role that is visiting a public place will have more rights to
perform any services compared to the user with a lower level
of role that is visiting the same place.

Another sample is two users with the same level of role will
have different permissions when they are visiting a place that
is belong to one of those users. The owner of the room has
more permissions compared to the visitor of the room. sOui is
a set of actions that the system obligates the user (say i) to
(manually) do in a particular context. The obligation from a
system to the user is useful to allow the system or the
environment to be in control of the surrounding situation. For
example, to ensure that all services are off before the user left
the school, the system obligates the user to stop all the running
services every day at any time before 6PM.1 uiOs is a set of
actions that a user obligates the system to perform in a
particular context, representing what the user wants the system
to do automatically. For example, user A is always checking
her email when she first arrives at school at 9.30AM. Instead
of she needing to manually open her email account by clicking
on the email button every day, the user can ask the system to
perform this task automatically. So, when the user enters her
office, Outlook Express has already started and the user is
ready to check her incoming e-mails. This is possible by
imposing an obligation from a user to the system (a uOs).
iii. Room: A room entity is represented by a geographical
location - e.g., room B548. The room entity has its own policy
that can be used to restrict the visitors’ actions on mobile
services in the room. Generally, the room’s policy is created
by the owner of the room. The public place in our system (i.e.,
tea room, corridor, or seminar room) is owned by the system.
Hence, the public policy is created by the system (e.g.,
developer/administrator). Just like the system, the room also

imposes certain rights (rRu), obligations (rOu) and
prohibitions (rPu) to the user who is visiting the place and the
owner of the place. The owner of the place generally has more
rights and less prohibition compared to the visitor, even if the
visitor has a much higher role than the owner of the room. In
a case where the owner of the room requires the system to
perform some tasks automatically, the room can also impose
an obligation to the system (rOs). The purpose of rOs and uOs
are quite similar here as they both ask the system to perform
some tasks automatically on behalf of the user or the room.
The only difference is rOs can only be created by the owner of
the room and the uOs can be created by any users (i.e., a
visitor) of the room. Typically, the owner of the room that has
already imposed an obligation to the system (rOs) does not
need to have any uOs at his/her own room. S/he only needs to
impose an obligation to the system (uOs) for other locations
(other than his/her room) if s/he wants to.

As the room gives certain permissions to the visitor, and
often, if there is a conflict, the room wins, the visitor is free to
challenge the room if s/he is not satisfied with the conflict
resolution result considering his/her current situation.
Allowing the visitor to challenge the system is a way of
allowing the user (visitor) some control as the user may need
control (win the conflict) in certain situations. By challenging
the room, given the current situation of the user, the system
will re-compute the conflict resolution, and if the reason is
sufficient, the challenger may win. For example, user A is a
student that is going to give a demo who requires starting a
teleporting service at seminar room A. By default, the room
only allows the power user or super user to start the
teleporting service on any day between 12-2PM, as only
lecturers need to use the teleporting service at this time. This
is mainly due to the room needing to restrict other users (e.g.,
a student from performing some actions on the teleporting
service, as conflicts may arise if more than one user in the
room try to start or stop the service).

By default, the room does not allow the student to perform
any actions on the teleporting service between 12-2PM. User
A that has a permission given by the system to start a
teleporting service at this location, may want to challenge the
room if s/he is not satisfied with the conflict resolution result
(given his/her needs to use the teleporting service). By
analyzing the challenger’s reason (the current activity of the
challenger), the room may agree with the challenge and let the
challenger start the teleporting service. In addition, as our
system allows room entities to define a set of policies for the
owner and the visitor of the room, conflicts can occur i.e., the
system may allow the visitor to start any music at room A, but
the room owner may prohibit the user from doing this. We can
reduce the number of conflicts in the system by statically
conforming one policy against another. The policy
conformance here is to check whether one policy is behaving
according to the source policy (in this case, whether the
room’s policy conforms to the system’s policy). This
conformance process can be done statically at compile time
when the owner of the room finished creating the policy for
his/her room.

There are two different conformance techniques that we
employ:

a. Full conformance. Full conformance means one policy
document needs to be fully conformed or matched against
other policy documents (i.e., the system’s policy document).
We use full conformance to check the conformance between
uiOs against sRui. This is mainly because our system only
allows the user to perform a task which is permitted by the
system. For example, if sRui specifies that user i can only start
the music service on Monday, from 12-2PM, this means that
the uiOs has to be within that condition (Monday, from 12-
2PM). The user is not allowed to impose an obligation on the
system to start a media player service, other than Monday, 12-
2PM (other than the permission given by the system).
b. Partial (subset) conformance. As it is partial, the
conformance here only checks the subset value of one policy
document against the system’s policy. We use partial
conformance to check the conformance between rRui against
sRui, rOui against sOui and rPui against sPui – effectively,
room should be subset of system. For example, if sRui allows
the user to start a media player service at any day and any
time, the room can further restrict the user’s permission at this
room, by just giving the user a permission to start a service at
a certain day and time. The reason of using a subset
conformance here is because we want to let the room to be in
control at some situations by further restricting the
permissions given by the system to the user for that location.
For example, during the exam, the room may prohibit users
from executing an online browsing service or perhaps, reduces
some of the permissions given by the system.

The following describes the policy objects relevant to a
room S for a user i in the system: rsRui, rsOui, rsPui and
rsOs, where S denotes a specific room, e.g., room B536, and i
denotes a specific user. We now describe policy objects for a
location that consists of one or more users. Let m be the
number of users currently in a location (say, room A).

Let sRu = {sRu1, sRu2, sRu 3, …,sRum} be the set of rights
given by the system to m number of users in a location (say
room A).

Let sOu = {sOu1, sOu2, sOu 3, …,sOum} be the set of
obligations from the system to m number of users in a
location.

Let sPu = {sPu1, sPu2, sPu3, …,sPum} be the set of prohibitions
from the system to m number of users in a location.

Let rARu = {rARu1, rARu2, rARu3, …,rARum} be the set of rights
given by room A to m number of users in a location (room A).

Let rAOu = {rAOu1, rAOu 2, rAOu 3, …, rAOu m} be the set of
obligations from room A to m number of users in a location.

Let rAPu = {rAPu1, rAPu 2, rAPu 3, …, rAPum} be the set of
prohibitions from room A to m number of users in a location.

Let uOsA = {u1OsA, u2OsA, u3OsA, …, umOsA} be the set of
obligations from m number of users to the system at room A
(involving services for context where location is room A).

Let rAOs be the obligations of room A imposed on the system.

The combination of policy objects in room A with m number
of users are:

Rights for the users: sRu U rARu

Obligations on the users: sOu rU AOu

Prohibitions on the users: sPu U rAPu

Obligations on the system imposed by the users, and room

A (or owner of room A): uOsA rU AOs

f. Role. Role is associated with a level of privileges that
determine the actions that a user can perform and the visibility
of the services in a particular context. Depending on the role
that the entity has, s/he may have different privileges in
executing the service. For example, a user with higher level of
role can do more things and may have more services available
in the context compared to the user with lower level of role. In
our system, we classify users into three different roles: a super
entity, power entity and general entity. Each of these roles has
different scope of service visibilities and activities that the
entity can perform depending on the place that s/he is visiting
and whether s/he is the owner of the place.

3.3 Policy language Notation

In designing a policy language, it is important to balance
the convenience and compliance aspects, where a system has
control over users’ actions or activities, but does not overly
restrict or control users’ behaviours. This is possible by
specifying rule per activity, in which only at certain occasions,
the space will be in control. Ideally, the end-user would still
be able to access services as per normal in all public places
and circumstances, and only in some situations (e.g., during
exam or meeting time), the space takes full or partial control
over the service from users (e.g., allowing users to perform
certain actions on the service or prohibiting users from
performing any action on the service) as illustrated in Figure
3a below.

In addition, our policy design also takes into account the
reusability aspect, in which the policy is stored on the server
side and can be shared with other spaces in the system. This is
possible, as in creating rule per activity, we do not explicitly
specify the context information (e.g., space/location as well as
the exact date and time of when and where the activity
occurs). Instead, we store this context and activity mapping in
an external file (see Figure 3b below). The mapping here
works like a booking system, where it stores the user’s
schedule (in this case the owner of the space’s or the public
space’s activities). The system then refers to this
location_activity document to have an idea of the activity

running in the space. After that, it retrieves the relevant rule
that matches this activity. It then enforces the rule to all users
who visit the space when the contexts elapse.

This activity information can also be retrieved from sensing
devices installed in the environment (e.g., using smart camera
that could detect the user‘s activities and movements). We
will continue to integrate this smart sensing device into our
contextual system in the future. After describing the elements
of our policy language, we now present our policy language
notation in EBNF.

Subject ::= “SUBJECT(“ entityIdentity “)” “WITH”
role “HAS” rules

entityIdentity ::= DATA

role ::= DATA

Rules ::= Rule | Rule “,” Rules

Rule ::= Activity policyObject “(“policyImposedBy
policyImposedOn “)” targetService action

Activity ::= DATA

policyObject ::= “RIGHT” | “PROHIBITION”|
“OBLIGATION”

policyImposedBy ::= DATA

policyImposedOn ::= DATA

targetService ::= DATA

action ::= DATA

*(DATA is a string in some format.)

For example:

(1) SUBJECT (GU01) WITH ‘General Entity’ HAS
rule1, rule2, rule3

GU01 who has a general entity role has three rules at exam
room.

Rule1 = having lunch RIGHT(‘GU01 user’ ‘All
users’) ‘any’ ‘start’

This rule is specified by GU01 user that allows other users to
start any service during lunch time at her office (e.g., room
B338).

Rule2 = study PROHIBITION(‘GU01 User’
‘All users’) ‘any’ ‘start’

The rule prohibits all visitors with any level of role to start any
service when GU01 is preparing for her meeting (studying) at
her office.
Rule3 = having a meeting OBLIGATION(‘GU01
User’ ‘Space (roomB338)’) ‘any’ ‘stop’

The rule obligates the space (room B338) to automatically
stop any running service during a meeting at room B338.

(2) SUBJECT (PU01) WITH ‘Power Entity’ HAS rule1

PU01 who has a power entity role has one rule.
Rule1 = having an exam PROHIBITION(‘Space

(exam room)’ ‘General user’) ‘any’ ‘any’

The rule prohibits all users who have general user role (e.g., a
student) and are sitting for exam to start any service at exam
room. Other students who are not in the exam room (e.g., at
school lounge) are still be able to access the service. At the
exam room, the space only restricts students access to
services, other users (e.g., staffs or hall supervisors) are still
be able to access services as per normal.

The following XML document is a sample of a space

policy based on activities that may occur in a space (as
illustrated in Figure 3a below). We also give a sample of how
the mapping between location, activity, day and time in our
system (see Figure 3b below). The mapping and policy are
created by the developer or owner of the space. The mapping
is done per space (to customize the activities that may occur in
the space), but, a generic policy rule can be shared. The
advantage of separating the rule and context details is the rule
does not have to be changed when the activity and contexts
change, only the mapping needs to be updated when there is a
new event or modification of an existing event. The rule can
also be re-used by other spaces which have the same activity.
This is possible as we have a consistent naming of activity
throughout all spaces.

In a case where the activity at certain day/time is not
specified in the mapping document (e.g., between 12-1PM
and after 2PM as shown in Figure 3b below), the system then
looks for activity name=”any” in the policy rule. During this
time (activity=”any”), all visitors are given flexibility to
access any service and perform any action. This then balances
the convenience and compliance aspects in our system, where
the space is only in control at some situations (activities), and
the rest users could still access services as per normal. In
addition, “any” on service allowed means any service as
described in the user’s preferences for that particular contexts,
“any” on action means any action that a service supports (e.g.,
a media player service has start, stop, pause and resume
actions). “None” simply means no services will be visible or
no actions are allowed at certain activity.

<Rule>

 <Activity name="Meeting">
 <Has policyObject="Right" by="System"
on="General_User">
 <Service allowed="Mobile Pocket Pad
Service">
 <Action allowed="Any"/>
 </Service>
 </Has>
 <Has policyObject="Obligation" by="System"
on="General_User">
 <Service obligated="any">
 <Action obligated="stop"/>
 </Service>
 </Has>
 <Has policyObject="Prohibition" by="System"
on="General_User">
 <Service prohibited="any">
 <Action prohibited="any"/>
 </Service>
 </Has>
 </Activity>
 <Activity name="Any">

 <Has policyObject="Right" by="System"
on="General_User">
 <Service allowed="any">
 <Action allowed="any"/>
 </Service>
 </Has>
 <Has policyObject="Obligation" by="System"
on="General_User">
 <Service obligated="none">
 <Action obligated="none"/>
 </Service>
 </Has>
 <Has policyObject="Prohibition" by="System"
on="General_User">
 <Service prohibited="none">
 <Action prohibited="none"/>
 </Service>
 </Has>
 </Activity>
</Rule>
 (a)A sample rule document

<Location_Activity for="RoomB530" createdBy="Alice">
 <Activity_Details day="Monday" time="9-12PM">
 <Activity name="Meeting"/>
 </Activity_Details>
 < Activity_Details day="Monday" time="1-2PM">
 <Activity name="Out to lunch"/>
 </Activity_Details>
</Location_Activity>

 (b) A sample location_activity mapping
Figure 3a and 3b: Sample policy and mapping documents

4. Policy Conflict Sources and Situations

This section discusses several possible sources and types of
conflicts that may occur in pervasive environments, based on
the policy design discussed in section 3. As each entity is
assigned different specifications depending on the role that it
has, there will be a chance of conflict occurrence. Conflicts
arise due the differences including:

a) The differences in specification between entities on how
the entities should behave. These differences lead to a
potential or definite conflict that needs to be resolved as soon
as the conflict is detected or just when the conditions for the
conflict to happen are satisfied. We deal with two types of
resources: shared resource services and non-shared resource
services. A shared resource service refers to a software tool
that is enlisted as the user needs it and it helps users to
accomplish the tasks by downloading the application or
mobile code onto a shared machine (usually a desktop PC
machine). Some samples of shared resource services that we
have developed are Mobile VNC [18] and Mobile Media
Player Applications [29]. This shared resource service can be
controlled and accessed by all legitimate users from their
mobile devices in that specific location. Hence, there is a high
chance of conflict occurrence here as there may be more than
one user in the location trying to access or control the same
shared resource service with different interests or
specifications on what action to perform (i.e., start, stop, pause
or resume) and when to perform this particular action. For
example, one user may want to start music A, but another user

in the same location wants to stop music A and start music B
instead. A non-shared resource service, on the other hand, is a
service that is downloaded and compiled onto a user’s mobile
device only. This service is running on the user’s personal
device and only accessible to that user (i.e., Mobile Pocket
Pad Service [19]). Hence, there is a less chance of conflict
here- conflict can still happen here between a user and a room
(even if not between users).

b) The differences in the privilege that the entity has. For
example, one user (with higher privilege) can execute more
types of services at any time and any place compared to other
users (with lower privilege) that can only execute certain
number of services at certain place and time. In our system,
the level of privilege is determined based on the level of
positions or roles that the user has. As each entity has a
different level of privileges, a user with a higher level role
may override the execution of the shared resource service that
has been started earlier by a user with lower role. This then
leads to a conflict. The occurrence of the conflict further
increases as we are dealing with mobile entities, in which, the
entity can move freely from one geographical location to
another (i.e., from one place to another place), and the entity
carries its own role and rule on how the service should be
executed (i.e., what action that s/he can perform) in the
designated place. A conflict can happen if, for example, one
user has started the service (i.e., start the music) and another
user wants to stop the execution of the running music or
perhaps start a different music. This type of conflict can occur
for both shared resource services and non-shared resource
service. We start from conflicts involving non-shared resource
services:
- Between a user’s obligation and a user’s own action i.e., user
A has a right to start music service and she is starting the
music now. However, this user has also obligated the system
to stop the music after some time. This leads to a conflict if
the user obligates the system to stop the service but the user
him/her-self manually starts the service from the device. This
conflict can go on and on as the system will keep stopping the
service the user starts, as the system would detects that the
service is running. Another example is the user manually
stopping the running music from the device which is just
started by the system as the room obligates the system to do
so.
- Between a system’s obligation and a user’s action i.e., user
A has a right to start any service and s/he is starting the music
service now. However, the system is obligated by the room to
stop all the running services, including the service that the
user has started on the shared machine or on her mobile
device earlier.
- Between a system’s obligation and a room’s obligation i.e., a
system is obligated by the user to start the music. At the same
time, the room (or its owner) imposes an obligation on the
user (visitor to the room) to stop the music. Another example
is the system obligates the user to stop the music, but the room
obligates the user to start the music.
 Accessing shared resource service can also create conflicts
as discussed above as well as inter-user conflicts, e.g. conflict

arises if user A has started music A and user B wants to stop
the currently running music.
c) Conflict also occurs when more than one user try to access
the same service but have different specifications on what to
do with the service i.e., one wants to start a music service but
another wants to stop a music service. The conflict in modality
occurs between users, between a user/system and the room,
between user and his/her manual execution from a mobile
device. We start from accessing non-shared resource service:
- Between a system and a room i.e., one allowing the user to
start the service (system) and the other is prohibiting a user
from starting the service (the room) or one is obligated to start
the service by the room and at the same time, the user is
obligated by the system to stop the service.
- Between a user and his/her manual execution from a mobile
device. For example, a user imposes an obligation to the
system to stop the currently running Mobile pocket pad
service from 12-2PM at B558 (during lecture time), however,
as soon as the system does this (i.e., stop the service), the user
manually starts this service again, because s/he wants to look
up his/her online note i.e., the lecture contact details and this
information is stored at online pocket note. The infinitive
conflict occurs here as the system will automatically stop this
Mobile pocket pad service if it detects it is still running.
For shared resource service would be the same as above plus
the following: between two users with the same or different
role in which, one user would like to start the service but
others want to stop the service. This conflict comes from
manual execution of the service (not from uiOs, sOui or rOui).

5. Policy Conflict Resolution

We propose several conflict resolution strategies described as
follows:

a. Role hierarchy overrides policy

The role hierarchy overrides policy is used if the conflict
occurs between users that have different roles, in which a user
with a higher role has much higher level of priority, and the
conflict happens at a place which is not owned by a user with
the low level of role and priority.

b. Activity priority overrides policy

This technique is used if a conflict occurs between two users
that have different roles and the user with lower level of role
has much higher level of priority of activity (assuming there
are sensors and mechanisms to detect such activities)
compared to the user with a higher level of role. For example,
user A (student) is having an exam at room B (hence, high
priority), user B (head of school) is in relaxing time (low
priority). At this situation, a student’s policy will be given a
higher priority than user B (hence, we can override user B’s
rule).

c. Precedence overrides policy

This technique is used if a conflict occurs between users, in
which one user has much higher role and higher level of
priority than another; however, it occurs at a place where it is
owned by a user with lower level of role and lower level of
priority.

d. Room holds precedence over visitor

This technique is used if a conflict occurs between a user and
a room. For example, the system permits a user to start a
service at room A, but room A prohibits the user from starting
this service. If there is a conflict, the room (representing its
owner) always wins, regardless of the level of roles of the
visitor. The user or visitor can also choose to challenge the
room if s/he is not satisfied with the conflict resolution result.

e. Obligation holds precedence over rights

This technique is used if a conflict occurs between an
obligation and the right. An obligation always wins over the
right. For example, if the user is permitted by the system to
start a media player service, but a room obligates a user to
stop the media player service.

6. Implementation

MHS uses the Microsoft .NET Compact Framework
technology that natively supports XML Web service calls.
Our system consists of users with handheld devices and Web
services that determine the location of a user, collect the user’s
context information and interpret the policy document, which
are published via the system. This section gives a high-level
description of these parts of the system, and how the parts
interact. The system architecture is illustrated in Figure 4
below.

 Figure 4: System Architecture of MHS system

Five of the main components of the system are discussed in
the following sections:
a. Mobile Client Software. Users with mobile devices run
software that continually polls a central Web service to
discover services and policy information that are available at
the user’s current contexts (i.e., location, day and time). A
push-based architecture will be considered in the future (see

conclusions). When the user selects a particular service, the
mobile device contacts the central Web service and downloads
an application for interacting with the selected service. The
mobile client software also caches downloaded applications.
The cache contains code and metadata describing applications.
Hence, if a downloaded application is running, its cache code
also exists in the memory.
b. Location – Web service. To realise location-aware
services, this system employs the current release of the
Ekahau Positioning Engine (EPE). The EPE is an indoor
positioning system that keeps track of a user’s location based
on signal strength measurements. It also supports devices such
as wireless PDAs, laptops and any 802.11b-enabled devices
[23]. The EPE server includes a standalone manager
application, and a Java Software Development Kit (SDK) that
can be used for tracking client’s position (X and Y
coordinates or latest logical area). In order for the Ekahau
server to keep track of the client device, the Ekahau client
software needs to be installed on the mobile client device. The
listener-application refers to the application code that
implements the listener interfaces (to obtain the location
estimate, logical area and status) to accurately track wireless
devices. Moreover, to allow interoperability with other
platforms and languages, our system implements the listener-
application as a Web service. This location service is deployed
on the Axis Apache Web server environment. The service
returns the user device’s position in X and Y coordinates as
well as the logical area.
c. Context information Web service. Context information
Web service is a context collector that collects all users’
contexts information, which are specified by the system i.e., a
user’s current location, a user’s identity, day and time. The
context collection process is done by calling the respective
Web service i.e., to get a user’s current location, the context
collector needs to invoke the location Web service method.
The updated current day and time are obtained by checking
the current system day and time. The user’s identity is
retrieved from the login form, once the user logs on to the
system. After retrieving all the required contexts, the context
collector then passes these contexts information on to the
Policies interpreter Web service. The reason for separating the
collection tasks from the policy interpreter is we want to
have a modular and extensible system, in the sense that we
only need to update a single component (e.g., the context
collection component) if there is a new context added in the
future. Allowing a system to add additional context
information sources is considered as a feature of an extensible
system.
 d. Policy Interpreter Web service. The policies interpreter
component is called after the system retrieves all the contexts
information. The policies interpreter parses the user’s policy
document that specifies when and where to start the service.
This interpretation process is done on the server side and it
takes into account information regarding the user’s current
contexts i.e., a user’s current location, day, time and a user’s
identity. If there is a service associated with these contexts,
the service information (service name, service location, action
type, music name, day, time to start and end service) is then
returned.

e. Code server Web service. Within our system, we employ
the Web service as a method invocation to retrieve a mobile
code application that matches the service name and this
service method then returns the particular mobile application
to the client device.

The following paragraphs describe each of the steps in
Figure 4 above:
1a. Send Access Point Information. Once the Ekahau mobile
user device is switched on, the EPE server then starts tracking
the position of the mobile client. 1b. Start Tracking. Our
system provides a login mechanism to the Mobile Hanging
Services system. The user needs to enter the credentials
information such as a user name and password. The system
then validates these credentials against the user’s information,
which is stored in an XML database. The system will only
redirect the user to the main service form, if all information
that s/he enters is valid. If the user is valid, the system then
invokes a Web method of the Context Information Web
service called “Start Tracking” by passing the IP address of
the device.
2a, 2b and 3. Get a User’s Logical Area, Call the Ekahau
Server and Return Logical Area. The Calculator Web
service then continues to invoke the “get logical area” Web
method of the Location Web Service and again passing the IP
address of the device to this Web method. The Location Web
service then fires the Location Listener Application on the
Ekahau Server. The Listener application then is continuously
listening to the mobile client’s movement. Finally, this Web
method returns the most accurate user’s logical area to the
method caller (e.g., Context Information Web service).
Besides retrieving the user’s location information, the Context
Information also retrieving other contexts used in the system
i.e., current day, time and a user’s identity.
4. Pass the current user’s context information. Once, the
context information retrieves all the contexts information, the
context information Web service then continues to call
Policies Interpreter Web service by passing these context
details.
5 and 6. Find and return the available services. Once the
policy interpreter Web method is called, the system then
interprets the user’s policy document that matches with the
user’s current context. If there is any context that matches
with the user’s policy document, these service information is
then returned. In this implementation, a user’s policy
document that specifies when and where to start the service is
described in an XML language.
7. Send a list of Services to the Mobile Client. If the services
are found, a list of services and its policy details will then be
sent to the mobile client. The mobile client application then
displays these set of service names as specified by the policy.
8 and 9. Request a Mobile Code, Get and Send a Mobile
Code. When the user chooses a service from this list, the code
server Web service is contacted to provide code for invoking
the selected service.
10. Return a Mobile Code to the Mobile Client. This
returns the mobile code applications to the client device. Upon
its arrival, the mobile client application then loads and

processes this service application, finally executing and
displaying the service interface on the mobile device.

6.1. Partial control between users and systems

As our system supports both manually and automatically
execution of the service, it is important to clearly separate the
control between users and systems i.e., when control should
be given to the user and when the system should be in control.
The control becomes extremely important especially, when the
user performs some odd activities during the day, which is
different from the tasks that s/he has specified in the policy
document. For example: a user is having a group meeting at
room A (the user’s office). He specifies in the policy
document to start the music at his office at 3PM (basically,
after finish the meeting). However, what happens if the
meeting has not finished at 3PM. As discussed before, as soon
as the current time shows it is 3PM, the system will
automatically start the music in room A. The system does this
automatically by interpreting a user’s policy document and it
will not be able to tell whether the meeting is over or not. If
such situation happened, most likely, the user will want to
manually stop playing the music from his/her mobile device.
This is done through selecting the service name i.e., Remote
Media Player on the mobile device and a mobile code with
respect to this Remote Media Player service will then be
downloaded to the user’s mobile device.

Once the service interface is displayed, the user then clicks
on the stop button to manually terminate the playing music.
Once the system detects that the user is manually performing
the task and this task is different from the activity that s/he has
specified in the document, the full control is now given to the
user. The system will not perform any further policy
interpretation (and music execution) until the system detects
that the user has closed the Remote Media Player service
form. Once, the form is closed the full control is now returned
back to the system. The system then continues to interpret the
user’s policy document and automatically start, pause, resume
or stop the music. In summary, our current control scheme is
as follows: the user takes control of the service by requesting
and using the mobile code application (containing the user
interface) for the service and control is returned to the system
when the user closes this application.

Our policy implementation is developed on top of our
previous prototype as described in [20]. The policy software
components only get called when the service interface has
been displayed and the mobile user is requesting to execute a
certain action on the service i.e., by clicking on the start
button on the media player service interface on the mobile
device. Our policy implementation is modular, interoperable
and extensible. We separate the policy tasks according to its
functionality i.e., we have a separate web service method for
policy interpreter, conflict detection, resolution and manager.
Hence, we only need to update a single component (i.e., the
context collection component) if there is a new context added
in the future.

In addition, we also separate the policy implementation
from the services (or their mobile code) implementations. This

allows our system to easily add additional services in the
future and we may need to have only one policy document for
all services or applications that we have in the system.
Moreover, as we create each of our software components as
web services, this makes our software functionalities
accessible in disparate platforms and languages. Figure 5
below describes in detail how our policy mechanism works.

Figure 5: MHS Policy implementation

The steps in Figure 5 are:
1) Request an action (e.g., start) on a service.
Once the service interface is displayed on a mobile device, a
mobile user can request to start a music on a media player
service by clicking on the “start button”. When there is a
request from the user, the mobile client query manager then
passes this query on to a policy manager (i.e., to decide
whether or not the user is permitted to start the service with a
particular song name).
2) Call the policy interpreter
There are a few steps needed to be performed by a policy
manager in order to answer the user’s query such as calling
the policy interpreter to collect information regarding the
user’s current context and the relevant policy documents.
3a) Retrieve the context information
The policy interpreter first calls the context collector to collect
all users’ contexts information i.e., a user’s current location, a
user’s identity, current day, time, and who else in the location.
The context collection process is done by calling the
respective Web service i.e., to get a user’s current location, the
context collector needs to invoke the location Web service
method. The updated current day and time are obtained by
checking the current system day and time. The user’s identity
is retrieved from the login form, once the user logs on to the
system.
3b) Retrieve the entities’ policy documents
After knowing who the requesting user is and how many users
in the location for the given context, the policy interpreter
then gets and parses the relevant entities’ policy documents
that specify when and where to start the service.
4) Pass the information on to conflict detection
After collecting all the required information, the policy
interpreter then passes this information on to a policy conflict
detection component. The conflict detection looks for
potential or actual conflicts between a user and system and
between a user and the room for that location context. The
strategy used to detect the conflict here is based on the
reactive detection strategy, in which the procedure for
detecting conflicts is only initiated when there is a request

from a user to perform an action (in this case, when the user is
clicking on the action button on the service interface). This
technique is considered easy to develop and maintain.
However, there are two issues that we need to consider:

1. When to trigger the conflict detection procedure, and

2. When to update the conflict detection result.

We can certainly trigger conflict detection when there is a
request from a user. However, this leads to system
performance and resources issues, as the conflict detection is
called each time there is a request from a user, regardless of
the user’s current location, the name of the service and action
that the user is requesting. Hence, the performance will slow
down (the user needs to wait a long time to see the response
result) and resources may be wasted (e.g., the conflict
detection result that is just computed may be the same as the
previous result, due to the user’s location context being still
the same).

One solution to this issue is caching the detection results
which have been computed earlier. Caching the result is useful
to avoid calling the same method with the same action and
context again and again. The conflict detection component
only needs to be called once, when it is the first time a user is
selecting a particular action. Subsequent requests for the same
action will not trigger the conflict detection process. Instead, it
will read the result from the cached file. With this technique,
we only need to update the cached result if the system detects
that the user’s location context has changed (i.e., user A has
moved from B536 to B558). Hence, the system needs to
redetect conflicts for the new context (or location, e.g., B558).

The following is the procedure that we employ to detect the
conflict:

i). Checking a user’s request

When there is a request from the user to perform some actions
on the service, the system then checks this request against the
permission that the system gives to the user for that particular
context. If a permission rule specifies the intended user’s
action, this means the user is permitted to perform the action.
If this happens, the system then continues with conflict
detection and does not have to check it against the prohibition
rule as we assume that the policy objects within one policy
document are consistent (i.e., the tasks which are permitted
are not also prohibited by the same entity). Note that this
assumption is only valid within one policy document. We still
need to check the consistency of one entity’s policy against
another as the system may permit the user to perform the
action but the room or other users may prohibit the user from
doing this. However, if there is an absence of permission (the
permission rule does not mention the user’s intended action),
the system then has to look up prohibition rules. If the
prohibition rule specifies the user’s intended action, the
system would forbid the user from performing the action. In
addition, if there is an absence of permission and prohibition
(none of these says anything about this intended action), the
system then prohibits the user to perform the action (taking a
conservative view). If there is permission given by the system

to perform the specified action, the conflict detection then
continues to step ii. However, if the system does not permit
the user to execute the specified action, the system does not
have to continue to detect further conflicts. The policy
interpreter then passes the result to the policy manager
(continue to step 6).

ii). Checking against room’s policy

If the user is permitted to start the service by the system, we
then continue to check this against the room’s policy (whether
or not the room gives permissions to this user to start the
service). If the room does not permit the user, this conflict
detection result will then pass onto the conflict resolution to
be resolved (continue to step 5). By default, if there is a
conflict between a user and room, the room always wins.
However, the visitor is free to challenge the room if s/he is not
satisfied with the conflict resolution result considering his/her
current situation.If there is no conflict between a user and
room or if there is a conflict, but the user wins the challenge,
we then continue with step iii.

iii). Checking against other users in the current location

After checking the request against the room’s permission, our
system also further checks this against all other users’ policies
in that location. This is done by creating an index policy
document at run time that indexes all the relevant entities’
policies based on the service name or day or location. In our
system, we index the policy based on the service name. Our
index policy document contains information regarding all the
entities’ name, roles, actions, condition days, times, durations
and the state of the services (i.e., running or not running) for
that location context. By default, all services are in idle state.
The state changes to “running” when there is a request from
the user to start the service and this request is approved by the
system (as there are no potential conflicts detected when
executing this service). Again, when this user stops the
service, the system then updates the service state to “not
running”. Keeping track of the service state here is useful to
avoid the conflict in effect of service. For example, if user A
has a right to start the service and user B also has a right to
stop the service. As soon as user A started the service, the
system will keep track of the duration of the service that is just
started. Hence, during this period, user B is not allowed to
stop the service (although s/he has a permission to do so). The
only request that can modify the state of the currently running
service is the obligation - our system places a higher priority
on obligations than on rights. In addition, we also update our
cached index policy document periodically i.e., every 5
seconds as there may be a new user entity moving into a place
or the existing user has moved out of a place.

iv). Execute action only if no conflict is found

If there is no conflict found in the index policy document, the
system then allows the user to execute the specified action.
We then continue to step 6.

5) Call the conflict resolution

If there is any conflict detected in steps i, ii, iii, or iv above,
this conflict detection result will be passed onto the conflict
resolution to be resolved. Our conflict resolution resolves all
the potential and actual conflicts detected and caches this
resolution result for future reuse. In addition, the conflict
resolution technique that is used here depends on the contexts
of the conflicts (see section 6).

6) Send result to the policy manager

If no conflict is detected, the conflict detection module then
sends a message to the policy manager (i.e., allowing user A
to execute the specified action as no conflict has been
detected). However, if there is a conflict, the conflict
resolution result is then sent to the policy manager.

7) Update the index policy

The policy manager then updates the index policy based on
the conflict detection or resolution result i.e., changing the
state of the service from idle to “running” or from “running”
to “not running”.

8) Send a message back to the client

After updating the index policy document, the policy manager
then sends a message back to a mobile client manager. This
can be either allowing or disallowing a user to execute the
service. If it is allowed, the user is then permitted to perform
the requested action (i.e., start music A at B536). In addition,
the system also sends back to the client the conflict detection
and resolution results. The mobile client manager then caches
these results on the mobile device for future re-use. The
mobile client manager updates the cached results periodically
- every 5secs.
 Figure 6 shows the user’s perspective on the system. The
conflict detection and resolution procedures are initiated when
the user clicks “play” (requesting an action to be performed).

Figure 6: Mobile user perspective screen shots

7. Evaluation

We have discussed in [17, 19, 30] our MHS performance
evaluation results starting from obtaining the list of services,
keeping track of the user’s location, downloading and
executing the mobile code on both laptop and handheld
devices. The evaluation starts from the Web service call to get
a user’s location up to the service activation. In this section,
we evaluated several aspects of policy checking starts from
detecting a user’s current location, retrieving a policy based

on that location, downloading and caching the location policy
result on the user’s mobile device, up to detecting whether or
not a user is given a permission to perform the requested
action on the service, as well as detecting and resolving a
conflict with other entities if any. We also measured the total
user wait time in various scenarios such as:

(a) How long a user should wait to receive a response from
a server regarding the requested action, when it is the first
time entering a location and first web service call,

(b) How about if the user moves to another location, how
long does it take to update the policy cached result on the
device?

(c) How about if the user closes the MHS application and
after some time, the user decides to start the application. How
long does it take to respond to a user’s request if all policy
results for that location have been previously cached on the
mobile device?

(d) How about if a location policy gets modified by an
owner of a place or a developer, how long does it take to
update a copy of that policy on each of a user’s device?

The policy evaluation results are illustrated in Figure 7
below. Based on Figure 7, we can see that the time required
to call Web services: send a query from a client to policy
manager, retrieve and download a relevant policy decision
document, detect conflict between users (check against
location-service status document), resolve conflict
dynamically, and send back result to the mobile client
manager decreases for subsequent Web service calls. As
explained in the previous evaluation section, the first call of
the Web service takes longer time, as the system needs to
download and compile the local host Web service proxy
object on the device. In addition, the first time a Web method
on a Web service is called causes the SOAP client to reflect
over the Web service proxy object. To mitigate this delay, we
declare the Web service object globally within a class and call
a simple Web service method asynchronously on the form
load or constructor. The subsequent calls of this Web method
will not incur this reflection overhead and so, it takes a much
shorter time to complete the process. Moreover, the
subsequent calls of other web methods on the web service will
not incur downloading and compiling of the web service
proxy object (as it only needs to be done once, when the first
time calling a Web service), and so, in general, it also helps
reducing the time to call other web methods on the web
service.

Figure 7: Policy Evaluation Results

When a user moves from one location to another, our

system continuously monitors a user’s location and retrieves
the policy information accordingly. Based on the testing and
evaluation results, the worst case scenario to retrieve a policy
decision result is the first time of Web service calling. This
means, when the first time a user enters a location and the first
time a Web service calling, it takes 2s to retrieve and
download the policy decision result onto a user’s mobile
device. However, as our system has previously called this web
method on the constructor, retrieving the policy decision
result upon the MHS client application is loaded only takes 1s.
This can be considered as a subsequent call of this Web
method as the first one has been done during the initialization
in the constructor.

Upon retrieving the location policy document, the mobile
client manager stores this temporarily on the local system data
set and writes it to an external XML file on a device, when a
user closes the MHS client application. Storing the policy
decision result locally is considered useful in order to speed
up the policy decision checking (check against sRu). As a
result, the subsequent policy checking does not need to
contact the Web server to re-download the relevant policy
document, and so, no policy needs to be re-cached (0s).
Instead, it will just locally check on the local data set.
Moreover, when a user moves to another location and the
policy decision has not been previously downloaded onto a
device (this may be because the user has not visited the
location previously), the client then contacts the system to
retrieve and download the specified policy decision result. In
this case, it takes 1s.

In a situation, where the user moves back to a location
where a policy has been cached, the subsequent policy
checking does not incur a policy downloading process, instead
it just reads from the local policy result dataset and hence, the
checking can be done in minimum amount of time. In addition
to it, the policy decision result which has been stored on the
mobile device only needs to be updated, when the policy for
that location is modified by a developer or an owner of the
place. In this case, it only takes 1s to retrieve and download
the updated policy document from a server to a client
(assuming the user’s location has been known or detected by
the system earlier). In addition, when the user has closed the
MHS client application and decided to open it after some time,

it takes 2s for reading the cached policy XML file. As we also
cached the policy decision result and store it as an XML file,
the subsequent policy checking after a user closes the
application still do not require a policy to be downloaded from
the server and so, reduces the user wait time.

In general, the time that is required to check for the policy
depends on the type of services that a user wishes to execute.
It takes longer time for executing an action on the shared-
resource service compared to a non-shared resource service.
This is mainly because there is more checking that needs to be
done. The policy checking here is triggered when a user clicks
on the action on the service. The policy checking formula
comprises of:
Tpolicuy checking(s) = Tchecking against sRu

 + Tchecking conflicts between entities (check against location-service

 status document)
Based on the testing and evaluation results, it takes 0.48s to

check the policy decision against sRu for the first and
subsequent requests. It remains steady throughout our
executions as checking only needs to be done locally and does
not involve any Web service calling. The only aspect that
influences the amount of time required to check for the policy
decision locally is the device’s processor speed and the
number of applications running at the time. The faster the
speed, the shorter it takes to complete the checking. Moreover,
more applications running during the checking would result a
much slower response from CPU to handle the checking. The
amount of time required for checking whether or not there is a
conflict if the specified action of the service is executed,
varies depending on the number of executions. This is mainly
because, it is implemented as a Web service, and hence, the
first time of Web service calling takes much longer time (i.e.,
1s) than the subsequent requests (i.e., 0.68s).

As for executing a non-shared resource service, it only
takes 0.48s (=0.48+0) to check for policy decision result for
the first and subsequent requests. The shared resource service
would take 1.48s (=0.48+1) for the first time checking and
reduces to 1.16s (=0.48+0.68) for subsequent checking. We
can further improve this policy checking by implementing a
group or compound checking, in which, checking is not done
only per action. The system may group the checking here as
per service, and so, we can reduce the unnecessary checking
for every single action. For example, by displaying a service
to a user that would mean all actions on the service are
allowed or by allowing a user to execute a service (i.e., service
A) would also allow a user to execute another service (i.e.,
service B).

Finally, we present a formula to calculate the total user wait
time to request to execute an action on shared or non-shared
resource services till the system responds back to the user.
This requires a system to detect the user’s location, display a
list of available services, and download the relevant policy
document up to checking a policy decision result. This
formula is illustrated as follows:
Tuser wait time(s) = Tlocation context change delay

+ Tretrieve or update policy decision result

 + Tpolicy checking
Based on the formula above, we conclude that the worst-

case scenario for the user wait time when the user first enters a

location (first time calling a policy result web service) and
wishes to perform an action on the shared resource service is
the first time of requesting the service, which takes 10.48s(=
8.6 + 1.48). For non-shared resource service is 9.08s (= 8.6 +
0.48). The best case scenario i.e., the minimum time delay to
get a response back from the policy manager is in any
execution which is not the first (assuming the location context
for subsequent requests is still the same, and so there is no
need to retrieve or update the policy decision result as well as
a list of services). In such a case, the delay time is 0.48s
(=0+0.48) for non-shared resource service and 1.48s
(=0+1.48) for shared resource service. The delay can be
minimized as the system does not need to retrieve the updated
services and policies as the location is still the same. Here, we
only need to check for the policy and no location context
change is required. The delay time to detect subsequent
requests decrease to 0.48s for non-shared and 1.48s for shared
resource service, because, the subsequent requests re-use the
local cached of policy decision results which have been
previously downloaded (in the first run) for that location and
no need to update the list of services.

In a case, where only policy gets modified (a list of services
in a location still remains the same) as the user is still in the
same location, the system only needs to update the policy
document. In this case, the user wait time is 2.48s (=1+1.48)
for shared resource services and 1.48s (=1+0.48) for non-
shared resource service. In addition, when the user moves to
another location (i.e., from location A to location B), the user
wait time is 6.98s (=6.5+0.48) for non-shared and 7.98s
(=6.5+1.48) for shared resource service – assuming here, the
policy decision result has not been previously cached on the
device as it is the first time a user visits the location and it is
considered as subsequent Web service calling. In a situation
where, the policy decision result is already on the device and
the user re-visits the location and there is no policy
modification or list of services that need to b e updated, the
user wait time for shared resource service would only be 1.48s
(=0+1.48) and for non-shared resource service is 0.48s
(0+0.48).

8. Lessons Learnt

Designing a system based on the user centric approach has
now become one of the key factors that plays a significant role
to empower users to be more effective in completing their
daily activities. In addition, on top of having a user centric
designed system, employing a policy mechanism to utilize
contextual services is also considered important in pervasive
systems. This is due to users in pervasive environments
tending to be always on the move and is allowed to access
services at any place and any time that s/he wishes to.
However, in some circumstances, the space where the users
are visiting to, may want to be in control by asking all visitors
(foreign users) to obey rules which have been pre-specified.
Perhaps, the space has the intention to restrict the behaviours
of foreign users in accessing services in that particular space.

Having an additional policy mechanism in pervasive
systems certainly benefits and maximises the user’s
experience. This is mainly because entities are given a
privilege to control or restrict the behaviours of other entities
in accessing services in particular contexts by defining a rule
or policy which specifies when, where and what type of
services that s/he permits, obligates, or prohibits others from
accessing. However, there are challenges to developing such a
system: (a) we need to detect and handle all possible conflicts
that may occur in pervasive environments. The possible
conflicts may vary from one pervasive system to another, and
depends on the system design such as the contexts, entities,
policies, and services used. (b) to have a scalable mobile
framework that can support a number of different policies
(i.e., a policy from a user, system, service or physical room)
and have an interoperable framework where the policy
functionalities can be easily invoked and accessed from
different platforms and languages.(c) to develop a simple and
robust policy language that can be easily understood and used
with context aware services in pervasive systems.

After designing, implementing and testing a sample policy
application, we conclude that integrating a context-aware
system with a policy mechanism offers several advantages and
disadvantages. The main advantage is the system or space
having control over users’ (e.g., visitors’) behaviours in
accessing services in particular contexts (e.g., specific day,
time and location) and hence, can limit conflicts that may
occur between users who are trying to access the same service
(e.g., a music service) on the same target device with different
actions (i.e., one wants to stop and another wants to start the
music service). Also, it restricts users from performing
prohibited actions at specific contexts (e.g., during exam time,
all students are not allowed to retrieve their online notes on
the “e-note service”). A drawback here is a user would not
have as much freedom, and flexibility as s/he is used to having
in accessing and executing actions on the service. This
drawback in integrating policy with a context-aware system
can be solved by balancing the convenience and compliance
aspects, where a system has control over users’ actions or
activities, but does not overly restrict or control users’
behaviours. Ideally, the end-user would still be able to access
services as per normal (depending on his/her role) in most
places and circumstances, and only in some situations (e.g.,
during exam time or meeting time), the space takes full or
partial control over the service from users i.e., only displays
certain services, allowing users to perform certain actions on
the service or prohibiting users from performing any action on
the service.

9. Related Work

This section provides a brief overview about the research
work that has been done to date that also concentrates on
developing a framework for context aware application. While
many authors have acknowledged the usefulness of context-
awareness in the pervasive environment, only little work has
been done to-date that supports a mobile framework in this

field. Some earlier mobile context aware frameworks are the
Hodes system [7] and Hive [8].

The Hodes system [7] introduces a concept of mobile
context aware framework by employing the mobile code for
downloading a service interface and application into a mobile
device. This system aims at providing variable network
services in different network environments, which involves
changing connectivity. Hodes also introduced an open service
architecture with minimal assumption about standard
interfaces and protocols to support heterogeneous client
devices. However, the implemented prototype application has
not incorporated the services for per-user location based
interfaces. Our system has implemented different types of
services for each user on the particular location. For example,
the lecturer that is visiting the administration office may be
interested in different services from the student in the same
location.

Another mobile context aware framework in the field is
Hive [8]. Hive is a distributed software agent platform that
uses a combination of wearable and pervasive computing to
address the concept of context-aware services. In this project,
the computation and information are shared between the
environment and the wearable. Rhodes claims that
implementing the location-aware systems in both pure
pervasive and wearable have presented fundamental
difficulties [8]. This is due to the pervasive computing tend to
have troubles with personalisation and privacy, whereas, the
wearable system has some drawbacks with localised
information, resource control and management.

Hive is a Java-based agent architecture, that relies on the
Remote Method Invocation (RMI) distributed objects and
mobile code. In contrast, our system is implemented on the
highly compact mobile environment (.NET Compact
Framework) that employs the concept of Web service for the
purpose of retrieving the updated user’s location and a list of
available services in a particular location. Moreover, our
framework also enhances some policies used for service
execution.

There are also some various other context-aware
applications surveyed in [2]. However, none of them are using
mobile code and positioning technology like the way we do.
Among previous work on exploiting a framework for context
aware applications, much work has been done on location
aware systems. Some existing projects, which have
successfully developed an application that is aware of the
user’s location are Mobile Shadow. The Mobile Shadow [9]
project focuses on prototyping applications for proactive cell-
based location aware services with mobile code. Another
project that also makes use of location sensing is Virtual Tour
Guide [10]. A Virtual Tour Guide project uses a GPS system
to detect a user’s location in an outdoor environment. As soon
as the user walks past or enters an area, which is delimited by
the GPS coordinates, a relevant stick e-note to a physical
location is delivered to the user’s mobile device. A Cool town
project from Hewlett Packard also developed a project that
makes use of the knowledge of the user’s physical location
[11]. The interesting part from this project is the creation of a
mobile WWW infrastructure with respect to the physical
location. As the mobile user moves toward the physical space,

the relevant WWW pages are displayed on the user’s mobile
device. In addition, some other projects in location context-
aware field are described in [12, 13].

Another interesting aspect that is focused in this section is
the policy. Policy is defined as a rule to govern the behaviour
of the system i.e., the way the system needs to be executed. To
date, most of the policy projects focus on implementing
flexible and adaptive systems in the field of networking,
security and distributed internet system [14, 15]. There is also
some other policy works surveyed in [16]. From some
research findings in policy, we believe that only little work
has been done to date that implements a policy language in the
location aware or context aware pervasive environment.

Although, they are dealing with the context, but their
definition of context is different from us. In our work, we
focus more on the user’s contexts (i.e., a user’s intention,
profiles, behaviours, location, current time and etc). On the
other hand, most of the policy works in pervasive environment
focus on the context of the agent, a system, networking and
access control security rather than context of the user. Some
of these closely related policy projects are the spatial policy
framework [20] and Rei Policy Language [21, 22].

The spatial policy framework aims to control the execution
of the mobile agent in location based services environment.
Depending on the location that the user enters, a mobile agent
will have different states of the executions i.e., user A is
currently listening to the news in his room. A “news agent” is
then running at this stage. But, if user A decides to go to a
different room (i.e., user B’s room), different states of the
agent will be encountered i.e., the agent may be frozen or
killed. The state of the agent is specified by the user’s policy.
In this case, each user specifies what agents need to be started
or terminated at a certain time and location and what actions
need to be performed if there is an external agent that comes
across to its place (the action can be to continue the execution
or kill the external agent).

This framework also defines the concept of role. In here,
role refers to the position of the user in the environment i.e., a
boss, manager and staff. In the case of conflict between users
that have the same role, the system will seek a policy
resolution from a user with a higher level of authority. In this
case, a boss which is the top level of the hierarchy can write a
policy to override the other users’ policies.

However, this project has not incorporated any
development of user interface into a mobile device. The
portable device that is used in this project is a laptop. In
general, this project only focuses on the development of a
security policy language that restricts the behaviour of the
mobile agent. In contrast, in our system, we aim to provide
policy languages for a context aware pervasive environment.
The policy language here is used to govern the service
execution according to the user’s needs i.e., a user only wants
to see a Media Player service at the certain context, then the
system displays this Media Player service in that context only.
Based on the policy, our system will deliver different types of
services to the user depending on the user’s current contexts.

The Rei Policy Language was developed by some
researchers at HP Labs. The aim of this policy language is to
provide flexible contracts based on deontic concepts that are

reusable across domains (such as at networking and access
control security) [22]. Some parts of these projects including
the policy engine are still under development. Our model to
some extent has similar philosophy to the Rei Policy
Language, since we aim to develop a policy language that can
target multi domains in pervasive environment, but we focus
on mobile services.

Many policy projects focus on implementing flexible and
adaptive systems in the field of networking, security and
distributed internet systems [9, 10]. There is also some other
policy works surveyed in [11]. We believe that research is
ongoing for policies in location aware or context aware
pervasive environments. In our work, we focus on the user’s
contexts (i.e., a user’s intention, profiles, behaviours, location,
current day, time and a user’s identity) but many other policy
works in pervasive environment focus on the context of the
agent [3, 5, 12, 20], networking [16], access control [13], and
security [14, 15, 17] rather than context of the user. But two
closely related policy projects are the Spatial policy
framework [20] and Rei Policy Language [3, 5].

10. Conclusion and Future Work

We have presented an architecture for “Mobile Hanging
Services”, allowing a mobile device to adapt its functionality
to exploit a set of services that it discovers depending on the
user, location, day and time contexts. We proposed that
adding context awareness and some rules or policies to the
traditionally designed application helps to improve the user’s
experience in using the system, especially if there is regularity
in the user’s activities. We also have developed a prototype
implementation of adding context awareness and a simple
policy document into a traditional Windows Media Player
application.

We conclude that having a policy in pervasive
environments is generally useful as it can be used as a tool to
govern and control the entities’ behaviours. Moreover, it can
also help the user to express actions to be automatically
executed (as obligations the user imposes on the system). In
several experiments with our prototype, the only drawback
that we experience is the additional delay in responding to the
user’s request due to conflict checks and resolution when
needed (1-3s additional delay after click). The user wait times
in our policy system can be further reduced by exploiting
different techniques to detect and resolve the conflict i.e.,
detecting and resolving the conflict proactively. Some aspects
that need to be further analysed and developed are: (a)
Considering multi users in one physical location. (b) We may
want to use Semantic Web language with Ontology. (c) Have
dynamic and multiple roles. (d) We need to ensure the
consistency of policy objects within one policy document. (e)
What is the penalty if the user forgets or does not want to
complete his/her obligation?

References

1. Weiser, M., “The Compute for the 21st century”, Scientific
American, 94-104, Sep 1991.

2. Chen, G. & Kotz, D. (2000), “A Survey of Context-Aware Mobile
Computing Research”, Dartmouth Computer Science, Technical
Report TR2000-381 [online], Available:
ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.pdf [Accessed 03
April 2003].

3. Prekop, P. & Burnett, M. (2003), “Activities, Context and
Pervasive Computing”, Special Issue on Pervasive Computing
Computer Communications, vol.26, no.11, pp.1168-1176.

4. Schmidt, A., Beigl, M. & Gellersen, H-W. (1999), “There is More
to Context than Location”, Computers and Graphics, vol.23, no.6,
pp.893-901.

5. Turner, R.M. (1998), “Context-Mediated Behaviour for Intelligent
Agents”, International Journal of Human-Computer Studies,
vol.48, no.3, pp.307-330.

6. Castro, P. & Muntz, R. (2000), “Managing Context Data for Smart
Spaces”, IEEE Personal Communications, vol.7, no.5, pp.44-46.

7. Hodes, T.D. & Katz, H.R. (1999), “Composable ad hoc location
based services for heterogeneous mobile clients”, Wireless
Networks, vol.5, no.5, pp.411-427.

8. Rhodes, J.B., Minar, N. & Weaver, J. (1999), “Wearable
Computing Meets Pervasive Computing: Reaping the best of both
worlds”, Proceedings of the 3rd International Symposium on
Wearable Computers, San Francisco, USA, 18-19 October 1999,
pp.141-149.

9. Fischmeister, S., Menkhaus, G. & Pree, W. (2002), “Context-
awareness and Adaptivity Through Mobile Shadows”, Software
Research Lab, University of Salzburg, Austria. Technical Report
TR-C047 [online], Available:
http://www.softwareresearch.net/reports/C47.pdf [Accessed 12
April 2003].

10.Brown, P.J., Bovey, J.D. & Chen, X. (1997), “Context-Aware
Applications: From the laboratory to the marketplace”, IEEE
Personal Communications, vol.4, no.5, pp.58-64.

11.Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D.,
Debaty, P., Gopall, G., Frid, M., Krishnan, V., Morris, H.,
Schettino, J., Serra, B. & Spasojevic, M. (2000), “People, places,
things: Web presence for the real world”, Proceedings of the 3rd
IEEE Workshop on Mobile Computing Systems and Applications,
Monterey, CA, USA, December 2000, pp.19-28.

12.Beadle, H.W.P., Harper, B., Maguire, G.Q. & Judge, J. (1997),
“Location Aware Mobile Computing”, Proceedings of the IEEE
International Conference on Telecommunications, Melbourne,
Australia, April 1997, pp.1319-1324.

13.Davies, N., Cheverst, K., Mitchell, K. & Friday, A. (1999),
“Caches in the Air: Disseminating Tourist Information in the
Guide System”, Proceedings of the 2nd IEEE Workshop on Mobile
Computer Systems and Applications (WMCSA), New Orleans,
USA, 1999, pp.11-19.

14.Moffett, J.D. & Sloman, M.S., Policy Conflict Analysis in
Distributed System Management, Journal of Organisational
Computing, Vol. 4 no 1, pp 1-22 (1994).

15.Marriott, D.A., “Policy Service for Distributed Systems”, Thesis,
June 1997.

16.Damianou, N., Bandara, A.K. Sloman, M. and Lupu, E.C., “A
Survey of Policy Specification Approaches”, Department of
Computing, Imperial College of Science Technology and
Medicine, London, UK.

17.Syukur, E., Loke, S.W. and Stanski, P. (2004), “Performance
Issues in an Infrastructure for Mobile Hanging Services”,
Proceedings of the First International Conference on Mobile

ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.pdf

Computing and Pervasive Networking (ICMU), NTT DoCoMo
R&D Center, Yokosuka, Japan, 8-9 Jan 2004, pp.32-37.

18.Syukur, E., Loke, S.W. and Stanski, P., “The Mobile Hanging
Services Framework for Context-Aware Applications: the Case of
Context Aware VNC”, WIS (Wireless Information Systems)
Workshop, Porto, Portugal, April 2004.

19.Syukur, E., Cooney, D., Loke, S.W. & Stanski, P. (2004),
“Hanging Services: An Investigation of Context-Sensitivity and
Mobile Code for Localised Services”, Proceedings of the IEEE
International Conference on Mobile Data Management, Berkeley,
USA, 19-22 Jan 2004, pp.62-73.

20.Scott, D., Beresford, A. and Mycroft, A., “Spatial Security
Policies for Mobile Agents in a Sentient Computing
Environment”, LNCS 2621, pp. 102-117, 2003.

21.Kagal, L., “Rei: A Policy Language for the Me-Centric Project”,
Technical Report, HP Labs, Palo Alto

22.Kagal, L., Finin, T. & Joshi, A., “A Policy Language for a
Pervasive Computing Environment”,

23.Ekahau Positioning EngineTM 2.0 Developer Guide [Available
upon commercial purchased].

24.Syukur, E., Loke, S.W. and Stanski, P., “The Mobile Hanging
Services Framework for Context Aware Applications: An
Experience Report on Context Aware VNC”. Technical Report
no:151/2004, Monash University, Australia.

25. Bettini, C., Jajodia, S., Wang, X.S. and Wijesekera, D.,
“Provisions and Obligations in Policy Rule Management”, Journal
of Network and Systems Management, Vol. 11, No. 3, September
2003.

26. Moffett, J.D. and Sloman, M.S., “Policy Hierarchies for
Distributed Systems Management”, IEEE Journal on selected
areas in communications, VOL.11 No.9, December 1993.

27. Scott, D., Beresford, A. and Mycroft, A., “Spatial Policies for
Sentient Mobile Applications”, IEEE Policy Workshop 2003, 4-6
June 2003, Italy.

28. Godefroid, P., Herbsleb, J.D., Jagadeesan, L., Li, D., “Ensuring
Privacy in Presence Awareness Systems: An Automated
Verification Approach”, Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pp. 59-68, United States.

29. Syukur, E., Loke, S.W. and Stanski, P., “A Policy based
framework for Context Aware Ubiquitous Services”, Proceedings
of the Embedded Ubiquitous Computing Conference, Aizu-
Wakamatsu, Japan, LNCS, vol. 3207, Springer-Verlag, pp.346-
355, 2004.

30. Syukur, E., Loke, S.W., and Stanski, P., ”Methods for Policy
Conflict Detection and Resolution in Pervasive Computing
Environments”, Proc. of Policy Management for Web Workshop,
Chiba, Japan.

	This section provides the most important components and high level architecture of our MHS system that supports context awareness for computing relating services and policy in perv
	This section discusses several possible sources and types of

