

Abstract—A digital ecosystem usually refers to a collection
of small and medium enterprise businesses that interacts
closely as a system. In this paper, we present a different type of
digital ecosystems. We introduce the idea of creating an eco-
system from a number of smart devices. This ecosystem is
categorised as a micro ecosystem rather than macro ecosystem.
The proposed model of this digital ecosystem is called Device
Ecology.

Index Terms—digital ecosystems, smart devices, workflow,
web services.

I. INTRODUCTION

Recent development of digital ecosystems technology has
focused its discussion on the idea of creating business eco-
systems that encompasses small and medium enterprises as
entities in the systems[6]. The biology metaphor is used as a
model of the interactions among these SMEs and their envi-
ronment (infrastructure). In this typical realization of the
metaphor, a large or macro ecosystem is assumed. In bio-
logical ecosystems, it is possible to have a macro ecosystem
that is made of a number of micro ecosystems. In this paper,
we present a different kind of digital ecosystems. Unlike the
popular approach of viewing a digital system as a macro
ecosystem, we propose a view of a micro ecosystem as a
biological metaphor in managing a collection of smart de-
vices. The smart devices in the proposed systems are man-
aged in a scenario of a smart home.

In this paper, we present our perspective on how the man-

agement of smart devices can be achieved through the use
of the ecosystems concepts. We start by presenting a gen-
eral philosophy and architecture that we adopt in our system
in section 2. In order for our system to work properly, proc-
ess management is needed. This issue is discussed in de-
tailed in section 3. In particular, we illustrate how the high
level language called Eco can be used to represent user de-
fined workflow. Human plays an important role as an or-
ganism in our model. They are the users of the systems and
need to interact effectively with the devices. In section 4 we
illustrate how this language can be mapped to the
BPEL4WS[5] as a low level language to control the opera-
tion of the devices. We have developed a prototype for the
proposed model as depicted in section 5. Finally we present
the conclusion and future work in section 6.

II. DEVICE ECOLOGY ARCHITECTURE

In a smart home system as an ecosystem, we envisage

1 The authors acknowledge the support of the Australian Research

Council for this project.

that all the appliances can perform ‘smart’ behaviour. The
appliances is defined as an electrical device or instrument
designed to perform a specific function for household use.
Bergman [2] and Norman[7] suggested in the future, more
appliances will be built with computational and communi-
cation infrastructure support that allow these devices to be
unobtrusive and seamless in performing a specific task.
These devices are often called information appliances or
internet appliances if they have Internet-connectivity. Con-
sidering that these appliances are able to perform a smart
behaviour, we consider these appliances as organisms that
populate our ecosystems. Another type of organism that is
part of the proposed digital ecosystem is the human user of
these appliances. The whole interactions of the information
appliances, human and its environment, such as tempera-
ture, humidity, and time are the make up of our digital eco-
systems. We called this ecosystem Device Ecology.

user

devices

environment

Deco
Server

Figure 1. Device Ecology

There are three main types of “organisms” in the Device

Ecology; the user, Deco Server and the appliances/devices.
Figure 1 depicts the architecture of the Device Ecology.
Similar to biological ecosystem, device ecology interact
with its environment. Environment factors can influence the
operation of the device ecology, for example, it is possible
that the air conditioner will be turned on when temperature
inside the house reaches certain degree. The information on
the environment can be gathered through some sensors
mechanism. Together with the user determined profile, the
deco server makes appropriate decisions and activate ap-
propriate devices.

Figure 1 shows that the central part of the Device Ecol-

Device Ecology: A Micro Digital Ecosystem1
 Maria Indrawan1, Sea Ling1 and Seng Loke2,

1Faculty of Information Technology, Monash University, Australia.
emails: (maria.indrawan, sea.ling) @infotech.monash.edu.au

2 Department of Computer Science and Computer Engineering, Latrobe University, Australia
e-mail: s.loke@latrobe.edu.au

446

ogy systems is the Deco server. The Deco server controlled
the interactions among devices. These interactions in the
ecosystems is harnessed and controlled through Web ser-
vices. We model the observable and controllable aspects of
devices as Web services as in Matsuura et.al [4]. Such de-
vice modeling is not consistent with the emerging standard
model for appliances such as the AHAM Appliances Model
[1], where each appliances is modeled as a collection of ob-
jects categorized according to subsystems. We also note that
there will be aspects of the device which are not exposed as
Web service. The observable and controllable aspects of
devices are harnessed by applying a workflow management
model. In our system, we adopt the BPEL4WS [5] as the
workflow management model for the Web services. Figure
2 depicts the conceptual architecture of the workflow engine
in Device Ecology.

Figure 2. Multilayerd Conceptual Architecture of the Deco Server Work-

flow Engine

It is possible to expect that the designer and the developer

of the Device Ecology to understand BPEL4WS. However,
the user of the system needs to be alleviated from the re-
quirement to understand this language in order to program
their workflow. To support the user interaction, we develop
an interaction language called eco. Description of this lan-
guage is presented in the next section.

III. USER INTERACTION LANGUAGE

1) Eco Language
Eco is an English like interaction language to define a

workflow in Device Ecology. It is a collection of abbrevi-
ated commands would make end-user programming sim-
pler. Such commands can then map down to lower level
language like BPEL4WS, which in turn, is used to control
the devices. To illustrate the usage of the Eco as a com-
mand language, we consider a small workflow example de-
picted in figure 3.

We consider a small example of such a two-level model.

The top level is a small user command language, which we
call eco, comprising commands that can be combined for
sequential or parallel execution. For simplicity, we consider
a device ecology with only a few devices. Inspired by Omo-

jokun and Dewan [8], we consider two kinds of commands,
those which affect a single device and those which affect
multiple devices. Commands affecting multiple devices are
directed to a pseudo device that issues single-device com-
mands to the appropriate devices. In fact, the Device Ecol-
ogy Workflow Engine performs this function. It need only
be provided with a predefined command set, expressed in
eco, describing how to break down multi-device commands.
This procedure can be nested to any depth, where each level
of nesting corresponds either to a recursive call to a single
instance of the Engine, or to the invocation of a separate in-
stance.

Figure 3: An Example Device Ecology Workflow

An example of an eco defined workflow for the example

in figure 1 is as followed:

retrieve News; wait for News; activate

coffee machine, switch on bedroom light;
switch on bathroom light; switch on TV;
wait for TV; display News on TV.

A sentence in eco represent a single workflow. This

workflow may consist of a number of activation and control
of devices. Each of these activities is represented as a
CLAUSE in eco, for example, Retrieve News;
clause. Sequential operation of a device or multiple de-
vices is achieved by using the WAIT_CLAUSE, for exam-
ple, switch on TV; wait for TV; display
News on TV. The concurrent operations of devices is
represented by concatenated the clauses using the symbol
“;”, for example, switch on bedroom light;
switch on bathroom light; switch on
TV;.Formally, the eco command language can be repre-
sented in EBNF format as shown in figure 4.

Note that some of the commands, although different in

the command language, might invoke the same Web ser-
vices with different parameters. The commands in the task
language are a combination of a verb and a noun, some
commands with parameters such as ‘news’. In practice, the
vocabulary of verbs and nouns can be based on a task on-

447

tology such as CLEPE [3]. Alternatively, the nouns and
verbs can be extracted dynamically by a service discovery
process. This is the approach we have taken here, which in-
volved dynamically creating the parser’s lexical analyzer
from terminal symbols discovered at runtime The reason for
the additional level of commands above the BPEL4WS
level is abstraction, so that the user does not think of device
ecology workflows in terms of Web services but rather in
terms of what he/she observes or would expect of the de-
vices in everyday terms. For example, a user who does not
know anything about Web services can still command the
device ecology based on the high-level commands. More-
over, many of these high-level commands are applicable in
different settings. For example, any room that has lights can
be commanded with “turn on all lights” but such a com-
mand will translate into a different low-level workflow, de-
pending on what lights are available in the room itself. Such
translations from high-level commands to low-level work-
flows can be pre-defined (e.g., by an administrator who is
either a vendor or a savvy user) for each room using meth-
ods such as that presented above. Hence, the high-level
command to turn on all lights has a different meaning or in-
terpretation which is predicated on the actual room (i.e., the
actual device ecology) the command is issued against. We
term such commands polydeco commands, referring to
commands whose meaning is device ecology dependent.
There would also be commands that are applicable for dif-
ferent devices, and depending on the device, such com-
mands will take on different meanings (and interpretation).
For example, the command “switch on” can be applied to a
light or to the television and the command “open” can be
applied to drapes or to doors. We term such commands
polydevice commands. Similar to polydeco commands, the
actual meaning of the polydevice commands can be pre-
defined, i.e., mappings from each command on a device can
be mapped to a conversation with the device.

Ideally, a user, through experience of and general knowl-
edge about the world, knows intuitively how to command
devices and device ecologies, and so, does not need to learn
about Web services or learn a new command set for every
room visited or for every device encountered. There will be
devices that an individual would not know about (e.g., new
innovations) or would not know the full features of - the
user will then need to learn new commands, perhaps adding
to those already available by general knowledge.

SENTENCE::= clauses:CLAUSES "."
END_INPUT;

CLAUSES::={clause:CLAUSE ";" ...}+;

CLAUSE::= activity_name_clause:
ACTIVITY_NAME_CLAUSE |
activity_clause:ACTIVITY_CLAUSE |
wait_clause:WAIT_CLAUSE;

ACTIVITY_NAME_CLAUSE::="call"["it"]
activity_name:ACTIVITY_NAME;

ACTIVITY_NAME::=name_word:NAME_WORD;

NAME_WORD::=word_nw:WORD;

ACTIVITY_CLAUSE::=[prepositions_v:
PREPOSITIONS_V]verb_word:VERB_WORD
[modifier_words:MODIFIER_WORDS]
[prepositions_n:PREPOSITIONS_N]
noun_word:NOUN_WORD ;

PREPOSITIONS_V::=PREPOSITIONS;

PREPOSITIONS_N::=PREPOSITIONS;

VERB_WORD::=word_v:WORD;

NOUN_WORD::=noun_n:NOUN;

MODIFIER_WORDS::={prepositions_modifier:
PREPOSITIONS_MODIFIER ... }+ ;

PREPOSITIONS_MODIFIER::=
prepositions_m:PREPOSITIONS]
modifier:MODIFIER ;

PREPOSITIONS::={preposition_word:
PREPOSITION_WORD ... }+;

PREPOSITION_WORD::=preposition:
PREPOSITION;

MODIFIER::=word_m:WORD ;

WAIT_CLAUSE::="wait" "for"
wait_for_noun:WAIT_FOR_NOUN ;

WAIT_FOR_NOUN ::= noun:NOUN ;

Figure 4. ECO language in BNF format

2) Workflow models in Eco

A set of tasks can be configured into a workflow as se-
quential and/or concurrent tasks. In Eco, concurrent tasks
are represented as a series of clauses separated by the
sysmbol “;”. For example,

Switch on bedroom light; switch on bath-
room light; turn on radio;.

448

Sequential tasks can be represented using the

“WAIT_CLAUSE”. For example,

Switch on bathroom light; wait for bath-
room light; turn on the bathroom tap;.

Switch on
bedroom light

Switch on
bathroom light

turn on
radio

START

Turn on
bathroom tap

END

Figure 5. Grouping Devices with Wait Clause

The “WAIT_CLAUSE” can also use to synchronise opera-
tions of a multiple devices. For example the workflow dia-
gram depicted in figure 5 can be expressed in the Eco as:

Switch on bedroom light; switch on bath-
room light; turn on radio; wait for bed-
room light, wait for bathroom light,
wait for radio, turn on the bathroom
tap;.

In the execution of the workflow, the WAIT_CLAUSE
will cause the subsequent device to be push into a stack and
will be activated accordingly when the device that cause the
wait return a ready status to the workflow engine. In some
workflow scenarios, the WAIT_CLAUSE operation can
cause reduction in efficiency. Figure 6 depicts a scenario
where the use of WAIT_CLAUSE can cause a decrease in
efficiency.

START

C1 C2

C4

C3

C6 C5

END

Figure 6. The efficiency issue in the ECO

Figure 6 shows six tasks in the workflow. The intended

workflow is to have three concurrent paths, START-C1-C4-
END, START-C2-C5-END and START-C3-C6-END. In
Eco, the workflow will be written as:

Activate C1; activate C2; activate C3;

wait C1; wait C2; wait C3; activate C4;
activate C5; activate C6;.

The clauses wait C1, wait C2 and wait C3 before the acti-

vation of C4, C5 and C6 implies that C5 cannot start until
C1 and C3 complete. The dotted lines in the diagram depict
the implied WAIT_CLAUSEs that are assumed by the work-
flow engine during the execution of the example Eco state-
ment. Considering this matter, nevertheless, under a normal
circumstance the workflow will be executed according to
the user request, although, it may not be in the most effi-
cient manner due to the Eco design of the WAIT_CLAUSE.
The decreased in efficiency become more noticeable in the
case of device failure. Assume that a device that needs to
execute task C1 is failed. In this situation, the whole work-
flow will come to halt due to the implied WAIT_CLAUSE
for C5 and C6. One possible solution is to detect the exis-
tence of the implied WAIT_CLAUSEs in the workflow en-
gine and remove it from its execution. The Eco language
needs to be kept as simple as possible so that the novice
user can use it to program the device ecology. The complex-
ity need to be pushed to the lower levels, for example at the
low-level workflow language or at the device conversation
level. In the next section, we present the low-level work-
flow language in the device ecology and a way to translate
Eco into this low level format.

IV. LOW LEVEL WORKFLOW DEFINITION

Each command in the top level language is translated into
BPEL4WS format. We assume that there is a device ecol-
ogy workflow engine for executing BPEL4WS specifica-
tions in the Deco server.

A command expressed in eco might be translated into a
set of alternative workflows in the lower level language,
where if one alternative fails during execution, another can
be tried. The following general guidelines are used in trans-
lating eco into BPEL4WS:
1) A single eco sentence is represented as a single

<process> element.
2) The devices activated in the workflow are defined as

<partnerLink> elements. The <partnerLink>
has three attributes; name, partnerLinkType and role.
The attribute name represents the device name. The
partnerLinkType and the role are used to relate the
BPEL4WS and the WSDL during the execution. In the
case of multiple devices involved in a single workflow,
the element <partnerLink> may be encapsulated
within <partnerLinks> element.

3) Element <variable> is used to represent the modi-
fier in an eco sentence.

449

4) The start and end of a device activity are represented by
the elements <receive> and <reply>. The ele-
ment <receive> denotes the start of an activity, the
element <reply> to denotes the end of an activity.

5) Encapsulated within the <receive> and <reply>
will be either the elements of <flow> or <link>, de-
pending on whether the operations are sequentially or
concurrently executed. For a sequential execution, the
<link> element is used and the <flow> is used for a
concurrent execution of devices.

6) The combination of the <source> and <target>
elements are used to represent the eco WAIT_CLAUSE.

The following eco command

Retrieve News; wait for News; activate
coffee machine.

is translated to the following BPEL4WS

<process name=”morningActivity”>
<partnerLinks>
 <partnerLink name=”newsChannel”
 partnerLink Type=”newsChannel:newsChannelLT”
 role=”newsChannel”/>
 <partnerLink name=”coffeeMachine”
 partnerLink
Type=”coffeeMachine:coffeeMachineLT”
 role=”coffeeMachine”/>
</partnerLinks>
<sequence>
 <receive partnerLink=”newsChannel”
 portType=”newsChannelPT”
 operation=”retrieve”
 variable=”newsIn”/>
 <flow>
 <links>
 <link name=”L1”/>
 </links>
 <invoke partnerLink=”newsChannel”
 portType=”newsChannelPT”
 operation=”retrieve”>
 <source linkName=”L1”/>
 </invoke>

<sequence>
 <invoke partnerLink=”coffeeMachine”
 portType=”coffeeMachinePT”
 operation=”activate”>
 <target linkName=”L1”/>
 </invoke>

</sequence>
</flow>
<reply partnerLink=”newsChannel”
 portType=:newsChannelPT”
 operation=”retrieve”
 variable=”newsOut”/>

</sequence>
</process>

Note that some tags may seem redundant but they are the
result of a general template. During the actual implementa-
tion of a Device Ecology, it is possible to help the user to
start the system with templates of common workflows. As a
result, the user only needs to modify the preferences. This
option may be considered very limiting for some users who
want to design their own workflows. There are a few issues
that Device Ecology has to support in order to give this

flexibility. One of the most important issues is the valida-
tion of the workflow before it is deployed in the real system.
The validation can be done in terms of two aspects. The first
aspect is to validate the ‘correctness’ of the workflow from
modelling point of view. In this case, we can use Petri-Net
to validate the workflow. The second aspects related to the
semantic operation of the workflow, for example, the dead-
lock detection. We have included in our Device Ecology, a
mechanism to detect the existence of a deadlock in a given
workflow defined in BPEL4WS language. The aforemen-
tioned validations are conducted before deploying the work-
flow in the system. It is still necessary to perform some run-
time validation in the status of the workflow during execu-
tion.

V. PROTOTYPE

The conceptual architecture for the engine that executes and
manages device ecology workflows is shown in Figure 4.
Roughly, each layer of the architecture shows the compo-
nents required to manage a level of abstraction. Note that
user operations on an executing workflow such as cancel,
pause, etc, can be issued during workflow execution - not
shown in the diagram. The system keeps track of the corre-
spondences between device conversations and the associ-
ated tasks in the low-level workflow, and between tasks in
the high-level workflow and the associated low-level work-
flows, in order that exceptions are correctly reflected up (if
required) through the abstraction levels. If there is an excep-
tion in a call to device, it can be traced to its corresponding
low-level workflow task and then to its corresponding high-
level workflow task. For example, if there is an exception in
the call to switch on a light, it can be traced to the high-level
task of turning on all lights, and the system might report to
the user that there is an error in carrying out that high-level
task but allow the user to drill down to specific faults in the
lower levels. We are currently developing a prototype of our
system with a subset of BPEL4WS as the low-level work-
flow language.

Figure 7. Sample screen from the prototype

450

Figure 7 shows the DecoFlow application with a sample
BPEL4WS document loaded for visualisation. On the left
side of the editor window is a tree displaying all of the in-
formation obtained from the BPEL4WS document. On the
right hand side is the visualisation of the BPEL4WS docu-
ment which is represented by a series of connected nodes
which represent the process and activities from the
BPEL4WS document.

VI. CONCLUSION

We have presented Device Ecology as an example of a
micro digital ecosystem. The ecosystem is made up of hu-
man, devices and the environment. The ecosystem is mod-
elled in three levels of abstractions: high level workflow,
low level and device conversation. In this paper, we put
forward the definitions and examples of the high level and
low level workflow and how the translation can be done
from the high to the low level. The translation is one of the
many issues that need to be addressed in building the device
ecology. Ongoing and future work is still actively investi-
gated. Some of the issues that currently are investigated ar-
eas:
• Handling fault.

Device ecology relies on web services to manage the
processes in the workflow. Since web services is state-
less, a way of monitoring the device status and its impact
on the workflow execution is important. It is also possible
that a device become inoperable. Hence, device substitu-
tion may be required. How can the device be substituted?

• Validation of the workflow
Validation of the workflow can be done during design
or/and run time. We currently investigate the possibility
of using Petri Net as a tool to validate the workflow.
Some of the design validations include deadlock detec-
tion.

• Diagrammatic user interface
Currently we have Eco as a command based user inter-
face to program the device ecology. Some users may pre-
fer to work with diagrammatic tool to design the work-
flow. This tool will be useful in particular in designing a
complex workflow.

We have so far considered a centralised engine for exe-

cuting the decoflow. It would be interesting to investigate
further a possibility of using the multiagent distributed
workflows using decentralised peer-to-peer model in order
to provide greater flexibility and facilities to perform on-
the-fly and just-in-time ad-hoc workflow. It will alleviate
the problem of a single point of failure in the system.

VII. REFERENCE

[1] AHAM, Connected Home Appliances – Object Modelling, 2002,
AHAM-CHA-1-2002.

[2] E. Bergaman, Information Appliances and Beyond, 2000, Morgan

Kaufmann.

[3] Ikeda, M., Seta, K., Kakusho, O., and Mizoguchi, R. “An Ontology

for Building a Conceptual Problem Solving Model.”, In ECAI98

Workshop on Applications of ontologies and problem-solving model,
1998, pages 126–133, Brighton, England.

[4] K. Matsuura, T. Hara, A Watanabe and T. Nakajima, “A New Archi-

tecture in Home Computing,” in Proceedings of 1AD: First Interna-
tional Conference in Appliance Design, 2003, pp 57-63.

[5] Microsoft, IBM, Siebel, BEA, and SAP (2003). Business Process

Execution Language forWeb Services Version 1.1. Available at
http://www-106.ibm.com/developerworks/library/ws-bpel/.

[6] Nachira, F. 2002. Towards a Network of Digital usiness Ecosystems

Fostering the Local Development. European Commission Discussion
Paper. Accessed 25th September 2006 at
http://www.digitalecosystem.org/html/repository/dbe_discussionpape
r.pdf

[7] D. Norman, The Invisible computers, 1999, The MIT Press.

[8] Omojokun, O. and Dewan, P, “ A High-Level and Flexible Frame-

work for Dynamically Composing Networked Devices.” In Proceed-
ings of the 5th IEEE Workshop on Mobile Computing Systems and
Applications, 2003.

451

