

The Atomic Rules Approach for Describing
Black-Box Testing Methods and its Evaluation

Submitted by
Tafline Murnane, BEng (Hons)

A thesis submitted in total fulfilment

of the requirements for the degree of

Doctor of Philosophy

School of Engineering and Mathematical Sciences

Faculty of Science, Technology and Engineering

La Trobe University
Bundoora, Victoria 3086

Australia

October 2009

ii

iii

Table of Contents

List of Tables ... viii

List of Figures ... xv

Abstract .. xviii

Statement of Authorship .. xix

Glossary .. xx

Acknowledgements .. xxv

Dedication .. xxvi

Chapter 1 Introduction ... 1

1.1 Overview .. 1

1.2 Test Method Usability .. 2

1.2.1 Assessing Usability ... 4

1.2.2 Failure-Detection Effectiveness .. 5

1.3 Black-Box Testing Methods .. 6

1.4 Seven Problems with Existing Black-Box Testing Methods .. 12

1.5 Aims and Contributions ... 15

1.6 Scope ... 18

1.7 Evaluation ... 19

1.8 Thesis Structure .. 19

Chapter 2 Black-Box Testing – History and Practice .. 21

2.1 Overview .. 21

2.1.1 Terminology .. 22

2.1.2 Classes of Input and Output Fields ... 25

2.2 Black-Box Testing Methods .. 27

2.2.1 Equivalence Partitioning (EP) ... 27

2.2.2 Boundary Value Analysis (BVA) ... 36

2.2.3 Syntax Testing (ST) .. 40

2.2.4 Random Testing (RT) ... 46

2.2.5 Non-Prescriptive Approaches to Black-Box Testing ... 47

2.2.6 Test Catalogues, Test Categories and Test Matrices .. 54

2.2.7 Combinatorial Test Methods ... 57

2.2.8 The Category Partition Method (CPM) .. 64

2.2.9 Classification Trees ... 67

2.3 Summary of Black-Box Test Case Design Steps and Methods .. 69

2.4 Combining Testing Methods .. 70

2.5 Approaches to Test Method Selection ... 70

iv

2.5.1 Test Method Selection by Test Design Step ... 70

2.5.2 Test Method Selection by Error Class ... 71

2.5.3 Test Method Selection via Vegas et al.’s Characterisation Schema ... 71

2.5.4 Test Method Selection via Jorgensen’s Decision Table ... 74

2.5.5 Test Method Selection by Effectiveness ... 74

2.6 External Influences on Test Set Quality ... 79

2.6.1 Effect of Specification Language on Black-Box Testing ... 79

2.6.2 Effects of Domain Knowledge on Black-Box Testing ... 81

2.7 Automation of Black-Box Testing Methods .. 82

2.7.1 Automated Random Testing .. 83

2.7.2 Automated Syntax Testing .. 83

2.7.3 Automated Black-Box Testing .. 83

2.7.4 Classification Trees .. 85

2.8 Summary ... 85

Chapter 3 A Generalised Representation for Black-Box Testing Methods 87

3.1 Overview ... 87

3.2 The Atomic Rules Approach .. 90

3.2.1 The Four-Step Black-Box Test Case Design Process ... 91

3.2.2 The Atomic Rules Schema .. 92

3.3 Representing Black-Box Testing Methods as Atomic Rules .. 95

3.4 Demonstration of the Atomic Rules Approach .. 112

3.5 Auditing the Completeness of Black-Box Testing .. 123

3.6 Using the Atomic Rules Approach in other Black-Box Testing ... 124

3.6.1 Applying Atomic Rules to State Transition Testing ... 124

3.6.2 Applying Atomic Rules to Use Case Testing ... 127

3.6.3 Applying Atomic Rules to the Category Partition Method .. 130

3.7 Evolution of the Atomic Rules Approach .. 132

3.8 Limitations of the Atomic Rules Approach ... 132

3.9 Related Research ... 134

3.10 Goal/Question/Answer/Specify/Verify and Systematic Method Tailoring .. 135

3.10.1 Goal/Question/Answer/Specify/Verify (GQASV) ... 135

3.10.2 Systematic Method Tailoring (SMT) .. 137

3.10.3 Demonstration of GQASV and SMT .. 141

3.11 Summary ... 147

Chapter 4 Automating the Atomic Rules Approach .. 149

4.1 Overview ... 149

4.2 Screens and Navigation .. 151

4.3 Architecture ... 152

v

4.4 Test Data Generation .. 153

4.4.1 Specification Creation ... 154

4.4.2 Atomic Rules Selection ... 156

4.4.3 Test Data Generation ... 156

4.5 Implementation of Goal/Question/Answer/Specify/Verify .. 161

4.6 Implementation of Systematic Method Tailoring .. 163

4.6.1 Example of a New Atomic Rule ... 168

4.7 Specification Notation .. 170

4.8 Benefits ... 172

4.9 Limitations .. 172

4.10 Future Improvements ... 173

4.11 Summary ... 174

Chapter 5 University Evaluation of the Atomic Rules Approach 175

5.1 Overview .. 175

5.2 Experiment Design ... 177

5.2.1 Hypotheses .. 177

5.2.2 Group Allocation ... 179

5.2.3 Input Data Specifications .. 179

5.2.4 Threats to Validity ... 182

5.3 Results ... 184

5.3.1 Demographic ... 184

5.3.2 Completeness (Effectiveness) (H01/H11) .. 186

5.3.3 Efficiency (H02/H12) .. 189

5.3.4 Errors Made (Accuracy) (H03/H13) ... 191

5.3.5 Questions Asked (Learnability) (H04/H14) ... 192

5.3.6 Satisfaction (H05/H15) ... 192

5.3.7 Understandability (H06/H16) ... 193

5.4 Related Research .. 195

5.5 Discussion ... 197

5.6 Summary ... 201

Chapter 6 Industrial Evaluation of the Atomic Rules Approach 203

6.1 Overview .. 203

6.2 Experiment Design ... 204

6.2.1 Hypotheses .. 204

6.2.2 Programs and Specifications ... 206

6.2.3 Group Allocation ... 209

6.2.4 Data Collection and Analysis Approach ... 210

6.2.5 Threats to Validity ... 210

vi

6.3 Results ... 212

6.3.1 Demographic .. 212

6.3.2 Analysing the Practitioner Normal Testing Practice ... 217

6.3.3 Completeness (Effectiveness) (H01/H11) ... 218

6.3.4 Failure-Detection Effectiveness (H02/H12) ... 227

6.3.5 Efficiency (H03/H13) .. 238

6.3.6 Errors Made (Effectiveness – Accuracy) (H04/H14) ... 240

6.3.7 Understandability (H05/H15) .. 242

6.3.8 Operability (H06/H16)... 246

6.3.9 Satisfaction (H07/H17) .. 250

6.3.10 Tester Motivation (H08/H18) .. 253

6.3.11 Test Method Representation (H09/H19) ... 257

6.4 Discussion ... 260

6.4.1 Results of Hypothesis Testing ... 260

6.4.2 Black-Box Testing in Industry .. 263

6.4.3 Effects of Domain Knowledge on Testing Effectiveness ... 264

6.4.4 Limitations of the Experiment ... 265

6.4.5 Teaching Atomic Rules in Future ... 266

6.5 Summary ... 266

Chapter 7 Conclusions and Future Work ... 269

7.1 Conclusions ... 269

7.2 Interesting Results of the University Experiments... 271

7.3 Interesting Results of the Industry Experiment .. 272

7.3.1 Additional Uses of the Atomic Rules Approach in Industry .. 274

7.4 Future Improvements to the Atomic Rules Approach ... 275

7.5 Future Improvements to the Atomic Rules Testing Tool .. 275

7.6 Future Experimentation with GQASV and SMT .. 276

7.7 Final Word .. 276

Chapter 8 Appendices .. 277

Appendix A. Demonstration of the Category Partition Method .. 277

Appendix B. Atomic Rules for Black-Box Testing ... 283

B.1 Equivalence Partitioning .. 283

B.2 Boundary Value Analysis .. 286

B.3 Syntax Testing .. 288

B.4 State Transition Testing ... 290

B.5 Combinatorial Testing Methods .. 291

Appendix C. Atomic Rules’ Quick Reference Guide .. 296

Appendix D. Known Failures in the Address Parser ... 298

vii

Appendix E. Known Failures in the Batch Processor ... 301

Appendix F. Functional Specification of the Atomic Rules Testing Tool .. 304

F.1 Overview .. 304

F.2 High-Level Screen Design and Navigation ... 304

F.3 Activity Diagrams .. 305

F.4 Graphical User Interface Screens and their Associated Functionality .. 307

F.4.1 The Main Menu ... 308

F.4.2 The Atomic Rules Editor .. 309

F.4.3 The Author Selector .. 315

F.4.4 The Character Viewer ... 316

F.4.5 The Specification Viewer ... 318

F.4.6 The Specification Editor ... 319

F.4.7 The Atomic Rules Selector ... 331

F.5 Pseudo Code for Test Data Generation ... 333

F.6 Datatypes Defined in the Atomic Rules Testing Tool .. 335

Appendix G. ASCII Table .. 346

Appendix H. Publications .. 346

Chapter 9 References ... 391

viii

List of Tables

Table 1: Terms and abbreviations. ... xx

Table 1-1: Classification of black-box testing methods as prescriptive or non-prescriptive. 11

Table 1-2: Classification of test case design methods as black-box, white-box or grey-box. 12

Table 1-3: Example of an ‘Atomic Rule.’ .. 16

Table 2-1: Test selection rules for Boundary Value Analysis and their coverage in the literature. 39

Table 2-2: Test data and test case design rules for Syntax Testing. .. 44

Table 2-3: The overlap between Syntax Testing and other black-box testing methods. 45

Table 2-4: Overlap between Error Guessing and prescriptive black-box testing methods. 51

Table 2-5: Example of a Test Catalogue for testing a numerical field (Kaner et al. 2001) and the

black-box testing methods that define the rules in the catalogue. ... 55

Table 2-6: Example of a Test Matrix (adapted from (Kaner et al. 2001)). ... 57

Table 2-7: Orthogonal Array for testing an Internet-based application. ... 61

Table 2-8: Specification-based mutation operators for various specification languages. 63

Table 2-9: Test case design steps covered by black-box testing methods. .. 69

Table 2-10: Characterisation schema for assist with test method selection (Vegas et al. 2003). 72

Table 2-11: Characterisation schemas instantiated for Boundary Value Analysis and Random Testing

(Vegas et al. 2003). ... 73

Table 2-12: Decision table for selecting black-box test methods (Jorgensen 1995). .. 74

Table 2-13: Results of an empirical comparison of EP, BVA and RT (from (Reid 1997)). 76

Table 2-14: Advantages of Exploratory Testing reported at Mercury, Neptune and Vulcan

(Itkonen & Rautiainen 2005) (indicates that all participants agree with the statement). 78

Table 3-1: The Atomic Rules characterisation schema. .. 93

Table 3-2: Characterisation schema for defining the datatype of program input and output fields.................... 94

Table 3-3: Datatypes defined for use in the Atomic Rules schema (used by Atomic Rules schema

fields Original Datatype and Test Datatype). ... 94

Table 3-4: Decomposing Myers’ definition of Equivalence Partitioning into Atomic Rules. 96

Table 3-5: Three Atomic Rules from Equivalence Partitioning. ... 99

Table 3-6: Decomposition of Myers' definition of Boundary Value Analysis into Atomic Rules. 102

Table 3-7: Three Atomic Rules from Boundary Value Analysis. ... 105

Table 3-8: Decomposition of Syntax Testing into Atomic Rules (from Section 2.4). 108

Table 3-9: Three Atomic Rules from Syntax Testing. ... 109

Table 3-10: An Atomic Rule for the combinatorial testing method All Combinations. 111

Table 3-11: Test Matrix indicating which Atomic Rules from EP, BVA and ST can be applied to the

input fields of the Address Parser program. ... 114

Table 3-12: Example of applying step 1 of the Atomic Rules definition of Equivalence Partitioning

to an example Address Parser specification. .. 116

Table 3-13: Example of applying step 2 of the Atomic Rules definition of Equivalence Partitioning

to an example Address Parser specification. .. 117

ix

Table 3-14: Example of applying steps 3 and 4 of the Atomic Rules definition of Equivalence

Partitioning to an example Address Parser specification. ... 118

Table 3-15: Example of applying step 1 of the Atomic Rules definition of Boundary Value Analysis

to an example Address Parser specification... 119

Table 3-16: Example of applying step 2 of the Atomic Rules definition of Boundary Value Analysis

to an example Address Parser specification... 120

Table 3-17: Example of applying steps 3 and 4 of the Atomic Rules definition of Boundary Value

Analysis to an example Address Parser specification. .. 121

Table 3-18: Coverage of Atomic Rules from Equivalence Partitioning achieved against the fields

of the Address Parser specification. ... 124

Table 3-19: Test cases to achieve 0-switch coverage of manage_display_changes (BS 7925-2). 126

Table 3-20: Test case covering the ‘normal’ path of login (adapted from (Nguyen et al. 2003)). 129

Table 3-21: Updated test case covering the ‘normal’ path of the login screen. .. 130

Table 3-22: Specification of the manage_display_changes command. .. 131

Table 3-23: Creation of a new Atomic Rule defined through Systematic Method Tailoring. 140

Table 3-24: Equivalence Partitioning and Boundary Value Analysis test cases for the Foreign Currency

field of the St George Bank Foreign Currency Calculator. ... 144

Table 3-25: Test cases of a tailored black-box method derived through SMT for the Foreign Currency

field of the Foreign Currency Exchange Calculator (rules defined in Section 3.10.2). 144

Table 4-1: Process of creating a specification and generating test data in the Atomic Rules Testing Tool. ... 150

Table 4-2: The EBNF language to be used by the SBSMT simulator. ... 170

Table 5-1: Group allocation. .. 179

Table 5-2: Prior software testing experience. .. 184

Table 5-3: Prior experience with black-box testing methods. ... 185

Table 5-4: Participants initial understanding of black-box testing methods in 2004 (n = 26). 185

Table 5-5: Participants initial understanding of black-box testing methods in 2005 (n = 37). 185

Table 5-6: Prior industry experience. ... 186

Table 5-7: Comparison of overall grades for each group. ... 186

Table 5-8: Percentage of coverage of EP equivalence classes (completeness – H01/H11). 187

Table 5-9: Percentage of coverage of EP test cases (completeness – H01/H11). ... 187

Table 5-10: Percentage of coverage of BVA boundary values (completeness – H01/H11). 187

Table 5-11: Percentage of coverage of BVA test cases (completeness – H01/H11). 187

Table 5-12: Number of equivalence classes derivable when EP is applied ‘completely’ to the

specifications under test. .. 188

Table 5-13: Number of boundary values derivable when BVA is applied ‘completely’ to the

specifications under test. .. 188

Table 5-14: Representation used in the assignment (n = 38). ... 188

Table 5-15: Average mark achieved in the assignment compared by approach (n = 38). 188

Table 5-16: Average mark achieved in the subject compared by approach (n = 38). 189

Table 5-17: Number of correct EP equivalence classes derived (efficiency – H02/H12). 189

x

Table 5-18: Percentage of correct EP equivalence classes derived (efficiency – H02/H12). 190

Table 5-19: Productivity of the testers in terms of the number of equivalence classes derived over total

time taken (efficiency – H02/H12). .. 190

Table 5-20: Productivity of the testers in terms of the number of boundary values derived over total time

taken (efficiency – H02/H12). .. 190

Table 5-21: Number of participants who ran out of time (efficiency– H02/H12). ... 191

Table 5-22: Errors made during EP equivalence class derivation (correctness – H03/H13). 191

Table 5-23: Errors made during EP test case derivation (correctness – H03/H13). ... 191

Table 5-24: Errors made during BVA boundary value derivation (correctness – H03/H13). 191

Table 5-25: Errors made during BVA test case derivation (correctness – H03/H13). 192

Table 5-26: Approach students leant first versus approach they indicated they would use in future

(n = 32) (satisfaction – H05/H15)... 192

Table 5-27: Likelihood of using approaches in future (n = 28) (satisfaction – H05/H15). 193

Table 5-28: Self-rated understanding of test methods and representations in 2004 (n = 32)

(Understandability – H06/H16). ... 194

Table 5-29: Self-rated understanding of test methods and representations in 2005 (n = 28)

(Understandability – H06/H16). ... 194

Table 5-30: Affect of representation learnt on understanding of Equivalence Partitioning

(Understandability – H06/H16). ... 195

Table 5-31: Affect of representation learnt on understanding of Boundary Value Analysis

(Understandability – H06/H16). ... 195

Table 5-32: Outcomes of hypothesis testing for Completeness (H01/H11).. 199

Table 5-33: Outcomes of hypothesis testing for Efficiency (H02/H12). .. 200

Table 5-34: Outcomes of hypothesis testing for Accuracy (H03/H13). .. 200

Table 5-35: Outcomes of hypothesis testing for Learnability (H04/H14). .. 200

Table 5-36: Outcomes of hypothesis testing for Satisfaction (H05/H15). .. 200

Table 5-37: Outcomes of hypothesis testing for Understandability (H06/H16). .. 201

Table 6-1: The experiment plan. ... 204

Table 6-2: Definition of specification symbols. ... 207

Table 6-3: Valid suburbs-postcode pairs. ... 208

Table 6-4: Group allocation. ... 210

Table 6-5: Previous industries participants have tested software in (choose all that apply). 212

Table 6-6: Participant’s current role in testing (choose one). .. 213

Table 6-7: Prior roles held by the participants in testing (choose all that apply). ... 213

Table 6-8: Prior software testing training (choose all that apply). .. 213

Table 6-9: University and TAFE degrees completed (choose all that apply). .. 214

Table 6-10: Types of applications tested in the past (choose all that apply). .. 214

Table 6-11: Familiarity with specifications languages (choose all that apply). .. 215

Table 6-12: Experience with black-box testing methods (choose one rating for each method). 216

Table 6-13: Frequency of using black-box testing methods (choose one rating for each method). 216

xi

Table 6-14: Percentage of tests derived from specifications (choose one). .. 217

Table 6-15: Mean percentage of coverage of Atomic Rules from EP. ... 218

Table 6-16: Mean percentage of coverage of Atomic Rules from BVA. ... 219

Table 6-17: Mean percentage of coverage of Atomic Rules from ST. ... 219

Table 6-18: Number of test data values and test cases derivable by applying EP, BVA and ST

to all specification fields. .. 219

Table 6-19: Percentage of Atomic Rules applied by at least one participant during testing of the Address

Parser (tabular view). .. 223

Table 6-20: Percentage of Atomic Rules applied by at least one participant during testing of the

Batch Processor (tabular view). ... 224

Table 6-21: Coverage achieved during PNTP testing, by experience in years. .. 225

Table 6-22: Coverage achieved during Atomic Rules testing, by experience in years. 226

Table 6-23: Comparison of coverage achieved during PNTP testing by current testing role. 226

Table 6-24: Comparison of coverage achieved during Atomic Rules testing by current testing role. 226

Table 6-25: ‘Ultimate’ failure-detection effectiveness of EP, BVA and ST when the methods are

applied completely to the Address Parser and Batch Processor. ... 228

Table 6-26: Comparison of the failure-detection effectiveness achieved by the participants. 228

Table 6-27: Comparison of failure-detection effectiveness achieved against each program. 229

Table 6-28: Alternate comparison of failure-detection effectiveness achieved against each program. 229

Table 6-29: Failure-detection effectiveness of each participant. ... 230

Table 6-30: Comparison of failure-detection effectiveness by tester experience in years. 232

Table 6-31: Comparison of failure-detection effectiveness by current role in testing...................................... 233

Table 6-32: Failure-detection effectiveness of Atomic Rules from Equivalence Partitioning (tabular

view). .. 234

Table 6-33: Failure-detection effectiveness of Atomic Rules from Boundary Value Analysis (tabular

view). .. 235

Table 6-34: Failure-detection effectiveness of Atomic Rules from Syntax Testing (tabular view). 236

Table 6-35: Mean productivity. .. 238

Table 6-36: Opinions from participants as to whether they felt they had enough time for testing. 239

Table 6-37: Participant feedback on the time allocated for the PNTP testing phase. 239

Table 6-38: Participant feedback on the time allocated for the Atomic Rules testing phase. 240

Table 6-39: Errors made during testing (effectiveness – accuracy) (H04/H14). .. 240

Table 6-40: Mistakes made during PNTP testing. ... 241

Table 6-41: Mistakes made during Atomic Rules testing. .. 241

Table 6-42: Self-rated understanding black-box testing methods before and after the experiment (choose

one rating for each method). .. 243

Table 6-43: Comparison of initial and final understanding of EP, BA and ST. ... 243

Table 6-44: Crosstabulation of initial and final understanding for Equivalence Partitioning. 244

Table 6-45: Crosstabulation of initial and final understanding for Boundary Value Analysis. 244

Table 6-46: Crosstabulation of initial and final understanding for Syntax Testing. ... 244

xii

Table 6-47: Comparison of self-rated understanding EP, BVA and ST between the Initial and the

Reflect and Review Questionnaires (choose one rating for each method). ... 245

Table 6-48: Participant’s self-rated understanding of the Atomic Rules approach (choose one). 245

Table 6-49: Participant feedback on their understanding of the Atomic Rules approach. 246

Table 6-50: Participant opinions on how easy the Atomic Rules approach is to use (choose one). 247

Table 6-51: Opinions on the biggest advantage of the Atomic Rules approach. .. 247

Table 6-52: Opinions on the biggest disadvantage of the Atomic Rules approach. ... 248

Table 6-53: Opinions on how likely it is they will use Atomic Rules in future (choose one). 248

Table 6-54: Feedback on how likely it is that the participants will use Atomic Rules in future. 249

Table 6-55: Feedback on whether taking part in the experiment will impact how the participants

perform black-box testing in future. ... 249

Table 6-56: Participant comments on whether taking part in the experiment will impact on how they

carry out black-box testing in future. .. 250

Table 6-57: Effectiveness of the two testing approaches. .. 250

Table 6-58: Participant comments on the effectiveness of PNTP test case design. .. 251

Table 6-59: Participant comments on the effectiveness of Atomic Rules test case design. 251

Table 6-60: Opinions on whether Atomic Rules enables the design of more effective test cases. 252

Table 6-61: Feedback on whether Atomic Rules enables the design of more effective test cases. 252

Table 6-62: Participant feedback on what they liked about participation in the experiment. 253

Table 6-63: Participant feedback on what they disliked about participation in the experiment. 253

Table 6-64: Participant motivation levels during the experiment (choose one) (tabular view). 254

Table 6-65: Comparison of test motivation levels after PNTP and Atomic Rules testing. 254

Table 6-66: Participant comments on their motivation levels at the start of the experiment. 256

Table 6-67: Participant comments on their motivation levels after PNTP testing. ... 257

Table 6-68: Participant comments on their motivation levels after Atomic Rules testing. 257

Table 6-69: Number test data values derived during PNTP and Atomic Rules testing. 258

Table 6-70: Outcomes of hypothesis testing for Completeness (H01/H11).. 260

Table 6-71: Outcomes of hypothesis testing for Failure-Detection Effectiveness (H02/H12). 261

Table 6-72: Outcomes of hypothesis testing for Efficiency (Productivity) (H03/H13). 261

Table 6-73: Outcomes of hypothesis testing for Errors Made (Completeness – Accuracy) (H04/H14). 261

Table 6-74: Outcomes of hypothesis testing for Understandability (H05/H15). .. 262

Table 6-75: Outcomes of hypothesis testing for Operability (H06/H16). ... 262

Table 6-76: Outcomes of hypothesis testing for Satisfaction (H07/H17). .. 262

Table 6-77: Outcomes of hypothesis testing for Motivation (H08/H18). ... 263

Table 6-78: Outcomes of hypothesis testing for Test Method Representation (H09/H19). 263

Table 8-1: Atomic Rules for Equivalence Partitioning. ... 283

Table 8-2: Atomic Rules for Equivalence Partitioning (continued). ... 284

Table 8-3: Atomic Rules for Equivalence Partitioning (continued). ... 284

Table 8-4: Atomic Rules for Equivalence Partitioning (continued). ... 285

Table 8-5: Atomic Rules for Equivalence Partitioning (continued). ... 285

xiii

Table 8-6: Atomic Rules for Boundary Value Analysis. .. 286

Table 8-7: Atomic Rules for Boundary Value Analysis (continued). ... 286

Table 8-8: Atomic Rules for Boundary Value Analysis (continued). ... 287

Table 8-9: Atomic Rules for Boundary Value Analysis (continued). ... 287

Table 8-10: Atomic Rules for Syntax Testing. .. 288

Table 8-11: Atomic Rules for Syntax Testing (continued). .. 288

Table 8-12: Atomic Rules for Syntax Testing (continued). .. 289

Table 8-13: Atomic Rules for Syntax Testing (continued). .. 289

Table 8-14: Atomic Rules for Syntax Testing (continued). .. 290

Table 8-15: An Atomic Rule for State Transition Testing. ... 290

Table 8-16: An Atomic Rule for the combinatorial testing method All Combinations. 291

Table 8-17: An Atomic Rule for the combinatorial testing method Each Choice. ... 291

Table 8-18: An Atomic Rule for the combinatorial testing method Base Choice. ... 292

Table 8-19: An Atomic Rule for the combinatorial testing method Orthogonal Array Testing (also

known as Pair-Wise Testing). .. 292

Table 8-20: Atomic Rules for the combined combinatorial testing method Base Choice + Orthogonal

Array Testing. ... 293

Table 8-21: Atomic Rules for the combined combinatorial testing method Base Choice + Heuristic

Pair-Wise Testing. .. 293

Table 8-22: An Atomic Rule for the combinatorial testing method Specification-Based Mutation Testing... 294

Table 8-23: An Atomic Rule for the combinatorial testing method Specification-Based Mutation Testing... 294

Table 8-24: An Atomic Rule for the combinatorial method Specification-Based Mutation Testing. 295

Table 8-25: An Atomic Rule for the combinatorial testing method Specification-Based Mutation Testing... 295

Table 8-26: Atomic Rules for Equivalence Partitioning. .. 296

Table 8-27: Atomic Rules for Boundary Value Analysis. .. 296

Table 8-28: Atomic Rules for Syntax Testing. .. 297

Table 8-29: Known defects in the Address Parser program. ... 298

Table 8-30: Known defects in the Batch Processor program. ... 301

Table 8-31: The Main Menu. ... 308

Table 8-32: The Atomic Rules Editor. ... 309

Table 8-33: Definition of the Rule Types and Rule Classes that dictate the start and end position sets

that are possible for each Atomic Rule. ... 313

Table 8-34: The Author Selector. ... 315

Table 8-35: The Character Viewer. .. 316

Table 8-36: The Specification Viewer. .. 318

Table 8-37: The Specification Editor ‘Fields’ tab for a list-based field. ... 320

Table 8-38: The Specification Editor ‘Fields’ tab for a range-based field. ... 323

Table 8-39: The Specification Editor ‘Domain Knowledge’ tab. ... 325

Table 8-40: Field names for the Domain Knowledge tab of the Atomic Rules Testing Tool.......................... 327

Table 8-41: The Specification Editor ‘Specification Files’ tab. .. 329

xiv

Table 8-42: The Specification Editor ‘Backus-Naur Form Specification’ tab. ... 330

Table 8-43: The Atomic Rules Selector. .. 331

Table 8-44: Datatypes defined in the Atomic Rules Testing Tool. ... 335

Table 8-45: Characters within each datatype that are defined in the Atomic Rules Testing Tool. 336

Table 8-46: The ASCII table. ... 346

xv

List of Figures

Figure 1-1: A five-level model for testing (ISO/IEC 29119-1). .. 6

Figure 1-2: The V-Model (adapted from (Burnstein 2003) and (V-Modell® XT 2008)). 7

Figure 1-3: Black-box, white-box and grey-box testing methods (adapted from (Burnstein 2003)). 10

Figure 1-4: The four-step black-box test case design process. .. 17

Figure 2-1: Myers’ (1979) guidelines for Equivalence Partitioning. .. 29

Figure 2-2: Example graphical representation of equivalence classes (adapted from (Black 2007)). 33

Figure 2-3: Inadequate specification of input fields, resulting in incomplete testing (Reed 1998). 35

Figure 2-4: Myers’ (1979) guidelines for Boundary Value Analysis. .. 37

Figure 2-5: Boundary values for a range-based field. ... 37

Figure 2-6: Boundary values for a list-based field. ... 38

Figure 2-7: Simplified specification for the inputs to an Address Parser program. .. 41

Figure 2-8: Test Categories for black-box testing (Tamres 2002). ... 56

Figure 2-9: Classification scheme for combinatorial test methods (Grindal et al. 2005). 58

Figure 2-10: A simplified version of an address specification expressed in BNF. ... 64

Figure 2-11: Example of specification-based mutation for the address parser. .. 64

Figure 2-12: Structure of a test specification expressed in the Test Specification Language (TSL)

(Balcer, Hasling & Ostrand 1989). .. 66

Figure 2-13: Specification for a ‘find’ command and the corresponding Test Specification

Language specification (Ostrand & Balcer 1988). .. 66

Figure 2-14: Example of a contradictory test frame (Ostrand & Balcer 1988). .. 67

Figure 2-15: Classification Tree for an airline bonus points programme (Chen, Poon & Tse 1999). 68

Figure 2-16: Factors affecting the quality of testing (Reid 1994). .. 79

Figure 2-17: Specification structure proposed by Parrington and Roper (Parrington & Roper 1989)............... 80

Figure 2-18: Example of a BNF specification for the street name of an address. .. 81

Figure 2-19: Equivalence class generation in CaseMaker (Díaz & Hilterscheid). ... 84

Figure 3-1: Example of developing an Atomic Rules definition of Myers’ (Myers 1979) definition

of Equivalence Partitioning. ... 88

Figure 3-2: Illustration of applying the Atomic Rules definition of Equivalence Partitioning to a

specification to design black-box test data and test cases. .. 89

Figure 3-3: The four-step test design process for Equivalence Partitioning. .. 100

Figure 3-4: The four-step test design process for Boundary Value Analysis. .. 106

Figure 3-5: The four-step test design process for Syntax Testing. .. 110

Figure 3-6: The four-step test design process for Combinatorial Testing Methods. .. 112

Figure 3-7: Simplified specification of the inputs to an Address Parser program. ... 113

Figure 3-8: Demonstration of the application of the Atomic Rules definition of Syntax Testing. 122

Figure 3-9: Demonstration of the application of the Atomic Rules definition of Syntax Testing (continued).123

Figure 3-10: Specification for a component that manages the display on a clock (BS 7925-2). 125

Figure 3-11: State Transition Diagram for ‘manage_display_changes’ (from (BS 7925-2)). 126

xvi

Figure 3-12: An activity diagram that illustrating the flow of events for a login screen. 128

Figure 3-13: The original Atomic Rules three-step test selection process (Murnane et al. 2005). 132

Figure 3-14: Specification for the component generate_grading (BS 7925-2). .. 133

Figure 3-15: St George Bank’s online Foreign Currency Exchange Calculator (St George Calculator

2005). ... 145

Figure 3-16: Result of executing the Foreign Currency Exchange Calculator with valid values. 145

Figure 3-17: Result of testing the Foreign Currency Exchange Calculator with very large input,

causing a suspected buffer overflow failure. .. 146

Figure 3-18: Validation message displayed when the Foreign Currency Exchange Calculator is tested

with an invalid datatype. ... 146

Figure 3-19: Demonstration of symbols that are output to the right of the Foreign Currency field

on the Foreign Currency Exchange Calculator, when test case 14 of Table 3-24 is applied. 147

Figure 4-1: Screens and navigation within the Atomic Rules Testing Tool. .. 152

Figure 4-2: High-level architecture of the Atomic Rules Testing Tool. .. 153

Figure 4-3: Specifying the input fields of a program in the Atomic Rules Testing Tool. 154

Figure 4-4: Abstract Syntax Tree depicting example parent/child relationships in a (hierarchical)

Address Parser specification. .. 155

Figure 4-5: Selecting Atomic Rules to apply to an example specification. .. 156

Figure 4-6: Example of test data values output to a text file by the Atomic Rules Testing Tool. 160

Figure 4-7: Example of test data values output to a Microsoft Excel spreadsheet by the Atomic Rules

Testing Tool. ... 161

Figure 4-8: Recording domain-knowledge information gained for each input field being specified. 163

Figure 4-9: The Atomic Rules Editor. .. 168

Figure 4-10: Example of the EBNF representation of a specification stored in ARTT. 171

Figure 4-11: Example of an EBNF specification output by ARTT. .. 171

Figure 5-1: Overview of the experiment process. .. 176

Figure 5-2: Specification for a personal details recording system. .. 180

Figure 5-3: Specification for an office location recording system. ... 180

Figure 5-4: Specification for a patient details record system. .. 181

Figure 5-5: Specification for a book referencing system. .. 181

Figure 6-1: Input data specification of the Address Parser. ... 208

Figure 6-2: Input data specification of the Batch Processor. ... 209

Figure 6-3: Explanations of the PNTP testing approaches used on day 1. .. 217

Figure 6-4: Comparison of mean percentage of EP coverage (graphical view). .. 220

Figure 6-5: Comparison of mean percentage of BVA coverage. .. 220

Figure 6-6: Comparison of mean percentage of ST coverage. .. 221

Figure 6-7: Comparison of mean Atomic Rule coverage achieved per test data class. 222

Figure 6-8: Percentage of Atomic Rules applied by at least one participant during testing of the Address

Parser (graphical view). .. 224

Figure 6-9: Percentage of Atomic Rules applied by at least one participant during testing of the

xvii

Batch Processor (graphical view)... 225

Figure 6-10: Failure-detection effectiveness achieved by participants in Group 1. ... 231

Figure 6-11: Failure-detection effectiveness achieved by participants in Group 2. ... 231

Figure 6-12: The failure-detection effectiveness achieved by each participant. ... 232

Figure 6-13: Failure-detection effectiveness of Atomic Rules from Equivalence Partitioning (graphical

view). .. 234

Figure 6-14: Failure-detection effectiveness of Atomic Rules from Boundary Value Analysis (graphical

view). .. 235

Figure 6-15: Failure-detection effectiveness of Atomic Rules from Syntax Testing (graphical view). 237

Figure 6-16: Self-rated understanding of black-box testing methods before and after the experiment. 243

Figure 6-17: Participant motivation levels during the experiment (graphical view). 254

Figure 6-18: Motivating Potential Score (MPS) for software testing roles (Reid 2007). The highest

rating role is Exploratory Testing, which was using during the PNTP phase of this experiment. 256

Figure 8-1: Natural language specification of a ‘find’ command (Ostrand & Balcer 1988). 277

Figure 8-2: Example of a contradictory test frame (Ostrand & Balcer 1988). .. 279

Figure 8-3: Restricted test specification for the find command, expressed in the Test Specification

Language (Ostrand & Balcer 1988). .. 279

Figure 8-4: Unrestricted test specification for the ‘find’ command, expressed in the Test

Specification Language (# denotes comments) (Ostrand & Balcer 1988). ... 280

Figure 8-5: Refined version of the restricted test specification for the ‘find’ command, expressed in the

Test Specification Language (Ostrand & Balcer 1988). ... 281

Figure 8-6: Example test case generated from the restricted specification for the find command

(Ostrand & Balcer 1988). ... 282

Figure 8-7: Screens and navigation within the Atomic Rules Testing Tool (from Chapter 4). 305

Figure 8-8: Activity diagram depicting a user interacting with ARTT. .. 306

Figure 8-9: Activity diagram depicting an administrator (‘Admin’) interacting with ARTT. 307

Figure 8-10: Example of the Source Details fields populating from the database. .. 328

Figure 8-11: Pseudo code for selecting an equivalence class from a list-based field. 333

Figure 8-12: Pseudo code for selecting a partition from a range-based field ... 334

xviii

Abstract

Ideally, any black-box testing method would be interpreted in the same way by different testers, such that

when it is applied to a program specification, it results in an identical test set, regardless of each tester’s

domain knowledge and experience. Further, each method should be complete and lead to the generation of

all possible test cases that are derivable by the method for each specification. In reality, inconsistencies,

ambiguities and a lack of precision in existing definitions of methods like Equivalence Partitioning (EP) and

Boundary Value Analysis (BVA) can lead to differing interpretations and thus varying test set quality. The

absence of precise definitions also makes verification of test quality and conformance to method guidelines

difficult.

Furthermore, while prescriptive methods like EP and BVA can be used effectively by experienced testers

for defect detection, evidence suggests that non-prescriptive approaches like Exploratory Testing can allow

testers to detect more defects. Domain knowledge utilised during this process often cannot be shared or

reused since the approaches lack procedures for capturing this information. Black-box testing effectiveness

can also depend on the quality of program specifications, since incomplete or ambiguous specifications can

lead to inadequate testing.

In this thesis, the ‘Atomic Rules’ approach is introduced to provide a prescriptive notation for black-box

testing methods, to resolve their ambiguities and improve their usability and effectiveness. This approach

decomposes each method into test selection rules that cover partition selection, test data selection, test data

manipulation and test case construction. Each Atomic Rule is represented in a characterisation schema,

allowing them to be prescriptively defined, while a four-step test case design process provides the methods

with a uniform notation.

Three experiments were conducted to validate this approach. The outcomes suggest that Atomic Rules is

effective for teaching black-box testing methods to novice and experienced testers and can enable more

effective testing.

A customisation approach called Systematic Method Tailoring (SMT) allows new Atomic Rules to be

defined and supports domain knowledge capture during non-prescriptive testing. A specification technique

called Goal/Question/Answer/Specify/Verify (GQASV) facilitates definition of precise input/output data

specifications, enabling more effective testing. A prototype testing tool demonstrates automation of Atomic

Rules, SMT and GQASV.

xix

Statement of Authorship

Except where reference is made in the text of the thesis, this thesis contains no material published elsewhere
or extracted in whole or in part from a thesis submitted for the award of any other degree or diploma.

No other person’s work has been used without due acknowledgement in the main text of the thesis.

The thesis has not been submitted for the award of any degree of diploma in any other tertiary institution.

All experimental research reported in the thesis was approved by the human ethics committee of the Faculty
of Science, Technology and Engineering at La Trobe University.

 Signed: Date:

 Tafline Murnane, BEng (Hons)

xx

Glossary

The following terms and abbreviations have been used throughout this thesis.

Table 1: Terms and abbreviations.

Term / Abbreviation Meaning

Acceptance Testing A level of test conducted from the viewpoint of the user or customer,
used to establish criteria for acceptance of a system. Typically based
upon the requirements of the system. (Craig & Jaskiel 2002)

Ad Hoc Testing Testing carried out using no recognised test case design technique. (BS
7925-1)

American National Standards
Institute (ANSI)

The American National Standards Institute.

 Atomic Rule One individual test case design rule from a test case design method that
can be used to design an equivalence class, select a test data value,
manipulate/mutate a test data value or contract a test case.

Backus-Naur Form (BNF) A metalanguage for specifying computer language syntax. (Rosen &
Michaels 2000)

Black-Box Testing See Black-Box Testing Method.

Black-Box Testing Method Test case design that is based on an analysis of the specification of the
system under test without reference to its internal workings. (adapted
from (BS 7925-1))

Boundary Value Analysis
(BVA)

A test case design method in which test cases are designed to cover the
boundary values of a component or system (adapted from (BS 7925-1))

British Standards Institution
(BSI)

The British Standards Institution.

Compatibility Testing Testing whether the system is compatible with other systems with which
it should communicate. (BS 7925-1)

Component A minimal software item for which a separate specification is available.
(BS 7925-1)

Coverage A metric that describes how much of a system has been (or will be)
invoked by a test set. Coverage is typically based upon the code, design,
requirements, or inventories. (Craig & Jaskiel 2002)

Data-Item Selection Rule
(DISR)

One Atomic Rule from a test case design method that describes how to
select a test data value from an equivalence class.

Data-Item Manipulation Rule
(DIMR)

One Atomic Rule from a test case design method that describes how to
manipulate or mutate a test data value.

Data-Set Selection Rule
(DSSR)

One Atomic Rule from a test case design method that describes how to
select an equivalence class.

xxi

Term / Abbreviation Meaning

Decision Tables (DT) Tables that list all possible conditions (inputs) and all possible actions
(outputs). (Craig & Jaskiel 2002)

Defect See Fault.

Dynamic Testing Testing of an object with execution on a computer.

Effectiveness
(in the context of software
testing and test case design
methods)

The accuracy and completeness with which testers achieve specified test
case design goals.

Efficiency
(in the context of software
testing and test case design
methods)

Resources expended in relation to the accuracy and completeness with
which testers achieve specified test case design goals.

Equivalence Class A portion of the component’s input or output domains for which the
component’s behaviour is assumed to be the same from the component’s
specification. (BS 7925-1)

Equivalence Partitioning (EP) A test case design method in which test cases are designed to execute
representatives from equivalence classes. (adapted from (BS 7925-1))

Error A human action that produces an incorrect result, such as software
containing a fault. (ISO/IEC 24765:2009)

Error Guessing (EG) A test case design method where the experience of the tester is used to
postulate what faults might occur, and to design tests specifically to
expose them. (adapted from (BS 7925-1))

Exploratory Testing (ET) A testing approach where the test design and execution are conducted
concurrently. (adapted from (Craig & Jaskiel 2002))

Expected Result The behaviour predicted by the specification of an object under specified
conditions. (called the ‘predicted outcome’ in (BS 7925-1))

Fault A manifestation of an error in software. (ISO/IEC 24765:2009)

Failure An event in which a system or system component does not perform a
required function within specified limits (ISO/IEC 24765:2009)

Failure Detection
Effectiveness

The ability of a test case design method to detect failures in software.

Functional Testing See Black-Box Testing Method.

Grey-Box Testing Test case selection that is based on an analysis of the specification and
source code of the system under test.

The Institute of Electrical and
Electronic Engineers (IEEE)

The Institute of Electrical and Electronic Engineers, Inc. Publisher of
engineering standards. (Craig & Jaskiel 2002)

Independent Testing An organizational strategy where the testing team and leadership is
separate from the development team and leadership. (Craig & Jaskiel

xxii

Term / Abbreviation Meaning

2002)

Input A variable (whether stored within a component or outside it) that is read
by the component. (BS 7925-1)

Input Data See input value.

Input Data Specification A specification of the input data of a program.

Input Domain The set of all possible inputs to a program. (adapted from (BS 7925-1))

Input Value An instance of an input. (BS 7925-1)

Integration Testing A level of test undertaken to validate the interface between internal
components of a system. Typically based upon the system architecture.
(Craig & Jaskiel 2002)

The International
Organization for
Standardisation (ISO)

The International Organization for Standardisation. Publishes of industry
standards.

Learnability
(of a Test Case Design
Method)

Attributes of a test case design method that determine the effort required
by a tester to learn how to apply the method competently.

Metalanguage Language used to describe another language (for example, XML is the
metalanguage for XHTML). (Bidgoli 2004)

Module See Component.

Nominal Value The mid-point of an equivalence class. (Jorgensen 1995)

Non-Functional Testing Testing of those requirements that do not relate to functionality. i.e.
performance, usability, etc. (BS 7925-1)

Operability
(of a Test Case Design
Method)

Attributes of a test case design method that determine the effort required
by a tester to use the test method competently.

Outcome The outcome of a test case.

Output A variable (whether stored within a component or outside it) that is
written to by the component. (BS 7925-1)

Output Domain The set of all possible outputs of a program. (adapted from (BS 7925-1))

Output Value An instance of an output. (BS 7925-1)

Partition See Equivalence Class.

Random Testing (RT) Testing using data that is in the format of real data, but with all of the
fields generated randomly. (Craig & Jaskiel 2002)

Regression Testing Retesting previously tested features to ensure that a change or bug fix has
not affected them. (Craig & Jaskiel 2002)

xxiii

Term / Abbreviation Meaning

Requirement A condition or capability that must be met or possessed by a system,
product, service, result, or component to satisfy a contract, standard,
specification, or other formally imposed document. Requirements include
the quantified and documented needs, wants, and expectations of the
sponsor, customer, and other stakeholders. (PMI 2004)

Requirements See requirement.

Requirements Traceability Demonstrating that all requirements are covered by one or more test
cases. (Craig & Jaskiel 2002)

Requirements Traceability
Matrix (RTM)

A matrix used to track requirements coverage.

Satisfaction
(in the context of software
testing and test case design
methods)

Freedom from discomfort and positive attitudes towards the use of a
testing case design method.

Specification A description of a component's function in terms of its output values for
specified input values under specified preconditions. (BS 7925-1)

Specified Input An input for which the specification predicts an outcome. (BS 7925-1)

Stakeholder Individual or organization having a right, share, claim, or interest in a
system or in its possession of characteristics that meet their needs and
expectations. (ISO/IEC 12207:2008)

State Transition Testing A test case design method in which test cases are designed to execute
state transitions. (adapted from (BS 7925-1))

Static Testing Testing of an object without execution on a computer. (BS 7925-1)

Syntax Testing (ST) A test case design method for a component or system in which test case
design is based upon the syntax of the input. (adapted from (BS 7925-1))

System Testing A (relatively) comprehensive test undertaken to validate an entire system
and its characteristics. Typically based upon the requirements and design
of the system. (Craig & Jaskiel 2002)

Test Case A set of test inputs, execution conditions, and expected results developed
for a particular objective, such as to execute a particular program path or
to verify compliance with a specific requirement. (ISO/IEC 24765:2009).

Test Case Construction Rule One Atomic Rule from a test case design method that describes how to
design a test case.

Test Case Design Method A method used to derive or select test cases. (BS 7925-1)

Test Condition An item or event of a component or system that could be verified by one
or more test cases, e.g. a function, transition, feature, quality attribute, or
structural element. (ISTQB 2005)

Test Data Data (including inputs, required results, and actual results) developed or
used in test cases and test procedures. (Craig & Jaskiel 2002)

xxiv

Term / Abbreviation Meaning

Test Data Value A single item of test data.

Test Method See Test Case Design Method.

Test Method Usability The extent to which a test case design method can be understood, learnt
and used by software testers to achieve specified test case design goals
effectively, efficiently and with satisfaction, within the context of
applying software testing methods.

Test Oracle An oracle provides a method to generate expected results for the test
inputs and compare the expected results with the actual results of
execution of the system under test. (adapted from (Naik & Tripathy
2008))

Test Procedure Detailed instructions for the setup, execution, and evaluation of results
for a given test case. (IEEE 1012:2004)

Test Script Commonly used to refer to the automated test procedure used with a test
harness. (BS 7925-1)

Test Set A collection of one or more test cases for the software under test.
(adapted from (BS 7925-1))

Understandability
(of a Test Case Design
Method)

Attributes of a test case design method that determine the effort required
by a tester to recognise the logical concept of the method and its
applicability.

Unit Testing A level of test undertaken to validate a single unit of code. Typically
conducted by the programmer who wrote the code. (Craig & Jaskiel
2002)

User Acceptance Testing See Acceptance Testing.

Validation Confirmation, through the provision of objective evidence, that the
requirements for a specific intended use or application have been
fulfilled. (ISO/IEC 15288:2008)

Verification The process of evaluating a system or component to determine whether
the products of a given development phase satisfy the conditions imposed
at the start of that phase. (IEEE 1012:2004)

White-Box Testing Test case design that is based on an analysis of the internal structure of
the source code of a program. (adapted from (BS 7925-1))

xxv

Acknowledgments

I would like to acknowledge and thank everyone who contributed their time, energy, love and friendship to

my thesis. Without you by my side, my thesis, and my life, would not be what it is today.

To my parents, John and Patricia Murnane, and my brothers, Tristrim and Tarquin Murnane, I thank you for

your ongoing love and support. I especially thank my father John, for the countless hours of consultation

you set aside to discuss my ideas and to review my thesis.

My heartfelt thanks to my supervisors Karl Reed and Richard Hall. Without your unwavering guidance and

support, I would never have been able to see the completion of my thesis, or the beginnings of a career that

continues to bring me so much happiness and inspiration.

I thank my friends and colleagues, present and past, for their support throughout this journey. I thank Ben

Bonanno, Sarah Pulis, Helen Trevithick, Kylie Pepyat, Tasha Findlay, Gillian Moxom, Stuart Reid, Bernard

Baudoin, Anne Mette Hass, Linda Reeves, Kelvin Ross, Mark Pedersen, Paul Grimsley, Paul Strooper, Bob

Glass, Erik Petersen, Ayla Barutchu, Tony Brown, Daniel Powell, Fevzi Belli, George Gimian, Benjamin

Mintern-Lane, Jayanthi Ramachandran, Philip Lee, Lee Elms, Julie Main, Mary Witten, members of the La

Trobe University Staff and Postgraduate IT Research Group (SPRIG) including Mark Dawes, James

Munro, Anne Hannington, Jessica Müller, Jeanette Auer, Raymond Matthews, Michael Hill, Robert

Matterson, Lorien Dunn, Benji Sasson, Peter Donald and Jean Hall, members of the Melbourne Association

of Software Testers (MAST) including Sophie Hiotis, Jared Quinert, Erik Petersen, Paul Szymkowiak and

Stuart Moncrieff, all the eager participants of my university and industry experiments and the kind people

who critiqued my ideas at various conference and university presentations.

Last but not least, I thank my dearly adored cats, Missie and Starrie, whose warmth, love and support

during those late nights and long days shall always be remembered.

xxvi

To my friends and family who have supported me throughout this long and arduous journey…

…with all of my heart, I thank you.

xxvii

“We all tend to tie our self-esteem strongly to the quality of the product we produce - not the
quantity of the product, but the quality.”

DeMarco and Lister, 1999.

xxviii

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 1

Chapter 1

Introduction

“It can be frustrating, as a tester, to watch someone who has no experience in testing spend five
minutes using a piece of software and crash it.”

Ron Patton, 2006

1.1 Overview

In 1969, Dijkstra famously observed that “Program testing can be used to show the presence of bugs,

but never to show their absence!” (Dijkstra 1969), meaning that no amount of software testing can

guarantee that a program is fault-free. On the other hand, software testing can be used to prove that a

program both meets its requirements and does not fail when given specific types of inputs. Meeting this

objective can be defined as achieving ‘quality’, which the Institute of Electrical and Electronic Engineers

(IEEE) define as “the degree to which a system, component, or process meets specified requirements”

(IEEE 829:2008). This definition of quality refers to the term ‘requirement’, which the joint technical

committee of the International Organization for Standardisation (ISO) and the International Electrotechnical

Commission (IEC) define as “a condition or capability needed by a user to solve a problem or achieve an

objective” (ISO/IEC 24765:2008). One approach to determining whether faults or quality (i.e. satisfied user

requirements) are present in a program is through the use of ‘test case design methods’ (also known as

‘testing techniques’ (Dustin 2003, Copeland 2004, Burnstein 2003)). Since ‘exhaustive testing’ (e.g. testing

all source code paths or input combinations) has long been considered impractical (Goodenough & Gerhart

1975), test case design methods arose to facilitate the selection of ‘effective’ test cases that ‘cover’ program

source code and requirements in various ways. The results of testing can be used to communicate the

current level of program quality to relevant stakeholders, including users, the financers of software

development projects, project managers, test managers, business analysts, developers and testers. In the

most general sense, testing reduces uncertainty about the quality of a program and its release readiness.

Test case design methods can be divided into thee classes: black-box, white-box and grey-box (see

Section 1.3). While each of these concepts could support a thesis in its own right, the focus of this thesis is

on the usability and failure-detection effectiveness of black-box testing methods (see Section 1.4). Black-

box testing methods can be divided into two classes: prescriptive and non-prescriptive. The term ‘non-

prescriptive testing’ is used in this thesis to describe any unscripted test case design approach that is based

on a tester’s domain knowledge and experience, which could be drawn from their knowledge of prescriptive

testing methods, but where the tester does not explicitly follow any specific test case design guidelines. This

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 2

has also been called ‘reactive testing’ (Black 2007), ‘lateral testing’ (after De Bono’s lateral thinking

techniques) (Fewster & Graham 2000), ‘unstructured testing’ and ‘ad hoc testing’ (Nguyen et al. 2003).

In prescriptive black-box testing, test cases are designed by applying ‘test case design rules’ (also called

‘test case design guidelines’ (Myers 1979) and ‘heuristics’ (DeMillo et al. 1987)) from black-box testing

methods to program requirements. Prescriptive methods intend to add precision and procedure to the testing

process, and can provide a basis for measuring test coverage and adequacy (Zhu, Hall & May 1997). On the

other hand, non-prescriptive testing is unstructured and unscripted, being based on a tester’s unique domain

knowledge and experience. This can stem from a tester’s knowledge of, or experience with, prescriptive

testing methods (Craig & Jaskiel 2002), testing heuristics (Watkins 2001), tests that previously detected

faults (Watkins 2001), program implementation and design (Bertolino 2004, Watkins 2001), hardware

(Mosley 1993), platforms (Bertolino 2004) and programmer assumptions (Myers 1979). Non-prescriptive

approaches like Error Guessing are said to compensate for the “inherent incompleteness” of EP and BVA

(Mosley & Posey 2002). In one empirical study of failures detected in independently developed launch-

intercept control software, it was established that 83-90% of faults and 90-97% of failures were detected by

‘special values’ (Wild, Chen & Eckhardt 1989), which can be chosen through non-prescriptive testing. Non-

prescriptive testing approaches are believed by some to be among the most popular in the software testing

industry (Jorgensen 1995). Empirical data supporting this includes a survey of software testing practices in

Australia, which revealed that out of 65 organisations interviewed, just over one third (35.4%) chose to use

non-prescriptive approaches to testing over prescriptive black-box testing methods (Ng et al. 2004).

The aim of this thesis is to investigate and improve the usability and failure-detection effectiveness of

prescriptive and non-prescriptive approaches to black-box testing. The investigation is focussed on

resolving seven problems with existing definitions of black-box testing methods (see Section 1.4), which

can affect the usability and failure-detection effectiveness of the methods. Problems resolution is achieved

through the creation of a new approach to describing black-box testing methods called ‘Atomic Rules’ (see

Section 1.5). In the Atomic Rules approach, black-box testing methods are decomposed into individual test

case design rules called ‘Atomic Rules.’ Each Atomic Rule is defined using a characterisation schema,

while a four-step test case design process provides a common notation for describing all black-box testing

methods. The Atomic Rules approach has been evaluated via two classroom experiments and an industrial

experiment, as well as through the implementation of a proof-of-concept testing tool (see Section 1.7). Two

approaches called Systematic Method Tailoring (SMT) and Goal/Question/Answer/Specify/Verify

(GQASV) are also introduced, to further improve the effectiveness of black-box testing.

1.2 Test Method Usability

Before exploring problems that affect the usability of black-box testing methods, the term usability

needs to be defined within the context of software testing and the study of test case design methods. This

facilitates identification of qualitative and quantitative attributes that can be used to assess test method

usability. Benchmark definitions from software engineering are provided first and are then redefined within

the context of software testing.

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 3

Within the context of software engineering, ISO/IEC define the term usability as follows (ISO/IEC

24765:2008):

“Usability. The extent to which a product can be used by specified users to achieve specified

goals with effectiveness efficiency and satisfaction in a specified context of use.”

In this thesis, the term ‘effective’ is used within two contexts. A test method can be ‘effective’ if a tester

can use it to derive an ‘accurate’ and ‘complete’ test set (see Section 1.2.1). A test method has a ‘failure-

defection effectiveness’ that can rate its ability to detect program failures (see Section 1.2.2).

ISO/IEC further defines three sub-attributes of usability as understandability, learnability and

operability (ISO/IEC 9126-1:2005), as follows.

“Understandability. Attributes of software that bear on the user’s effort for recognising the

logical concept and its applicability.”

“Learnability. Attributes of software that bear on the user’s effort for learning its application

(for example, operation control, input, output).”

“Operability. Attributes of software that bear on the user’s effort for operation and operation

control.”

ISO/IEC 9126-1:2005 also includes ‘attractiveness’ and ‘usability compliance’ under its definition of

usability. Attractiveness is excluded here since this can be assessed under ‘satisfaction’ (see Section 1.2).

Usability compliance is excluded as there are no laws or regulations in software testing that dictate how a

test method should be represented.

Within the context of software testing and the study of test case design methods, the objective is for a

tester to design an adequate (e.g. effective) set of test cases. Thus, in the definitions below, the terms

product and software have been replaced by the term software testing method, while user has been replaced

by the phrase software tester. This results in the following definitions.

Understandability. Attributes of a test case design method that determine the effort required

by a tester to understand a test method and to understand if, when and how it applies to the

program under test1.

Learnability. Attributes of a test case design method that determine the effort required by a

tester to learn how to apply the method competently.

Operability. Attributes of a test case design method that determine the effort required by a

tester to use the test method competently.

The ISO/IEC definition of usability also refers to the terms effective, efficient and satisfaction. ISO/IEC

provide benchmark definitions for these, as follows (ISO/IEC 25062:2006, ISO/IEC24765:2008).

1 The definition of understandability does not include the effort to use the test method, as this is covered by operability.

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 4

“Effectiveness. The accuracy and completeness with which users achieve specified goals.”

“Efficiency. Resources expended in relation to the accuracy and completeness with which users

achieve goals.”

“Satisfaction. Freedom from discomfort, and positive attitudes towards the use of the

product.”

Within the context of software testing and the study of test case design methods, these terms can be

redefined as follows.

Effectiveness. The accuracy and completeness with which testers achieve specified test case

design goals during the application of a test case design method2.

Efficiency. Resources expended in relation to the accuracy and completeness with which testers

achieve specified test case design goals during application of a test case design method.

Satisfaction. Freedom from discomfort and positive attitudes towards the use of a test case

design method.

While the first two measures (effectiveness and efficiency) can be measured objectively, the third

(satisfaction) is included since subjective reactions to a test case design method may effect the extent to

which that method is adopted.

Combining the above definitions, test method usability can be defined as follows.

Test Method Usability. The extent to which a test case design method can be understood, learnt

and used by software testers to achieve specified test case design goals effectively, efficiently

and with satisfaction, within the context of applying software testing methods.

These definitions will be used throughout this thesis to examine and evaluate black-box test method

usability. They apply to novice and experienced testers, since both are affected by the ease of which a test

method can be learnt, understood and used. Since a tester’s own personal experience can impact on whether

they find a test method ‘usable’ and whether they are capable of using it ‘effectively’, experience will be

taken into account during experimental analysis3.

1.2.1 Assessing Usability

To facilitate assessment of test method usability in an experimental context, quantitative and qualitative

attributes need to be identified for measuring various aspects of usability, as follows.

 Understandability can be qualitatively evaluated by assessing whether a tester understands the

conditions under which a test case design method should be applied. It can also be quantitatively

assessed by examining their ability to apply the method correctly (measured by effectiveness, see

2 A more traditional definition of test effectiveness as “failure-detection effectiveness” is provided in Section 1.2.2.
3 Influences external to the test method can also affect a tester’s ability to derive effective test cases (e.g. specification quality).

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 5

below). Although subjective, it can also be measured by a tester’s self-rated understanding of a test

method.

 Learnability can be quantitatively measured by the time it takes a tester to become competent in

the use of a test method. It can be quantitatively and qualitatively assessed by examining the

quantity and types of questions asked by a tester when they are learning to apply a test method.

 Operability can be quantitatively assessed by examining the proportion of correct test cases

derived by a tester during application of a test case design method (measured by effectiveness, see

below). Although subjective, it can also be quantitatively assessed by examining a tester’s opinion

of how easy the method is to use.

 Effectiveness consists of sub-attributes completeness and accuracy, as follows.

o Completeness can be quantitatively measured as the proportion of all test cases that are

derivable by an expert software tester when applying a particular test case design

method (referred to as the ‘total’ number of test cases derivable).

o Accuracy can be quantitatively and qualitatively assessed by the frequency and types of

mistakes (i.e. errors) made by a tester during application of a test case design method.

 Efficiency can be quantitatively measured by examining the productivity of a tester; i.e. by the

number of correct test cases that are derived by a tester during application of a test case design

method over the total time taken.

 Satisfaction is subjective but can be qualitatively assessed by comparing a tester’s preference for

using one test case design method over another.

These will be used to evaluate the usability of black-box testing methods (see Chapters 5 and 6).

1.2.2 Failure-Detection Effectiveness

In the previous section, effectiveness was defined as “The accuracy and completeness with which testers

achieve specified test case design goals during the application of a test case design method.” A more

traditional definition of effectiveness in test case design is the ability of a test method to detect program

faults (defects) or failures (‘activated’ defects) (Reid et al. 1999). Since one fault can cause more than one

failure, and one failure can be caused by more than one fault, the following definition, referred to as

“failure-detection effectiveness” (to differentiate it from the definition of effectiveness given in the previous

section) will also be used in this thesis when assessing test method effectiveness.

Failure-Detection Effectiveness. The ability of a test case design method to detect failures in

software.

This can be calculated as the proportion of all program failures that are detectable by a test case design

method, when the method is applied by an expert tester. This can be affected by the size of the program

under test, the number and severity of faults it contains and the capability of the tester. This definition will

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 6

be used in Chapter 6 when evaluating the ability of black-box test case design methods to detect program

failures.

1.3 Black-Box Testing Methods

Before exploring problems with existing black-box testing methods that affect their usability and

failure-detection effectiveness, (see Section 1.4), it is important to consider the place of these methods

within the broader context of software testing.

Black-box testing methods can be applied at any of the four ‘levels’ of testing that are commonly

recognised in the software testing industry: Unit, Integration, System and Acceptance (Pfleeger 2001).

More recently, a fifth level called Maintenance Testing was identified (Figure 1-1)4 (ISO/IEC 29119-1).

During Unit Testing, individual program modules are tested separately to check that they each meet their

requirements. In Integration Testing, interactions between components are tested. During System Testing,

the fully integrated system is tested to ensure it functions correctly in a test environment that is as close to

the operational (i.e. production) environment as possible. Acceptance Testing is also used to determine

whether the complete system meets its user requirements, and is often used as a means for obtaining ‘sign

off’ from the customer, indicating that they agree that the system is ready for release. After systems have

been accepted by customers, they often require enhancement and repair. Thus, during Maintenance Testing

the system is tested after new code is implemented and re-tested or regression tested after existing code is

changed, to ensure that it still meets user requirements. If changes are substantial then Maintenance Testing

can consist of all four levels of testing (i.e. Unit, Integration, System and Acceptance Testing).

Figure 1-1: A five-level model for testing (ISO/IEC 29119-1).

Independence between testing and development teams is often sought during certain levels of testing.

Independent testers are often able to detect defects that developers miss because they think differently from

them (Kaner et al. 2001) and since developers are can be subjective about the quality of their own source

code. This avoids the conflict of interest between the necessity to find defects and the need to take

4 This concept of Maintenance Testing has been defined in the new ISO/IEC 29119 Software Testing standard that is currently under
development by ISO/IEC JTC1/SC7, Working Group 26 (Software Testing), for which Ms. Murnane is an editor.

Unit

Integration

System

Acceptance

Maintenance

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 7

responsibility for them (Pressman 1992) and the necessity to meet delivery schedules5. Nonetheless, Unit

Testing is often carried out by program developers, since some methods used at that level (e.g. white-box

testing methods) require an understanding of program source code. Integration and System Testing are

usually performed by independent testers who are not directly involved with the development of the

program source code, while Acceptance Testing is often carried out by the system’s end-users, using a

predefined test suite that is chosen by the customer.

The relationship between the four traditional levels of testing and the phases of the software

development lifecycle (SDLC) can best be seen in the V-Model for software development, in which each

development phase is supported by a level of testing and where the outputs of each development phase (i.e.

requirements, specifications, designs, source code) can be used for test case design (Figure 1-2).

Figure 1-2: The V-Model (adapted from (Burnstein 2003) and (V-Modell® XT 2008)).

Across the SDLC, there are two main classes of testing: static and dynamic testing (Burnstein 2003).

Static testing has also been referred to as ‘verification testing’ (Perry 2006) and ‘static analysis’ (Burnstein

2003, Naik & Tripathy 2008), while dynamic testing has also been called ‘validation testing’ (Perry 2006)

and ‘dynamic analysis’ (Burnstein 2003, Naik & Tripathy 2008).

In static testing, program source code, requirements, specifications and other documentation (e.g. user

and installation manuals) are manually ‘tested’ through the application of static testing methods, including

reviews, walkthroughs, inspections, desk debugging, requirements testing (Perry 2006) and desk checking

(Everett & McLeod 2007), each with varying levels of formality. The aim of static testing is to identify

defects (e.g. ambiguities, inconsistencies, deviations from user requirements) in the program source code

and program documentation as early in the SDLC as possible. As Burnstein observes (2003), some

members of the software testing community do not consider static testing techniques like inspections,

walkthroughs and reviews to be ‘testing’ techniques. Instead, they consider static testing to be a form of

software quality assurance. Conversely, other members of the testing community (including (Burnstein

2003, Everett & McLeod 2007, Hetzel 1988) and this author) consider static testing to be a form of testing.

5 Testers are also often trained in the use of prescriptive testing methods that can be used to systematically question the completeness
and correctness of requirements, specifications and source code. For the same reason, it is also beneficial to seek independent testing of
program documentation (e.g. requirements) (Everett & McLeod 2007).

Requirements

Specification

Code

Design

Acceptance Testing

System Testing

Unit Testing

Integration Testing

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 8

Furthermore, the author follows the ISO/IEC standard definition of quality assurance, which is “a set of

activities designed to evaluate the process by which products are developed or manufactured” (ISO/IEC

24765:2009), which is clearly a different activity to testing.

In dynamic testing, the program is executed to determine whether it meets its requirements and

specifications (Perry 2006). Arguably the most common form of testing that is used within the software

testing industry, dynamic testing encompasses any prescriptive or non-prescriptive test case design method

that can be used to identify test cases, which can then be run against a program as a means of determining

whether it meets its requirements. Therefore, this includes black-box testing methods.

Within both static and dynamic testing, there are two main classes of test case design methods:

functional and non-functional (e.g. see (Everett & McLeod 2007, BS-NFT 2008)). Functional testing

methods are used to identify test cases that determine whether a program satisfies its functional

requirements, such as business rules or core functionality. Non-functional testing methods are used to derive

test cases that check whether a program satisfies its so-called non-functional requirements, such as

performance, reliability, usability and security.

Within functional testing, there are three main classes of test case design: white-box, black-box and

grey-box (Figure 1-3).

White-box test case design is based on knowledge of the internal structure of the program source code.

The aim is to design test cases that ‘cover’ the code in various ways, such as testing ‘all paths’ or ‘all

branches.’ Statement testing, path testing, branch testing, condition testing and data-flow testing are all

examples of white-box testing methods (Weiser et al. 1985, Pfleeger 2001). White-box testing can uncover

faults that may be unlikely to be revealed through black-box testing, such as boundary faults on condition

statements that are not specifically documented in program specifications. White-box testing methods are

typically used by developers during Unit Testing, but can also be applied during Integration and System

Testing when checking the correctness of program control flows and component interactions. White-box

testing is also known as glass-box testing (Burnstein 2003), clear-box testing (Burnstein 2003), structural

testing (Perry 2006) and logic-driven testing (Myers 1979).

Black-box test case design is based primarily on knowledge gained from program documentation,

including requirements, specifications and user manuals. The aim is to design a set of test cases that cover a

program’s functionality and input/output domains in various ways. For example, Equivalence Partitioning

was designed to provide guidance on the partitioning of program input and output domains into sets of

equivalent data, and is intended to reduce the number of individual test data values that must be executed

against the program in order to achieve adequate input/output domain coverage (Myers 1979). Boundary

Value Analysis and Syntax Testing were designed to select test data values that target particular fault

classes (Burnstein 2003). Use Case Testing guides in the design of test cases that can be used to check for

correctness in program workflows and program/user interactions.

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 9

Rather than being based on how a program is written, black-box testing allows programs to be tested

from the user’s perspective. Black-box testing methods can be prescriptive or non-prescriptive (see Table

1-1) and can be applied at any level of testing, although their semantics may change depending on the level

at which they are applied. For example, Boundary Value Analysis could be used during Unit Testing to test

the boundaries of input fields or at System Testing to test the maximum number of users that can be

simultaneously logged into a system. Although black-box testing methods were designed for dynamic

testing, most can be utilised for static testing, such as using Boundary Value Analysis to question whether

boundaries are defined in input/output data specifications (see Chapter 2).

Black-box testing is also known as functional testing (Perry 2006), specification testing (Burnstein

2003), specification-based testing (Pezzand & Young 2008), closed-box testing (Pfleeger 2001),

input/output driven testing (Myers 1979), data-driven testing (Myers 1979) and behaviour testing (Everett

& McLeod 2007).

A black-box testing method can also be utilised in a grey-box manner, if the tester uses knowledge of

the source code and/or coding techniques during test case design. Similarly, during white-box test design, a

tester will likely utilise knowledge of program inputs and outputs.

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 10

Figure 1-3: Black-box, white-box and grey-box testing methods (adapted from (Burnstein 2003)).

Tester’s View Dominant Knowledge
Sources

Test Methods

Inputs

Outputs

Black-box Requirements documents
Specifications
Domain knowledge
Manuals
Defect analysis
Data definitions

Boundary Value Analysis (BVA)
Category Partition Method (CPM)
Cause-Effect Graphing (CEG)
Classification Trees (CT)
Combinatorial Test Methods
Decision Tables/Trees
Equivalence Partitioning (EP)
Error Guessing (EG)
Exploratory Testing (ET)
Random Testing (RT)
State-Transition Testing
Syntax Testing (ST)
Test Catalogues
Test Categories
Test Matrices

White-box Design
Source code
Control flow graphs
Data flow graphs
Cyclomatic complexity

Branch Condition Combination Testing
Branch Condition Testing
Branch/Decision Testing
Data Flow Testing
Linear Code Sequence and Jump Testing
Modified Condition Decision Testing
Mutation Testing
Path Testing
Statement Testing

If a < b
 ...

Inputs

Outputs

Requirements documents
Specifications
Domain knowledge
Manuals
Defect analysis
Data definitions
Design
Source code
Control flow graphs
Data flow graphs
Cyclomatic complexity

Partition Testing Grey-box

Test Method
Class

If a < b
 ...

Inputs

Outputs

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 11

Table 1-1: Classification of black-box testing methods as prescriptive or non-prescriptive.

Black-Box Testing Method Prescriptive Non-Prescriptive

Boundary Value Analysis (BVA)

Category Partition Method (CPM)

Cause-Effect Graphing (CEG)

Classification Trees (CT)

Combinatorial Test Methods

Decision Tables/Trees

Equivalence Partitioning (EP)

Error Guessing (EG)

Exploratory Testing (ET)

Random Testing (RT)

State-Transition Testing

Syntax Testing (ST)

Test Matrices, Catalogues and Categories

Use Case Testing

Grey-box testing is a hybrid of white-box and black-box testing, in which test case design is based on

knowledge of the program source code and specifications (e.g. see (Dustin 2003)). An example of grey-box

testing is Partition Analysis, where test cases are chosen by locating input data partitions that execute the

same program source code paths (Howden 1976, Richardson & Clarke 1981, Richardson & Clarke 1985)

(Table 1-2). The precision of black-box testing can be improved through the use of grey-box information.

Thus, although black-box testing methods were not specifically designed for grey-box testing, some can be

applied using a combination of black-box and grey-box information (Table 1-2).

One approach to classifying the differences between black-box and white-box testing methods was

proposed by Vegas, Juristo and Basili (2003), who developed an instantiated characterization schema to

classify black-box and white-box testing methods, as well as data-flow and mutation testing methods. The

schema was designed to support testers in the selection of the “best suited” methods for testing. While the

schema enabled classification of various black-box testing methods, it did not address the key problems

with existing black-box testing methods that are introduced in the next section (see Section 1.4).

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 12

Table 1-2: Classification of test case design methods as black-box, white-box or grey-box.

Functional Testing Methods

Test Method Classification
 denotes methods defined for the stated purpose,
~ denotes methods that can be used for the stated purpose
but that were not originally designed for it

Black-Box White-Box Grey-Box

Boundary Value Analysis (BVA) ~ ~

Branch Condition Combination Testing

Branch Condition Testing

Branch/Decision Testing

Category Partition Method (CPM)

Cause-Effect Graphing (CEG)

Classification Trees (CT)

Combinatorial Test Methods

Data Flow Testing

Decision Tables/Trees

Equivalence Partitioning (EP) ~

Error Guessing (EG) ~ ~

Exploratory Testing (ET) ~ ~

Linear Code Sequence and Jump Testing

Modified Condition Decision Testing

Mutation Testing

Partition Testing

Path Testing ~

Random Testing (RT)

Statement Testing

State-Transition Testing ~

Syntax Testing (ST)

Test Matrices, Catalogues and Categories

Use Case Testing

1.4 Seven Problems with Existing Black-Box Testing Methods

While an extensive literature search indicated that the earliest definitions of test case design methods

were white-box-based (Miller & Maloney 1963), one of the earliest references found that treated an

algorithm as a “black-box” was in 1958 (Wolpe 1958). The earliest found examples of prescriptive black-

box and grey-box testing methods were Sauder’s (compiler) syntax testing method in 1962 (Sauder 1962),

grey-box Partition Analysis in 1976 (Howden 1976, Richardson & Clarke 1981) and Myers’ black-box

Equivalence Partitioning (EP) and Boundary Value Analysis (BVA) in 1979 (Myers 1979)6. The first non-

prescriptive black-box testing approaches to be defined were Error Guessing in 1979 (Myers 1979) and

Exploratory Testing in 1988 (Kaner 1988). Many of the earliest prescriptive black-box testing methods have

been enhanced over the past thirty years and are still widely taught and used today. Despite this, a number

of problems with their existing definitions need to be addressed.

6 Myers’ textbook ‘The Art of Software Testing’ (1979) is still one of the most oft-referenced textbooks on software testing today (e.g.
see (Burnstein 2003, Jorgensen 1995, Kit 1995, Mosley 1993, Copeland 2004, Page et al. 2009, Mosley & Posey 2002, Parrington &
Roper 1989)).

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 13

Ideally, any prescriptive testing method would be interpreted in the same way by different testers, such

that when it is applied to a program specification, it results in an ‘equivalent’ test set, regardless of a tester’s

unique domain knowledge or experience. Further, each method would be complete and lead to the

generation of all possible test cases that are derivable by the method for the given specification. In reality,

inconsistencies, ambiguities and a lack of precision in existing black-box test methods definitions can lead

to differing interpretations and thus varying test set quality. Some practitioners may argue that skilled

black-box testers should be capable of deriving high-yield test sets using only their domain knowledge and

experience; in their view, test methods like EP should only be used to supplement heuristic knowledge

(Sommerville 2001). This raises the question of how testers obtain such skill in the first place. In practice

however, prescriptive black-box testing methods are an essential part of the software testing process.

In this thesis, the following five problems that affect the usability and failure-detection effectiveness of

existing black-box testing methods were initially identified and explored (Murnane, Hall & Reed 2005):

1. definition by exclusion;

2. multiple versions;

3. method overlap;

4. notational and terminological differences; and

5. reliance on domain knowledge.

Two additional problems, which were identified as the research into this topic progressed and which are

also addressed in this thesis, are that existing black-box testing methods can be:

6. difficult to audit; and

7. difficult to automate.

Definition by exclusion relates to black-box test case design methods that involve ‘partitioning.’ During

partitioning, program input and output domains are divided into classes of homogenous data, whose

mapping involves executing (ideally) identical deterministic processes. As Ostrand and Balcer (1988)

observe, “Various methods of creating a test partition are discussed in the literature. Despite the general

agreement on this key technique of functional testing and its use since the earliest days of computing, the

partitioning process lacks a systematic approach.” For example, Myers (1797) provides the following

guideline for EP:

“If an input condition specifies a ‘must be’ situation (e.g. ‘first character of the identifier must

be a letter’), identify one valid equivalence class (it is a letter) and one invalid equivalence class

(it is not a letter).”

This describes the identification of two partitions of data: one containing valid test data values and the

other containing all other (invalid) values that were not included in the valid set. Ideally, a member of every

class of data would be included in the invalid partition, but novice testers may only be aware of a subset of

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 14

classes that are available. Thus, depending on a tester’s interpretation of the test method, their assumptions

about the program under test, their domain knowledge and their experience, each tester could produce a

vastly dissimilar test set, resulting in black-box testing that is not repeatable or predictable. For example, for

programs developed on ‘western’ keyboards, data in the invalid class could be identified through the ASCII

(American Standard Code for Information Interchange) table (e.g. see (Oualline 2003)), which defines 94

printable characters that can be divided into classes of uppercase alpha, lowercase alpha, numeric and non-

contiguous non-alphanumeric (i.e. special) characters (see Appendix G). In other programs, Unicode

character sets (Aliprand et al. 2003) may need to be considered. For programs utilising EBCDIC (Extended

Binary Coded Decimal Interchange Code), various classes of data could be defined for each non-contiguous

set of alpha and non-alphanumeric characters that are defined in that encoding scheme. Thus, definition by

exclusion assumes testers are familiar with the ‘universe of discourse’ of program inputs. In reality,

program specifications often do not specify the valid and invalid data sets that should be considered by

developers and testers, let alone the encoding schemes that are in use. In addition, test method definitions

like those provided by Myers (1979) can be interpreted differently by each tester. As a consequence, the

effectiveness of resulting test sets may be diminished and statements relating to program correctness and the

nature of program faults detected may be meaningless. Ambiguous test method definitions may also lead to

testers being unsure of how to apply the test method correctly. The lack of prescriptive guidelines for black-

box testing also makes black-box test data generation difficult to automate.

Multiple versions of each black-box testing method exist. For example, some definitions of BVA

describe the selection of test data on, inside and outside field boundaries (BS 7925-2), while others do not

include inside (Craig & Jaskiel 2002, Kaner 1988, Lewis 2000, Mosley 1993, Myers 1979) and outside

(Jorgensen 1995, Mosley 1993) boundaries (see Section 2.3). Presently, no textbook, standard or paper

describes the complete version (i.e. all test case design rules) from all black-box testing methods. Thus, a

tester may not know how their chosen approach compares to all others, even within a method and, as a

result, they may be unaware of how complete (or incomplete) their resulting test set will be.

Without a standard definition of each method, it can be difficult to audit the completeness of black-box

testing. For example, the British Standard BS EN 50128 ‘highly recommends’ the use of EP and BVA for

certain testing classes of safety critical systems (BS 50128:2001). However, the completeness of black-box

testing that is claimed to be conformant with that standard cannot be guaranteed, since it depends on which

version of the methods are used and the level of precision that each version provides.

Notational and terminological differences in the definitions of these methods further impact on test

method usability. As Jorgensen (1995) observed, “Much of testing literature is mired in confusing (and

sometimes inconsistent) terminology, probably because testing technology has evolved over decades and

via scores of writers.” As a result, a new notation often must be understood for each new method learnt. For

example, various names have been used to describe the process of partitioning program input and output

domains into homogenous data sets. In the Category Partition Method (CPM) these sets are called ‘choices’

(Ostrand & Balcer 1988) while in EP they are called ‘equivalence classes’ and ‘partitions’ (Myers 1979).

While EP and BVA are described as ‘partitioning’ approaches (e.g. see (Myers 1979)), ST is not described

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 15

in this way, despite the fact that partitions are implicitly created on each input and output field (see Section

2.2.3). These differences may make it difficult for novice and experienced testers to learn new test case

design methods. This problem is compounded by black-box test method definitions that only provide

examples that demonstrate method application without prescriptive definitions of the test case design rules

underlying each method (e.g. see definitions of EP in (Kaner 1988, Tamres 2002)). If test case design rules

cannot be easily identified by testers, it could result in incomplete test sets and ineffective testing.

Method overlap between black-box testing methods can result in duplicated test cases and inefficient

testing. For example, boundary values are selected by at least two versions of ST (Beizer 1990, Marick

1995), while EP, BVA and ST all include test case design rules to select test data values that lie outside the

boundaries of numeric fields (e.g. see (Myers 1979, Beizer 1990)). Although ST is described differently to

EP and BVA, these overlaps suggest that all three methods could be defined using a common notation.

Non-prescriptive black-box testing approaches like Exploratory Testing and Error Guessing have a

reliance on domain knowledge that is usually implicit and not specified (see Section 2.2.5). During non-

prescriptive testing, novice testers may not be aware of the need to consider relevant domain knowledge and

may also be unfamiliar with the “application domain7” (Reed 1990) of the program under test. As a result,

they may produce incomplete and ineffective test sets. Also, there are currently no systematic procedures

for capturing the definition of new test case design rules that are used during non-prescriptive testing. As a

result, detected failures may not be reproducible and auditing issues may arise when the completeness or

efficiency of non-prescriptive testing cannot be determined or proven to relevant stakeholders. The

existence of prescriptive procedures (with consistent terminology) for documenting new test case design

rules could facilitate improvement of the domain knowledge and skills of both novice and experienced

testers as well as an improvement in test effectiveness.

A related issue is that when specifications of program input and output domains are unavailable, test

case design is often based on the domain knowledge of expert testers who understand the program’s

application domain. Experienced testers may be capable of conducting efficient and effective black-box

testing solely from their own unique domain knowledge and experience (see Section 2.6.2) and may do so

without documenting their decisions. As a result, novice testers may not be able to learn from their more

experienced peers if the test case design rules they use and the assumptions they make about the definitions

of program input and output fields are not documented.

1.5 Aims and Contributions

The primary aim of this thesis is to explore how these seven problems affect the usability and failure-

detection effectiveness of prescriptive and non-prescriptive approaches to black-box testing, and to present

a new representation for describing black-box testing methods called the Atomic Rules approach (Murnane,

Hall & Reed 2005), which aims to resolve these problems and improve test method usability and failure-

7 Reed proposed a Knowledge Acquisition Based Approach to Software Project Planning (KABASPP) approach, which defines five
knowledge areas from which domain knowledge can be obtained: application domain, application solution domain, development
environment domain, run time environment domain and the managerial domain (Reed 1990). Each consists of knowledge concepts that
are used in carrying out particular tasks on a software development projects.

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 16

detection effectiveness. In the Atomic Rules approach, black-box testing methods are decomposed into

individual test case design rules called ‘Atomic Rules.’ Each Atomic Rule is defined in characterisation

schema (Table 1-3), which ensures that each test case design rule is defined in a prescriptive and uniform

notation. The following four-step test case design process allows each black-box testing method to be

defined in a uniform notation (Figure 1-4):

1. Partition the input and output domains of the program into sets of equivalent data, by applying

Data-Set Selection Rules (DSSRs).

2. Select test data values from each partition by applying Data-Item Selection Rules (DISRs).

3. Optionally manipulate8 the test data values by applying Data-Item Manipulation Rules (DIMRs).

4. Construct test cases by creating combinations of test data values through the application of Test

Case Construction Rules (TCCRs).

The aim of the four-step test case design process (Figure 1-4) and the Atomic Rules schema (Table 1-3)

is to ensure that black-box testing methods are defined using a consistent, prescriptive notation.

Table 1-3: Example of an ‘Atomic Rule.’

Attribute Values

Test Method Equivalence Partitioning

Number EP1

Identifier LLBS

Name Less than Lower Boundary Selection

Description
Select an equivalence class containing values
below the lower boundary of a field

Source (Myers 1979)

Rule Type DSSR

Set Type Range

Valid or Invalid Invalid

Original Datatype Integer, Real, Alpha, Non-Alphanumeric9

Test Datatype Same as original

Test Data Length Same as original

Fields Populated 1

Tests Derived 0

8 The definition of Syntax Testing in (BS 7925-2) includes a test case design rule that ‘mutates’ test data values. In this thesis the word
‘manipulate’ (instead of ‘mutate’) is used to describe any test case design rule that derives an invalid test data value by altering a valid
test data value (e.g. by removing a character from the end of a valid keyword).
9 Atomic Rules EP1 to EP3 can be applied to any datatype that contains contiguous data. Alpha and non-alphanumeric can be
considered contiguous if the ASCII table is used to identify values outside the valid boundaries.

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 17

Figure 1-4: The four-step black-box test case design process.

The Atomic Rules approach aims to resolve the seven problems with existing black-box testing methods

as follows. The Atomic Rules schema and four-step test case design process were defined by identifying the

common attributes of eleven different black-box testing methods that were described differently in fifteen

different places (see Chapter 3, Section 3.2). This results in a uniform notation that eliminates notational

and terminological differences between black-box testing methods and facilitates more prescriptive

comparisons between methods. The approach allows multiple versions of each method to be combined to

create one set of Atomic Rules. This also resolves method overlap by locating and eliminating redundant

rules that appear in more than one method, or more than once within a method.

This also makes the methods easier to audit; by providing one prescriptive definition of each black-box

testing method, the Atomic Rules approach simplifies and disambiguates the process of auditing black-box

test set completeness. Test cases that are submitted for audit can be checked for conformance against the

Atomic Rules definition of specific black-box testing methods, by comparing the set of Atomic Rules from

each method to those that were (or were not) applied to derive the test cases (see Chapter 3, Section 3.5).

Standardisation organisations such as ISO could use the Atomic Rules definition of black-box testing

methods to standardise their definitions.

Definition by exclusion and reliance on domain knowledge are resolved by defining explicit

‘datatypes’ (e.g. integer, real, alpha, non-alphanumeric) for use in the Atomic Rules characterisation

schema, enabling definition of the ‘universe of discourse’ for program inputs. Individual Atomic Rules are

then defined for EP, allowing the input domain to be partitioned by datatype, eliminating the need for

testers to identify invalid partitions ad hoc. This also makes the methods easier to automate (see Chapter 4).

Atomic Rules from methods like EP, BVA and ST can also be used to support the use of other black-

box testing methods, such as State Transition Testing, Use Case Testing and the Category Partition Method

(see Chapter 3, Section 3.6).

Corresponding Atomic Rule Types

Test Case Construction Rule

1. Partition the input and output domains of the program
into equivalence classes by applying Data-Set
Selection Rules to each input and output field.

2. Select individual test data values by applying Data-Item
Selection Rules to the partitions chosen in step 1.

3. Optionally manipulate the test data values by applying
Data-Item Manipulation Rules to the test data values
chosen in step 2.

4. Design test cases by applying Test Case Construction
Rules to the test data values derived in steps 2 and 3.

Four-Step Black-Box Test Case Design Process

Data-Set Selection Rule

Data-Item Selection Rule

Data-Item Manipulation Rule

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 18

Two approaches for supporting Atomic Rules are also presented in this thesis: Systematic Method

Tailoring (SMT) and Goal/Question/Answer/Specify/Verify (GQASV) (Murnane, Reed & Hall 2006).

Systematic Method Tailoring facilitates the customisation of black-box testing (see Chapter 3, Section

3.10) through the creation of new Atomic Rules and new black-box testing methods. SMT also provides

testers with a prescriptive procedure and notation for documenting non-prescriptive test case design rules,

allowing them to be shared with other (novice or experienced) testers. This reduces the inherent reliance on

domain knowledge of non-prescriptive testing approaches like Error Guessing and Exploratory Testing.

Goal/Question/Answer/Specify/Verify is a new specification elicitation procedure that guides testers in

the resolution of undefined or poorly defined input and output fields, as well as facilitating the

documentation of domain knowledge that is utilised during the specification process (see Chapter 3, Section

3.10). This reduces reliance on domain knowledge by ensuring specification-based domain knowledge is

thoroughly documented and facilitates more effective black-box testing.

An additional contribution of this thesis is the definition of ‘test method usability’ and the identification

of measurement and assessment approaches for evaluating test method usability (see Section 1.2).

1.6 Scope

This research was initially focussed on black-box testing methods that can be used to partition the input

and output domains of a program, select data values from each partition and construct test cases (i.e. steps

1, 2 and 4 of the four-step test case design process, see Figure 1-4). As such, development of the Atomic

Rules approach began with an investigation into possible representations for test case design rules from two

of the most well-known black-box testing methods, Equivalence Partitioning and Boundary Value Analysis.

This was followed by the execution of two university-based experiments, which investigated whether

the Atomic Rules representation of EP and BVA improved the usability of these methods (Section 1.7). The

research was then extended to include Syntax Testing and Random Testing (RT). In a subsequent industrial

experiment, the investigation was further extended to determine whether test case design rules utilised by

experienced testers could be represented as Atomic Rules, which covered Error Guessing (EG) and

Exploratory Testing (ET).

The investigation was then extended to determine whether combinatorial testing methods All

Combinations, Each Choice, Base Choice, Orthogonal Array Testing and Specification-Based Mutation

Testing could be represented as Atomic Rules. Whilst these methods typically consist of algorithms for test

case construction that go beyond simple test data design, it is possible to represent them in a similar way to

methods like EP. Thus, these methods are also within scope.

Test Matrices, Test Catalogues, Test Categories and the Category Partition Method (CPM) are also

within scope, as they can support test case analysis and design by mapping Atomic Rules from EP, BVA

and ST that have been applied to each program under test. Use Case Testing and State Transition Testing

are within scope as they can be improved by utilising Atomic Rules from EP, BVA and ST.

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 19

Cause-Effect Graphing and Decision Tables (Myers 1979) are outside the scope of this research, as they

test relationships between inputs and outputs and between combinations of inputs. Thus, they do not

provide specific guidelines for input/output field partitioning or test data generation.

1.7 Evaluation

Three separate experiments were conducted to evaluate whether the Atomic Rules approach improves

the usability and failure-detection effectiveness of existing black-box testing methods. The experiments

formed the core evaluation of the Atomic Rules approach.

The first two were classroom experiments, which were carried out over two consecutive years with

students from La Trobe University in Melbourne, Australia (see Chapter 5). The aim was to compare the

usability of the Atomic Rules representation of EP and BVA to that of Myers’ original definitions of these

methods, to determine which enables novice testers to write more complete and correct black-box test sets.

An industrial experiment was then carried out to compare the usability and failure-detection

effectiveness of black-box testing methods that are used by professional testers as part of their jobs, to that

of the Atomic Rules representation of EP, BVA and ST (see Chapter 6). The participants were working for

a large government organisation in Brisbane, Australia, and had software testing experience ranging from

novice to expert.

A proof-of-concept evaluation of GQASV and SMT was also carried out against a real-world

application (see Chapter 3). Automation of the Atomic Rules approach, GQASV and SMT was another

interesting avenue for investigation. To this end, a prototype called the Atomic Rules Testing Tool (ARTT)

has been developed (see Chapter 4). ARTT implements the Atomic Rules definition of EP, BVA and ST to

enable automatic generation of black-box test data. ARTT demonstrates that the Atomic Rules approach

defines black-box testing methods precisely enough to enable automation.

1.8 Thesis Structure

This thesis is structured as follows. A survey of relevant literature is provided in Chapter 2, including an

extensive analysis of existing black-box test method definitions. The Atomic Rules approach is introduced

in Chapter 3, including the Atomic Rules schema and four-step test case design process, as well as the

supporting approaches GQASV and SMT. The Atomic Rules Testing Tool is presented in Chapter 4. This is

followed by presentation of the two university-based experiments in Chapter 5 and the industrial

experiment in Chapter 6. Conclusions and future work are discussed in Chapter 7.

Introduction Chapter 1

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 20

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 21

Chapter 2

Black-Box Testing – History and Practice

"If I have seen further than you and Descartes it is by standing upon the shoulders of giants."
Sir Isaac Newton in a letter to Robert Hooke, 1675/1976.

2.1 Overview

ISO/IEC define the term test case as “a set of test inputs, execution conditions, and expected results

developed for a particular objective, such as to execute a particular program path or to verify compliance

with a specific requirement” (ISO/IEC 24765:2008) (see Section 1.1). Black-box testing methods provide

guidance on the design of test cases that can be used to verify that programs meet their requirements (i.e.

that they comply with a specific requirement), whether those requirements are explicitly documented or

implicitly known by individual testers on the testing team. This can include testing that a program accepts

and processes ‘valid’ inputs correctly as specified and produces the correct output, or that it rejects ‘invalid’

inputs and displays appropriate error messages as required. Black-box test cases can be designed from

business requirements, functional specifications, technical specifications and design specifications

(Burnstein 2003) and can also be based on the unique domain knowledge and experience of each tester.

As was pointed out in Chapter 1, the usability and failure-detection effectiveness of black-box testing

methods is currently affected by seven problems with existing definitions of these methods. In this chapter,

a review of relevant literature is presented to explore these seven problems. This review includes the

following black-box testing methods:

1. Equivalence Partitioning (Section 2.2.1);

2. Boundary Value Analysis (Section 2.2.2);

3. Syntax Testing (Section 2.2.3);

4. Random Testing (Section 2.2.4);

5. Non-prescriptive approaches to black-box testing (Section 2.2.5):

o Error Guessing (Section 2.2.5.1); and

o Exploratory Testing (Section 2.2.5.2);

6. Test Catalogues, Test Categories and Test Matrices (Section 2.2.6);

7. Combinatorial test methods (Section 2.2.7) including:

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 22

o All Combinations (Section 2.2.7.1);

o Each Choice (Section 2.2.7.2);

o Base Choice (Section 2.2.7.3);

o Orthogonal Array Testing (Section 2.2.7.4) and

o Specification-Based Mutation Testing (Section 2.2.7.5);

8. Category Partition Method (Section 2.2.8) and

9. Classification Trees (Section 2.2.9).

The remainder of this chapter is structured as follows. To support the literature review, terms that are

used throughout the chapter are discussed in Section 2.1.1, followed by approaches to specifying program

requirements and classes of program input and output fields in Section 2.1.2. A review of relevant literature

begins with the definition of a common notation for reviewing the methods in Section 2.2, followed by a

detailed review of each test method in Sections 2.2, 2.3 and 2.4. Approaches to selecting test methods are

discussed in Section 2.5. Factors that can influence test effectiveness are discussed in Section 2.6.

Automation of black-box testing is discussed in Section 2.7. A chapter summary is provided in Section 2.8.

2.1.1 Terminology

To support this literature review, definitions and explanations of the following terms are provided:

1. fault;

2. error;

3. failure;

4. test case;

5. test data value (also called ‘test input’);

6. input field;

7. expected result;

8. test case design rule;

9. test procedure;

10. test script; and

11. test condition.

ISO/IEC define the terms error as “a human action that produces an incorrect result, such as software

containing a fault” and fault as “a manifestation of an error in software” (ISO/IEC 24765:2008). Thus, an

error is a mistake a programmer makes when interpreting a requirement, resulting in the implementation of

faulty program source code that does not meet end-user requirements. ISO/IEC define the term failure as

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 23

“an event in which a system or system component does not perform a required function within specified

limits” (ISO/IEC 24765:2008). The execution of a black-box a test case against a program can cause one or

more faults to manifest, thereby resulting in program failure.

As stated earlier, the term test case is defined by ISO/IEC as “a set of test inputs, execution conditions,

and expected results developed for a particular objective, such as to execute a particular program path or to

verify compliance with a specific requirement” (ISO/IEC 24765:2008). Therefore, test case design requires

the selection of test inputs, which are referred to as ‘test data values’ in this thesis to differentiate them from

the ‘input fields’ of a program that they are designed to test. Test data values can be valid or invalid,

according to what the program should accept or reject respectively. For example, an input field ‘vehicle

type’ could be defined in Backus-Naur Form (BNF) (Knuth 1964) as <vehicle_type> ::= [Car | Truck |

Motorbike]. A valid test data value ‘Truck’ could be selected to check that the program accepts valid input

data, while an invalid test data value ‘Bicycle’ could be used to test that the program (correctly) rejects

invalid input data.

Each test case includes one or more test data values, one for each input field covered by the test case.

For example, if a test case covers a component that accepts two inputs, <vehicle_type> ::= [Car | Truck |

Motorbike] and <max_speed> ::= [120 – 240], a test case could consist of test data values ‘Car’ and ‘240’.

Test cases also include expected results that define the predicated behaviour of the program under test

when it is executed with a particular test case (BS 7925-1). Expected results can be identified from program

documentation or can be based on the domain knowledge and experience of program testers. For example,

the expected result of a test case that consists of only valid test data values would explain what ‘correct’

behaviour the program should exhibit in response to the valid input, while a test case containing any invalid

test data values would explain how the program should reject the input and (ideally) what error message

should be displayed, describing why the input was rejected.

Test case design rules are the individual guidelines of black-box testing methods that can be used to

design test cases. For example, Myers (1979) defines the following guideline for Equivalence Partitioning,

which consists of a number of test case design rules, as follows:

“If an input condition specifies a range of values (e.g. “the item count can be from 1 to 999”),

identify one valid equivalence class (1 item count 999) and two invalid equivalence classes

(item count < 1 and item count > 999).”

This guideline can be decomposed into three different test case design rules:

1. item count from lower boundary to upper boundary (1 item count 999);

2. item count less than lower boundary (item count < 1); and

3. item count greater than upper boundary (item count > 999).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 24

The terms test procedure and test script are also used in software testing literature. A standard definition

of a test procedure is “detailed instructions for the setup, execution, and evaluation of results for a given

test case” (IEEE 1012:2004). Test script is a similar term that is “commonly used to refer to the automated

test procedure used with a test harness” (BS 7925-1).

Some descriptions of black-box testing methods discuss the identification of test conditions (also called

‘test objectives’ (Craig & Jaskiel 2002)) prior to test case design, where each test case is specifically

derived to cover at least one test condition. A number of definitions of the term test condition are cited in

the literature, as follows.

 The International Software Testing Qualifications Board (ISTQB) define test condition as “an

item or event of a component or system that could be verified by one or more test cases, e.g. a

function, transition, feature, quality attribute, or structural element” (ISTQB 2005).

 Kent (2008) describes test conditions as refinements to requirements that define the expected

behaviour of a system.

 Craig and Jaskiel (2002) consider test conditions to be categories of things that need to be tested,

which are sets of high level and low level requirements.

 Both Fewster and Graham (2000) and Dustin (2003) consider equivalence classes and boundary

values to be test conditions (identified by EP and BVA respectively);

In this thesis, test conditions are considered to be refinements of program requirements (as argued by

Kent (2008)). Requirements and test conditions can be defined at high and low levels of detail. High-level

requirements can also be converted into test conditions that define requirements in more detail. For

example, the following high-level functional requirement could be specified in a ‘business requirement

specification,’ which typically specifies program requirements at relatively high levels of detail:

Requirement 1: the program must add two numbers together.

This defines the requirement at a very high level of detail1. This requirement could be converted directly

into a high-level test condition, as follows:

Test Condition 1: check that the program can add two numbers together correctly.

This requirement could be converted into a test condition that is specified at a low level of detail:

Test Condition 2: check that the program can take two signed 16-bit integers in the range −32,768

to +32,767 as input, sum them together and output the result as a 32-bit integer to the screen, in a

field that has a maximum range of −2,147,483,648 to +2,147,483,647. Any other input should be

rejected, with a corresponding error message being displayed to the user.

1 In Reed’s KABASPP model (1990), this would be equivalent to defining a requirement in the program application domain.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 25

Test condition 2 defines this requirement much more precisely2. On the other hand, test conditions can

sometimes only be specified in this way if testers are aware of design decisions made by developers; for

example, this could be identified by reviewing design specifications or by speaking with developers.

Further definitions of terms used throughout this thesis can be found in the glossary (see page xvi).

2.1.2 Classes of Input and Output Fields

Program input and output fields are typically expressed in the literature in two ways: as lists and ranges

(these terms were adapted from similar concepts in (Jorgensen 1995, Lewis 2000, Mosley 1993, Myers

1979, Page et al. 2009)).

Lists are typically specified in the literature in one of two ways, as follows:

 L ::= [v1 | v2 | … | vn] (2.1)

 L ::= [v1 , v2 , …, vn] (2.2)

where n is the number of v values contained in list L.

Ranges are also commonly specified in the literature in one of two ways, as follows:

 {R : lb R ub} (2.3)

 R ::= [lb – ub] (2.4)

which defines a range of values from lower boundary lb to upper boundary ub.

Lists and ranges can also repeat and be optional or mandatory. Repetition can be specified by appending

a superscript lb – ub to the specification of a list or a range, where lb and ub indicate the minimum and

maximum times the field can repeat respectively. List repetition can be specified as:

 L ::= [v1 | v2 | … | vn]
lb – ub (2.5)

 L ::= [v1, v2, …, vn]
lb – ub (2.6)

Range repetition can be specified as:

 {R : lb R ub}lb – ub (2.7)

 R ::= [lb – ub]lb – ub (2.8)

where the superscript lb – ub indicates that the field that can repeat from lb (lower boundary) to ub (upper

boundary) times.

2 In Reed’s KABASPP model, this defines a requirement within the program’s run-time environment domain (Reed 1990).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 26

The same notation can be used to indicate if a field is optional or mandatory. Using the notation above,

optional ranges and lists can be specified as:

 {R : lb R ub}0 – 1 (2.9)

 R ::= [lb – ub]0 – 1 (2.10)

 L ::= [v1 | v2 | … | vn]
0 – 1 (2.11)

 L ::= [v1, v2, …, vn]
0 – 1 (2.12)

where the superscript 0 – 1 indicates that the fields can appear zero or one times.

Similarly, a mandatory lists and ranges can be specified as follows:

 {R : lb R ub}1 (2.13)

 R ::= [lb – ub]1 (2.14)

 L ::= [v1 | v2 | … | vn]
1 (2.15)

 L ::= [v1, v2, …, vn]
1 (2.16)

where the superscript 1 indicates that the field must appear exactly once.

In the absence of a superscript element (see expressions 2.1 to 2.4 above), it is assumed that the field is

mandatory and must appear exactly once.

2.1.2.1 Examples

Consider the following examples. In Section 2.1.1, the following test condition was defined:

Test Condition 2: check that the program can take two signed 16-bit integers in the range −32,768 to

+32,767 as input, sum them together and output the result as a 32-bit integer to the screen, in a field that has

a maximum range of −2,147,483,648 to +2,147,483,647.

This test condition could give rise to the definition of two range-based fields, as follows:

 <input_integer> ::= [-32,768 − 32,767]2

 <output_integer> ::= [−2,147,483,648 − 2,147,483,647]

This indicates that exactly two 16-bit integers must be input, while one 32-bit integer will be output.

Consider another example involving a list, in which the following test condition was initially defined:

Test Condition 3: check that the user can select between one and seven passenger vehicle types from

the following list: boat, car, motorbike, plane, tractor, train, truck.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 27

This test condition would give rise to one list-based field:

 <vehicle> ::= [boat | car | motorbike | plane | tractor | train | truck]1-7

2.2 Black-Box Testing Methods

Before reviewing relevant literature, it is first necessary to define the notation used when reviewing their

common elements. As introduced in Section 1.4, black-box testing method typically focuses on just one of

the following four key steps of black-box test case design:

1. Partition the input and output domains of the program into sets of equivalent data, by applying

Data-Set Selection Rules (e.g. see Equivalence Partitioning in Section 2.2.1).

2. Select test data values from each partition by applying Data-Item Selection Rules (e.g. see

Boundary Value Analysis in Section 2.2.2).

3. Optionally manipulate3 the test data values by applying Data-Item Manipulation Rules (e.g. see

Syntax Testing in Section 2.2.3).

4. Construct test cases by creating combinations of test data values via the application of Test Case

Construction Rules (e.g. see Orthogonal Array Testing in Section 2.2.7.4).

These four steps are utilised throughout this chapter to describe the ‘functionality’ of the individual test

case design rules of each black-box testing method.

Program specifications often do not provide sufficient information to allow a tester to partition the input

and output domains of a program into valid and invalid equivalence classes (covered by step 1 above), in

which case the tester is usually required to create adequately detailed field definitions prior to (or as a part

of) the partitioning process. For example, in Section 2.1.1, test condition 2 provides sufficient information

to allow a tester to partition the input and output domains of the program. Conversely, test condition 1

requires the tester to make assumptions about the minimum and maximum values that are allowable in each

field, which may result in test cases that do not meet user requirements. Since black-box testing methods do

not usually provide guidance on how to obtain and verify the correctness of detailed definitions of program

input and output fields, a new approach called Goal/Question/Answer/Specify/Verify is introduced (see

Chapter 3), which can be used to elicit and record such information.

2.2.1 Equivalence Partitioning (EP)

During Equivalence Partitioning, the input and output domains of the program under test are

‘partitioned’ into disjoint, mutually-exclusive sets of ‘equivalent’ data, in the sense that if one element in a

set detects a program fault, then all elements in the set should find the same fault (Myers 1979) and execute

the same program paths (Howden 1976). When a program is executed with any one test data value from an

equivalence class, it is assumed that the program does not have to be tested against any other values from

3 For example, the definition of Syntax Testing in (BS 7925-2) includes a test case design rule that ‘mutates’ test data values. In this
thesis the word ‘manipulate’ is used to describe any test case design rule that derives an invalid test data value by altering a valid test
data value (e.g. by removing a character from the end of a valid keyword).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 28

that partition because its white-box behaviour is presumed to be identical for all values from that set (Myers

1979). Similarly, if any member of an equivalence class causes program failure then it is expected that all

other elements from that class will cause the same failure (Hamlet & Taylor 1990). Such partitions are

called “revealing” (Weyuker & Ostrand 1980) or “homogenous” (Hamlet & Taylor 1990). Partitioning is

claimed to reduce the number of test cases that are required to achieve predefined test coverage goals by

covering a large subset of all possible tests with the smallest number of test cases (Myers 1979).

EP has been called the “most basic” black-box testing method because it guides testers in the design of a

compact test sets that achieve adequate coverage (Copeland 2004). EP’s guidelines for partitioning the

program input and output domains “prescribe” test case design. They can also act as a point of reference for

measuring test coverage (Grindal, Offutt & Andler 2005). EP can be applied to high and low-level

specifications (Richardson & Clarke 1985) and can be white-box, black-box or grey-box (Hamlet & Taylor

1990). Grey-box partitioning approaches were published as early as 1976 (Howden 1976), while the first

purely black-box partitioning method was defined by Myers’ EP in 1979 (Myers 1979)4. Many authors still

cite Myers’ definition (e.g. see (Burnstein 2003, Jorgensen 1995, Kit 1995, Mosley 1993, Copeland 2004,

Page et al. 2009, Mosley & Posey 2002, Parrington & Roper 1989)).

Myers (1979) defined eight guidelines for EP (Figure 2-1).

4 Kaner (1988) advocates Myers textbook as “the best in print” and, as further testament to its popularity, Myers’ text was reprinted in
2004, twenty-five years after its first publication (Myers 2004).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 29

Figure 2-1: Myers’ (1979) guidelines for Equivalence Partitioning.

Myers’ (1979) guidelines for Equivalence Partitioning5

Guidelines for equivalence class design

1. If an input condition specifies a range of values (e.g. “the item count can be from 1 to 999”), identify
one valid equivalence class (1 item count 999) and two invalid equivalence classes (item count < 1
and item count > 999).

2. If an input condition specifies a number of values (e.g. “one through six owners can be listed for the
automobile”), identify one valid class and two invalid equivalence classes (no owners and more than six
owners).

3. If the input condition specifies a set of values and there is reason to believe that each is handled
differently by the program (e.g. “type of vehicle must be BUS, TRUCK, TAXICAB, PASSENGER, or
MOTORCYCLE”), identify a valid equivalence class for each one and one invalid equivalence class
(e.g. “TRAILER”).

4. If an input condition specifies a “must be” situation (e.g. “first character of the identifier must be a
letter”), identify one valid equivalence class (it is a letter) and one invalid equivalence class (it is not a
letter).

5. If there is reason to believe that elements in an equivalence class are not handled in an identical
manner by the program, split the equivalence class into smaller equivalence classes.

Guidelines for test case design

6. Assign a unique number to each equivalence class.

7. Until all valid equivalence classes have been covered by (incorporated into) test cases, write a new test
case covering as many of the uncovered valid equivalence classes as possible.

8. Until all invalid equivalence classes have been covered by test cases, write a test case that covers one,
and only one, of the uncovered equivalence classes.

The following interpretation and examples are provided to critique Myers’ definition of EP.

Guideline 1. This defines three Data-Set Selection Rules for partitioning range-based fields. The field in

this example can be restated as <item_count> ::= [1 – 999]. For this field, Myers proposes

the use of three DSSRs, as follows.

1. Select a partition containing valid values; for the field in this example, this would select

partition <valid_item_count> ::= [1 – 999]. This DSSR is defined prescriptively and

does not require further clarification.

2. Select an equivalence class containing values that lie below the lower boundary of the

field, which would select the set item_count < 1. One problem is that this DSSR does not

state that a minimum boundary value must be chosen for the partition, which might only

be known through grey-box information. For example, if the input was processed as a

signed 32-bit integer, this partition could be defined as <invalid_item_count_1> ::=

[−32,768 – 1].

3. Select an equivalence class containing values that lie above the upper boundary of the

field, selecting the set item_count > 999. Similar to rule 1, this DSSR does not indicate

5 These guidelines are expressed in Myers’ exact words.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 30

that a maximum value must be chosen for this partition. For example, the partition could

be defined as <invalid_item_count_2> ::= [1000 – 32,767].

Guideline 2. This also defines three DSSRs for partitioning range-based fields, which are essentially the

same as those described under guideline 1 and, as such, they do not provide any new

guidance on partitioning. The field in this example can be restated as <owner_count> ::= [1

– 6]. The DSSRs applied to this field are as follows.

4. Select a partition containing only valid values, which can be specified as

<valid_owner_count> ::= [1 – 6]. This could be covered by guideline 1, rule 1.

5. Select an equivalence class containing one value owner_count = 0. This could be derived

more prescriptively by applying guideline 1, rule 2, selecting partition

<invalid_owner_count_1> ::= [−32,768 – 0] (assuming 32-bit integers), followed by a

Data-Item Selection Rule from BVA that selects the upper boundary of the partition,

which would select the value 0.

6. Select an equivalence class containing values in the set owner_count > 6, which could be

covered by guideline 1, rule 3, resulting in partition <invalid_owner_count_2> ::= [7 –

32,767] (assuming 32-bit integers).

Guideline 3. This defines two DSSRs for partitioning list-based fields, where each valid input in the field

is inserted into a separate partition (which is likely only known through grey-box

information) and where identification of the invalid class requires domain knowledge. The

field could be redefined as <vehicle> ::= [BUS | TRUCK | TAXICAB | PASSENGER |

MOTORCYCLE], while the guideline utilises two DSSRs, as follows.

7. Select a separate equivalence class for each vehicle type, resulting in partitions

<vehicle1> ::= [BUS], <vehicle2> = [TRUCK], <vehicle3> = [TAXICAB], <vehicle4>

= [PASSENGER], <vehicle5> = [MOTORCYCLE].

8. Select an equivalence class containing vehicle types not in the valid set. For this example,

this could include values like CYCLE, TAXI, TRAILER, TRICYCLE and SCOOTER.

More prescriptive testing could be achieved by defining DSSRs that select invalid

partitions by datatype, including numeric and non-alphanumeric (i.e. special) characters

at a minimum (e.g. see Chapter 3, Section 3.1.1.1).

Guideline 4. This defines two DSSRs that partition a field that could be treated as a list or range,

depending on how the program processes inputs (which is grey-box information). For

example, the input field in this example could be specified either as a list defined as

<letter_list> ::= [A | B | C | … | Y | Z | a | b | c | … | y | z] or a range defined as

<letter_range> ::= [ascii(A) – ascii(Z) | ascii(a) – ascii(z)] (assuming the ASCII table was

used for partitioning). The guideline then recommends two DSSRs, as follows.

9. Select an equivalence class containing letters. Depending on the tester’s assumption, this

would either derive a list-based partition <valid_letter_list> ::= [A | B | C | … | Y | Z | a |

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 31

b | c | … | y | z] or a range-based partition <valid_letter_range> ::= [ascii(65) –

ascii(90) | ascii(97) – ascii(122)].

10. Select an equivalence class containing anything other than letters, which is ambiguous,

but would ideally include numeric and non-alphanumeric characters at a minimum (e.g.

see Chapter 3, Section 3.1.1.1). For example, if the ASCII table was used, depending on

whether the field was treated as a list or range, this could result in a list-based partition

<invalid_letter_list> ::= [space | ! | “ | … | > | ? | @ | [| \ | \ | ^ | _ | ` | { | | | } | ~]

(where space represents the space character) or a range-based partition

<invalid_letter_range> ::= [space – @ | [– ` | { – ~].

Guideline 5. This guideline recommends further division of any partition that contains a subset of

characters that are suspected to be handled differently by the program. Thus, similar to

guidelines three and four, it suggests partitioning based on grey-box information.

Guideline 6. This guideline recommends assignment of a unique identifier to each equivalence class, to

enable traceability from partitions to test cases.

Guideline 7. This defines one Test Case Construction Rule (TCCR) that works by assigning as many

input fields per test case with a valid value from a valid partition. This TCCR is repeatedly

applied until all valid partitions have been ‘covered’ by at least one test case.

Guideline 8. This defines one TCCR that works by assigning one input field per test case with an invalid

value from any invalid partition derived for that field, whilst assigning all other input fields a

valid value. This TCCR is repeatedly applied until all invalid partitions have been ‘covered’

by at least one test case.

One problem with Myers’ partitioning guidelines is that they lack precision (Ostrand & Balcer 1988)

and have been referred to as “testing heuristics” (i.e. rules of thumb) (DeMillo et al. 1987), as the individual

knowledge and experience of each tester can affect the completeness of resulting test sets. Other definitions

of EP have improved on Myers’ original definition (e.g. see (Tamres 2002, Kaner 1988, BS 7925-2, Craig

& Jaskiel 2002), which are discussed below). Despite this, all publications of EP suffer from (at least) five

problems: definition by exclusion, reliance on domain knowledge, multiple versions, difficult to audit and

difficult to automate.

As introduced in Chapter 1, Myers’ fourth guideline describes a “must-be” condition (also called a

“Boolean condition” (Pressman 1992)) (see Figure 2-1) in which an invalid equivalence class is selected

containing all inputs other than those in the valid class. This DSSR provides little guidance as to the

contents of the invalid class. Ideally, a member from every class of data (e.g. integer, real, alpha, non-

alphanumeric/special characters) would be represented in the invalid class, but a novice tester may only be

aware of a subset of these. Thus, definition by exclusion assumes familiarity with the ‘universe of

discourse’ with respect to program inputs, and reduces the learnability and operability of EP (Murnane,

Reed & Hall 2006). As a result, different testers using this defining of EP may produce vastly dissimilar test

sets from the same program specification (Patton 2006). Furthermore, the inherent ambiguity in this method

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 32

also makes it difficult to automate this method. On the other hand, Patton considers Myers’ guidelines to be

acceptable, as long as the coverage of each equivalence class is assessed through peer review, adding that

EP is “science, but it’s also art” (Patton 2006). Clearly, Myers’ version of EP relies on the domain

knowledge of the testers involved, reducing the repeatability and predictability of black-box test case design

and resulting in test case design procedures that are not automatable. Myers’ definition of EP cannot be

considered complete, since it is not guaranteed to result in reproducible test sets.

Definition by exclusion is partially resolved by Tamres’ (2002) definition of EP, in which the universe

of discourse is defined through ‘datatype’ and ‘data set’ definitions (Abbott (1986) describes this as “data-

oriented” testing) that apply to each Data-Set Selection Rule. Tamres explains the approach using a login

screen consisting of input fields ‘username’ and ‘password’ and buttons ‘OK’ and ‘Cancel.’ For the input

fields, Tamres described the use of DSSRs that define valid partitions by datatype, including datatypes

lowercase alpha, uppercase alpha, numeric and non-alphanumeric, and a DSSR to select valid partitions

including [o, O] and [c, C] as data that activates the OK and Cancel buttons respectively from the

keyboard. Tamres also used DSSRs to identify invalid non-alphanumeric partitions [-, _, $, !, &, ~] for

username and [@, #, %, *, ^, “, (,), [,], {, }, /, ?, <, ?] for password.

While Tamres used DSSRs to define the contents of valid and invalid equivalence classes by datatype

and by test data values in significantly more detail than Myers, Tamres’ definition of EP is incomplete. The

non-alphanumeric class should ideally classify all non-alphanumeric character from the ASCII table as

either valid or invalid; in Tamres’ example, characters from the set [+ = | : ; ‘ , < > .] are not specifically

included in the equivalence classes defined for username and password. Tamres’ also did not include a

guideline for selecting greater than the maximum number of characters for an input field, which is covered

by Myers’ first guideline (Figure 2-1). Furthermore, while Tamres’ definition provides examples of the

types of equivalence classes that could be selected for one example login screen, it did not include generic

guidelines like those defined by Myers. Consequently, Tamres’ definition of EP could cause omission of

important equivalence classes, which would likely reduce the effectiveness of black-box testing.

Definition by exclusion for EP is also partially resolved by Kaner (1988), who utilises the ASCII table

to identify invalid equivalence classes for a set of example fields. Kaner’s definition of EP covers DSSRs

that partition input fields consisting of uppercase and lowercase alphas, for which three invalid equivalence

classes are defined as follows:

1. ASCII code below that for ‘A’;

2. ASCII code between the codes for ‘Z’ and ‘a’; and

3. ASCII code greater than the code for ‘z’.

Other than the alpha datatype, Kaner’s definition of EP does not define DSSRs that cover other ASCII

datatypes, such as integer, special character and control character. For some programs, particularly those

with command line interfaces, test data values from each class could be treated differently. For example,

ctrl^Z may cause program termination in UNIX environments, while very large integer inputs could cause

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 33

program failure if they are not properly handled by the program. The identification of invalid datatypes

from character encoding sets becomes further complicated when the input domain is the Unicode table,

which currently contains over 100,000 individual characters (Wikipedia Unicode 2008), whereas the ASCII

table contains only 94 printable characters (Oualline 2003), which is a more manageable size. Also, like

Tamres, Kaner demonstrates the selection of equivalence classes for example fields and as such, he does not

provide generic guidelines that apply to any field type. Kaner’s guidelines are also presented across nine

sub-sections and two tables, which could make it difficult for a tester to identify whether or not they have

derived all required equivalence classes.

Definition by exclusion in EP is also partially resolved by Black, who explains the method through

illustrative examples that utilise various DSSRs, which partition the input domain by ASCII datatype,

including integer, real, character, string, date, time and currency (Black 2007). While Black’s definition of

EP is no more prescriptive than Tamres or Kaner, it does introduce a unique approach to graphically

representing partitions (Figure 2-2). In the example below (which was adapted from (Black 2007)), a valid

input field is defined as any string of 6 to 10 ASCII characters situated between ASCII(48) (the number 0)

and ASCII(90) (the letter Z), which can be represented as <input> ::= [ASCII(48) – ASCII(90)]6-10. From

this, any character below ASCII(48) or above ASCII(90) is regarded as invalid, while any string less than 6

characters or greater than 10 characters in length is also considered invalid (Figure 2-2).

Figure 2-2: Example graphical representation of equivalence classes (adapted from (Black 2007)).

The British Standards Institute’s (BSI’s) Component Testing Standard (BS 7925-2) also partially solves

definition by exclusion by defining DSSRs that select invalid partitions by datatype. For example, for the

Valid Partition

 / 0 Z [

10

6

Input Field Definition:
<input> ::= [ASCII(48) – ASCII(90)]6-10

Resulting Graph of Valid and Invalid Equivalence Classes:

ASCII(47) ASCII(48) ASCII(90) ASCII(91)

ASCII Table Character and Number

S
tr

in
g

 L
en

g
th

In
va

lid
 P

ar
tit

io
n

A

S
C

II
nu

m
be

r
to

o
lo

w

0

In
va

lid
 P

ar
tit

io
n:

A

S
C

II
nu

m
be

r
to

o
hi

gh

Invalid Partition:
string too long

Invalid Partition:
string too short

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 34

valid integer range [0 – 75), four invalid classes are identified: > 75, < 0, real number and alphabetic.

However, this definition is missing DSSRs that select special characters and control characters. The

DSSRs in the standard are also not generic, as they are only explained for two example numeric fields.

Since numeric data are the “easiest to deal with” (Abbott 1986), additional DSSRs for selecting other

datatypes are required to ensure that EP is thorough and to allow novice testers to become competent in EP.

Hence, prescriptive DSSRs for selecting invalid equivalence classes by datatype are included in some

definitions of EP, including (BS 7925-2, Kaner 1988, Tamres 2002). These definitions of the method enable

greater coverage of valid and invalid input domains. On the other hand, Craig and Jaskiel (2002) argue that

while special characters and decimals can be selected as invalid equivalence classes for numerical fields,

they should be identified through non-prescriptive approaches like Error Guessing. Supporting this view,

Andriole (1986) argues that there is “no direct, easily stated procedure” for selecting equivalence classes

while Parrington and Roper (1989) claim that the only way to identify partitions is to analyse specifications

for “keywords and phrases” and then identify valid and invalid classes for each one. This is particularly true

when input and output fields are specified in natural language. Nonetheless, this author’s view is that

prescriptive definitions of DSSRs for EP would allow testers to define more complete and correct

equivalence classes for any program under test (see Chapter 3 for a prescriptive approach to defining

DSSRs for EP, called ‘Atomic Rules’).

Inadequate testing can also occur when the boundaries and contents of input and output fields are not

explicitly specified, leading to a reliance on domain knowledge. Consider an input field <age> ::= [0 –

150] in the context of a program that estimates life insurance premium cost. A developer who has

experience in the domain of life insurance and may know that this field should be partitioned into two valid

classes <pensioner> ::= [65 – 150] and <non-pensioner> ::= [0 – 64] and implement the program

accordingly. On the other hand, if these partitions are not explicitly specified and the tester is unfamiliar

with the domain of life insurance, then the program may be inadequately tested through EP (Figure 2-3)6.

6 This example uses domain knowledge that is so widely known that a tester should not make this exact mistake; however it illustrates
the problem.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 35

 Figure 2-3: Inadequate specification of input fields, resulting in incomplete testing (Reed 1998).

S1 ::= [0 – 150]

TD1: 75

covers

Specification Partitions (SX) and Test Data (TDY)

C1 ::= [0 – 64]

Code Partitions (CZ)

Partition C1 is untested

C2 ::= [65 – 150]

Another example of reliance on domain knowledge and its effect on EP is when the ‘set type’ of input

fields is not properly specified. Consider an input field that accepts valid Australian postcodes. The simplest

definition for this field could be:

 <postcode> ::= <d><d><d> | <d><d><d><d>
 <d> ::= [0 – 9]

However, this includes invalid postcodes, such as 0000, 1000 and 9999. An alternate definition is:

 <postcode> ::= [200 – 9729]

This still includes some invalid postcodes, such as 201 and 799. The most accurate definition would be a

list every postcode that is currently recognised by Australia Post (Australia Post 2008]:

 <postcode> ::= [200 | 221 | 800 | 801 | 804 | 810 | 811 | ...
 | 1001 | 1002 | 1003 | 1004 | 1005 | ...
 | 2000 | 2001 | 2002 | 2004 | 2006 | ...
 | 9023 | 9464 | 9726 | 9728 | 9729]

Depending on how this field is specified and on the domain knowledge and experience of the

programmer and tester, this field may be inadequately implemented and ineffectively tested.

Problems also arise when partitions are non-homogenous, resulting in program behaviour that is not

consistent across an entire equivalence class (Jeng & Weyuker 1989), such as when a program behaves

correctly when given a test data value from a partition but fails when given another value from the same

partition (Hamet & Tailor 1990). In reality, this suggests that the specification did not allow the tester to

identify the fact that the input field that was being partitioned that should have been divided into multiple

equivalence classes, each which should have been tested separately. Also, specifications often do not

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 36

describe the ‘expected output’ for test data that is selected from invalid partitions (Jorgensen 1995), which

can make the comparison of expected and actual testing results difficult.

There are also currently no easily automatable approaches for extracting partitions from specifications

expressed in natural language. On the other hand, if program input and output fields are specified in a

formal notation like BNF, and if DSSRs for EP are prescriptively defined, then this method would be

amenable to automation, which would make the application of the method more repeatable and predictable

(an automation approach for EP is presented in Chapter 4).

Another problem with EP, which was highlighted by the various versions of the method that were

discussed throughout this section, is that multiple versions of this method have been published. This could

make it difficult for both novice and experienced tester to determine how ‘complete’ their test sets are (e.g.

how adequately each test set covers the input and output domains of each program under test, and whether

all possible test case design rules from EP have been used). This also makes it difficult to audit the

completeness of each black-box test set, since a number of test case design rules in each publication of EP

are ambiguous and would need to be known to the auditor and interpreted in the same way by them.

2.2.2 Boundary Value Analysis (BVA)

Program faults often occur at the boundaries of data domains rather than at their centres (Pressman

1992). Boundary Value Analysis provides guidelines for selecting test data values that lie on, just above and

just below the boundaries of input and output fields. Boundary values are typically selected by DISRs that

select test data values from the edges of equivalence classes. The aim of BVA is to select a high yield test

set that explores all program boundaries (Myers 1979). Although BVA increases the total number of test

cases that are defined, it is also claimed to target the most error-prone values, increasing test effectiveness

(Ould & Urwin 1986). BVA can be used to detect input and output errors as well as buffer overrun faults,

which present a major security threat for online systems (Patton 2006). It is also believed that if a program

can function correctly under extreme conditions then it will almost certainly operate well in ordinary

scenarios (Patton 2006). BVA is considered to be more prescriptive than EP, since test data values in EP

can be chosen from anywhere inside a partition, whereas in BVA the end points of the partitions are always

selected (Graham 1994). It has been argued that the use of prescriptive guidelines for BVA increases the

completeness of resulting test sets and the likelihood of detecting program faults (Pressman 1992). The

facilitation of BVA is considered by some to be one of the greatest contributions of EP (Copeland 2004).

Myers (1979) was the first to define BVA as a purely black-box testing method and his treatment is

widely cited (e.g. see (Pressman 1992, Kit 1995, Marick 1995, Andriole 1986, Tamres 2002, Parrington &

Roper 1989, Mosley & Posey 2002, Copeland 2004, Rae et al. 1995, Sommerville 1994)). Myers defined

six guidelines for BVA (Figure 2-4), covering the selection of boundary values from on and just outside the

edges of equivalence classes. Other definitions of BVA include the selection of values that lie just inside

equivalence classes (e.g. see (BS 7925-2, Copeland 2004, Graham 1994, Watkins 2001)).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 37

Figure 2-4: Myers’ (1979) guidelines for Boundary Value Analysis.

Myers’ (1979) guidelines for Boundary Value Analysis7

1. If an input condition specifies a range of values, write test cases for the edges of the range, and
invalid-input test cases for situations just beyond the ends. For instance, if the valid domain of an
input value is -1.0 - +1.0, write test cases for the situations -1.0, 1.0, -1.001 and 1.001.

2. If an input condition specifies a number of values, write test cases for the minimum and maximum
number of values and one beneath and beyond these values. For instance, if an input file can
contain 1 – 255 records, write test cases for 0, 1, 255 and 256 records.

3. Use guideline 1 for each output condition. For instance, if a program computes the monthly FICS
deduction and if the minimum is $0.00 ad the maximum is $1165.25, write test cases that cause
$0.00 and $1165.25 to be deducted. Also, see if it is possible to invent test cases that might causes
a negative deduction or a deduction of more than $1165.25.

4. Use guideline 2 for each output condition. If an information retrieval system displays the most
relevant abstracts based on an input request, but never more than four abstracts, write test cases
such that the program displays zero, one and four abstracts, and write a test case that might cause
the program to erroneously display five abstracts.

5. Of the input or output of a program is an ordered set (e.g. a sequential file, linear list, table), focus
attention on the first and last elements of the set.

6. In addition, use your ingenuity to search for other boundary conditions.

For example, consider a range-based field <age> ::= [0 – 150], for which one valid partition [0 - 150]

is chosen (Figure 2-5). Six boundary values can be identified by applying six different DISRs: -1, 0, 1, 149,

150 and 151. These DISRs correspond to values that lie just below the lower boundary (min-), on the lower

boundary (min), just above the lower boundary (min+), just below the upper boundary (max-), on the upper

boundary (max) and just above the upper boundary (max)8, where ‘+’ and ‘-’ refer to the smallest increment

possible per datatype; for example, this could be +1 or -1 for integers and +0.01 or -0.01 for reals with two

decimal places. Assuming this input was processed as an integer, for invalid classes < 0 and > 150, min and

max values that lie at the extreme edges of the integer range -32768 and 32767 could be selected (BS 7925-

2) (Figure 2-5).

Figure 2-5: Boundary values for a range-based field.

7 These guidelines are expressed in Myers exact words.
8 The terms min, min+, nom, max- and max originated from the BVA testing tool T (Jorgensen 2002).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 38

Lists can also be tested through BVA. Consider a field that defines an ordered list of Australian capital

cities: <city> ::= [Adelaide | Brisbane | Canberra | Darwin | Hobart | Melbourne | Perth | Sydney] (Figure

2-6). The first and last test data values ‘Adelaide’ and ‘Sydney’ could be chosen by DISRs that select on-

boundary values, while the second and second-last values ‘Brisbane’ and ‘Perth’ could be selected by

DISRs that test values just inside the boundaries of the list. If this field was implemented as a keyword-

based input of a program with a command line interface (CLI), the ‘outside’ boundary values could not be

tested (e.g. it does not make sense to subtract one from the keyword ‘Adelaide’). On the other hand, if the

field was implemented as a record list or a drop down list in a program with a Graphical User Interface

(GUI), it would be sensible to use a BVA DISRs that tests ‘just below’ and ‘just above’ the field

boundaries, to try to force the program to move off the end of the list array.

Figure 2-6: Boundary values for a list-based field.

As is the case with EP (and other black-box methods), multiple versions of BVA can be found in the

literature. Not all definitions describe all boundary value selection rules (see Table 2-1), complicating

auditing of test set completeness. While some define DISRs that select values on, inside and outside field

boundaries (BS 7925-2, Copeland 2004, Graham 1994, Watkins 2001), others do not include inside (Craig

& Jaskiel 2002, Kaner 1988, Lewis 2000, Mosley 1993, Myers 1979) and outside (Jorgensen 1995, Mosley

1993) boundaries. In addition, only two publications of BVA define DISRs that select boundary values

from the extreme edges of integer ranges (Ould & Urwin 1986, BS 7925-2). These subtle but important

differences can also make it difficult to audit the completeness of each boundary value test set, since the

auditor would need to use the same definition of the method as the tester.

Craig and Jaskiel (2002) and Hutcheson (2003) argue that DISRs that select min+ (just above the lower

boundary) and max- (just below the upper boundary) do not add much value as they are redundant when the

‘nominal’ value is selected, which is usually chosen during EP. Jorgensen (1995) maintains that the nominal

value should be selected during BVA, though this violates the concept of selecting ‘boundary’ values;

hence, min+ and max- should be considered during BVA. Jorgensen (1995) describes min+ and max- as

belonging to a separate method called Robustness Testing and describes the Cartesian product of min, min-,

nominal, max and max+ as Worst Case Testing. On the other hand, taking the Cartesian product of test data

values is covered by combinatorial testing (see Section 2.2.7). At least one definition of BVA does not

consider the selection of max+ characters to be feasible when testing GUI dialog boxes, as developers often

limit the number of characters that can be input through the keyboard (Tamres 2002). As was demonstrated

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 39

in the capital city example above, this should still be tested, since field and array lengths may not be limited

correctly by developers.

Thus, some versions of BVA fail to describe all boundary value selection rules. As a result, novice

testers may not learn the complete set of BVA test selection rules and both novice and experienced testers

may overlook certain high-yield boundary values during testing.

Table 2-1: Test selection rules for Boundary Value Analysis and their coverage in the literature.

Data-Item Selection
Rules for BVA

Alternate
Identifiers

Referenced by

(C
o

p
el

an
d

 2
00

4
)

(C
ra

ig
 &

 J
as

ki
el

 2
00

2)

(B
S

 7
92

5
-2

)

(G
ra

h
am

 1
99

4)

(H
u

tc
h

es
o

n
 2

00
3)

(J
o

rg
e

n
se

n
 1

99
5)

(K
an

er
 1

98
8)

(K
an

er
 e

t
al

. 2
00

1)

(K
it

 1
9

95
)

(L
e

w
is

 2
00

0)

(M
ar

ic
k

19
95

)

(M
o

sl
ey

 1
99

3)

(M
ye

rs
 1

97
9

)

(O
u

ld
 &

 U
rw

in
 1

98
6)

(P
ar

ri
n

g
to

n
 &

 R
o

p
er

 1
98

9)

(P
at

to
n

 2
00

6)

(S
o

m
m

er
vi

lle
 1

9
94

)

(T
a

m
re

s
20

02
)

(W
at

ki
n

s
20

01
)

Lower boundary –
min-
LB -

Lower boundary
Min
LB

Lower boundary +
min+
LB +

Upper boundary –
max-
UB -

Upper boundary
Max
UB

Upper boundary +
max+
UB +

Another problem affecting BVA is that boundary conditions are often subtle (Myers 1979) and may not

be obvious or explicitly specified (Patton 2006). Consequently, the effectiveness of BVA can rely on the

domain knowledge of each tester (e.g. see Myers’ sixth guideline in Figure 2-4). Examples of “subtle”

boundaries include memory storage sizes, such as testing the edges of bytes and kilobytes (Patton 2006),

minimum and maximum lengths of disc block transfers sizes (Graham 1994) and input fields that rely on

ASCII table boundaries, such as testing with the ‘at’ symbol (@) that lies just below the lower boundary of

uppercase alphabetical characters [A – Z] (Patton 2006, Kaner 1988). The use of this “application solution

domain knowledge9” (Reed 1990), which could be obtained from programmers (Patton 2006), could cause

BVA to be seen as a grey-box testing method, since it is based on knowledge of the program source code or

the system hardware design. On the other hand, it could be argued that such information should be

explicitly described in program specifications, as that would support developers in writing higher quality

source code and would facilitate more thorough and effective testing. However, the type of critical thinking

that is required to gain such domain knowledge could enable testers to improve the overall quality of their

test suites (Jorgensen 1995). Nevertheless, it would be beneficial to have a requirements elicitation

technique that testers could use to specify input and output fields to a level of detail that enables more

9 Reed defines application solution domain knowledge as “the collection of machine executable descriptions (algorithms) which make
it possible to realise the application as software” (Reed 1990).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 40

effective black-box testing (as part of this research, Goal/Question/Answer/Specify/Verify has been

developed to deal with this problem; see Chapter 3).

2.2.3 Syntax Testing (ST)

Syntax testing is a method for deriving test cases from input fields that are formally specified, often in a

metalanguage like BNF (Beizer 1984). From the formal specification, an Abstract Syntax Tree (AST) is

typically constructed, revealing hierarchical parent (non-terminal) and child (terminal) relationships (see

Figure 2-7). Valid test cases are designed by systematically ‘covering’ the branches of the AST, while

invalid tests can be designed by introducing faults into the terminal and non-terminal nodes of the AST.

Consider the following example, which involves a specification for a program that parses Australian

street addresses (see Figure 2-7). A valid test case could be designed by selecting a valid value from each

terminal node in the AST, which could result in the valid test case ‘500 Main Road North Melbourne 3000.’

One approach to designing an invalid test case could be to insert an invalid alpha value in place of the

<house_number> field, which could result in the invalid test case ‘a Main Road North Melbourne 3000.’

Many of the test case design rules defined for ST overlap with rules from EP and BVA (see discussion

below). Invalid test case design rules for ST can be based on likely programmer errors and program faults

(Marick 1995). Test case design can be manual or automated through specification parsers and test case

generators (see Section 2.7). The process of deriving test cases from formal specifications can assist in

locating program and specification faults (Graham 1994).

ST evolved from grammatical testing methods that were defined in the 1960’s (Sauder 1962) and from

compiler testing methods (e.g. see (Houssais 1977, Celentano et al. 1980, Duncan & Hutchison 1981,

Bazzichi & Spadafora 1982, Homer & Schooler 1989, Marr & Lawlis 1991)). ST was used to automatically

generate valid test programs for testing an Algol 68 compiler (Houssais 1977) and was researched

extensively during the development and testing of FORTRAN and COBOL (DeMillo et al. 1987). ST can

be used to derive invalid test programs, which provide programmers with examples of the types of input

errors that their compilers may have to handle (DeMillo et al. 1987).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 41

Figure 2-7: Simplified specification for the inputs to an Address Parser program10.

Specification

 <address> ::= <house_number> <street> <suburb> <postcode>
 <house_number> ::= [1 – 9999]

 <street> ::= <name> <type> { <direction>}0-1

 <name> ::= {[A – Z | a – z] | [A – Z | a – z] [| - | .][A – Z | a – z]}1 - 40
 <type> ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt]

 <direction> ::= [North | South | East | West]

 <suburb> ::= [Abbotsford | Aberfeldie | … |Yooralla |Yuroke]

 <postcode> ::= [200 | 221 | 800 | 801 | 804 | 810 | … | 9726 | 9728 | 9729]

 ::= [] #i.e. one space

Abstract Syntax Tree

address

house_number postcode

[1 – 9999]

suburb

[Abbotsford |
Aberfeldie | …

|Yooralla |Yuroke]

200 | 221 | 800 | 801
| 804 | 810 | … |

9726 | 9728 | 9729

street

name type Direction
?

{[A – Z | a – z] | [A – Z | a – z]
[^ | - | .][A – Z | a – z]}1 - 40

[Street | St |
Road | Rd |

Avenue | Ave
| Court | Crt]

[North | South |
East | West]

^ ^ ^

^

^

Optional nodes are denoted by a superscript “?”

Beizer (1995) identified various types of programs that can benefit from ST, including string

recognisers, data validation code, command-driven programs, communication systems, database query

languages, context-dependent menus and Macro languages that automate repetitive instructions such as the

MS-DOS batch command language. Although Beizer (1990) did not recommend the use of ST for testing

modern compilers, since the fact that they are automatically generated makes the types of faults detected not

worth the effort required to generate the tests. Conversely, Marick (1995) argues that automatically

generated parsers may still require ST to determine whether there are faults in the parser’s syntax

description. Kit (1995) considers ST to be less effective for testing programs that have explicit languages,

such as compilers, but more effective against programs that have “hidden” languages, such as interactive

commands to operating systems. Beizer (1990) argued that if program developers see enough defect reports

citing program faults that were detected through ST, they may learn how to avoid making syntax-handling

errors in the first place, reducing the effectiveness of the method but increasing the programmer’s ability to

build robust code. In this way, ST could be useful for teaching programmers how to produce higher quality

programs in the first place.

10 This specification is a simplified version of specifications given in assignments by Associate Professor Karl Reed at La Trobe
University in 1998 and RMIT in 1981. The specification and corresponding program are used throughout this thesis to provide
examples of various black-box testing methods and in the industry experiment discussed in Chapter 6.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 42

Beizer (1995) claimed that the biggest payoff in ST is in the derivation of invalid test cases, though

consideration should be given to the number of faults introduced per test case. Fault masking, where two

faults cancel each other out to produce valid behaviour, can be avoided by introducing one fault per test

case (Beizer 1995) and while double or triple defect tests may not increase test effectiveness (Beizer 1984),

they may be useful for testing the diagnostic power of a system. Beizer (1995) further claimed that input

errors introduced through ST can be syntactic or semantic, where syntactic faults are tested by incorrect

input structure and semantic faults are tested by altering a field’s input domain, such as changing the upper

and lower boundaries of a numerical field, though Kit (1995) maintained that ST is not useful for semantics

testing. It could be argued that altering a field’s definition, such as its boundaries, leads to the selection of

test data that lies outside the boundaries of the valid input domain, which is not the same as testing the

semantics of a program and which is tested through BVA.

This highlights one of four problems with ST: method overlap, multiple versions, definition by

exclusion and difficult to audit.

Many test case design rules from ST overlap with EP and BVA. In fact, 80% of test case design rules

defined in five different and unique publications of ST overlap with other black-box testing methods (see

Table 2-3, col. 3 ‘Is rule unique?’). For example, invalid datatypes and boundary values can be selected

through ST (see Table 2-3, rules 2 to 5, 8, 10, 15 to 23, 27, 30), which overlaps with EP and BVA. This

overlap could result in the design of additional and unnecessary test cases and inefficient testing. The only

real differences between ST and EP/BVA are as follows.

1. Abstract Syntax Trees are not usually designed during EP or BVA, although they could be if

these methods were applied to a formal specification.

2. ST is usually applied to formal specification, whereas this is not mandatory requirement for EP

and BVA. However, the application of EP and BVA to formal specifications would likely

improve the completeness of resulting test sets.

3. ST can produce invalid test data values through the use of Data-Item Manipulation Rules,

which ‘mutate’ valid values (see “generic mutation” rules for ST in (BS 7925-2)), whereas

typical definitions of EP and BVA (e.g. from (Myers 1979)) do not include DIMRs.

In the author’s view, specifying input and output fields in a formal language like BNF also increases the

precision of the specification, which can result in the production of higher-quality source code, as well as

more thorough testing, regardless of the particular test methods used (see Section 2.6).

There is also method overlap within ST. For example, separate rules have been defined for repeating

‘delimiter’ and ‘regular’ fields (e.g. see Table 2-3, rule 13 for delimiters overlaps with rules 15 to 22 for

regular fields). Since the repetition of a delimiter field is conceptually the same as repeating any other type

of field, separate test case design rules are not required for both. Nonetheless, it can be useful to

demonstrate the testing of delimiter fields to novice testers to ensure they understand how to test them.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 43

As with EP and BVA, multiple versions of ST have been defined by various different authors (see Table

2-2, column 4 ‘Rule Defined By’). At present, no textbook, standard or paper describes every test case

design rule for ST, which could result in the derivation of inadequate test sets and complicate the process of

auditing test set completeness. This can also make it difficult to audit the completeness of each test set that

is derived for ST. It would be beneficial to define one version of ST that encompasses all test case design

rules from each version of the method, removes overlaps both within ST and with other black-box testing

methods and makes test set comparison and auditing simpler.

Definition by exclusion exists in the test case design rules of ST. For example, the rules “introduce an

invalid value for a field” and “introduce an invalid value for all fields” (see Table 2-2, rules 2 and 3) do not

specify what type of invalid test data should be selected, which is similar to the definition by exclusion

problem that is inherent in Myers’ fourth guideline for EP (see Section 2.2.1).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 44

Table 2-2: Test data and test case design rules for Syntax Testing.

Rule
Error Class Test Case Design Rule

Rule
Type

Rule Defined By

(B
S

 7
92

5
-2

)

(B
ei

ze
r

19
84

)

(B
ei

ze
r

19
95

)

(H
et

ze
l 1

9
88

)

(M
ar

ic
k

19
95

)

1
High-level
syntax errors

Introduce errors at highest level of AST (e.g. through invalid field
combinations)

TCCR

2 Field value-
related syntax
errors

Introduce an invalid value for a field DSSR

3 Introduce an invalid value for all fields DSSR
4 Choose invalid symbols for a field (e.g. subtraction instead of addition) DSSR

5 Choose invalid datatypes (e.g. numbers or symbols instead of alphas) DSSR

6 Remove characters from the end of a field (e.g. “DI” instead of “DIR”) DIMR
7 Add extra characters to the end of a field (e.g. “DIRR” instead of “DIR”) DIMR

8
Choose none of the legal alternatives for a field that contains
alternatives

DSSR
9 Choose all alternatives for one field in one test case in reverse order TCCR

10 Delimiter
errors

Leave out a delimiter DSSR

11
Choose a delimiter that is valid at another syntax level but not at the
current level

TCCR

12 Substitute another field for a delimiter TCCR

13 Repeat a delimiter DISR

14 Create errors in paired delimiters (e.g. add or remove delimiters) DSSR

15 Repetition One less than the minimum number of repetitions DISR
16 Minimum number of repetitions DISR
17 One more than the minimum number of repetitions DISR

18 1 repetition DISR
19 One less than the maximum number of repetitions DISR

20 Maximum number of repetitions DISR
21 One more than the maximum number of repetitions DISR

22 > 1 repetition DISR
23 Incorrect value in the last repetition of a field DSSR

24
Field-value
errors (non-
syntax errors)

Select invalid values for input fields DSSR

25
Syntax-
context errors
(errors
associated
with field
dependency
and
positioning)

Substitute a field that is correct at another level of syntax but not the
current level

TCCR

26
Substitute fields from same level of syntax, creating invalid order of
valid fields

TCCR

27 Miss a field DSSR
28 Add an extra field TCCR

29 Repeat a field TCCR
30

Select values relating to database variable type input is stored in. e.g. if
field is string 0 to 255 characters, try 0, 255 and 256

DISR

31
State-
dependency
errors

No detail was provided for this rule N/A

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 45

Table 2-3: The overlap between Syntax Testing and other black-box testing methods.

Rule

Syntax Testing
Error Class

Syntax Testing
Test Case Design Rule

Is rule
unique? Comments

1
High-level syntax
errors

Introduce errors at highest level of AST;
e.g. through invalid field combinations

No
Covered by combinatorial testing methods
(Section 2.2.7)

2
Field value-related
syntax errors Introduce an invalid value for a field No

Covered by Myers’ 3rd and 4th EP guidelines for
selecting invalid partitions (Section 2.2). Also
subsumes all rules in this ST Error Class.

3 Introduce an invalid value for all fields No
Covered by combinatorial methods (Section
2.2.7) and Myers’ 3rd and 4th EP guidelines for
selecting invalid partitions (Section 2.2)

4
Choose invalid symbols for a field (e.g.
subtraction instead of addition sign)

No Covered by Myers’ 3rd EP guideline (Section 2.2)

5
Choose invalid datatypes (e.g. numbers or
symbols instead of alphas)

No
Covered by Myers’ 3rd and 4th EP guidelines for
selecting invalid partitions (Section 2.2)

6
Remove characters from the end of a field
(e.g. “DI” instead of “DIR”)

Yes Rule is unique

7
Add extra characters to the end of a field
(e.g. “DIRR” instead of “DIR”)

Yes Rule is unique

8
Choose none of the legal alternatives for a
field that contains alternatives

No
Covered by Myers’s 2nd EP guideline for
selecting zero alternatives (Section 2.2)

9
Choose all alternatives for one field in one
test case in reverse order

Yes Rule is unique

10
Delimiter errors

Leave out a delimiter No
Covered by Myers’s 2nd EP guideline for
selecting zero alternatives (Section 2.2)

11
Choose a delimiter that is valid at another
syntax level but not at the current level

No
Covered by combinatorial testing methods
(Section 2.2.7)

12 Substitute another field for a delimiter No
Covered by combinatorial testing methods
(Section 2.2.7)

13 Repeat a delimiter No Covered by Rule # 21 in this table

14
Create errors in paired delimiters (e.g. add
or remove delimiters)

No Covered by Rule # 27 and 28 in this table

15
Repetition One less than the minimum number of

repetitions
No

Covered by BVA guidelines for selecting a value
just below a lower boundary (Section 2.2.2)

16 Minimum number of repetitions No
Covered by BVA guidelines for selecting a value
on a lower boundary (Section 2.2.2)

17 One more than min number of repetitions No
Covered by BVA guidelines for selecting a value
just above a lower boundary (Section 2.2.2)

18 1 repetition No
Covered by BVA guidelines for selecting
boundary values (Section 2.2.2)

19 One less than max number of repetitions No
Covered by BVA guidelines for selecting a value
just above an upper boundary (Section 2.2.2)

20 Maximum number of repetitions No
Covered by BVA guidelines for selecting a value
on an upper boundary (Section 2.2.2)

21
One more than the maximum number of
repetitions

No
Covered by BVA guidelines for selecting a value
just above upper boundary (Section 2.2.2)

22 > 1 repetition No
Covered by Myers’ 1st guideline for selecting a
partition above an upper boundary (Section 2.2)

23
Incorrect value in the last repetition of a
field

No
Covered by combining a BVA rule to select the
last boundary value (Section 2.2.2) with an EP
rule that selects invalid partition (Section 2.2)

24
Field-value errors
(non-syntax errors)

Select invalid values for input fields No Covered by Rule # 2 in this table

25
Syntax-context
errors (errors
associated with
field dependency
and positioning)

Substitute a field that is correct at another
level of syntax but not the current level

No
Covered by combinatorial testing methods
(Section 2.2.7)

26
Substitute fields from same level of
syntax, creating invalid order of valid fields

No
Covered by combinatorial testing methods
(Section 2.2.7)

27 Miss a field No
Covered by Myers’s 2nd EP guideline for
selecting zero alternatives (Section 2.2)

28 Add an extra field Yes Rule is unique

29 Repeat a field Yes Rule is unique

30
Select values relating to database variable
type input is stored in. e.g. if field is string
0 to 255 characters, try 0, 255 and 256

No
Covered by Myers’ 2nd BVA guideline (Section
2.2)

31
State-dependency
errors

No detail or examples were provided for
this rule

No
Assumed covered by other EP, BVA and ST
rules, where the expected outcome of the test
case depends on system state

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 46

2.2.4 Random Testing (RT)

Random Testing is a black-box testing method in which test data values are chosen at random from the

input domain of the program under test. As there is usually a pattern to the test data values that are chosen

by human testers if they perform RT manually, automation is seen as a necessity (Kaner 1988). The first

pseudo-random number generators were developed in the 1940’s, such as those by von Neumann and

Lehmer (Knuth 1973) (see (Merkel 2005) for a survey). RT is an integral part of IBM’s “Cleanroom”

software development methodology (Selby, Basili & Baker 1987). Craig and Jaskiel (2002) regard RT as a

useful technique for “crash-proofing” a system, and though it may be effective for detecting defects that

cannot be located through other black-box testing methods (Lewis 2000), it has also been argued that it

should not be used in isolation from them (Watkins 2001). Four main approaches to RT are described in the

literature: completely random generation (e.g. see (Kaner 1988)), random generation within equivalence

classes (e.g. see (Craig & Jaskiel 2002)), random combination testing (e.g. see (Craig & Jaskiel 2002,

McDermid 1991)) and statistical random testing (e.g. see (Younessi 2002)).

In completely random input generation, input strings are chosen entirely at random by applying DISRs

that select random test data values for each program input field. For example, for the field <name> ::= [A –

Z, a – z, -]1-50, this approach could select a random string of alphabetical characters, numbers and non-

alphanumeric characters, such as fdhs8fd&^%^&G3F. This approach is considered to be inefficient, since

large amounts of test data are often required to cover all equivalence classes of the program (Kaner 1988).

Random generation within equivalence classes offers an improvement to RT, by first applying DSSRs

from EP to partition the input domain, and then by applying DISRs that randomly select inputs from the

(valid and invalid) partitions, facilitating adequate input domain coverage. In this approach, each partition

should be covered by at least one test case (Craig & Jaskiel 2002). For example, for the <name> field, this

approach could be used to randomly select strings of characters from the valid partition [A – Z, a – z, -]1-50

and invalid strings that are too long (> 50 characters), too short (0 characters) or that contain invalid

characters (e.g. integer, real, non-alphanumeric). Input domain coverage can be further enhanced by

generating a different value for each partition every time testing is carried out.

In random combinatorial testing (also called “semi-random testing” (Craig & Jaskiel 2002)), TCCRs are

applied to randomly select ordered pairs of values from valid input partitions to produce test cases

(McDermid 1991). The disadvantage is that pairs of values may be reselected as test case design progresses.

In statistical random testing, test data generation is based on a probability distribution of the input

domain (Younessi 2002). Common distributions are normal, negative exponential, Erlang, Poisson,

Weibull, Student T (vonMayrhauser 1990) and uniform (Duran & Ntafos 1984). The distribution can also

be based on the expected runtime distribution of the system, which is known as the “operational profile”

(Thayer, Lipow & Nelson 1978, Musa 1993), which usually takes into account the frequencies at which

particular inputs occur as well as likely sequences or combinations of inputs. This facilitates prediction of

future reliability based on the reliability of the system when it is in use (Bertolino 2004). While this

approach has been recommended for System Testing (Burnstein 2003) and for testing just prior to release

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 47

(Thayer, Lipow & Nelson 1978) (i.e. Acceptance Testing), its effectiveness relies on the accuracy of the

chosen distribution, which may be unknown prior to release (Younessi 2002) and may change as the system

matures (Weyuker & Jeng 1991).

There has been much debate on the effectiveness of RT. It was criticised by Myers (1979) as being “the

poorest methodology” of all black-box methods, for having the least chance of any method to detect errors

and to select an optimal test set. Craig and Jaskiel (2002) argue that randomly generated test cases may not

be realistic and also claim there is no way of measuring their coverage or risk, although random generation

within equivalence classes presents one approach for assessing coverage. A number of studies have

compared Random Testing to grey-box Partition Testing (e.g. selecting test data values from the input

domain that achieve various levels of source code branch or path coverage). Duran and Ntafos (1981, 1984)

compared Random and Partition Testing by dividing the input domain of a simulated faulty program into

twenty-five partitions that had randomly assigned failure rates. They found that Partition Testing had a

higher probability of detecting at least one failure when the same numbers of tests were selected for both

methods, but that it was more effective if it was used to select twice as many tests as Partition Testing.

Jeng and Weyuker analysed the theoretical conditions under which RT and Partition Testing would

detect at least one failure (Jeng & Weyuker 1989, Weyuker & Jeng 1991). They argue that Partition Testing

is “most successful” when partition selection is fault-based (e.g. testing for boundary errors) rather than

control-flow or data-flow based. Chen and Yu (1994) extended Weyuker and Jeng’s work, finding that

Partition Testing can be as effective as RT, providing the number of test cases selected is proportional to the

size of each partition (i.e. proportional partition testing). Ntafos (1988) developed a simulator to compare

RT to proportional Partition Testing, finding that proportional Partition Testing is theoretically more

effective when fewer test data values per partition are selected. This was supported by Chen and Yu

(1996), who analytically compared RT and Partition Testing from the perspective of the expected number

of failures detected, finding that Partition Testing was as effective as RT when partitions with failure rates

that are greater than that of the entire input domain have higher sampling rates. Hamlet and Taylor (1988,

1990) reported a similar result from a theoretical comparison of these two techniques, finding that Partition

Testing is only effective when partitions with a high failure rate are identified. The challenge with these

latter approaches is that typically the failure intensity of each partition is not known in advance of testing.

2.2.5 Non-Prescriptive Approaches to Black-Box Testing

Non-prescriptive test case design is an unstructured and typically unscripted approach to testing that is

often based on the unique domain knowledge and experience of each tester. In the most extreme case, it can

be carried out ad hoc (also called ‘ad-lib testing’ (Beizer 1984)), without prior knowledge of the program

under test and without any test case design prior to test execution. Non-prescriptive testing supplements the

inherent incompleteness of prescriptive methods like EP and BVA (Mosley 1993) because it can be used to

identify test cases that are not selectable through the use of prescriptive black-box testing methods.

Although ad hoc testing has been criticised by Copeland (2004) as being “sloppy, careless, unfocussed,

random and unskilled”, others regards the fact that it does not require special training, knowledge or

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 48

experience as a benefit (Patton 2006). Differences in such opinions may be caused by the varying degrees

of ad hoc testing, from completely unstructured to semi-formal.

As Watkins (2001) argues, “some people have a natural flair for finding defects in software systems.”

During ad hoc testing, “pathological testers” (Reed 2007) may be using their own individual undocumented

and yet systematic approaches to test case design (Craig & Jaskiel 2002). Although the most basic form of

ad hoc testing is to “behave like a dumb user” (Patton 2006), approaches like Error Guessing (EG) and

Exploratory Testing (ET) (discussed below) provide guidance to non-prescriptive testing. These approaches

can be effective because they are based on the domain knowledge and expertise of experienced testers.

Even when prescriptive testing is rigorous and ad hoc testing does not detect any major faults, this

knowledge can improve confidence in a system (Beizer 1984). Although ad hoc testing can be enjoyable

(Craig & Jaskiel 2002) it can also be frustrating for experienced testers to see novice (or “pathological”)

testers easily and quickly “crash” programs with this approach (Patton 2006).

A problem with all non-prescriptive testing approaches is that test cases are often not documented and,

as a result, they cannot be reused during regression testing (Myers 1978) or for reproducing failures. A

simple improvement (that is based on good testing practice) is to record the steps taken during testing and

the expected and actual results of each test, as this facilitates analysis of whether the test section rules used

during testing should become part of the prescriptive testing methods routinely used against the system

under test (Craig & Jaskiel 2002). This allows testing to be tailored to the specific domain of each system

under test. For example, EG rules identified through analysis of the “application solution domain” (Reed

1990) of mathematical software include testing for divide by zero errors and taking the square root of

negative numbers (Mosley 1993), while rules from the “technology domain” (Reed 1990) of testing systems

with relational databases include testing with escape characters that form part of the database query

language. If effective test case design rules for each application and technology domain are identified and

recorded, this facilitates more effective testing regardless of each tester’s individual domain knowledge or

experience (this is one of the aims of a new customisation approach called Systematic Method Tailoring;

see Chapter 4).

Two popular non-prescriptive approaches to black-box testing, Error Guessing and Exploratory Testing,

are discussed below.

2.2.5.1 Error Guessing (EG)

The first non-prescriptive black-box testing approach was Error Guessing, which was published by

Myers in 1979 (Myers 1979). In this approach, testers identify a list of “error-prone situations” and derive

test cases that are capable of detecting each potential fault (Myers 1979). Jorgensen argues that EG “is

probably the most widely practiced form of functional testing. It also is the most intuitive and the least

uniform… There are no guidelines, other than to use ‘best engineering judgement’. As a result, special

value testing is very dependent on the abilities of the tester… Even though special value testing is highly

subjective, it often results in a set of test cases which is more effective in revealing faults than the test sets

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 49

generated by the other methods… testimony to the craft of software testing”11 (Jorgensen 1995). Error

Guessing has also been referred to as “special values testing” (Jorgensen 1995, Perry 2000), “free-form

testing” (Lewis 2000), “inspirational testing” (Black 2007) and (perhaps less commonly) “seat of the

pants/skirt” testing (Jorgensen 1995).

EG has a reliance on domain knowledge that may originate from a tester’s understanding of the design

or implementation of the system under test or similar systems (Bertolino 2004, Watkins 2001), testing

methods (Craig & Jaskiel 2002) and heuristics (Watkins 2001), the types of tests that previously detected

faults (Watkins 2001), hardware (Mosley 1993), platforms (Bertolino 2004) and programmer assumptions

(Myers 1979).

Craig and Jaskiel (2002) argue that the thought processes involved in EG may be similar to the

procedures carried out during prescriptive black-box testing. In fact, many published descriptions of this

method overlap significantly with prescriptive black-box testing methods (see Table 2-4). For example,

Myers (1979), Andriole (1986) and Graham (1994) all include the selection of boundary values in their

definitions of EG, which overlaps with BVA. Graham (1994) recommends selecting invalid datatypes

through EG, which overlaps with EP. Interestingly, of the thirty different test case design rules that are

defined for EG in five different textbooks on software testing ((Graham 1994, Jorgensen 1995, Mosley

1993, Mosley 1993, Myers 1979)), only six (20%) are unique (see Table 2-4). Thus, 80% of these rules

overlap with other prescriptive black-box testing methods. Multiple versions of EG exist, probably because

it is based on the domain knowledge of each author.

One unique aspect of EG is that it can be applied to test case design rules from other prescriptive black-

box testing methods to facilitate selection of the most effective rules for testing (Watkins 2001); e.g. by

identifying rules that previously detected faults (Kit 1995) or that focus on testing critically important

aspects of the system (Craig & Jaskiel 2002) (i.e. risk-based testing). Black-box testing methods can be

chosen for their ability to detect particular types of faults (Jorgensen 1995), such as by applying BVA to

systems that suffer from boundary-related errors, which is similar to EG.

Abbott (1986) claims that the effectiveness of EG cannot be guaranteed since it is “ill-defined” with no

universal approach. Although Andriole (1986) states that EG “carries no guarantee for success, but neither

does it carry any penalty”, in the author’s view, it can result in wasted time and effort if different testers

who are testing the same program overlap in their derived test sets. Nonetheless, EG is believed by some to

be more efficient and effective than prescriptive black-box testing methods (Watkins 2001, Jorgensen

1995). Mosley and Posey (2002) argue that EG compensates for the “inherent incompleteness” of EP and

BVA. Empirical data supporting this includes a study of failures detected in independently developed

launch-intercept control software, where it was established that 83-90% of faults and 90-97% of failures

were detected by special values (Wild, Chen & Eckhardt 1989). Nonetheless, EG is believed by some to be

one of the most commonly used black-box testing methods in industry (Jorgensen 1995). For example, in a

survey of software testing practices in Australia, which revealed that out of 65 organisations interviewed,

11 Jorgensen (1995) did not quote any sources to support his view that Error Guessing is more effective than other testing methods.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 50

just over one third (35.4%) choose to use ad hoc testing approaches over prescriptive black-box testing

methods (Ng et al. 2004).

Given the apparent popularity and effectiveness of EG as an approach to defect detection, if (as

mentioned in Section 2.2.5) the black-box test case design rules that are proven to be effective against

particular ‘error prone situations’ are recorded, then this information can be shared with and taught to

novice and experienced testers to facilitate more effective testing, regardless of each tester’s existing

domain knowledge and experience. Test Catalogues, Categories and Matrices (see Section 2.2.6) could be

used to achieve this, as could Systematic Method Tailoring.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 51

Table 2-4: Overlap between Error Guessing and prescriptive black-box testing methods.

Context Error Guessing Rule
Rule
Type

Is rule
unique? If rule is not unique, rule overlaps with…

Rule Defined
By

Testing a
sorting
routine

Input list is empty DISR No BVA min selection rule (Table 2-1) (Myers 1979)

Input list contains one entry DISR No BVA min+ selection rule (Table 2-1) (Myers 1979)

All entries in list have same
value

TCCR Yes - (Myers 1979)

Input list is already sorted TCCR Yes - (Myers 1979)

Function that
grades
multiple
choice
examination
answers

Does program accept blank? DISR No BVA min selection rule (Table 2-1) (Myers 1979)

Substitute student answer
records for student information
records

TCCR No
Specification-Based Mutation Testing rule
(Section 2.2.7.5)

(Myers 1979)

Correct or student answer
record are missing
identification flags

DISR No
BVA min- rule (i.e. selects a null length
string) (Table 2-1)

(Myers 1979)

Two students have same name
or number

TCCR No ST duplication rules (Table 2-3) (Myers 1979)

Calculate median grade with
odd and an even number of
students

TCCR Yes -
(Myers 1979,
Mosley 1993)

Number of questions in the
exam contains a negative
number

DISR No
EP less than lower boundary selection rule
(Figure 2-1)

(Myers 1979)

Generic
Divide by zero DISR No

BVA min- rule (i.e. selects a null length
string) (Table 2-1)

(Graham 1994,
Mosley 1993)

Empty file DISR No BVA min selection rule (Table 2-1) (Graham 1994)

Empty record DISR No BVA min selection rule (Table 2-1) (Graham 1994)

Empty field DISR No BVA min selection rule (Table 2-1) (Graham 1994)

Negative number DSSR No
EP less than lower boundary selection rule
(Figure 2-1)

(Graham 1994)

Alpha character for numeric
field

DSSR No EP “must be” rules (Figure 2-1) (Graham 1994)

Decimal point DSSR No
EP “must be” rule (Figure 2-1) or ST invalid
datatype rule (see Table 2-3)

(Graham 1994)

Embedded comma DISR No Delimiter-based ST rule (Table 2-3) (Graham 1994)

Minimum size DISR No BVA min selection rule (Table 2-1) (Graham 1994)

Square root of negative
number

DSSR No
Could be chosen by EP less than lower
boundary rule (Figure 2-1)

(Mosley 1993)

Maximum size DISR No BVA max selection rule (Table 2-1) (Graham 1994)

Function to
calculate the
next date

February 28 DISR No BVA max selection rule (Table 2-1)
(Jorgensen

1995)

February 29 DISR No BVA max+ selection rule (Table 2-1)
(Jorgensen

1995)

Leap years DISR Yes -
(Jorgensen

1995)

Table length
Processing variable length
tables

DSSR
or

DISR
No

Could be chosen through an EP or BVA
rule that tests field count (Figure 2-1 &
Table 2-1)

(Mosley 1993)

Cyclic mater
file/database
updates

Improper handling of duplicate
keys

TCCR No ST field duplication rule (Table 2-3) (Mosley 1993)

Unmatched keys DSSR No EP invalid value selection rule (Figure 2-1) (Mosley 1993)

Overlapping storage areas TCCR Yes - (Mosley 1993)

Overwriting of buffers
DISR

or
DSSR

No
BVA max+ selection (see Table 2-1) or EP
greater than upper boundary selection
(Figure 2-1) for buffer length

(Mosley 1993)

Forgetting to initialise buffer
areas

TCCR Yes - (Mosley 1993)

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 52

2.2.5.2 Exploratory Testing (ET)

The term Exploratory Testing was first used by Kaner in 1988 (Kaner 1988) to describe the process that

experienced software testers follow when they design and execute non-prescriptive test cases against a

program on the fly, while simultaneously learning about it (Craig & Jaskiel 2002). Rather than being a

black-box testing method per se, it is a non-prescriptive testing approach that can constitute black or grey-

box testing. Unlike EG, where lists of error prone situations are identified in advance of test execution, in

ET each new test case is designed on the fly, based on knowledge gained during execution of previous test

cases. ET was invented by professional testers and some of the largest organisations in the world use it. For

example, Microsoft uses ET during testing of their Windows operating system (Microsoft 2003), including

for the purposes of compatibility testing new versions of Windows (Page et al. 2009).

Jonathan and James Bach (2006) liken ET to a game of twenty questions, where one person thinks of an

object (i.e. an animal, vegetable or mineral) and a guesser asks up to twenty questions with yes/no answers

to try to deduce what the object is. They point out that this game would not work using a scripted testing

approach, where all twenty questions were designed in advance and could not be adapted from the results of

each answer. Therefore, ET is an iterative approach in which the identification of each test case depends on

the results of previous tests (Dustin 2003) where each new test case has potential of being more effective

than the last (Kaner et al. 2001). Agruss and Johnson (2000) argue that the numbers and severity of faults

that can be detected through this approach “can be astounding.”

ET encourages creativity (Itkonen & Rautiainen 2005) as it does not “disrupt the intellectual processes

that make testers able to find important problems quickly” (Bach 2001). While there are no formal

procedures defined for ET (Itkonen & Rautiainen 2005), the general approach is to choose an area of a

program and design and execute a test case against it (often without recording them) and then use the actual

results of testing to decide what to test next. ET can be performed “freestyle” without any guidelines or

“session-based” where during timed, uninterrupted sessions (Copeland 2004). Sessions typically run from

45 minutes to 2 hours and are supported by “charters” (documents used to record testing goals), “session

sheets” (documents that are used to record what occurred during testing) and “session debriefings”

(meetings in which testers discuss the results of testing) (Bach 2000). Session-based ET ensures testers have

enough time to perform ET effectively and allows them to remain focussed throughout testing (Copeland

2004). It facilitates planned, managed and controlled ET (Itkonen & Rautiainen 2005).

Similar to EG, ET can be used to select test cases that cannot be identified through scripted testing

(Bach 2003). As Copeland (2004) claims, one of the skills experienced exploratory testers require is the

ability to “choose appropriate test design techniques”, suggesting that they are also more skilled at

strategising the best approaches to testing systems in a general sense12. The knowledge and experience

utilised during ET can originate from a tester’s understanding of effective test case design rules from

prescriptive testing methods (Craig & Jaskiel 2002). Thus, ET has a reliance on domain knowledge (Craig

12 This raises the question of how test strategy development can be taught to inexperienced testers. One approach is to strategise and
prioritise the choice of test methods based on the identification of testing and technology-related risks (K. J. Ross & Associates 2007).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 53

& Jaskiel 2002) and the test case design rules utilised during ET can overlap with rules from prescriptive

testing methods.

As Kaner et al. recognised (2001), sharing the testing heuristics utilised during ET with other testers can

“improve the quality of their guesses.” On the other hand, exploratory test cases are often not documented

(Itkonen & Rautiainen 2005). Accordingly, ET could benefit from recording the actual test case design rules

that are used during testing (Dustin 2003) as this would allow them to be reused and shared with other

testers. Test Catalogues, Categories and Matrices or Systematic Method Tailoring could support the

documentation of the test case design rules that are used during ET. As Everett and McLeod attest (2007),

“Although some interesting results have been obtained by experienced testers using the “exploratory

testing” approach, its premise… appears to contradict prudent testing practices for the inexperienced tester.”

Other challenges with ET, which were specifically reported by Microsoft, are that ET “generally doesn’t

scale well” for testing large-scale or mission-critical systems and that it is “not the best approach” for

testing on long-term maintenance project (Page et al. 2009).

Nonetheless, many practitioners agree that ET can enable testing to be focussed on the most important

or error prone areas of a system (Craig & Jaskiel 2002, Copeland 2004, Page et al. 2009), which is an

example of risk-based testing. The operational profile (Thayer, Lipow & Nelson 1978, Musa 1993) of a

system can be used in a similar way, to ensure ET is carried out on the areas of a system that will undergo

the most usage (the operational profile could theoretically be used to support any prescriptive black-box

testing method (e.g. EP, BVA, ST) to prioritise testing to the most important aspects of the system first). ET

can be effective for uncovering additional information about previously detected defects (Copeland 2004)

and can be used to provide rapid feedback to developers on the success of system changes (Itkonen &

Rautiainen 2005). ET can be effective in prototyping environments, where it can be utilised by end-users to

evaluate systems early in the SDLC (Rubin 1994). This is because it can be applied to systems that have not

been properly specified, as the processes followed during ET allows testers to learn about the system under

test and what constitutes valid and invalid input (Tamres 2002). It can also be useful prior to prescriptive

testing (Patton 2006) as a means for locating error-prone areas of a system that require further exploration.

ET can be used to test a program without requirements; however, assumptions testers make may be

different from developer’s assumptions and neither may satisfy end-user requirements. It can be challenging

to test complex aspects of a system effectively without requirements and this can result in untested

requirements (Dustin 2003) and ineffective testing, particularly if testers do not have enough domain

knowledge in the system (Patton 2006, Itkonen & Rautiainen 2005). Copeland (2004) argued that user

manuals should be used during ET, as they allow testing to be carried out from the end-user’s perspective,

while Itkonen & Rautiainen (2005) argued that user manuals and even marketing material can improve ET

effectiveness. It could equally be argued that user manuals can improve prescriptive black-box testing.

Dustin (2003) believes that “all test efforts” require ET, regardless of whether requirements are

documented or not, but also notes that when specifications are ambiguous or incomplete, domain

knowledge from developers and customers may need to be utilised in order to determine how to test the

system effectively. It would be advantageous to define a prescriptive approach for recording the domain

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 54

knowledge utilised during ET, as this would enable it to be reused and for it to be shared with other novice

and experienced testers (e.g. see Chapter 3 for a definition of a new approach called

Goal/Question/Answer/Specify/Verify).

One final reported disadvantage of ET is that it cannot prevent defects (Copeland 2004). Since testing

can only prove the presence of defects, never their absence (Dijkstra 1969), this is a moot point.

2.2.6 Test Catalogues, Test Categories and Test Matrices

Test Catalogues, Test Categories and Test Matrices are three similar approaches that can be used to map

black-box test case design rules to input field types, in order to plan and trace black-box testing. They offer

a simple solution to documenting the contexts in which particular test case design rules are applicable and

effective, allowing this information to be stored and reused against the same or similar systems and for it to

be shared with other testers. They also enable testing to be tailored to the specific testing needs of each

program under test. The test case design rules included in the catalogues, categories and matrices can be

selected from prescriptive black-box testing methods like EP, BVA and ST, from the domain knowledge of

experienced testers and from grey-box information (e.g. knowledge of program source code).

Test Catalogues consist of lists of test case design rules that can be applied to specific types of input

field (Table 2-5) (Marick 1995). Marick (1995) defined Catalogues for testing Unix-based programs and for

various datatypes (e.g. numerical data) and program data structures like trees and lists.

Test Categories are comprised of questions that guide testing for specific types of input fields and for

examples of expected results for testing with invalid inputs (Figure 2-8) (Tamres 2002). Questions included

in Test Categories can be identified ad hoc by experienced testers or can be chosen from prescriptive black-

box testing methods. For example, the Category “do it twice” (Figure 2-8) is similar to test case design rules

for testing repetition in ST, the “expected system behaviour” for this category is similar to Myers’ BVA

rules (1979) that attempt to force output fields to take on particular boundary values and questions for valid

and invalid categories are similar to partitioning rules from EP. Tamres (2002) identified Test Categories

for various black-box (Figure 2-8), white-box and non-functional scenarios.

The unique aspect of this approach that sets it apart from prescriptive black-box methods is that the

questions within each Category prompt the tester to consider the classes of test data that can be chosen for

various types of input fields, rather than defining the exact points of the input domain that must be tested.

This encourages creativity and can provide a mechanism for recording test cases during Exploratory Testing

(see Section 2.2.5.2). Test Categories are reminiscent of Error Guessing (see Section 2.2.5.1), in which a

tester questions the types of faults may be inherent in the system under test and then uses that information to

determine how to test the system. The questions within Test Categories could also be used to question the

completeness of input data specifications, as they could be used to prompt deliberation on the types of

inputs that should be accepted or rejected by the program and the expected behaviour for each one.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 55

Table 2-5: Example of a Test Catalogue for testing a numerical field (Kaner et al. 2001) and the
black-box testing methods that define the rules in the catalogue.

Test Case Design Rule (Kaner et al. 2001) Corresponding Black-Box Testing Method & Rule Rule Type

Nothing BVA: lower boundary – DISR

Empty field (clear the default value) BVA: lower boundary – DISR

Outside of upper bound (UB) # of digits or characters BVA: upper boundary + DISR

0 Error Guessing: select 0 DISR

Valid value EP: select value from valid partition DISR

At lower bound (LB) of value – 1 BVA: lower boundary – DISR

At lower bound (LB) of value BVA: lower boundary DISR

At upper bound (UB) of value BVA: upper boundary DISR

At upper bound (UB) of value + 1 BVA: upper boundary + DISR

Far below the LB of value
EP/BVA: select lower boundary of partition that lies
below lower boundary of a valid field

DSSR/DISR

Far above the UB of value
EP/BVA: select upper boundary of partition that lies
above the upper boundary of a valid field

DSSR/DISR

At LB number of digits or characters BVA: lower boundary DISR

At LB – 1 number of digits or characters BVA: lower boundary – DISR

At UB number of digits or characters BVA: upper boundary DISR

At UB + 1 number of digits or characters BVA: upper boundary + DISR

Far more than UB number of digits or characters
EP/BVA: select upper boundary of partition of digits or
characters that are longer than the max field length

DSSR/DISR

Negative
Error Guessing: select a negative number or
EP: select value from partition that lies below lower
boundary of the valid field

DSSR

Non-digits, especially / (ASCII 47) and : (ASCII 58) Error Guessing: select special values DSSR

Wrong datatype (e.g. decimal into integer) EP: select invalid datatype DSSR

Expressions Error Guessing: select special values DSSR

Leading spaces ST: add extra characters to start of a field DIMR

Many leading spaces ST: add extra characters to start of a field DIMR

Leading zero ST: add extra characters to start of a field DIMR

Many leading zeros ST: add extra characters to start of a field DIMR

Leading + sign ST: add extra characters to start of a field DIMR

Many leading + signs ST: add extra characters to start of a field DIMR

Nonprinting characters (e.g. Ctrl+char) Error Guessing: select special values DSSR

Operating system filename reserved chars (e.g. “*.:”) Error Guessing: select special values DSSR
Language reserved characters Error Guessing: select special values DSSR
Upper ASCII characters (128-254) Error Guessing: select special values DSSR
ASCII 255 (often interpreted as end of file) Error Guessing: select special values DSSR
Uppercase characters EP: select invalid datatype (alphabetic characters) DSSR

Lowercase characters EP: select invalid datatype (alphabetic characters) DSSR

Modifiers (e.g. Ctrl, Alt, Shift-Ctrl) Error Guessing: select special values DSSR

Function keys (e.g. F2, F3, F4) Error Guessing: select special values DSSR
Enter nothing but wait for a long time before pressing
the Enter or Tab key, clicking OK, or doing
something equivalent that takes you out of a field

Error Guessing: select special values
DSSR/DISR/

TCCR

Enter one digit but wait for a long time before
entering another digit or digits and then press the
Enter key

Error Guessing: select special values
DSSR/DISR/

TCCR

Enter digits and edit them using the backspace and
arrow keys

Error Guessing: select special values
DSSR/DISR/

TCCR
Enter digits while the system is reacting to interrupts
of different kinds (e.g. printer activity, clock events,
mouse movement)

Error Guessing: select special values
DSSR/DISR/

TCCR

Enter digit, shift focus to another application, return
to the application to see where focus is

Error Guessing: select special values
DSSR/DISR/

TCCR

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 56

Figure 2-8: Test Categories for black-box testing (Tamres 2002).

Test Category: no data provided

Possible questions:

 How can the system be starved?

 What happens if the system is not provided with any
data?

 What does it mean to withhold data?

 What are the default values or states?

Expected system behaviour can include:

 post an error message;

 provide a default value;

 reuse the prior value or state;

 prompt the user for missing data;

 void the transaction;

 abort execution and enter a message in the log file.

Test Category: do it twice

Possible questions:

 What happens if you provide the same data or input
twice in succession?

Expected system behaviour can include:

 post an error message;

 overwrite the previous value or state;

 prompt user to approve overwriting prior value;

 ignore the second incident;

 process the second request as a separate
independent path.

Test Category: valid data

Possible questions:

 What are valid instances of this data?

 What is the valid input range?

 What are the boundary data?

 What is the format of a valid packet?

 What information is provided in a valid transaction?

Test Category: invalid data

Possible questions:

 What does it mean to exceed the bounds?

 What are the consequences?

 What constitutes bad data for the application under
test?

Examples of invalid data for numerical fields:

 values out of range;

 negative numbers;

 decimals;

 leading zeros or spaces;

 alphabetic characters.

Examples of invalid data for alphanumeric fields:

 leading spaces;

 non-alphanumeric characters;

 special keystrokes, such as CONTROL-SHIFT
combinations.

Examples of invalid data for signal driven input include:

 bad timing specifications;

 timeout;

 bad signal;

 missing acknowledge response;

 bad checksum;

 noise.

Possible system behaviour for invalid conditions include:

 post an error message;

 prompt user for correct data;

 reuse a prior valid value or state;

 void the transaction;

 abort execution and enter a message in the log file;

 ignore incident and try to process request as given.

Test Matrices can be used to map black-box test case design rules to types of program input/output

fields (e.g. integers, rational numbers, filenames, dates) or to program actions (e.g. create, read, update,

delete, replace, append or overwrite files) (Table 2-6) (Kaner et al. 2001). The top row of the matrix

consists of test case design rules, the left column comprises input and output fields and the cells of the

matrix can be used to track which rules can be applied to each field and whether the program has passed or

failed each test. Although test case design rules can be selected from prescriptive black-box testing methods

like EP, BVA and ST, brainstorming has also been suggested as an effective approach for rule identification

(Kaner et al. 2001) (which is essentially an ad hoc approach to testing).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 57

Table 2-6: Example of a Test Matrix (adapted from (Kaner et al. 2001)).

Field Type

Test Case Design Rules

N
o

th
in

g

E
m

p
ty

 (
cl

ea
r

d
ef

au
lt

)

0 L
B

 –

L
B

U
B

U
B

 +

F
ar

 b
el

o
w

 L
B

F
ar

 a
b

o
ve

 U
B

U
B

 n
u

m
b

er
 o

f
ch

ar
s

U
B

 +
 1

 c
h

ar
s

F
ar

 b
ey

o
n

d
 U

B
 c

h
ar

s

N
eg

at
iv

e

N
o

n
-d

ig
it

 (
/

A
S

C
II

 4
7)

N
o

n
-d

ig
it

 (
:

A
S

C
II

58
)

W
ro

n
g

 d
at

a
ty

p
e

E
xp

re
s

si
o

n
s

L
ea

d
in

g
 S

p
ac

es

N
o

n
-p

ri
n

ti
n

g
 c

h
ar

O
/S

 f
ile

 n
am

e

U
p

p
er

 A
S

C
II

U
p

p
er

 c
as

e

L
o

w
er

 c
as

e

M
o

d
if

ie
rs

F
u

n
ct

io
n

 k
ey

s

Numeric

Alpha

Alphanumeric

One challenge is that standard guidelines for creating new Catalogues, Categories or Matrices have not

been published. These approaches rely on the domain knowledge of each individual tester and as such, they

could be enhanced through the definition of systematic approaches for identifying the types of input and

output fields that can be mapped to particular types of input and output fields. This could be facilitated by

Systematic Method Tailoring. A further enhancement could be to define test case design rules in a more

prescriptive format, as this would allow the rules described in Catalogues, Categories and Matrices to be

interpreted in the same way by different testers. This could be supported by the Atomic Rules approach.

2.2.7 Combinatorial Test Methods

In black-box testing methods like EP and BVA, test cases are usually derived by manually choosing and

then combining valid and invalid test data values (e.g. see the “one-to-one” and “many-to-one” test case

construction rules defined in (BS 7925-2)). Combinatorial test methods enable the automatic generation of

black-box test cases via the application of combinatorial algorithms (i.e. TCCRs) to test data values that are

derived during the application of methods like EP, BVA and ST. Combinatorial testing methods such as

pair-wise testing (see Section 2.2.7.4) can be used to reduce the number of test cases that are generated by

other black-box testing methods (Watkins 2001). Many of the concepts underlying combinatorial testing

originate from mathematics (e.g. see Section 2.2.7.1.1).

Grindal, Offutt & Andler (2005) distinguish between deterministic and non-deterministic combinatorial

strategies (Figure 2-9). Deterministic strategies always produce the same result given any set of test data

values. Deterministic strategies can be further divided into instant strategies that produce a complete test set

at once and iterative strategies that derive test sets step by step. Non-deterministic strategies utilise

randomisation at some point in their algorithms.

Although combinatorial test methods are not the main focus of this thesis, they can be supported by the

new approaches presented in Chapter 3. Thus, in the following sections, this family of testing approaches

are explained and explored.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 58

Figure 2-9: Classification scheme for combinatorial test methods (Grindal et al. 2005).

2.2.7.1 All Combinations (AC)

One of the most popular algorithms in testing is All Combinations, where test cases are chosen by taking

the n-ary Cartesian product of a test data set, resulting in a set of ordered tuples. This is also known as the

direct product of sets and the cross product. It results in a test set that achieves n-wise coverage, where all

possible combinations of data values from n fields are covered by at least one test case (Grindal et al. 2005).

The Cartesian product of two sets A and B is called the binary Cartesian product, denoted A × B, which

is the set of all ordered pairs of data values from A and B:

A × B = {(a, b) | a A b B}.

Likewise, the Cartesian product of n sets, denoted A1 × … × An, is the set of all ordered tuples:

A1 × … × An = {(a1, …, an) | a1 A1 … an An}.

For n fields, where field Pi has Vi test data values, the number of test cases selected is (Grindal, Offutt &

Andler 2004):

n

i
iV

1

Consider the fields ‘name’ and ‘city’ defined as <name> = [Adrian | Joanna | John | Mary | Nicole |

Steve] and <city> = [Adelaide | Brisbane | Canberra | Darwin | Hobart | Melbourne | Perth | Sydney], for

which test data values <name_values> = {John, Mary, Steve} and <city_values> = {Melbourne, Sydney}

are chosen. All Combinations can be used to selects 3 x 2 = 6 test cases: (John, Melbourne), (John, Sydney),

Combination Strategies

Non-deterministic Deterministic

Heuristic Artificial Life-based Instant Iterative

Automatic
Efficient Test

Generator

Simulated
Annealing

Genetic
Algorithm

Ant Crawl
Algorithm

Test Case Based Parameter Based

Orthogonal
Arrays

Covering
Arrays

CATS

Each Choice

Partly Pair-Wise

k-bound Anti-random

k-perim

Base Choice

All Combinations In
Parameter

Order

Random

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 59

(Mary, Melbourne), (Mary, Sydney), (Steve, Melbourne), (Steve, Sydney). The order of elements is

retained, ensuring that each field is only assigned values that have been chosen from its own partition. In

any real-world example, this approach is likely to cause a combinatorial explosion that can make it

prohibitively expensive.

Jorgensen (1995) used this approach to define two new test methods: Worst Case Testing (Cartesian

product of valid boundary values) and Robust Worst Case Testing (Cartesian product of all boundary

values). These approaches make this algorithm more economically feasible due to the relatively limited size

of the test data domain.

2.2.7.1.1 Permutations and Combinations in Mathematics

All Combinations in testing is different to the concept of Combinations in a branch of mathematics

called Combinatorics, which relates to field placement rather than test data converge and is a function of the

number of fields n chosen from r fields that are included in a test case. Consider three input fields ABC.

There is 3C3 = 1 test case, ABC, which could be selected if all three fields are included and not repeated. If

two fields are included (e.g. if the third is null) then this results in 3C2 = 3 test cases, AB, AC and BC. Thus,

in the Combinations algorithm, the fields retain their order.

A simular concept is Permutations, which is also a function of n and r. For three fields ABC there are a

maximum of 3P3 = 6 permutations: ABC, ACB, CAB, BCA, BAC and CBA. Thus, in this algorithm the fields

do not necessarily retain their order, though no fields are repeated.

2.2.7.2 Each Choice (EC)

The Each Choice algorithm ensures that all test data values from a set are included in at least one test

case, achieving 1-wise coverage (Grindal, Offutt & Andler 2004). This has been used in EP, BVA

(Jorgensen 1995) and the Base-Choice approach (Ammann & Offutt 1994) (see Section 2.2.7.3).

For n input fields, where field Pi has Vi values, the number of test cases generated by this algorithm is

(Grindal et al. 2004):

i

n

i
VMax

1

This generates 1 to n test cases, depending on how many ‘uncovered’ test data values are included in

each new test case. For example, consider three input fields A, B and C, for which test data values A = [1, 2,

3], B = [1, 2] and C = [1] have been chosen. A minimum of three test cases are required to cover every test

data value at least once, resulting in test cases (1, 1, 1), (2, 2, 1) and (3, 1, 1). Additional test cases could

also be selected, such as (1, 2, 1) or (3, 2, 1).

2.2.7.3 Base Choice (BC)

The Base-Choice algorithm was proposed by Ammann and Offutt (1994) as an approach to selecting

test cases for the Category Partition Method (see Section 2.2.7.6). In this approach, a base test case is

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 60

chosen first by assigning the most ‘typical’ test data values to it, which could be default values, values

chosen from equivalence classes or from the anticipated operational profile of the system under test. Test

cases are then added to the test set by alternating the value of one field at a time with all other test data

values chosen for that field. The size of the resulting test set is a function of n fields, where the ith field has

jk data values (Ammann & Offutt 1994):

1)(
1

nj
n

i
k

Consider three fields A, B and C with a chosen collection of test data values A = [1, 2, 3], B = [1, 2] and

C = [1]. If ‘typical’ values resulted in a base-choice test case of (1, 2, 3), then two additional tests would be

required by alternating one parameter at a time: (1, 1, 3) and (1, 2, 1). This satisfies 1-wise coverage and

single error coverage (Grindal et al. 2004) and provides a formal definition for the typical approach to test

case design used in prescriptive methods like EP and BVA, where each test case covers exactly one value

from one partition at a time. This results in fewer test cases than All Combinations and ensures that the

most important test data values are included in the final test set.

2.2.7.4 Orthogonal Array (OA) (Pair-Wise) Testing

Orthogonal Arrays (OAs) were first used in testing by Mandl in 1985 (Mandl 1985). They originate

from the mathematical concept of Latin Squares. An OA is a two-dimensional array in which any two

columns contain all combinations of pairs of values and if any pair occurs multiple times then each will

appear exactly the same number of times (Copeland 2004). Each row is a tuple of test data values that form

one test case, with the entire set satisfying pair-wise coverage (Grindal et al. 2004). The standard notation

for representing an OA is Lr(N
c), where r is the number of rows, c the number of columns (i.e. fields under

test) and N is the maximum number of values that can be chosen for each field (Copeland 2004). For a

program with n fields, where field Pi has Vi values, an OA will result in Vi
2 test cases, which is calculated as

(Grindal et al. 2004):

2

1

2

j

n

j
i VMaxV

OAs can be used to generate test cases from test data values chosen through EP, BVA and ST. They can

also be used to test (valid and/or invalid) combinations of conditions for Compatibility Testing (see

Glossary for definition). For example, an OA could be designed for testing the compatibility of web-based

application with various browsers (e.g. Safari, Internet Explorer, Opera), plug-ins (e.g. Real Player, Media

Player), servers (e.g. Microsoft IIS, Apache, Netscape Enterprise) and operating systems (e.g. Windows,

Macintosh OSx, Linux)13. An OA that achieves pair-wise coverage for this particular set of configuration

values is L9(3
4), which results in nine test cases (Table 2-7). Any pair of columns in the array contains every

combination of pairs of values for each of the four fields.

13 This list of browsers, plug-ins, servers and operating systems is exemplar only; it is not intended to be exhaustive. For example, the
OA could be extended to consider versions of each system and other systems (e.g. see (Craig & Jaskiel 2002) and (Cohen et al. 2003)).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 61

Table 2-7: Orthogonal Array for testing an Internet-based application.

Test Case Browser Plug-In Application Server Operating System

1 Safari None IIS Windows

2 Safari Real Player Apache Macintosh OSx

3 Safari Media Player Netscape Enterprise Linux

4 Internet Explorer None IIS Windows

5 Internet Explorer Real Player Apache Macintosh OSx

6 Internet Explorer Media Player Netscape Enterprise Linux

7 Opera None IIS Windows

8 Opera Real Player Apache Macintosh OSx

9 Opera Media Player Netscape Enterprise Linux

In the OA above (Table 2-7), each column has the same ‘range’ (i.e. three test data values each). An OA

can also have columns with different ‘ranges’ (Copeland 2004). For example, an L18(2
137) array contains

one column of two values (21) and seven columns of three values (37), resulting in eighteen test cases (L18).

It can sometimes be difficult to choose an OA with a size that fits the number of columns and range of

values per column precisely (Copeland 2004). Consider an OA for five fields, each with eight, three, six,

three and three data values respectively. A perfectly sized OA would be Lr(8
16133), but an OA of this size

does not exist (Copeland 2004). The next largest size L64(8
243) is chosen and any field that is not assigned a

value after all pairs have been covered can be assigned a random or specific value (Copeland 2004).

2.2.7.5 Specification-Based Mutation Testing

The fundamental concept of mutation testing is that an artefact under test is modified by applying a

‘mutation operator’ that introduces a specific type of fault. Mutation can be program-based, which can be

used to check the ability of a test set to locate certain types of faults, or specification-based to systematically

generate black-box test cases.

Program-based mutation was originally proposed by DeMillo, Lipton and Sayward in 1978 (DeMillo et

al. 1978). In this approach, mutation operators are used to introduce various types of faults into program

source code. Each type of fault is based on the types of mistakes programmers commonly make during

development, including replacing a relational operator with an invalid relational operator (e.g. replacing a <

sign with > in a conditional statement). Mutants are said to be ‘killed’ when test cases executed against the

mutant and original programs produce different output. Tests that kill mutants are considered to be

“effective with respect to mutation” and killed mutants are not executed again against any other test case

(Voas & Offutt 1996). If a test case does not locate a mutant (i.e. the mutant and original programs produce

the same output) then the test is discarded and new tests are designed to try to detect the mutant code.

The ‘mutation score’ is a ratio of the number of killed mutants to mutants that are not equivalent to the

original program, which is a measure of test set adequacy. A test set is ‘mutation-adequate’ if the mutation

score is 100% (Offutt & Lee 1994). Typically, scores over 90% are difficult to reach and those over 95%

are extremely difficult to achieve (Offutt & Liu 1999). Although program mutation showed promise, it was

never widely adopted by industry (Ng et al. 2004), possibly because it suffers a combinatorial explosion

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 62

that can result in high testing cost. Also, since program mutation is an approach to testing test quality, it is

often seen by industry professionals as an additional and unnecessary expense. The number of mutants that

can be generated for any given program is O(N2), where N is the number of variable references in the

program (Acree 1980). In one experiment that used the Mothra automated mutation testing system, 951

mutants were generated for a simple 30 line triangle classification program (Offutt & Lee 1994).

Specification-based mutation was originally proposed by Budd and Gopal in 1985 (Budd & Gopal

1984). In this approach test cases are designed by mutating program specifications. Depending on the

language used in the specification, specification mutants can look similar to program mutants, such as the

replacement of a relational operator with an invalid operator. Specification mutation has been applied to

various specifications languages, including predicate calculus, state charts, model checkers, Boolean

algebra, Extensible Markup Language (XML) and BNF (see Table 2-8).

Budd and Gopal (1984) defined five mutation operators for predicate calculus specifications. Fabbri,

Maldonado, Sugeta and Masiero (1999) experimented with specification mutation to validate statechart

specifications, defining a mutation operator set that was taken as a fault model. Their goal was to

investigate methods of selecting useful test sets and test methods for ensuring that a specification and

program are thoroughly tested. Ammann, Black and Majurski (1998) developed a model checker called

Symbolic Model Verifier (SMV) to automatically generate specification mutants they referred to as

‘complete’ in the sense that they included inputs and expected results. Ammann and Black (1999) found

that in order to make mutation with of a model checker possible, specifications need to be decomposed to

lower language levels. They investigated an approach to reducing large-scale state machines using a

technique called “finite focus,” which allowed tests to be automatically derived for very large software

systems. They proved that finite focus was a sound reduction technique, producing smaller mutation-

adequate test sets.

Woodward (1993) defined nine mutation operators for Boolean algebra specifications by examining

errors made in the assignments of 59 third year and 20 postgraduate university students in a course on

software engineering. Lee and Offutt (2001) applied specification mutation to test the semantic correctness

of XML messages communicated between web components. Syntactic errors were not considered as XML

parsers that are freely available can be used to test for this. Since XML allows the definition of unique

languages for each Document Type Definition (DTD), they could not define universal mutation operators

that could be applied to all DTDs. Instead, they defined a generic class of operators and instantiated the

class to create DTD-specific operators that were applied to the constraints of the language to produce

mutants. Two example mutation operators were defined, although future work included the aim of

identifying additional mutation operators.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 63

Table 2-8: Specification-based mutation operators for various specification languages.

Mutation operators for predicate calculus specifications
(Budd & Gopal 1984):

1. Relational operator replacement

2. Arithmetic operator replacement

3. Operand increment/decrement

4. Operand substitution

5. True/false replacement*

6. Logical operator replacement*

7. Quantifier changes*

* Operators 6, 7 and 8 were discarded by Budd and Gopal as
they were either too expensive, subsumed by other
operators or were not useful (Budd & Gopal 1984).

Mutation operators for Boolean algebra specifications
(Woodward 1993):

1. OpsAttrDel – delete operator attribute

2. OpsAttrIns – insert operator attribute

3. OpsAttrRpl – replace an operator attribute

4. EqnsOpRplOp – replace non-constant operator with
non-constant operator

5. EqnsOpRplCon – replace non-constant operator with
constant operator

6. EqnsOpsRplVar – replace non-constant operator with
VAR

7. EqnsConRplOp – replace constant operator with non-
constant operator

8. EqnsConRplCon – replace constant operator with
constant operator

9. EqnsConRplVar – replace constant operator with VAR

10. EqnsVarRplOp – replace VAR with non-constant
operator

11. EqnsVarRplCon – replace VAR with constant operator

12. EqnsVarRplVar – replace VAR with VAR

13. EqnsDel – delete an equation

14. EqnsIfDel – delete conditional part of equation

15. EqnsOrd – reorder an equation

Mutation operators for BNF specifications (Murnane
1999, Murnane & Reed 2001):

1. substitute one terminal for another terminal

2. substitute n - 1 terminals for n other terminals

3. substitution one non-terminal for another non-terminal

Mutation operators for finite state machines (Fabbri et al.
1999):

1. wrong-start-state

2. arc-missing

3. event-missing

4. event-extra

5. event-exchanged

6. destination-exchanged

7. output-missing

8. output- exchanged

9. state-missing

Mutation operators for extended finite state machines (Fabbri
et al. 1999):

1. expression deletion

2. boolean expression negation

3. term associativity shift

4. arithmetic operator by arithmetic operator

5. relational operator by relational operator

6. logical operator by logical operator

7. logical negation

8. variable by variable replacement

9. variable by constant replacement

10. constant by required constant replacement

11. constant by scalar variable replacement

Mutation operators for statechart features (Fabbri et al. 1999):

1. transition’s history deletion

2. transition with history by transition replacement

3. history-missing

4. h by h* replacement

5. h* by h replacement

6. h-extra

7. h*-extra

8. in(s) condition-missing

9. in(s) condition state replacement

10. not-yet(e) condition-missing

11. not-yet(e) condition event replacement

12. exit(s) event-missing

13. exit(s) event state replacement

14. entered(s) event-missing

15. entered(s) event state replacement

16. broadcasting origin transition replacement

17. broadcasting destination transition replacement

Specification mutation has also been applied to BNF specifications (Murnane 1999, Murnane & Reed

2001) (Figure 2-10, Figure 2-11). In this approach, mutation operators are applied to a specification to

construct test cases, where each (terminal) input field is substituted for every other field, one substitution

per test (see Figure 2-11, ‘endogenous’ mutation). When fields are substituted for each other but not for

themselves, the number of mutants is N(N-1), which is O(N2), where N is the number of input fields in the

test case. Double-defect mutants can be selected by substituting two fields per test. Although this may result

in a more rigorous test set, the number of resulting tests is N!, which is prohibitively large. Specification

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 64

mutation can be performed by substituting non-terminal fields or invalid datatypes into the fields under test,

which corresponds to the selection of invalid datatypes in EP (Figure 2-11, see ‘exogenous’ mutation).

Figure 2-10: A simplified version of an address specification expressed in BNF.

 <address> ::= <house_number> <street> <suburb> <postcode>
<house_number> ::= [1 – 999]

 <street> ::= {Annensen Court, Aaran Close, …, Zelda Court}

 <suburb> ::= {Abbotsford, Aberfeldie, …, Yooralla, Yuroke}

 <postcode> ::= [200 | 221 | 800 | 801 | 804 | 810 | … | 9726 | 9728 | 9729]

 ::= [] #i.e. one spaces

Figure 2-11: Example of specification-based mutation for the address parser.

2.2.7.6 Commonality within Combinatorial Test Methods

Most combinatorial test methods have two attributes in common: they consist of algorithms for test case

design and the expected number of test cases can usually be calculated, or at least estimated. Nonetheless,

there is no standard notation for describing them in the literature. Notational and terminological

differences between the methods could be resolved by defining a common notation for all black-box testing

methods (see Chapter 3 for one such approach).

2.2.8 The Category Partition Method (CPM)

Specifications that are written in natural language can be “wordy and unstructured,” which can make

test case design difficult (Ostrand & Balcer 1988). The Category Partition Method (CPM) was developed

by Ostrand and Balcer (1988) to formalise the documentation of black-box test cases in a language they

named the ‘Test Specification Language’ (TSL). CPM comprises six steps, as follows:

1. Decompose the specification into functional units that can each be tested separately.

2. Identify ‘categories’ for each functional unit, which are essentially input fields and environmental

conditions whose state can affect functional unit behaviour. Each category is then partitioned into

disjoint equivalence classes called ‘choices.’

3. Identify the expected result of combinations of choices and constraints, which limit how the

occurrence of a choice in one category can restrict the choices in another.

<address>::=<house no> <street> <suburb> <postcode>

R+

Mutate via field substitution
(endogenous mutation)

Mutate by inserting invalid data, e.g. a positive Real (exogenous mutation)

Specification Input Domain S

Program Input Domain D

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 65

4. Document categories and choices in TSL (see Figure 2-12 and Figure 2-13), facilitating automatic

generation of test cases through the TSL processor tool, by defining the relationships between

inputs and outputs. Two types of specifications can be produced: unrestricted and restricted.

Unrestricted specifications contain the Cartesian-product of categories. In restricted specifications,

choices are annotated with constraints describing relationships between choices and expected

outputs, to limit the ways in which ‘test frames’ (Figure 2-14) are constructed by making the values

that can be selected from one category dependant on the value of another. Restricted specifications

result in fewer test frames. Test frames (Figure 2-14) describe the structure of each test case.

5. Analyse the test frames to ensure that no ‘impossible’ combinations of choices have been defined

(see Figure 2-14) and to ensure that they result in an acceptable number of tests. To achieve this,

steps four and five can be repeated until the test frames are appropriately refined.

6. Create test cases by selecting one value from the choices of each category within each test frame.

Test procedures14 can be constructed by joining together sequences of related test cases.

Appendix A provides a complete example from (Ostrand & Balcer 1988), which illustrates these six

steps being applied to an example specification for a ‘find’ command.

Balcer, Hasling and Ostrand consider TSL and the TSL processor to be two of the most beneficial

aspects of the CPM; translating specifications into TSL facilitates identification of ambiguous and

inconsistent requirements, allowing specification faults to be identified prior to test case design, while the

TSL processor makes test design and maintenance more efficient and precise (Ostrand & Balcer 1988,

Balcer, Hasling & Ostrand 1989). Employing the use of TSL early in the software development lifecycle

could allow testers to become involved in the program specification and review process, which could result

in clearer and more testable requirements, and would also allow testers to learn about system under test

earlier, allowing them to be better-prepared for testing.

14 Test procedures are test cases that are joined together to test sequences of functionality within a program. They include procedural or
environmental requirements that must be met in order for the tests to be executed. For example, individual test cases could be written
for testing the components of an online banking application, which separately test the login screen, funds transfer and logout; these
three tests could be joined together into a test procedure that tests a scenario in which a user logs in, performs a funds transfer and logs
out. In (Ostrand & Balcer 1988) and (Balcer, Hasling & Ostrand 1989), Test Procedures are referred to as Test Scripts, whereas in this
thesis, Test Scripts are considered to be automated test procedures (e.g. see definition of Test Script in the Glossary).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 66

Figure 2-12: Structure of a test specification expressed in the Test Specification Language (TSL)
(Balcer, Hasling & Ostrand 1989).

TEST <test-name>
 [<description-string>]
 [SETUP {<string>}]
 FORM {<string>}
 CLEANUP {<string>}]
PARAMETER <param-name>
 [<description-string>]
 [<setup-cleanup>]
 * <choice-1>
 [<value-list>]
 [<setup-cleanup>]
 …
 * <choice-n>
 [<value-list>]
 [<setup-cleanup>]

ENVIRONMENT <environment-name>
 [<description-string>]
 [<setup-cleanup>]
 * <choice-1>
 [<setup-cleanup>]
 …
 * <choice-n>
 [<setup-cleanup>]
RESULT <result-name>
 [<description-string>]
 [<setup-cleanup>]
 [VERIFY <verification-code>]
 IF <result-expression-1>
 …
 IF <result-expression-n>

Figure 2-13: Specification for a ‘find’ command and the corresponding Test Specification Language
specification (Ostrand & Balcer 1988).

Specification in Natural Language* Corresponding TSL Specification

Command

find

Syntax

find <pattern> <file>

Function

The find command is used to locate one or more instances of a given
pattern in a text file. All lines in the file that contain the pattern are written
to standard output. A line containing the pattern in written only once,
regardless of the number of times the pattern occurs in it.

The pattern is any sequence of characters whose length does not exceed
the maximum length of a line in the file. To include a blank in the pattern,
the entire pattern must be enclosed in quotes (“). To include a quotation
mark in the pattern, two quotes in a row (“”) must be used.

Examples

find john myfile

 displays lines in the file myfile which contain john

find “john smith” myfile

 displays lines in the file myfile which contain john smith

find “john”” smith” myfile

 displays lines in the file myfile which contain john” smith

* Note: this specification is written exactly as it appears in (Ostrand &
Balcer 1988).

Parameters

Pattern size

 empty

 single character

 many characters

 longer than any line in the file

Quoting

 pattern is quoted

 pattern is not quoted

 pattern is improperly quoted

Embedded white spaces

 no embedded white spaces

 one embedded white space

 several embedded white spaces

Embedded quotes

 no embedded quotes

 one embedded quote

 several embedded quotes

File name

 good file name

 no file with this name

 omitted

Environments

Number of occurrences of pattern in the file

 none

 exactly one

 more than one

Pattern occurrences on target line

 # assumes line contains the pattern

 one

 more than one

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 67

Figure 2-14: Example of a contradictory test frame (Ostrand & Balcer 1988).

Pattern size: empty*

Quoting: pattern is quoted*

Embedded blanks: several embedded white spaces

Embedded quotes: no embedded quotes

File name: good file name

Number of occurrences of pattern in file: none

Pattern occurrences on the target line: one

* contradiction: pattern cannot be empty if it is quoted

Ostrand and Balcer (1988) compared CPM to Goodenough and Gerhart’s Condition Table method

(1975), Elmendorf’s Cause-Effect Graphing (1974), Weyuker and Ostrand’s Revealing Subdomains (1980)

and Richardson and Clarke’s Partition Analysis (1981). Although the concepts of partitioning categories

into choices and selecting data values from each choice to construct test cases are essentially the same

process as partitioning input fields and selecting test data values during EP and BVA, CPM has not been

compared to or integrated with these methods. For example, in Figure 2-13 the category ‘pattern size’ is

partitioned into choices empty, single character, many characters, longer than any line in the file, which

could be selected more prescriptively through EP and BVA, since these methods were designed to guide

testers specifically in the selection of this type of test data. As CPM does not provide prescriptive guidelines

for identifying choices or test data values from each choice, this approach could be improved by combining

TSL with the test case design rules from EP, BVA and ST.

2.2.9 Classification Trees

Classification Trees were originally proposed by Grochtmann et al. in 1993 as an improvement to CPM

(Grochtmann & Grimm 1993, Grochtmann, Grimm & Wegener 1993). In this approach, categories and

choices are represented in a tree, with categories as root nodes, choices as leaf nodes and intermediate nodes

representing the decomposition of categories into sub-categories (Figure 2-15). Test cases are constructed in

the same way as CPM (i.e. by taking the Cartesian product of choices and removing impossible choice

combinations), although other combinatorial test methods could be used to define test cases (see Section

2.2.7). Test cases are recorded as horizontal lines beneath the tree that intersect with choices included in

each test case, with black dots at the line’s intersection marking the selection of a test data value for

inclusion in a test case. Some automated support for Classification Trees is provided through the

Classification Tree Editor (see Section 2.7).

Classification Trees have been improved by a number of researchers. Chen, Poon and Tse (1999)

developed an algorithm for removing duplicate tree nodes. For example, for resolving the duplicate node in

Figure 2-15, in which ‘Price of Ticket’ appears under the ‘Class of Seat’ and ‘Total Mileage’ branches.

Chen and Poon (1996) developed classification-hierarchy tables for capturing and documenting the

hierarchy of classification trees. Singh, Conrad and Sadeghipour (1997) built Classification Trees from

formal Z specifications. As with CPM, the Classification Tree approach could be improved by combining

prescriptive test case design rules from EP, BVA and ST with the visual representation provided by the

Classification Tree

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 68

Figure 2-15: Classification Tree for an airline bonus points programme (Chen, Poon & Tse 1999).

Specification*

The software under test is the program bonus being developed for Number-One Airline. It calculates the bonus points
earned by passengers from their trips. Passengers can then claim various benefits such as free accommodation in leading
hotels using the bonus points awarded. The program calculates the bonus points according to the following specification.

(1) Classes of Seats

There are three classes of seats, namely first, business, and economy.

(2) Upgrading of Classes

Passengers holding an economy-class ticket are eligible for upgrading their tickets to a business class free of charge,
provided that:

(a) there are vacancies in the business class,

(b) the passengers are holding a frequent-flyer card, and

(c) the total mileage for the trip is less than 1000.

Under no circumstances can an economy-class or business-class ticket be upgraded to the first class.

(3) Discounts

Discounts are only available to:

 economy-class tickets, and

 the total mileage for the trip is not less than 1000. There are two types of discounts, namely staff discount
and passenger discount.

For (2c) and (3b), any distance less than one mile will not be counted. The number of bonus points earned will be
calculated from the combination above.

Classification Tree

* This specification and corresponding Classification Tree are shown here exactly as they appear in (Chen et al. 1999).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 69

2.3 Summary of Black-Box Test Case Design Steps and Methods

As outlined in Section 2.2, each black-box testing method typically focuses on one of the following four

steps of test case design:

1. Partition the input and output domains of the program into sets of equivalent data, by applying

Data-Set Selection Rules.

2. Select test data values from each partition by applying Data-Item Selection Rules.

3. Optionally manipulate15 the test data values by applying Data-Item Manipulation Rules.

4. Construct test cases by creating combinations of test data values via the application of Test Case

Construction Rules.

Although some methods touch on more than one of these steps (e.g. EP provides guidance on

partitioning, test data selection and test case design), a method’s strength usually lies in just one of these

steps, as outlined below (Table 2-9).

Table 2-9: Test case design steps covered by black-box testing methods.

Black-Box Testing Method

Four Steps of Test Case Design

Step 1. Partition the
input and output
domains of the
program by applying
DSSRs to each field

Step 2. Select test
data values from each
partition by applying
DISRs to each
partition

Step 3. Optionally
manipulate test data
values by applying
DIMRs to each test
data value

Step 4. Construct
test cases by
combining test data
values by applying of
TCCRs

All Combinations

Base Choice

Boundary Value Analysis
Often uses DSSRs

from EP
Often uses TCCRs

from EP

Category Partition Method

Classification Trees Non-systematic Non-systematic

Each Choice

Equivalence Partitioning
Error Guessing Non-systematic Non-systematic Non-systematic Non-systematic

Exploratory Testing Non-systematic Non-systematic Non-systematic Non-systematic

Orthogonal Array Testing

Random Testing
Often uses DSSRs

from EP

Specification-Based
Mutation Testing

Syntax Testing Implicitly performed
Test Matrices, Catalogues &
Categories

Can provide guidance Can provide guidance Can provide guidance

15 For example, the definition of Syntax Testing in (BS 7925-2) includes a test case design rule that ‘mutates’ test data values. In this
thesis the word ‘manipulate’ is used to describe any test case design rule that derives an invalid test data value by altering a valid test
data value (e.g. by removing a character from the end of a valid keyword).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 70

2.4 Combining Testing Methods

A number of novel black-box methods have been proposed by combining other black-box testing

methods. Howden developed a new method called Functional Testing, which combines test case design

rules from BVA, EP, EG with All Combinations (Howden 1980). Grindal et al. (2004) produced two new

combinatorial methods by combining Base Choice with Orthogonal Arrays and with Heuristic Pair-Wise

Testing. Jorgensen (1995) combined BVA with All Combinations to produce Worst Case Testing and with

Robustness Testing to produce the Worst Case Robustness Testing (see Section 2.2.2). Jorgensen also

extended Myers’ (1979) and Mosley’s (1993) definitions of EP by combining EP with combinatorial

methods to produce Traditional, Strong and Weak EP (Jorgensen 1995). Thus, creating new black-box

methods from the ‘atomic elements’ of existing methods is something that has been achieved in the past

(see Chapter 3 for the Systematic Method Tailoring approach to customisation).

2.5 Approaches to Test Method Selection

As Beizer observed (1990), the application of “unsuitable” test methods can result in the design of

inappropriate test cases. Effective test method selection approaches are an essential part of effective black-

box testing. In the subsections below, various approaches to test method selection are described, which base

selection on:

1. the steps of the test case design process targeted by the method (Section 2.5.1);

2. the classes of error detected by the method (e.g. see (Jorgensen 1995)) (Section 2.5.2);

3. a characterisation schema that differentiates between the ‘functionality’ of each method (Vegas

et al. 2003) (Section 2.5.3);

4. a decision table that classifies the conditions under which each black-box test method should be

selected (Jorgensen 1995) (Section 2.5.4); and

5. test effectiveness (Section 2.5.5).

2.5.1 Test Method Selection by Test Design Step

Each of the black-box methods discussed in this chapter targets one or more of the following four steps

of black-box test case design (e.g. see Section 2.3, Table 2-9):

1. partitioning the input and output domains (i.e. using Data-Set Selection Rules);

2. selecting test data values from each partition (i.e. using Data-Item Selection Rules);

3. manipulating the chosen test data values (i.e. using Data-Item Manipulation Rules); and

4. constructing test cases (i.e. using Test Case Construction Rules).

Black-box testing methods could be chosen for their ability to target one ore more of these steps. On the

other hand, current descriptions of black-box testing methods do not clearly identify which steps of the test

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 71

case design process are targeted by each method. Mapping test case design rules to specific types of input

fields has been achieved by Test Catalogues, Categories and Matrices. However, these approaches do not

describe the black-box testing methods that each test case design rule belongs to. Consequently, testers who

are unfamiliar with the specific mechanics of each black-box testing method may find it difficult to map

between the rules in a Test Catalogue, Category or Matrix with the black-box testing methods they were

derived from. The Atomic Rules approach and Systematic Method Tailoring are possible solutions to these

problems.

2.5.2 Test Method Selection by Error Class

Black-box testing methods can be chosen for their ability to detect certain classes of error (Jorgensen

1995). For instance, BVA targets the mishandling of boundary values and EP and ST can be used to test a

program’s input parsing capabilities. Test Catalogues, Categories and Matrices can facilitate this mapping.

On the other hand, they do not include guidelines to assist testers in creating new mappings of input fields

to test case design rules for each program under test.

2.5.3 Test Method Selection via Vegas et al.’s Characterisation Schema

Vegas et al. (2003, 2004) developed a characterisation schema for classifying black-box and white-box

testing methods, which utilises information about the methods, the system under test, the test environment

and knowledge of tester abilities to facilitate selection of the “best suited” methods for testing (see Table 2-

10, Table 2-11). The schema has been instantiated for four types of methods:

1. black-box testing methods: BVA and RT (see Sections 2.2.2 and 2.2.4);

2. white-box testing methods: sentence, decision, path and thread coverage (e.g. see (Myers 1979,

Pressman 1992));

3. data-flow methods: all-c-uses, all-p-uses, all-uses, all-du-paths and all-possible-rendezvous

(e.g. see (Pfleeger 2001)); and

4. mutation testing: standard and selective program mutation (e.g. see (Bottachi & Mresa 1999)).

The characterisation schema clearly distinguishes between these four types of methods, which can assist

with identifying the conditions under which a black-box testing method should be used over a white-box

method. Yet it does not clearly identify the conditions under which one specific black-box testing method

should be used over another. For example, there is very little difference between the definitions of BVA and

RT (see Table 2-11). This schema could be enhanced by additional attributes that clearly differentiate

between the individual test case design rules that are included in each black-box testing method. Since the

schema has not been instantiated for methods like EP and ST, it could also be improved by deriving schema

instances for these methods.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 72

Table 2-10: Characterisation schema for assist with test method selection (Vegas et al. 2003).

Level Element Attribute Value

Tactical

Objective

Purpose
Type of evaluation and quality attribute to be tested in the
system

Defect type Defect types detected in the system

Effectiveness
What capability the set of cases should have to detect
defects

Scope
Element Elements of the system on which the test acts

Aspect Functionality of the system to be tested

Operational

Agents
Knowledge Knowledge required to be able to apply the technique

Experience Experience required to be able to apply the technique

Tools

Identifier Name of the tool and the manufacturer

Automation Part of the technique automated by the tool

Cost Cost of tool purchase and maintenance

Environment
Platform (software and hardware) and programming
language with which the tool operates

Support Support provided by the tool manufacturer

Technique

Comprehensibility Whether or not the technique is easy to understand

Cost of application How much effort it takes to apply the technique

Inputs Inputs required to apply the technique

Adequacy criterion Test case generation and stopping rule

Test data cost Cost of identifying the test data

Dependencies Relationships of one technique with another

Repeatability Whether two people generate the same test cases

Sources of Information Where to find information about the technique

Test Cases

Completeness Coverage provided by the set of cases

Precision How many repeated test cases the technique generates

Number of generated cases Number of cases generated per software size unit

Object

Software type Type of software that can be tested using the technique

Software architecture Development paradigm to which it is linked

Programming language Programming language with which it can be used

Development method Development method or life cycle to which it is linked

Size
Size that the software should have to be able to use the
technique

Use

Project

Reference projects Earlier projects in which the technique has been used

Tools used Tools used in earlier projects

Personnel Personnel who worked on earlier projects

Satisfaction

Opinion General opinion about the technique after having used it

Benefits Benefits of using the technique

Problems Problems with using the technique

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 73

Table 2-11: Characterisation schemas instantiated for Boundary Value Analysis and Random Testing
(Vegas et al. 2003).

Level Element Attribute Boundary Value Analysis Random Testing

Tactical

Objective

Purpose Find defects Find defects

Defect type Any Any

Effectiveness Finds 55% of defects
42% probability of finding a
fault

Scope
Element Any

Units (functions), complete
systems

Aspect Any Any

Operational

Agents
Knowledge None None

Experience None Errors people usually make

Tools

Identifier - -

Automation - -

Cost - -

Environment - -

Support - -

Technique

Comprehensibility High High

Cost of application Low Low

Inputs Code specification Code specification

Adequacy criterion
Functional: Boundary Value
Analysis

Functional: Random testing

Test data cost Low Low

Dependencies
When applied with black-box
effectiveness may rise to 75%

Might (and should) be
completed with other technique

Repeatability No No

Sources of Information
(Beizer 1995, Sommerville
2001)

(Beizer 1995, Myers 1979,
Sommerville 2001, Pfleeger
2001)

Test Cases

Completeness - -

Precision - -

Number of generated
cases

Depends on the complexity of
the input domain

As many as wanted

Object

Software type Any Any

Software architecture Any Any

Programming language Any Any

Development method Any Any

Size Any Any

Use

Project

Reference projects - -

Tools used - -

Personnel - -

Satisfaction

Opinion -
Fine for complementing other
methods or acceptance testing

Benefits - It is very easy to apply

Problems -

- Although mean effectiveness
is high, variance is also high

- Maximum benefits obtained
with people with experience

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 74

2.5.4 Test Method Selection via Jorgensen’s Decision Table

As an initial step towards developing an “expert system” for black-box test method selection, Jorgensen

(1995) developed a decision table based on the goals of testing and characteristics of the system under test,

which could be used for informing test method selection (Table 2-12). While the decision table provides

insight into the high-level differences between some black-box methods, it does not cover prescriptive

methods like ST and RT or non-prescriptive approaches like EG and ET. It also does not explain the

differentiation between Physical and Logical variables.

Table 2-12: Decision table for selecting black-box test methods (Jorgensen 1995).

Conditions Rules

c1. variables are Physical Logical

c2. independent variables? Y N Y N

c3. fault assumption is Single Multiple - Single Multiple -

c4. exception handling? Y N Y N - Y N Y N -

Actions

a1. boundary value analysis Y

a2. robustness testing Y

a3. worst case testing Y

a4. robust worst case Y

a5. traditional equivalence class Y Y Y Y

a6. weak equivalence class Y Y Y Y Y

a7. strong equivalence class Y Y Y Y Y

a8. decision tables Y Y

2.5.5 Test Method Selection by Effectiveness

Test methods can, in principle, be selected by their effectiveness (e.g. failure-detection effectiveness,

defined in Chapter 1), which can be determined through empirical study and theoretic analysis. Yet, not

enough empirical study has been carried out into test method effectiveness for this to be considered a

reliable approach for decision making (Vegas et al. 2003). While many researchers have experimentally

compared the effectiveness of white-box and black-box testing methods (e.g. see (Myers 1978, Basili &

Selby 1987, Kamsities & Lott 1995, Wood et al. 1997)) and random testing to white-box and grey-box

partition testing (e.g. see (Duran & Ntafos 1984, Jeng & Weyuker 1989, Weyuker & Jeng 1991, Hamlet &

Taylor 1990, Tsoukalas et al. 1993, Chen & Yu 1994, Ntafos 1998, Gutjahr 1999)), there has been less

research into the effectiveness of purely black-box methods like EP, BVA and ST. Also, most studies focus

on test set quality and not on aspects that affect novice testers, such as ease of adoption (i.e. test method

learnability). Instead, they focus on a variety of quantitative metrics for assessing effectiveness, such as:

 fault detection effectiveness (i.e. number faults detected / total number of known faults) (Reid

et al. 1999);

 faults detected per severity level (e.g. critical versus cosmetic faults) (Itkonen et al. 2007);

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 75

 test efficiency (i.e. number faults detected / total time spent in testing) (Reid et al. 1999); and

 source code coverage (Seo & Choi 2006).

Ideally, these metrics could form a basis for test method selection16. For example, if the aim of testing is

to detect more failures, then theoretically, a method that has been proven through experimentation to have a

higher failure detection ratio could be selected for use. On the other hand, since each experiment typically

uses a different set of metrics, it can be difficult to make accurate comparisons between them and to draw

reliable conclusions. More experimentation into test method effectiveness is required before this can be

used as an accurate approach for test method selection.

 Another issue is that while non-prescriptive approaches like EG are believed by some to be among the

most popular in industry (Jorgensen 1995), few studies have compared the effectiveness of prescriptive

black-box testing methods (e.g. as they are described in textbooks) to those used by professional testers in

industry. Bach (2001) argues that “computer scientists are not qualified to study [the use of non-prescriptive

approaches like] ET, because to study ET is to study how people think: cognitive psychology”, suggesting

that it could be challenging to assess how professional testers actually perform testing. This view is

supported by Kaner et al. (2001) who states that the type of thinking that is required during ET is similar to

that which is required in fields like sociology, and that textbooks on psychology (e.g. (Koslowski 1996))

explain why testing is “more than simply looking at external behaviour and checking it against simple

expectations” (Kaner et al. 2001). Despite these caveats, empirical evaluation of black-box testing methods

is necessary to provide evidence-based decision making. As a result, relevant experiments from both

industry and academia are discussed below.

Reid (1997) is one of the only researchers to empirically compare pure black-box EP, BVA and RT,

where effectiveness was based on the probability that a test case would detect a fault that was previously

found in a system already in use. Existing defect reports were used to identify known faults in the seventeen

system modules, where each module contained one fault (i.e. seventeen faults in total). Although all test

cases were derived by the primary researcher, the approach used was to derive all possible inputs that

satisfied the test method (e.g. derive all possible equivalence classes for all program modules). The

hypotheses were that BVA is more effective than EP and that both are more effective than RT. Reid did

find BVA to be far more effective than EP, but it required more than three times as many test cases (Table

2-13). Only eight random test cases per module were required for RT to be as effective as EP. On the other

hand, 50,000 random tests had to be selected for it to be as effective as BVA. For test case construction, no

significant difference was found between minimised and one-to-one BVA, while minimized EP was slightly

less effective than one-one-one EP.

16 Ntafos (1988) used the level of automated support available to determine effectiveness; however, this is qualitative.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 76

Table 2-13: Results of an empirical comparison of EP, BVA and RT (from (Reid 1997)).

Measure
EP

(1 to 1)
EP

(Minimised)
BVA

(1 to 1)
BVA

(Minimised)
Random
Testing

Probability of fault detection 33% 31% 73% 79% 12%

Average number faults detected 5.7 5.3 12.4 13.4 2

Average number test cases
required to detect one fault

7.6 4.9 25.1 13.6 Not stated

Ostrand and Balcer (1988) used CPM to derive black-box test cases for ninety-one high level functions

of a configuration management system, which was implemented in 35,000 lines of Ada. One tester

produced a TSL specification for all ninety-one requirements, while four others reviewed them for

inconsistencies. The TSL processor produced 1,022 test cases. Writing the TSL specifications took around

three weeks, during which test script writing took the most time (although the researchers did not quantify

this observation). Test execution took around two weeks, during which modifications to test scripts and

specifications were required. In total, thirty-nine program faults were detected, showing that CPM is

effective for defect detection, though it could also be argued that it is costly in terms of the time taken to

produce test suites. Ostrand and Balcer (1988) did not compare this outcome with other experiments.

Yu et al. (2003) conducted an experiment with 104 final-year computer science students, who had at

least one year of full-time work experience. The aims were to identify test methods the students initially

chose to use for testing a program they coded themselves and to compare their opinions of those methods to

the Classification Trees approach, which they were taught after the initial coding and testing phases. The

advantages that were reported by the students include that the Classification Tree approach is “systematic”

(63% of the group) and that the visual representation provided by the trees gives the approach an advantage

over other white-box and black-box methods, as they are easy to read and understand and they illustrate

relationships between test cases (54% of the group). One of the reported disadvantages was that

Classification Trees can become too large and complicated if specifications are not properly decomposed.

Other disadvantages were that each tester may produce different test sets from the approach and that test set

quality depends on specification quality, though these problems apply to all prescriptive black-box methods.

A number of experiments have identified possible relationships between test effectiveness and tester

experience. These include experiments by Lauterbach and Randall (1989) and Itkonen et al. (2007).

Lauterbach and Randall (1989) carried out a case study with four professional testers who used three static

methods (code reviews, error and anomaly detection and structure analysis) and three dynamic methods

(white-box branch testing, black-box testing and RT), although the paper did not name which specific

black-box methods were used. The metrics utilised were defect detection effectiveness (i.e. the percentage

of known defects detected by a method) and effort required to conduct testing. While they found that black-

box testing resulted in lower levels of code coverage, they also found that the choice of tester had a greater

impact on test effectiveness than did the choice of test method. This suggested that tester experience can

have a significant impact on testing effectiveness, which is an issue that can be masked by using students in

experimentation.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 77

Itkonen et al. (2007) compared the effectiveness of ET to EP, BVA and combinatorial testing in an

experiment involving seventy-nine advanced software engineering students. Although they found no

significant difference between numbers of faults detected by the non-prescriptive and prescriptive

approaches, they found that the testers were able to detect more obvious and more obscure faults through

ET, as well as more user interface and usability problems. On the other hand, they found more technical

faults of a less severe nature through prescriptive testing. It could be argued that the group’s inexperience

with testing reduced their effectiveness during ET and if more experienced “pathological” testers (Reed

2007) were used they may have been able to produce more effective test cases. This view is supported by

the findings of the Lauterbach/Randall study (1989).

Itkonen and Rautiainen (2005) conducted an industry-based case study with six software testers from

three software development companies, which were code-named Mercury (1 participant), Neptune (4

participants) and Vulcan (2 participants) who were already using ET. Although the findings reported by

Itkonen and Rautiainen (2005) are insightful and support a number of advantages and disadvantages to ET

reported here, as only six participants were used in the case study, the results can only be considered to be

indicative. The participants did not derive test cases during the study. Instead, data was collected on the

types of defects and defect counts identified with ET in the past. The average number of defects detected

per hour was higher for Neptune and Mercury, which may have been due to them using session-based ET as

this approach allows testers to remain uninterrupted and focussed throughout testing. On the other hand, the

participants from Vulcan who were using traditional ET did not feel that being interrupted altered their test

effectiveness. Itkonen and Rautiainen could not confirm whether Vulcan’s metrics were accurate. The

metrics from Mercury may have been affected by the maturity of the system under test, as their product was

relatively new and was likely to contain more defects. Nonetheless, Itkonen and Rautiainen concluded that

ET did improve test productivity, particularly when testing complicated aspects of a system. They

considered ET to be effective for defect detection. For example, in this study, 4.8 and 8.7 defects per hour

were detected at the two companies using session-based ET, compared to less than 3 defects per hour in a

study of Use Case Testing (Anderson et al. 2003) and 2.47 defects per hour in a case study of functional

testing (Wood et al. 1997). Also, 15% of faults detected at Mercury were considered to be “serious.”

Interestingly, none of the participants from the Itkonen/Rautiainen case study had any prior training in

software testing. Although they reported setting goals for ET, none claimed to use any prescriptive black-

box testing methods, despite the fact that they reported testing with combinations of inputs and boundary

values, suggesting that the test case design rules they used overlap with prescriptive black-box methods.

Interviews of 40 to 70 minutes were conducted with the participants using a standard questionnaire (Table

2-14). One of the challenges was identifying testers with enough domain knowledge that enabled them to

use the system under test like a professional user. Itkonen and Rautiainen questioned what effect that

domain knowledge, testing experience and testing training has on the defect detection ability of the tester,

as they found that each participant tested the software differently. In addition, all three companies reported

that assessing test coverage was a problem with ET. Recording the test case design rules used and the

domain knowledge utilised during ET could be one solution, as it would enable this information to be

shared with novice testers (see Chapter 3 for relevant approaches).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 78

Ideally, metrics like failure-detection effectiveness could be used as a basis for test method selection.

Realistically, more experimentation is required before this can be used for decision making.

Table 2-14: Advantages of Exploratory Testing reported at Mercury, Neptune and Vulcan
(Itkonen & Rautiainen 2005) (indicates that all participants agree with the statement).

Advantages of Exploratory Testing
Mercury

1 participant

Neptune

4 participants

Vulcan

2 participants

Software can be used in many ways and there are many combinations
between features, thus writing detailed test cases for everything is difficult,
laborious and even impossible; thus, ET is a “natural choice”

ET is well suited to testing from a user’s perspective

ET emphasises utilisation of tester knowledge, experience and creativity to
find defects

ET enables quick feedback on features from testers to developers

ET adapts well in situations in which requirements and software frequently
change and in which specifications are often ambiguous or incomplete

ET enables learning about a system and the knowledge that is gained can
be utilised during future work, including training and customer support.

When user manuals are used to guide ET, it also enables them to be
evaluated for effectiveness and correctness

ET enables testing of the features of a system as a whole, allowing issues
to be detected that would otherwise go undetected during scripted testing

ET provides more versatile testing that delves deeper into tested features

Each time the system is tested it is done so in a different way and enables
exploration for new defects

ET enables testing aspects of the software that would not be included in
test plans or test cases

Five out of seven interviewees (paper did not
mention which companies)

ET was high in efficiency and effectiveness

ET enables defects to be detected in a short period of time

ET enables more defects to be detected during system testing, possibly
due to testers deriving more destructive input

ET allows testers to quickly obtain an overall picture of system quality

Disadvantages of Exploratory Testing Mercury Neptune Vulcan

It is difficult to determine the efficiency of ET in the long term, as test
coverage is difficult to estimate, which possibly leaves many features
untested

 1 person

A lack of test documentation makes it difficult to determine test coverage
and what should be tested next

ET is less efficient and effective when performed by less experienced
testers who have less domain knowledge

Relying on the expertise of testers makes ET more prone to human error

Using ET to test complex systems is very time consuming 1 person

It is impossible to find testers with enough experience to act as
professional users 1 person

As individual testers have different backgrounds an experience, they all
perform ET from different viewpoints; however, this was also seen as an
advantage in the versatility of the testing

Defects are not easily reproducible when using ET (however, this was not
a problem at Mercury as testers kept detailed logs during ET)

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 79

2.6 External Influences on Test Set Quality

Reid (1994) identified a number of factors that can affect test set quality and, ultimately, the chance that

a test case will detect a defect (Figure 2-16). This included specification notation, tester skill level, the level

of independence between testers and developers, the quality of program source code and the required level

of test coverage and the impact of this on the test methods that are chosen for testing a program. The

elements of Reid’s diagram can be used for considering external factors that could affect test set

effectiveness during experimentation (e.g. see Chapters 5 and 6).

Figure 2-16: Factors affecting the quality of testing (Reid 1994).

Module
Testing
Quality

Level of
Independence

Design
Quality

Abstraction
Leve

Specification
Notation

Tester
Skill
Level

Designer
Skill
Level

Coder
Skill
Level

Language

#Missed
Defects

Required Test
Coverage

Achieved Test
Coverage

CAST
Support

Level

Source Code
Quality

Missed
Defect
Scope

Test Case
Design

Technique

Missed
Defect

Severity

#Distinct
Test

Missed
Defect

Type

Something that Reid did not consider was whether a tester’s domain knowledge of the system under test

can have an impact on their test effectiveness. This factor, along with specification notation (i.e.

specification language) are discussed in more detail in the following two sections.

2.6.1 Effect of Specification Language on Black-Box Testing

As Parrington and Roper (1989) state, “the purpose of a specification is to provide a clear, precise and

unequivocal statement of the function to be implemented.” This is not often achieved in practice, since

specifications are usually written in natural language and consist of ambiguous vocabulary and undefined

terms (Parrington & Roper 1989). Specifications are considered to be the greatest source of error in

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 80

software development (Patton 2006). For example, a survey of software testing practices in Australian

found that out of 65 organisations, 34% and 25% respectively reported that 40 to 59% and 20 to 39% of

program faults were caused by specification defects (Ng et al. 2004). Although specification languages are

not the main topic of this thesis, they can affect a tester’s ability to apply prescriptive black-box testing

methods effectively. Thus, a number of issues with specification languages are discussed.

Fuchs and Schwitter (1996) argue that specifications are usually written in natural language because

they need to be readable by all stakeholders, while Abbott (1986) observed that specifications that define

the characteristics of input and output fields can be difficult for end-users to understand. Nonetheless,

specifications that do not define the nature of valid and invalid program inputs (Jorgensen 1995) (e.g.

boundary values) can result in inadequate testing (Marick 1995, Abbott 1986). The professional experience

of the author of this thesis17 is that that the majority of specifications produced in industry require further

clarification and refinement before specification-based test case design is possible. For example, the syntax

(e.g. boundaries, valid datatypes, valid data sets) of input and output fields are rarely defined, while the

expected behaviour of the program for invalid inputs is seldom specified. Although this information can

theoretically be obtained from software developers or by analysing program source code, this does not

support independent black-box testing and it can still result in inadequate testing if developers do not have a

complete or correct understanding of user requirements. Abbott (1986) suggested that two specifications

should be produced, one for testers and one for end users. Parrington and Roper (1989) recommend that all

user requirements should be rewritten to remove ambiguity and ensure test cases can be selected from them.

Consequently, Parrington and Roper (1989) proposed a specification structure that defines the inputs,

outputs and functions of each component under test (Figure 2-17). Although this ensures that each input and

output is defined, it does not include a language for defining the syntax of the inputs and outputs. The Test

Specification Language (TSL) proposed by Ostrand and Balcer (1988) (see Section 2.2.7.6) supports the

systematic documentation of equivalence classes for each input field, but did not provide a means for

producing detailed syntax definitions for each input and output field. The use of formal specification

languages could enhance Parrington and Roper’s specification structure and Ostrand and Balcer’s TSL.

Figure 2-17: Specification structure proposed by Parrington and Roper (Parrington & Roper 1989).

 Input:

 … } Interface

 Processing:

 …

 Output:

 … } Interface

17 This observation is based on three years of industry-based programming experience and almost four years of experience of working
as a senior test consultant with a software testing consultancy in Australia.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 81

Formal languages allow specifications to be expressed in “unambiguous language” that enables

specification defects and ambiguities to be more easily detected than in specifications expressed in natural

language (Liskov & Zilles 1975). On the other hand, formal specifications can be difficult to read without

training (Fuchs & Schwitter 1996) and few industrial organisations use them (Ostrand 2002). One formal

language that is “readily learned, easily understood, and widely accepted” (Lee & Dorocak 1973) is

Backus-Naur Form (BNF) (Backus 1958, Naur 1960, Knuth 1964). BNF is based on context-free

grammars, which consist of production rules that define the terminal and non-terminal elements of program

input and output fields precisely (Paakki 1995)18. BNF has proven to be an effective for specifying the

syntax of input fields for the purposes of applying EP, BVA, specification-based mutation testing (Murnane

& Reed 2001) and ST (Beizer 1995). It enables precise definition of the minimum and maximum boundary

values of range-based fields and individual data elements of list-based fields (see Figure 2-18). It facilitates

the construction of Abstract Syntax Trees (see Section 2.2.3), which can be used to illustrate the

relationships between each input field and which facilitate automatic test case generation (e.g. see

(Kaksonen, Laakso & Takanen 2008)). Thus, specifying input and output fields in BNF can enable more

effective black-box testing, regardless of which particular test method is applied.

Figure 2-18: Example of a BNF specification for the street name of an address.

 <street> ::= <name> <type> { <direction>}

 <name> ::= [A – Z | a – z | -]1 - 40

 <type> ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt | …]

 <direction> ::= [North | South | East | West]

 ::= [] #i.e. one space

2.6.2 Effects of Domain Knowledge on Black-Box Testing

Interestingly, most publications of non-prescriptive testing approaches like EG and ET (see Section

2.2.5) suggest that there is no system to the seemingly ‘intuitive’ process that takes place during test case

design and execution. For example, Jorgensen (1995) refers to EG as the “most intuitive” black-box

method. Kaner (1988) maintained that “in complex situations, your intuition will often point you toward a

tactic that was successful (you found bugs with it) under similar circumstances. Sometimes you won’t be

aware of this comparison. You might not even consciously remember the previous situations. This is the

stuff of expertise.” Agruss and Johnson (2000) argued that “much of what experienced software testers do is

highly intuitive, rather than strictly logical.”

The Oxford English Dictionary (1970) defines intuition as “the immediate apprehension of an object by

the mind without the intervention of any reasoning process” and “immediate apprehension by the intellect

alone.” Regardless of whether the tester is consciously aware of the process they follow when using non-

prescriptive testing approaches, there may still be a pattern to the types of test case design rules they use. As

18 Wikipedia (Context Free 2008) provides a general definition of context-free grammars.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 82

Kaner et al. (2001) observe, a tester’s skill with ET can increase as they become more familiar with a

system, including the market it was developed for, the risks associated with developing it and the failures

previously detected in it. As Barber (2007) claimed, “the more we know about what a system or application

is supposed to do, the more intuitive we believe it is.” These views suggest that the intuition a tester uses

during ET could be logical and procedural domain knowledge they have gained over time, which could be

based (among other things) on their knowledge of effective test case design rules from prescriptive black-

box testing methods (Craig & Jaskiel 2002). There may also be information about the domain of a system

that gives experienced “pathological” testers clues on how to test it effectively. It is also possible that

individual testers have their own unique collection of test case design rules that they routinely use when

using non-prescriptive approaches to testing.

In fact, many prescriptive black-box testing methods are based on domain knowledge of program faults

and failures. As Wild et al. argue (1992), program faults are often the result of programmers

misunderstanding the problem domain of a program. Many prescriptive methods are based on specific types

of program faults. For example, BVA is based on the view that programmers often make ‘off-by-one’

errors, which can be identified through “application solution” domain knowledge (Reed 1990). It is also

realistic to assume that there are other high-yield black-box test case design rules that are commonly used

by experienced testers that have not yet been published in software testing literature. If those rules could be

explicitly defined, this knowledge could be used to enhance black-box testing methods and to improve the

defect detection skills of both novice and experienced testers (see Chapter 3 for GQASV and SMT, which

can support this). This knowledge could also be used to classify black-box methods on the extent to which

they rely on domain knowledge.

2.7 Automation of Black-Box Testing Methods

Since testing can involve the design of thousands of test cases and specification changes can cause

changes to many of those tests, automation can be necessary (Bauer & Finger 1979). In 1983, Perry argued

that “testing has been primarily a manual operation and often an inefficient function in many organisations

since it can suffer from human error and is often very time consuming.” (Perry 1983). Today there are many

automated tools available to support black-box testing and to analyse and improve test coverage and

effectiveness. For example, model based testing tools provide support at the system testing level, while the

‘xUnit’ family of tools support automated unit testing (Bertolino 2007). Saley, Hoffman and Strooper

(2002) developed a white-box tool that automatically generates boundary values for testing Java classes.

JCover can support analysis of code coverage achieved when testing Java programs (Codework 2009).

The tools that are of most interest in this thesis are those that can be used for the generation of black-box

test data values and test cases. This includes tools for Random Testing (Section 2.7.1), Syntax Testing

(Section 2.7.2), black-box testing (Section 2.7.3), Classification Trees (Section 2.7.4) and a new prototype

testing tool called the Atomic Rules Testing Tool (ARTT), which automates Atomic Rule definitions of EP,

BVA and ST (see Chapter 3 and 4).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 83

2.7.1 Automated Random Testing

In terms of automation, Random Testing is probably the most well supported black-box testing method.

Pseudo-random number generators are provided with most standard programming languages and are

available in simple-to-use functions like randbetween in Microsoft Excel. Combinatorial test methods are

also well supported, as numerous algorithms are available (see Section 2.2.7).

2.7.2 Automated Syntax Testing

Automated Syntax Testing dates back to as early as the 1960’s and 1970’s. In 1962, Sauder

implemented a tool that parsed data declarations in COBOL programs to determine the nature of valid

inputs in order to generate test data (Sauder 1962). In 1977, Houssais conducted an experiment to measure

the detection of faults in an Algol 68 compiler using a test data generation tool that automatically produced

syntactically and semantically correct test programs (Houssais 1977). Although Houssais did not provide an

example of the language in which the specifications were written, it did state that the grammar was a subset

of affix grammars for Algol 68. Examples of the types of test cases that were generated were testing loops

with 1, 2, 3 and ‘many’ iterations. While Houssais maintained that the method could be used to generate

invalid test programs, this was not included in his research or experimentation, nor was an explanation of

how this could be achieved. Thus, the main shortcomings of this paper were that it did not explain how the

test programs were derived and did not describe the test generation algorithm utilised.

In 1982, Fultyn described an automated approach for constructing valid inputs from BNF specifications

(Fultyn 1982), which could be considered to be a form of ST. The approach involved random selection of

terminals and randomly made decisions about whether to include optional constructs in test cases. One

advantage was that program features that would not usually be executed by users were tested. On the other

hand, neither the testing strategy nor the automated tool was verified through experimentation or analysis.

A more recent tool that automates Syntax Testing is JSynTest (JSynTest). This tool takes a specification

expressed in a variant of BNF as input, generates an Abstract Syntax Tree (referred to as an “AND-OR

graph”) and outputs a Java program that can either be used to generate test cases or become part of the input

validation code of the system under test. Beizer (1995) observed that automation of Syntax Testing is

readily achieved through LEX and YACC and commercial tools like T, which has also been used to

automate BVA (Jorgensen 2002). Bouquet, Dadeau and Legeard (2006) developed a grey-box testing tool

that automatically selects boundary values from “built in” datatypes such as integers and characters from

Java classes expressed in the Java Modelling Language (JML).

2.7.3 Automated Black-Box Testing

CaseMaker is a commercial testing tool that can be used to automatically generate test data values and

test cases for EP, BVA, EG, Decision Tables and Pair-wise testing (Figure 2-19) (Díaz & Hilterscheid).

CaseMaker can generate test cases from input data specifications produced in Microsoft Word or as UML

statecharts and business rules expressed in a formal notation. Equivalence classes are automatically

generated for range-based fields by identifying partitions below the lower boundary (invalid partition),

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 84

above the upper boundary (invalid partition), between the lower and upper boundaries (valid partition) and

by selecting ‘any other value’ (invalid partition defined by exclusion). For lists, partitions are generated by

selecting the valid items in the input list (valid partition) and ‘any other value’ (invalid partition defined by

exclusion). Test data values are automatically generated from each equivalence class, which can include the

nominal value, boundary values, random values and all values. Expected results called “effects” can be

added to each test data value and dependencies between values can be specified (Case Maker Part 3 2007).

Test cases are then automatically generated using a Pair-wise algorithm. Test cases can be output in

comma-separated format (csv), HTML, XLS and Microsoft Word. Comma-separated files can be input into

Microfocus’ (formally Compuware’s) automation tool called Test Partner and can then be used to design

automated test scripts.

Interestingly, CaseMaker does not generate test data values that lie just outside and just inside the

boundaries of range-based fields. Although ST is not directly supported by the tool, ‘functions’ can be

applied to the test data values that are selected by the tool, to manipulate (i.e. mutate) them in a similar

fashion to ST (Case Maker Part 4 2007). Manipulation functions include date and time conversion

functions, mathematical (e.g. absolute value, maximum and maximum values, round, square root), text

conversion (e.g. convert from lower case to upper case and visa versa, concatenate), trigonometric (e.g.

sine, cosine, tangent) and constants (e.g. speed of light, gravity). CaseMaker also enables allocation of

prefixes and suffixes to test data values (e.g. % and $).

A case study that assessed CaseMaker against Comverse’s Mobile Internet Solutions system revealed

that the tool improved test coverage and reduced testing by two person weeks (from a total duration of two

person months) and in one component, it reduced the duration of manual test data derivation by three to

four times (Tsubery 2007).

Figure 2-19: Equivalence class generation in CaseMaker (Díaz & Hilterscheid).

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 85

2.7.4 Classification Trees

An automated tool called the Classification-Tree Editor (CTE) has been developed for supporting the

construction of Classification Trees (Lehmann & Wegener 2000). While this tool supports the

documentation of Classification Trees and the generation of test cases, it does not automate the

identification of equivalence classes, boundary values or syntax testing values for input fields.

2.8 Summary

In this chapter, the features, advantages, disadvantages, similarities and differences of a wide variety of

black-box testing methods were presented. This literature survey included a detailed examination of at least

seven problems that affect the usability and failure-detection effectiveness of existing black-box testing

methods: definition by exclusion, multiple versions, method overlap, notational and terminological

differences, reliance on domain knowledge, difficult to audit and difficult to automate.

Common terminology used in black-box test case design was introduced first (Section 2.1.1). This was

followed by a discussion of the four key steps of black-box test case design (Section 2.2). Individual black-

box testing methods were presented and the seven problems with black-box testing methods mentioned

above were discussed (Sections 2.2.1 to 2.2.9). A summary of how each of the black-box testing methods

explored touches on the four steps of black-box test case design was then presented (Section 2.3).

Approaches to combining (Section 2.4) and selecting test methods (Section 2.5) were then presented. This

included a review of experimental comparisons of black-box testing methods (Section 2.5.5). External

influences on test case quality were explored (Section 2.6), including specification language and domain

knowledge. Approaches to black-box test method automation were also reviewed (Section 2.7)

The seven problems with existing descriptions of black-box testing methods that were explored in this

chapter indicate a need for a prescriptive, uniform notation for representing these methods that resolves

these problems and that ultimately improves the usability and failure-detection effectiveness of these

methods. Improved approaches to specifying program input and output fields would also enable more

effective testing, as would approaches for guiding testers in the creation of customised black-box testing

methods.

In the next chapter, three new approaches to supporting more effective black-box testing are introduced,

in an attempt to resolve these issues. They are the Atomic Rules approach, Systematic Method Tailoring

and Goal/Question/Answer/Specify/Verify.

Black-Box Testing – History and Practice Chapter 2

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 86

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 87

Chapter 3

A Generalised Representation for Black-Box Testing
Methods

"As a matter of cosmic history, it has always been easier to destroy than to create."
Mr. Spock, Star Trek II: The Wrath of Khan, 1982

3.1 Overview

As stated in the introduction, the goal of this thesis is to investigate and resolve seven problems with

existing descriptions of black-box testing methods that affect the usability and failure-detection

effectiveness of the methods; these were: definition by exclusion, multiple versions, method overlap,

notational and terminological differences, reliance on domain knowledge, difficult to audit and difficult to

automate. In this chapter, a new representation for describing black-box testing methods called the Atomic

Rules approach is introduced, in an attempt to resolve these problems. Two supporting approaches are also

introduced, Systematic Method Tailoring and Goal/Question/Answer/Specify/Verify.

In the Atomic Rules approach, black-box testing methods are decomposed into individual test case

design rules called ‘Atomic Rules.’ Each Atomic Rule is defined in an instance of a characterisation schema

called the ‘Atomic Rules schema,’ which defines the characteristics of each individual test case design rule

in a uniform notation. The Atomic Rules are then utilised within the four-step black-box test case design

process (which was introduced in Chapter 1), allowing each black-box testing method to be defined in a

uniform notation. For example, the illustration below demonstrates the decomposition of Myers’ original

definition of Equivalence Partitioning into Atomic Rules and the redefinition of this test method in the four-

step test case design process (Figure 3-1).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 88

Figure 3-1: Example of developing an Atomic Rules definition of Myers’ (Myers 1979)
definition of Equivalence Partitioning.

Once a black-box testing method has been described in the Atomic Rules approach, it can be applied to

the specification of a program’s inputs and outputs to generate black-box test cases in a far more repeatable

and predictable fashion that would be possible using its original formulation (Figure 3-2). Eleven black-box

testing methods have been represented in the Atomic Rules approach, including Equivalence Partitioning,

Boundary Value Analysis, Syntax Testing and combinatorial methods Each Choice, Base Choice,

Orthogonal Array Testing, Heuristic Pair-Wise, All Combinations, Specification-Based Mutation Testing

and the combined approaches Base Choice/Orthogonal Array Testing and Base Choice/Heuristic Pair-Wise

Testing (see Appendix B).

Atomic Rules Definition of Equivalence Partitioning
(see Section 3.3.1.1 and Appendix B)

The Atomic Rules
Characterisation Schema

(see Section 3.2.2)

Traditional Description of Equivalence Partitioning
(see Chapter 2, Section 2.2.1)

Four-Step Test Case Design Process
for Equivalence Partitioning

Atomic Rules for
Equivalence Partitioning

The Atomic Rules
Four Step Test Case Design Process

(see Section 3.2.1)

apply to

decompose into

apply to

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 89

Figure 3-2: Illustration of applying the Atomic Rules definition of Equivalence Partitioning to a
specification to design black-box test data and test cases.

In summary, the Atomic Rules approach resolves the seven problems with traditional black-box testing

methods in the follow ways.

The uniformity of the Atomic Rules characterisation schema and four-step test case design process

resolves notational and terminological differences between methods by providing them with a common

vocabulary and process model. Method overlap is resolved during method decomposition by identifying

Atomic Rules that overlap both within and between methods. Multiple versions of the same method are

resolved by creating one set of Atomic Rules that covers the test case design rules of all published versions

of that method. This also makes the methods easier to audit, since checks for test set completeness can be

Program Input/Output Data Specification
(e.g. see Section 3.4)

Atomic Rules Definition of Equivalence Partitioning
(see Section 3.3.1.1 and Appendix B)

 Four-Step Test Case Design Process
for Equivalence Partitioning

Atomic Rules for
Equivalence Partitioning

apply to

design

Black-Box Test Data Values & Test Cases
(e.g. see Section 3.4)

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 90

based on the one prescriptive definition of each black-box testing method. Definition by exclusion is

resolved by defining a series of Atomic Rules for Equivalence Partitioning that each select equivalence

classes for one explicit datatype (e.g. integer, real, alpha, non-alphanumeric), thereby expressing the

universe of discourse for program inputs. This also reduces reliance on domain knowledge, as it provides

testers what one definition of the universe of discourse with respect to program inputs and ensures that each

Atomic Rule is defined to a level of detail that facilitates the design of effective and predictable test cases,

regardless of a tester’s own unique domain knowledge and experience. The prescriptive notation and

process used in the Atomic Rules approach also the methods easier to automate. In Chapter 4, a prototype

testing tool called the Atomic Rules Testing Tool is presented. ARTT automates the application of Atomic

Rules from EP, BVA and ST to specifications input by the user and can also be used to record domain

knowledge captured during GQASV and to define new Atomic Rules through SMT.

Reliance on domain knowledge is also reduced via two new approaches called SMT and GQASV. SMT

enables the creation of new Atomic Rules that are based on each tester’s own unique domain knowledge,

allowing that knowledge to be specified, shared and reused. GQASV supports the definition of precise input

data specifications to support more effective black-box testing (when such specifications are not readily

available) and also supports the capture of domain knowledge that is utilised during the specification

process, allowing the knowledge gained during the specification process to be shared and reused.

An additional benefit is that individual Atomic Rules from EP, BVA and ST can be used to aid test data

selection for methods like State Transition Testing, Use Case Testing and the Category Partition Method.

The current chapter begins by describing the Atomic Rules’ four-step test case design process (Section

3.2.1) and characterisation schema (Section 3.2.2). Decomposition of black-box testing methods into

Atomic Rules is demonstrated for EP, BVA, ST and one combinatorial testing method (Section 3.3.1.4).

This is followed by worked examples that demonstrate the application of the Atomic Rules definition of EP,

BVA and ST to an example specification for an Address Parser (Section 3.4). Additional benefits of the

Atomic Rules approach are then discussed, including how it simplifies the checking the completeness of

black-box test sets (Section 3.5) and how it can be used to support State Transition Testing (Section 3.6.1),

Use Case Testing (Section 3.6.2) and the Category Partition Method (Section 3.6.3). Then, improvements

(Section 3.7) and limitations (Section 3.8) of the Atomic Rules approach are presented. This is followed by

research related to the development of characterisation schemas and method decomposition (Section 3.9).

Goal/Question/Answer/Specify/Verify and Systematic Method Tailoring are then introduced (Section 3.10)

and demonstrated against a real-world online foreign currency calculator (Section 3.10.3).

3.2 The Atomic Rules Approach

The Atomic Rules approach was developed by analysing the common elements of eleven different

black-box testing methods, including Equivalence Partitioning (EP), Boundary Value Analysis (BVA),

Syntax Testing (ST) and combinatorial methods Each Choice, Base Choice, Orthogonal Array Testing,

Heuristic Pair-Wise, All Combinations, Specification-Based Mutation Testing (SBMT) and the combined

approaches Base Choice/Orthogonal Array Testing and Base Choice/Heuristic Pair-Wise Testing, which

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 91

were described differently in fifteen different sources (Beizer 1984, Beizer 1990, BS 7925-2, Craig &

Jaskiel 2002, Graham 1994, Grindal et al. 2004, Hetzel 1988, Jorgsensen 1995, Kaner 1988, Lewis 2000,

Mandl 1985, Marick 1995, Mosley 1993, Murnane & Reed 2001, Myers 1979). This revealed a common set

of attributes that could be used to characterise the test case design rules within the methods. The attributes

were used to build the Atomic Rules schema (Section 3.2.2). This also evolved into a four-step test case

design process for black-box testing (Section 3.2.1).

A significant number of other ‘duplicate’ publications of EP, BVA, ST and combinatorial testing

methods were also cited during this investigation, including (Abbott 1986, Beizer 1995, Burnetein 2003,

Copeland 2004, Grindal et al. 2005, Hetzel 1988, Hutcheson 2003, Jorgensen 2002, Kaner et al. 2001, Kit

1995, Mosley & Posey 2002, Myers 2004, Ould & Urwin 1986, Page et al. 2009, Parrington & Roper 1989,

Patton 2006, Perry 2000, Pressman 1992, Rae et al. 1995, Sommerville 1994, Tamres 2002, Watkins 2001).

3.2.1 The Four-Step Black-Box Test Case Design Process

As introduced in Chapter 2, each black-box testing method typically focuses on just one of the four key

steps of black-box test case design, as follows.

1. partitioning of the input domain of a program;

2. selection of individual test data values from each partition;

3. manipulation or “mutation” of the test data values; and

4. combining test data values to construct test cases.

Although some black-box testing methods cover more than one of these steps, a published definition of

a method usually focuses on just one of these steps. For example, EP provides guidance on partitioning the

input domain, selecting test data and designing of test cases. Although it covers three of the four steps of

black-box test case design, it specialises in providing guidance for input and output domain partitioning.

Also, several methods share common test case design steps. For example, boundary values are typically

selected from the edges of equivalence classes that are typically identified through EP (e.g. see (Myers

1979)). While ST is not described as a partitioning approach and does not include explicit guidelines for

partition selection, partitions must implicitly be selected for each input field to enable selection of syntax-

based test data values. These insights led to the definition of a fundamental four-step test case design

process for black-box testing that was defined in Chapter 1 (Figure 1-4) (Murnane et al. 2005, 2007). An

analysis of the eleven different black-box testing methods studied in this research revealed that each could

be decomposed into a set of Atomic Rules, where each Atomic Rule has a ‘rule type’ that corresponds to

one of these four steps (see Chapter 1, Figure 1-4). When used in conjunction with a set of Atomic Rules

from a particular method, this four-step process can be used to construct black-box test cases in the usual

way (Section 3.4).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 92

3.2.2 The Atomic Rules Schema

The Atomic Rules schema (Table 3-1) comprises fourteen attributes that were identified by analysing

the common features of test case design rules from the eleven different black-box testing methods under

examination (see Section 3.2). The attributes of this schema are as follows.

1. Test Method. The name of the test method the test case design rule was derived from (e.g.

Equivalence Partitioning, Boundary Value Analysis, Syntax Testing).

2. Number. A unique identifier given to each rule, which starts with an abbreviation of the name of

the test method and ends with an incremental number (e.g. EP1, EP2, EP3).

3. Identifier. An abbreviation of the Name field.

4. Name. The name of the rule.

5. Description: Describes the ‘functionality’ of the rule (i.e. test data or test cases it derives).

6. Source. The reference from which the rule was derived. For example, many EP rules were derived

from (Myers 1979), while many ST rules were derived from (Beizer 1995) and (Marick 1995).

Atomic Rules that were defined as a part of this research have “N/A” in this field.

7. Rule Type. There are four types of Atomic Rules, corresponding to the four-steps test case design

process. Data-Set Selection Rules (DSSRs) partition the input and output domains of a program

into equivalence classes, Data-Item Selection Rules (DISRs) select test data values from each

partition, Data-Item Manipulation Rules (DIMRs) “mutate” test data values and Test Case

Construction Rules (TCCRs) combine test data values into test cases.

8. Set Type. This corresponds to the set type of the input field the rule can be applied to. For

example, some Atomic Rules can only be applied to contiguous data ranges (e.g. DISRs from

BVA), while others can only be applied to list-based fields (e.g. DSSRs from EP that select values

lists). Thus, the values List and Range can appear in this field.

9. Valid or Invalid: Describes whether the rule selects valid test data that a program should accept

as correct or invalid test data that it should reject as incorrect.

10. Original Datatype. This records the datatypes of input and output fields that the rule can be

applied to. For example, one ST rule substitutes a lowercase letter for an uppercase letter and this

can only be applied to fields of datatype ‘alpha.’

11. Test Datatype. This records the datatype of test data selected by the rule. For example, some EP

rules specifically select invalid datatypes as test data.

12. Test Data Length. This contains the length (in characters) of test data selected by the rule. For

example, some ST rules select one character as test data, while others select strings.

13. # Fields Populated. This records the number of fields that are populated with test data when the

rule is applied. For example, BVA rules select test data for one field at a time, whereas Test Case

Construction Rules can populate all fields of a test case at once.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 93

14. # Tests Derived. For Test Case Construction Rules, this field contains an equation of the number

of test cases derived.

Each of these characteristics is defined as an attribute in the Atomic Rules schema (Table 3-1).

Table 3-1: The Atomic Rules characterisation schema.

Attribute Type Definition

Test Method enum

Black-box testing method that the Atomic Rule was originally derived from. Options
are: Equivalence Partitioning, Boundary Value Analysis, Syntax Testing,
Specification-Based Mutation Testing, Each Choice, Base Choice, Orthogonal Array
Testing, Heuristic Pair-Wise, All Combinations, Specification-Based Mutation Testing
and the combined approaches Base Choice/Orthogonal Array Testing and Base
Choice/Heuristic Pair-Wise Testing, N/A (for new Atomic Rules that are defined
through SMT).

Number String Unique identifier given to each rule.

Identifier String Abbreviation of rule name.

Name String Unique name given to each rule.

Description String Brief description of what the rule does.

Source enum
References from which rule was derived. N/A denotes Atomic Rules defined in this
thesis.

Rule Type enum
Corresponds to the four-step test case design process. Options are: Data-Set
Selection Rule (DSSR), Data-Item Selection Rule (DISR), Data Item Manipulation
Rule (DIMR) or Test Case Construction Rule (TCCR) (see Section 3.2.1).

Set Type enum Specifies the set type each rule applies to. Options are: List, Range or Both.

Valid or
Invalid

enum Identifies whether the rule selects valid or invalid test data.

Original
Datatype

datatype
Defines datatypes to which each rule can be applied. Options are: Integer, Real,
Single Alpha, Multiple Alpha, Multiple Alphanumeric, Single Non-Alphanumeric,
Multiple Non-Alphanumeric, Null, or “All” if rule applies to all datatypes.

Test
Datatype

datatype
Defines datatype of selected test data. Options are: Integer, Real, Single Alpha,
Multiple Alpha, Multiple Alphanumeric, Single Non-Alphanumeric, Multiple Non-
Alphanumeric, Null or ‘Same as original’ if rule does not change the field’s datatype.

Test Data
Length

integer
Specifies the maximum length of test data selected by the rule. If original datatype
and test datatype are the same, then ‘Same as original’ will appear. If test datatype
depends on the maximum length of selected data, then ‘Max’ will appear in this field.

Fields
Populated

string Number of input fields for which the rule selects test data during one application.

Tests
Derived

string
Count of the number of test cases derived by the rule. DSSRs, DISRs and DIMRs do
not select test cases, thus they have “0” under this attribute. TCCRs can hold an
equation to calculate this, based on the number of fields in the test case.

The semantics of most of the attributes in the Atomic Rules schema (Table 3-1) are evident from their

definition. However, there are three attributes that require further explanation:

 Set Type,

 Original Datatype and

 Test Datatype.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 94

Set Type defines whether an Atomic Rule can be applied to an input data field that is specified as a ‘list’

or a ‘range’ (referred to as ‘list-based’ and ‘range-based’ fields). For example, some EP rules only apply to

ranges of contiguous data, while others only apply to data stored in lists (Myers 1979). Lists can be

expressed as L ::= [v1 | v2 | … | vn] or L ::= [v1, v2, …, vn] where n is the number of v values contained in list

L. Ranges can be represented as {R : lb R ub} or R ::= [lb – ub], which denotes the range of values from

lower boundary lb to upper boundary ub. These terms were adapted from similar concepts discussed in

(Jorgensen 1995, Lewis 2000, Mosley 1993, Myers 1979, Page et al. 2009). For example, in their definition

of EP, Page, Johnston and Rollison (2009) use the term ‘Range’ to describe a set of contiguous data and

‘Group’ to describe sets of related items that are each processed in the same way by the program.

Original Datatype and Test Datatype make use of eight ‘base’ datatypes that are required for defining

black-box test case design rules. A characterisation schema for classifying datatypes was defined to specify

each one in a standard notation (Table 3-2). The schema was then populated for eight base datatypes:

integer, real, single alpha, multiple alpha, multiple alphanumeric, single non-alphanumeric, multiple non-

alphanumeric and null (Table 3-3) (‘single alphanumeric’ was not defined as a datatype, since it is not

possible to define a single character string with two datatypes represented). Defining eight Atomic Rules for

EP that each correspond to one of these datatypes resolves definition by exclusion (see Section 3.3.1.1).

Table 3-2: Characterisation schema for defining the datatype of program input and output fields1.

Attribute Type Definition

Name string A unique name for each datatype.

Set Type enum Describes the set type of the datatype. Options are List and Range.

Size string
Max length of datatype in bytes. Length can depend on implementation using the
datatype (Meek 1994), for which “Max buffer length” will appear.

Example string A simple example.

Table 3-3: Datatypes defined for use in the Atomic Rules schema
(used by Atomic Rules schema fields Original Datatype and Test Datatype).

Name Set Type Size Example

Integer List or Range Max buffer length
List: [-30, 4, 16, -1, 25]
Range: [-16 – 335]

Real List or Range Max buffer length
List: [10.4, -100.5, 3.2]
Range: [-12.1 – 54.23]

Single Alpha List or Range 1 byte
List: [e, a, n, B, c, H, I]
Range: [e – g]

Multiple Alpha List Max buffer length
List: [Melbourne, Sydney, Adelaide, Perth,
Darwin, Hobart, Canberra, Brisbane]

Multiple
Alphanumeric

List Max buffer length List: [4z3A, A83, b44]

Single Non-
Alphanumeric

List or Range 1 byte
List: [“, (, %, *, “, +, &]
Range: [“– +]

Multiple Non-
Alphanumeric

List Max buffer length List: [*&%, ()*&^&^$, {}:”<>?]

Null (empty) List or Range 0 bytes
List: []
Range: []

1 The columns of Table 3-2 relate to the domains of Reed’s KABASPP model (Reed 1990) as follows. Name (col. 1), Set Type (col. 2)
and Example (col. 4) are from the application solution domain and Size (col. 3) is from the development and run-time domain.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 95

3.3 Representing Black-Box Testing Methods as Atomic Rules

Fifty-two Atomic Rules were defined for the eleven black-box testing methods analysed in this thesis

(see Appendix B). To demonstrate the decomposition of original descriptions of black-box testing methods

into Atomic Rules, Atomic Rule definitions of EP, BVA, ST and All Combinations are provided below.

3.3.1.1 Decomposing Equivalence Partitioning

Using the above definitions, it is possible to decompose Myers’ original definition of EP (Myers 1979)

into a set of Atomic Rules, and to show that the test case design procedure for this method is readily

concerted into the four-step test case design process (see Section 3.2.1) that has been developed. In

addition, decomposition of test case design rules from two other definitions of EP (published in (Jeng &

Weyuker 1989, BS 7925-2)) are included, allowing all method variations to be included (i.e. definitions

from (Abbott 1988, BS 7925-2, Burnstein 2003, Copeland 2004, Craig & Jaskiel 2002, Jorgensen 1995,

Kaner 1988, Kit 1995, Mosley 1993, Mosley & Posey 2002, Myers 1979, Page et al. 2009, Patton 2005,

Parrington & Roper 1989, Pressman 1992, Tamres 2002) are included). This consolidation would be

difficult to achieve without both the Atomic Rules and the four-step process having been defined.

Myers’ (1979) test case design guidelines (Table 3-4, col. 1) are first decomposed into individual test

case design rules (Table 3-4, col. 2) and then each rule is defined as an Atomic Rule (Table 3-4 col. 3 and

Table 3-5). Consider Myers’ (1979) first guideline, which is as follows:

“If an input condition specifies a range of values (e.g. “the item count can be from 1 to 999”),

identify one valid equivalence class (1 item count 999) and two invalid equivalence classes

(item count < 1 and item count > 999).”

This guideline can be decomposed into the following test case design rules, which can then be

documented as individual Atomic Rules.

1. Equivalence class ‘item count < 1’ is covered by a test case design rule that selects an

equivalence class containing all values below the lower boundary of the field, which becomes

Atomic Rule EP1: Less Than Lower Boundary Selection.

2. Equivalence class ‘item count > 999’ is covered by a test case design rule that selects an

equivalence class containing all values above the upper boundary of the field, which becomes

Atomic Rule EP2: Greater Than Upper Boundary Selection.

3. Equivalence class ‘1 item count 999’ is covered by a test case design rule that selects an

equivalence class containing all values between the lower and upper boundary of a field, which

becomes Atomic Rule EP3: Lower to Upper Boundary Selection.

Thus, each test case design rule is documented as an Atomic Rule that selects test data for a range-based

field (Table 3-5). This process allows method overlap to be resolved. For example, Myers’ first and second

guidelines both identify equivalence classes for range-based fields (Table 3-4 col. 1, guidelines 1 and 2).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 96

Thus, they can be decomposed into three test case design rules (Table 3-4 col. 2, rules a to c) and three

corresponding Atomic Rules (Table 3-4 col. 3, EP1, EP2 and EP3). EP1 to EP3 can be applied to any field

containing contiguous data, including alpha and non-alphanumeric, if the ASCII table is used to identify

values that lie outside field boundaries. These three Atomic Rules can also be used to test field repetition.

For example, consider the field <vehicle> ::= [car | truck | motorbike | van]1-4, which specifies a list of

vehicle types from which a user can choose one to four vehicles. These rules could be used to identify

equivalence classes for testing when the user chooses less than one vehicle (i.e. zero vehicles, using EP1),

greater than four vehicles (using EP2) and between one and four vehicles (using EP3).

Table 3-4: Decomposing Myers’ definition of Equivalence Partitioning into Atomic Rules.

Myers’ Definition of Equivalence Partitioning

Corresponding Atomic Rules2 Myers’ (1979) Definition of EP Test Case Design Rules

1. “If an input condition specifies a
range of values (e.g. “the item count
can be from 1 to 999”), identify one
valid equivalence class (1 item
count 999) and two invalid
equivalence classes (item count < 1
and item count > 999)”

2. “If an input condition specifies a
number of values (e.g. “one through
six owners can be listed for the
automobile”), identify one valid class
and two invalid equivalence classes
(no owners and more than six
owners)”

a. Select a partition containing
values between the lower and
upper boundary of a field (covers
‘1 item count 999’ and ‘one to
six owners’)

b. Select a partition containing
values below the lower boundary
of a field (covers ‘item count < 1’
and ‘0 owners’)

c. Select a partition containing
values below the lower boundary
of a field (covers ‘item count >
999’ and ‘more than six owners’)

EP3: Lower to Upper Boundary Selection

EP1: Less Than Lower Boundary Selection

EP2: Greater Than Upper Boundary
Selection

3. “If the input condition specifies a set
of values and there is reason to
believe that each is handled
differently by the program (e.g. “type
of vehicle must be BUS, TRUCK,
TAXICAB, PASSENGER, or
MOTORCYCLE”), identify a valid
equivalence class for each one and
one invalid equivalence class (e.g.
“TRAILER”)”

d. identify a valid equivalence class
for each one

EP12: Valid List Selection

e. identify one invalid equivalence
class

EP4: Integer Replacement

EP5: Real Number Replacement

EP6: Single Alpha Replacement

EP7: Multiple Alpha Replacement

EP8: Multiple Alphanumeric Replacement

EP9: Single Non-Alphanumeric
Replacement

EP10: Multiple Non-Alphanumeric
Replacement

4. “If an input condition specifies a
“must be” situation (e.g. “first
character of the identifier must be a
letter”), identify one valid
equivalence class (it is a letter) and
one invalid equivalence class (it is
not a letter)”

f. Select a partition containing all
letters
(overlaps with f)

EP12: Valid List Selection or

EP3: Lower to Upper Boundary Selection

g. Select a partition containing
everything that is not a letter
(overlaps with f)

EP4: Integer Replacement

EP5: Real Number Replacement

EP7: Multiple Alpha Replacement

EP8: Multiple Alphanumeric Replacement

EP9: Single Non-Alphanumeric
Replacement

EP10: Multiple Non-Alphanumeric
Replacement

5. “If there is reason to believe that
elements in an equivalence class are
not handled in an identical manner
by the program, split the equivalence
class into smaller equivalence
classes”

N/A This guideline is part of the partitioning that
occurs during application of guidelines 1 to
4. Thus, this does not require an Atomic
Rule.

2 See Appendix B for definitions of these Atomic Rules in the Atomic Rules characterisation schema.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 97

Definition by exclusion in Myers’ (1979) fourth guideline can also be resolved, as follows:

“If an input condition specifies a “must be” situation (e.g. “first character of the identifier

must be a letter”), identify one valid equivalence class (it is a letter) and one invalid

equivalence class (it is not a letter).”

This guideline is decomposed into test case design rules that select valid partitions and ‘replacement’

rules that select invalid partitions by datatype (Table 3-4 col. 3, EP3, EP4 to EP10 and EP12). The

selection of the valid partition ‘it is a letter’ is covered as follows3.

 If the assumption is that that the input is treated by the programmer as a list then select an

equivalence class containing all values in that list, which becomes EP12.

 If the assumption is that the input is treated as a range then select an equivalence class

containing all values between the lower and upper boundaries of the field.

The selection of the invalid partition ‘it is not a letter’ is covered by defining the following

‘replacement’ rules that select invalid partitions by datatype:

 EP4: Integer Replacement, which replaces the field with an equivalence class containing

integers

 EP5: Real Number Replacement, which replaces the field with an equivalence class containing

real numbers

 EP7: Multiple Alpha Replacement, which replaces the field with an equivalence class

containing multiple alphabetic characters

 EP8: Multiple Alphanumeric Replacement, which replaces the field with an equivalence class

containing multiple alphanumeric characters

 EP9: Single Non-Alphanumeric Replacement, which replaces the field with an equivalence

class containing individual non-alphanumeric characters

 EP10: Multiple Non-Alphanumeric Replacement, which replaces the field with an equivalence

class containing multiple non-alphanumeric characters

 EP12: Null Item Replacement, which replaces the field with the empty set

One other replacement rule is required to select invalid equivalence classes for non-alpha fields:

 EP6: Single Alpha Replacement, which replaces the field with an equivalence class containing

individual alphabetical characters

These replacement rules cover the 94 printable characters of the ASCII table, as well as contiguous

datatypes ‘integer’ and ‘real’4. They facilitate input domain partitioning by datatype, defining a ‘universe of

3 Depending on how the program was written, a programmer may treat the set of allowable alphabetical characters as an ASCII range
(e.g. [ASCII(65) – ASCII(90)] or as a list (e.g. [A | B | C | … | Z]).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 98

discourse’ for program inputs (see Section 1.5). Replacement rules could be defined for other numerical

datatypes such as ‘float’ and for other character sets such as those defined in the Unicode table (see Section

3.10.2.2).

Theoretically, replacement rules that select specific datatypes (i.e. EP4 to EP11) can be applied to input

fields of the same datatype, as long as they are used to select equivalence classes that exclude the valid

inputs for that field. For example, EP7: Multiple Alpha Replacement could be applied to a field <colour>

::= [red | green | blue], to select any combination of upper and lowercase alphabetical characters other than

those in the valid set.

A number of other test case design rules for EP were utilised by Myers (1979) and other authors (see list

below). Thus, the following Atomic Rules have been defined.

 EP14: Valid Test Case Constructor – Minimised, which constructs test cases by covering as many

valid partitions as possible per test case (e.g. see (Myers 1979))

 EP15: Invalid Test Case Constructor – Maximised, which constructs test cases by covering as

many invalid partitions as possible per test case (e.g. see (Myers 1979))

 EP16: Invalid Test Case Constructor – Minimised, which constructs test cases by covering one

invalid partitions as possible per test case (e.g. see (BS 7925-2))

 EP18: Valid Test Case Constructor – Maximised, which constructs test cases by covering as many

valid partitions as possible per test case (e.g. see (BS 7925-2))

 EP13: Random Data Value Selector, which covers the selection of a single randomly chosen test

data value from an equivalence class (e.g. see (Jeng & Weyuker 1989)).

 EP17: Nominal Data Value Selector, which selects the mid-point of an equivalence class (e.g. see

(Myers 1979))

Since Data-Set Selection Rules from EP are used by other black-box testing methods, they could be

labelled as ‘common’ rules. As the strength of EP is in the selection of equivalence classes, these rules have

remained within this method. This assumes that EP will always be used to identify equivalence classes prior

to boundary value selection.

This completes the decomposition of EP into Atomic Rules.

4 The particular range of integers or real numbers that is selected can depend on the programming language being used in the system
under test, which is part of the “application solution domain” (Reed 1990) of the program. This information can be identified through
grey-box testing and through GQASV (e.g. see Section 3.10.3).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 99

Table 3-5: Three Atomic Rules from Equivalence Partitioning.

Attribute Values Values Values

Test Method Equivalence Partitioning Equivalence Partitioning Equivalence Partitioning

Number EP1 EP2 EP3

Identifier LLBS GUBS LUBS

Name
Less than Lower Boundary
Selection

Greater than Upper
Boundary Selection

Lower to Upper Boundary
Selection

Description

Select an equivalence class
containing values below the
lower boundary of a field

Select an equivalence class
containing values above the
upper boundary of a field

Select an equivalence class
containing values between the
boundaries of a field (including
the on-boundary values)

Source (Myers 1979) (Myers 1979) (Myers 1979)

Rule Type DSSR DSSR DSSR

Set Type Range Range Range

Valid or Invalid Invalid Invalid Valid

Original Datatype
Integer, Real, Alpha, Non-
Alphanumeric

Integer, Real, Alpha, Non-
Alphanumeric

Integer, Real, Alpha, Non-
Alphanumeric

Test Datatype Same as original Same as original Same as original

Test Data Length Same as original Same as original Same as original

Fields Populated 1 1 1

Tests Derived 0 0 0

For clarity, the following list explains how the attributes of one Atomic Rule, EP1: Less Than Lower

Boundary Selection were assigned (see Table 3-5 col. 2).

1. Test Method: this Atomic Rule was derived from Equivalence Partitioning.

2. Number: this unique identifier combines an abbreviation of the test method name EP and an

incremental number (starting at 1), resulting in EP1.

3. Identifier: LLBS is an abbreviation of the rule name ‘Less than Lower Boundary Selection.’

4. Name: Less than Lower Boundary Selection describes the selection of a partition of data that lies

below the lower boundary of a field.

5. Description: this describes the rule function in more detail. This rule selects a partition of data that

lies below the lower boundary of a field.

6. Source: this rule was defined by Myers, thus its reference source is (Myers 1979).

7. Rule Type: this rule is a Data-Set Selection Rule (DSSR) because it partitions the input and/or

output domain of a program.

8. Set Type: this rule applies to ranges of contiguous data.

9. Valid or Invalid: this selects an invalid partition that lies below the lower boundary of a field.

10. Original Datatype: since the rule only applies to range-based fields, it can only be applied to

datatypes that are contiguous. Thus, it applies to datatypes Integer, Real, Single Alpha and Single

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 100

Non-Alphanumeric (if an ASCII table is used to select values below a lower boundary of a

numeric, alpha or non-alphanumeric range).

11. Test Datatype: this rule does not alter the datatype of the original field. Thus, the value of this

attribute is Same as original.

12. Test Data Length: Same as original appears under this attribute as the length of the selected test

data depends on the length of the datatype the rule is being applied to. For example, if the rule is

applied to an integer field, the programming language used to implement the program under test

may impose a minimum to maximum range of -35535 to 35536.

13. # Fields Populated: this rule selects test data for 1 field at a time.

14. # Tests Derived: this rule does not construct test cases. Thus, the value of this attribute is 0.

The Atomic Rules four-step test case design process can now be documented for EP (Figure 3-3).

Figure 3-3: The four-step test design process for Equivalence Partitioning.

Equivalence Partitioning

1. Select equivalence classes as follows.

a. If an input or output field has a set type range then apply Atomic Rules EP1 to EP11 to the
field to select equivalence classes.

b. If an input or output field has a set type list then apply Atomic Rules EP4 to EP12 to select
equivalence classes.

2. Select one test data value from each equivalence class selected in step 1 by applying Atomic Rule
EP13 and/or EP17 to each class.

3. Omit step 3, as EP does not cover test data manipulation.

4. Select test cases that are:

a. valid: by applying EP14 and EP18 to valid test data values chosen in step 2;

b. invalid: by applying EP15 and EP16 to invalid test data values chosen in step 2.

This section has demonstrated the decomposition of Myers’ definition of EP into Atomic Rules in a

manner which, as was pointed out at the beginning of this subsection, allows all major definitions of EP to

be consolidated. Appendix B contains all Atomic Rules that were derived for EP, while Section 3.4.1.1

demonstrates the application of Atomic Rules from EP to an example input data specification.

3.3.1.2 Decomposing Boundary Value Analysis

Myers’ guidelines for BVA (Table 3-6, col. 1) can also be decomposed into test case design rules (Table

3-6, col. 2) and then documented as Atomic Rules (Table 3-6, col. 3 and Table 3-7). During this process,

method overlaps within BVA can be resolved (see Table 3-6, cols. 2 and 3). Myers’ definition includes

rules for testing the boundaries of range-based and list-based fields, as follows.

For range-based fields, Myers’ (1979) provides the following guideline:

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 101

“If an input condition specifies a range of values, write test cases for the edges of the range,

and invalid-input test cases for situations just beyond the ends. For instance, if the valid

domain of an input value is -1.0 - +1.0, write test cases for the situations -1.0, 1.0, -1.001 and

1.001.”

This guideline can be decomposed into the following Atomic Rules (see Table 3-6, col. 3):

 BVA1: Lower Boundary – Selection

 BVA2: Lower Boundary Selection

 BVA5: Upper Boundary Selection

 BVA6: Upper Boundary + Selection

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 102

Table 3-6: Decomposition of Myers' definition of Boundary Value Analysis into Atomic Rules.

Myers’ Guidelines for Boundary Value Analysis

Corresponding Atomic Rules5 Myers’ (1979) Guidelines Test Case Design Rules

1. If an input condition specifies a
range of values, write test cases for
the edges of the range, and invalid-
input test cases for situations just
beyond the ends. For instance, if the
valid domain of an input value is -1.0
- +1.0, write test cases for the
situations -1.0, 1.0, -1.001 and
1.001.

a. Select a value on the lower
boundary (covers -1.0)

BVA2: Lower Boundary Selection

b. Select a value on the upper
boundary (covers 1.0)

BVA5: Upper Boundary Selection

c. Select a value just below the
lower boundary (covers) -1.001

BVA1: Lower Boundary – Selection

d. Select a value just above the
upper boundary (covers 1.001)

BVA6: Upper Boundary + Selection

2. If an input condition specifies a
number of values, write test cases
for the minimum and maximum
number of values and one beneath
and beyond these values. For
instance, if an input file can contain 1
– 255 records, write test cases for 0,
1, 255 and 256 records.

e. Select a value just below the
lower boundary (covers 0
records) (overlaps with a)

BVA1: Lower Boundary – Selection

f. Select a value on the lower
boundary (covers 1 record)
(overlaps with b)

BVA2: Lower Boundary Selection

g. Select a value on the upper
boundary (covers 255 records)
(overlaps with c)

BVA5: Upper Boundary Selection

h. Select a value just above the
upper boundary (covers 256
records) (overlaps with d)

BVA6: Upper Boundary + Selection

3. Use guideline 1 for each output
condition. For instance, if a program
computes the monthly FICS
deduction and if the minimum is
$0.00 ad the maximum is $1165.25,
write test cases that cause $0.00
and $1165.25 to be deducted. Also,
see if it is possible to invent test
cases that might causes a negative
deduction or a deduction of more
than $1165.25.

i. Test the lower boundary of the
output field (covers $0.00)

BVA2: Lower Boundary Selection
(can be applied only to the output field)

j. Test the upper boundary of the
output field (covers $1165.25)

BVA5: Upper Boundary Selection
(can be applied only to the output field)

k. Test just below the lower
boundary of the field (covers
negative deduction)

BVA1: Lower Boundary – Selection
(can be applied only to the output field)

l. Test just above the upper
boundary of the field (covers
more than $1165.25)

BVA6: Upper Boundary + Selection
(can be applied only to the output field)

4. Use guideline 2 for each output
condition. If an information retrieval
system displays the most relevant
abstracts based on an input request,
but never more than four abstracts,
write test cases such that the
program displays zero, one and four
abstracts, and write a test case that
might cause the program to
erroneously display five abstracts.

m. Run a query that tests just
below the lower boundary of
the output field (covers 0
abstracts)

BVA1: Lower Boundary – Selection
(can be applied only to the output field)

n. Run a query that tests on the
lower boundary of the output
field (covers 1 abstract)

BVA2: Lower Boundary Selection
(can be applied only to the output field)

o. Run a query that tests on the
upper boundary of the output
field (covers 4 abstracts)

BVA5: Upper Boundary Selection
(can be applied only to the output field)

p. Run a query that tests just
above the upper boundary of
the output field (covers 5
abstracts)

BVA6: Upper Boundary + Selection
(can be applied only to the output field)

5. If the input or output of a program is
an ordered set (e.g. a sequential file,
linear list, table), focus attention on
the first and last elements of the set.

q. First element BVA7: First List Item Selection

r. Last element BVA8: Last List Item Selection

6. In addition, use your ingenuity to
search for other boundary
conditions.

NA An Atomic Rule cannot be defined for
this guideline.

5 See Appendix B for definitions of these Atomic Rules in the Atomic Rules characterisation schema.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 103

Myers’ (1979) definition does not cover testing just inside the boundaries of range-based fields, which is

included in other definitions of BVA (e.g. (BS 7925-2)). Thus, the following two rules are also defined.

 BVA3: Lower Boundary + Selection

 BVA4: Upper Boundary – Selection.

Each of these rules increment or decrement the upper or lower boundary of an equivalence class by one

‘unit of measure’, which is the minimum value that can be added or subtracted from the boundary according

to the datatype of the field under test. For example, consider the examples below, where the Atomic Rule

BVA1: Lower Boundary – Selection is applied to five different range-based fields.

1. If BVA1 is applied to an integer partition [1 – 9999] it will subtract 1 from the lower boundary to

select the test data value ‘0’.

2. If BVA1 is applied to a real number partition [2.00 – 4.00] it will subtract 0.01 from the lower

boundary to select the test data value ‘1.99’. Since real numbers may theoretically have infinite

precision, the value that is added or subtracted from the boundary is the smallest possible decimal

value from the field under test. The precision would typically depend on how the program was

designed and may also depend on the maximum allowable field length rather than the allowable

number of decimal places. If the precision of the field is not defined for the tester, they could use

Goal/Question/Answer/Specify/Verify to obtain such a definition. In fact, difficulties can arise

when the program does not actually constrain the precision of the input fields to that which was

specified. For example, in this example, the program may accept 3.999 as input, but reject 4.001.

In what follows, we assume that input precision is as specified, and that any deviations constitute

faults that will be detected elsewhere.

3. If BVA1 is applied to the alphabetical character partition [A – Z], using the ASCII collating

sequence, the test data value ‘@’ would be selected as it lies just below the lower boundary of the

partition (identification of test data values in this way may need to be guided through grey-box

information; for example, by seeking guidance from developers).

4. If BVA1 is applied to an non-alphanumeric range [“ – /], the test data value ‘!’ would be selected

as it lies just below the lower boundary of the partition in the collating sequence.

5. If BVA1 is applied to a field that repeats, e.g. <vehicle> ::= [car | truck | motorbike | van]1-4, it

would subtract 1 from the lower boundary of the repetition partition [1 – 4], which would test the

field with zero repetitions (i.e. it would test the field with null).

For list-based fields, Myers’ definition can be decomposed into the following two Atomic Rules.

 BVA7: First List Item Selection

 BVA8: Last List Item Selection

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 104

Although BVA2: Lower Boundary Selection and BVA5: Upper Boundary Selection could have been

utilised to select the lower and upper boundaries of list-based fields, it was felt that a separate set of rules

should be defined for lists, since only on-boundary and just-inside boundary values can be selected for lists.

While Myers’ definition of BVA does not cover the testing of inside boundary values for list-based

fields, this was used as a basis for selecting test cases by participants of an industry-based testing

experiment that is discussed in Chapter 6. Thus, the following two Atomic Rules can be defined to cover

these boundaries.

 BVA12: Second List Item Selection

 BVA13: Second Last List Item Selection

To ensure list-based and range-based fields are tested with null (e.g. for testing keyword-based fields

with a zero string length), the following rule was also defined.

 BVA9: Null Item Replacement

Although BVA9: Null Item Selection overlaps with EP11: Null Item Replacement, both have been

included to ensure that if only EP is applied to a program, then this rule will not be missed.

Myers (1979) also addresses testing the boundaries of output fields, as illustrated in his third and fourth

guideline, for example:

“Use guideline 1 for each output condition. For instance, if a program computes the monthly

FICS deduction and if the minimum is $0.00 ad the maximum is $1165.25, write test cases that

cause $0.00 and $1165.25 to be deducted. Also, see if it is possible to invent test cases that might

causes a negative deduction or a deduction of more than $1165.25.”

Although Atomic Rules BVA1 to BVA6 can be used to identify boundary values for output fields, using

the current Atomic Rules approach, they cannot be used to identify the input values that are required to

force the output boundaries to be exercised. For example, in Myers’ third guideline the following boundary

values are selected.

 Monthly FICS deduction = $0.00

 Monthly FICS deduction = $1165.25

 Monthly FICS deduction = negative deduction (i.e. -$0.01)

 Monthly FICS deduction = more than $1165.25 (i.e. $1165.26)

The input values that are needed to test these output boundaries currently cannot be selected by Atomic

Rules, since the approach to converting inputs to outputs needs to be identified and understood either by a

‘test oracle’ (defined by Howden (1981)) or by a human tester (see Section 3.8 for more information). The

input values that may be capable of producing these output BVA values often can only be obtained by

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 105

tracing backwards from them, through the application solution domain algorithms, to effectively ‘solve the

equations’ represented by the specification. This is considered to be beyond the current work.

The four-step test case design process can now be demonstrated for BVA (Figure 3-4). Since boundary

values are usually selected from the edges of equivalence classes (Myers 1979), partitioning rules from EP

are utilised within this definition. Invalid datatype replacement rules EP4 to EP11 are not included, as it is

unnecessary to select boundary values from partitions have already been covered during EP. Test Case

Construction Rules from EP are utilised, since BVA does not include unique rules for test case selection.

Appendix B covers definitions of all Atomic Rules for BVA, while Section 3.4.1.2 illustrates the

application of Atomic Rules from BVA to an example input data specification.

Table 3-7: Three Atomic Rules from Boundary Value Analysis.

Attribute Values Values Values

Test Method Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis

Number BVA1 BVA2 BVA3

Identifier LBM1 LB LBP1

Name Lower Boundary – Selection Lower Boundary Selection Lower Boundary + Selection

Description
Select value just below the
lower boundary

Select a value on the lower
boundary

Select a value just above the
lower boundary

Source (BS 7925-2) (Myers 1979) (Myers 1979)

Rule Type DISR DISR DISR

Set Type Range Range Range

Valid or Invalid Invalid Valid Valid

Original Datatype
Integer, Real, Single Alpha,
Single Non-Alphanumeric

Integer, Real, Single Alpha,
Single Non-Alphanumeric

Integer, Real, Single Alpha,
Single Non-Alphanumeric

Test Datatype Same as original Same as original Same as original

Test Data Length Same as original Same as original Same as original

Fields Populated 1 1 1

Tests Derived 0 0 0

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 106

Figure 3-4: The four-step test design process for Boundary Value Analysis.

Boundary Value Analysis

1. Select equivalence classes that exercise boundary values, as follows:

a. If an input has a set type range then apply Atomic Rules EP1, EP2 and EP3 to select
equivalence classes.

b. If an input has a set type list then apply rule EP12 to select equivalence classes.

2. Select boundary values as follows:

a. For each range-based equivalence class chosen in step 1a, apply BVA1 to BVA6 and
BVA9 to select individual boundary values.

b. For each list-based equivalence class chosen in step 1b, apply BVA7 to BVA13 to select
individual boundary values.

3. Omit step 3, since BVA does not cover test data manipulation

4. Select test cases that are:

a. valid: by applying EP14 and EP18 to valid test data values chosen in step 2;

b. invalid: by applying EP15 and EP16 to invalid test data values chosen in step 2.

3.3.1.3 Decomposing Syntax Testing

Five different versions of ST were analysed to identify test case design rules and to identify

corresponding Atomic Rules for this method (Table 3-8 cols. 1 and 2). During this process, method overlaps

were able to be resolved both within the method and with other methods (Table 3-8, col. 3).

For example, one test case design rule defined for ST is to “Introduce an invalid value for a field” (Table

3-8, rule 2). This is covered by Atomic Rules from EP that select partitions outside field boundaries (EP1

and EP2) and that replace fields with invalid datatypes (EP4 to EP11). Although the first publications of

syntax testing methods were in the 1960’s (e.g. see (Sauder 1962)) and this preceded the first definition of

EP as a black-box testing method in 1979 (Myers 1979), test case design rules from EP are generally

defined in more detail. Thus, Atomic Rules from EP can be utilised during ST to provide more precision to

test case design (see Figure 3-5, step 1). A complete mapping of test case design rules from ST to Atomic

Rules from other methods is provided in Table 3-8.

From the five versions of ST that were reviewed, only five Atomic Rules were found to be unique to ST

(see Table 3-8, rules 6, 7, 9, 28, 29). These are as follows.

 ST1: remove last character

 ST3: add extra character to end

 ST14: select all list alternatives in reverse order

 ST11: add a field

 ST10: duplicate a field

Based on the ‘spirit’ of these rules, a number of new Atomic Rules were defined for ST, as follows.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 107

 ST2: replace last character (derived from Rule # 6 and 7)

 ST4: remove first character (derived from Rule # 6)

 ST5: replace first character (derived from Rule # 6 and 7)

 ST6: add extra character to start (derived from Rule # 6)

 ST7: uppercase a lowercase letter (derived from Rule # 2 for alphabetic fields)

 ST8: lowercase an uppercase letter (derived from Rule # 2 for alphabetic fields)

 ST9: Null all input (derived from Rule # 3)

 ST12: select each list alternative (derived from Rule # 9)

 ST13: select all list alternatives (derived from Rule # 9)

Each of these was documented in the Atomic Rules schema (e.g. see Table 3-9). The complete set of

Atomic Rules for this method can be found in Appendix B. An example of this method being applied to an

input data specification can be found in Section 3.4.1.3.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 108

Table 3-8: Decomposition of Syntax Testing into Atomic Rules (from Section 2.4).

Rule
6

Syntax Testing
Test Case Design Rules Corresponding Atomic Rules7

1
Introduce errors at highest level of AST; e.g. through invalid field
combinations

Method overlap – covered by Atomic Rules for
combinatorial testing (see Appendix B)

2 Introduce an invalid value for a field
Method overlap – covered by EP1, EP2 and EP4
to EP11

3 Introduce an invalid value for all fields Method overlap – covered by EP4 to EP11

4
Choose invalid symbols for a field (e.g. subtraction instead of addition
sign)

Method overlap – covered by EP9

5 Choose invalid datatypes (e.g. numbers or symbols instead of alphas) Method overlap – covered by EP4 to EP11

6 Remove characters from the end of a field (e.g. “DI” instead of “DIR”) ST1: Remove Last Character

7 Add extra characters to the end of a field (e.g. “DIRR” instead of “DIR”) ST3: Add Extra Character to End

8 Choose none of the legal alternatives for a field that contains alternatives Method overlap – covered by EP12

9 Choose all alternatives for one field in one test case in reverse order
ST14: Select All List Alternatives in Reverse
Order

10 Leave out a delimiter Method overlap – covered by EP12

11
Choose a delimiter that is valid at another syntax level but not at the
current level

Method overlap – covered by Atomic Rules for
combinatorial testing (see Appendix B)

12 Substitute another field for a delimiter
Method overlap – covered by Atomic Rules for
combinatorial testing (see Appendix B)

13 Repeat a delimiter Method overlap – covered by BVA6

14 Create errors in paired delimiters (e.g. add or remove delimiters) Method overlap – covered by EP4 to EP12

15 One less than the minimum number of repetitions Method overlap – covered by BVA1

16 Minimum number of repetitions Method overlap – covered by BVA2

17 One more than min number of repetitions Method overlap – covered by BVA3

18 1 repetition
Method overlap – covered by BVA1 to BVA6
(whether ‘1’ is a lower or upper boundary)

19 One less than max number of repetitions Method overlap – covered by BVA4

20 Maximum number of repetitions Method overlap – covered by BVA5

21 One more than the maximum number of repetitions Method overlap – covered by BVA6

22 > 1 repetition
Method overlap – covered by BVA1 to BVA6
(whether ‘1’is a lower or upper boundary)

23 Incorrect value in the last repetition of a field Method overlap – covered by EP4 to EP12

24 Select invalid values for input fields Method overlap – covered by EP4 to EP12

25
Substitute a field that is correct at another level of syntax but not the
current level

Method overlap – covered by Atomic Rules for
combinatorial testing (see Appendix B)

26
Substitute fields from same level of syntax, creating invalid order of valid
fields

Method overlap – covered by Atomic Rules for
combinatorial testing (see Appendix B)

27 Miss a field Method overlap – covered by EP12

28 Add an extra field ST11: Add a Field

29 Repeat a field ST10: Duplicate a Field

30
Select values relating to database variable type input is stored in. e.g. if
field is string 0 to 255 characters, try 0, 255 and 256

Method overlap – covered by BVA2, BVA5, BVA6

31 State dependency errors
Method overlap – covered by EP, BVA and ST,
but expected outcome depends on system state

6 These rules and corresponding numbers were defined in Chapter 2, section 2.4.
7 See Appendix B for definitions of these Atomic Rules in the Atomic Rules characterisation schema.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 109

Table 3-9: Three Atomic Rules from Syntax Testing.

Attribute Values Values Values

Test Method Syntax Testing Syntax Testing Syntax Testing

Number ST1 ST2 ST3

Identifier RMLC RPLC AECE

Name Remove last character Replace last character
Add extra character to end
of field

Description
Remove the last character of
an input string

Replace the last character of
a string with an invalid value

Add an extra character to
the end of a string

Source (Beizer 1990, Marick 1995) (Marick 1995) (Beizer 1995, Marick 1995)

Rule Type DISR DISR DISR

Set Type List or Range List or Range List or Range

Valid or Invalid Invalid Invalid Invalid

Original Datatype All All All

Test Datatype Same as original Same as original Same as original

Test Data Length
m - 1, where m is the original
field length

Same as original
m + 1, where m is the
original field length

Fields Populated 1 1 1

Tests Derived 0 0 0

The four-step test case design process can now be described for ST (Figure 3-5). As discussed in Section

2.4, partitioning is implicitly performed during ST prior to the selection and mutation of test data values.

Thus, the ST process utilises Data-Set Selection Rules from EP. Also, since some versions of ST include

the selection of boundary values and nominal values, corresponding Atomic Rules from EP and BVA are

utilised (Table 3-8, col. 3). This process also utilises a number of combinatorial Test Case Construction

Rules (Figure 3-5, step 4c). A demonstration of the Atomic Rules definition of ST being applied to an

example specification is provided in Section 3.4.1.3. Although the process of creating an abstract syntax

tree cannot be described specifically by the Atomic Rules approach, one could be constructed for the

program under test, prior to the application of each Atomic Rule.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 110

Figure 3-5: The four-step test design process for Syntax Testing.

Syntax Testing

1. Select equivalence classes as follows.

a. If an input or output field has a set type range then apply Atomic Rules EP1 to EP11 to the field
to select equivalence classes.

b. If an input or output field has a set type list then apply Atomic Rules EP4 to EP12 to select
equivalence classes.

2. Select individual test data values as follows.

a. For each range-based equivalence class chosen in step 1a, apply BVA1 to BVA6, BVA9 and
EP13 and/or EP17 to select individual test data values.

b. For each list-based equivalence class chosen in step 1b, apply BVA7 to BVA13 to select individual
test data values.

3. Manipulate the test data values chosen in step 2 by applying ST1 to ST14, ST17 and ST18 to each
value.

4. Select test cases that are:

a. valid: by applying ST14, EP14 or EP16 to the valid test data values chosen in steps 2 and 3,

b. invalid: by applying ST15, EP15 or EP16 to the invalid test data values chosen in steps 2 and 3.

c. combinatorial: by applying a selection of Atomic Rules from EP15, EP16 and EP18, CT1 to CT6
and SBMT1 to SBMT4.

3.3.1.4 Decomposing the Combinatorial Method Each Choice

Combinatorial testing methods facilitate the generation of black-box test cases typically via the

application of algorithms to the test data values that are derived through the use of other black-box testing

methods, such as EP, BVA and ST. Each combinatorial test method can be decomposed into one Test Case

Construction Rule that can then be described using the Atomic Rules schema. In this section, the method All

Combinations is decomposed into an Atomic Rule as an example of this process (Table 3-10). Atomic

Rules for other combinatorial methods are provided in Appendix B.

For All Combinations, the fields of the Atomic Rules schema are populated as follows.

1. Test Method: this Atomic Rule is from Combinatorial Testing.

2. Number: this unique identifier combines an abbreviation of the test method name (CT) with an

incremental number (starting at 1), resulting in CT1.

3. Identifier: AC is an abbreviation of the rule name All Combinations.

4. Name: All Combinations is the name of the test method.

5. Description: this rule constructs test cases by generating all possible combinations of test data

values chosen by other black-box testing methods. For example, it could be used to select all

combinations of boundary values or all combinations of system configurations, such as when

testing the compatibility of several Internet browsers on various different operating systems.

6. Source: this version of the method was sourced from (Grindal et al. 2004).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 111

7. Rule Type: this is a Test Case Construction Rule (TCCR).

8. Set Type: this rule can be applied to any type of field; thus it applies to Lists and Ranges.

9. Valid or Invalid: this depends on whether this rule is applied to valid or invalid test data.

10. Original Datatype: this rule can be applied to an input field of any datatype.

11. Test Datatype: the rule does not alter the input field datatype; thus Same as original appears.

12. Test Data Length: Same as original appears under this attribute as the length of the selected test

data depends on the length of the original datatype.

13. # Fields Populated: this rule populates all input fields of a test case; thus, it populates n fields,

where n is the number of input fields in the test case.

14. # Tests Derived: this rule selects approximately

N

i iV
1

 test cases, where N is the number of

parameters in the input string and where each parameter has Vi values.

 This results in the definition of one Atomic Rule for combinatorial testing (Table 3-10).

Table 3-10: An Atomic Rule for the combinatorial testing method All Combinations.

Attribute Definition

Test Method Combinatorial Testing

Number CT1

Identifier AC

Name All Combinations

Description
Construct every possible combination of test data values, which may be
selected by the Data-Item Selection Rules and Data-Item Manipulation
Rules of other black-box testing methods.

Source (Grindal et al. 2004)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived Approximately

N

i iV
1

test cases, where N is the number of parameters

in the input string and where each parameter has Vi values.

The four-step test case design process can now be defined once for all combinatorial testing methods

(Figure 3-6). Since these methods do not include test case design rules for partitioning the input domain or

selecting or manipulating test data values, Atomic Rules from EP, BVA and ST can be utilised.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 112

Figure 3-6: The four-step test design process for Combinatorial Testing Methods.

Combinatorial Testing

1. Select equivalence classes as follows.

a. If an input field has a set type range then apply Atomic Rules EP1 to EP11 to the field to
select equivalence classes.

b. If an input field has a set type list then apply Atomic Rules EP4 to EP12 to select
equivalence classes.

2. Select individual test data values from the equivalence classes derived in step 1 by applying
Atomic Rules BVA1 to BVA9 and EP13 and/or EP17 to each partition.

3. Optionally manipulate the test data values chosen in step 2 by applying ST1 to ST14, ST17 and
ST18 to each test data value.

4. Select test cases by applying a selection of Atomic Rules CT1 to CT6 or SBMT1 to SBMT4 to the
test data values chosen in steps 2 and 3.

3.4 Demonstration of the Atomic Rules Approach

The application of the Atomic Rules representation of EP, BVA and ST is illustrated in the sections

below for an input data specification of an Address Parser (Figure 3-7; the specification is an adaptation of

one that was developed by Reed (1981)). The specification consists of many different field types, including

a range field <house_number>, list fields <street_type> and <direction> and optional fields {

<direction>}0-1 (where ‘0-1’ indicates that the fields are optional). It also includes a ‘complex’ field

<street_name>, which can contain 1 to 40 alphabetical characters or alphabetical characters followed by a

space, hyphen or period, followed by alphabetical characters.

The Atomic Rules approach requires a detailed definition of the program input domain, such as the one

that is provided in Figure 3-7. If a detailed definition is not available, then

Goal/Question/Answer/Specify/Verify could be used to obtain one.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 113

Figure 3-7: Simplified specification of the inputs to an Address Parser program.

 <address> ::= <house_number> <street> <suburb> <postcode>

 <house_number> ::= [1 – 9999]

 <street> ::= <street_name> <street_type> { <direction>}0-1

 <street_name> ::= {[A – Z | a – z] | [A – Z | a – z] [| - | .][A – Z | a – z]}1 – 40

 <street_type> ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt]

 <direction> ::= [North | South | East | West]

 <suburb> ::= [Abbotsford | Aberfeldie | … |Yooralla |Yuroke]

 <postcode> ::= [200 | 221 | 800 | 801 | 804 | 810 | … | 9726 | 9728 | 9729]

 ::= [] #i.e. one space

address

house_number postcode

[1 – 9999]

suburb

[Abbotsford |
Aberfeldie | …

|Yooralla |Yuroke]

200 | 221 | 800 | 801
| 804 | 810 | … |

9726 | 9728 | 9729

street

name type Direction
?

{[A – Z | a – z] | [A – Z | a – z]
[^ | - | .][A – Z | a – z]}1 - 40

[Street | St |
Road | Rd |

Avenue | Ave
| Court | Crt]

[North | South |
East | West]

^ ^ ^

^

^

Usually, when the Atomic Rules definition of a black-box testing method is applied to an input data

specification, every Atomic Rule from the method would be systematically applied to every applicable

input field. For the Address Parser, Atomic Rules with a ‘Set Type’ of ‘Range’ would be applied to all

range-based fields. For example, EP1 to EP3 could be applied to the <house_number>field to select

equivalence classes, followed by BVA1 to BVA6 to select boundary values. These same rules could be

applied to the ‘length’ of <street_name> (i.e. to the 1 to 40 character range). Similarly, Atomic Rules with

a ‘Set Type’ of ‘List’ could be applied to <street_type>, <direction>, <suburb>, <postcode> and

whitespace (). However, to reduce the scale of examples in the sections below, Atomic Rules from EP,

BVA and ST are only applied to a small number of input fields (see sections for details).

The Test Matrix below provides a complete mapping of Atomic Rules from EP, BVA and ST to the

input fields of this program (Table 3-11). While this can result a very large number of test data values and

test cases, it also enables very thorough black-box testing. When such rigorous testing is not required, the

Test Matrix can be used to assess the maximum rule-to-field coverage achievable, from which a tester can

selectively apply a subset of Atomic Rules. Automatic generation of test data and test cases can also assist

with this process by increasing test case derivation efficiency (see Chapter 4).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 114

Table 3-11: Test Matrix indicating which Atomic Rules from EP, BVA and ST can be applied to the
input fields of the Address Parser program.

Atomic
Rule # Atomic Rule Name

Key:
 indicates that the Atomic Rule can be applied to the field.
 indicates that the Atomic Rule cannot be applied to the field due to
incompatibility between the Rule Type and the Set Type of the field.

Input Fields

<
h

o
u

se
_n

u
m

b
e

r>
 :

:=

[1
 –

 9
99

9
]

<
st

re
et

_
n

am
e>

 :
:=

 {
[A

 –

Z
 |

a
–

z]
 |

 [
A

 –
 Z

 |
a

–
z]

[

 |
-

| .
][

A
 –

 Z
 |

a
–

z]
}

(i
.e

l c
o

n
te

n
ts

o

n
ly

)

<
st

re
et

_
n

am
e>

 l
en

g
th

1t

o
 4

0
 c

h
ar

ac
te

rs

<
st

re
et

_
ty

p
e>

 :
:=

 [
S

tr
ee

t
| S

t
| R

o
ad

 |
 R

d
 |

 A
ve

n
u

e
| A

ve
 |

C
o

u
rt

 |
C

rt
]

<
d

ir
ec

ti
o

n
>

 :
:=

 [
N

o
rt

h
 |

S

o
u

th
 |

E
as

t
| W

es
t

]

<
su

b
u

rb
>

 :
:=

[A

b
b

o
ts

fo
rd

 |
A

b
er

fe
ld

ie

|
…

 |
Y

o
o

ra
lla

 |
Y

u
ro

ke
]

<
p

o
st

c
o

d
e>

 :
:=

 [
20

0
|

22
1

|
80

0
|

80
1

|
80

4
|

81
0

| …
 |

97
26

 |
97

2
8

| 9
72

9
]

:
:=

 [
]

 #
i.e

. o
n

e
 s

p
ac

e

EP1 Less Than Lower Boundary Selection 8 9
EP2 Greater Than Upper Boundary Selection
EP3 Lower to Upper Boundary Selection
EP4 Integer Replacement
EP5 Real Number Replacement
EP6 Single Alpha Replacement
EP7 Multiple Alpha Replacement
EP8 Multiple Alphanumeric Replacement
EP9 Single Non-Alphanumeric Replacement
EP10 Multiple Non-Alphanumeric Replacement
EP11 Null Item Replacement
EP12 Valid List Item Selection
EP13 Random Data Value Selector
EP14 Valid Test Case Constructor – Maximised
EP15 Invalid Test Case Constructor – Maximised
EP16 Invalid Test Case Constructor – Minimised
EP17 Nominal Value Selector
EP18 Valid Test Case Constructor – Maximised
BVA1 Lower Boundary – Selection 10
BVA2 Lower Boundary Selection
BVA3 Lower Boundary + Selection
BVA4 Upper Boundary – Selection
BVA5 Upper Boundary Selection
BVA6 Upper Boundary + Selection
BVA7 First List Item Selection 11
BVA8 Last List Item Selection
BVA9 Null Item Replacement
BVA10 Attempt First List Item – Selection
BVA11 Attempt Last List Item + Selection
BVA12 Second List Item Selection
BVA13 Second Last List Item Selection
ST1 Remove last character
ST2 Replace last character
ST3 Add extra character to end

8 EP1, EP2 and EP3 can be applied to the contents of the <street_name> field, if character ranges [A – Z] and [a – z] are treated as
ASCII ranges by the program (i.e. as ASCII 65 to 90 and ASCII 79 to 122).
9 EP1 to EP3 can be applied to the number of times the whitespace appears (i.e. once is valid, more or less than once is invalid).
10 BVA1 to BVA6 can be applied to the edges of the alphabetic ranges [A – Z] and [a – z] if they are treated as ASCII ranges.
11 BVA7 and BVA8 can be applied to the character partitions [A – Z] and [a – z] if they are treated by the program as lists.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 115

Atomic
Rule # Atomic Rule Name

Key:
 indicates that the Atomic Rule can be applied to the field.
 indicates that the Atomic Rule cannot be applied to the field due to
incompatibility between the Rule Type and the Set Type of the field.

Input Fields

<
h

o
u

se
_n

u
m

b
e

r>
 :

:=

[1
 –

 9
99

9
]

<
st

re
et

_
n

am
e>

 :
:=

 {
[A

 –

Z
 |

a
–

z]
 |

 [
A

 –
 Z

 |
a

–
z]

[

 |
-

| .
][

A
 –

 Z
 |

a
–

z]
}

(i
.e

l c
o

n
te

n
ts

o

n
ly

)

<
st

re
et

_
n

am
e>

 l
en

g
th

1t

o
 4

0
 c

h
ar

ac
te

rs

<
st

re
et

_
ty

p
e>

 :
:=

 [
S

tr
ee

t
| S

t
| R

o
ad

 |
 R

d
 |

 A
ve

n
u

e
| A

ve
 |

C
o

u
rt

 |
C

rt
]

<
d

ir
ec

ti
o

n
>

 :
:=

 [
N

o
rt

h
 |

S

o
u

th
 |

E
as

t
| W

es
t

]

<
su

b
u

rb
>

 :
:=

[A

b
b

o
ts

fo
rd

 |
A

b
er

fe
ld

ie

|
…

 |
Y

o
o

ra
lla

 |
Y

u
ro

ke
]

<
p

o
st

c
o

d
e>

 :
:=

 [
20

0
|

22
1

|
80

0
|

80
1

|
80

4
|

81
0

| …
 |

97
26

 |
97

2
8

| 9
72

9
]

:
:=

 [
]

 #
i.e

. o
n

e
 s

p
ac

e

Table continued from previous page…

ST4 Remove first character
ST5 Replace first character
ST6 Add extra character to start
ST7 Uppercase a lowercase letter
ST8 Lowercase an uppercase letter
ST9 Null all input
ST10 Duplicate field
ST11 Add a field
ST12 Select each list alternative
ST13 Select all list alternatives
ST14 Select all list alternatives in reverse order
ST15 Reference Replacement
ST16 Syntax Cover
ST17 Add Middle Character
ST18 Remove Middle Character
ST19 Reverse All Fields

3.4.1.1 Applying the Atomic Rules Definition of Equivalence Partitioning

In this example, the Atomic Rules representation of EP is applied to a range-based field

<house_number>, a list-based field <street_type> and the ‘complex’ field <street_name>. These fields

were chosen as they cover a wide range of field types. EP implements three of the four black-box test case

design steps. In step 1, partitions are identified by applying EP1 to EP11 to <house_number>, EP4 to EP12

to <street_type> and EP1 to EP12 to <street_name> (Table 3-12). In step 2, EP17 is applied to each

partition to select the nominal value from each class (Table 3-13). Step 3 is not applied since it is only used

by test methods that manipulate test data values (Table 3-14). In step 4, EP14 and EP16 are applied to

derive two example test cases (Table 3-14). In practice, this fourth step would be applied repeatedly until all

test data values have been covered by at least one test case. Steps 1, 2 and 4 would be also be applied to all

other input fields (i.e. <street_name>, <direction>, <suburb>, <postcode> and whitespace).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 116

Table 3-12: Example of applying step 1 of the Atomic Rules definition of Equivalence Partitioning to
an example Address Parser specification.

Step 1. Select equivalence classes as follows:

a. if set type range then apply Atomic Rules EP1 to EP11,

b. if set type list then apply Atomic Rules EP4 to EP12.

Input Field Definition Equivalence Classes

Field:
<house_number>

Field Type:
Range

Field Definition:
<house_number> ::= [1 – 9999]

Atomic Rule # Equivalence Class Selected Valid or Invalid
EP1 values < 1 Invalid
EP2 values > 9999 Invalid
EP3 values 1 to 9999 Valid
EP4 any integer, except values 1 to 9999 Invalid
EP5 any real number Invalid
EP6 any single alpha character Invalid
EP7 any multiple alpha characters Invalid
EP8 any multiple alphanumeric characters Invalid
EP9 any single non-alphanumeric symbol Invalid
EP10 any multiple non-alphanumeric symbols Invalid
EP11 null Invalid

Field:
<street_name>

Field Type:
List and Range

Field Definition:
<street_name> ::= {[A – Z | a – z] | [A – Z | a – z]
[| - | .][A – Z | a – z]}1 – 40

Partitions for <street_name> length: 1 – 40
Atomic Rule # Equivalence Class Selected Valid or Invalid
EP1 < 1 character Invalid
EP2 > 40 characters Invalid
EP3 1 to 40 characters Valid

Partitions for <street_name> contents: [A – Z | a – z | | -]
Atomic Rule # Equivalence Class Selected Valid or Invalid
EP4 any integer Invalid
EP5 any real number Invalid
EP8 any multiple alphanumeric characters Invalid
EP9 any single non-alphanumeric symbols
 excluding and - Invalid
EP10 any multiple non-alphanumeric symbols
 excluding and - Invalid
EP11 null – already covered by application of EP1
 to <street_name> length
EP12 Anything from the valid list [A – Z | a – z]
 | [A – Z | a – z] [| - | .][A – Z | a – z] Valid12

Field:
<street_type>

Field Type:
List

Field Definition:
<street_type> ::= [Street | St | Road | Rd |
Avenue | Ave | Court | Crt]

Atomic Rule # Equivalence Class Selected Valid or Invalid
EP4 any integer Invalid
EP5 any real number Invalid
EP6 any single alpha character Invalid
EP7 any multiple alpha characters,
 except those in valid set Invalid
EP8 any multiple alphanumeric characters Invalid
EP9 any single non-alphanumeric symbol Invalid
EP10 any multiple non-alphanumeric symbols Invalid
EP11 null Invalid
EP12 Anything from the valid list [Street | St |
 Road | Rd | Avenue | Ave | Court | Crt] Valid

12 When the “” character is chosen as a test data value, it will print as one white space “ ”.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 117

Table 3-13: Example of applying step 2 of the Atomic Rules definition of Equivalence Partitioning to
an example Address Parser specification.

Step 2. Select one test data value from each equivalence class selected in step 1 by applying EP13 or EP17 to each class
(EP17 is applied in this particular example).

Equivalence Classes Test Data Values

For the <house_number> field:
value < 1
value > 9999
value 1 to 9999
any integer excluding 1 to 9999
any real number
any single alpha character
any multiple alpha characters
any multiple alphanumeric characters
any single non-alphanumeric symbol
any multiple non-alphanumeric symbols
null

Test Data Values Selected by EP17 Valid or Invalid
-15000 Invalid
15000 Invalid
5000 Valid
10000 Invalid
23.53 Invalid
M Invalid
OnM Invalid
O56M Invalid
> Invalid
>=< Invalid
 Invalid

For the length of the <street_name>:
Street name length < 1 character
Street name length > 40 characters
Street name length 1 to 40 characters

Corresponding Test Data Values Valid or Invalid
 Invalid
abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz Invalid
abcdefghijkl Valid13

For the contents of the <street_name>:
any integer
any real number
any multiple alphanumeric characters
any single non-alphanumeric symbol except and -
any multiple non-alphanumeric symbols except
and -
anything from the valid list [A – Z | a – z] | [A – Z | a
– z] [| - | .][A – Z | a – z]

Corresponding Test Data Values Valid or Invalid
10000 Invalid
23.53 Invalid
O56M Invalid
> Invalid
>=< Invalid
 Invalid
Lm nop Valid

For the <street_type> field:
any integer
any real number
any single alpha character
any multiple alpha characters, except valid set
any multiple alphanumeric characters
any single non-alphanumeric symbol
any multiple non-alphanumeric symbols
null
anything from the valid list [Street | St | Road | Rd |
Avenue | Ave | Court | Crt]

Corresponding Test Data Values Valid or Invalid
10000 Invalid
23.53 Invalid
M Invalid
OnM Invalid
O56M Invalid
> Invalid
>=< Invalid
 Invalid
Rd Valid

13 Testing the <street_name> field with test data values “abcdefghijklmnopqurt” and “lm nop” will test the program for how it handles
syntactically valid and invalid test data. This will not test the program with semantically correct test data. Semantic correctness would
be tested if the valid street names were derived from a valid street name file.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 118

Table 3-14: Example of applying steps 3 and 4 of the Atomic Rules definition of Equivalence
Partitioning to an example Address Parser specification.

Step 3. This step manipulates test data values and is currently covered by Syntax Testing. Thus, it is not applicable.

Step 4. Select test cases that are:

a. valid, by applying EP14 and EP18 to valid data values chosen in step 2,

b. invalid, by applying EP15 and EP16 to invalid data values chosen in step 2.

Test Data Values Test Cases

Test data values for <house_number>
-15000
15000
5000
10000
23.53
M
OnM
O56M
>
>=<
Test data values for <street_name>
 (i.e. null)
abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz
abcdefghijkl
10000
23.53
O56M
>
>=<
Lm nop
Test data values for <street_type>
10000
23.53
M
OnM
O56M
>
>=<
 (i.e. null)
Road

Depending on which Test Case Construction Rule was applied
(EP14, EP15 or EP16), this would result in a large number of
test cases. Thus, the complete test set that would are derivable
is not shown here. Instead, two example test cases are shown.

Atomic Rule EP14 (Valid Test Case Constructor) could be
applied to cover valid test data values <house_number> = 5000,
<street_name> = abcdefghijkl and <street_type> = Rd, while all
other fields were assigned their nominal value, to select the
following test case.

5000 abcdefghijklmnopqurt Rd La Trobe 3086

Atomic Rule EP16 (Invalid Test Case Constructor - Minimised)
could be applied to derive a test case to cover the invalid test
data value <house_number> = -10000, while all other fields were
assigned their nominal value, as follows.

-10000 abcdefghijklmnopqurt Rd La Trobe 3086

In the above, two test cases have been derived covering four
test data values. In practice, this would be repeated until all test
data values (in the left hand column) are covered by at least one
test case.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 119

3.4.1.2 Applying the Atomic Rules Definition of Boundary Value Analysis

In the following example, the Atomic Rules definition of BVA is applied to the same three fields of the

Address Parser <house_number>, <street_name> and <street_type> as follows. In step 1, Atomic Rules

from EP are utilised to partition the input domain (Table 3-15). In step 2, BVA1 to BVA9 are applied to

select boundary values from each partition (Table 3-15 step 2). Step 3 is not applied since this only applies

to test methods that manipulate test data values (i.e. ST) (Table 3-16). In step 4, EP14 and EP16 are utilised

twice to derive two example test cases (Table 3-17). In practice, step 4 would be repeated until all test data

values had been covered by at least one test case, while steps 1, 2 and 4 would be reapplied for all other

input fields.

Table 3-15: Example of applying step 1 of the Atomic Rules definition of Boundary Value Analysis to
an example Address Parser specification.

Step 1. Select equivalence classes as follows:

a. if set type range then apply Atomic Rules EP1 to EP3,

b. if set type list then apply Atomic Rule EP12.

Input Field Definition Equivalence Classes

Field:
<house_number>

Field Type:
Range

Field Definition:
<house_number> ::= [1 – 9999]

Atomic Rule # Equivalence Class Selected Valid or Invalid
EP1 values < 1 Invalid
EP2 values > 9999 Invalid
EP3 values 1 to 9999 Valid

Field:
<street_name>

Field Type:
List and Range

Field Definition:
<street_name> ::= {[A – Z | a – z] | [A – Z | a – z]
[| - | .][A – Z | a – z]}1 – 40

Equivalence classes for <street_name> length: 1 – 40
Atomic Rule # Equivalence Class Selected Valid or Invalid
EP1 < 1 character Invalid
EP2 > 40 characters Invalid
EP3 1 to 40 characters Valid

Equivalence classes for <street_name> contents: [A – Z | a – z | | -]
Atomic Rule # Equivalence Class Selected Valid or Invalid
EP12 Anything from the valid list
 [A – Z | a – z] |
 [A – Z | a – z] [| - | .][A – Z | a – z] Valid

Field:
<street_type>

Field Type:
List

Field Definition:
<street_type> ::= [Street | St | Road | Rd |
Avenue | Ave | Court | Crt]

Atomic Rule # Equivalence Class Selected Valid or Invalid
EP12 Anything from the valid list [Street | St |
 Road | Rd | Avenue | Ave | Court | Crt] Valid

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 120

Table 3-16: Example of applying step 2 of the Atomic Rules definition of Boundary Value Analysis to
an example Address Parser specification.

Step 2. Select boundary values as follows.
a. For each range-based equivalence class chosen in step 1a, apply BVA1 to BVA6 and BVA9 to select individual data values.
b. For each list-based equivalence class chosen in step 1a, apply BVA7 to BVA13 to select individual data values

Equivalence Classes Test Data Values
For the <house_number> field:
value < 1
Assume value is stored as a 16-bit integer,
minimum value −32768
Partition tested: [-32768 – 0]

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 -32769 Invalid
BVA2 -32768 Invalid
BVA3 -32767 Invalid
BVA4 -1 Invalid
BVA5 0 Invalid
BVA6 1 Valid
BVA9 Invalid

For the <house_number> field:
value > 9999
Assume value is stored as a 16-bit integer,
maximum value 32767
Partition tested: [10000 – 32767]

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 9999 Valid
BVA2 10000 Invalid
BVA3 10001 Invalid
BVA4 32766 Invalid
BVA5 32767 Invalid
BVA6 32768 Invalid

For the <house_number> field:
Value 1 to 9999

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 0 (already covered)14 NA
BVA2 1 (already covered) NA
BVA3 2 Valid
BVA4 9998 Invalid
BVA5 9999 (already covered) NA
BVA6 10000 (already covered) NA

For the length of the <street_name>:
Street name length < 1 character
Minimum length = 0
Partition tested: [0 – 1]

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 cannot select string of < 0 characters NA
BVA2 0 characters (already covered) NA
BVA3 1 character Valid
BVA4 0 character (already covered) NA
BVA5 1 character (already covered) NA
BVA6 2 characters Valid
BVA9 0 characters (already covered) NA

For the length of the <street_name>:
Street name length > 40 characters
Assume 8-bit string, maximum length = 256
Partition tested: [41 – 256]

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 39 characters Valid
BVA2 40 characters Invalid
BVA3 41 characters Invalid
BVA4 255 characters Invalid
BVA5 256 characters Invalid
BVA6 257 characters Invalid

For the length of the <street_name>:
Street name length 1 to 40 characters

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 0 characters (already covered) NA
BVA2 1 character (already covered) NA
BVA3 2 characters (already covered) NA
BVA4 39 characters (already covered) NA
BVA5 40 characters (already covered) NA
BVA6 41characters (already covered) NA

For the contents of the <street_name>:
anything from the valid list
[A – Z | a – z] | [A – Z | a – z] [| - | .][A – Z | a – z]
Assume the characters are stored in lists rather
than ASCII ranges

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA7 A Valid
BVA7 a Valid
BAV7 (white-space) Valid
BVA7 - Valid
BVA7 . Valid
BVA8 Z Valid
BVA8 z Valid
BVA8 (white-space) (already covered) NA
BVA8 - (already covered) NA
BVA8 . (already covered) NA
BVA9 (null) (already covered) NA
BVA12 B Valid
BVA12 b Valid
BVA13 Y Valid
BVA13 y Valid

For the <street_type> field:
anything from the valid list [Street | St | Road | Rd |
Avenue | Ave | Court | Crt]

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA7 Street Valid
BVA8 Crt Valid
BVA9 (null) (already covered) NA

14 If a boundary has previously been covered by another test data value, then it does not need to be covered again.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 121

Table 3-17: Example of applying steps 3 and 4 of the Atomic Rules definition of Boundary Value
Analysis to an example Address Parser specification.

Step 3. This step manipulates test data values and is currently covered by Syntax Testing. Thus, it is not applicable for BVA.

Step 4. Select test cases that are:

a. valid, by applying EP14 and EP18 to valid data values chosen in step 2,

b. invalid, by applying EP15 and EP16 to invalid data values chosen in step 2.

Test Data Values Test Cases

Test data values for <house_number>
-32769 10000
-32768 10001
-32767 32766
-1 32767
0 32768
1 9998
2 9999 9998
Test data values for <street_name> Length
0 characters 41 characters
1 character 255 characters
2 characters 256 characters
39 characters 257 characters
40 characters
Test data values for <street_name> Conrtents
A Z
A z
 (white space) B
- b
. Y
 y
Test data values for <street_type>
Street
Crt

Depending on which Test Case Construction Rule was applied
(EP14, EP15 or EP16), this would result in a large number of
test cases. Thus, the complete test set that would are derivable
is not shown here. Instead, two example test cases are shown.

Atomic Rule EP14 (Valid Test Case Constructor) could be
applied to cover valid test data values <house_number> = 1,
<street_name> = A and <street_type> = Street, with all other
fields being assigned their nominal value, which could result in
the following test case13.

1 A Street La Trobe 3086

Atomic Rule EP16 (Invalid Test Case Constructor – Minimised)
could be applied to cover the invalid test data value
<street_name> length = 0 characters, with all other fields being
assigned their nominal value, as follows.

1 Street La Trobe 3086

In the above, two test cases have been derived, covering four
test data values. In practice, this would be repeated until all test
data values (in the left hand column) are covered by at least one
test case.

3.4.1.3 Demonstration of Syntax Testing

The Atomic Rules definition of ST can be applied to the <house_number> field of the Address Parser

specification (Figure 3-8) as follows. ST implements all four steps of the black-box test case design process,

as follows. In step 1, Atomic Rules EP1 to EP11 are utilised to partition the <house_number> field into

equivalence classes (Figure 3-8 step 1). In step 2, EP13 is utilised to select random values from each

equivalence class (Figure 3-8, step 2). In step 3, ST2 is applied to manipulate the test data values chosen in

step 2 (Figure 3-8, step 3), In practice, step 3 would be repeated with ST1 to ST8, ST17 and ST18 to

manipulate the test data values in other ways. In step 4, EP15 is applied to derive a sample of test cases

(Figure 3-8, step 4). In practice, the fourth step would also be repeated until all test data values chosen in

step 3 were covered by at least one test case. All four steps in this process would also be repeated for all

other input fields of the Address Parser specification.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 122

Figure 3-8: Demonstration of the application of the Atomic Rules definition of Syntax Testing.

Step 4. Select test cases that are:

a. valid, by applying EP14 to valid data values chosen in step 2,

b. invalid, by applying EP15, EP16 and ST19 to invalid data values chosen in step 2.
c. combinatorial, by applying a selection of CT1 to CT6 and/or SBMT1 to SBMT4.

Step 3. Manipulate the test data values chosen in
step 2 by applying ST1 to ST14, ST17 and ST18 to
each test data value.

Step 2. Select individual test data values as follows.

a. For each range-based equivalence class chosen in step 1a, apply BVA1 to BVA6 and
BVA9 to select individual data values.

b. For each list-based equivalence class chosen in step 1a, apply BVA7 to BVA13 to
select individual data values

Input Field:

<house_number> ::= [1 - 9999]

Step 1. Select equivalence classes as follows:

a. if set type range then apply Atomic Rules EP1 to EP11,

b. if set type list then apply Atomic Rules EP4 to EP12.

DSSR <house_number> ::= [1 – 9999]

Number < 0 (EP1)
Number > 9999 (EP2)
Number 1 to 9999 (EP3)
Real (EP5)
Single alpha (EP6)
Multiple alpha (EP7)
Multiple alphanumeric (EP8)
Singe non-alphanumeric (EP9)
Multiple non-alphanumeric (EP10)
Null (EP11)

Number < 0
Number > 9999
Number 1 to 9999
Real
Single alpha
Multiple alpha
Multiple alphanumeric
Singe non-alphanumeric
Multiple non-alphanumeric
Null

-14023 (EP13)
29876 (EP13)
870 (EP13)
25.12 (EP13)
D (EP13)
AiyuB (EP13)
M4L5djj (EP13)
< (EP13)
(&’= (EP13)
 (EP13)

-20000
20000
5000
25.12
L
LmN
M4L5N
<
:;<=>

-1402A (ST2)
2987B (ST2)
87C (ST2)
25.1D (ST2)
E (ST2)
AiyuF (ST2)
M4L5djG (ST2)
H (ST2)
(&’=I (ST2)
 (ST2)

Atomic Rules
Applied

For example, if
Atomic Rule EP15
is applied to the test
data values chosen
in steps 2 and 3,
while all other fields
were assigned their
“nominal” value, this
could result in the
following test cases.

-14023 abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

29876 abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

870 abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

25.12 abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

D abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

AiyuB abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

M4L5djj abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

< abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

(&’= abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

…continued next page

Partitions

Atomic Rules
Applied

Test Data
Values

Atomic Rules
Applied

Manipulated
Test Data Values

Atomic Rules
AppliedTest Cases

Partitions

Test Data Values

-14023
29876
870
25.12
D
AiyuB
M4L5djj
<
(&’=

Manipulated
Test Data Values

For example, if
Atomic Rule ST2
was applied, it
would manipulate
the test data
values as follows.

-1402A
2987B
87C
25.1D
E
AiyuF
M4L5djG
H
(&’=I

For example, if
Atomic Rule EP13
was applied, it
would select
random test data
values as follows.

DISR

DIMR

TCCR

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 123

Figure 3-9: Demonstration of the application of the Atomic Rules definition of Syntax Testing
(continued).

3.5 Auditing the Completeness of Black-Box Testing

A major benefit of the Atomic Rules approach is that it simplifies auditing the completeness of black-

box testing through the use of Test Matrices. For example, consider the coverage that has been achieved so

far by applying EP to the Address Parser specification in the previous section. Through the Atomic Rules

approach, this coverage can be easily traced via a Test Matrix that tracks which Atomic Rules have (or have

not) been applied to each input field (Table 3-18).

This level of traceability is particularly useful for organisations that are developing software to meet

regulatory standards that dictate the use of particular black-box testing methods. For example, the railway

engineering standard EN 50128 (which is used by railway engineering organisations in Australia including

Westinghouse and Ansaldo STS) “highly recommends” the use of EP and BVA for testing any safety-

related system (BS-EN 50128:2001). An assessor who is checking an organisation’s compliance to this

standard would require the organisation to demonstrate that they have applied EP and BVA adequately.

Since the standard refers to Myers’ (1979) definition of these methods, the assessor may not be able to

definitively determine whether all possible equivalence classes and boundary values had been covered

during testing. In contrast, this would be very obvious and much more easily demonstrable for any

organisation using the Atomic Rules approach.

Step 4 - Continued. Select test cases that are:

a. valid, by applying EP14 to valid data values chosen in step 2,

b. invalid, by applying EP15, EP16 and ST19 to invalid data values chosen in step 2.
c. combinatorial, by applying a selection of CT1 to CT6 and/or SBMT1 to SBMT4.

For example, if
Atomic Rule EP15
is applied to the test
data values chosen
in steps 2 and 3,
while all other fields
were assigned their
“nominal” value, this
could result in the
following test cases.

-1402A abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

2987B abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

87C abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

25.1D abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

E abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

AiyuF abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

M4L5djG abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

H abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

(&’=| abcdefghijklmnopqurt Rd La Trobe 3086 (EP15)

Atomic Rules
AppliedTest Cases

-14023
29876
870
25.12
D
AiyuB
M4L5djj
<
(&’=

Manipulated
Test Data Values

-1402A
2987B
87C
25.1D
E
AiyuF
M4L5djG
H
(&’=I

TCCR

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 124

Table 3-18: Coverage of Atomic Rules from Equivalence Partitioning achieved
against the fields of the Address Parser specification.

Atomic
Rule # Atomic Rule Name

Key:
 indicates Atomic Rules that have been applied to each field.
 NA indicates Atomic Rules that cannot be applied to each field due to

incompatibility between the Rule Type and the Set Type of the field.
 Whitespaces indicate Atomic Rules that have not yet been applied.

Input Fields

<
h

o
u

se
_n

u
m

b
e

r>
 :

:=

[1
 –

 9
99

9
]

<
st

re
et

_
n

am
e>

 :
:=

 {
[A

 –
 Z

 |

a
–

z]
 |

 [
A

 –
 Z

 |
 a

 –
 z

]
[

 |
-

|
.]

[A
 –

 Z
 |

a
–

z]
}

(i
.e

. c
o

n
te

n
ts

o

n
ly

)

<
st

re
et

_
n

am
e>

 l
en

g
th

 1
 t

o

40
 c

h
ar

ac
te

rs

<
st

re
et

_
ty

p
e>

 :
:=

 [
S

tr
ee

t
|

S
t

| R
o

ad
 |

R
d

 |
 A

ve
n

u
e

|
A

ve
 |

C
o

u
rt

 |
 C

rt
]

<
d

ir
ec

ti
o

n
>

 :
:=

 [
N

o
rt

h
 |

S

o
u

th
 |

E
as

t
| W

es
t

]

<
su

b
u

rb
>

 :
:=

 [
A

b
b

o
ts

fo
rd

 |
A

b
er

fe
ld

ie
 |

 …
 |

Y
o

o
ra

lla

|Y
u

ro
ke

]

<
p

o
st

c
o

d
e>

 :
:=

 [
20

0
| 2

21
 |

80
0

| 8
01

 |
 8

04
 |

 8
10

 |
…

 |

97
26

 |
 9

72
8

|
97

29
]

:
:=

 [
]

 #
i.e

.
o

n
e

sp
ac

e

EP1 Less Than Lower Boundary Selection NA NA NA NA NA NA

EP2 Greater Than Upper Boundary Selection NA NA NA NA NA NA

EP3 Lower to Upper Boundary Selection NA NA NA NA NA NA

EP4 Integer Replacement NA
EP5 Real Number Replacement NA
EP6 Single Alpha Replacement NA
EP7 Multiple Alpha Replacement NA
EP8 Multiple Alphanumeric Replacement NA
EP9 Single Non-Alphanumeric Replacement NA
EP10 Multiple Non-Alphanumeric Replacement NA
EP11 Null Item Replacement
EP12 Valid List Item Selection
EP13 Random Data Value Selector
EP14 Valid Test Case Constructor – Minimised
EP15 Invalid Test Case Constructor – Maximised
EP16 Invalid Test Case Constructor – Minimised
EP17 Nominal Value Selector
EP18 Valid Test Case Constructor – Maximised

3.6 Using the Atomic Rules Approach in other Black-Box Testing

The Atomic Rules defined for EP, BVA and ST can be used to enable prescriptive test data design for

supporting other black-box testing methods, such as:

 State Transition Testing (a form of model-based testing);

 Use Case Testing; and

 Category Partition Testing and Classification Trees.

This is demonstrated in the following three sections.

3.6.1 Applying Atomic Rules to State Transition Testing

In State Transition Testing, test cases are derived from a model of the state behaviour of a program to

test its behaviour when certain events occur (e.g. see (BS 7925-2)). A State Transition Diagram illustrates

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 125

the states a program may occupy, transitions between states, events that cause transitions between states and

actions or outcomes of the transition, where appropriate. Test cases are constructed to exercise transitions,

states and combinations thereof. At the simplest level, test cases comprise a start state, an event (i.e. an

input) that causes a transition, (usually) an outcome and an end state.

Definitions of State Transition Testing typically describe techniques for constructing test cases that

ensure that valid transitions are correctly exercised for valid sequences of events and that ‘error’ states are

reached in response to invalid input. They do not provide prescriptive guidelines for selecting (valid and

invalid) test data values that are required to ‘activate’ each transition. Atomic Rules from EP, BVA and ST

can be utilised to fill this gap, providing precise method of deriving those test data values.

Consider the specification for a component manage_display_changes that controls a digital clock

display (Figure 3-10) (originally defined in (BS 7925-2)). The clock can either display the date or time or

can be in states where it is being reset. The inputs to the component are commands to set the date (DS) and

time (TS), to change modes between displaying the date and time (CM) and reset (R). From the textual

specification of this component, a state transition diagram can be drawn (Figure 3-11).

Figure 3-10: Specification for a component that manages the display on a clock (BS 7925-2).

Component manage_display_changes

The component responds to input requests to change an externally held display mode for a time display

device. The external display mode can be set to one of four values: Two correspond to displaying either

the time or the date, and the other two correspond to modes used when altering either the time or date.

There are four possible input requests: 'Change Mode', 'Reset', 'Time Set' and 'Date Set'. A 'Change

Mode' input request shall cause the display mode to move between the 'display time' and 'display date'

values. If the display mode is set to 'display time' or 'display date' then a 'Reset' input request shall

cause the display mode to be set to the corresponding 'alter time' or 'alter date' modes. The 'Time Set'

input request shall cause the display mode to return to 'display time' from 'alter time' while similarly the

'Date Set' input request shall cause the display mode to return to 'display date' from 'alter date'.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 126

Figure 3-11: State Transition Diagram for ‘manage_display_changes’ (from (BS 7925-2)).

Six test cases are required to cover the six individual transitions in the State Transition Diagram (Table

3-19) (BS 7925-2). This is commonly known as “0-switch” coverage (Chow 1978).

Table 3-19: Test cases to achieve 0-switch coverage of manage_display_changes (BS 7925-2).

Test Case 1 2 3 4 5 6

Start State S1 S1 S3 S2 S2 S4

Input CM R TS CM R DS

Expected Output D AT T T AD D

Finish State S2 S3 S1 S1 S4 S2

Since State Transition Testing focuses only on transition coverage, not input domain coverage, Table 3-

19 is missing actual test data values that would need to be included with the commands ‘date set’ (DS) and

‘time set’ (TS), in order to cause transition from one state to another. For example, it is assumed that the

tester would need to enter an actual test data values like ‘1200’ to set the time to midday. The Atomic Rules

approach can be utilised at this point to enable prescriptive test data design when selecting inputs to these

test cases. For example, one approach to specifying the time field is <time> ::=[00:00 – 23:59]. If the

transition from state S3 to S1 were being tested, then the following Data-Set Selection Rules from EP could

be applied to this field to select equivalence classes.

1. EP1: < 00:00 (invalid and presumably impossible, but worth recording as a potential test)

2. EP2: > 23:59 (invalid)

3. EP3: 00:00 to 23:59 (valid)

‘reset’ (R)

alter time (AT)

CHANGING
TIME (S3)

DISPLAYING
DATE (S2)

CHANGING
DATE (S4)

DISPLAYING
TIME (S1)

‘time set’ (TS)

display time (T)

‘change mode’ (CM)

display date (D)

‘change mode’ (CM)

display time (T)

‘reset’ (R)

alter date (AD)

‘date set’ (DS)

display date (D)

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 127

The <time> field could also be specified as <time> ::= <hh>:<ss>, where <hh> ::= [00 – 23] and <ss>

::= [00 – 59], which would ensure that the boundaries of the ‘seconds’ field are appropriately tested (e.g. see

Table 3-22 in Section 3.6.3).

Data-Item Selection Rules EP13 (random value), EP17 (nominal value) and BVA1 to BVA6 (boundary

values) could then be applied to each partition to select test data values. For example, they could be applied

to partition number 3 to select the following values.

4. Partition 3: 00:00 to 23:59 (valid)

a. EP13: 13:34 (valid)

b. EP17: 12:00 (valid)

c. BVA1: -99:99 (invalid and assumed impossible, but worth noting)

d. BVA2: 00:00 (valid)

e. BVA3: 00:01 (valid)

f. BVA4: 23:58 (valid)

g. BVA5: 23:59 (valid)

h. BVA6: 23:60 (invalid)

Execution of the transition from S3 to S1 with these test data values would ensure that the transition is

tested and source code that validates the input data just prior to transition is also rigorously tested.

The selection of other invalid test data values (e.g. invalid datatypes) is limited by the input domain of

the system under test. Unlike a program that takes inputs from a keyboard, the input domain of this system

is limited by the available buttons on the clock interface, some of which will be considered invalid at state

S3. Since there are no existing Atomic Rules in EP, BVA or ST that can be used to select this type of

invalid equivalence class, a new rule STT1 can be defined as follows.

5. STT1: Invalid List Selection (see Appendix B, Section B.4)

a. Selects the invalid partition [date set | change mode | reset]

EP18 was defined specifically to support state transition testing. Since there are only three items

selected by the rule in this invalid partition, it would be reasonable to design test cases that cover all three

values. Test Case Construction Rule ST12 could be applied derive these.

This example has illustrated how the Atomic Rules approach can be utilised to provide prescriptive test

data design to support State Transition Testing.

3.6.2 Applying Atomic Rules to Use Case Testing

Activity diagrams allow the flow of events through a use case to be specified by depicting the

interaction between the system and the user (Chonoles & Schardt 2003) and are one of the modelling

notations defined in the Unified Modelling Language (UML). Business Analysts and developers in industry

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 128

often use Activity Diagrams to specify business workflows through systems, while testers can use them to

identify test cases for testing those workflows. Atomic Rules from EP, BVA and ST can be used to

prescriptively generate inputs for populating test cases derived through Use Case Testing.

Consider an activity diagram for a login screen (Figure 3-12). The ‘normal’ flow of events tracks the

user entering a valid username and password and clicking the ‘Ok’ button, while alternate flows cover the

user clicking ‘Cancel’ and entering an invalid username/password combination (Figure 3-12).

Figure 3-12: An activity diagram that illustrating the flow of events for a login screen.

[Pass]

[Fail]

(U1)
Enter Username

(U3)
Click Ok

(U4)
Click Cancel

User System

(S3)
Log User into System

(S4)
Display Main Menu

(S1)
Prompt for Login

Represents the ‘normal’
flow of events

(S2)
Validate Username & Password

(U2)
Enter Password

Represents ‘alternate’
flows of events

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 129

Test cases can be derived from this diagram to cover normal (Table 3-20) and alternate flows.

Table 3-20: Test case covering the ‘normal’ path of login (adapted from (Nguyen et al. 2003)).

Use Case ID Login 01

Use Case Name Login Screen

Test Case Number TC1

Test Case Name Login Screen – Normal

Path Covered S1, U1, U2, U3, S2, S3, S4

Pre-conditions User has started the program

Inputs Enter valid username
Enter valid password
Click Ok button

Expected Results User is logged into system, Main Menu is displayed

Post-conditions Flag is set in database to show user is logged in

Although these test cases ensure that workflows through the system are thoroughly tested, use case

testing itself does not provide assistance with the selection of test data values for population of the ‘Inputs’

field of the test case (Table 3-20 row 7). Atomic Rules from EP, BVA and ST can be utilised at this point,

to provide prescriptive design of valid and invalid test data values.

For example, let us assume that the username and password fields may contain between 8 and 20

lowercase alphas, uppercase alphas, integers [0 – 9] and all non-alphanumeric ASCII characters. The

following Data-Set Selection Rules could be applied to test the contents of the two fields.

1. EP12: partition containing all lowercase alpha characters (valid)

2. EP12: partition containing all uppercase alpha characters (valid)

3. EP12: partition containing all non-alphanumeric characters (valid)

4. EP12: partition containing integers [0 – 9] (valid)

Invalid datatype selection rules EP4 to EP12 do not have to be applied, since all datatypes they cover are

included in the partitions above. However, the length of the field can be tested.

5. EP1: < 8 characters (invalid)

6. EP2: > 20 characters (invalid)

7. EP3: 8 to 20 characters (valid)

A variety of Data-Item Selection Rules could then be applied to select individual test data values. For

example, DISR EP13 could be applied to select a random value from each partition, as follows.

1. EP12: partition containing all lowercase alpha characters

a. Apply EP17 to select character ‘b’

2. EP12: partition containing all non-alphanumeric characters

a. Apply EP17 to select character ‘F’

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 130

3. EP12: partition containing all non-alphanumeric characters

a. Apply EP17 to select ‘+‘

4. EP12: partition containing integers [0 – 9]

a. Apply EP17 to select integer ‘3’

5. EP1: < 8 characters

a. Apply EP17 to select 2 characters

6. EP2: > 20 characters

a. Apply EP17 to select 58 characters

7. EP3: 8 to 20 characters

a. Apply EP17 to select 14 characters

A test case could be designed to cover 1a, 1b, 1c, 1d and 7a, resulting in a test data value

bF+3bF+3bF+3bF, which would execute the normal path (Table 3-21) (this test data was constructed by

repeating the pattern of test data values that were selected under 1a, 1b, 1c, 1d until the 14 characters

defined by 7a were covered). For the test to pass, the database would need to include a ‘valid’ user with

username and password bF+3bF+3bF+3bF.

Table 3-21: Updated test case covering the ‘normal’ path of the login screen.

Use Case ID Login 01

Use Case Name Login Screen

Test Case Number TC1 – version 2

Test Case Name Login Screen – Normal

Path Covered S1, U1, U2, U3, S2, S3, S4

Pre-conditions User has started the program

Inputs Enter valid username bF+3bF+3bF+3bF
Enter valid password bF+3bF+3bF+3bF
Click Ok button

Expected Results User is logged into system, Main Menu is displayed

Post-conditions Flag is set in database to show user is logged in

This example has illustrated how the Atomic Rules approach can be utilised to prescriptively derive test

data values for supporting Use Case Testing.

3.6.3 Applying Atomic Rules to the Category Partition Method

The Category Partition Method (CPM) was developed by Ostrand and Balcer (1988) to formalise the

documentation of black-box test cases in a language they named the ‘Test Specification Language’. One of

the criticisms of the CPM in Chapter 2 (Section 2.9) is that it does not provide any guidance on the selection

of ‘choices’ (i.e. equivalence classes) for input fields. The Atomic Rules approach can be utilised during

step 2 of the CPM to formalise the process of identifying ‘choices’ via the application of Data-Set Selection

Rules from EP.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 131

Consider the component manage_display_changes (Table 3-22, col. 1), which was introduced in Section

3.6.1. The input fields in this specification are defined in BNF, enabling thorough black-box testing of this

component15 (see Table 3-22, col. 1, Syntax). Data-Set Selection Rules from EP can be applied to each input

field, to select a set of ‘choices’ (i.e. partitions), which can then be documented in the Test Specification

Language (see Table 3-22, col. 2). This demonstrates how the Atomic Rules approach can be utilised by

CPM to formalise the process of deriving and documenting choices.

Table 3-22: Specification of the manage_display_changes command.

Component Specification Corresponding TSL Specification*

Command
manage_display_changes

Syntax
<manage_display_changes> ::= <command> [<date> | <time>]0-1
 <command> ::= [CM | R | DS | TS]
 <date> ::= <day><month><year>
 <day> ::= [1 – 31]
 <month> ::= [1 – 12]
 <year>16 ::= [1970 – 3000]
 <time> ::= <hh><ss>
 <hh> ::= [00 – 23]
 <ss> ::= [00 – 59]

Function – manage_display_changes
The component responds to input requests to change an externally
held display mode for a time display device. The external display
mode can be set to one of four values: Two correspond to
displaying either the time or the date, and the other two correspond
to modes used when altering either the time or date.

There are four possible input requests: 'Change Mode', 'Reset',
'Time Set' and 'Date Set'. A 'Change Mode' input request shall
cause the display mode to move between the 'display time' and
'display date' values. If the display mode is set to 'display time' or
'display date' then a 'Reset' input request shall cause the display
mode to be set to the corresponding 'alter time' or 'alter date'
modes. The 'Time Set' input request shall cause the display mode
to return to 'display time' from 'alter time' while similarly the 'Date
Set' input request shall cause the display mode to return to 'display
date' from 'alter date'.

Examples
DS 01012000
 displays the date 01/01/2000
TS 1459
 displays the time 14:59 (i.e. 2:59 pm)
R
 resets the date or time that was displayed
 CM
 Changes the display from date to time and visa versa

Equivalence Classes for each Parameter

Command
 EP12: valid item from list [CM | R | DS |
TS]
Day
 EP1: day < 1
 EP2: day > 31
 EP3: day 1 – 31
Month
 EP1: month < 1
 EP2: month > 12
 EP3: month 1 – 12
Year
 EP1: year < 1970
 EP2: year > 3000
 EP3: year 1970 – 3000
hh
 EP1: hh < 00
 EP2: hh > 23
 EP3: hh 00 – 23
ss
 EP1: ss < 00
 EP2: ss > 59
 EP3: ss 00 – 59

Environments

Not required, as only one command can be
given to the system at once.

* Additional test cases could be identified by
a human tester for testing valid and invalid
combinations of days, months and years.
For example, testing days like February 29
within leap years and non-leap years or
testing for the 31st day in months with and
without 31 days. This form on of
combination testing is outside the scope of
the Atomic Rules approach (see Section
3.8).

15 The syntax for this input could have been defined using Goal/Question/Answer/Specify/Verify (GQASV) (see Section 3.10).
16 This year range was chosen as the following formula (implemented in C#) can be utilised to calculate leap years between these
dates: return (year % 4 == 0) && (year % 100 != 0) || (year % 400 = 0) (returns true for leap years) (Page et al. 2009).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 132

3.7 Evolution of the Atomic Rules Approach

The first version of the Atomic Rules approach (Murnane, Hall & Reed 2005) was defined through an

analysis of EP and BVA. This definition was then improved by carrying out experiments with university

students and industry professionals (see Chapters 5 and 6) and by extending the research to include ST.

Since EP and BVA do not manipulate (i.e. ‘mutate’) test data, the original Atomic Rules test case design

process included only three steps (Figure 3-13). The fourth step of the process was added when the

investigation was extended to ST (e.g. the definition of ST in (BS 7925-2) includes field manipulation).

Figure 3-13: The original Atomic Rules three-step test selection process (Murnane et al. 2005).

1. Select valid and invalid data sets called ‘equivalence classes’ or ‘partitions’ for

each input field by applying a Data Set Selection Rule (DSSR) to each field.

2. Select at least one individual data value from each partition chosen in (1) by

applying a Data Item Selection Rule (DISR) to each partition.

3. Select combinations of data values chosen in (2) to construct test cases by

applying a Test Case Construction Rule (TCCR) to the data values.

Atomic Rules for EP were enhanced, based on the outcome of the university experiment. In the original

EP rule set, datatype replacement rules EP4 to EP11 could only be applied to fields of a different datatype

to that of the field under test. For example, EP4: Integer Replacement could only be applied to non-integer

fields. During the university experiment it was realised that replacement rules could be applied to fields of

the same datatype, provided that the equivalence class selected excludes all values in the valid class. This is

evident in a previous example where EP7: Multiple Alpha Replacement was applied to the <street_type> to

select any multiple alpha character not in the valid set (see Section 3.4).

The final improvement was the definition of new Atomic Rules for BVA (BVA10 to BVA13) and ST

(ST17 to ST19), which were identified by participants of the industry experiment.

3.8 Limitations of the Atomic Rules Approach

One limitation of the Atomic Rules approach is that it does not support testing of input field

dependencies, where the test data value chosen from the equivalence class of one field depends on the value

chosen from the class of another field. Consider the example of a date picker whose implementation is

based on the Gregorian calendar and which is composed of three input fields.

 <day> ::= [1 – 31]

 <month> ::= [1 – 12]

 <year> ::= [1582 – 9999]

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 133

Invalid combinations include 31/2 and selecting 29 days in non-leap years such as 29/2/2009. While a

function could be defined for calculating whether a particular combination is possible, Atomic Rules cannot

be defined for selecting these as aside from automatic selection, they can only be manually chosen by a

tester who has appropriate domain knowledge of valid day/month/year combinations.

A similar limitation is that Atomic Rules cannot select combinations of test data values for testing

output partitions (introduced in Section 3.3.1.2), as this can only be carried out manually by a human tester.

Consider the following example that demonstrates the application of EP to the specification of a component

generate_grading, which takes as input a coursework mark out of 25 and an exam mark out of 75 and

generates a total grade in the range ‘A’ to ‘D’ (BS 7925-2) (Figure 3-14).

Figure 3-14: Specification for the component generate_grading (BS 7925-2).

Component generate_grading

The component is passed an exam mark (out of 75) and a coursework (c/w) mark (out of 25), from which
it generates a grade for the course in the range 'A' to 'D'. The grade is calculated from the overall mark
which is calculated as the sum of the exam and c/w marks, as follows:

greater than or equal to 70 - 'A'

greater than or equal to 50, but less than 70 - 'B'

greater than or equal to 30, but less than 50 - 'C'

less than 30 - 'D'

Where a mark is outside its expected range then a fault message ('FM') is generated. All inputs are
passed as integers.

Partitions can be identified for coursework mark and exam mark by applying EP1 to EP3:

1. EP1: coursework mark < 0 (invalid)

2. EP2: coursework mark > 25 (invalid)

3. EP3: coursework mark 0 – 25 (valid)

4. EP1: exam mark < 0 (invalid)

5. EP2: exam mark > 75 (invalid)

6. EP3: exam mark 0 – 75 (valid)

Invalid datatype replacement rules can also be applied to these fields, to ensure that Fault Messages

appears for non-integers. Since EP4 is covered by partitions 1, 2, 4 and 5, it is not included below.

7. EP5: real number in place of the coursework mark (invalid)

8. EP5: real number in place of the exam mark (invalid)

9. EP5: a single alpha character in place of the coursework mark (invalid)

10. EP5: a single alpha character in place of the exam mark (invalid)

11. EP7: multiple alphas characters in place of the coursework mark (invalid)

12. EP7: multiple alphas characters in place of the exam mark (invalid)

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 134

13. EP8: multiple alphanumeric characters in place of the coursework mark (invalid)

14. EP8: multiple alphanumeric characters in place of the exam mark (invalid)

15. EP9: a single non-alphanumeric character in place of the coursework mark (invalid)

16. EP9: a single non-alphanumeric character in place of the exam mark (invalid)

17. EP10: multiple non-alphanumeric characters in place of the coursework mark (invalid)

18. EP10: multiple non-alphanumeric characters in place of the exam mark (invalid)

19. EP11: null in place of the coursework mark (invalid)

20. EP11: null in place of the exam mark (invalid)

Each partition could then be tested by applying EP13 or EP17 to select nominal or random values.

The complexity arises when the output partitions of total mark are considered, as follows.

21. EP3: grade ‘A’ induced by total mark [70 – 100] (valid)

22. EP3: grade ‘B’ induced by total mark [50 – 69] (valid)

23. EP3: grade ‘C’ induced by total mark [30 – 49] (valid)

24. EP3: grade ‘D’ induced by total mark [0 – 29] (valid)

25. EP1: Fault Message induced by total mark < 0 (invalid)

26. EP2: Fault Message induced by total mark > 100 (invalid)

To ensure all output partitions are ‘covered’ by at least one test case, test data values for exam mark

need to be chosen based on the value of coursework mark. For example, test data values exam mark = 20

and coursework mark = 60 exercise partition number 21. It is not possible to define an Atomic Rule that

will mechanically identify all combinations of input exam marks and coursework marks that cause a

particular output partition to be exercised. A human tester is required to complete this step. Although this is

a current limitation of the approach, this could be solved in future research (see Chapter 7).

3.9 Related Research

The Atomic Rules characterisation schema provides a classification system for representing black-box

testing methods more prescriptively. Such classification systems are common in software engineering.

Characterisation schemas have been used to standardise other software engineering ‘technologies’

facilitating the selection of appropriate techniques with respect to specific problem domains.

For example, Prieto-Díaz and Freeman used faceted classification to develop a system for the

characterisation and retrieval of reusable code components (Prieto-Díaz 1991, Prieto-Díaz & Freeman

1987). Maiden and Rugg (1996) used faceted classification to develop the ACquisition of REquirements

(ACRE) framework, which guides the selection of suitable requirement acquisition (RA) methods. ACRE

consists of twelve methods that are chosen as representatives of all methods, six facets that determine

method selection and six tables that rank how well each method fits the terms of each facet. Continuing this

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 135

research, Rugg, McGeorge and Maiden (2000) decomposed RA and knowledge acquisition (KA) methods

into discrete sub-tasks called “method fragments.” They noted that while there were there a variety of

methods available, many had common sub-tasks. Also, many versions of each method exist, some of which

produce different results given the same elicitation problem. Method decomposition made their strengths

and weaknesses easier to assess. ACRE also facilitated the development of customised elicitation methods.

These concepts align well with the Atomic Rules approach and were used during the development of the

approach to refine the concept of Atomic Rules, the identification of method versions and the development

of Systematic Method Tailoring.

Birk (1997) used faceted classification and the Goal/Question/Metric (GQM) paradigm (Basili & Selby

1984, Basili & Weiss 1984, Basili 1991, Basili 1992, Basili et al. 1994) to develop a schema that

characterized software ‘technologies’ and aided in their selection. The aim was to develop a decision

support system for technology selection. Future work on the prototype Atomic Rules testing tool will

include such a system in which users can select the Rules that apply to their specific problem domain (see

Chapter 4).

Vegas, Juristo and Basili (2003) developed an instantiated characterization schema to classify testing

methods, to facilitate the selection of the “best suited” methods for specific projects (see Chapter 2, Section

2.5.3). While their schema enabled classification of various black-box testing methods, it did not

specifically provide solutions to the seven problems with existing black-box testing methods that are

addressed in this thesis, nor did it address the need for precise, prescriptive methods. It also does not clearly

identify the conditions under which one specific black-box testing method should be used over another. For

example, there is little difference between the definitions of BVA and RT (see Chapter 2, Table 2-10).

3.10 Goal/Question/Answer/Specify/Verify and Systematic Method
Tailoring

Goal/Question/Answer/Specify/Verify and Systematic Method Tailoring are two additional approaches

that were developed in support of the Atomic Rules approach. They are ultimately aimed at enabling more

effective black-box testing. GQASV is described first (Section 3.10.1), followed by SMT (Section 3.10.2).

A demonstration of both approaches is also provided, for an online, real-world foreign currency calculator

(Section 3.10.3).

3.10.1 Goal/Question/Answer/Specify/Verify (GQASV)

An unstated requirement for the effective use of black-box testing methods is that program input fields

are completely specified. As discussed in Chapter 2, a survey of software testing practices in Australia

found that of sixty-five organisations interviewed, over half reported that 20-59% of their program defects

were related to specification defects (Ng et al. 2004). For a specific example of field incompleteness,

consider the following real-life scenario. A business analyst (BA) working on a requirements specification

for financial software discovered that the program under development needed to validate credit card

numbers. The BA assumed that all members of the project team were familiar with valid credit card number

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 136

formats and thus omitted specifying their input data format explicitly. Consequently, during testing, the

system tester was unable to derive a complete or effective black-box test set for that requirement and thus

was unable to verify whether that part of the program satisfied its end-user needs. The input field definitions

were also difficult to extract from program requirements, partly as their data and behaviour were specified

in multiple places. As Abbot observed (1986), a program’s functionality, inputs, outputs and error checking

are often discussed over various (separate) sections of a specification and can even appear in completely

separate specifications. Consequently, there exists a need for a requirement elicitation procedure that

ensures program input/output fields are completely specified, thus enabling effective black-box testing.

3.10.1.1 The GQASV Process

GQASV is proposed as a simple yet readily applied requirement elicitation procedure that can be used

by business analysts or testers to develop precise definitions of program input and output fields, as well as

to gather domain knowledge that is useful for conducting effective black-box testing (Murnane, Reed &

Hall 2006). GQASV is a modest extension of the well-known Goal/Question/Metric paradigm (Basili &

Selby 1984, Basili & Weiss 1984, Basili 1991, Basili 1992, Basili et al. 1994) to support the analysis of

specification completeness and the collection of domain knowledge, specifically in support of black-box

testing.

The input and output field definitions developed through GQASV specify the datatype, set type and size

of each field in terms of minimum and maximum lengths, whether the field is mandatory or repeats, and the

valid data set the program should accept and (ideally) the invalid data set it should reject. While the last two

items are essential for selecting valid and invalid test cases, generic tests can be constructed using only

datatype, set type and size, as they define the minimum amount of information required for proper

application of the Atomic Rules approach. If the valid input data set is defined, then the datatype, set type

and size of each field can be deduced and can act as an error checking mechanism. GQASV also facilitates

the capture of domain knowledge that is utilised by testers during the specification process, allowing this

information to be reused and shared with other novice and experienced testers when learning about the

application domain of the program under test.

Each application of the technique results in one GQASV instance (i.e. one for each field specified).

GQASV comprises the five steps, as follows17.

1. As a goal, state that a particular field is going to be specified for the purpose of conducting

effective black-box testing.

2. Consider the following questions:

a. What is the field’s datatype? [Integer | Real | Single Alpha | Multiple Alpha | Multiple

Alphanumeric | Single Non-Alphanumeric | Multiple Non-Alphanumeric]

b. What is the field’s set type? [Range | List]

17 The verification step of this process (i.e. step 5) is new; thus, it was not defined in the original publication of this method in
(Murnane, Reed & Hall 2006).

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 137

c. For ranges, what are the minimum and maximum values? For Lists, what is the

minimum and maximum length of valid data?

d. What valid data set should the program accept and what invalid data should it reject?

e. Is the field mandatory? [Yes | No]

f. Does the field repeat? [Yes | No]; if Yes, what are the minimum and maximum number

of repetitions?

3. Seek and record answers to these questions by searching for domain knowledge in textbooks,

standards, papers, websites or by consulting with domain experts (e.g. consultants working in

the domain, business analysts, developers, clients and experienced testers). Each answer

should state how it was obtained, as this can be useful for the testing, development or

maintenance of the program being specified and for future software development in the same or

similar domains. Furthermore, the correctness of domain knowledge obtained from websites

should be verified by a domain expert before it is relied upon.

4. Specify the field using a formal notation (e.g. Backus-Naur Form), including valid and invalid

data sets, if available.

5. Verify the correctness of the field definition by verifying its completeness with a domain expert

(e.g. a client or business analyst who understands the client’s needs) and (ideally) with a system

developer, who can verify whether the implementation of this field is the same as its

specification (see footnote in Section 3.10.2.1 for an example of the importance of this step).

Subsequently, a collection of Atomic Rules that match the characteristics of the newly defined field can

be chosen using Systematic Method Tailoring. This step is analogous to the metrics selection step in GQM.

However, a fundamental difference is that while question identification in GQM requires some undefined

knowledge and expertise that is not apparent from the method, GQASV has a fixed set of questions that are

always required when specifying any input or output field, making it possible to work with the approach

when one has limited application domain knowledge.

An analysis of the literature suggests that while GQM and a number of other goal-oriented requirement

engineering approaches have been used for requirement elicitation (e.g. see (Bonifati et al. 2001, Dubois,

Yu & Petit 1998, Lamsweerde & Willemet 1998, Letier & Lamsweerde 2004, Sommerville et al. 1998)),

this appears to be the first use of GQM for the analysis of specification completeness and the identification

and documentation of domain knowledge, specifically in support of more effective black-box testing.

A demonstration of GQASV is provided in Section 3.10.3, along with a demonstration of Systematic

Method Tailoring, which is introduced in the next section.

3.10.2 Systematic Method Tailoring (SMT)

Non-prescriptive approaches to black-box testing, such as Error Guessing and Exploratory Testing,

compliment prescriptive black-box testing (Craig & Jaskiel 2002) and are seen by many practitioners as an

important aspect of the testing process. Yet there are currently no techniques available to guide testers in the

capture of test case design rules that are used during non-prescriptive testing, other than to create lists of

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 138

“error prone situations” (Myers 1979) that have not previously been documented by testers. As Jorgensen

(1995) claims, “special values testing is probably the most widely practiced form of functional testing. It

also is the most intuitive and the least uniform… There are no guidelines, other than to use ‘best

engineering judgement’. As a result, special value testing is very dependent on the abilities of the tester”.

On the other hand, Craig and Jaskiel (2002) maintain that “Good exploratory testers often keep notes or

checklists of tests that appear to be useful, to reuse on future releases. These ‘notes’ may (or may not) even

look a lot like test scripts.” For example, Test Matrices and Test Catalogues (see Chapter 2, Section 2.7).

can be used to create repositories of “special values” (Kaner et al. 2001, Marick 1995). However, Test

Matrices and Catalogues do not provide testers with any guidance on how to document the generic test case

design rules that are used to derive special values. They also do not provide guidance on how to construct

‘tailored’ black-box testing methods from the test case design rules that are collected during Error Guessing

and Exploratory Testing.

As an enhancement to the Atomic Rules approach, three new procedures for the Systematic Method

Tailoring of black-box testing are proposed (Murnane, Reed & Hall 2006). These new approaches support

the capture of domain-knowledge based test case design rules that are used during non-prescriptive testing

and can be used to construct new black-box testing methods. They are:

1. selection-based tailoring (Section 3.10.2.1);

2. creation-based tailoring (Section 3.10.2.2);

3. creation-based tailoring via selection, using:

3a. all combinations (Section 3.10.2.3);

3b. paired combinations (Section 3.10.2.3); and

3c. selective combinations (Section 3.10.2.3).

Although each approach is discussed independently, in practice, a combination of all three approaches

may be used. A demonstration of SMT is provided in Section 3.10.3.

3.10.2.1 Selection-Based Tailoring

In selection-based tailoring, new black-box methods can be defined by ‘selecting’ existing Atomic

Rules that match the Set Type (i.e. Range or List) of an Atomic Rule against the Set Type of valid data for

each field under test, allowing new black-box testing methods to be defined that suit the unique testing

needs of each program under test. In other words, a new Atomic Rule-based black-box testing method can

be constructed by either selecting a set of Atomic Rules from the complete set of existing rules, or by

selecting rules from a pre-existing Atomic Rule-based black-box testing method. This can be done at any

level of the Atomic Rules schema. This is a bottom-up approach that is based on the approach taken in

traditional black-box testing methods. For example, Myers (1979) provides different guidelines for

selecting test data for range-based and list-based fields.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 139

Consider the following example. Atomic Rules that could be selected for testing a range-based input

field <age> ::= [0 – 150] include test selection Rules BVA1: lower boundary – 1 selection and BVA6:

upper boundary + selection (see Appendix B for rule definitions). These could not be applied to a list-based

field defined as <colour> ::= [blue | green | red], as this field is a nominal set and it is impossible to

predict what comes before or after its lower and upper boundaries. An interesting point to consider is, had

the application programmer treated this field as a contiguous range-based field, where each colour is

defined by a numerical range in the colour spectrum, e.g. <colour_wavelength> ::= [450 - 495 nm, 495 -

570 nm, 620 - 750 nm], then Atomic Rules BVA1 and BVA6 would be applicable. This highlights the

importance of the verification step in GQASV (see Section 3.10.1.1), as it ensures that each input and

output field is specified and tested in an appropriate manner.

3.10.2.2 Creation-Based Tailoring

In creation-based tailoring, new Atomic Rules that have not been defined in existing black-box testing

methods are defined. This is useful when testers suspect that a specific input may be effective for testing a

particular field, and is similar to Error Guessing (Myers 1979). The benefit is that as each rule is defined

using the Atomic Rules schema, it is described in a more prescriptive manner that makes the rule available

for future reuse. Thus, a new Atomic Rule ri+1 that is not currently in the set of existing Rules R could be

defined, {ri+1 : r i+1 R}. Examples of new Atomic Rules that could be defined include the following:

1. Variations of ST Rules that have not been defined in existing literature, such as ri+1: first

character selection, which selects the first character of an input value (Table 3-23).

2. Rules that select specific input values, such as ri+2: select 0, to test for divide by zero errors.

3. Rules to select sets of input values, such as ri+3: select all ASCII symbols, to select a string of

special characters from the ASCII table.

4. Rules that select Unicode characters (Aliprand et al. 2003), such as ri+4: Unicode U+00FC (ü)

replacement, which would be useful for performing Internationalisation Testing of programs

that must support international languages.

5. Rules for testing programs with Graphical User Interfaces, for example:

a. ri+5: maximum character selection, which could add characters to a text field until no more

characters will fit. This could be useful for testing for buffer overflow faults.

b. ri+6: minimum – 1 list position selection, which could attempt to select a record before the

start of a record list to determine whether the program will run off the end of the record

list. A similar rule could attempt to access a record beyond the end of a list.

6. Rules that select escape characters and keywords that are part of the programming or database

query language of the system under test. For example, for HTML programs:

a. ri+7: HTML tag character selection, which could attempt to test with non-alphanumeric

characters < and >, which are part of the HTML syntax.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 140

Each new rule can be defined as an instance of the Atomic Rules schema (e.g. see Table 3-23).

Table 3-23: Creation of a new Atomic Rule defined through Systematic Method Tailoring.

Attribute Values

Test Method Syntax Testing

Number ri+1

Name First Character Selection

Description Select the first character of an input string

Source N/A

Rule Type DISR

Set Type List or Range

Valid or Invalid Invalid

Original
Datatype

Multiple: Integer, Real, Single Alpha, Multiple Alpha, Multiple
Alphanumeric, Single Non-Alphanumeric, Multiple Non-Alphanumeric

Test Datatype Same as original

Test Data Length 1

Fields
Populated

1

Tests Derived 0

3.10.2.3 Creation-Based Tailoring via Selection

In creation-based tailoring via selection, existing Atomic Rules are combined to create new Rules.

There are three types of tailoring within this class:

1. all combinations;

2. paired combinations; and

3. selective combinations.

In each of these procedures, which are defined below, new Atomic Rules are defined by creating new

instances of the Atomic Rules schema.

In all combinations, the set of all Atomic Rules {r1, …, rn} are combined, resulting in the n-ary

Cartesian product R1 × … × Rn = {(r1, …, rn) | r1 R1 … rn Rn}. However, this results in

n

i
i

R
1

combinations, where n is the number of existing Atomic Rules that have been identified for black-

box testing. Thus, this may be only useful for experimentally locating combinations not found through other

tailoring procedures.

In paired combinations, each Atomic Rule is paired with every other rule, resulting in the binary

Cartesian product Ri × Rj = {(rm, rn) | rm Ri rn Rj}, where each pairing creates a new rule. Some

examples are:

1. rn+1: uppercase first item = BVA7: first list item selection × ST7: uppercase a lowercase letter.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 141

2. rn+2: smallest integer replacement = EP4: integer replacement × BVA2: lower boundary selection.

3. rn+3: alphabetic letter Z or z replacement = EP6: single alpha replacement × BVA5: upper boundary

selection.

In selective combinations, rule amalgamation is based on a tester’s ‘intuition’ that certain combinations

may cause program failure (for a discussion on tester ‘intuition,’ see Chapter 6, Section 6.6.3). Again, this is

similar to Error Guessing. For example, if a tester suspects that a program does not place an upper limit on

the number of digits that can be input into a numerical field, a new rule rn+4: largest integer/real number

replacement = EP4: integer replacement × EP5: real number replacement × ri+5: maximum character

selection could be defined.

Some combinations create Rules that already exist. In the current set of Atomic Rules for EP, BVA and

ST, those combinations are:

1. EP10: multiple alphanumeric replacement = EP4: integer replacement × EP7: multiple alpha

replacement.

2. ST9: null all input = EP16: invalid test case constructor (minimised) × (EP11: null item

replacement | BVA9: null item replacement).

Also, some Rules are contradictory. EP replacement Rules EP4 to EP11 cannot be combined with

EP12: valid list selection as the replacement Rules selects invalid data while EP12 selects valid data. This

is similar to the identification of contradictory test frames in CPM (Ostrand & Balcer 1988).

3.10.3 Demonstration of GQASV and SMT

As a preliminary proof of concept, GQASV and SMT are applied to an online Foreign Currency

Exchange Calculator (Figure 3-16) (Murnane, Reed & Hall 2006). To assess their effectiveness, the results

of applying a set of EP and BVA Atomic Rules to those selected by a new method derived by SMT are

compared. To limit the scope of the example, only the “Foreign Currency” field of this program shall be

tested. Settings for fields “I wish to,” “Select the foreign currency” and “Select the currency type” are

shown in Figure 3-16. As the program specification is not accessible, GQASV is applied to obtain a

definition of the ‘Foreign Currency’ field.

1. Goal: to specify the Foreign Currency field of the Foreign Exchange Calculator, in order to enable

more effective black-box testing.

2. Questions:

a. What is the field’s datatype?

b. What is the field’s set type?

c. Ranges: minimum and maximum values; Lists: what is the minimum and maximum

length of valid data?

d. What valid data set should the program accept, and what invalid data should it reject?

e. Is the field mandatory?

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 142

f. Does the field repeat? Minimum/maximum repetitions?

3. Answers:

a. Datatype: based on experience with international money transfers, acceptable

datatypes are Integer and Real (i.e. non floating-point numbers).

b. Set type: based on experience with banking systems, it is reasonable to assume that

the interval of allowable values is continuous, thus set type is Range.

c. Minimum/maximum range values: various searches were used to discover this. They

are included here to give the reader an understanding of the process followed. First, a

search of the St George Bank website for the term “international transfer” located on

the page “Foreign Exchange Services” (St George Foreign Exchange Services), which

included a telephone number. When called, the operator reported that there were no

minimum or maximum limits placed on currency exchanges. However, through GUI-

based application domain knowledge, it is known that unlimited input lengths can

cause buffer overflow and conversion exceptions in internet-based applications. The

next search determined the financial worth of the richest person on Earth, Bill Gates (at

the time of the case study), which may be a sensible value to use. According the

Forbes this was US$46.5 billion (Kroll & Gildman 2005). However, if the top twenty-five

billionaires saved their money with the same bank, their total financial worth could be

more sensible. According to Forbes, this was US$496.8 billion (Kroll & Gildman 2005).

Taking this even further, one may consider the GDP of the largest economy in the

world, the USA, US$10.8 trillion (Special Broadcasting Service 2003). These answers

provide “application solution domain” (Reed 1990) data that is potentially sensible for

defining this field. However, the maximum variable size of the programming language

used, and combined implementation and runtime domain issues, could be considered.

The client-side application was written in JavaScript (discovered by viewing the source

code), which is capable of representing numbers in the range18

1.7976931348623157x10308 (Flanagan 2002). For this application, this limit would be

the maximum output value when converting to a particular currency or when an input is

represented internally19. Thus, this figure needs to be divided by the largest possible

exchange rate, which are available real-time on the Reserve Bank of Australia website

(Reserve Bank 2005). Plausible values are 0.1 to 1000. Thus, sensible minimum and

maximum range values could be 1.7976931348623157x10305.

d. Valid data set: as described in step c.

e. Is the field mandatory? Yes.

f. Does the field repeat? No.

4. Specify: <foreign_currency> ::= [-1.7976931348623157x10305 –1.7976931348623157x10305]

5. Verify: in a real-world software testing scenario, a domain expert (e.g. a client or business analyst)

would be available to verity the completeness of this field definition. As this was carried out for

demonstration purposes only and a domain expert was not available, this definition could not be

verified.

18 For the purposes of this discussion, we only consider exponents > 0.
19 In Reed’s KABASPP model (Reed 1990), this would represent knowledge gained from the development domain of the program.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 143

Atomic Rules from EP and BVA can now be applied to generate test data (Table 3-24), followed by the

selection of test cases by a tailored method (Table 3-25). Although the input field permits more numbers to

be added, for test 15 (Table 3-25), an arbitrarily large number chosen to represent the maximum possible

digits is 120,000. Although floating point representations are used throughout this discussion, when

providing input to the program, an integer or fixed point decimal value containing 309 digits to the left of

the decimal point was used. Thus, the inputs specified by test cases 8 to 13 (Table 3-25) contain 309 digits,

the first section of which is the 17 digit mantissa of the resultant value. For example, in the case of test case

9, the number input to the program is 17976931348623157 followed by 297 “9”’s.

In fact, two different sets of values could have been used in this exercise, depending upon whether

implementation “domain/run-time” issues (i.e. variable storage limits) or “application domain” issues (i.e.

sensible values for maximum amounts) were being tested (Reed 1990). While it could be more sensible to

derive test cases based on the latter, for the purposes of this proof of concept exercise, in this example

implementation domain issues have been chosen as the focal point.

As Table 3-24 and Table 3-25 show, the tailored method detects a suspected fault with test case 14

(Figure 3-19) that is not detected by EP or BVA. Further examination revealed that inputting the string “<>

followed by any other symbol and clicking the Calculate button causes those symbols to be printed to the

right of the input field. Both EP and the tailored method detect that the program does not limit input data

lengths (Table 3-24, test cases 1 and 2; Table 3, test case 15), causing a suspected buffer overflow (Figure

3-17). The resulting screen does not specify what was wrong with the input. BVA did not detect this as the

exchange rate used was overestimated.

This example demonstrates that the use of GQASV and SMT can result in more effective black-box

testing. It also shows how recording Atomic Rule numbers that have been applied against each input field

during testing can simplify the process of assessing test set completeness (Table 3-24). Interestingly, a re-

test of this scenario approximately three months after this initial proof of concept testing was carried out

revealed that the fault detected by test cases 1, 2, and 15 had been repaired. However, it was not possible to

determine whether it was fixed due to the testing that had been carried out during this proof of concept. The

fault identified by test case 14 is still evident in the software as of 20th July 2008.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 144

Table 3-24: Equivalence Partitioning and Boundary Value Analysis test cases for the Foreign
Currency field of the St George Bank Foreign Currency Calculator.

Rule Test Data Result

1
EP1: < lower boundary
selection

-1.7976931348623157x10305
Suspected buffer overflow (Figure 3-
19)

2
EP2: > upper boundary
selection

+1.7976931348623157x10305
Suspected buffer overflow (Figure 3-
19)

3
EP3: lower to upper
boundary selection

50000 Correct result output (Figure 3-16)

4
EP6: single alpha
replacement

G
Input rejected, validation message
shown (Figure 3-18)

5
EP7: multiple
alphanumeric
replacement

G55f
Input rejected, validation message
shown (Figure 3-18)

6
EP8: single non-
alphanumeric
replacement

*
Input rejected, validation message
shown (Figure 3-18)

7
EP11/BVA9: null item
replacement

Input rejected, validation message
shown (Figure 3-18)

8
BVA1: lower boundary –
selection

-1.7976931348623158x10305
- 1

Correct result output (Figure 3-16)

9
BVA2: lower boundary
selection

-1.7976931348623158x10305 Correct result output (Figure 3-16)

10
BVA3: lower boundary +
selection

-1.7976931348623158x10305
+ 1

Correct result output (Figure 3-16)

11
BVA4: upper boundary –
selection

1.7976931348623158x10305
- 1

Correct result output (Figure 3-16)

12
BVA5: upper boundary
selection

1.7976931348623158x10305 Correct result output (Figure 3-16)

13
BVA6: upper boundary +
selection

1.7976931348623158x10305
+ 1

Correct result output (Figure 3-16)

Table 3-25: Test cases of a tailored black-box method derived through SMT for the Foreign Currency
field of the Foreign Currency Exchange Calculator (rules defined in Section 3.10.2).

Rule Test Data Result

14
ri+3: select all
ASCII symbols

!@#$%^&*()_+{}|:”<>?[]\;’,./~
`

Input rejected, validation message
shown (Figure 3-18). Symbols output to
the right of the Foreign Currency Field
(Figure 3-19)

15
rn+4 largest integer/real
replacement

120000 9’s Suspected buffer overflow (Figure 3-19)

16
ri+4: Unicode U+00FC
(ü) replacement

Ü
Input rejected, validation message
shown (Figure 3-18)

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 145

Figure 3-15: St George Bank’s online Foreign Currency Exchange Calculator
(St George Calculator 2005).

Figure 3-16: Result of executing the Foreign Currency Exchange Calculator with valid values.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 146

Figure 3-17: Result of testing the Foreign Currency Exchange Calculator with very large input,
causing a suspected buffer overflow failure.

Figure 3-18: Validation message displayed when the Foreign Currency Exchange Calculator is tested
with an invalid datatype.

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 147

Figure 3-19: Demonstration of symbols that are output to the right of the Foreign Currency field on
the Foreign Currency Exchange Calculator, when test case 14 of Table 3-24 is applied.

3.11 Summary

The Atomic Rules approach, Goal/Question/Answer/Specify/Verify and Systematic Method Tailoring

have been presented as solutions to seven problems with existing black-box testing methods (definition by

exclusion, multiple versions, method overlap, notational and terminological differences and reliance on

domain knowledge), with the ultimate aim of improving the usability and failure-detection effectiveness of

the methods.

Definition by exclusion was resolved by defining explicit datatypes that delineate the scope of valid and

invalid equivalence classes that are selected by each Atomic Rule. This also partially resolved reliance on

domain knowledge, by defining Atomic Rules to a level of detail that facilitates the development of

effective and predictable test sets, regardless of each tester’s domain knowledge and experience. Systematic

Method Tailoring (SMT) further resolved reliance on domain knowledge by facilitating the definition of

new Atomic Rules and new black-box testing methods through the capture of domain knowledge that is

A Generalised Representation for Black-Box Testing Methods Chapter 3

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 148

used by professional testers during non-prescriptive testing. Reliance on domain knowledge was further

resolved by GQASV, which supports testers in developing precise specifications of input program input and

output fields, enabling more effective black-box testing. Domain knowledge utilised during the

specification process is also captured by GQASV, allowing it to be reused and shared with other testers.

Notational and terminological differences were resolved by creating a characterisation schema that

defines the characteristics of each black-box test case design rule in a uniform way and by developing a

four-step test case design process that is common to all black-box testing methods. Method overlap was

resolved by identifying Atomic Rules that overlap, both within and between different black-box testing

methods. Multiple versions of the same method were resolved by developing one set of Atomic Rules that

cover the test case design rules of all published versions of that method. This makes the methods easier to

audit, since it provides one set of Atomic Rules that cover all versions of each method. The process of

auditing the completeness of black-box test sets was demonstrated by creating a Test Matrix to track the set

of Atomic Rules that were (or were not) applied to a program.

The prescriptive nature of the Atomic Rules approach, GQASV and SMT makes black-box test case

generation easier to automate. A prototype called the Atomic Rules Testing Tool, which automates these

concepts, is presented in Chapter 4. Currently, ARTT can automatically generate black-box test data from

specifications that are input through a graphical user interface, record domain knowledge gained through

GQASV and define new Atomic Rules through SMT. The ultimate aim of ARTT is to make black-box test

case design even more efficient and precise.

An additional benefit of the Atomic Rules approach, which was presented in this chapter, is that Atomic

Rules from EP, BVA and ST can aid test data selection for methods like State Transition Testing, Use Case

Testing and the Category Partition Method.

Two limitation of this approach were presented in this chapter. Currently, the Atomic Rules approach

cannot be used to test field dependencies, where the value chosen for one field of a test case depends on the

value chosen for another. Atomic Rules also cannot currently be used for selecting input test data values for

testing output field partitions. On the other hand, future research in this area may enable support of these

two aspects of black-box test case design (see Chapter 7).

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 149

Chapter 4

Automating the Atomic Rules Approach

"There are only two industries that refer to their customers as ‘users’.”
Edward Tufte

4.1 Overview

The Atomic Rules approach, GQASV and SMT were developed to improve the usability and failure-

detection effectiveness of black-box testing. Since these approaches exhibit a high degree of regularity

coupled with considerable fine-grained detail, it was considered that automation was both possible and

desirable. It was also felt that an appropriate tool could support and record the decision-making process,

providing reusable records of, for example, the actual knowledge sources used and outcomes obtained when

applying GQASV. While it was not originally intended, such a tool could be considered to be an application

domain specific Design Reasoning Recording (DRR) system (Potts & Bruns 1988), albeit with some

limitations in the DRR sense (Potts & Bruns (1988) is cited as a pioneering and classic description of this

class of system).

In this chapter, a prototype called the Atomic Rules Testing Tool, which provides automation support to

the Atomic Rules approach, GQASV and SMT, is presented. The aim of ARTT is to improve the efficiency

and accuracy to black-box test data generation. ARTT automates test data generation as follows (Figure 4-

1). A graphical user interface allows the user to create specifications of program input fields. The user can

then choose to apply a subset of Atomic Rules from EP, BVA and ST to each input field. ARTT then

applies the chosen set of Atomic Rules to the specified input fields to generate black-box test data values,

based on the Atomic Rule application order prescribed in the four-step test case design process (see Chapter

3, Section 3.2.1). ARTT enables the capture of domain knowledge that is collected during the specification

process through GQASV and, in addition, the definition of new Atomic Rules through creation-based SMT.

ARTT supports any level of testing, although it is particularly useful during Unit, Integration and System

Testing, during which input field validation testing is typically performed.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 150

Table 4-1: Process of creating a specification and generating test data in the Atomic Rules Testing Tool.

Create New Specification

Specify Domain Knowledge

Save Specification

Generate Black-Box Test Data

Specify Input Fields

Click Generate Test Cases

Select Atomic Rules from EP, BVA
and ST to apply to each input field

Specification is available
to view in EBNF

Test cases are output to file

Test cases output in
Microsoft Excel Format

Test cases output in
Flat Text Format

EBNF Version of Specification

ARTT currently implements Data-Set Selection Rules, Data-Item Selection Rules and Data-Item

Manipulation Rules. Future work will include implementation of Test Case Construction Rules (see Section

4.10), as well as the automatic generation of program source code for input data validation in various

programming languages. For example, if an input field should only accept integers within a certain range,

then ARTT could apply a set of Atomic Rules to automatically generate source code that accepts integers

within that range and rejects all other inputs. This would reduce the need for rigorous input/output testing.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 151

This chapter is structured as follows. An overview of the screens and navigation in ARTT is provided in

Section 4.2, while the architecture is discussed in Section 4.3. The approach to test data generation is

described in Section 4.2. Specification creation in ARTT is discussed in Section 4.4.1. The application of

Atomic Rules to specifications is covered in Section 4.4.2. This is followed by an example of test data

generation in Section 4.4.3. The implementation of GQASV and SMT are covered in Sections 4.5 and 4.6.

The specification notation used in ARTT is described in Section 4.7. Benefits and limitations are discussed

in Sections 4.8 and 4.9 and future improvements in Section 4.10. A chapter summary is given in Section

4.11. Detailed functional specifications for ARTT are provided in Appendix F.

4.2 Screens and Navigation

ARTT functionality is divided into two main functional areas: administrator and user functions. These

are implemented within seven screens, as follows .

1. Main Menu: this screen supports navigation to the user and administration functions (see

Figure 4-1 and Appendix F, Section F.4.1).

2. Atomic Rules Editor: this allows administrators to create, edit and delete Atomic Rules (see

Appendix F, Section F.4.2).

3. Author Selector: this allows administrators to populate the Source field of Atomic Rules (see

Section 3.2.2), and is accessible from the Atomic Rules Editor (see Appendix F, Section F.4.3).

4. Character Viewer: this screen allows administrators and users to view the individual characters

that are included within the datatypes (e.g. Integer, Real, Alpha) that are supported by ARTT.

This screen can be accessed from the Atomic Rules Editor to view the contents of the Original

Datatype and Test Datatype of each Atomic Rule, and from the Specification Editor to view the

contents of input fields that are specified by datatype (see Appendix F, Section F.4.4).

5. Specification Viewer: this allows users to view all specifications that have been created, and to

initiate the creation, editing and deletion of specifications (see Appendix F, Section F.4.5).

6. Specification Editor: this allows users to create specifications, by creating, editing and deleting

input fields, assigning domain knowledge to each input field and attaching files to the

specification. Users can also view an automatically generated EBNF representation of their

specification on this screen (see Appendix F, Section F.4.6).

7. Atomic Rules Selector: this allows users to apply a set of Atomic Rules from EP, BVA and ST

to a specification, to automatically generate black-box test data (see Appendix F, Section F.4.7).

Although there are user and administrator functions within ARTT, there is no login screen, since data

security is not a risk.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 152

Figure 4-1: Screens and navigation within the Atomic Rules Testing Tool.

Navigation within the Atomic Rules Testing Tool

Main Menu

User FunctionsAdministrator Functions

Atomic
Rules

Selector

Character
Viewer

Specification
Viewer

Atomic Rules
Editor

Specification
Editor

Author
Selector

Enables navigation to
administrator and user functions

Allows administrators to
create, edit and delete

Atomic Rules

Populates the
Source field of

each Atomic
Rule

Displays
characters

assigned to
datatypes

Allows users to view all
specifications and to initiate
creation, editing and
deletion of specifications

Allows users to
apply Atomic Rules
to specifications to
generate test data

Allows users to
specify input fields
and domain
knowledge for
specifications

4.3 Architecture

ARTT was developed in Microsoft Visual Basic 6.0 (VB6) in a Windows XP environment. It has a

three-tiered architecture with the GUI and business logic being implemented in VB6 and the database

developed in Microsoft Access 2003 (Figure 4-2). The application tier communicates with the database via

an ODBC Data Source that utilises ActivieX Data Objects and Jet OLE DB 4.0.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 153

Figure 4-2: High-level architecture of the Atomic Rules Testing Tool.

4.4 Test Data Generation

The process of generating black-box test data values through ARTT is as follows.

1. A user specifies the characteristics of program input fields through the Specification Editor

screen (see Section 4.4.1).

2. The user then selects a set of Atomic Rules to automatically apply to the specification

through the Atomic Rules Selector screen (see Section 4.4.2).

3. ARTT applies the chosen set of DSSRs, DISRs and DIMRs against the specified input fields

to automatically generate equivalence classes, test data values and manipulated test data

values. This is done by mapping the Set Type and Datatype of each input field to the Set

Type and Original Datatype of each Atomic Rule. Equivalence classes and test data values

are output to file in both plain text and Microsoft Excel format.

This process is described in detail in the subsections below.

Database
 Developed in Microsoft Access 2003

User Interface
 Developed in Microsoft VB6

Business Logic
 Source code developed in

Microsoft Visual Basic 6
 Database access implemented

through Active X Data Objects
and Jet OLE DB 4.0

Database

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 154

4.4.1 Specification Creation

The input fields that test data is going to be generated from can be specified through the Specification

Editor (Figure 4-3 and Appendix F Section F.3.6). The following information is recorded for each field.

1. Field name

2. Set type (Range or List)

3. For list-based fields, the individual values that are stored in the list or a list of datatypes that

are accepted by the field as valid. For range-based fields, the minimum and maximum

values of contiguous data that is allowed in the field or a contiguous datatype

4. The minimum and maximum number of times the field repeats (i.e. zero or more)

5. Whether the field is mandatory or optional

6. Parent fields of the field, which allows the hierarchy of the specification to be defined (e.g.

see Figure 4-4)

Figure 4-3: Specifying the input fields of a program in the Atomic Rules Testing Tool.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 155

For example, consider the specification for the Address Parser program provided in Chapter 3 (Figure 3-

9). For the list field <street_type> ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt], the following

information would be recorded (e.g. see Appendix F, Section 3.6.1).

1. Field name: street_type

2. Set type: list

3. Individual values stored in the list: Street, St, Road, Rd, Avenue, Ave, Court, Crt

4. Minimum and maximum number of times the field repeats: zero (field does not repeat)

5. Mandatory or optional: mandatory

6. Parent field: street_name (see Figure 4-4)

Similarly, for the range-based field <house_number> ::= [1 – 9999], the following information would

be recorded (e.g. see Appendix F, Section 3.6.2).

1. Field name: house_number

2. Set type: range

3. Contiguous data allowed in the field: 1 – 9999

4. Minimum and maximum number of times the field repeats: zero (field does not repeat)

5. Mandatory or optional: mandatory

6. Parent field: address

Thus, the Specification Editor screen allows the individual fields of a specification to be defined in a

systematic format and also allows the hierarchy of the specification to be defined.

Figure 4-4: Abstract Syntax Tree depicting example parent/child relationships in a (hierarchical)
Address Parser specification.

<street>

<street_name> <street_type>

[Street | St | Road | Rd |
Avenue | Ave | Court | Crt]

{[A – Z | a – z] |
[A – Z | a – z] [- | .]
[A – Z | a – z]}1 - 40

Children of the
<street> field

Parent of fields
<street_name>
and <street_type>

Input field definitions
of <street_name>
and <street_type>

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 156

4.4.2 Atomic Rules Selection

Once the program input fields have been specified, the Atomic Rules Selector allows the user to select a

set of Atomic Rules that will be applied to each input field (Figure 4-5 and Appendix F Section F.3.7).

ARTT only allows a user to apply Atomic Rules that match the Set Type and Datatype of the input field.

For example, if test data was being generated for a field defined as <house_number> ::= [0 – 9]1-4 (which

is an alternate definition of the house number field), then rules BVA1 to BVA6 could be applied since they

are applicable to range-based fields and contiguous datatypes, whereas BVA8 and BVA9 could not be

applied as these only apply to list-base fields (e.g. see Figure 4-5, ‘Applicable’ column).

From the list of ‘applicable’ rules, the user can choose to apply a set of Atomic Rules EP, BVA, ST or

can choose to apply all applicable rules from these methods (e.g. see Figure 4-5, ‘Selected’ column).

Figure 4-5: Selecting Atomic Rules to apply to an example specification.

4.4.3 Test Data Generation

Once the user has selected a set of Atomic Rules to apply to each input field, clicking the ‘Generate Test

Cases’ button on the Atomic Rules Selector screen (see Figure 4-5) activates the automated test data

generation process. ARTT generates test data by applying each Atomic Rule to each field of a specification,

according to the four-step test selection process, which is implemented in four main algorithms:

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 157

1. Select Partition

2. Select Data Item

3. Manipulate Data Item

4. Construct Test Cases

Currently, only the first three functions of this process are implemented. Future work on ARTT will

include development of algorithms that construct test cases (see section 4.10).

Consider a field <house_number> ::= [1 – 9999]. If the user applies Data-Set Selection Rules EP1,

EP2, EP3, and EP5 to this field, ARTT would automatically generate the following equivalence classes.

1. EP1: [-32768 – 0]

2. EP2: [10000 – 32767]

3. EP3: [1 – 9999]

4. EP5: real numbers in the range [-32768.00 – 32767.00]

Further, if the user applies Data-Item Selection Rules EP13 and BVA1 to BVA6 to this field, the

following test data values would be automatically generated from these equivalence classes. One of the

limitations of ARTT is it does not yet automatically identify test data values that overlap (e.g. see 1f and 3b

in the list below). This is planned as a future feature of this tool.

1. EP1: [-32768 – 0]

a. EP13: select a random value, such as -25040

b. BVA1: -32767

c. BVA2: -32768

d. BVA3: -32769

e. BVA4: -1

f. BVA5: 0

g. BVA6: 1

2. EP2: [10000 – 32767]

a. EP13: select a random value, such as 10936

b. BVA4: 9999

c. BVA5: 10000

d. BVA6: 10001

e. BVA1: 32766

f. BVA2: 32767

g. BVA3: 32768

3. EP3: [1 – 9999]

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 158

a. EP13: select a random value, such as 8723

b. BVA1: 0 (already covered by 1g)

c. BVA2: 1 (already covered by 1h)

d. BVA3: 2

e. BVA4: 9998

f. BVA5: 9999 (already covered by 1c)

g. BVA6: 10000 (already covered by 1d)

4. EP5: real numbers in the range [-32768.00 – 32767.00]

a. EP13: select a random value, such as 18732.97

b. BVA1: -32767.99

c. BVA2: -32768.00

d. BVA3: -32768.01

e. BVA4: 32766.99

f. BVA5: 32767.00

g. BVA6: 32767.01

Then, if the user applies the Data-Item Manipulation Rule ST2: Replace Last Character to this field, the

following ‘mutated’ test data values are generated from the list of test data values above. In each of the

mutated data items below, the last character is replaced by another character that is randomly chosen from

the ASCII table. This produces many test data values that overlap (e.g. items 1c and 1d belong to the same

equivalence class). Future implementations of ARTT will remove these types of redundant test data values.

1. EP1: [-32768 – 0]

a. EP13: select a random value, such as -2504D

b. BVA1: -3276k

c. BVA2: -3276’

d. BVA3: -3276[

e. BVA4: -A

f. BVA5: @

g. BVA6: !

2. EP2: [10000 – 32767]

a. EP13: select a random value, such as 1093p

b. BVA4: 999.

c. BVA5: 1000m

d. BVA6: 1000Q

e. BVA1: 3276’

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 159

f. BVA2: 3276b

g. BVA3: 3276R

3. EP3: [1 – 9999]

a. EP13: select a random value, such as 8728

b. BVA1: #

c. BVA2: +

d. BVA3: ;

e. BVA4: 999S

f. BVA5: 999v

g. BVA6: 1000l

4. EP5: real numbers in the range [-32768.00 – 32767.00]

a. EP13: select a random value, such as 18732.9M

b. BVA1: -32767.9(

c. BVA2: -32768.0$

d. BVA3: -32768.0j

e. BVA4: 32766.9.

f. BVA5: 32767.0]

g. BVA6: 32767.0+

In a matter of seconds, ARTT will output the set of equivalence classes, test data values and

manipulated test data values that are generated to a text file (Figure 4-6) and to a Microsoft Excel

spreadsheet (Figure 4-7). This completes the process of test data generation. Some names and numbers of

Atomic Rule have changed since the prototype of the Atomic Rules Testing was first developed. For

example, EP11: Random Test Data Selector and EP14: Nominal Value Selector are illustrated in this figure

but are now referred to as EP13: Random Data Value Selector and EP17: Nominal Data Value Selector.

Thus, the names and numbers of some of rules that appear in the following two diagrams differ from those

defined in the Appendix.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 160

Figure 4-6: Example of test data values output to a text file by the Atomic Rules Testing Tool.

When test data is output to Microsoft Excel spreadsheets, it includes the Rule Identifiers (Rule ID) that

were used in the test data generation process (Figure 4-7).

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 161

Figure 4-7: Example of test data values output to a Microsoft Excel spreadsheet by the Atomic Rules
Testing Tool.

4.5 Implementation of Goal/Question/Answer/Specify/Verify

ARTT also provides support for GQASV. When the user enters the specification for each input field

through the Specification Editor screen (see Section 4.4.1), they can also choose to record the source of any

domain knowledge they may have consulted during the specification process (Figure 4-8). For example, if

the user consulted a programming textbook for the definition of the datatype of an input field, then they

could record the name of that textbook against the field. In the current version, only the name of the

knowledge source can be recorded. More precise identification of the source, such as page number and a

navigation tool for online sources, will be included in future developments of the tool.

ARTT collects the following information on the source of the domain knowledge.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 162

1. A question asking the user “What does [the domain-knowledge] relates to?” Predefined

questions the user can choose from are as follows.

a. What is the field's datatype?

b. What is the field's set type?

c. For Set Type = Range: what are min and max values?

d. For Set Type = List: what are min and max valid data lengths?

e. Is the field mandatory?

f. Does the field repeat?

g. If field repeats, what are min and max repetitions?

h. Other (please specify). If the user chooses other, then they can specify their own

question in the ‘Other’ field.

2. A Name and Description to uniquely identify the domain knowledge. This will appear in the

Domain Knowledge list when the field is saved (see Figure 4-8).

3. The Source (type) of the domain knowledge, which can be chosen from the following list:

a. Personal Knowledge

b. Personal Experience

c. Book

d. Textbook

e. Standard

f. Conference Paper

g. Journal Paper

h. White Paper

i. Magazine

j. Newspaper Article

k. Technical Report

l. Web Site

m. Domain Expert

n. Source Code

o. Publication Other (please specify)

p. Other (please specify). If the user chooses other, then they can specify their own

question in the ‘Other’ field.

4. The user is then able to enter the details of the source. The fields that appear in the ‘Source’

frame (see Figure 4-8) depend on the particular ‘source type’ that was chosen in the

previous step. The fields that appear can include the author, title, description and publisher

of the source (see Appendix F Section F3.6.3 for more information).

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 163

This allows the user to record the source location of all information they utilised when they were

specifying the input fields of the program under test.

Figure 4-8: Recording domain-knowledge information gained for each input field being specified.

4.6 Implementation of Systematic Method Tailoring

ARTT automates two forms of SMT: selection-based tailoring and creation-based tailoring. Selection-

based tailoring, which was demonstrated in the previous section, allows users to apply Atomic Rules from

various different black-box testing methods in combination to automatically generate ‘novel’ test data.

ARTT enables creation-based tailoring via the definition of new Atomic Rules through the Atomic

Rules Editor (Figure 4-9). On this screen the user can view the characteristics of each Atomic Rule and

define new rules. The screen includes all attributes of the Atomic Rules schema, as well as a number of

additional fields that are required for automation of this approach. These are as follows (attributes that

correspond to fields of the Atomic Rules schema are marked with an asterisk *).

1. Test Method*. Name of the test method the rule is defined for. Options are Equivalence

Partitioning, Boundary Value Analysis and Syntax Testing.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 164

2. Rule Number*. Abbreviation of the test method name followed by an incremental number.

3. Identifier*. Abbreviation of the Name field.

4. Name*. The name of the Atomic Rule.

5. Description*. A brief description of what the rule does.

6. Source*. The reference from which the rule was derived (this can be selected from the

Author Selector screen; see Appendix F, Section F.3.3).

7. Rule Type*. Corresponds to the step of the four-step test case design process that this rule

implements. Options are Data-Set Selection Rule, Data-Item Selection Rule, Data-Item

Manipulation Rule and Test Case Construction Rule.

8. Rule Class. There are five classes of rules implemented in ARTT, as follows.

a. Selection rules select equivalence classes (e.g. EP1 to EP3) and test data values (e.g.

BVA1).

b. Insertion rules add individual test data values into equivalence classes and to other

test data values (e.g. ST3 and ST6).

c. Deletion rules remove values from equivalence classes and test data values (e.g. ST1

and ST4)

d. Replacement rules replace equivalence classes with invalid partitions (e.g. EP4 to

EP11) and values within test data items with invalid values (e.g. ST2 and ST5).

e. Combinatorial rules construct test cases (e.g. EP14 to EP16). ARTT currently does

not implement this class of rules (see future work, see Section 4.10).

9. Field Set Type*. Set type of the field that the rule can be applied to. Options are List,

Range, List and Range or Neither (e.g., non-terminal fields like the <address> field of the

Address Parser specification could be tested by Syntax Testing rules that substitute non-

terminal fields for other terminal or non-terminal fields).

10. Start Position and End Position. These define the start and end points between which

equivalence class and test data value are selected from fields under test. The user can

choose from six types of start and end positions, as follows.

a. Datatype start and end positions select equivalence classes between two boundaries

of the datatype of the field under test. For example, if the field under test is an integer

field, then a DSSR could be defined to select an equivalence class between the lower

and upper boundaries of the datatype selecting the class [-32768 – 32767].

b. Field start and end positions can be used by DSSRs to select an equivalence class

from a range-based field. For example, they could select values between the lower

and upper boundaries of a field <house_number> ::= [1 – 9999], which would select

the valid partition [1 – 9999]. They can also be used by DISRs to select one data

value from a partition, such as selecting the upper boundary of the <house_number>

field, selecting the value 9999.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 165

c. List value start and end positions can be used by DSSRs to select an equivalence

class from a list-based field. For example, they could be applied to the field

<street_type> ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt] to select the

valid partition [Street | St | Road | Rd | Avenue | Ave | Court | Crt]. They can also be

used by DISRs to select one data value from a list, such as selecting the lower

boundary value Street from this partition.

d. Nominal start and end positions can be used by DSSRs, DISRs and DIMRs to

select the mid-point value from a field, equivalence class (e.g. selecting the keyword

‘Rd’ from the <street_type> field) or test data value (e.g. selecting the middle

character ‘u’ from the keyword ‘Court’).

e. Random start and end positions can be used by DSSRs, DISRs or DIMRs to select

a randomly chosen value from a field, partition or data value.

f. First and last character start and end positions can be used by DIRMs to alter a

single test data value, such as selecting the letter ‘R’ from the keyword ‘Road’ or

selecting ‘reet’ from the keyword ‘Street’.

Therefore, the values that appear in the Start and End Position fields depend on the value

of Rule Type, as follows.

If Rule Type = DSSR then rule selects a partition. Start and End Positions are:

i. Datatype Lower Boundary – (e.g. ASCII A – 1 = @)

ii. Datatype Lower Boundary (e.g. ASCII A = A)

iii. Datatype Lower Boundary + (e.g. ASCII A + 1 = B)

iv. Datatype Upper Boundary – (e.g. ASCII Z – 1 = Y)

v. Datatype Upper Boundary (e.g. ASCII Z = Z)

vi. Datatype Upper Boundary + (e.g. ASCII Z + 1 = [)

vii. Field Lower Boundary – (just below lower boundary of a range)

viii. Field Lower Boundary (on the lower boundary of a range)

ix. Field Lower Boundary + (just above the lower boundary of a range)

x. Field Upper Boundary – (just below the upper boundary of a range)

xi. Field Upper Boundary (on the upper boundary of a range)

xii. Field Upper Boundary + (just above the upper boundary of a range)

xiii. First Field Value (first value in a list)

xiv. Last Field Value (last value in a list)

xv. Nominal Value (middle value of a range or list)

xvi. Random Value (random value from a range or list)

If Rule Type = DISR then rule selects a test data value, so End Position will be disabled.

Start Positions are:

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 166

i. Field Lower Boundary –

ii. Field Lower Boundary

iii. Field Lower Boundary +

iv. Field Upper Boundary –

v. Field Upper Boundary

vi. Field Upper Boundary +

vii. First Field Value

viii. Second Field Value

ix. Second Last Field Value

x. Last Field Value

xi. Nominal Value

xii. Random Value

xiii. Not Applicable

If Rule Type = DIMR then the rule manipulates individual test data values. Start and End

Positions are:

i. Nominal Value

ii. Random Value

iii. First Character – – (e.g. add two chars to start of a data value)

iv. First Character – (e.g. add one char to start of a data value)

v. First Character (e.g. mutate first character of a data value)

vi. First Character + (e.g. mutate second character of a data value)

vii. First Character ++ (e.g. mutate third character of a data value)

viii. Last Character – – (e.g. mutate third last character of a data value)

ix. Last Character – (e.g. mutate second last character of a data value)

x. Last Character (e.g. mutate last character of a data value)

xi. Last Character + (e.g. add one char to end of a data value)

xii. Last Character ++ (e.g. add two chars to end of a data value)

xiii. Not Applicable (does not select a particular character or value)

If Rule Type = TCCR then these fields will be empty, because TCCRs do not select test

data, they create test cases, so this field is disabled.

11. Correctness*. Specifies whether the rule will select valid or invalid data in terms of what

the program should accept and reject respectively.

12. # Fields Populated*. This specifies the number of fields that will be populated with test

data when the rule is applied.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 167

13. Test Data Length*. This specifies the length of the test data that will be derived by the

rule.

14. # Tests Derived*. For Test Case Construction Rules, this field contains an equation of the

number of test cases derived.

15. Original Datatype and Test Datatype*. These attributes allow the user to choose the

datatypes the rule can be applied to (Original Datatype) and the datatypes the rule generates

(Test Datatype). For example, BVA1: Lower Boundary – Selection and BVA6: Upper

Boundary + Selection can only be applied to range-based datatypes such as ‘integer’; they

cannot be applied to list-based datatypes like ‘alphanumeric’ as there is no way to choose

an outside boundary value from this datatype. The original and test datatypes implemented

in ARTT extend the base set defined for EP, BVA and ST (see Section 3.2.2), as follows

(see Appendix G for complete datatype definitions):

a. Integer (all integers from -32768 to 32767)

b. Integer+ (all positive integers from 0 to 32767)

c. Integer- (all negative integers from -32768 to -1)

d. Boolean (i.e. 1 and 0)

e. Numeric (i.e. ASCII 48 to ASCII 57)

f. Real (all Reals from -32768.00 to 32767.00)

g. Real+ (all positive Reals from 0.00 to 32767.00)

h. Real- (all negative Reals from -32768.00 to -1.00)

i. Alpha (all alphabetical characters from A-Z and a-z)

j. Lowercase Alpha (all lowercase alphas from ASCII 97 to ASCII 122)

k. Uppercase Alpha (all uppercase alphas from ASCII 65 to ASCII 90)

l. Alphanumeric (Alpha Numeric)

m. Control Character (all control characters from ASCII 1 to ASCII 31)

n. Symbol (Set 1) (all special characters from ASCII 32 to ASCII 47)

o. Symbol (Set 2) (all special characters from ASCII 58 to ASCII 64)

p. Symbol (Set 3) (all special characters from ASCII 91 to ASCII 96)

q. Symbol (Set 4) (all special characters from ASCII 123 to ASCII 127)

r. Symbol (Symbol 1 Symbol 2 Symbol 3 Symbol 4)

s. Null (empty) (ASCII 0)

t. Non-Alphanumeric (Symbol 1 Symbol 2 Symbol 3 Symbol 4)

u. ASCII (all characters in the ASCII table)

v. Same as original (applies to Test Datatype only)

16. Rule Application Order. This allows the user to specify which Atomic Rules the rule can

be applied after. For example, DIMRs like BVA1 to BVA9 can be applied to a field after

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 168

DSSRs EP1 to EP11 have been applied to select partitions. Thus, this corresponds to the

rule application order specified in the four-step test case design process.

Example pseudo code that was used to implement the application of a Data-Set Selection Rule to list-

based and range-based fields to select an equivalence classes is given in Appendix F, Section F.4.

Figure 4-9: The Atomic Rules Editor.

4.6.1 Example of a New Atomic Rule

The following example illustrates how the fields of the Atomic Rules Editor (Figure 4-9) can be

populated to define a new Atomic Rule. The example is based on the new rule BVA12: Second List Item

Selection, which was identified during the industry evaluation of the Atomic Rules approach (see Chapter 6

Section 6.4.11 and Appendix B Section B.2).

1. Test Method. Boundary Value Analysis.

2. Rule Number. BVA12.

3. Identifier. SLIS.

4. Name. Second List Item Selection.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 169

5. Description. Selects the second item in a list.

6. Source. N/A (rule was defined as a part of this research).

7. Rule Type. Data-Item Selection Rule (DISR).

8. Rule Class. Selection

9. Field Set Type. List.

10. Start Position and End Position.

a. Start Position. Second field value.

b. End Position: Second last field value.

11. Correctness. Valid (assuming the equivalence class contains only valid values).

12. # Fields Populated. 1.

13. Test Data Length. Same as original.

14. # Tests Derived. 0.

15. Original Datatype and Test Datatype.

a. Original Datatype. Applies to all datatypes except Boolean and Null, as all other

datatypes have a second and second-last item.

i. Numeric (i.e. ASCII 48 to ASCII 57)

ii. Real (all Reals from -32768.00 to 32767.00)

iii. Real+ (all positive Reals from 0.00 to 32767.00)

iv. Real- (all negative Reals from -32768.00 to -1.00)

v. Alpha (all alphabetical characters from A-Z and a-z)

vi. Lowercase Alpha (all lowercase alphas from ASCII 97 to ASCII 122)

vii. Uppercase Alpha (all uppercase alphas from ASCII 65 to ASCII 90)

viii. Alphanumeric (Alpha Numeric)

ix. Control Character (all control characters from ASCII 1 to ASCII 31)

x. Symbol (Set 1) (all special characters from ASCII 32 to ASCII 47)

xi. Symbol (Set 2) (all special characters from ASCII 58 to ASCII 64)

xii. Symbol (Set 3) (all special characters from ASCII 91 to ASCII 96)

xiii. Symbol (Set 4) (all special characters from ASCII 123 to ASCII 127)

xiv. Symbol (Symbol 1 Symbol 2 Symbol 3 Symbol 4)

xv. Non-Alphanumeric (Symbol 1 Symbol 2 Symbol 3 Symbol 4)

xvi. ASCII (all characters in the ASCII table)

b. Test Datatype. Same as original, as the rule does not alter the datatype of the original

field.

16. Rule Application Order. Can be applied after EP1 to EP10.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 170

Thus, this demonstrates how the attributes of the new rule BVA12: Second List Item Selection can be

assigned in ARTT to define a new Atomic Rule.

4.7 Specification Notation

ARTT outputs specifications in a language that uses a combination of extended BNF (EBNF) (see

(Knuth 1964) for early definition of BNF) and PL/I (Barnes 1979) syntax (Table 4-2). One of the unique

aspects of this notation is that it uses a ‘REPEATS’ tag to specify the minimum and maximum number of

times a field can repeats (see Table 4-2 row 4, Figure 4-2 and Figure 4-10).

Table 4-2: The EBNF language to be used by the SBSMT simulator.

Character Meaning

<c> <c> is a terminal field

<d> ::= <c> <d> is a non-terminal composed of <c>

<c>REPEATS[MIN-MAX] <c> repeats between MIN and MAX times

<c>? <c> is optional

<c> | <d> Select one of the terminals <c> or <d>

[a – d] A range of lowercase alpha characters from a to d

[A | B | C | D] A list of uppercase alpha characters

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 171

Figure 4-10: Example of the EBNF representation of a specification stored in ARTT.

Figure 4-11: Example of an EBNF specification output by ARTT.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 172

4.8 Benefits

ARTT presents a number of important benefits to the software testing community, as follows.

a) ARTT improves the efficiency of black-box test data generation (compared to manual testing).

For example, manual design of test data values using EP, BVA and ST for one input field could

take up to an hour or more, compared to a matter of seconds in ARTT.

b) Reducing the amount of manual testing effort required during testing allows testers to allocate

more time to complex testing issues that cannot be solved through automation.

c) ARTT ensures accuracy and repeatability in the black-box test data generation, as the same

algorithm is used every time the tool is executed.

d) ARTT facilitates the automatic generation of novel test data by applying new combinations of

Atomic Rules from EP, BVA and ST to input fields to select new types of test data.

e) Each Atomic Rule is documented with a list of reference sources (e.g. textbooks, standards,

journals), which allows testers to locate additional information on each rule.

f) ARTT forces the characteristics of input fields to be properly specified, ensuring that thorough

documentation for each field is stored and allowing it to be reused.

g) ARTT supports the capture of domain knowledge utilised during the specification process,

allowing this information to be reused and shared with other testers.

h) ARTT supports testers in the creation of new Atomic Rules, allowing new rules to be recorded,

used and shared with other testers.

4.9 Limitations

The current limitations of ARTT are as follows.

a) ARTT currently only automates DSSRs, DISRs and DIMRs from EP, BVA and ST. Future

work will include the development of algorithms for automating TCCRs, as well as

implementation of Atomic Rules from other black-box testing methods.

b) Test data is only generated for input fields, not output fields. This would require identification

of the conditions under which a particular output will be generated, most likely through

implementation of algorithms (e.g. testing the output of a function that calculates total sales

made requires the sum of prices paid for each item sold).

c) Input field specifications must be input through a GUI. Future implementations will include an

automatic upload facility to input specifications in EBNF.

d) When a new input field is specified, it would be useful if ARTT could automatically identify

any similar field definitions in the ARTT database. For example, if a new field <street> was

specified, any existing fields with the same name could be presented to the user, with an option

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 173

of adopting the existing definition. This would reduce the time to specify input fields and would

allow different testers to learn from each other.

e) ARTT does not support prioritisation of test data. It would be useful if the most effective

Atomic Rules (and the test data they generate) could be flagged by a user, according to existing

research on which black-box test case design rules are the most effective1.

f) ARTT does not currently generate test data for testing field repetition. For example, if a field is

specified as <house_number> ::= [0-9]REPEATS[1-4], ARTT does not apply rules to test the

repetition of the field (e.g. to select test data that contains too many digits).

4.10 Future Improvements

A number of improvements are planned for the Atomic Rules Testing Tool (ARTT), as follows.

 ARTT can be extended to automatically generate program source code for input data validation in

various languages. For example, if a program input field should only accept integers within a

certain range, then ARTT could apply Atomic Rules from EP and BVA to generate source code

that accepts integers within the valid range and rejects all other input values. This would reduce the

need for black-box testing and would ensure that programs only accept valid input data.

 Since ARTT currently only generates test data, not test cases, in future the tool will be extended to

include implementation of black-box TCCRs, which will enable the automatic generation of

complete black-box test cases.

 The Specification Editor will be enhanced to allow users to import EBNF specifications, enabling

more efficient specification creation.

 The Specification Editor could be enhanced to provide users with guidance on the creation of input

fields for new specifications, based on the names of previously defined input fields in existing

specifications, which would enable reuse of specifications and domain knowledge. For example, if

a user previously created a specification for an Address Parser program, which consisted of input

fields like <street_name> and <suburb>, then any time a user creates a new specification with input

fields of the same (or similar) names, ARTT could automatically suggest that the user utilise the

previous definitions. ARTT could also be enhanced to recommend the use of any domain

knowledge that was attached to the previously defined input fields, as well as the set of Atomic

Rules that were applied to that specification.

 The Domain Knowledge tab of the Specification Editor will be enhanced to include more precise

identification of the source of each item of domain knowledge, such as page number and a

navigation tool to access, search and reference online sources.

1 For example, Atomic Rule prioritisation could be based on the outcomes of the experiment reported in Chapter 6 of this thesis.

Automating the Atomic Rules Approach Chapter 4

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 174

 The Domain Knowledge of the Specification Editor could also be enhanced to identify

commonalities in the domain knowledge recorded against different specifications.

 ARTT will be extended to automatically produce an abstract syntax tree of specifications that are

input by the user, providing them with a visual representation of the hierarchy in each specification.

 The implementation of Atomic Rules for BVA will be enhanced to support generation of test data

values for fields that repeat.

 A function will be implemented to remove redundant test data generated by ARTT. For example, in

Section 4.4.3, the same test data values are generated a number of times.

 Future work may also include the implementation of automated functions for generating test data

values for testing output partitions (discussed in Chapter 3, Section 3.8).

 ARTT could also be enhanced to automatically construct ‘unrestricted specifications’ for the

Category-Partition Method (CPM), by automatically combining test data values generated through

EP, BVA and ST. ARTT could also allow testers to record the expected results of specific

combinations of test data values, allowing complete CPM test scripts to be automatically generated.

 ARTT could be enhanced to integrate with unit testing tools like JUnit (JUnit) and code coverage

analysis tools like JCover (Codework 2009), to gather information on the level of code coverage

achieved by the test data and test cases that are generated when applying specific sets of Atomic

Rules to particular program specifications.

4.11 Summary

In this chapter, the design and implementation of a prototype called the Atomic Rules Testing Tool

(ARTT) was presented. The aim of developing ARTT was to improve the efficiency and accuracy of black-

box test data generation. Currently, ARTT can be used to generate black-box test data by applying Atomic

Rules from EP, BVA and ST to a specification of the input fields of a program. ARTT supports the capture

of domain knowledge through GQASV and supports the definition of new Atomic Rules through SMT. In

addition, ARTT is an example of a new approach to tool support for GQM-style processes.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 175

Chapter 5

University Evaluation of the Atomic Rules Approach

"Not everything that can be counted counts, and not everything that counts can be counted."
Albert Einstein

5.1 Overview

As has already been pointed out, the Atomic Rules approach has been proposed to improve the usability

and effectiveness of black-box testing methods by solving seven problems with method descriptions:

definition by exclusion, multiple versions, overlap, notational and terminological differences, reliance on

domain knowledge, difficult to audit and difficult to automate. In this chapter, the details of two classroom

experiments that examined the usability of the Atomic Rules approach are presented. The experiments

involved 32 undergraduate and graduate university students in 2004 (n = 32) and forty in 2005 (n = 40)

who were enrolled in a combined third/fourth year subject on software testing at La Trobe University and

who were considered to be novice software testers. The aim of the experiments was to compare the usability

of the Atomic Rules representation of Equivalence Partitioning (EP) and Boundary Value Analysis (BVA)

(Murnane, Hall & Reed 2005) to that of Myers’ (1979) original definitions (see Chapter 2).

In the first week of the experiment (see Figure 5-1), all students attended an ‘introductory’ lecture,

during which they were informed that an experiment would be taking place over a four week period and

that they could chose to provide permission for their data to be included in the data analysis for this thesis if

they wished (a requirement of ethics approval). They also completed an Initial Questionnaire, which was

used to identify their current understanding of black-box testing methods and to gain an understanding of

their prior programming and software testing experience.

In the second week of the experiment, the class was divided into two groups. While Group 1 was given

a two-hour lecture on Myers’ representation of EP and BVA, Group 2 was given a lecture on the

corresponding Atomic Rules. During a subsequent tutorial, each group’s comprehension of EP and BVA

was assessed by asking them to derive black-box test cases using specially prepared ‘toy’ specifications.

In the third week, the groups were swapped and the process was repeated (i.e. Group 1 learnt Atomic

Rules while Group 2 learnt Myers’). This was to ensure that all students had equal opportunity to learn the

two representations in preparation for their assignment and exam, and to assess whether what they learnt

about the representations in week 1 allowed them to improve the correctness of their test cases in week 2.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 176

In the final week of the experiment, all students attended a one-hour lecture, which summarised the

experiment aims. They were also asked to complete a Reflect and Review Questionnaire, to identify their

initial and final understanding of EP and BVA and their preferred method representation. The students were

not told what the aims of the experiment were until the end of the experiment (after completing the Reflect

and Review questionnaire), to ensure that this knowledge did not bias their answers during the experiment.

Figure 5-1: Overview of the experiment process.

While the aims of the two experiments and the materials presented during lectures were the same for

both years, three changes were made in 2005 that were significant enough for it to be considered to be a

different experiment. As each group’s lecture took place at the same time in different locations, two

lecturers were required. In 2004, Ms. Murnane taught the Atomic Rules representation while Associate

Professor Karl Reed taught Myers’ representation. To eliminate the extraneous variable of student

preference for lecturer, the lecturers were swapped in 2005. Also, the 2004 results suggested that students

could handle more challenging specifications during tutorials. Thus, longer and more complex

specifications were used in 2005. Lastly, to ensure students had enough time to complete their work, the

tutorials were increased from one hour in 2004 to two hours in 2005. To avoid conflict with other university

classes or commitments (a factor that could impact student performance (Carver et al. 2003)), all work for

this part of the experiment was completed in class.

The remainder of this chapter is structured as follows. The experimental design is presented in Section

5.2, including hypotheses, group allocation, specifications used and threats to validity. Results are presented

Group 2

Group 1

Group 1

Group 2

Introductory Lecture (all students to attend)
Complete ethics approval forms and Initial Questionnaire

Final Lecture (all students to attend)
Reflect & Review Questionnaire

Tutorial
Atomic Rules Representation

Lecture
Atomic Rules Representation

Tutorial
Myers’ Representation

Lecture
Myers’ Representation

Tutorial
Myers’ Representation

Lecture
Myers’ Representation

Tutorial
Atomic Rules Representation

Lecture
Atomic Rules Representation

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 177

in Section 5.3, followed by discussions of related research in Section 5.3.7 and experiment results in

Section 5.5. The chapter is concluded with a summary in Section 5.6.

5.2 Experiment Design

The primary independent variable in these experiments was the first black-box testing method

representation learnt by the students. The approach to manipulating the independent variable was the “type”

technique (Johnson & Christensen 2004) in which the type of variable presented is varied over two separate

treatments. One-tailed tests were used in all significance tests.

All tests for statistical significance were chosen by considering the particular class of experiment that

was planned and the type of data it would generate, and then by consulting a series of textbooks on

experimentation and statistical analysis (Anastasia & Urbina 1997, Carver et al. 2003, Christensen 2004,

Creswell 2002, Healey 2005, Johnson & Christensen 2004, Klugh 1986, Vegas et al. 2003) and seeking

advice from a statistician (Fielding 2004) and a PhD student in psychology (Barutchu 2004). Since there are

typically more than one significance test that can be used for data analysis and hypothesis testing, this

ensured that the specific tests that were chosen were appropriate. This included the t-test (Healey 2005,

Klugh 1986, Barutchu 2004), chi-square test (Healey 2005, Klugh 1986, Barutchu 2004), Mann-Whitney U

(Klugh 1986, Barutchu 2004), marginal homogeneity (Agresti 2007, Barutchu 2004), test of two

proportions (Healey 2005, Fielding 2004) and cross-tabulation (Healey 2005, Barutchu 2004). The ‘Results

Coach’ in SPSS (Statistical Package for the Social Sciences) was also used to support the choice of tests

and to perform all calculations.

In the following subsections, the experiment hypotheses, group allocation and threats to validity are

explored.

5.2.1 Hypotheses

Hypotheses for this experiment were based on the following definition of test method usability that was

introduced in Chapter 1.

Test Method Usability. The extent to which a test case design method can be understood, learnt

and used by software testers to achieve specified test case design goals effectively, efficiently

and with satisfaction, within the context of applying software testing methods.

Using the quantitative and qualitative attributes of this definition of usability that were defined in

Chapter 1, the following null (H0X) and scientific/alternate hypotheses (H1X) (Christensen 2004) were

identified.

Completeness (effectiveness):

H01: The completeness of the black-box test set derived by novice testers is independent of the

representation used.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 178

H11: Novice testers using the Atomic Rules approach derive a more complete test set compared

to those using Myers’ representation.

Efficiency:

H02: The efficiency of black-box test case derivation by novice testers is independent of the

representation used.

H12: Novice testers using the Atomic Rules approach derive test cases more efficiently compared

to those using Myers’ representation.

Errors Made (effectiveness – accuracy):

H03: The number of errors made by novice testers during black-box test case derivation is

independent of the representation used.

H13: Novice testers using the Atomic Rules approach make fewer errors during test case

derivation compared to those using Myers’ representation.

Questions asked (learnability):

H04: The number of questions asked by novice testers during black-box test case derivation is

independent of the representation used.

H14: Novice testers using the Atomic Rules approach ask fewer questions compared to those

using Myers’ representation.

Satisfaction:

H05: The preference of novice testers towards the use of black-box testing methods is

independent of the representation used.

H15: Novice testers prefer to use the Atomic Rules approach for black-box test case design

compared to the use of Myers’ representation.

Understandability:

H06: A tester’s understanding of black-box testing methods is independent of the representation

used.

H16: Novice testers rate the Atomic Rules approach to black-box test case design as easier to

understand than Myers’ representation.

These hypotheses are similar to those used in an experiment by Vegas et al. (Vegas et al. 2003), which

examined whether novice testers were able to select appropriate software testing methods from

characterisation schema-based representations of black-box, white-box and fault-based testing methods, as

compared to selecting appropriate techniques from textbook descriptions.

Attributes that have not been measured by the hypotheses above are as follows:

 Operability in terms of how easy a method is to use was not assessed, as data to measure this

unfortunately not collected during the experiment.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 179

 Learnability in terms of how long it takes a tester to become competent was also not assessed, as

the university semester only permitted the experiment to be carried out over two weeks of classes

and each class had a limited duration.

5.2.2 Group Allocation

In each year, the participants were divided into two comparison groups. To provide repetition, each

group was divided into two subgroups, with each deriving test cases from a different specification (Table

2). A discussion of the affect of group allocation on experiment validity is provided in Section 5.2.4.1.

Table 5-1: Group allocation.

Year Group Myers Atomic Rules

2004

subgroup 1 13 8

subgroup 2 5 6

Total 18 14

2005

subgroup 1 10 8

subgroup 2 10 12

Total 20 20

5.2.3 Input Data Specifications

The main requirement of the specifications used during tutorials was that they had to include at least one

numerical range, one list of values and a various datatypes (e.g. alphas, numbers and non-alphanumeric) to

ensure that students have the opportunity to derive test cases for a ‘base’ collection of set types and

datatypes. The two fictional specifications used in 2004 were for a Personal Details Recording System

(Figure 5-2) and an Office Location Recording System (Figure 5-3), while the 2005 specifications were for

a Patient Record System (Figure 5-4) and a Book Referencing System (Figure 5-5). All specifications were

written in a semi-formal notation and contained input fields defined using a combination of Backus-Naur

Form (BNF) and natural language.

There were two primary differences between these specifications: length and complexity. In 2004, the

top level non-terminal node contained five fields, including two white-space fields, whereas the

corresponding node in 2005 contained fourteen fields. Thus, the 2005 specifications were substantially

longer. Also, the 2005 specifications contained a recursive field definition, which made test case derivation

more challenging; e.g., the <level_digits> field was recursive. To compensate for this change, the tutorials

were extended from one hour in 2004 to two hours in 2005.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 180

Figure 5-2: Specification for a personal details recording system.

Specification

 <personal_details> ::= <id_number> <s> <surname> <s> <gender>

 <id_number> ::= [100 – 999]

 <surname> ::= 1 to 100 characters from the sets alpha and non-alphanumeric
 (i.e. letters and/or symbols)

 <gender> ::= [Male | Female]

 <s> ::= one to seven single spaces

Example Record

555 Smith Male

Figure 5-3: Specification for an office location recording system.

Specification

 <office_location> ::= <floor_number> <s> <room_name> <s> <desk_type>

 <floor_number> ::= [001 – 200]

 <room_name> ::= 1 to 100 characters from the sets alpha and non-alphanumeric
 (i.e. letters and/or symbols)

 <desk_type> ::= [Desk | Cubicle]

 <s> ::= one to seven single spaces

Example Record

100 The Blue Room Cubicle

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 181

Figure 5-4: Specification for a patient details record system.

Specification

 <patient_record> ::= <name> …“<ailment>”…<floor_no>,…<building>,…<patient_no>

 <name> ::= 1 to 100 characters from sets alpha and non-alphanumeric
 (i.e. letters and symbols)

 <ailment> ::= 1 to 150 characters from sets alpha and non-alphanumeric
 (i.e. letters and symbols)

 <floor_no> ::= <level_no> Floor

 <level_no> ::= <level_digits><level_postfix>

 <building> ::= [Fredrick Building | John-Scott Memorial Ward | Mary House | Norman Building
 | … | Zane Square Building | Zoo Ward]

 <patient_no> ::= <d><d><d><d>

 <d> ::= [0 – 9]

 <level_digits> ::= <d> | <level_digits> <d>

 <level_postfix> ::= [nd | rd | st | th]

 ::= one space

 … ::= one or more spaces

Example Record

Joe Hamish Bloggs “Viral pneumonia, ear infection, and lower abdomen pain” 5th Floor, John-Scott
Memorial Ward, 1234

Figure 5-5: Specification for a book referencing system.

Specification

 <book_reference> ::= <author>…“<title>”…<edition >,…<publisher>,…<year>

 <author> ::= 1 to 150 characters from sets alpha and non-alphanumeric
 (i.e. letters and symbols)

 <title> ::= 1 to 100 characters from sets alpha and non-alphanumeric
 (i.e. letters and symbols)

 <edition> ::= <edition_no>

Edition

 <edition_no> ::= <edition_digits><edition_postfix>

 <publisher> ::= [Addison-Wesley | Artech House | Babbage Press | C & G Publishing Inc | …
 | Zipper Press Inc | Zoo House Publishers Inc]

 <year> ::= <d><d><d><d>

 <d> ::= [0 – 9]

 <edition_digits> ::= <d> | <edition_digits> <d>

 <edition_postfix> ::= [nd | rd | st | th]

 ::= one space

 … ::= one or more spaces

Example Record

Walter Savitch “Problem Solving with C++ - The Object of Programming” 5th Edition, Addison-Wesley,
2005

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 182

5.2.4 Threats to Validity

5.2.4.1 Internal Threats to Validity

History. Experiment outcomes can be biased by time lapses between the application of treatment

variables and measurement of dependent variables, between pre-test and post-test measurements

(Christensen 2004) or if discussions take place between groups during that time (Creswell 2002). This

posed a minimal threat in this case, since treatment took place during a lecture that was between two hours

and three days prior to measurement. To combat this threat, participants were asked not to discuss the

experiment with each other until after the final lecture. As there was no assignment or exam during the

experiment, based on the material, the students were not expected to have a great need to hold discussions

during the three weeks of the experiment.

Maturation. Changes or differences in a participant’s internal condition (e.g. age, hunger, fatigue,

boredom) (Christensen 2004), knowledge level (Creswell 2002), lecturer preference, or enthusiasm (Vegas

et al. 2003) can bias results. For example, students who are excited about being involved in an experiment

on a new technique may work harder on that technique. To ensure this did not bias results, Myers’

representation was referred to as Model 1 and the Atomic Rules approach as Model 2. Students were not

told which was new until after the final lecture. Also, students were informed that there would be a gift for

every member of the class at the end of the experiment whether they chose to participate or not, which was

hoped to compensate them for any disruption they may have experienced during the experiment. A gift of

chocolate, which was allowed by the university’s ethics committee, was given to all students to thank them

for their participation in the experiment. To combat boredom, students were reminded that the work they

completed during tutorials would prepare them for their later assignments and exam in the subject and also

for future work in industry. As lecture and tutorial attendance was not compulsory, bored students could

choose not to attend class but all students were informed that the subject was an important part of their

courses, in the hope that this would motivate them to attend. As the experiments were run over six separate

classes, it was assumed that fatigue and hunger would not affect results. Selecting students from the same

year levels should have negated the knowledge threat (Creswell 2002). To mitigate the potential lecturer

preference bias threat, the lecturers were swapped in 2005.

Instrumentation. This threat relates to research observers becoming accustomed to experiment materials

or increasing their experience in measuring data (Creswell 2002). To ensure the same standards were

followed throughout analysis, standard measurement scales and analysis processes were followed. To

standardise the analysis processes followed, one person was responsible for all data analysis.

Selection. Random group allocation can be used to mitigate the threat that the groups were biased; e.g. if

one group has a higher mean intelligence level than the other (Creswell 2002). Conversely, if participants

allocate themselves to groups, then the sample within each group is voluntary, not random, allocation

(Berry & Tichy 2003). While random allocation was achieved in 2005 by drawing participant’s names out

of a hat, it was not achieved in 2004 due to a timetabling problem, which resulted in students allocating

themselves to groups according to their chosen tutorial day/time. Subsequent analysis of the average grade

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 183

achieved within the two groups for the subject revealed no significant difference between the groups (see

Section 5.2.4.3). Thus, this threat should not have biased experiment results.

Testing. Bias can occur if participants are given the same test more than once and become familiar with

required responses (Creswell 2002). Although the experiment subjects derived test cases for the two

representations over two weeks, results of the second week were not included in experiment analysis, as this

would not measure their understanding of the representation learnt. Rather, it would test how well they

adjusted to learning a second representation. This statistic could be analysed in future, in an assessment of

whether industry testers would adjust to using Atomic Rules after having used different approaches as part

of their jobs.

Reliability. This relates to the consistency of results being obtained from the same person with the same

or equivalent tests on different occasions, allowing an error of measurement to be calculated (Anastasia &

Urbina 1997). The simplest approach is to repeat the experiment on two separate occasions, where the error

of measurement is a reliability coefficient which is the correlation between the two scores for each

individual (Anastasia & Urbina 1997). Since these experiments took place during university semesters,

there was not enough time to repeat the same test twice. However, within each group, the same test was

repeated across two subgroups, which enabled testing of experiment reliability.

Population and sample. Validity can be affected if the sample is not representative of the entire

population (Gorard 2001). Convenience sampling was used in these experiments, where participants were

selected because they were easily accessible to the research team (Gorard 2001). As the resulting samples

were not representative of all novice testers, program specifications or black-box testing methods (e.g.

approaches such as Syntax Testing were not covered), the results are considered to be indicative.

Threats to internal validity, which were not applicable to these experiments, include diffusion of

treatments, compensatory equalization, compensatory rivalry and resentful demoralization, as these only

apply when using control groups (Creswell 2002). Control groups could not be used, as students in those

groups would have been disadvantaged in their assignment and exam as a result of not learning the two

representations. Also, in experiments involving students, participants sometimes work on tasks at home;

thus copying is a threat (Vegas et al. 2003). In these experiments, all tasks were completed in class and

every second student was given a different specification during tutorials so they could not copy from each

other. A bias can also exist if participants do not follow the processes and procedures of the techniques

prescribed (Vegas et al. 2003). Therefore, students were asked to show all workings during test case

derivation, so that it was possible to verify that they followed the prescribed procedures of each test method,

as this could be used to identify whether there were any ambiguities in the methods.

5.2.4.2 External Threats to Validity

Language. Participants may be disadvantaged if experiment materials are not written in their native

language (Vegas et al. 2003). Although some international students were involved and all materials were

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 184

written in English, as the students were enrolled at an English-speaking university, it was expected that they

would be able to understand the language used and if not, that they would ask questions.

Interaction of setting and treatment. This relates to the ability to generalise experiment findings across

other environmental settings (Creswell 2002), such as determining whether the experiment results are

applicable to industry professionals. This threat is not applicable as industry-based testers can be considered

to be expert software testers, whereas these experiments were aimed at novices.

Interaction of history and treatment. This relates to the ability to generalise research outcomes to the

past and future; e.g. if a classroom experiment runs during the main semester, the outcomes may be

different if it were conducted over summer break, due to different types of students being enrolled

(Creswell 2002). One way of resolving this is to replicate the experiment at a different time of year. These

experiments were run during the same semester over two years and the experiments could not be repeated

over summer as very few third and fourth year subjects run at that time at La Trobe University and there

have never been any official student requests to do so in this software testing subject.

5.2.4.3 Construct Validity Threats

Measures. If participants can guess the measures that will be used during data analysis then this may

affect how they answer questions (Creswell 2002). For example, measures need to be complex enough so

that participants are less likely to provide answers that specifically make them appear more competent in

the particular techniques being used (Creswell 2002). To mitigate this threat, participants were not told how

the data was going to be analysed until after the experiment was complete.

5.3 Results

5.3.1 Demographic

In the Initial Questionnaire, students were asked about their prior software testing and industry

experience. Twenty-six out of thirty-two students completed this questionnaire in 2004 (81.25%), while

thirty-seven out of forty completed it in 2005 (92.5%). Many students reported having prior experience with

testing in university lectures and assignments (Table 5-2). While 19.2% in 2004 and 13.5% in 2005 reported

having no prior experience with software testing methods, 73.1% in 2004 and only 48.6% in 2005 reported

gaining that experience through university lectures.

Table 5-2: Prior software testing experience.

Software Testing Experience

2004 %

(n = 26)

2005 %

(n = 37)

None 19.2 13.5

University Lectures 73.1 48.6

University Assignments 61.5 62.2

As a Tutor 0 0

Other 11.5 16.2

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 185

Also, 84.6% in 2004 reported having prior experience with black-box methods, compared with only

54.1% in 2005 (Table 5-3). These results suggests that there may have been a decrease in the amount of

software testing training given to students in the 2005 group in earlier years of their degrees.

Table 5-3: Prior experience with black-box testing methods.

Ever used any black-box
testing methods?

2004 %

(n = 26)

2005 %

(n = 37)

Yes 84.6 54.1

No 15.4 45.9

The students rated their experience with the following black-box testing methods: Boundary Value

Analysis (BVA), Cause-Effect Graphing (CEG), Decision Tables (DT), Equivalence Partitioning (EP),

Orthogonal Array Testing (OAT), Random Testing (RT), Specification-Based Mutation Testing (SBMT),

State-Transition Diagram Testing (STT), Syntax Testing (ST) and Worst Case Testing (WCT). Although

data was only required for EP and BVA, the questionnaire enquired about nine other methods to obtain an

overall picture of the group’s current black-box testing knowledge. Students rated their understanding using

a Likert scale of: 1 = none, 2 = basic, 3 = intermediate, 4 = advanced and 5 = expert (Table 5-4 and Table 5-

5). With the exception of BVA and RT in 2004, the majority of students reported having limited amounts of

experience with black-box testing methods.

Table 5-4: Participants initial understanding of black-box testing methods in 2004 (n = 26).

Rating

Black-Box Testing Methods

B
V

A

C
E

G

D
T

E
P

E
G

O
A

T

R
T

S
B

M
T

S
T

T

S
T

W
C

T

Percentages (%)

None 19 96 54 65 73 100 46 96 73 54 65

Basic 15 0 8 4 8 0 15 0 8 8 15

Intermediate 31 4 27 8 12 0 31 4 12 23 12

Advanced 23 0 8 23 4 0 4 0 8 15 8

Expert 12 0 4 0 4 0 4 0 0 0 0

Table 5-5: Participants initial understanding of black-box testing methods in 2005 (n = 37).

Rating

Black-Box Testing Methods

B
V

A

C
E

G

D
T

E
P

E
G

O
A

T

R
T

S
B

M
T

S
T

T

S
T

W
C

T

Percentages (%)

None 65 95 76 84 81 97 73 97 87 78 90

Basic 16 0 5 5 8 0 19 0 8 14 5

Intermediate 16 5 16 11 11 3 8 3 5 8 5

Advanced 3 0 3 0 0 0 0 0 0 0 0

Expert 0 0 0 0 0 0 0 0 0 0 0

Interestingly, very few students reported having prior experience working in industry (Table 5-6).

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 186

Table 5-6: Prior industry experience.

Position in Industry

2004 %

(n = 26)

2005 %

(n = 37)

Project Manager 3.8 0

Technical Team Leader 3.8 0

Business Analyst 0 0

Programmer 3.8 2.7

Analyst 3.8 2.7

Test Team Leader 3.8 0

Test Team Member 0 2.7

Other 0 5.4

A comparison of the mean overall grade of each group in the subject showed that there was no

significant difference between the groups in 2004 or 2005 (Table 5-7).

Table 5-7: Comparison of overall grades for each group.

Year N Approach Mean % Std Dev t-test

2004
18 Myers 66.17 20.88

t(38) = .428, p = .336
14 Atomic Rules 73.29 14.56

2005
20 Myers 68.1 19.49

t(30) = -1.08, p = .143
20 Atomic Rules 65.8 14.1

5.3.2 Completeness (Effectiveness) (H01/H11)

To assess completeness, a ‘complete’ set of test data values and test cases for EP and BVA were derived

by the author of this thesis, to represent the ‘ultimate’ test sets that were derivable for the specifications

under test. This was carried out by applying every test case design rule from both Myers’ definition of EP

and BVA and the corresponding Atomic Rules, to every possible input field.

Then, the percentage of EP equivalence classes, BVA boundary values and EP and BVA test cases

derived correctly by each group of students was compared. In 2004, a t-test revealed a significant difference

between the groups for EP equivalence class and EP test case derivation, where the mean was higher for the

Atomic Rules group (Table 5-8, Table 5-9). According to Cohen’s Effect Size (Mujis 2004), these

relationships were ‘strong.’ The 2004 BVA results were inconclusive (Table 5-10, Table 5-11). Conversely,

in 2005 the mean EP equivalence class and test case coverage (Table 5-8, Table 5-9) and BVA boundary

value coverage (Table 5-10) was significantly higher for Myers’ group and Cohen’s Effect Size showed

moderate to strong relationships. The results for BVA test cases in 2005 were inconclusive (Table 5-11).

Interestingly, the mean EP and BVA coverage by Myers’ group in 2004 and 2005 was relatively similar

over both years (Table 5-8, Table 5-10).

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 187

Table 5-8: Percentage of coverage of EP equivalence classes (completeness – H01/H11).

Year N Approach Mean % Std Dev t-test
Cohen’s

Effect Size

2004
18 Myers 49.76 16.95

t(30) = -3.82, p = .0003 1.35 – strong
14 Atomic Rules 78.86 26.10

2005
20 Myers 48.61 16.13

t(38) = 4.815, p < .001 1.53 – strong
20 Atomic Rules 26.54 12.65

Table 5-9: Percentage of coverage of EP test cases (completeness – H01/H11).

Year N Approach Mean % Std Dev t-test
Cohen’s

Effect Size

2004
18 Myers 36.23 23.29

t(30) = -4.87, p = .0002 1.73 – strong
14 Atomic Rules 78.86 26.10

2005
20 Myers 38.94 20.92

t(38) = 2.649, p = .006
0.85 –

moderate 20 Atomic Rules 23.65 15.11

Table 5-10: Percentage of coverage of BVA boundary values (completeness – H01/H11).

Year N Approach Mean % Std Dev t-test
Cohen’s

Effect Size

2004
18 Myers 18.88 19.98

t(30) = .58, p = .28 NA
14 Atomic Rules 23.81 26.82

2005
20 Myers 26.00 19.51

t(38) = 2.776, p = .004
.90 –

moderate 20 Atomic Rules 11.52 12.80

Table 5-11: Percentage of coverage of BVA test cases (completeness – H01/H11).

Year N Approach Mean % Std Dev t-test
Cohen’s

Effect Size

2004
18 Myers 14.88 18.83

t(40) = -.39, p = .35 NA
14 Atomic Rules 18.81 26.22

2005
20 Myers 10.22 16.92

t(38) = .141, p = .445 NA
20 Atomic Rules 9.56 12.63

The results obtained in 2005 appear to not support the view that the Atomic Rules approach improves

the usability of EP and BVA, while then results from 2004 do support it. In 2005, a significantly larger

specification was used. As a result, the Atomic Rules approach required the derivation of significantly

larger numbers of equivalence classes and boundary values, since it contains more rigorous test case design

rules than Myers’ definition. For example, Myers’ “has something else” rule is decomposed into seven

different Atomic Rules (see Chapter 3, Section 3.2.3). As a result, testers using the Atomic Rules approach

have to derive significantly more equivalence classes (Table 5-12) and boundary values (Table 5-13) to

produce test sets that are as complete as those using Myers’ approach, and in this experiment, the students

may simply have not had enough time to do this properly. Myers’ definition of EP was able to produce 23

and 61 equivalence classes in 2004/2005, compared to 50 and 133 for the Atomic Rules approach (Table 5-

12). Myers’ definition of BVA was able to produce 28 and 45 boundary values in 2004/2005, compared to

45 and 75 for the Atomic Rules approach. Thus, the efficiency of the representations must be considered

when examining test method usability (see Section 5.3.3).

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 188

Table 5-12: Number of equivalence classes derivable when EP is applied ‘completely’ to the
specifications under test.

Year Approach
Equivalence Classes Coverable

(count) Ratio

2004
Myers 23

1:2.17
Atomic Rules 50

2005
Myers 61

1:2.18
Atomic Rules 133

Table 5-13: Number of boundary values derivable when BVA is applied ‘completely’ to the
specifications under test.

Year Approach
Boundary Values Coverable

(count) Ratio

2004
Myers 28

1:1
Atomic Rules 28

2005
Myers 45

1:1.76
Atomic Rules 79

5.3.2.1 Completeness in Class Assignments

In 2005, the students were also asked to derive black-box test cases in their assignment using one of the

approaches used in the experiment. This task was carried out in the four weeks following the experiment. It

was interesting to find that significantly more students chose to use the Atomic Rules approach in their

assignment in that year (Table 5-14).

Table 5-14: Representation used in the assignment (n = 38).

Year Approach
Used in Assignment

(%) Chi-Square

2005
Myers 27.5

2(1, N = 38) = 6.737, p = .009
Atomic Rules 67.5

The average assignment mark in 2005 for students who chose to use the Atomic Rules approach was

significantly higher (Table 5-15). Students who used Myers’ representation scored an average of 68% on

their assignment, while those who used the Atomic Rules approach achieved an average of 86%, which is

nearly 20% or two grades different (i.e. the difference between a ‘C’ and an ‘A’ grade).

Table 5-15: Average mark achieved in the assignment compared by approach (n = 38).

Year
Approach Used
on Assignment

Mean Assignment
Mark (%) t-test

2005
Myers 67.91

t(36) = -1.93, p = .03
Atomic Rules 85.52

A question that was raised after the experiment was complete was whether the ‘brighter’ students chose

to use the Atomic Rules approach in their assignment because they knew they could achieve a higher grade

with that approach. This was assessed by comparing the two groups of students by the approach used

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 189

(Myers or Atomic Rules) with the ‘overall mean mark’ they achieved in the subject, which was a

combination of their exam mark that was worth 70% of their overall grade, and an assignment mark that

was worth 30% of their overall grade. (Table 5-16). Interestingly, no significant difference was found,

indicating that student intelligence levels did not affect their choice of representation on the assignment.

Table 5-16: Average mark achieved in the subject compared by approach (n = 38).

Year
Approach Used
on Assignment

Mean Overall Subject
Mark (%) t-test

2005
Myers 63.18

t(36) = -1.03, p = .15
Atomic Rules 69.44

5.3.3 Efficiency (H02/H12)

Efficiency can be assessed by tester productivity (see Section 1.3.1), which in this experiment is the

number of correct EP equivalence classes and BVA boundary values derived over the total time taken (60

minutes in 2004, 120 minutes in 2005). EP and BVA test cases were excluded as many students did not

have enough time to derive test cases (see Section 5.3.3.2). Erroneous equivalence classes and boundary

values were excluded since the definition of efficiency refers to ‘correct’ test cases.

5.3.3.1 Productivity

Productivity was assessed in two stages. First, a comparison of the mean number of correct EP

equivalence classes (Table 5-17) and BVA boundary values (Table 5-18) was performed (i.e. despite time

taken). For EP, a t-test indicated a significant difference in 2004 and a difference that was just outside the

95% confidence interval in 2005, where the mean was higher for students using the Atomic Rules approach

and Cohen’s effect size indicated moderate to strong relationships (Table 5-17). This indicates that novice

testers are more productive when using the Atomic Rules approach. The 2004 and 2005 results for

boundary value derivation were inconclusive (see Table 5-18).

Table 5-17: Number of correct EP equivalence classes derived (efficiency – H02/H12).

Year N Approach

Max Number of
Equivalence

Classes Derivable

Mean Number of
Correct Equivalence

Classes Derived Std Dev t-test

Cohen’s
Effect
Size

2004
18 Myers 23 8.89 4.43

t(30) = -8.01, p < .01
3.33 –
strong 14 Atomic Rules 50 37.93 12.99

2005
20 Myers 61 25 12.82

t(38) = 1.62, p = .06
0.52 –

moderate 20 Atomic Rules 133 32.9 17.6

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 190

Table 5-18: Percentage of correct EP equivalence classes derived (efficiency – H02/H12).

Year N Approach

Max Number of
Boundary Classes

Derivable

Mean Number of
Correct Boundary

Values Derived Std Dev t-test

Cohen’s
Effect
Size

2004
18 Myers 28 5.83 5.04

t(30) = .603, p = .28 NA
14 Atomic Rules 28 4.57 6.80

2005
20 Myers 45 11.30 8.68

t(38) = 1.20, p = .11 NA
20 Atomic Rules 79 7.90 9.72

The second stage of evaluating efficiency compared tester productivity as determined by the quantity of

equivalence classes (Table 5-19) and boundary values (Table 5-20) derived per unit of time (60 minutes in

2004 and 120 minutes in 2005). For EP, a t-test indicated a significant difference in 2004 and a difference

that was just outside the 95% confidence interval in 2005, where the mean was higher for students using the

Atomic Rules approach and Cohen’s effect size indicated moderate to strong relationships (Table 5-19).

This suggests that novice testers are able to be more productive using the Atomic Rules approach.

The results for BVA in both years were inconclusive, as no significant differences were found. This was

caused by most students not having enough time to complete their BVA derivations during the tutorials.

Table 5-19: Productivity of the testers in terms of the number of equivalence classes derived over
total time taken (efficiency – H02/H12).

Year N Approach

Mean Number of
Correct Equivalence
Classes Derived Per

Unit of Time Std Dev t-test
Cohen’s

Effect Size

2004
18 Myers .15 .07

t(30) = 8.01, p < .01 3.23 – strong
14 Atomic Rules .63 .21

2005
20 Myers .20 .10

t(38) = -1.57, p = .06
0.58 –

moderate 20 Atomic Rules .27 .14

Table 5-20: Productivity of the testers in terms of the number of boundary values derived over total
time taken (efficiency – H02/H12).

Year N Approach

Mean Number of
Correct Boundary

Values Derived Per
Unit of Time Std Dev t-test

Cohen’s
Effect Size

2004
18 Myers .10 .08

t(30) = 60, p = .28 NA
14 Atomic Rules .08 .11

2005
20 Myers .09 .07

t(38) = 1.20, p = .11 NA
20 Atomic Rules .07 .77

5.3.3.2 Total Time Taken

As the previous section shows, the number of test cases derived by the students was affected by whether

they were given enough time to complete test case design. This can be assessed by counting the number of

students who ran out of time during tutorials before finishing test case derivation. Significantly more

students in the Atomic Rules group ran out of time before completing their work in both years (Table 5-21),

indicating that using the Atomic Rules approach to test case design takes more time than Myers’ approach.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 191

Thus, had students been given more time to derive test cases, they may have been able to produce more

complete test sets.

Table 5-21: Number of participants who ran out of time (efficiency– H02/H12).

Year Approach N
Out of Time

(Count) Out of Time (%) Test of Two Proportions

2004
Myers 18 5 27.77

δ = -.4366, z = -2.45, p = .007
Atomic Rules 14 10 71.43

2005
Myers 20 7 35

δ = -.6, z = -3.98, p < .001
Atomic Rules 20 19 95

5.3.4 Errors Made (Accuracy) (H03/H13)

To assess accuracy, the number of errors made by students during test case derivation was counted.

Significantly fewer errors were made in the Atomic Rules group during EP equivalence class derivation in

2004 (Table 5-22). A similar result was seen in BVA boundary value derivation in 2004, although the result

was just outside the 95% confidence interval (Table 5-24). No significant difference was found between the

groups during BVA or EP test case derivation in 2004 (Table 5-23, Table 5-25) or during EP and BVA

derivation in 2005 (Table 5-22 to Table 5-25). This suggests that the prescriptive nature of the Atomic

Rules approach does not make the methods any harder to learn or to use correctly than Myers’ approach.

Table 5-22: Errors made during EP equivalence class derivation (correctness – H03/H13).

Year N Approach Mean Rank
Sum of
Ranks Mann-Whitney U

2004
18 Myers 20.81 374.50

U = 48.5, p = .001
14 Atomic Rules 10.96 153.50

2005
20 Myers 21.65 433

U = 177, p = .274
20 Atomic Rules 19.35 387

Table 5-23: Errors made during EP test case derivation (correctness – H03/H13).

Year N Approach Mean Rank
Sum of
Ranks Mann-Whitney U

2004
18 Myers 15.56 280

U = 109, p = .245
14 Atomic Rules 17.71 248

2005
20 Myers 21.55 431

U = 179, p = .292
20 Atomic Rules 19.45 389

Table 5-24: Errors made during BVA boundary value derivation (correctness – H03/H13).

Year N Approach Mean Rank
Sum of
Ranks Mann-Whitney U

2004
18 Myers 18.5 333

U = 90, p = .0675
14 Atomic Rules 13.93 195

2005
20 Myers 22.15 443

U = 167, p = .192
20 Atomic Rules 18.85 377

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 192

Table 5-25: Errors made during BVA test case derivation (correctness – H03/H13).

Year N Approach Mean Rank
Sum of
Ranks Mann-Whitney U

2004
18 Myers 17 306

U = 117, p = .349
14 Atomic Rules 15.86 222

2005
20 Myers 20.70 414

U = 196, p = .463
20 Atomic Rules 20.30 406

5.3.5 Questions Asked (Learnability) (H04/H14)

Participants were asked to document the questions they asked during tutorials. Only three students in

2004 and no students in 2005 recorded questions. Possible reasons could be that students:

1. were reluctant to ask questions,

2. did not have enough time to record questions, or

3. had a sound understanding of the methods taught.

Although it is hoped that the third option was the actual reason, not enough data was collected to clarify

this. In future experiments students could be asked on a questionnaire whether they recorded any questions,

and if not, why.

5.3.6 Satisfaction (H05/H15)

Satisfaction was assessed through the Reflect and Review Questionnaire. Thirty-two students completed

this in 2004 (100% of the class) and twenty-eight in 2005 (70% of the class).

In 2004, students were asked which model they would prefer to use in future and this was compared to

the model they learned first (Table 5-26) (Murnane, Hall & Reed 2005). A chi-square test indicated if they

had the opportunity, significantly more students would prefer to use the Atomic Rules approach in future.

While it is possible that the students answered this question in favour of the Atomic Rules approach simply

to show that they had an interest in the new approach to the teaching staff, since they were not told which of

the two approaches were new and as they were told the responses would remain anonymous, it is hopeful

that this did not bias their response.

Table 5-26: Approach students leant first versus approach they indicated they would use in future (n
= 32) (satisfaction – H05/H15).

Year Approach Leant First Use in Future Chi-Square

2004
Myers 61% 9%

2(1, N = 32) = 21.16, p < .001
Atomic Rules 39% 91%

In 2005, a slightly different question was posed. Students were asked to rate the likelihood that they

would use the models in future (Table 5-27) using a Likert scale of: 1 = very unlikely, 2 = somewhat

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 193

unlikely, 3 = neither likely nor unlikely, 4 = somewhat likely, 5 = very likely. However, the mean response

was almost the same for both groups and no significant difference was found.

Table 5-27: Likelihood of using approaches in future (n = 28) (satisfaction – H05/H15).

Year Approach
Model Learnt

First

Model use in future (mean)

t-test Myers Atomic Rules

2005
Myers 46.43% 3.46 3.47 t(26) = -.01, p = .307

Atomic Rules 53.57% 3.23 3.73 t(26) = -1.12, p = .445

5.3.7 Understandability (H06/H16)

Three approaches for assessing test method understandability that were defined in Chapter 1 are:

1. to determine whether a tester understands the conditions under which a bb test case design

method should be applied;

2. to determine whether a tester is able to apply the test method correctly; and

3. by assessing their self-rated understanding of the test method.

Although option 1 has been used in other software testing experiments (e.g. (Vegas 2004) used it to

determine whether testers could identify the conditions under which one test method should be applied over

another), it could not be used in this experiment since the students were given specific instructions to apply

either Myers’ representation for EP and BVA or the corresponding Atomic Rules. Option 2 has already

been assessed under the hypotheses for effectiveness (see Section 5.3.2). Option 3 was addressed as

follows.

On the Reflect and Review Questionnaire, the students were asked to rate their ‘initial’ and ‘final’

understanding of EP and BVA, using a using a Likert scale of: 1 = very poor, 2 = poor, 3 = average, 4 =

good, 5 = very good, 6 = excellent (see Table 5-28 cols 2-5 and Table 5-29 cols 2-5). In both years,

students reported that their understanding of EP and BVA had improved by the end of the experiment,

indicating that their participation in the experiment had improved their understanding of these test methods

(Table 5-28 cols 2-5 and Table 5-29 cols 2-5).

The students were also asked to rate their initial and final understanding of Myers’ representation and

the Atomic Rules approach, using a Likert scale of: 1 = very poor, 2 = poor, 3 = average, 4 = good, 5 = very

good, 6 = excellent (see Table 5-28 cols 6-7 and Table 5-29 cols 6-7). In 2004, 57% of students rated their

understanding of Myers’ representation as below-average, while 100% rated their understanding of Atomic

Rules as good or above (Table 5-28, cols 2-5). In 2005, 82% of students rated their understanding of

Atomic Rules as Good to Excellent, compared to only 54% for Myers’s representation (Table 5-29, cols 2-

5). In both years, a significant difference was found in these ratings, where the mean was higher for Atomic

Rules approach (in 2004, t(30) = -7.65, p < .01, while in 2005, t(26) = -3.22, p = .03). Thus, the students in

both years reported that they were able to gain a better understanding of the Atomic Rules representation of

EP and BVA.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 194

Table 5-28: Self-rated understanding of test methods and representations in 2004 (n = 32)
(Understandability – H06/H16).

Rating

Understanding of
Black-Box Testing Methods

Understanding of
Representations

Initial Final

Myers
Atomic
Rules EP BVA EP BVA

Percentages (%)

1. Very Poor 3 9 0 0 6 0

2. Poor 15 18 0 0 15 0

3. Average 36 45 0 3 36 0

4. Good 15 18 12 21 15 12

5. Very Good 24 9 58 55 18 70

6. Excellent 6 0 30 21 3 18

Frequency Values

Mean 3.61 3.00 5.18 4.94 3.35 5.03

Std Dev 1.27 1.06 0.64 0.75 1.25 0.56

Missing 0 0 0 0 1 0

Table 5-29: Self-rated understanding of test methods and representations in 2005 (n = 28)
(Understandability – H06/H16).

Rating

Understanding of
Black-Box Testing Methods

Understanding of
Representations

Initial Final

Myers
Atomic
Rules EP BVA EP BVA

Percentages (%)

1. Very Poor 32 21 4 4 4 4

2. Poor 21 18 0 0 21 0

3. Average 29 29 7 11 21 11

4. Good 7 21 36 25 29 46

5. Very Good 11 7 50 46 25 29

6. Excellent 0 4 4 14 0 7

Frequency Values

Mean 2.43 2.86 4.39 4.54 3.50 4.22

Std Dev 1.32 1.38 .96 1.11 1.20 1.01

Missing 0 0 0 0 0 1

At the end of the experiment, the student’s final understanding of EP and BVA was also compared by

the approach they learnt first (i.e. Myers or Atomic Rules) to determine whether there was any relationship

between these. No significant difference was found, indicating that the order in which they learnt the

approaches did not affect their self-rated understanding.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 195

Table 5-30: Affect of representation learnt on understanding of Equivalence Partitioning
(Understandability – H06/H16).

Year Approach
Model Learnt

First

Final
Understanding
of EP (Mean) t-test

2004
Myers 61% 5.05

t(30) = .537, p = .30
Atomic Rules 39% 4.92

2005
Myers 46.43% 4.31

t(26) = -.42, p = .33
Atomic Rules 53.57% 4.47

Table 5-31: Affect of representation learnt on understanding of Boundary Value Analysis
(Understandability – H06/H16).

Year Approach
Model Learnt

First

Final
Understanding
of BVA (Mean) t-test

2004
Myers 61% 5.20

t(30) = .16, p = .43
Atomic Rules 39% 5.17

2005
Myers 46.43% 4.23

t(26) = -1.38, p = .09
Atomic Rules 53.57% 4.80

5.4 Related Research

A number of researchers have evaluated testing methods taught at universities and compared the

effectiveness of black-box test methods to other testing methods. In this section, these studies are discussed

in terms of their approaches for assessing effectiveness and the numbers of participants included in these

studies. This section also contributes to the continuing debate in the literature as to whether students should

be used in software engineering experiments.

Roper et al. (1993) suggest that one way to progress towards a better understanding of test method

effectiveness is to develop tighter definitions of the methods themselves, so experimental derivation of test

data becomes predictable and repeatable. This would also allow deviations from the method to be detected

unambiguously. This was one of the main aims in developing the Atomic Rules approach and one of the

primary motivations behind assessing black-box test method usability. In the university experiments,

learnability was examined in terms of the ease with which novice testers gained an understanding of

particular concepts, and usability in terms of the satisfaction the students felt when using the two black-box

test method representations. This included assessment of the completeness and correctness of test cases

derived. Chen and Poon (2004) used similar measures when reviewing forty-eight student projects to

identify the types of classifications students missed and the numbers and types of mistakes they made when

using the Classification Tree Method. In another study of CTM, run with 104 students and rerun with fifty-

eight students, participants tested programs they developed themselves, using whatever test methods they

felt were appropriate (Yuen et al. 2004) (see Chapter 2). Their programs were graded by an automated test

suite in terms the number of tests that resulted in correct output (Hoffman, Strooper and Walsh (1996) also

used automated testing tools to grade student’s work). Then, the students were taught CTM and asked to

retest their programs with that method, to critically evaluate CTM, compare it to the test methods they

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 196

previously used and to rate their future preference of test methods. With the exception of the critical

evaluation, these measures are similar to those that were used in the university experiments and to those that

are used in the industry experiment (Chapter 6).

Fault-detection effectiveness has also been used as a measure of test method effectiveness. Basili and

Selby (1987) conducted a seminal experiment with forty-two students (twenty-nine novices, thirteen

intermediates) and thirty-two industry professionals, in which they compared the fault detection

effectiveness, fault detection rate and classes of faults detected by three testing techniques: black-box

testing (EP and BVA), white-box testing (100% statement coverage) and static testing (code reading by

stepwise abstraction). Contrary to what may have been believed at the time, they found that the industry

professionals were able to detect the most faults with code reading and did so at a faster rate. They were

also able to detect more faults with black-box testing than white-box testing, but there was no difference in

the rate at which they detected the faults. In one university group, the same numbers of faults were detected

with code reading and black-box testing and both detected more faults than white-box testing, although the

rate at which students detected faults did not differ for any method. Kamsties and Lott (1995) repeated this

experiment with fifty students and found that while the fault-detection effectiveness of the two dynamic

approaches (white-box and black-box) were comparable to that of the static approach (code reading),

participants detected more faults using black-box testing. This experiment was also repeated by Wood et al.

(1997) with forty-seven students. They found that the students detected similar numbers of faults for all

three techniques, but their effectiveness depended on the nature of the program under test and the nature of

program faults.

Thus, fault-detection effectiveness is a common basis for evaluating test method effectiveness.

Unfortunately, this could not be measured in the university experiments discussed in this chapter, since

programs were not used (i.e. only ‘toy’ specifications were used in the experiment, not working programs).

On the other hand, this measure was used in the industry-based experiment that is discussed in Chapter 6.

Another factor that was not covered in the experiments by Basili and Selby, Kamsties and Lott or Wood et

al., is whether tester domain knowledge has any impact on test case effectiveness. This was also

investigated in the industry-based experiment (see Chapter 6, Section 6.5.3).

Reid (1997) conducted an experiment that compared the probability that test cases derived by EP, BVA

and RT would be capable of detecting specific classes of program faults. He noted that participants using

black-box testing methods during experiments often select test cases that are not representative of other

testers, therefore experiment results could not be generalised unless large enough groups of testers and test

cases were used. Thus, Reid sought to derive every test case that satisfied the three black-box methods

under study. In this study, BVA was found to be the most effective method, followed by RT and EP.

However, it was important to note that BVA required twice as many test cases as EP to achieve higher

levels of effectiveness (13.6 BVA tests compared to 7.6 EP tests), while RT required a “prohibitive”

number of test cases in order to be as effective as BVA (50,000 RT test cases compared to 13.6 BVA tests).

The two university-based experiments discussed in this chapter involved a total of seventy-two students.

This is comparable to subject numbers participating in other software engineering experiments. For

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 197

example, a software testing experiment that was initially run with thirty-six student participants was rerun

by a different researcher with fifty-nine students and ninety-nine industry professionals who were paid

standard consultancy rates (Arisholm & SjØberg 2004). This relatively high number of industry participants

may have been due to the remuneration. In another testing experiment, twelve industry professionals

participated (Hungerford, Henver & Collins 2004) and they did not appear to be remunerated. Thus,

remuneration may be an effective approach of obtaining more industry participation in future experiments.

On the other hand, securing funding to pay for remuneration can be very challenging; (Arisholm & SjØberg

2004) is one of the only papers to report paying standard consultancy rates for participation.

Carver et al. (2003) are of the opinion that running pilot experiments with students is effective

preparation for industry-based experiments. Tichy (2000) supports this, stating that student experiments can

be used to predict future trends in experiments that are rerun with industry professionals. Tichy (2000) also

argued that graduate computer science students are only marginally different from industry professionals.

Supporting this, Runeson (2003) reported the results of a study of the feasibility of using students as

subjects in software engineering experiments, which compared the use of Humphrey’s Personal Software

Process (PSP) by undergraduate students, graduate students and industry professionals, to determine which

group produced better estimations of program size and development effort, lower defect densities (i.e.

defects per program size), lower defect intensities (i.e. defects per unit of time) and higher productivity.

Runeson (2003) found significant differences between graduate and undergraduate students, but only small

differences between graduates and industry professionals, supporting the view that graduate students are

similar to industry professionals in terms of their capabilities. Thus, one negative aspect that has been

reported on the use of students as experiment subjects is that results may not be generalised to industry

professionals (Carver et al. 2003, Runeson 2003).

On the other hand, since the aim of the university experiments reported in this chapter were to assess the

usability of black-box testing methods by novice testers, the use of undergraduate students was not seen as a

disadvantage. If one finds that relatively inexperienced practitioners (students) can learn a method quickly,

and the method produces equal or better results to existing approaches, and has other benefits such as

auditability, then this is useful knowledge. Conversely, if there is no improvement, it cannot be concluded

that professionals given ‘proper’ industrial training would not improve their testing practice. Also, these

experiments were excellent preparation for an industry-based experiment that assessed the usability of the

Atomic Rules approach by industry professionals, as they allowed the characteristics of test method

usability to be explored and refined. They also facilitated an initial assessment of the threats to validity that

need to be considered and controlled and have provided some indication of the response professional testers

may experience when learning and using the Atomic Rules approach.

5.5 Discussion

Six hypotheses were defined for this experiment, corresponding to the six attributes of test method

usability defined in Chapter 1: completeness (effectiveness) (H01/H11), efficiency (H02/H12), errors made

(effectiveness – accuracy) (H03/H13), questions asked (learnability) (H04/H14), satisfaction (H05/H15) and

understandability (H06/H16). The results for these are as follows.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 198

Students who used the Atomic Rules approach during tutorials in 2004 produced significantly more

complete EP equivalence classes and test cases than did those using Myers’ approach. Thus, the null

hypothesis for completeness could be rejected in favour of the alternate hypothesis for this attribute (Table

5-32). BVA results for completeness in 2004 were inconclusive (Table 5-32). On the other hand, students in

Myers’ group in 2005 produced more complete EP equivalence classes and test cases and BVA boundary

values; thus, the null hypothesis could not be rejected for completeness in 2005 (Table 5-32). This was

likely caused by the students in 2005 being given longer and more complicated specifications during

tutorials and (more generally) by the Atomic Rules approach requiring more test cases to be derived per

specification field (see Section 5.3.2). Supporting this view is that significantly more students in the Atomic

Rules group in both years ran out of time before completing tutorial tests (see Section 5.3.3.2). Despite this,

in 2004 the Atomic Rules group still achieved significantly higher EP coverage than those using Myers’

approach (Table 5-32).

Setting a potentially overly-complicated test in the 2005 tutorials may have been caused by the “second

system effect” (Brooks 1975), in which system engineers, having developed small, elegant solutions the

first time around, design overly complicated solutions the second time; it is only by the design of a third

system that the engineer will develop an effective solution that is not under or over designed. As students

did well with the Atomic Rules approach in the 2004 tutorials, it was considered reasonable to increase the

length and complexity of the specifications used in 2005. A third experiment using a complex and a non-

complex specification in the one experiment could clarify whether specification complexity caused students

in the Atomic Rules group to produce less complete test sets than Myers’ group in 2005.

Nonetheless, in 2004 students in the Atomic Rules group produced more accurate answers during EP

equivalence class design than Myers’ group, in that they made fewer mistakes (Table 5-34). Thus, the null

hypothesis for completeness and accuracy for EP equivalence class design could be rejected in favour of the

alternate hypothesis. The results for the completeness hypotheses of EP test cases and for BVA in 2004 and

2005 were inconclusive (Table 5-34).

For efficiency, students using the Atomic Rules approach were found to be more productive in both

years (assuming a 94% confidence interval in 2004), in that they derived more equivalence classes per hour

than those using Myers’ representation. Thus, the null hypothesis for efficiency of EP equivalence class

derivation could be rejected in favour of the alternate hypothesis (Table 5-33). The results for accuracy of

BVA derivation were inconclusive in both years (Table 5-33).

Learnability in terms of quantity of questions asked could not be assessed, as students did not ask or

record questions during tutorials. Thus, the results for this hypothesis were inconclusive.

In assessing satisfaction, it was found that significantly more students in 2004 reported that they would

prefer to use the Atomic Rules approach in future; thus the null hypothesis for this attribute in 2004 could

be rejected in favour of the alternate hypothesis (Table 5-36). Supporting this, more students in 2005 chose

to use the Atomic Rules approach in their class assignment and those that did achieved significantly higher

assignment marks than those who used Myers’ approach. After the experiment, the data was checked to

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 199

determine whether ‘brighter’ students chose to use the Atomic Rules approach in their assignment, in case

they knew they could achieve a higher grade with that approach. A comparison of approach used to overall

mean mark in the subject found no significant difference, indicating that intelligence levels did not affect

representation choice on the assignment.

For understandability, in both years a significant difference was found in the student’s self-rated

understanding of the two approaches, where the mean was higher for Atomic Rules. Thus, students in both

years felt that they had gained a better understanding of the Atomic Rules representation by the end of the

experiment. Therefore, the null hypothesis for usability in both years could be rejected in favour of the

alternate hypothesis (Table 5-37).

Student preference for lecturer did not appear to affect experiment results, as it would be fair to assume

that the results of the two groups would have swapped for all hypotheses in 2005 if this was the case.

An observation that was made during data analysis was that the structure of the Atomic Rules approach

can stifle tester creativity, even for novice testers. Since the Atomic Rules approach is more systematic than

Myers’ original definitions, it did not allow the students to derive test cases based on their own unique

knowledge and experience. During data analysis, it became apparent that some testers in Myers’ group

created test cases that were not derivable from Myers’ representation. As noted by Kaner et al. (1999), prior

testing experience can be used to identify effective test cases through Error Guessing in similar testing

scenarios, even if a tester cannot remember where they gained the domain knowledge. Systematic Method

Tailoring was developed as an approach for guiding testers in the definition of new and reusable black-box

test case design rules during prescriptive and non-prescriptive testing. However, this approach was not

available when the first university experiment was run. Therefore, the industry-based experiment reported

in the following chapter explores whether test case design rules used by industry professionals can be

described as Atomic Rules.

Table 5-32: Outcomes of hypothesis testing for Completeness (H01/H11).

Hypothesis:
Completeness
H0x = Null
H1x = Alternate

Equivalence Partitioning Boundary Value Analysis

2004 2005 2004 2005

Equiv.
Classes

Test
Cases

Equiv.
Classes

Test
Cases

Boundary
Values Test Cases

Boundary
Values Test Cases

H01: The completeness of
the black-box test set
derived by novice testers
is independent of the
representation used.

Reject Reject
Fail to
reject

Fail to
reject

Inconclusive Inconclusive
Fail to
reject

Inconclusive

H11: Novice testers using
the Atomic Rules approach
derive a more complete
test set compared to those
using Myers’
representation.

Accept Accept
Fail to
accept

Fail to
accept

Inconclusive Inconclusive
Fail to
accept

Inconclusive

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 200

Table 5-33: Outcomes of hypothesis testing for Efficiency (H02/H12).

Hypothesis: Efficiency
H0x = Null
H1x = Alternate

2004 2004 2005 2005

Equiv.
Classes

Boundary
Values

Equiv.
Classes

Boundary
Values

H02: The efficiency of black-box test
case derivation by novice testers is
independent of the representation used.

Reject Inconclusive
Reject

(at 94%
confidence)

Inconclusive

H12: Novice testers using the Atomic
Rules approach derive test cases more
efficiently compared to those using
Myers’ representation.

Accept Inconclusive
Accept
(at 94%

confidence)
Inconclusive

Table 5-34: Outcomes of hypothesis testing for Accuracy (H03/H13).

Hypothesis:
Accuracy
H0x = Null
H1x = Alternate

2004 2005 2004 2005

Equiv.
Classes

EP Test
Cases

Equiv.
Classes

EP Test
Cases

Boundary
Values

BVA Test
Cases

Boundary
Values

BVA Test
Cases

H03: The number of
errors made by
novice testers
during black-box
test case derivation
is independent of
the representation
used.

Reject Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive

H13: Novice testers
using the Atomic
Rules approach
make fewer errors
during test case
derivation
compared to those
using Myers’
representation.

Accept Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive

Table 5-35: Outcomes of hypothesis testing for Learnability (H04/H14).

Hypothesis: Learnability
H0x = Null
H1x = Alternate Outcomes in 2004 and 2005

H04: The number of questions asked by novice
testers during black-box test case derivation is
independent of the representation used.

Inconclusive
(no questions were asked by students)

H14: Novice testers using the Atomic Rules
approach ask fewer questions compared to
those using Myers’ representation.

Inconclusive
(no questions were asked by students)

Table 5-36: Outcomes of hypothesis testing for Satisfaction (H05/H15).

Hypothesis: Satisfaction
H0x = Null
H1x = Alternate 2004 2005

H05: The preference of novice
testers towards the black-box
testing methods is independent of
the representation used.

Reject Inconclusive

H15: Novice testers prefer to use the
Atomic Rules approach for black-
box test case derivation compared
to the use of Myers’ representation.

Accept Inconclusive

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 201

Table 5-37: Outcomes of hypothesis testing for Understandability (H06/H16).

Hypothesis: Understandability
H0x = Null
H1x = Alternate 2004 2005

H06: A tester’s understanding of black-box
testing methods is independent of the
representation used.

Reject Reject

H16: Novice testers rate the Atomic Rules
approach to black-box test case derivation
as easier to understand than Myers’
representation.

Accept Accept

5.6 Summary

The aim of the two university experiments discussed in this chapter was to compare the usability of

Myers’ original definition of EP and BVA to that of the Atomic Rules definition of the methods. While the

results suggest that the Atomic Rules approach can improve the usability of EP and BVA, indicating that it

could be a useful representation for teaching black-box testing methods to novice software testers, a number

of inconclusive results indicate that further experimentation is required. Future research will ideally include

repetition of these experiments, to determine whether the results reported here were by chance or whether

they are indicative of how the Atomic Rules approach would be received by the wider software testing

community.

In the next chapter, the results of an industry-based experiment are presented, which compared the

usability and failure-detection effectiveness of the Atomic Rules approach to that of the black-box testing

approaches that are used by testers in the software testing industry.

University Evaluation of the Atomic Rules Approach Chapter 5

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 202

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 203

Chapter 6

Industrial Evaluation of the Atomic Rules Approach

"The thirteenth deadly sin is to leave the users to find the errors in your compiler."
P. J. Brown, 1979

6.1 Overview

In this chapter, the results of a two-day experiment examining the usability of the Atomic Rules

representation of EP, BVA and ST are presented. The aim was to compare the usability and failure-

detection effectiveness of black-box testing methods normally used by testers in the software testing

industry with the Atomic Rules representations of EP, BVA and ST. Eleven testers working for a

Queensland government organisation participated in the experiment. Their experience ranged from novice

to expert. Although the experiment was carried out with practitioners from industry, due to the experiment

design, it can be considered to be a controlled, classroom-based experiment.

An overview of the experiment is as follows. On day 1 the participants were randomly assigned to two

groups of five and six people each (Table 6-1). The participants were then given 3.5 hours to derive and

execute black-box test cases using whichever approach to black-box testing they felt was appropriate, which

in this chapter is referred to as the ‘Practitioner Normal Testing Practice’ (PNTP) approach to test case

derivation or ‘PNTP testing.’ During this time each participant tested one of two programs: a Batch

Processor (assigned to Group 1) and an Address Parser (assigned to Group 2). These programs were

developed by undergraduate students from La Trobe University and contained a variety of faults, including

some that were intentionally seeded by a professional tester not involved in the experiment.

Once PNTP testing was complete, the participants were given a 2.5 hour presentation on the Atomic

Rules representation of EP, BVA and ST. The groups were then crossed over and were given 3.5 hours to

use the Atomic Rules approach to derive test cases for the ‘other’ program (i.e. the Address Parser was

assigned to Group 1 and the Batch Processor to Group 2). This ensured that each participant tested a

different program during each phase of testing, reducing the chances that what they learnt about the

programs during PNTP testing would influence the results obtained during Atomic Rules testing. During

this phase the testers were given lecture notes on the Atomic Rules approach and a two-page ‘Quick-

Reference Guide’ that listed all Atomic Rules from EP, BVA and ST (Appendix C).

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 204

Table 6-1: The experiment plan.

Time Day 1 Day 2

09.00 – 10.30
Introduction

Initial Questionnaire
Presentation (lecture) on the Atomic Rules

representation of EP, BVA and ST (continued)

10.30 – 11.00 Morning tea Morning tea

11.00 – 13.00

Phase 1 - Group 1

Black-box testing
Approach: PNTP

Program: Batch Processor
Post-Testing Questionnaire

Phase 1 - Group 2

Black-box testing
Approach: PNTP

Program: Address Parser
Post-Testing Questionnaire

Phase 2 - Group 1

Black-box testing
Approach: Atomic Rules

Program: Address Parser
Post-Testing Questionnaire

Phase 2 - Group 2

Black-box testing
Approach: Atomic Rules

Program: Batch Processor
Post-Testing Questionnaire

13.00 – 14.00 Lunch Lunch

14.00 – 15.30 Phase 1 testing continues Phase 1 testing continues Phase 2 testing continues Phase 2 testing continues

15.30 – 16.00 Afternoon tea Afternoon tea

16.00 – 17.00
Presentation (lecture) on the Atomic Rules

representation of EP, BVA and ST
Wrap-up discussion

Reflect & Review Questionnaire

An Initial Questionnaire was used to determine the group demographic and initial understanding of

black-box testing methods. Post-testing questionnaires were used after PNTP and Atomic Rules testing to

examine opinions of the test methods used. A Reflect and Review Questionnaire was used at the end of the

experiment to examine the tester’s final understanding of EP, BVA and ST and opinions of the test methods

used. Other data collected included all test cases derived and failures detected.

The relatively small sample size of eleven participants means that the results cannot be generalised

across the entire software testing industry. In addition, something that was (unfortunately) not identified

prior to day one of the experiment was that the majority of the testers in the group did not have recent

experience in test design (see Section 6.3.1.4). Nevertheless, the results provide insight into the way in

which the testers who participated in our experiment conduct black-box testing and how they used the

Atomic Rules representations of EP, BVA and ST to design test cases.

The remainder of this chapter is structured as follows. The experiment design is presented (Section 6.2),

including hypotheses (Section 6.2.1), programs and specifications (Section 6.2.2), analysis approach

(Section 6.2.4) and threats to validity (Section 6.2.5). Results are then presented (Section 6.3) and discussed

(Section 6.4), following by a chapter summary (Section 6.5).

6.2 Experiment Design

The primary independent variable was the black-box testing approach used (i.e. PNTP and Atomic

Rules). The other variable that was varied was the program tested (i.e. Address Parser or Batch Processor).

6.2.1 Hypotheses

Hypotheses were based on the following definition of test method usability (introduced in Chapter 1).

Test Method Usability. The extent to which a test case design method can be understood, learnt

and used by software testers to achieve specified test case design goals effectively, efficiently

and with satisfaction, within the context of applying software testing methods.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 205

From this, the following null (H0X) and scientific hypotheses (H1X) (Christensen 2004) were defined.

Completeness (effectiveness):

H01: The completeness of black-box test sets derived by industry-based testers is independent of

the approach used.

H11: Industry-based testers using the Atomic Rules approach derive more complete test sets in

terms of EP, BVA and ST coverage compared to those using their own method for black-box test

case design.

Failure-Detection Effectiveness:

H02: There is no difference between the failure-detection effectiveness of the Atomic Rules

approach compared to black-box testing approaches used by industry-based testers.

H12: Industry-based testers detect more failures using the Atomic Rules approach then when

using their own approaches to black-box test case design.

Efficiency (Productivity):

H03: The efficiency of black-box test case derivation by industry-based testers is independent of

the approach used.

H13: Industry-based testers using the Atomic Rules approach derive test cases more efficiently

compared to those using their own approach to test case design.

Errors Made (effectiveness – accuracy):

H04: The number of errors made by novice testers during black-box test case derivation is

independent of the approach used.

H14: Industry-based testers using the Atomic Rules approach make fewer errors during test case

derivation compared to those using their own approaches to test case design.

Understandability:

H05: Learning the Atomic Rules approach has not affect on a tester’s understanding of black-box

testing methods.

H15: Testers improve their understanding of black-box testing methods by learning the Atomic

Rules approach.

Operability:

H06: Testers using the Atomic Rules approach do not find it easy or difficult to use.

H16: Testers using the Atomic Rules approach find it an easy to use.

Satisfaction:

H07: The preference of industry-based testers towards the use of black-box testing methods is

independent of the representation used.

H17: Industry-based testers prefer to use the Atomic Rules approach for black-box test case

design compared to using their own approaches.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 206

Two additional hypotheses were defined. The first examines whether tester motivation levels threaten

experiment validity (see Section 6.2.5.1). The second examines whether test case design rules used during

PNTP testing can be described as Atomic Rules.

Motivation:

H08: Testers feel more motivated when using a new technique simply because it is new.

H18: Testers using the Atomic Rules approach do not find it more motivating to use simply

because it is a new technique.

Test Method Representation:

H09: Test case design rules used by experienced testers in industry when they are not prescribed

a particular test method cannot be described by any black-box test method representation.

H19: Test case design rules used by experienced testers in industry when they are not prescribed

a particular test method can be described as Atomic Rules.

The validity of these hypotheses is explored in Section 6.3, together with interpretations. The only

attribute of test method usability that was not assessed during this experiment is learnability in terms of how

long it takes a tester to become competent with a test method, since the experiment did not permit long-term

investigation. Learnability was also not assessed from the perspective of the types of questions asked during

the experiment, as the participants were encouraged to work autonomously.

6.2.2 Programs and Specifications

Locating programs for use during the experiment proved to be one of the most challenging aspects of

the experiment design. Three sets of programs were considered:

1. a program written by the participating organisation;

2. six C programs used in testing experiments by Kamsties and Lott (1995); and

3. mutated versions of C programs by Kamsties and Lott (1995), which were used in other (PhD)

software testing experiments by Grindal (2007).

A number of unanticipated problems relating to the use of these programs were encountered. Privacy

regulations prevented programs that were developed by the participating organisation (under option 1

above) from being installed at the training location. Furthermore, the programs mentioned under options 2

and 3 above were developed in C under Unix, and the testers were only experienced in the use of Windows,

not Unix. An extensive search failed to locate a Windows-based C compiler that would compile the

programs successfully (at least a dozen compilers were tested). Two weeks before the scheduled start of the

experiment, it was realised that none of the programs under consideration could be used. An alternative

needed to be sought, but time was a major issue. The scheduling of the experiment meant that the

participant’s work-load had been rescheduled and the training facilities had been paid for in full.

Attempting to reschedule the experiment at this late stage may have caused the participant’s employer to

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 207

withdraw support, leading to its cancellation. It was therefore decided that the date of the experiment could

not be moved. Instead, alternate programs had to be sought.

In the end, two programs were located that could be compiled and executed under Windows. These were

an Address Parser written in C++ by the author, and a Batch Processor written in Java by a student from the

second university experiment discussed in Chapter 5. They were submitted as assignments under third year

subjects at La Trobe University (CSE31STM Software Techniques and Metrics and CSE32STR Software

Testing and Reliability). The primary requirement of the programs was to parse an input file and report any

syntax errors. A secondary requirement was that they do so without failure (e.g. no endless loops, no

unexpected terminations). All known failures in the programs were detected by applying all Atomic Rules

from EP, BVA and ST (see Appendices D and E). These programs had also undergone black-box testing by

their developers, using Myers’ definitions of EP and BVA. Specifications of the program’s input are

provided in the subsections below, in a combination of Backus-Naur Form (BNF) and PL/I syntax. Table 6-

2 describes the BNF symbols used.

Table 6-2: Definition of specification symbols.

Symbol Actual Meaning

::= Is defined as

 Represents one space

… Represents one or more spaces

<ddd> Represents three digits

[a | b]
Select one of the options (either a or b) contained within the square
brackets []

{<anything>} The content of the curly braces { } is optional (i.e. <anything> is optional)

[a | b] MIN – MAX The number of optional entities should be between MIN and MAX inclusive

6.2.2.1 The Address Parser

The Address Parser reads street addresses in a specific format (Figure 6-1) from an input file. Any

addresses not in the specified format are rejected and error messages are written to a log file. The program

contains a variety of faults (see Appendix D) but will not ‘crash’ when given any input (e.g. no endless

loops, no unexpected terminations). The most common type of fault evident is that it produces incorrect

error messages for certain types of input errors. For example, for the invalid address 100 St Eltham 3095,

which is missing the street name, the program would correctly detect the missing street name, but would

incorrectly report that the suburb was invalid (Appendix D, Fault 8). Two additional faults were manually

seeded into the program by an experienced tester not involved in the experiment, to ensure there were

‘interesting’ faults for participants to find (see Appendix D, Faults 6 and 7).

For simplicity, the ‘state’ name was not included in the Address Parser specification, as the domain of

the application was limited to street addresses from the state of Victoria, Australia.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 208

Figure 6-1: Input data specification of the Address Parser.

Standard addresses

<standard address> ::= <ddd> <street> … <suburb> … <postcode>.

Example

111 Main St Greensborough 3088.

Flat, unit or RSD addresses

<flat / unit / rsd address> ::=
 [UNIT | FLAT | RSD] { <ddd> [, | /] } <ddd> <street> … <suburb> … <postcode>.

Examples

RSD 987 Main Street Greensborough 3088.

UNIT 100 / 220 Main Street Greensborough 3088.

Country address and care of addresses

<country address / care of address> ::= [C/- | C/o] … <street> … <suburb> … <postcode>.

Example

C/- Main St North Greensborough 3088.

Street Syntax

<street> ::= <street_name> … <street_type> {…<street_direction>}

<street_name> ::= [A – Z | a – z | -]1 - 40

<street_type> ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt | Grove | Grv | Lane | Ln | Place | Plc]

<street_direction> ::= [North | South | East | West]

Table 6-3: Valid suburbs-postcode pairs.

Suburb Postcode Suburb Postcode
Altona 3018 Nutfield 3099
Box Hill North 3129 Ormond 3162
Coburg 3058 Osborne 3934
Collingwood 3066 Panton Hill 3759
Deer Park 3023 Phillip Island 3922
Eltham 3095 Rosebud 3939
Eltham North 3095 Rosebud South 3939
Fawkner 3060 Rosebud West 3940
Geelong West 3218 Seaford 3198
Greensborough 3088 Sorrento 3943
Healesville 3777 Torquay 3228
Ivanhoe 3079 Upfield 3061
Ivanhoe East 3079 Upwey 3158
Jacana 3047 Vermont 3133
Kangaroo Ground 3097 Vermont South 3133
Kew 3101 Victoria Park 3067
Lilydale 3140 Warrandyte 3113
Lovely Banks 3221 Warrandyte South 3134
Macleod 3085 Wattle Glen 3096
Melbourne 3000 Yan Yean 3755

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 209

6.2.2.2 The Batch Processor

The aim of the Batch Processor is to parse abstract representations of batches of sales records and

calculate the total and average of values contained within each batch (Figure 6-2). Each batch starts and

ends with an ‘sbatch’ (start batch) and ‘ebatch’ (end batch) tag. The last record of the file is ‘lbatch.’ This

program was chosen from a set of forty similar programs. The version that was chosen contained a wide

variety of defects, some that cause incorrect behaviour and others that caused the program to ‘crash’ (see

Appendix 3). The specification for this program had a number of intentional ambiguities, and it was left to

the implementer to resolve them. For example, it did not specify the maximum number of parts and part

identifiers that could appear on a ‘recordline’ or the maximum number of recordlines.

Figure 6-2: Input data specification of the Batch Processor.

Input Specification

 <input file> ::= <batch>* <nl> lbatch

 <batch> ::= sbatch … <batchid> <nl> <recordline>* <nl> ebatch …<batchid>

 <recordline> ::= { <partid> <value> , }* <partid> <value>

 <batchid> ::=<digit><digit><char><char><char>

 <partid> ::=<char><digit><digit><char>

 <value> ::= [-99 – 98]

 <digit> ::= [0 – 9]

 <char> ::= [A – Z]

 <nl> ::= newline

Output Specification

The program must calculate and output the total and average of:

a) the values of each individual partid within each batch,

b) all values within each batch,

c) the values of each individual partid over all batches,

d) all values over all batches.

Example Input

sbatch 11AAA

ebatch 11AAA

sbatch 63ABC

B22B -10

C99E 20, A11A 40, A11A -30

ebatch 63ABC

lbatch

6.2.3 Group Allocation

The participants were divided into two comparison groups (Table 6-4). Each group was given a different

program to test during the two phases of testing, ensuring that what they learnt about the programs during

PNTP testing did not affect their results during Atomic Rules testing.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 210

Table 6-4: Group allocation.

Day Testing Approach Group Participant Count Program Tested

1 PNTP
1 5 Address Parser

2 6 Batch Processor

2 Atomic Rules
1 6 Address Parser

2 5 Batch Processor

6.2.4 Data Collection and Analysis Approach

Data collected consisted of test cases designed by participants during PNTP and Atomic Rules testing

and answers to Initial, Post-testing and Reflect and Review Questionnaires. Standard tests for statistical

significance (e.g. t-tests for parametric data, chi-square tests for non-parametric data) were used wherever

possible. One-tailed tests were used, as the null hypothesis was assumed (e.g. that was no difference

between PNTP and the Atomic Rules approach). A confidence interval of 95% was used for significance

testing (i.e. any result with a p-value greater than 5% was rejected). A statistician and psychological

researcher were consulted in the selection of all tests for statistical significance that were used during

hypothesis testing.

6.2.5 Threats to Validity

In this section threats to internal and external validity are explored (these are similar to threats explored

in Chapter 5; refer to section 5.3.4 for detailed definitions).

6.2.5.1 Internal Threats to Validity

Maturation. It was hoped that holding the experiment in a training room (Skillgate in Brisbane) and

providing food and drink would mitigate boredom, fatigue and hunger. As the experiment was carried out

over two consecutive days, changes in knowledge levels were unlikely. Questionnaires were used to

determine if participant motivation influenced experiment outcomes (see Section 6.3.10).

Enthusiasm. To attempt mitigation of this threat (as with the student experiments), participants were not

told that the Atomic Rules approach was new in the hope that this would allow them to focus on the work at

hand, rather than considering how the new technique related to work conducted during PNTP testing. On

the other hand, since the testers were learning a new approach to test case design, it was difficult to prevent

enthusiasm from affecting their behaviour during that phase of the experiment. Therefore, data was

collected on the level of motivation each tester felt before and after using PNTP and the Atomic Rules

approach, enabling this to be built into the experiment design (see Section 6.3.10).

Instrumentation. Standard measurement scales were used during data analysis and only one person

carried out analysis to ensure that the same approaches were followed throughout the experiment.

Regression. Selecting participants for inclusion in an experiment that have ‘extreme’ scores can cause

them to perform better or worse on pre-tests than on post-tests (Creswell 2002). This threat could not be

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 211

controlled as the participants were chosen by the participating organisation, based on tester availability. An

assessment of whether more experienced testers produced ‘better’ test cases was built into the experiment

(see Sections 6.3.3.5 and 6.3.4.5).

Selection. To mitigate this threat, participants were randomly allocated to groups and the affect of

participant experience was built into the experiment (see Sections 6.3.3.5 and 6.3.4.5).

Testing. This threat exists when participants are given the same test more than once and become familiar

with the types of responses required. This was mitigated by assigning different programs to each participant

during PNTP and Atomic Rules testing.

Procedure. If participants do not follow the procedures of a prescribed techniques this may affect results

(Vegas et al. 2003). This was incorporated into the experiment by examining whether participants followed

the procedures of the Atomic Rules approach correctly (see Section 6.3.7.4).

Reliability. Since the participants were only available for two days, the experiment could not be repeated

to determine the reliability of the results. There was no way around this, so this threat could not be

mitigated. Assumedly, repeating the experiment over time would give the participants more experience with

the programs under test and with the Atomic Rules approach and that this would improve their results.

Copying. This was mitigated by conducting the experiment under ‘exam’ conditions, by asking the

participants not discuss the experiment or the faults they detected until after their work was complete.

Population and Sample. As the sample of testers who participated in this experiment are not

representative of all professional software testers, the results cannot be generalised across the entire

population of professional testers. Nevertheless, they are considered to be indicative.

A number of internal threats to validity were not applicable, as follows.

History. This was not a threat as there was no time lapse between pre and post test measurements.

Diffusion of Treatments, Compensatory Equalization, Compensatory Rivalry, Resentful Demoralization

and Method and Object Learning. These relate to experiments involving control groups. As this experiment

involved a small number of participants, control groups could not be used.

6.2.5.2 External Threats to Validity

Language. All participants spoke English fluently and all written experiment materials were presented in

English. As the specifications were written in BNF it was possible that the participants would not be able to

understand them. To mitigate this threat, examples input files were provided.

Interaction of Setting and Treatment. Due to the small sample size, the results cannot be generalised

across the entire population of professional testers. Thus, the results are considered to be indicative.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 212

Programs and Techniques. If an experiment involves a small sample of programs or software testing

methods, the results cannot be generalised to programs or methods (Vegas et al. 2003). In this experiment,

data was collected for two programs that were implemented by third year university students and black-box

test methods, EP, BVA and ST were used. Thus, broad generalisations have not been made across all

specifications, programs or black-box testing methods.

Sample Heterogeneity. Differences in the age, gender, education or occupation of participants can affect

individual results (Anastasi & Urbina 2007). This was built into the experiment by examining whether prior

testing experience had any affect on test case effectiveness (see 6.3.3.5 and 6.3.4.5).

6.2.5.3 Construct Validity Threats

Measures. To mitigate this threat, participants were not told how data was going to be analysed.

6.3 Results

The experiment results are presented below, followed by a detailed discussion in Section 6.4.

6.3.1 Demographic

On the Initial Questionnaire, the participants were asked about their prior testing education and

experience, programming and specification experience, understanding of black-box testing methods and

level of motivation for participating in the experiment.

6.3.1.1 Industry Experience, Education and Training

All participants worked for the same government organisation in Queensland, Australia and 91% had

worked as software testers for government organisations in the past (Table 6-5).

Table 6-5: Previous industries participants have tested software in (choose all that apply).

Prior Position Count Percent

Other – Government 10 91

Banking, finance & insurance 1 9

Education & training 0 0

Hotel, tourism, retail & trading 0 0

Manufacturing & engineering 0 0

Research & development 0 0

Software house & IT consultancy 0 0

Telecommunications 0 0

For their current role in testing, 46% were working as Testers and 46% as Test Leaders (Table 6-6).

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 213

Table 6-6: Participant’s current role in testing (choose one).

Current Position Count Percent

Test Lead 5 46

Tester 5 46

Other1 1 9

In terms of the roles that participants held in the past, 91% had worked as Testers and 55% as Test

Leads (Table 6-7). One participant had previous worked as a software developer.

Table 6-7: Prior roles held by the participants in testing (choose all that apply).

Prior Position Count Percent

Tester 10 91

Test Lead 6 55

Other 3 27

Test Manager 0 0

Test Specialist 0 0

Senior Test Consultant 0 0

Test Consultant 0 0

Test Analyst 0 0

Test Engineer 0 0

While 91% of the group stated that the received on the job training in software testing, 27% had

attended an industry-based training course called Certified Software Test Professional (CSTP)2, while one

had received training in testing at TAFE (9%). No-one received training in software testing at university

(Table 6-8), though this was not surprising as over half the group did not have postgraduate degrees and

nobody had completed a ‘pure’ computing degree (Table 6-9).

Table 6-8: Prior software testing training (choose all that apply).

Training Count Percent

On the job training 10 91

In an industry training course 3 27

Other – Certified Software Test Professional (CSTP) 2 18

As part of a degree at TAFE 1 9

As part of a degree at university 0 0

1 To ensure individuals cannot be identified (as required by the La Trobe University human ethics committee), the title of this position
cannot be named.
2 CSTP is a nationally recognised training course taught by K. J. Ross & Associates. The author is a presenter of CSTP training
courses, but did not teach the course to any participants in this experiment.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 214

Table 6-9: University and TAFE degrees completed (choose all that apply).

Degree Count Percent

None 6 55

Certificate IV Workplace Assessment & Training 2 18

Bachelor of Business (Accounting) 1 9

Diploma of Business 1 9

Diploma Frontline Management 1 9

The participants were asked how many years of software testing experience they had. Six (55%)

reported less than 2 years of testing experience including one who was new to testing, while five (45%) had

2 to 10 years of experience. Thus, there was a variety of levels of experience, ranging from novice to expert.

6.3.1.2 Programs, Specifications and Test Methods

The participants were asked about the types of applications they tested in the past (Table 6-10). Most

had experience with internet-based, real time and windows-style applications (63% each), while much

fewer had tested text-based applications (27%).

Table 6-10: Types of applications tested in the past (choose all that apply).

Application Type Count Percent

Internet-based 7 64

Real time 7 64

Windows-based 7 64

Other – Mainframe 5 46

Text-based 3 27

Unix-based 1 9

Fault tolerant 1 9

Other – CSV, XML 1 9

Other – hardware 1 9

Participants were asked which specification languages they used in the past (Table 6-11). Most reported

testing from informal specifications (82%). Since the specifications used in the experiment were written in

BNF (see Section 6.2.2) and the testers indicated that they did not have experience with this language, there

was expected to be a ‘learning curve’ during PNTP testing. As expected, the participants did take around 30

minutes to adjust. However, they were also given sample input files to reduce the learning curve.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 215

Table 6-11: Familiarity with specifications languages (choose all that apply).

Specification Type
Familiar
(Count) Percent

Informal 9 82

Semi formal 3 27

Formal 0 0

Formal – BNF 0 0

Formal – Z 0 0

Formal – Object Z 0 0

6.3.1.3 Understanding of Black-Box Testing Methods

On the Initial Questionnaire the participants were rated their understanding of the following black-box

testing methods (Table 6-12): Boundary Value Analysis (BVA), Cause-Effect Graphing (CEG), Decision

Tables (DT), Equivalence Partitioning (EP), Error Guessing (EG), Exploratory Testing (ET), Model-Based

Testing (MBT), Orthogonal Array Testing (OAT), Random Testing (RT), Specification-Based Mutation

Testing (SBMT), Syntax Testing (ST) and Worst Case Testing (WCT). This was achieved using a Likert

scale of: 1 = never heard of the method, 2 = none, 3 = novice, 4 = intermediate, 5 = advanced and 6 =

expert. Although data was only required for EP, BVA and ST, they were asked about nine other methods to

obtain an overall picture of their knowledge of black-box test methods. In a separate question, participants

were asked how often they used the methods (Table 6-13), using a Likert scale of: 1 = never, 2 = rarely, 3 =

occasionally, 4 = often, 5 = very often and 6 = always.

Few participants felt they had advanced knowledge of any black-box testing method and none felt they

had expert knowledge. While 46% felt they had intermediate knowledge of EP and BVA, 54% had never

heard of ST. This suggests that industry-based testers may not be experienced with prescriptive black-box

testing methods. This is supported by a survey of software testing practices in Australian software

development companies, which revealed that of the 65 organisations interviewed, 55% never used

prescriptive black-box testing methods (Ng et al. 2004). Thus, while some testers in this experiment may

have been inclined to use EP, BVA or ST during PNTP testing, they were not expected to do so in an

‘expert’ manner.

Interestingly, some participants reported having no experience with EG, ET, SBMT, OAT and ST

(Table 6-12) but reported using them on occasion (Table 6-13). Since such inconsistencies were limited to 1

to 2 participants, they were not considered to impact the validity of the data detrimentally.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 216

Table 6-12: Experience with black-box testing methods (choose one rating for each method).

Rating

Black-Box Testing Methods

B
V

A

C
E

G

D
T

E
P

E
G

E
T

M
B

T

O
A

T

R
T

S
B

M
T

S
T

W
C

T

Percentages (%)

Never heard of method 18 27 27 18 18 9 36 90 46 82 54 46

None 0 36 9 0 18 9 27 0 27 9 18 9

Novice 9 0 18 9 27 27 9 0 9 0 9 18

Intermediate 46 27 27 46 36 36 27 9 18 9 9 18

Advanced 27 9 9 27 0 18 0 0 0 0 9 9

Expert 0 0 0 0 0 0 0 0 0 0 0 0

Missing 0 0 9 0 0 0 0 0 0 0 0 0

Table 6-13: Frequency of using black-box testing methods (choose one rating for each method).

Rating

Black-Box Testing Methods

B
V

A

C
E

G

D
T

E
P

E
G

E
T

M
B

T

O
A

T

R
T

S
B

M
T

S
T

W
C

T

Percentages (%)

Never 9 36 27 27 9 9 36 81 54 72 9 46

Rarely 0 36 18 0 9 0 9 0 9 9 54 0

Occasionally 9 0 18 27 27 27 9 9 0 0 18 27

Often 54 27 27 36 27 46 27 9 27 18 18 27

Very often 18 0 0 0 9 9 9 0 0 0 0 0

Always 0 0 0 0 0 0 0 0 0 0 0 0

Missing 9 0 9 9 18 9 9 0 9 0 0 0

6.3.1.4 Frequency of Specification-Based Test Case Design

Participants were asked how often they derive test cases from specifications (Table 6-14).

Unfortunately, it was realised that the majority of the participants had not had any recent experience in test

case design. This became apparent during the completion of the Initial Questionnaire, when the participants

reached the question “On average, what percentage of test cases do you derive from program

specifications?” When a number of testers verbally reported to the author that they had not had any recent

experience with test case design, and one explained that the majority of the test cases they executed were

designed by Business Analysts, this author asked the testers to report on their questionnaire whether they

designed their own test cases. Although 81% reported deriving 80 to 100% of tests from specifications, to

the surprise of the research team, 72% reported that the majority of the test cases they execute are designed

by Business Analysts. While the participants had recent experience with critiquing and executing test cases,

they did not have recent experience with test case design. Unfortunately this was not identified prior to the

experiment. This could explain why the participants conducted Exploratory Testing during PNTP testing, as

this approach does not require the application of prescriptive test design methods (see Section 6.3.2).

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 217

Table 6-14: Percentage of tests derived from specifications (choose one).

Range Count Percent

80 to 100% 9 81

20 to 39% 1 9

None 1 9

Less than 20% 0 0

40 to 59% 0 0

60 to 79% 0 0

6.3.2 Analysing the Practitioner Normal Testing Practice

The test cases derived during PNTP testing were analysed to identify the test case design approach used.

This was carried out in two phases: first, by assessing the approach to test data and test case design the

participants reported used (i.e. on the PNTP Post-Testing Questionnaire) and second, by analysing the

approach they actually used.

When asked to describe the approach to testing they used during the PNTP phase (Figure 6-3), 27% of

the group described their approach as ‘ad hoc’ or ‘experience-based,’ while 64% described it as

‘specification-based.’ Other popular responses were the use of valid (27%) and invalid (36%) test data

values. Only 18% reported the use of boundary values and few reported testing program syntax (9%).

Figure 6-3: Explanations of the PNTP testing approaches used on day 1.

Explanations of PNTP Testing

9

9

9

9

18

27

27

36

64

0 10 20 30 40 50 60 70

Output

Duplication / addition

Syntax

Random

Boundary

Experience-based / ad hoc

Valid

Invalid

Specification-based

Percent

None of the participants reported doing any test planning or test case design prior to test execution, apart

from one participant who (quite surprisingly) used the ‘randbetween’ function in Microsoft Excel to

implement a test data generation tool for testing the Batch Processor. Most participants verbally described

starting the testing process by executing valid test cases and, as they began to understand how the programs

worked, introducing small input errors to target specific types of faults, such as “boundary” faults or

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 218

“missing” (i.e. null) input errors. An analysis of the test cases they actually derived exemplified this,

indicating that all participants conducted ad hoc Exploratory Testing during PNTP testing (even the

participant who developed the automated testing tool followed it with some manual Exploratory Testing).

This suggests that testers may choose to use Exploratory Testing when they are unfamiliar with a

program or when they have limited time for testing. As discussed in Chapter 2, Exploratory Testing allows

testers to become familiar with a program while simultaneously executing test cases against it (see Section

2.2.5.2). It can be a very effective approach for defect detection that allows testers to become effective early

in the testing process. Supporting this theory, on the Reflect and Review Questionnaire a number of

participants reported that if they were to test the programs again, they would use more structured testing

approaches, such as the use of Test Matrices, test planning and test design in advance of test execution, to

ensure that “all areas of functionality were covered.” This suggests that after using Exploratory Testing to

gain an initial understanding of the program and the nature of faults present, testers may opt to use more

prescriptive test case design methods.

6.3.3 Completeness (Effectiveness) (H01/H11)

Since the Atomic Rules representation of EP, BVA and ST covers every published test case design rule

from each method, it was considered to be a useful benchmark for measuring the completeness of test cases

derived during PNTP and Atomic Rules testing. Completeness was assessed via test method coverage (see

Section 6.3.3.1), individual Atomic Rule coverage (see Section 6.3.3.2), Atomic Rule class coverage (see

Section 6.3.3.3) and specification coverage (see Section 6.3.3.4). The same data was also analysed to

determine whether tester experience had any affect on test method coverage (see Section 6.3.3.5).

6.3.3.1 Test Method Coverage

The mean percentage of EP (Table 6-15), BVA (Table 6-16) and ST (Table 6-17) coverage achieved

during PNTP and Atomic Rules testing was compared. A paired sample t-test was used to test for a

significance difference.

A significant difference was found in the BVA and ST test cases, where the mean was higher for

Atomic Rules and Cohen’s effect size was strong. A significant difference was not found for EP, as the

means were relatively even. This suggests that while the testers may have been skilled with EP prior to the

experiment, learning Atomic Rules enabled them to increase their skill with BVA and ST test design.

Table 6-15: Mean percentage of coverage of Atomic Rules from EP.

N Approach Mean (%) Std Dev t-test Cohen’s Effect Size

11 PNTP 13.31 3.62
t(10) = -.226, p = .413 N/A

11 Atomic Rules 13.89 8.62

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 219

Table 6-16: Mean percentage of coverage of Atomic Rules from BVA.

N Approach Mean (%) Std Dev t-test Cohen’s Effect Size

11 PNTP 3.02 1.73
t(10) = -2.59, p = .01 Strong

11 Atomic Rules 8.99 6.83

Table 6-17: Mean percentage of coverage of Atomic Rules from ST.

N Approach Mean (%) Std Dev t-test Cohen’s Effect Size

11 PNTP 1.79 0.81
t(10) = -2.50, p = .01 Strong

11 Atomic Rules 9.29 10

The relatively low percentages of coverage achieved by the testers (see column 3 of Table 6-15, Table

6-16 and Table 6-17) was due to the large quantities of test data and test cases that were required to cover

all specification fields with all applicable Atomic Rules from EP, BVA and ST (Table 6-18). Also, the ratio

of tests derivable for the two programs was almost 1:2, with fewer tests being required to cover all fields of

the Batch Processor (see Table 6-18, column 4).

 Table 6-18: Number of test data values and test cases derivable by applying EP, BVA and ST
to all specification fields.

Test Method

Number of Test Data Values and Test
Cases Derivable Ratio

Batch Processor Address Parser

Equivalence
Partitioning

161 420 1:2.61

Boundary Value
Analysis

109 231 1:2.11

Syntax Testing 295 700 1:2.37

Total 565 1,351 1:2.39

6.3.3.2 Atomic Rule Coverage

The percentage of Atomic Rules from EP (Figure 6-4), BVA (Figure 6-5) and ST (Figure 6-6) that were

used at least once by any participant during PNTP and Atomic Rules testing were compared. As Figure 6-4

illustrates, 56% of EP Atomic Rules were used by more participants during Atomic Rules testing than

PNTP testing. Although Test Case Construction Rules EP14 to EP16 were used by more participants during

PNTP testing, analysis of the tests derived during Atomic Rules testing found that 55% of the group did not

have enough time to derive complete test cases (i.e. they used many DISRs, DSSRs and DIRMs but few

TCCRs). Given more time, it is possible that the testers would have achieved higher levels of EP coverage

during Atomic Rules testing.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 220

Figure 6-4: Comparison of mean percentage of EP coverage (graphical view).

Equivalence Partitioning Rule Usage

0

10
20

30

40

50
60

70

80
90

100
E

P
1

-
LL

B
S

E
P

2
-

G
U

B
S

E
P

3
-

LU
B

S

E
P

4
-

IR

E
P

5
-

R
N

R

E
P

6
-

S
A

R

E
P

7
-

M
A

R

E
P

8
-

M
A

N
R

E
P

9
-

S
N

A
R

E
P

10
 -

 M
N

A
R

E
P

11
 -

 M
IR

E
P

12
 -

 V
LI

S

E
P

13
 -

 R
D

V
S

E
P

14
 -

 V
C

T
T

E
P

15
 -

 IT
C

M
ax

E
P

16
 -

 IC
T

M
in

Atomic Rule Number & Identifier

P
e

rc
e

n
ta

g
e

 o
f

P
a

rt
ic

ip
a

n
ts

Practitioner Normal Testing Practice Atomic Rules Approach

For BVA (Figure 6-5), all Atomic Rules other than BVA3 (Lower Boundary + Selection) were used at

least once by more participants during Atomic Rules testing. This indicates that learning the Atomic Rules

approach increased the group’s skill with achieving adequate boundary value coverage.

Figure 6-5: Comparison of mean percentage of BVA coverage.

Boundary Value Analysis Rule Usage

0

10

20

30

40

50

60

70

80

90

100

L
B

M
1

 -
 B

V
A

1

L
B

 -
 B

V
A

2

L
B

P
1

 -
 B

V
A

3

U
B

M
1

 -
 B

V
A

4

U
B

 -
 B

V
A

5

U
B

P
1

 -
 B

V
A

6

F
L

IS
 -

 B
V

A
7

L
L

IS
 -

 B
V

A
8

M
IR

 -
 B

V
A

9

Atomic Rule Number & Identifier

P
er

ce
n

ta
g

e
o

f
P

ar
ti

ci
p

an
ts

Practitioner Normal Testing Practice Atomic Rules Approach

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 221

A similar result was found for ST (Figure 6-6), where all but two rules (ST8 and ST11) were used at

least once by the same or greater numbers of participants during Atomic Rules testing. This indicates that

learning the Atomic Rules approach also increased the group’s skill with ST.

Figure 6-6: Comparison of mean percentage of ST coverage.

Syntax Testing Rule Usage

0
10
20
30
40
50
60
70
80
90

100
S

T
1

-
R

M
LC

S
T

2
-

R
P

LC

S
T

3
-

A
E

C
E

S
T

4
-

R
M

F
C

S
T

5
-

R
P

F
C

S
T

6
-

A
E

C
S

S
T

7
-

U
LL

S
T

8
-

LU
L

S
T

9
-

N
A

I

S
T

10
 -

 D
F

S
T

11
 -

 A
A

F

S
T

12
 -

 S
E

LA

S
T

13
 -

 S
A

LA

S
T

14
 -

 S
A

LA
R

Atomic Rule Number & Identifier

P
e

rc
e

n
ta

g
e

 o
f

P
a

rt
ic

ip
a

n
ts

Practitioner Normal Testing Practice Atomic Rules Approach

6.3.3.3 Classes of Atomic Rules Covered

Atomic Rule usage was analysed from the perspective of the classes of test data that can be selected by

certain types of rules (Figure 6-7). The following test data classes were analysed:

1. valid values (covers EP3 and EP12);

2. invalid values – outside EP boundaries (i.e. partitions above or below valid partitions) (covers EP1

and EP2);

3. invalid values – invalid datatypes (e.g. alphas, integers, non-alphanumeric) (covers EP4 to EP10);

4. invalid values – missing fields (i.e. testing with null) (covers EP11 and BVA9);

5. boundary values (on, just above and just below field boundaries) (covers BVA1 to BVA8);

6. list value selection (i.e. selecting a valid value from a list) (covers EP12);

7. syntax (i.e. testing input fields with valid and invalid syntax) (covers ST1 to ST8); and

8. field addition and duplication (i.e. adding or repeating fields) (covers ST10 and ST11).

These classes were analysed by examining the mean coverage achieved by the group, where rules within

each class could be applied to many different input fields of each program. As Figure 6-7 illustrates, the

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 222

testers achieved higher mean coverage of all rule classes during Atomic Rules testing, with the exception of

rules that select valid test data. Thus, their ability to derive more diverse classes of test data improved after

learning Atomic Rules, suggesting that this approach is useful for broadening a tester’s knowledge of the

classes of black-box test data that can be derived.

Figure 6-7: Comparison of mean Atomic Rule coverage achieved per test data class.

Mean Coverage of Types of Atomic Rules

31.57

13.83

7.99

22.99

7.41

2.60

16.25

9.15

79.63

10.87

1.73

7.16

0.77

0.00

8.78

1.18

0.05
0.0

0 20 40 60 80 100

Valid values

Invalid values - outside EP boundary

Invalid values - invalid datatypes

Invalid values - missing fields

Boundary values

List value selection

Syntax

Field duplication / addition

Random values

A
to

m
ic

 R
u

le
 T

yp
e

Percentage of Participants

Atoimc Rules Approach Practitioner Normal Testing Approach

6.3.3.4 Specification Coverage

Completeness was also analysed by the mean coverage of input fields in the Address Parser (Table 6-19,

Figure 6-8) and Batch Processor (Table 6-20, Figure 6-9). This analysis revealed that there were classes of

input fields that were not well tested. Spaces and non-alphanumeric (i.e. special) characters were poorly

covered during both PNTP and Atomic Rules testing. Also, participants did not detect the seeded fault in

the Address Parser that allowed a forward slash or hyphen to be accepted in place of the period at the end of

the address (see Section 6.3.4.7 for a further discussion). These results could suggest that the participants

might not have been experienced with testing special character fields. On the other hand, since they were

taught how to test non-alphanumeric fields with the Atomic Rules approach (e.g. many Atomic Rules from

EP and ST apply to non-alphanumeric fields) and as they stated that they were experienced in recognising

the need to test punctuation (see Section 6.3.4.3), it is possible that they either did not recognise the need to

test these fields, they did not know how to test them or they did not have enough time to test them.

Other fields in the Address Parser that were not well covered include street name length, street type and

street direction during PNTP Testing and street contents during Atomic Rules testing.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 223

With the exclusion of the space field in the Address Parser, the group achieved equal or higher levels of

coverage of all input field types in both programs during Atomic Rules testing (Table 6-19 and Figure 6-8

for Address Parser, Table 6-20 and Figure 6-9 for Batch Processor). The mean coverage during PNTP

testing when it was applied to the Address Parser was 9.89%, compared to 47.54% by the application of the

Atomic Rules approach (Table 6-19). Similarly, for the Batch Processor the mean coverage achieved during

the PNTP testing phase was 10.84%, compared to 36.83% during Atomic Rules testing (Table 6-20). This

suggests that testing teams as a whole will produce more complete test sets with the Atomic Rules approach

than during Exploratory Testing (since most participants used this approach during PNTP testing, as

discussed in Section 6.3.2).

Table 6-19: Percentage of Atomic Rules applied by at least one participant during testing of the
Address Parser (tabular view).

Field PNTP (%) Atomic Rules (%) Difference (%)

Address Type (UNIT FLAT RSD C/o C/-) 15.71 55.48 +39.76

House / Unit Number (ddd) 18.14 52.23 +34.09

Spaces (single or multiple) 5.25 5.24 -0.02

Street Name (A-Z, A-z, -) 4.23 16.06 +11.82

Street Name Length (1-40) 7.22 49.38 +42.17

Street Type 9.21 69.74 +60.53

Street Direction 7.94 62.54 +54.60

Suburb 13.07 63.39 +50.32

Postcode 12.35 85.59 +73.25

Special Characters (. , /) 5.80 15.77 +9.97

Mean 9.89 47.54 +37.65

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 224

Figure 6-8: Percentage of Atomic Rules applied by at least one participant during testing of the
Address Parser (graphical view).

Mean Field Coverage Achieved by the Group - Address Parser

15.71%

18.14%

5.25%

4.23%

7.22%

9.21%

7.94%

13.07%

12.35%

5.80%

55.48%

52.23%

5.24%

16.06%

49.38%

69.74%

62.54%

63.39%

85.59%

15.77%

0% 20% 40% 60% 80% 100%

Address Type
(UNIT FLAT RSD C/o C/-)

House / Unit Number (ddd)

Spaces (single or multiple)

Street Name (A-Z, A-z, -)

Street Name Length (1-40)

Street Type

Street Direction

Suburb

Postcode

Special Characters (. , /)

F
ie

ld
 T

yp
e

Percentage of Atomic Rules Covered

Pratitioner Normal Testing Practice Atomic Rules Appraoch

Table 6-20: Percentage of Atomic Rules applied by at least one participant during testing of the
Batch Processor (tabular view).

Field PNTP (%) Atomic Rules (%) Difference (%)

Keyword (sbatch, ebatch, lbatch) 13.65 44.86 +31.20

Batch Identifier 12.00 53.79 +41.79

Part Identifier 10.72 50.56 +39.83

Part Value (-99 - 98) 18.23 30.06 +11.82

Spaces (single or multiple) 4.13 25.50 +21.37

Special Characters (,) 6.27 16.24 +9.97

Mean 10.84 36.83 +26.00

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 225

Figure 6-9: Percentage of Atomic Rules applied by at least one participant during testing of the
Batch Processor (graphical view).

Mean Field Coverage Achieved by the Group - Batch Processor

13.65%

12.00%

10.72%

18.23%

4.13%

6.27%

44.86%

53.79%

50.56%

30.06%

25.50%

16.24%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Keyword (sbatch, ebatch,
lbatch)

Batch Identifier (ddccc)

Part Identifier (cddc)

Part Value (-99 - 98)

Spaces (single or
multiple)

Special Characters (,)

F
ie

ld
 T

yp
e

Percentage of Atomic Rules Covered

Pratitioner Normal Testing Practice Atomic Rules Appraoch

6.3.3.5 The Effect of Experience on Test Method Coverage

To determine whether prior testing experience had any affect on EP, BVA or ST coverage, the mean test

method coverage achieved during each phase of the experiment was compared by two factors: years of

testing experience and current role in testing.

To assess the impact of years of testing experience, coverage was compared for participants who had

less than 2 years of experience (6 participants) to those who had 2 to 10 years experience (5 participants).

No significant difference was found in the mean EP or ST coverage achieved during PNTP testing (Table 6-

21). While a significant difference was found in the mean BVA coverage, it was under 2%, which was not

considered conclusive (Table 6-21). This suggests that the number of years of testing experience does not

affect a tester’s ability to cover the test case design rules of EP, BVA or ST during Exploratory Testing.

Table 6-21: Coverage achieved during PNTP testing, by experience in years.

Method N # Years Experience Mean (%) Std Dev t-test Cohen’s Effect Size

EP
6 Less than 2 years 13.78 2.73

t(9) = .43, p = .34 N/A
5 2 to 10 years 12.74 4.76

BVA
6 Less than 2 years 3.85 2.03

t(9) = 1.96, p = .04 strong
5 2 to 10 years 2.03 0.36

ST
6 Less than 2 years 1.76 0.93

t(9) = -.11, p = .46 N/A
5 2 to 10 years 1.82 0.76

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 226

In addition, there was no significant difference found in the mean EP, BVA and ST coverage during

Atomic Rules testing (Table 6-22), suggesting that number of years of testing experience also does not

affect a tester’s ability to use the Atomic Rules approach. On the other hand, since the mean EP coverage

was just outside the 95% confidence interval, Cohen’s effect size was strong (Table 6-22) and the mean was

higher for the Atomic Rules approach, it is possible that testers with more experience could find the Atomic

Rules representation of EP easier to use than less experienced testers. However, as these EP results were not

within the significance range, they cannot be considered to be conclusive.

Table 6-22: Coverage achieved during Atomic Rules testing, by experience in years.

Method N # Years Experience Mean (%) Std Dev t-test Cohen’s Effect Size

EP
6 Less than 2 years 10.08 6.72

t(9) = -1.77, p = .06 strong
5 2 to 10 years 18.47 9.02

BVA
6 Less than 2 years 7.51 4.54

t(9) = -.77, p = .23 N/A
5 2 to 10 years 10.77 9.14

ST
6 Less than 2 years 7.98 11.67

t(9) = -.46, p = .32 N/A
5 2 to 10 years 10.86 8.59

The mean EP, BVA and ST coverage was also compared by current role in testing. There were five Test

Leads and five Testers. No significant difference was found during PNTP testing (Table 6-23) or Atomic

Rules (Table 6-24) testing, suggesting that a tester’s role does not affect their ability to derive test cases

with either Exploratory Testing or the Atomic Rules approach. One participant, who was not working as a

test lead or a tester, has been excluded from this comparison as this would have uniquely identified them,

which was against rules agreed with the La Trobe University human ethics committee.

Table 6-23: Comparison of coverage achieved during PNTP testing by current testing role.

Method N Job Position Mean (%) Std Dev t-test Cohen’s Effect Size

EP
5 Test Lead 12.09 4.36

t(8) = -.894, p = .19 N/A
5 Tester 14.25 3.20

BVA
5 Test Lead 2.36 1.24

t(8) = -1.67, p = .07 N/A
5 Tester 4.03 1.85

ST
5 Test Lead 1.68 .80

t(8) = -.83, p = .21 N/A
5 Tester 2.10 .80

Table 6-24: Comparison of coverage achieved during Atomic Rules testing by current testing role.

Method N Job Position Mean (%) Std Dev t-test Cohen’s Effect Size

EP
5 Test Lead 12.09 4.36

t(8) = .269, p = .39 N/A
5 Tester 14.25 3.20

BVA
5 Test Lead 10.10 9.21

t(8) = .80, p = .22 N/A
5 Tester 6.57 3.46

ST
5 Test Lead 5.67 5.02

t(8) = -1.33, p = .10 N/A
5 Tester 14.06 13.09

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 227

6.3.4 Failure-Detection Effectiveness (H02/H12)

An alternate approach to assessing the effectiveness of a test case design method is by the proportion of

faults detectable by the method (Reid et al. 1999), as follows.

Fault detection effectiveness =
number faults detected

X 100 (6.1)
total number of faults

Since one fault can cause more than one failure and as this formula requires knowledge of the total

number of faults within a program, which might only be known once the program has been operating in

production for some time (Reid et al. 1999), this measure can be inaccurate when assessing black-box test

method effectiveness. Since the Address Parser and Batch Processor were not developed for use in industry,

the total number of faults cannot be determined. Thus, an alternate approach is to calculate failure-detection

effectiveness for known program failures, as follows.

Failure-detection effectiveness =
number failures detected

X 100 (6.2)
total number of failures

To identify the total number of known failures in the Address Parser and Batch Processor, every Atomic

Rule from EP, BVA and ST was applied to all applicable input fields by the author of this thesis. ‘One-to-

one’ test cases were derived by applying Atomic Rules EP14 and EP15, resulting in 1,351 test cases for the

Address Parser and 565 for the Batch Processor; a grand total of 1,916 test cases (see Section 6.3.3.1) (in a

one-to-one test case, each test data value is covered by exactly one test case (BS 7925-2)). The Address

Parser required more than twice the number of tests as the Batch Processor because it had more input fields

and each field contained more alternate values. Twenty-seven unique failures were identified in the Address

Parser and twenty-four in the Batch Processor (see Appendices D and E).

As observed by Dijkstra (and stated in the introduction), “Program testing can be used to show the

presence of bugs, but never to show their absence!” (Dijkstra 1969). Accordingly, it may be possible that

latent faults exist in the two programs that were not detected as part of this testing, and as such, are not

considered in the total number of known failures. On the other hand, given the rigour of the Atomic Rules

approach, the author is confident that these figures are reflective of the total number of failures in the two

programs. Nonetheless, an interesting question for future research is whether the Atomic Rules approach is

‘complete’ in the sense that it can detect the majority of input/output validation errors in any program.

6.3.4.1 ‘Ultimate’ Failure-Detection Effectiveness

Once the total number of known failures was identified, the ‘ultimate’ failure-detection effectiveness of

EP, BVA and ST could be calculated (using equation 6.2), by analysing the percent of program failures that

were detectable when every single test selection rule from all three methods is applied to every possible

input field (Table 6-25) (this test design and execution was carried out by the author). Surprisingly, the

Atomic Rules representation of EP was capable of detecting 93% of the known program failures in the

Address Parser, but only 54% of failures in the Batch Processor. BVA was detecting 67% of failures in the

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 228

Address Parser and 58% in the Batch Processor. ST was equally effective against both programs, detecting

67% of known failures in each program. In future work, it would be interesting to determine whether

programs that utilise certain function libraries or have specific design styles (e.g. object oriented or

functional) benefit from the application of a particular black-box testing method.

Table 6-25: ‘Ultimate’ failure-detection effectiveness of EP, BVA and ST when the methods are
applied completely to the Address Parser and Batch Processor.

Program
Input
Fields

Known
Failures

Test
Method

Tests
Derived

Failures Detected Failure-detection
effectiveness (Percent %) # %

Address
Parser

42 27

EP 420 25 93% 93%

BVA 231 18 67% 67%

ST 700 18 67% 67%

Batch
Processor

20 24

EP 161 13 54% 54%

BVA 109 14 58% 58%

ST 295 16 67% 67%

All known failures were detected by applying all Atomic Rules from EP, BVA or ST, with the exception

of one failure in the Batch Processor (Appendix E, Failure 24), which was detected by a participant who

applied ST14 in a technically incorrect but effective way. ST14 selects a test data value containing all values

from a list in the opposite order to which they are specified. For example, if it is applied to the

UNIT/FLAT/RSD field of the Address Parser, it would select the invalid test data value RSDUNITFLAT.

One participant applied this rule to the recordline field of the Batch Processor to reverse the order of the

partid and value fields, resulting in invalid test data 50 A11A. The definition of ST in the British Computer

Society’s Component Testing Standard includes a ST rule that substitutes one field for another (BS 7925:2).

This rule that was accidentally left out of the set of Atomic Rules presented to the participants. A new

Atomic Rule for this has been defined (see ST19 in Appendix B).

6.3.4.2 Mean Failure-detection effectiveness

Once all known failures were identified, the failure-detection effectiveness of tests derived by the

participants could be compared for PNTP and Atomic Rules testing (Table 6-26). A significant difference

was found, where the mean was higher for Atomic Rules testing (10% more failures were detected on

average). This suggests that the Atomic Rules approach enables testers to detect more failures than

Exploratory Testing (since that approach was used by the participants during the PNTP testing phase).

Table 6-26: Comparison of the failure-detection effectiveness achieved by the participants.

N Program
Mean Failure-detection

effectiveness (Percent %)
Std
Dev t-test

Cohen’s
Effect Size

11 PNTP 25 10
t(10) = -1.85, p < .05 moderate

11 Atomic Rules 35 12

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 229

6.3.4.3 Affects of Application Domain Knowledge on Failure-detection effectiveness

After the experiment was complete, the participants explained that they were more familiar with the

logical concept of the Address Parser, as it was based on concepts they use in real life, and because they

tested address-based inputs on a regular basis in their current jobs. They explained that address correctness

was critically important to their organisation, since their customers not only relied on postal

communication, they also often demanded high levels of accuracy in their addresses (e.g. in one case, a

disgruntled customer wrote a letter to a state government minister to complain about the misplacement of a

comma in their postal address). Conversely, the participants stated that the Batch Processor was much more

‘abstract,’ as it was not based on concepts they were familiar with.

Thus, to determine whether differences in the “application solution domain knowledge” (Reed 1990) in

the programs under test affected the participant’s ability to detect failures in them, the mean percentage of

failures detected with each testing approach was compared by the program tested (Table 6-27). A

significant difference was found during the PNTP testing phase, where the mean was higher for the Address

Parser. Conversely, a significant difference was not found during Atomic Rules testing.

Table 6-27: Comparison of failure-detection effectiveness achieved against each program.

Testing
Approach N Program Tested

Mean failure-detection
effectiveness (Percent %)

Std
Dev t-test

Cohen’s
Effect Size

PNTP
5 Address Parser 34 4

t(9) = 5.16, p .001 Strong
6 Batch Processor 18 6

Atomic
Rules

6 Address Parser 30 8
t(9) = -1.28, p = .11 N/A

5 Batch Processor 40 15

Likewise, when the mean percentage of failures detected in each program were compared by the testing

approach used to detect the failures (Table 6-28), no significant difference was found for the Address

Parser, whereas a significant difference was found for the Batch Processor, where the mean was higher

during Atomic Rules testing and where Cohen’s effect size was strong.

Table 6-28: Alternate comparison of failure-detection effectiveness achieved against each program.

Program
Tested N

Testing
Approach

Mean failure-detection
effectiveness (Percent %)

Std
Dev t-test

Cohen’s
Effect Size

Address
Parser

5 PNTP 34 4
t(9) = .41, p = 0.2 N/A

6 Atomic Rules 30 6

Batch
Processor

6 PNTP 18 8
t(9) = 3.02, p < .05 Strong

5 Atomic Rules 40 15

These results suggest that in order to test a program effectively (i.e. to detect failures), testers either need

application solution domain knowledge in the program (if they are conducting Exploratory Testing) or they

need to use a prescriptive black-box testing method to ensure that their test case design is rigorous.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 230

6.3.4.4 Individual Failure-detection effectiveness

The failure-detection effectiveness achieved by each participant was also analysed (Table 6-29, Figure

6-10, Figure 6-11 and Figure 6-12). Participants in Group 1, who tested the Address Parser using their

PNTP testing approach and the Batch Processor using the Atomic Rules approach, detected roughly the

same number of failures during both phases of testing (Figure 6-10). Conversely, testers in Group 2 who

tested the Batch Processor during PNTP testing and the Address Parser during Atomic Rules testing

dramatically increased their failure-detection effectiveness during Atomic Rules testing (Figure 6-11). This

strengthens the theory that testers either need application solution domain knowledge in the program under

test or a prescriptive testing method to be effective. Furthermore, testers with both can be even more

effective.

Table 6-29: Failure-detection effectiveness of each participant.

Group # Participant # Approach
Program
Tested

Failure-detection
effectiveness

Count Percent

1

1
PNTP Address Parser 10 37

Atomic Rules Batch Processor 6 25

2
PNTP Address Parser 9 33

Atomic Rules Batch Processor 8 33

3
PNTP Address Parser 10 37

Atomic Rules Batch Processor 5 21

4
PNTP Address Parser 10 37

Atomic Rules Batch Processor 10 42

5
PNTP Address Parser 7 26

Atomic Rules Batch Processor 7 29

2

6
PNTP Batch Processor 2 8

Atomic Rules Address Parser 8 30

7
PNTP Batch Processor 4 17

Atomic Rules Address Parser 8 30

8
PNTP Batch Processor 4 17

Atomic Rules Address Parser 18 67

9
PNTP Batch Processor 6 25

Atomic Rules Address Parser 9 33

10
PNTP Batch Processor 5 21

Atomic Rules Address Parser 13 48

11
PNTP Batch Processor 4 17

Atomic Rules Address Parser 8 30

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 231

Figure 6-10: Failure-detection effectiveness achieved by participants in Group 1.

Failure Detection Effectiveness - Group 1

0

10

20

30

40

50

60

70

80

PNTP - Address Parser Atomic Rules - Batch Processor

Test Approach - Program

%
 F

ai
lu

re
s

D
et

ec
te

d

P1

P2

P3

P4

P5

Figure 6-11: Failure-detection effectiveness achieved by participants in Group 2.

Failure Detection Effectiveness - Group 2

0

10

20

30

40

50

60

70

80

PNTP - Batch Processor Atomic Rules - Address Parser

Test Approach - Program

%
 F

ai
lu

re
s

D
et

ec
te

d P6

P7

P8

P9

P10

P11

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 232

Figure 6-12: The failure-detection effectiveness achieved by each participant.

Failure Detection Effectiveness of each Participant

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 11

Participant Number

P
er

ce
n

tg
e

o
f

F
ai

lu
re

s
D

et
ec

te
d

Practitioner Normal Testing Practice Atomic Rules Approach

6.3.4.5 Affects of Experience on Failure-detection effectiveness

To determine whether prior testing experience affected failure-detection effectiveness, these results

where compared using two factors: number of years of testing experience and current role in testing.

No significant difference was found when failure-detection effectiveness was compared by number of

years of testing experience (Table 6-30). This suggests that the duration of time spent working in the

software testing industry alone does not affect a tester’s ability to detect failures, whether they use

Exploratory Testing or a prescriptive testing method.

Table 6-30: Comparison of failure-detection effectiveness by tester experience in years.

Approach N
Years

Experience Mean (%)
Std
Dev t-test

Cohen’s
Effect Size

PNTP
6 Less than 2 years 22 10

t(9) = -.97, p = .18 N/A
5 2 to 10 years 28 10

Atomic Rules
6 Less than 2 years 35 8

t(9) = .01, p = .49 N/A
5 2 to 10 years 35 18

On the other hand, a significant difference was found in the failure-detection effectiveness achieved

during the PNTP testing phase, where the mean was higher for those who were currently working as Testers

(Table 6-31). This suggests that a person’s role in testing has more impact on their failure-defection

effectiveness than the length of time they have spent working in the software testing industry. This could be

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 233

because Testers would likely have more recent experience in test writing, whereas Test Leads would have

more experience in the strategising, planning and managing of testing. Furthermore, no significant

difference was found during Atomic Rules testing, suggesting that learning the Atomic Rules approach

could fill the knowledge gap for Test Leads who are not currently involved in test design, allowing them to

become as effective at detecting program failures as the Testers in their team.

Table 6-31: Comparison of failure-detection effectiveness by current role in testing.

Approach N Job Position Mean (%) Std Dev t-test
Cohen’s

Effect Size

PNTP
5 Test Lead 0.19 .09 t(8) = -1.97, p <

.05
strong

5 Tester 0.30 .09

Atomic Rules
5 Test Lead 0.41 .16 t(8) = 1.42, p =

.10
N/A

5 Tester 0.30 .08

6.3.4.6 Failure-Detection Effectiveness of Individual Atomic Rules

To identify whether particular Atomic Rules had a better chance of detecting failures than others, the

‘ultimate’ failures-detection effectiveness of Atomic Rules from EP (Table 6-32, Figure 6-13), BVA (Table

6-33, Figure 6-14) and ST (Table 6-34, Figure 6-15) was examined. Only DSSRs, DISRs and DIMRs were

included in this analysis, since TCCRs cannot be analysed in isolation, because they are reliant on the other

three rule types.

Atomic Rules from EP with the highest failure-detection effectiveness were EP1 (select partition below

lower boundary), detecting 70% of Address Parser failures and EP11 (replace field with null), detecting

48% of Address Parser failures (Table 6-32). Invalid datatypes selection rules EP4 to EP10 were

moderately effective against the Address Parser, detecting 11% to 30% of failures. Conversely, invalid

datatype selection rules EP4 to EP10 were less effective against the Batch Processor, detecting only 4% of

failures. This indicates that the Address Parser suffered from more faults that were related to invalid

datatypes not being rejected correctly by the program than the Batch Processor.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 234

Table 6-32: Failure-detection effectiveness of Atomic Rules from Equivalence Partitioning
(tabular view).

Atomic Rule

Failure-Detection Effectiveness (Percent %)

Address Parser Batch Processor

EP1 70 50

EP2 30 13

EP3 19 4

EP4 19 4

EP5 26 4

EP6 26 4

EP7 26 4

EP8 11 4

EP9 30 4

EP10 15 4

EP11 48 46

EP12 30 4

EP13 7 0

Figure 6-13: Failure-detection effectiveness of Atomic Rules from Equivalence Partitioning
(graphical view).

Failure Detection Effectiveness of Atomic Rules from
Equivalence Partitioning

0%

10%

20%

30%

40%

50%

60%

70%

80%

E
P

1

E
P

2

E
P

3

E
P

4

E
P

5

E
P

6

E
P

7

E
P

8

E
P

9

E
P

1
0

E
P

1
1

E
P

1
2

E
P

1
3

Atomic Rule

F
a

ilu
re

 D
e

te
c

ti
o

n
 E

ff
e

c
ti

v
e

n
e

s
s

Address Parser Batch Processor

The most effective BVA test design rule was BVA9 (replace field with null), detecting 48% of Address

Parser failures and 50% of Batch Processor failures (Table 6-33, Figure 6-14). This is followed by BVA1

(select value below lower boundary), which detected 33% of Address Parser failures but only 8% of Batch

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 235

Processor failures. Other BVA rules were only mildly effective, detecting 4% and 22% of failures in the

two programs, indicating that they did not suffer from many boundary-related faults.

Table 6-33: Failure-detection effectiveness of Atomic Rules from Boundary Value Analysis
(tabular view).

Atomic Rule

Failure-detection effectiveness (Percent %)

Address Parser Batch Processor

BVA1 33% 8%

BVA2 4% 13%

BVA3 22% 13%

BVA4 11% 17%

BVA5 7% 8%

BVA6 22% 17%

BVA7 4% 13%

BVA8 7% 8%

BVA9 48% 50%

Figure 6-14: Failure-detection effectiveness of Atomic Rules from Boundary Value Analysis
(graphical view).

Failure Detection Effectiveness of Atomic Rules from
Boundary Value Analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

B
V

A
1

B
V

A
2

B
V

A
3

B
V

A
4

B
V

A
5

B
V

A
6

B
V

A
7

B
V

A
8

B
V

A
9

Atomic Rule

F
a

ilu
re

 D
e

te
c

ti
o

n
 E

ff
e

c
ti

v
e

n
e

s
s

Address Parser Batch Processor

The most effective ST rule was ST1 (remove last character of keyword), detecting 63% of Address

Parser failures (Table 6-34, Figure 6-15). The next most effective rules against this program were ST3 (add

extra character to keyword), detecting 37% of failures, ST6 (remove first character of keyword) detecting

33% of failures and ST5 and ST2 (replace first and last characters of keywords) detecting 30% each. Given

the effectiveness of these rules against the Address Parser, which consisted largely of keyword-based fields,

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 236

this suggests that Atomic Rules that add or remove characters from keywords are more effective for testing

programs whose input consists of keywords of a very specific format.

The most effective ST rule against the Batch Processor was also ST1, detecting 58% of failures,

followed by ST11 (add a field) detecting 29% of failures, ST4 (remove first character of keyword) detecting

25% of failures and ST10 (duplicate field) detecting 21% of failures. This was not surprising, since this

program predominantly suffered from faults related to additional invalid input fields not being detected.

The most ineffective ST rule was ST9 (null all input), detecting no failures. This is not surprising, since

it derives only one test case and, consequently, one failure at most can be detected by that rule. ST7 and ST8

(change case of alphabetical letters) were also ineffective, indicating that the programs handled these types

of inputs well. Other ST rules that were ineffective against the Batch Processor were ST12, ST13 and ST14,

which test list-based fields. This is also not surprising since this program consists of few list-based input

fields, whereas the Address Parser processed many different list-based inputs. Accordingly, programs with

list-based input fields would benefit from being tested with these Atomic Rules.

Table 6-34: Failure-detection effectiveness of Atomic Rules from Syntax Testing (tabular view).

Atomic Rule

Failure-detection effectiveness (Percent %)

Address Parser Batch Processor

ST1 63 58

ST2 30 13

ST3 37 13

ST4 26 25

ST5 30 13

ST6 33 13

ST7 4 8

ST8 4 0

ST9 0 0

ST10 30 21

ST11 19 29

ST12 26 8

ST13 11 4

ST14 22 4

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 237

Figure 6-15: Failure-detection effectiveness of Atomic Rules from Syntax Testing (graphical view).

Failure Detection Effectiveness of Atomic Rules from
Syntax Testing

0%

10%

20%

30%

40%

50%

60%

70%

80%

S
T

1

S
T

2

S
T

3

S
T

4

S
T

5

S
T

6

S
T

7

S
T

8

S
T

9

S
T

1
0

S
T

1
1

S
T

1
2

S
T

1
3

S
T

1
4

Atomic Rules

F
ai

lu
re

 D
e

te
c

ti
o

n
 E

ff
e

c
tiv

e
n

es
s

Address Parser Batch Processor

6.3.4.7 Detection of Seeded Faults

Two faults were intentionally seeded into the Address Parser by an independent professional tester who

was not directly involved with the experiment, to ensure the program contained from some ‘interesting’

faults. The experiment’s subjects and the author were not aware of which faults had been seeded until after

the experiment was complete. The seeded faults were as follows:

 ‘Fault A’ caused the program to reject the valid suburb/postcode pair ‘Ivanhoe East 3079’ (see

Appendix D, Fault 7); and

 ‘Fault B’ allowed the program to accept a forward slash or hyphen in place of the period ‘.’ at

the end of the address (see Appendix D, Failure 6) (these characters sit either side of the period

in the ASCII table).

Both faults were detectable with Atomic Rules from EP, BVA and ST, if the methods were applied

‘completely’ (i.e. applying all Atomic Rules from each method to all applicable input fields).

Interestingly, Fault A was detected by four participants during the PNTP testing phase and by two

during Atomic Rules testing. Fault B was not detected by any participants during either phase of testing. If

the participants had applied EP, BVA and ST ‘completely’ during Atomic Rules testing, they would have

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 238

detected both seeded faults. There are at least three reasons for why they did not apply the Atomic Rules

approach in this way:

1. they did not have enough time;

2. they did not understand how to apply the rules in this way; or

3. they purposely omitted applying the rules that would have detected the faults as they did not

think they would have detected any faults.

Although data collected during the experiment does not allow the experimenter to determine which

option is true, it does show that these faults were detectable by the Atomic Rules approach.

Seeded faults were not added to the Batch Processor, as both the author and the independent

professional tester who carried out the fault seeding felt that that program already contained enough

input/output validation errors that were detectable by EP, BVA and ST.

6.3.5 Efficiency (H03/H13)

Efficiency can be evaluated as tester ‘productivity’ in terms of the number of equivalence classes,

boundary values and syntax testing test data values that are derived correctly by a tester over the total time

taken (Section 6.3.5.1). The testers were also questioned as to whether they felt they had enough time to

complete the testing that was assigned to them (Section 6.3.5.2).

6.3.5.1 Productivity

Productivity was assessed by comparing the total number of correct test data values derived by the

testers during the 3.5 hours of each testing phase (Table 6-35). Although a t-test indicated a non-significant

result, it was just outside the 95% confidence interval, Cohen’s effect size was moderate and the mean was

higher during Atomic Rules testing. Therefore, it is plausible that testers could be more productive when

using the Atomic Rules approach to derive black-box test data.

Table 6-35: Mean productivity.

N Approach
Mean Number Test Data Values

Derived per Hour (EP, BVA & ST) Std Dev t-test
Cohen’s

Effect Size

11 PNTP 13.01 7.33
t(10) = -1.66, p = .06 Moderate

11 Atomic Rules 19.74 10.9

6.3.5.2 Enough Time for Testing

On the Post-Testing Questionnaire the participants were asked whether they had enough time to

complete testing (Table 6-36), to which 45% replied ‘no’ for PNTP and Atomic Rules Testing. This is

likely to have contributed towards the relatively low percentage of black-box test method coverage that was

achieved during both phases of testing (Section 6.3.3.1).

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 239

Table 6-36: Opinions from participants as to whether they felt they had enough time for testing.

Enough time
for testing?

PNTP Atomic Rules

Count Percent Count Percent

No 5 45 5 45

Yes 4 36 4 36

Undecided 2 18 1 9

Missing 0 0 1 9

Participants commented on their response to this question after PNTP (Table 6-37) and Atomic Rules

testing (Table 6-38). Five participants (46%) reported that in future, they would like to use a matrix to track

test cases executed against each field, such as Test Matrices (see Chapter 2, Section 2.2.6). A Test Matrix

was used by the author during data analysis to determine which participants had applied each Atomic Rule

to each individual input field. When teaching the Atomic Rules approach in future, a simple improvement

could be to demonstrate how Test Matrices can be used to plan and track test coverage.

Table 6-37: Participant feedback on the time allocated for the PNTP testing phase.

Feedback: Do you feel you had enough time for testing?

Base on limited knowledge - yes.

But considering what I have stated above I would not have signed off on this product with the time
constraints and ambiguity of the spec.

As above - gave the testing scope a good cover.

Needed time to plan. To set goals. Identify what needed to be tested, what could be tested together and
what needed to be separated.

Confident that testing was reasonably comprehensive. Discovered many defects.

I was only able to write three negative tests.

I would have preferred a bit more time to check the Data Analyst output to ensure all entries added up
correctly. I probably should have done this earlier but I was focussing more batchid + recordline data +
determining what accepted + rejected.

I would say yes and no as with more tests comes more confidence.

Having not previously been exposed to test writing I would have preferred more time to plan a more
structured approach.

I answered both yes and no. Reason, with the small scope of the application it was easy to thoroughly
investigate some areas. However if in a real testing environment I would have preferred to establish a test
matrix to ensure all areas of functionality were covered.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 240

Table 6-38: Participant feedback on the time allocated for the Atomic Rules testing phase.

Feedback: Do you feel you had enough time for testing?

Day 2 [AR] approach somewhat needs investigation and analytical skills to produce a good test case and
test writing.

This program would take quite a while to get to the stage where I would be happy to sign off on it.

I think I got a grasp on the above - you will be able to tell me if I did but it was very tiring and I was ready
to stop.

It took longer than yesterday. I spent a lot of time on the minute detail and feel I still could have missed
issues. I felt some concepts were too abstract for me to pick up immediately. It took a while.

Time seemed adequate - someone with more/better understanding may or may not agree.

I think I nearly achieved full coverage, a few more hours would have helped.

Sufficient time allowed.

Again yes & no. Able to structure tests but did not able to write them.

Need to become more familiar with it.

Due to limited time I was unable to write test cases for flat, unit RSD, country & C/o addresses. However, I
do feel this was more structured approach to yesterday’s “feeble” attempts!

Much better than yesterday.

6.3.6 Errors Made (Effectiveness – Accuracy) (H04/H14)

The number of mistakes made by the testers during PNTP and Atomic Rules testing was analysed, to

assess the ‘accuracy’ of their testing. There was no significant difference between the errors made during

PNTP or Atomic Rules testing (Table 6-39), suggesting that there is no difference in the accuracy of test

cases produced during Exploratory Testing or prescriptive testing.

Table 6-39: Errors made during testing (effectiveness – accuracy) (H04/H14).

N Approach Mean Rank
Sum of
Ranks Mann-Whitney U

11 PNTP 1.91 103.5
U = 321.92, p = .07

11 Atomic Rules 2.91 149.5

The most common mistakes made during PNTP testing were missing white spaces in test cases (e.g. 100

Main Rd Eltham 3095) (27%) and incorrect alphabetical case (e.g. ‘Flat’ instead of ‘FLAT’) (27%) (Table

6-40). While these mistakes resulted in ‘interesting’ test cases, they also caused the testers to write incorrect

expected results and to ultimately produce ‘false negatives’ during testing (i.e. testers raising defect reports

for functions that contained no defects).

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 241

Table 6-40: Mistakes made during PNTP testing.

Mistake Count Percent

Missing space 3 27

Incorrect case for alpha character 3 27

Extra spaces 2 18

Extra field added 2 18

Spelling mistake 1 9

Missing symbol / 1 9

Missing keyword 1 9

Missing full stop 1 9

Incorrect boundary value selected 1 9

The majority of mistakes made during Atomic Rules testing were due to misunderstandings Atomic

Rule names (Table 6-41). For example, 73% misunderstood how to use EP ‘replacement’ rules EP4 to

EP10. The aim of these rules is to replace valid input fields with invalid datatypes, such as applying EP4:

Integer Replacement to the <street_type> field of the Address Parser, to select the invalid test case 100

Main 1000 Greensborough 3088. A number of participants used EP4 to replace integer fields with other

datatypes, such as replacing <postcode> with alpha characters, selecting the invalid test case 100 Main

Road Greensborough ABCD. A similar mistake was made by 45% of the group who used ST9 to select null

in one test case field, while the purpose of ST9 is to select null in all fields. Another mistake made by 36%

of the group was using ST7 to convert alpha characters from lowercase to uppercase, when ST8 should be

used for this purpose and visa versa.

Nevertheless, each mistake resulted in a useful test case that was in the ‘spirit’ of black-box testing.

Future research will include reducing the ambiguity of these Atomic Rules (Chapter 7). In addition, the

misuse of one rule, ST14, resulted in the definition of a new Atomic Rule (see Section 6.3.10).

Table 6-41: Mistakes made during Atomic Rules testing.

Mistake Count Percent

Misuse of EP replacement rule 8 73

Used ST9 instead of EP11 5 45

Applied TCCR at field level 4 36

Used ST8 instead of ST7 & visa versa 4 36

Used EP rule instead of ST rule 3 27

Used wrong EP rule number 2 18

Incorrect boundary value selected 2 18

Used ST14 to reverse fields of test case 2 18

Used BVA rule instead of EP rule 1 9

Used BVA rule instead of ST rule 1 9

Used EP12 to select invalid data 1 9

Used EP7 and EP8 together 1 9

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 242

6.3.7 Understandability (H05/H15)

As discussed in Chapter 1 (Section 1.2.1), three approaches to assessing the understandability of a test

case design method are by evaluating whether a tester understands the conditions under which the method

should be applied (Section 6.3.7.1), by examining their ability to apply the method correctly (measured by

effectiveness, see Section 6.3.3) and by assessing their self-rated understanding of EP, BVA and ST

(Section 6.3.7.2) and of the Atomic Rules approach (Section 6.3.7.3) and their ability to apply the four-step

test case design process correctly (Section 6.3.7.4).

6.3.7.1 Conditions for Test Method Application

Other researchers have examined whether testers understand the conditions under which one test method

should be used over another (e.g. see (Vegas et al. 2003)), as this can be indicative of their level of skill in

testing. During Atomic Rules testing, the participants were specifically instructed to use EP, BVA and ST;

therefore, they were not given the option of deciding which test methods were applicable.

On the other hand, during the PNTP testing phase the participants could have chosen to use any black-

box testing method they felt was appropriate. Interestingly, they did not use any prescriptive testing

methods for PNTP test case design. The reasons for this could include the following:

a) they did not believe that prescriptive testing methods should be applied during PNTP testing;

b) they did not recognise the need for applying any prescriptive testing methods; or

c) they felt there was not enough time to use prescriptive test methods during that phase of testing.

Although the participants were asked (on the Post-PNTP Testing Questionnaire) to describe the

approach they took to PNTP testing (see Section 6.3.2), they were not asked why they did (or did not) use

any prescriptive testing methods during that phase of testing. Therefore, a conclusion cannot be drawn as to

whether they understood the conditions under which each black-box testing method should be applied.

6.3.7.2 Understanding of Black-Box Testing Methods

On the Reflect and Review Questionnaire, the participants were asked to rate their initial and final

understanding of EP, BVA and ST using a Likert scale of: 1 = novice, 2 = intermediate, 3 = advanced, 4 =

expert (Table 6-42 and Figure 6-16). Most felt they had increased their understanding of these methods by

the end of the experiment. They also achieved higher mean coverage of BVA and ST during Atomic Rules

testing (see Section 6.3.3). This suggests that the Atomic Rules approach is an effective representation for

teaching black-box testing methods to testers in industry.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 243

Table 6-42: Self-rated understanding black-box testing methods before and after the experiment
(choose one rating for each method).

Rating

Understanding of Black-Box Testing Methods

Initial Final

EP BVA ST EP BVA ST

Percentages (%)

Novice 81 72 81 27 18 27

Intermediate 18 18 18 46 36 46

Advanced 0 9 0 27 46 27

Expert 0 0 0 0 0 0

Figure 6-16: Self-rated understanding of black-box testing methods before and after the experiment.

Understanding of Black-Box Testing Techniques

9

8

9

3

2

3

2

2

2

5

4

5

0

1

0

3

5

3

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 9 10 11

EP Initial

BVA Initial

ST Initial

EP Final

BVA Final

ST Final

Number of Testers

Novice Intermediate Advanced Expert

Marginal Homogeneity (Table 6-43) and Crosstabulation tests for EP (Table 6-44), BVA (Table 6-45)

and ST (Table 6-46) indicated significant differences, where understanding ratings were higher for all test

methods after learning the Atomic Rules approach. These results indicate that learning the Atomic Rules

approach improves a tester’s understanding of black-box testing methods.

Table 6-43: Comparison of initial and final understanding of EP, BA and ST.

 Initial and Final Understanding

BVA EP ST

Distinct Values 3 3 3

Off-Diagonal Cases 8 8 8

Observed MH Statistic 10 10 10

Significance p < .01 p < .01 p < .01

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 244

Table 6-44: Crosstabulation of initial and final understanding for Equivalence Partitioning.

Count
EP – Final Understanding

Total Novice Intermediate Advanced

EP – Initial
Understanding

Novice 3 5 1 9

Intermediate 0 0 2 2

Total 3 5 3 11

Table 6-45: Crosstabulation of initial and final understanding for Boundary Value Analysis.

Count
BVA – Final Understanding

Total Novice Intermediate Advanced

BVA – Initial
Understanding

Novice 2 4 2 8

Intermediate 0 0 2 2

Advanced 0 0 1 1

Total 2 4 5 11

Table 6-46: Crosstabulation of initial and final understanding for Syntax Testing.

Count
ST – Final Understanding

Total Novice Intermediate Advanced

ST – Initial
Understanding

Novice 3 5 1 9

Intermediate 0 0 2 2

Total 3 5 3 11

Interestingly, a comparison of the group’s self-rated understanding of these methods in the Initial

Questionnaire (Table 6-47, col. 2 to 4) and the Reflect and Review Questionnaire (Table 6-47, col. 5 to 7)

revealed that more participants felt they were initially at an ‘intermediate’ level of experience with EP and

BVA before the experiment than at the end. This suggests some participants had ‘unconscious

incompetence’ (also known as the ‘Dunning–Kruger effect’ (Kruger & Dunning 1999)), in that they ‘did

not know what they did not know’ about the methods until after they learnt how to use them during the

Atomic Rules testing phase.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 245

Table 6-47: Comparison of self-rated understanding EP, BVA and ST between the Initial and the
Reflect and Review Questionnaires (choose one rating for each method).

Rating

Initial Understanding of Black-Box Testing Methods

Initial Questionnaire Reflect & Review Questionnaire

EP BVA ST EP BVA ST

Percentages (%)

Never heard of method 18 18 54 0 0 0

None 0 0 18 0 0 0

Novice 9 9 9 81 72 81

Intermediate 46 46 9 18 18 18

Advanced 27 27 9 0 9 0

Expert 0 0 0 0 0 0

Missing 0 0 0 0 0 0

6.3.7.3 Understanding of the Atomic Rules Approach

On the Reflect and Review Questionnaire, the testers rated their understanding of the Atomic Rules

approach, using a Likert scale of: 1 = excellent, 2 = very good, 3 = good, 4 = average, 5 = poor, 6 = very

poor (Table 6-48). All participants reported having an average, good or very good understanding.

Table 6-48: Participant’s self-rated understanding of the Atomic Rules approach (choose one).

Rating Count Percent

Average 6 55

Good 4 36

Very good 1 9

Excellent 0 0

Poor 0 0

Very poor 0 0

The participants were asked to comment on their answer (Table 6-49). Seven (64%) reported that having

more experience with the Atomic Rules approach (e.g. by using it at work) would enable them to gain a

better understanding of it. One participant stated that their previous job as a software developer had assisted

them in understanding the terminology and structure of the approach. This is an insightful view, since the

attributes Set Type, Original Datatype and Test Datatype that are used in the Atomic Rules schema are

based on similar concepts in software development. Thus, this suggests that software development

experience can assist with the understanding the Atomic Rules approach.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 246

Table 6-49: Participant feedback on their understanding of the Atomic Rules approach.

Feedback: Understanding of the Atomic Rules approach

2 days in not enough for me to fully understand.

As before I still need to get my head around some of the wording and meanings. If we used this wording at
work then of course it would make better sense.

Further training and practice will reinforce what I have learned.

Having developed previously the terminology was familiar and the structure is easily followed.

I feel I have gained a lot from this session.

I need more time to explore this method. On the surface it looks like a great tool to use.

I understand the concept and think it is very worthwhile but lack experience with testing.

If you go through all 3 checklists for each filed you couldn't miss anything in testing - it may get out of hand
though - number of tests - risk management may have to take over.

Only learnt this approach today!!

With more experience I expect that this rating would improve.

Would need more time to become familiar with it.

6.3.7.4 Understanding of the Four-Step Test Case Design Process

Interestingly, only one participant applied the Atomic Rules approach in the order prescribed in the four-

step test case design process, as follows:

1. Apply Data-Set Selection Rules to partition the input domain.

2. Apply Data-Item Selection Rules to each partition to select individual test data values.

3. Apply Data-Item Manipulation Rules to each test data value to select mutated test data values.

4. Apply Test Case Construction Rules to combine test data values into test cases.

After the experiment, it was realised that the Quick-Reference Guide used during Atomic Rules testing

only listed rule numbers and names, not the rule application order prescribed above. This may have caused

participants to disregard rule application order during testing. On the other hand, this may not be essential

for experienced testers, as they may understand and apply the rules without recording the intermediate step

of selecting equivalence classes before selecting and mutating individual test data values (e.g. this occurs

when competent mathematicians skip intermediate steps when solving algebraic equations).

Thus, while rule application order may be important when teaching the Atomic Rules approach to

novice testers, it might not be required when teaching the approach to experienced testers in industry.

6.3.8 Operability (H06/H16)

Operability of the Atomic Rules approach was assessed by examining three factors: the ease of use of

the approach (Section 6.3.8.1) and the advantages and disadvantage of using the approach, as reported by

participants (Section 6.3.8.2), as well as by asking them whether it was likely they would use the approach

in future (Section 6.3.8.3).

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 247

6.3.8.1 Ease of Use

One the Reflect and Review Questionnaire, the participants were asked how easy the Atomic Rules

approach was to use, using a Likert scale of: 1 = very easy to use, 2 = easy to use, 3 = difficult to use and 4

= very difficult to use (Table 6-50). It was encouraging to see that 82% found it ‘easy to use’ or ‘very easy

to use,’ suggesting that it is a practical representation for teaching black-box testing methods in industry.

On the other hand, since the testers did not have access to any other test method representations to use as a

basis for comparison, it is possible that their answer may differ if they had alternate representations to

consider (e.g. Myers’ definition of EP and BVA).

Table 6-50: Participant opinions on how easy the Atomic Rules approach is to use (choose one).

Rating Count Percent

Easy to use 8 73

Difficult to use 2 18

Very easy to use 1 9

Very difficult to use 0 0

6.3.8.2 Advantages and Disadvantages of Atomic Rules

On the Reflect and Review Questionnaire, the participants were asked what they felt were the biggest

advantages (Table 6-51) and disadvantages (Table 6-52) of the Atomic Rules approach. Almost half (46%)

felt it provided them with useful guidance on achieving ‘good’ program coverage. Other responses include

having universal test case design rules and terminology and having an effective black-box testing checklist.

Table 6-51: Opinions on the biggest advantage of the Atomic Rules approach.

Feedback: Advantages of the Atomic Rules approach

A formal checklist to follow.

As a checklist it would help you to discover if there were any rules that you may have omitted from your test
approach. I found that this helped me in that way.

Ease of use.

Ensuring good coverage.

Guidance & structure for coverage.

If have the time - thorough coverage.

It allows for a systematic approach which identifies core functionality.

Not too sure.

Scenarios are easy to adapt from the Atomic Rules. Quick Reference Guides.

Thorough coverage after rules defined which need to be tested.

Universal rules/terms.

Disadvantages that were reported include that the application of the Atomic Rules approach is “time

consuming” and that it requires “lots of prep work.” However, this is not surprising since prescriptive

black-box testing does require more time spent in test case design, whereas “freestyle” Exploratory Testing

(Copeland 2004) (which was performed during the PNTP testing phase) involves no preparatory steps. This

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 248

is one of the trade-offs between prescriptive and non-prescriptive testing. As one participant reported,

“although initial setup is more time consuming, a better overall result is achieved.”

Table 6-52: Opinions on the biggest disadvantage of the Atomic Rules approach.

Feedback: Disadvantages of the Atomic Rules approach

Don't really see any disadvantages.

It is a long process.

Lots of prep work.

N/A

Need to continually do it to become more familiar.

None. Although initial setup is more time consuming, a better overall result is achieved.

Not all tests have a rule that relates specifically. e.g. mismatched suburb/postcode.

Not so easy to put into practice without testing experience.

Time consuming to set up.

To determine when you have gained adequate test coverage & not go overboard on possible test case
scenarios.

We use different language and that is going to take a long time to change our system.

6.3.8.3 Use Atomic Rules in Future

On the Reflect and Review Questionnaire, participants were asked whether it was likely they would use

the Atomic Rules approach in future (Table 6-53). An equal number (45% each) felt it was either very

likely/somewhat likely and neither likely/unlikely that they would use Atomic Rules in future.

Table 6-53: Opinions on how likely it is they will use Atomic Rules in future (choose one).

Response Count Percent

Neither likely nor unlikely 5 45

Very likely 3 27

Somewhat likely 2 18

Somewhat unlikely 1 9

Very unlikely 0 0

The participants were asked to explain their answers. Seven (64%) said they would use Atomic Rules in

some capacity immediately or if the opportunity arose in future (Table 6-54). Of the participants who stated

that they would not use the approach in future (27%), two said it depends on their job position and if it

involves test case design.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 249

Table 6-54: Feedback on how likely it is that the participants will use Atomic Rules in future.

Feedback: How likely is it that you will use the Atomic Rules approach in future?

Again it is possible that I may use this approach. However will be of benefit for my team of testers to learn
this.

As stated earlier this is now a part of the approach I will use.

Depends on current position.

I'll use it Monday as I think it's excellent.

I am sure this information could be put to good use in [our organisation].

I will not be constructing test cases in the near future so again - not relevant.

I would use this approach if I was engaged as a tester in the future. I would endorse this approach to
testers.

If I get to write tests - somewhat likely. In [our organisation] we rarely get to write and test ourselves.

In [our organisation], we may occasionally use a matrix but most cases the tests are written in [a different
department of our organisation].

Most of our test writing is done in [a different department of our organisation]. I have been fortunate in being
able to write tests for the application. I will definitely take these rules back with me and keep them to check
against the next time I write tests.

The participants were also asked whether their participation in the experiment would impact on the way

they perform black-box testing in future (Table 6-55). Almost two thirds (73%) answered “yes.”

Table 6-55: Feedback on whether taking part in the experiment will impact how the participants
perform black-box testing in future.

Response Count Percent

Yes 8 73

No 1 9

Undecided 1 9

Missing 1 9

They were then asked to explain their answer (Table 6-56). One felt the skills they gained during the

experiment would enable them to do “better” testing, while another said that when they gave feedback to

the test writers in their organisation (i.e. Business Analysts), they would include examples of how Atomic

Rules could be applied to the applications under test.

These results suggest that learning the Atomic Rules approach can have a direct and positive impact on

the way organisations conduct black-box testing.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 250

Table 6-56: Participant comments on whether taking part in the experiment will impact on how they
carry out black-box testing in future.

Feedback: Will taking part in this experiment impact on how you perform black-box testing in future?

Become more aware of different programs.

I have greater understanding.

If there is one.

It will allow me to write better tests with better coverage.

Learnt a few interesting points that may change the way I execute tests in the future.

Lets me see how others approach testing.

Mostly we are prescribed as to how we test. BA's in [our organisation] write the tests and we follow the
instructions. Feedback to them on their tests will now include examples of the Atomic Rules applied.

New skills = better testing in future.

Not really as I don't test very often anymore. However, will assist for ideas for my team.

Only if I test.

Will go into maybe things like symbols etc - more creative in my testing.

6.3.9 Satisfaction (H07/H17)

Satisfaction was assessed by assessing how satisfied they were with the effectiveness of the test methods

they used during PNTP and Atomic Rules testing (Section 6.3.9.1) and their satisfaction towards

participating in the experiment (Section 6.3.9.2).

6.3.9.1 Satisfaction with the Testing Approaches

Satisfaction was assessed by asking the group to rate the effectiveness of PNTP and the Atomic Rules

approach, using a scale of: very effective, somewhat effective, somewhat ineffective or very ineffective

(Table 6-57). The majority reported that the approaches were ‘somewhat’ effective. This indicates that

testers in industry might not have a preference towards using their own ‘PNTP’ approach to testing over the

Atomic Rules approach. As a Likert scale was not used for this question, significance testing could not be

carried out. The results for this hypothesis are inconclusive.

Table 6-57: Effectiveness of the two testing approaches.

Rating PNTP (%) Atomic Rules (%)

Somewhat effective 64 55

Very Effective 9 27

Somewhat ineffective 18 9

Very ineffective 0 9

Missing 9 0

They were then asked to comment on these ratings (Table 6-58, Table 6-59). After the PNTP testing

phase, many participants felt unsure of the coverage or effectiveness of their test cases (Table 6-58).

Reasons that were reported include that the specification was ambiguous, their approach lacked test

planning and they lacked knowledge in testing.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 251

Table 6-58: Participant comments on the effectiveness of PNTP test case design.

Feedback: How effective do you feel your approach to testing was?

I am not sure of the effectiveness.

As it ways not made clear in the spec what/who was the end user and what it was used for – may well
have been able to cut tests or completely missed others.

I was stretching to think of any other avenues to test in 'Addresses.'

I am sure that I missed some aspects. Had I order and a plan I think the outcomes would have been
better. I put too many issues in the one test - it would have been better to separate them.

Ad hoc approach due to lack/level of knowledge of testing.

I do not think that I achieved enough coverage with this approach.

Being unsure of the product and being doubtful of abilities. Would hope that my approach was ok.

Learnt new things like terms, private industry.

I have not achieved adequate coverage & was not able to test several key functions of the program.

In the first case initial testing was slow due to generating the template to create the sequences. Once
complete, testing was increased to approximately 10 tests per hour due to easily being able to generate
and modify new data sets.

After Atomic Rules testing, some participants felt they achieved better coverage with Atomic Rules,

while others found the vocabulary confusing (Table 6-59). For example, one participant stated that “Due to

limited time I was unable to write test cases for flat, unit, RSD, country & C/o addresses. However, I do feel

this was a more structured approach to yesterday's ‘feeble’ attempts!”

Table 6-59: Participant comments on the effectiveness of Atomic Rules test case design.

Feedback: How effective do you feel your approach to testing was?

If you fully understand the concepts.

The programme had numerous bugs and it would have taken a lot of structured testing and maybe would
have been helped to have someone ad hoc as well.

I felt I had more control over the coverage of my tests yesterday doing it my way.

Terminology confusing. I got lost a few times with the terminology. I think this approach would work well
when work-shopped with a team prior to test writing.

My efforts at testing hampered by general lack of knowledge/experience in testing.

It allowed me to achieve excellent coverage.

I was quite comfortable with this approach.

Still a little unsure of ability and effectiveness.

May not be relevant to current position but gives me an idea of how BA's work.

Due to limited time I was unable to write test cases for flat, unit, RSD, country & C/o addresses. However,
I do feel this was a more structured approach to yesterday's "feeble" attempts!

It thoroughly covered a wide range of scenarios and was easy to ensure all tests were completed and
analysed for all fields.

On the Reflect and Review Questionnaire, participants were also asked whether they felt learning the

Atomic Rules approach enabled them to write more effective test cases, to which 55% agreed with this

statement (Table 6-60).

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 252

Table 6-60: Opinions on whether Atomic Rules enables the design of more effective test cases.

Response Count Percent

Yes 6 55

No 3 27

Undecided 1 9

Missing 1 9

The testers were asked to explain their responses (Table 6-61). Most expressed positive views towards

the Atomic Rules approach, suggesting that testers in industry would perceive the approach as effective for

use in industry.

Table 6-61: Feedback on whether Atomic Rules enables the design of more effective test cases.

Feedback: Does the Atomic Rules approach enable the design of more effective test cases?

Absolutely! I had no idea what I was doing yesterday & although I have probably drilled down into more
detail than required today I feel the rules helped a great deal.

I feel I am thorough with my old way of doing testing - cover all avenues.

I only wrote one as there was not enough time. It would be good to trail it at work with a knowledge base I
can use.

I think so and the Atomic Rules approach has more structure.

Much better coverage was achieved.

Not all parts were relevant to current work/industry.

Quite an easy to understand approach.

The concept was well explained and the application of the concept would be very helpful.

What it did was make an effective checklist from the list that I had already made by going through the
spec.

6.3.9.2 Satisfaction with Experiment Participation

On the Reflect and Review Questionnaire, participants were asked what they liked (Table 6-62) and

disliked (Table 6-63) the most about taking part in the experiment. While six testers (55%) said there was

nothing specific they disliked, two said they doubted their own testing abilities after the experiment. This

could be due to their abilities being analysed alongside that of their peers. In contrast, it was encouraging to

see 64% reporting that the aspect they liked most was they enjoyment of learning a new testing approach

(Table 6-62). While the survey sample is extremely small, we feel justified in remarking that testers in

industry seem to enjoy learning new approaches to testing.

Although subjective, this view is supported by the observations of the author during the teaching of

software testing training courses to industry professionals, including K. J. Ross & Associates’ Certified

Software Test Processional course. Having taught over fifteen industry-based software testing training

courses over the past three years, the author has seen very few students who did not enjoy the experience in

learning about black-box testing methods, even when students found that part of the course challenging.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 253

Table 6-62: Participant feedback on what they liked about participation in the experiment.

Feedback: What did you like the most about participating in this experiment?

Being challenged by experiencing something different.

Good group, great tutor, great food, break from work, gained new knowledge.

It was interesting and job specific.

Learning about testing.

Learning more to reinforce my knowledge of testing methodologies.

Learning new ways to test & test write cases. Friendly, helpful instructor.

Learnt valuable concepts to testing concepts. e.g. Atomic Rules.

Opened a new way to look at testing, i.e. formally having a checklist rather than an informal way.

Preparation.

The new perspective I gained on testing methodologies.

Was very interesting.

Table 6-63: Participant feedback on what they disliked about participation in the experiment.

Feedback: What did you dislike the most about participating in this experiment?

Feeling stupid!

I was happy with our progress over the 2 days. No dislikes.

No dislikes what so ever (got tired).

Not relevant to current position.

Nothing - enjoyed the experience.

Nothing - it was beneficial.

Nothing really - thanks Tafline.

Nothing.

Some concepts were a bit abstract for me. Took a while for the penny to drop.

Sometime I am not able to follow the instruction.

The unknown. Doubting of ones own ability.

6.3.10 Tester Motivation (H08/H18)

To determine whether ‘enthusiasm’ was a threat to experiment validity (see Section 6.2.5.1), on the

Initial and Post-Testing Questionnaires the testers rated their motivation levels using a Likert scale of: 1 =

not motivated at all, 2 = very unmotivated, 3 = somewhat unmotivated, 4 = somewhat motivated, 5 = very

motivated and 6 = exceptionally motivated (Table 6-64, Figure 6-17).

Although results indicate that motivation levels did change during the experiment, they followed a

similar trend and the majority of the group felt “very motivated” throughout. Since the participants did not

report feeling more motivated after using the Atomic Rules approach, enthusiasm did not appear to threaten

validity. On the contrary, a t-test revealed a significant difference in their motivation levels in the Post-

Testing Questionnaires, where the mean was higher after the PNTP testing phase than after Atomic Rules

testing (Table 6-65).

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 254

Table 6-64: Participant motivation levels during the experiment (choose one) (tabular view).

Response
Initial
(%)

After PNTP
Testing (%)

After Atomic Rules
Testing (%)

Very motivated 55 73 55

Somewhat motivated 0 18 27

Exceptionally motivated 18 9 0

Very unmotivated 9 0 18

Somewhat unmotivated 18 0 0

Not motivated at all 0 0 0

Figure 6-17: Participant motivation levels during the experiment (graphical view).

Participant Motivation

N
ot

 m
ot

iv
at

ed
 a

t a
ll

N
ot

 m
ot

iv
at

ed
 a

t a
ll

N
ot

 m
ot

iv
at

ed
 a

t a
ll

V
er

y
un

m
ot

iv
at

ed

V
er

y
un

m
ot

iv
at

ed

V
er

y
un

m
ot

iv
at

ed

S
om

ew
ha

t u
nm

ot
iv

at
ed

S
om

ew
ha

t u
nm

ot
iv

at
ed

S
om

ew
ha

t u
nm

ot
iv

at
ed

S
om

ew
ha

t m
ot

iv
at

ed

S
om

ew
ha

t m
ot

iv
at

ed

S
om

ew
ha

t m
ot

iv
at

edV
er

y
m

ot
iv

at
ed V
er

y
m

ot
iv

at
ed

V
er

y
m

ot
iv

at
ed

E
xc

ep
tio

na
lly

 m
ot

iv
at

ed

E
xc

ep
tio

na
lly

 m
ot

iv
at

ed

E
xc

ep
tio

na
lly

 m
ot

iv
at

ed

0

20

40

60

80

100

(%) (%) (%)

Initial Post-PNTP Post-Atomic Rules

Level of Motivation

P
e

rc
e

n
t

o
f

G
ro

u
p

Not motivated at all Very unmotivated Somewhat unmotivated

Somewhat motivated Very motivated Exceptionally motivated

Table 6-65: Comparison of test motivation levels after PNTP and Atomic Rules testing.

N Approach Mean (%) Std Dev t-test Cohen’s Effect Size

11 PNTP 4.9 .53
t(10) = 2.02, p < .05 moderate

11 Atomic Rules 4.1 1.1

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 255

The testers may have felt less motivated after Atomic Rules testing because they felt lethargic after

participating in a two-day experiment. On the other hand, they may have felt more motivated after PNTP

testing because they enjoyed Exploratory Testing (used during PNTP testing, see Section 6.3.2) more than

they enjoyed using prescriptive testing methods (used during Atomic Rules testing).

This view is supported by Reid (2007), who investigated the job satisfaction of nine different roles of

testing, including black-box test design, test execution and Exploratory Testing. Basing his research on

Hackman and Oldham’s Job Characteristics Model (1980), Reid proposed an equation for calculating the

Motivating Potential Score (MPS) for roles in testing, which was based on five attributes:

1. skill variety (V; range of skills required);

2. task identity (I; degree of completing a job);

3. task significance (S, importance of the job);

4. autonomy (A, level of control of own time); and

5. feedback (F, degree of supervisory and results-based feedback on performance)

From this, Reid developed the following equation (Reid 2007).

Reid subjectively assigned ratings to this equation from 1 (low) and 7 (high) for nine roles in testing

(Figure 6-18). Exploratory Testing achieved the highest MPS at just over 160, compared to only 60 for

black-box test design, suggesting that testers feel greater satisfaction when they are conducting Exploratory

Testing than when they are carrying out prescriptive black-box test case design and execution.

Thus, given that Exploratory Testing was used during the PNTP testing phase of this experiment (see

Section 6.3.2), Reid’s findings could explain why the testers in this experiment felt more motivated after the

PNTP phase of testing (see Table 6-64 and Figure 6-17).

MPS =
(V + I + S)

* A * F
3

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 256

Figure 6-18: Motivating Potential Score (MPS) for software testing roles (Reid 2007). The highest
rating role is Exploratory Testing, which was using during the PNTP phase of this experiment.

6.3.10.1 Individual Feedback

On the Initial Questionnaire and Post-Testing Questionnaires, the participants were asked to explain

their level of motivation (Table 6-66, Table 6-67, Table 6-68). Only one participant provided negative

feedback after PNTP testing, saying that the experience was “a bit tedious.” Two participants provided

negative feedback after Atomic Rules testing, with one reporting that they felt “tired and brain fogged” and

the other commenting that the date of the experiment affected their motivation, stating that “It's Friday

afternoon – no more explanation needed.”

Table 6-66: Participant comments on their motivation levels at the start of the experiment.

Motivation Feedback

Exceptionally motivated
Something new to look at and hopefully will help me in understanding of system
testing broad spectrums.

Very motivated Am interested in finding out where this is going.

Very motivated
Something new and challenging. Supporting my job with new knowledge and
informed on how the industry works outside of [our organisation].

Exceptionally motivated Always interested to do/learn new things and help someone along the way.

Very motivated
The experiment will give me an insight into testing. This will assist in my role in
assessing learning needs for [our department’s] staff.

Very unmotivated I'm looking to learn as much as I can from this experiment.

Very motivated
I am always keen to learn more regarding testing methodologies in order to
improve my testing skills.

Somewhat motivated
Am keen to learn new skills but unsure of the outcome and how I will go in all of
this.

Very motivated Sounds interesting, something different + may learn e.g. new terms etc.

Somewhat motivated A little anxious due to the expectations & my limited testing knowledge.

Very motivated
As a new tester and previous developer any new knowledge in this area is of great
benefit.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 257

Table 6-67: Participant comments on their motivation levels after PNTP testing.

Motivation Feedback

Very motivated I like to know more if it can help me in my current job.

Very motivated Want to have a go at Batch testing next to see what it is like.

Very motivated This is different, not threatening, and keeps the mind on alert.

Exceptionally motivated Great learning experience. Always happy to update my skills + knowledge.

Very motivated
Learning more about testing and seeing what skills/knowledge need to be learned,
for reference in my function as [staff] coordinator

Very motivated
I have enjoyed the experience and I think it will be beneficial in relation to my work
at [our organisation].

Very motivated
I find it interesting to see what I am able to achieve + the satisfaction I feel when I
am able to detect defects.

Somewhat motivated
Am enjoying the experience. Somewhat doubting my abilities and knowledge.
Think that this will build in time.

Somewhat motivated Gets a bit tedious but that is probably across the board with system testing.

Very motivated Am hoping I will be able to learn some basic concepts in approaching test writing.

Very motivated Looking forward to phase 2 to see how I tackle the next one.

Table 6-68: Participant comments on their motivation levels after Atomic Rules testing.

Motivation Feedback

Very motivated
I enjoyed in participate the program and have a very understanding tutor to help
with all the questions. Good presenter.

Somewhat motivated It's Friday afternoon - no more explanation needed.

Very motivated No one wants to be in a rut and all these new techniques to me I found interesting.

Very motivated Am tired and brain fogged. Not a bad feeling though.

Very motivated
I was pleased to be able to provide data that help testing professionals in their
roles.

Very unmotivated It was interesting and challenging.

Very motivated I am always eager to gain information that will improve my testing knowledge.

Somewhat motivated End of day 2. Good experience.

Somewhat motivated No comment provided

Very unmotivated
Would actually have liked to have spent another day here learning other
approaches to test writing/construction.

Very motivated
Same as yesterday, however more so as I can see the benefits of the new
approach.

6.3.11 Test Method Representation (H09/H19)

The possibility that the test case design rules utilised during the Exploratory Testing (carried out during

the PNTP phase) could be described as Atomic Rules was investigated. If they could, this would indicate

that Atomic Rules from EP, BVA and ST could support Exploratory Testing by providing testers with a

checklist against which they can audit their test coverage.

To start, the mean and total number of test data values derived during PNTP testing and Atomic Rules

testing was compared (Table 6-69), to obtain an overall view of the number of times test case design rules

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 258

were applied during the experiment. An average of 46 and total of 501 test data values were derived by the

testers during PNTP testing compared to an average of 69 and a total of 760 during Atomic Rules testing.

Table 6-69: Number test data values derived during PNTP and Atomic Rules testing.

N Approach
Mean

(count)
Std
Dev

Total
(Count)

11 PNTP 46 26 501

11 Atomic Rules 69 38 760

Of the 501 test data values that were derived during the PNTP testing phase, only eight (1.6%) could not

be derived by Atomic Rules from EP, BVA or ST. This suggests that the Atomic Rules approach could

provide excellent support to practitioners in industry when they are carrying out Exploratory Testing, as it

would provide them with a set of test case design rules on which they can base their ‘on-the-fly’ test design.

Furthermore, it could be used by auditors to assess the completeness of black-box test sets that are designed

during Exploratory Testing (e.g. see Chapter 3, Section 3.5) and could be used to describe the overall

approach to testing that was in use. It also suggests that the Atomic Rules approach may be ‘complete’ in

terms of its coverage of the types of black-box test case design rules that are used by practitioners.

Of these, four could be described as Atomic Rules as they were prescriptive and could be applied to

individual input fields, while the other four could not be described as Atomic Rules as they were non-

prescriptive and based on tester “application solution domain knowledge” (Reed 1990) (see below).

The four that could be described as Atomic Rules are as follows.

1. During the PNTP testing phase, two participants added characters to the middle of keywords.

a) For the suburb Greensborough, insert an invalid character to create a test data value

Greensboroiugh

b) For the keyword RSD, add white spaces to create a test data value R S D.

Although ST includes rules for removing and replacing characters from the start and end of

keywords (see ST1, ST2, ST4 and ST5 in Appendix B), a new Atomic Rule ST17: Add Middle

Character could be defined to add characters to the middle of keywords (see Appendix B).

2. One participant removed characters from middle of a keyword, as follows.

a) For the suburb Greensborough, select test data value Grnsborough.

Although ST includes rules for adding characters to the start and end of keywords (see ST3 and

ST6 in Appendix B), a new rule ST18: Remove Middle Character could be defined to remove

characters from the middle of keywords (see Appendix B).

3. One participant selected the second item from a list, as follows.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 259

a) Select the second suburb Box Hill North from the list of suburbs (see Table 6-3).

Although BVA includes Atomic Rules for selecting the second and second last values from

range-based fields (see BVA2 and BVA5 in Appendix B), two new rules BVA12: Second List

Item Selection and BVA13: Second Last List Item Selection could been defined to select the

inside boundary values for list-based fields (Appendix B).

4. Two participants misunderstood ST14: Select All List Alternatives in Reverse Order, resulting in

a new Atomic Rule. ST14 is meant to be applied to list-based fields to select a test data value

containing all elements from the field in the reverse order to which they were specified. For

example, if ST14 was applied to <street_type>, it would select the invalid test data value “Place

Ln Lane Grv Grove Crt Court Ave Avenue Rd Road St Street”. Two participants used this rule to

reverse the order of fields in the test case, e.g. creating the invalid test.3088 Greensborough

Street Main 100. Thus, a new Atomic Rule ST19: Reverse All Fields has been defined.

On the other hand, two of the four test case design rules that could not be described as Atomic Rules

were based on “application solution domain knowledge” (Reed 1990), as follows.

5. Two participants tested the Address Parser by replacing the directions ‘North’ and ‘South’ with

abbreviations ‘Nth’ and ‘Sth’, which were (correctly) rejected by the program They used

“application solution domain knowledge” (Reed 1990) to select these values, which originated

from their understanding of English language abbreviations. Since the number of abbreviations

in any language is generally very large, it would be impractical to define a generic Atomic Rule

to cover all possibilities. An automated test data selection tool would likely be required to

support the prescriptive identification of such abbreviations. Further, an Exploratory Tester who

is familiar with the application solution domain of the system under test is likely able to identify

such test data more efficiently than through the use of a testing tool. Thus, this test case design

rule should not, in the author’s opinion, be defined as an Atomic Rule.

6. One participant tested the Address Parser suburb field by removing the word ‘West’ from the

(valid) suburb ‘Geelong West’. Similarly, one participant tested suburbs from the state of

Queensland, even though the program only accepted Victorian suburbs. These tests were

identified through application solution domain knowledge, which originated from their

understanding of valid Australian suburbs. It would be more efficient to hire a tester to generate

such test data than defining and using a generic Atomic Rule for it.

This evidence suggests that test case design rules that rely heavily on application solution domain

knowledge might not be definable as Atomic Rules. Further investigation and experimentation of industrial

approaches to testing is required to confirm or disprove this.

The two remaining rules that could not be described as Atomic Rules were not within the scope of EP,

BVA and ST, as follows.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 260

7. Two participants tested the Address Parser with non-matching suburb/postcode pairs, while

another tested the Batch Processor for matching ‘sbatch’ and ‘ebatch’ identifiers. As discussed

in Chapter 3, one limitation of the Atomic Rules approach is that it does not support testing

dependencies between input fields (see Section 3.8). Therefore, an Atomic Rule cannot be

defined to cover this form of test case design rule.

8. During PNTP testing, after running many invalid test cases, one participant re-ran their first

valid test to “try and clear environment to make sure there are no environment issues as so many

bugs have been occurring.” This was not necessary for the programs under test, as all output

files were overwritten each time the program was re-executed. In research conducted by Peri-

Salas and Krishnan, if variables that define program behaviour are identified in the system

specification, it is possible to define black-box test cases that exercise such constraints (Salas

2007). If information about the behaviour of program memory could be formally described (e.g.

the times at which it is cleared), then BVA rules could potentially be applied to systematically

test such boundaries. Nonetheless, this is not currently covered by the Atomic Rules approach.

6.4 Discussion

6.4.1 Results of Hypothesis Testing

Nine hypotheses were defined for this experiment, covering: completeness (effectiveness) (H01/H11),

failure-detection effectiveness (H02/H12), efficiency (H03/H13), errors made (effectiveness - accuracy)

(H04/H14), understandability (H05/H15), operability (H06/H16), satisfaction (H07/H17), tester motivation

(H08/H18) and test method representation (H09/H19). The results for these are as follows.

The participants produced significantly more complete test data values for BVA and ST during Atomic

Rules testing. Thus, the null hypothesis for completeness could be rejected in favour of the alternate

hypothesis for BVA and ST (Table 6-70). On the other hand, the results for EP completeness were

inconclusive, which suggests that testers in this group may have already had the ability to carry out EP

purely from their own individual knowledge and experience prior to participating in the experiment.

Table 6-70: Outcomes of hypothesis testing for Completeness (H01/H11).

Hypothesis: Completeness
H01 = Null, H11 = Alternate

Test Method Coverage

EP BVA ST

H01: The completeness of black-box test sets derived
by industry-based testers is independent of the
approach used.

Fail to reject Reject Reject

H11: Industry-based testers using the Atomic Rules
approach derive more complete test sets in terms of
EP, BVA and ST coverage compared to those using
their own method for black-box test case design.

Fail to
accept

Accept Accept

It was interesting to find a significant difference in the mean failure-detection effectiveness achieved by

the testers, where the mean was higher during Atomic Rules testing. Thus, the null hypothesis for

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 261

completeness could be rejected in favour of the alternate hypothesis (Table 6-71). Furthermore, with the

exclusion of the space fields in the Address Parser, the group as a whole achieved the same or improved

levels of specification field coverage (i.e. input domain coverage) during Atomic Rules testing (see Section

6.3.3.4). These results suggest that learning the Atomic Rules enables industry-based testers to write more

effective test cases both in terms of the failure-detection effectiveness of the test cases and in terms of the

input domain coverage achieved by the testing group.

Table 6-71: Outcomes of hypothesis testing for Failure-Detection Effectiveness (H02/H12).

Hypothesis: Failure-Detection Effectiveness
H02 = Null, H12 = Alternate

Failure-Detection
Effectiveness

H02: There is no difference between the failure-detection
effectiveness of the Atomic Rules approach compared to
black-box testing approaches used by industry-based testers.

Reject

H12: Industry-based testers detect more failures using the
Atomic Rules approach then when using their own
approaches to black-box test case design.

Accept

At a confidence interval of 94%, the results for efficiency (productivity) indicated a significant

difference between the number of EP equivalence classes and BVA and ST test data values that were

derived by the testers, where the mean was higher during Atomic Rules testing. Thus, the null hypothesis

for efficiency can be rejected in favour of the alternate hypothesis (Table 6-72). This suggests testers in

industry are likely to be more productive when using the Atomic Rules approach.

Table 6-72: Outcomes of hypothesis testing for Efficiency (Productivity) (H03/H13).

Hypothesis: Efficiency
H03 = Null, H13 = Alternate

Efficiency3

H03: The efficiency of black-box test case derivation by
industry-based testers is independent of the approach used.

Reject

H13: Industry-based testers using the Atomic Rules approach
derive test cases more efficiently compared to those using
their own approach to test case design.

Accept

The results for the number of mistakes made during test case derivation were inconclusive, as no

significant difference was found between the results for PNTP or Atomic Rules testing. Thus, the null and

alternate hypothesis could not be accepted nor rejected for this attribute (Table 6-73).

Table 6-73: Outcomes of hypothesis testing for Errors Made (Completeness – Accuracy) (H04/H14).

Hypothesis: Errors Made
H04 = Null, H14 = Alternate

Errors Made

H04: The number of errors made by novice testers during black-
box test case derivation is independent of the approach used.

Inconclusive

H14: Industry-based testers using the Atomic Rules approach
make fewer errors during test case derivation compared to
those using their own approaches to test case design

Inconclusive

3 This result is based on a confidence interval of 94%.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 262

The results for understandability indicated a significant difference in the level of understanding

participants in EP, BVA and ST before and after learning the Atomic Rules approach, where the mean was

higher after learning Atomic Rules. Thus, the null hypothesis could be rejected for this attribute in favour of

the alternate hypothesis (Table 6-74). This indicates that the Atomic Rules approach is an effective

representation for teaching black-box testing methods to testers in industry.

Table 6-74: Outcomes of hypothesis testing for Understandability (H05/H15).

Hypothesis: Understandability
H05 = Null, H15 = Alternate

Understandability

EP BVA ST

H05: Learning the Atomic Rules approach has not affect on a
tester’s understanding of black-box testing methods.

Reject Reject Reject

H15: Testers improve their understanding of black-box testing
methods by learning the Atomic Rules approach.

Accept Accept Accept

A similar result was found for operability, in which a significant difference was found in the

participant’s opinions as to whether the Atomic Rules approach was easy or difficult to use, where the

majority of the group found the new approach ‘easy to use’ or ‘very easy to use.’ Thus, the null hypothesis

could be rejected for this attribute in favour of the alternate hypothesis (Table 6-76). This indicates that

testers in industry would find the Atomic Rules approach easy to use.

Table 6-75: Outcomes of hypothesis testing for Operability (H06/H16).

Hypothesis: Operability
H06 = Null, H16 = Alternate

Operability

H06: Testers using the Atomic Rules approach do not find
it easy or difficult to use.

Reject

H16: Testers using the Atomic Rules approach find it an
easy to use.

Accept

The results for satisfaction in terms of whether participants would have a preference towards using the

Atomic Rules were inconclusive. Thus, the null and alternate hypothesis could not be accepted nor rejected

for this attribute (Table 6-76).

Table 6-76: Outcomes of hypothesis testing for Satisfaction (H07/H17).

Hypothesis: Satisfaction
H07 = Null, H17 = Alternate

Satisfaction

H07: The preference of industry-based testers towards the use of black-
box testing methods is independent of the representation used.

Inconclusive

H17: Industry-based testers prefer to use the Atomic Rules approach for
black-box test case design compared to using their own approaches.

Inconclusive

Tester motivation was compared after PNTP testing and Atomic Rules testing to determine whether

their motivation for learning a new testing approach affected their results, which was a threat to validity

(see Section 6.2.5.1). A significant difference was found in the participant’s motivation after both phases of

testing, where the mean was higher after the PNTP testing phase. Thus, the null hypothesis could be

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 263

rejected for this attribute in favour of the alternate hypothesis (Table 6-77). This suggests that testers in

industry find Exploratory Testing more enjoyable than prescriptive testing, which supports research by Reid

(Reid 2007) that indicated that testers get experience more enjoyment when performing Exploratory Testing

than when using prescriptive black-box testing methods (see Section 6.3.10).

Table 6-77: Outcomes of hypothesis testing for Motivation (H08/H18).

Hypothesis: Motivation
H08 = Null, H18 = Alternate

Motivation

H08: Testers feel more motivated when using a new technique
simply because it is new.

Reject

H18: Testers using the Atomic Rules approach do not find it more
motivating to use simply because it is a new technique.

Accept

For test method representation, a thorough analysis was conducted to determine whether the test case

design rules utilised during PNTP testing could be described as Atomic Rules. All test data values derived

during PNTP testing except eight (1.6%) could be derived by Atomic Rules from EP, BVA and ST. Of

these, four lead to the definition of new Atomic Rules for BVA and ST. Only four test case design rules

could not be described as Atomic Rules, due to the rules being non-prescriptive and based on the

application solution domain knowledge of the testers (see Section 6.3.11). Thus, the null hypothesis could

be rejected for this attribute in favour of the alternate hypothesis (Table 6-78). This indicates that the

Atomic Rules approach could be effective in supporting Exploratory Testing in industry, by allowing them

to audit their own test coverage (e.g. using the Quick Reference Guide provided in Appendix C). It also

suggests that the Atomic Rules approach may be ‘complete’ in terms of its coverage of black-box testing

approaches that are used by practitioners in the software testing industry.

Table 6-78: Outcomes of hypothesis testing for Test Method Representation (H09/H19).

Hypothesis: Test Method Representation
H09 = Null, H19 = Alternate

Test Method
Representation

H09: Test case design rules used by experienced testers in industry
cannot be described by any black-box test method representation.

Reject

H19: Test case design rules used by experienced testers in industry
can be described as Atomic Rules.

Accept
(for some rules)

6.4.2 Black-Box Testing in Industry

As discussed in Chapter 2 (Section 2.5), a number of experiments have investigated the application of

specific black-box testing methods by experienced testers in industry (e.g. see (Basili & Selby 1987,

Laugherbach & Randall 1989, Vegas et al. 2003, Itkonen & Rautiainen 2005, Wood et al. 1997)). In these

experiments, participants are usually asked to apply specific static or dynamic testing methods. One of the

goals of this experiment was to examine how testers in industry perform testing when they are not required

to use a specific test method. Interestingly, all participants used Exploratory Testing during the PNTP

testing phase. Even the tester who started PNTP testing by developing and applying a random test case

generator supplemented this with Exploratory Testing. On the other hand, by the end of the experiment

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 264

almost half the group stated that if they were to test the programs again, they would carry out prior test

planning and design (see Section 6.3.2).

As has been mentioned earlier, this suggests that when testers are unfamiliar with an application, they

may initially choose to carry out Exploratory Testing to ‘shake-out’ the program, allowing them to gain an

understanding of its functionality while they explore potential defects, after which they will opt for a

prescriptive testing method that allows them to plan and track test coverage. The Atomic Rules approach is

a natural candidate for achieving this, as a simple Test Matrix can be used to trace the application of Atomic

Rules to program input and output fields (see Chapter 3, Sections 3.4 and 3.5).

6.4.3 Effects of Domain Knowledge on Testing Effectiveness

A number of publications of Exploratory Testing suggest that there is no system to the seemingly

‘intuitive’ process that takes place during test design and execution. Kaner maintains that “in complex

situations, your intuition will often point you toward a tactic that was successful (you found bugs with it)

under similar circumstances. Sometimes you won’t be aware of this comparison. You might not even

consciously remember the previous situations. This is the stuff of expertise” (Kaner 1988). As Agruss and

Johnson (2000) state, “much of what experienced software testers do is highly intuitive, rather than strictly

logical.” Nonetheless, Barber (2007) argues that “the more we know about what a system or application is

supposed to do, the more intuitive we believe it is”.

The Oxford English Dictionary (1970) defines intuition as “The immediate apprehension of an object by

the mind without the intervention of any reasoning process.” Regardless of whether a tester is consciously

aware of the process they follow during Exploratory Testing, there is still likely to be a pattern to the test

case design rules they use. As Kaner et al. observe (2001), a tester’s skill with Exploratory Testing

increases as they become familiar with the system under test, including its market, the risks associated with

developing it and failures previously detected. The domain knowledge and experience that guides a tester

during Exploratory Testing can be influenced by their understanding of prescriptive testing methods (Craig

& Jaskiel 2002), testing heuristics (Watkins 2001), tests that previously detected faults (Watkins 2001),

program implementation and design (Bertolino 2004, Watkins 2001), hardware (Mosley 1993), platforms

(Bertolino 2004) and programmer assumptions (Myers 1979).

Thus, it is likely that the ‘intuition’ a tester employs during Exploratory Testing is logical and

procedural “application solution domain knowledge” (Reed 1990) they have gained over time. There may

be information about the application solution domain of the system under test that gives experienced

“pathological testers” (Reed 2007) clues on how to test it. This view is supported by the resulted discussed

in Section 6.3.4.3, where the failure-detection effectiveness achieved when using PNTP testing against the

Address Parser was higher than for the Batch Processor during PNTP testing, but this was not the case

during Atomic Rules testing. This indicates that while a tester can require extensive domain knowledge to

carry out effective Exploratory Testing, prescriptive testing methods like those represented by the Atomic

Rules approach can fill the gap when domain knowledge is not present.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 265

In fact, many prescriptive black-box testing methods are based on domain knowledge of specific

software fault classes. As Wild et al. attest (1992), faults are often caused by programmers

misunderstanding the problem domain of the program under development. BVA is based on the

(implementation level) domain knowledge that programmers often make ‘off-by-one’ errors, which can be

classed as application solution domain knowledge. Error Guessing targets error-prone situations such as

divide by zero errors and calculating the square root of a negative number (Mosley 1993), which are also

forms of application solution domain knowledge.

Thus, the knowledge an experienced tester draws upon during Exploratory Testing includes:

 knowledge of prescriptive testing methods, such as EP, BVA and ST, as this supports in the

selection of an optimised, high-yield test set;

 knowledge of the program under test and of similar programs, including requirements, design,

source code (structure and contents), previous test cases that were effective and previously detected

defects, as this assists in the design of test cases that cover the requirements, specifications and

likely defects in the system under test (which Reed referred to as “implementation domain

knowledge” (Reed 1990)); and

 general software development knowledge and experience, as this assists in the design of test cases

that target certain types of program structures or program faults (e.g. buffer overflows) (which can

also be considered as implementation domain knowledge (Reed 1990)).

Thus, experienced testers may be capable of designing high-yield test sets that achieve high failure-

detection effectiveness without applying all Atomic Rules from all black-box testing methods to all input

fields. There may also be many effective black-box test case design rules used by experienced testers that

have not yet been published in software testing literature. If such rules could be defined as Atomic Rules

(e.g. see Section 6.3.11), this domain knowledge could be shared with other testers.

6.4.4 Limitations of the Experiment

There are two main limitations to this experiment: sample size and participant experience.

Due to the small number of testers who participated in the experiment (see Section 6.2.5.1), the results

cannot be generalised across the entire population of professional testers. As such, they are considered to be

indicative results (not conclusive), providing an incentive to both ourselves and other researchers to

replicate the experiment (following the practice of other disciplines).

The participants’ experience was a limitation, as some were novices who had not designed test cases

before. Although they were working as Testers and Test Leads, at the time of the experiment 72% of the

group were not responsible for test case design in their organisation, as this was typically the responsibility

of Business Analysts (see Section 6.3.1.4). Although this may have reduced the effectiveness of the testing

that was conducted during the experiment, the results obtained still provide insight into the likelihood that

the Atomic Rules approach could one day be adopted in industry.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 266

Thus, replication of this experiment with a broader sample size, demographic and set of test programs

would determine whether or not these results apply to the software testing industry.

One factor of usability that was not assessed in this experiment but that also warrants investigation is the

level of confidence a tester feels when they are applying a black-box testing method, and whether this has

any affect on the completeness or failure-detection effectiveness of their test cases.

6.4.5 Teaching Atomic Rules in Future

Based on the experiment results, the following four aspects of the teaching materials for the Atomic

Rules approach will be improved.

In future, Test Matrices will be demonstrated as an effective approach for planning and tracking test

coverage. A number of participants reported that if they were to test the programs used in this experiment

again, they would use a more structured approach to testing, such as using Test Matrices (see Section

6.3.5.2). Test matrices also made data analysis in this experiment very efficient when determining which

participants had applied each Atomic Rules to which program field. Thus, they would be a valuable tool to

demonstrate when teaching the Atomic Rules approach.

Data analysis indicated that special characters such as spaces and symbols were not well tested (see

Section 6.3.3.4). In future, additional examples that demonstrate the application of Atomic Rules to special

character fields will be provided in the teaching materials.

Atomic Rules names will be revised to improve future training material. Although it was encouraging to

find that the participants liked the structure and format of the Atomic Rules approach, particularly the Quick

Reference Guide (Appendix C), the intended usage of a number of Atomic Rules were misunderstood by

some participants during this experiment (see Section 6.3.6). This should be resolved by an improved

naming scheme.

During the experiment, only one participant applied the four-step test case design process in the

prescribed order (see Section 6.3.7.4). Although the process was demonstrated during a lecture on the

approach, this may have been caused by the Quick Reference Guide not mentioning rule application order.

Since the participants understood how to select test cases without the use of this process, this did not have a

detrimental effect on the quality of the resulting test cases. Nonetheless, in future training this process will

be added to the Quick Reference Guide, as it will likely be useful for novice testers. The four-step test

selection process is also required for automation of the Atomic Rules approach.

6.5 Summary

The aim of this experiment was to compare the usability and failure-detection effectiveness of the black-

box testing methods that are ‘typically’ used by testers in industry to that of the Atomic Rules

representation of EP, BVA and ST. The experiment also looked at how experience and domain knowledge

can affect black-box testing effectiveness.

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 267

During the PNTP testing phase, rather than doing any test planning or design prior to test execution, all

participants conducted Exploratory Testing (see Section 6.3.2). Although one tester developed a random

input generator in Microsoft Excel for testing the Batch Processor during this phase of testing, they

supplemented this with manual Exploratory Testing. These results, combined with participant feedback

gathered on questionnaires, suggests that testers in industry may initially choose to use Exploratory Testing

when they are unfamiliar with the program under test, as this allows them to learn about the program and

the nature of defects present, before adopting more prescriptive testing methods that facilitate better

understanding and improvement of test coverage.

Of the 501 test data values that were derived by the participants during PNTP testing, only eight (1.6%)

could not be derived by existing Atomic Rules from EP, BVA and ST (see Section 6.3.1.1). Thus, the

Atomic Rules approach could be an excellent facilitator of ‘on-the-fly’ test case design during Exploratory

Testing (e.g. by using the Quick Reference Guide in Appendix C). This also suggests that the Atomic Rules

approach may be ‘complete’ in terms of its coverage of the black-box test case design rules that are used by

practitioners in industry. Therefore, practitioners could use Atomic Rules to describe the approach to black-

box testing they follow during Exploratory Testing. It also indicates that the Atomic Rules approach could

be useful to auditors and test managers to assess the completeness of the black-box test sets that are

designed by testers during Exploratory Testing (if test cases are recorded) and prescriptive black-box testing

(e.g. checking that a tester’s described coverage matches actual coverage). Furthermore, test managers

could use Atomic Rules to assess whether testers understand each black-box testing method, to identify

weak areas in a tester’s knowledge that require improvement.

It was also interesting to discover that of the eight test data values that were derived during PNTP

testing that were not derivable by existing Atomic Rules, four gave rise to the definition of new Atomic

Rules (see Section 6.3.1.1). Since this is the aim of creation-based Systematic Method Tailoring and is

supported by that approach (see Chapter 3, Section 3.2.10), this result suggests that SMT could be useful for

capturing new test case design rules in industry.

The experiment results also indicate that Exploratory Testing can be an effective approach for defect

detection (see Section 6.3.4.2), particularly when a tester has application solution domain knowledge in the

program under test (see Section 6.3.4.3). This was evidenced by the fact that the participants, who had

domain knowledge in the Address Parser but not in the Batch Processor, designed significantly more

(failure-detection) effective test cases during PNTP testing of the Address Parser than of the Batch

Processor. Conversely, the testers did just as well against both programs during Atomic Rules testing. This

suggests that to detect significant numbers of program failures, testers either need application solution

domain knowledge in the program (if they are conducting Exploratory Testing) or they need to use a

prescriptive black-box testing method. This also raises the question of whether there is information about

the application domain of the program under test that gives experienced ‘pathological’ testers clues on how

to test it effectively (see Section 6.4.3), which would be an interesting topic for future research.

A comparison of the number of known program failures that were detected in general during PNTP and

Atomic Rules testing indicated that significantly more failures can be detected by using the Atomic Rules

Industrial Evaluation of the Atomic Rules Approach Chapter 6

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 268

approach. Specifically, the testers in this experiment were able to detect more failures and achieve greater

levels of BVA and ST coverage when they used the Atomic Rules approach. Thus, despite its potential

complexity, this indicates that the Atomic Rules representation of EP, BVA and ST is more effective than,

or at least comparable to, Exploratory Testing.

Interestingly, the number of years the participant’s had worked as testers in industry and their current

role in testing did not have any affect the level of EP, BVA and ST coverage they achieved during PNTP or

Atomic Rules testing (see Section 6.3.3.5). This may have been due to the participants not having recent

experience in test design (see Section 6.3.1.4). The length of their testing experience also did not affect their

failure-detection effectiveness during either phase of testing (see Section 6.3.4.5). However, their role did

affect the number of failures they detected during the PNTP testing phase, with Testers detecting more

failures than Test Leads (see Section 6.3.4.5). This may have been due to the Testers having more recent

familiarity with test case design and execution than the Test Leads (who would be likely to have more

recent experience in test planning, strategies and management). Conversely, no significant difference was

found in the failure-detection effectiveness achieved by Testers and Test Leads during Atomic Rules

testing, suggesting that learning the Atomic Rules approach can fill the knowledge gap for Test Leads who

are not currently involved in test design or execution.

It was also interesting to find that Atomic Rules from EP were capable of detecting 93% of the known

failures in the Address Parser if the method was applied ‘completely’ (i.e. every Atomic Rule being applied

to every applicable field), compared to only 54% of failures in the Batch Processor (see Section 6.3.4.1).

BVA was capable of detecting 67% of Address Parser failures and 58% of Batch Processor failures. ST was

equally effective against both programs, detecting 67% of known failures in each one. An interesting area

for future research is to examine why some testing methods are more effective at detecting certain types of

program failures and whether programming styles and program architecture have any influence on this.

Another interesting finding is that there were certain classes of input fields that were not well tested

during both phases of testing, including non-alphanumeric characters and white spaces. Since the testers

said they understood the importance of testing punctuation (see Section 6.3.4.3) and as they were taught

how to test such fields during a presentation on the Atomic Rules approach, it is possible that they either did

not recognise the requirement to test these fields, they did not know how to test them or they did not have

enough time to test them. Further research is required to determine why this was the case and whether this

is a common problem in industry.

Conclusions and Future Work Chapter 7

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 269

Chapter 7

Conclusions and Future Work

"When you have eliminated all which is impossible, then whatever remains, however improbable,
must be the truth."

Sherlock Holmes, by Sir Arthur Conan Doyle, The Adventure of the Blanched Solider, 1926.

7.1 Conclusions

The aim of this thesis was to improve the usability and failure-detection effectiveness of prescriptive

and non-prescriptive approaches to black-box testing. This included identifying and resolving the following

seven problems with existing definitions of black-box testing methods:

1. definition by exclusion;

2. multiple versions;

3. method overlap;

4. notational and terminological differences;

5. reliance on domain knowledge;

6. difficult to automate; and

7. difficult to audit.

Items 1 to 4 above are inherent problems with existing definitions of black-box testing methods. They

are, as we and others have shown demonstrable weaknesses that are due to the manner in which the

methods were defined prior to this work.

Item 5 arises since the methods currently rely on the existence of ‘perfect’ requirements that leave no

gaps to be filled through the acquisition of domain knowledge. In one sense, that the test methods should be

‘application domain knowledge agnostic’ seems not unreasonable. On the other hand, the work reported

here suggests that the effectiveness of black-box testing can be improved if prescriptive black-box testing

methods are supported by the capture and evaluation of domain knowledge.

Items 6 and 7 are ‘derivative’ problems, in that they are a direct result of a lack of precision in existing

descriptions of black-box testing methods and are therefore related to the problems with test method

descriptions that are covered under items 1 to 4 above. In the authors view they are important, as they

represent important uses that testing professionals may have for black-box testing methods that cannot

easily be met by existing method definitions.

Conclusions and Future Work Chapter 7

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 270

The Atomic Rules approach, Goal/Question/Answer/Specify/Verify and Systematic Method Tailoring

were proposed as solutions to these problems. As such, they represent the main contribution of this thesis to

the field of software testing. Additional contributions include the definition of test method usability and

metrics for evaluating usability. A prototype testing tool called the Atomic Rules Testing Tool was also

presented, to demonstrate that the Atomic Rules approach makes black-box testing methods more precise

and easier to automate.

The Atomic Rules approach provides precise definitions of eleven different black-box testing methods,

including Equivalence Partitioning, Boundary Value Analysis, Syntax Testing and combinatorial methods

Each Choice, Base Choice, Orthogonal Array Testing, Heuristic Pair-Wise, All Combinations,

Specification-Based Mutation Testing and the combined approaches Base Choice/Orthogonal Array Testing

and Base Choice/Heuristic Pair-Wise Testing (see Appendix B). Individual Atomic Rules from EP, BVA

and ST were also shown to aid test data selection for State Transition Testing, Use Case Testing and the

Category Partition Method. The Atomic Rules approach, GQASV and SMT were evaluated through two

university experiments, an industrial experiment and a proof-of-concept assessment.

The seven problems with black-box testing methods that are listed above were resolved as follows.

Definition by exclusion was resolved by defining explicit datatypes (e.g. integer, real, alpha) that allow

the ‘universe of discourse’ for program inputs to be explicitly defined. This allowed prescriptive Atomic

Rules to be defined for EP that select invalid equivalence classes by datatype (see EP4 to EP10 in

Appendix B). This also partially resolved reliance on domain knowledge, by ensuring that each Atomic

Rule was defined to a level of detail that facilitates the design of effective and predictable black-box test

sets, regardless of each tester’s domain knowledge and experience.

Reliance on domain knowledge was further resolved by SMT and GQASV. SMT allows experienced

testers to define new Atomic Rules during non-prescriptive (e.g. Exploratory) testing, allowing new test

case design rules to be shared with other testers and for them to be reused (e.g. during Regression Testing).

GQASV guides testers in the creation of precise program input field specifications (when such

specifications are not readily available) and in recording domain knowledge that is used during the process,

allowing that knowledge to be shared and reused. GQASV enables more effective application of the Atomic

Rules approach by identifying the minimum information that is required to apply Atomic Rules to each

input field under test.

Notational and terminological differences between black-box testing methods were resolved through

the uniform notation of the Atomic Rules characterisation schema and four-step black-box test case design

process.

Multiple versions of each black-box testing method were resolved by defining one set of Atomic Rules

that cover the various versions of each method, creating a single repository of Atomic Rules. Method

overlap could then be resolved by locating and eliminating redundant rules that appear in more than one

method, or more than once within a method.

Conclusions and Future Work Chapter 7

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 271

Difficulties with auditing the ‘completeness’ of black-box testing were resolved through the granularity

of the Atomic Rules approach, by enabling simplified analysis of the set of Atomic Rules that were (or were

not) applied to a program. The Atomic Rules approach could be used by auditors or test managers to assess

the completeness of black-box test sets that are designed during Exploratory Testing (if test cases are

recorded) or prescriptive black-box testing (i.e. checking that described coverage matches actual coverage)

(see further discussion under Section 7.3).

Difficulties with automation were also resolved through the precise definitions provided by the Atomic

Rules approach. This eventually resulted in the development of the Atomic Rules Testing Tool (see Chapter

4). ARTT currently supports automatic generation of equivalence classes and test data values for EP, BVA

and ST from specifications that are input by the user. It also supports domain knowledge capture through

GQASV and the creation of new Atomic Rules through creation-based SMT.

7.2 Interesting Results of the University Experiments

Two university experiments were conducted to determine whether the Atomic Rules approach improves

the usability of black-box testing methods for novice testers. This compared Myers’ original definition of

EP and BVA (Myers 1979) to the corresponding Atomic Rules. Usability was assessed in terms of

completeness, accuracy, efficiency, learnability, understandability and satisfaction. Although there were

limitations to the experiment, including some inconclusive results, it still provided evidence that Atomic

Rules could be an effective approach for teaching black-box testing methods to novice testers.

For example, in the first university experiment, the Atomic Rules representation of EP and BVA

allowed novice testers to write more complete and accurate black-box test sets with higher levels of

productivity, compared to those who used Myers’ representation. More students in that year also preferred

learning the Atomic Rules approach and felt they gained a better understanding of it than Myers’

representation. Students in the second experiment who chose to use the Atomic Rules approach in their

class assignment achieved significantly higher grades (86% on average) than who used Myers’

representation (68% on average) (i.e. the difference between a ‘C’ and an ‘A’ grade).

During data analysis it became evident that the Atomic Rules approach can stifle tester creativity. Since

the Atomic Rules approach is more prescriptive than Myers’ definition, it did not allow the students to

derive test cases based on their own domain knowledge and experience. Some of the participants in Myers’

group created test cases that were not derivable from Myers’ representation. Although Systematic Method

Tailoring was developed as an approach for guiding testers in the definition of new Atomic Rules, it was

not taught to the testers in these experiments, as it had not been invented when the first experiment was run.

However, this was a feature of the industrial experiments (see Section 7.3).

The limitations of these experiments mean that the results cannot be generalised to all novice software

testers. To determine whether the Atomic Rules approach improves the usability of black-box testing

methods for all novice testers, these experiments would need to be rerun with more novice testers, ideally

from both academia and industry and with industry-developed software.

Conclusions and Future Work Chapter 7

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 272

7.3 Interesting Results of the Industry Experiment

In the industrial experiment, the usability and failure-detection effectiveness of the black-box testing

methods that are ‘typically’ used by professional software testers (called the Practitioner Normal Testing

Practice or ‘PNTP’) were compared to that of the Atomic Rules representations of EP, BVA and ST.

Usability was evaluated in terms of completeness, efficiency (i.e. productivity), errors made (i.e. accuracy),

understandability, operability, satisfaction and motivation. The experiment also looked at whether the test

case design rules that are typically used by practitioners can be described as Atomic Rules.

The main limitations of this study were that the sample size was relatively small and the programs that

were used in the experiment were not developed in industry. In addition, while all participants in the

experiment were currently working as Test Leads, Testers or (Tester) Learning and Development Managers,

none had recent experience in test design. Furthermore, test case design took place in less than a day,

whereas test case design in industry can often take weeks or months (depending on the requirements and

scale of the program being tested). While the results of the experiment cannot be generalised across the

entire software testing industry, they do provide useful insight into how the testers in this group carry out

black-box testing and evidence that the test cases industry practitioners design can described by and audited

by the Atomic Rules approach.

Patterns in the derived test cases derived by the testers indicated that they conducted Exploratory

Testing during the PNTP testing phase. During this phase the participants did not do any test planning or

test design prior to test execution. This result, coupled with feedback from the participants, suggests that

testers in industry may chose to use Exploratory Testing when they are unfamiliar with a program, as this

allows them to learn about the program and the nature of defects present, before using prescriptive testing

methods, which then facilitate understanding and improvement of test coverage.

It was encouraging to find that during PNTP test case generation, out of 501 (Exploratory) test data

values that were derived, only eight (1.6%) could not be derived by Atomic Rules from EP, BVA and ST

(see Chapter 6, section 6.3.11). Thus, the Atomic Rules approach facilitated auditing of black-box test set

completeness in 98.4% of cases. This also suggests that the Atomic Rules approach could in fact be

‘complete’ in terms of its coverage of the types of test case design rules that are used by practitioners in

industry (although this can only be confirmed through further experimentation).

The industry experiment also indicated that significantly more program failures could be detectable on

average through using the Atomic Rules approach than through Exploratory Testing. They also indicated

that it was capable of producing significantly more complete BVA and ST test sets. Thus, despite its

potential complexity, when used by testers in industry the Atomic Rules approach could be more effective

than, or at least comparable to, Exploratory Testing.

On the other hand, the results suggested that Exploratory Testing could be made more effective by using

testers who have domain knowledge in the program under test. During the PNTP (i.e. Exploratory) testing

phase, participants who had domain knowledge in the program under test detected significantly more

Conclusions and Future Work Chapter 7

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 273

failures than those who were unfamiliar with the domain. On the other hand, when participants without

domain knowledge used the Atomic Rules approach, they were able to detect just as many failures as those

using Exploratory Testing with domain knowledge. This suggests that to detect significant numbers of

failures, testers either need program domain knowledge (during Exploratory Testing) or the use of a

prescriptive black-box testing method. A recommendation these results offer industry is that while

Exploratory Testing can be a useful approach for detecting program failures when domain knowledge is

present, prescriptive black-box testing methods could allow more program failures to be detected and could

fill the knowledge gap for testers without domain knowledge. An interesting area for future research is

whether there is information about the domain of a program that gives experienced ‘pathological’ testers

clues on how to test it effectively.

However, the existence of the Atomic Rules approach allows the tests produced by pathological testers,

or, for that matter, by exploratory testers, to be analysed. In principal, this may allow the test selection

methods that are being used to be exposed and shared, with the possibility that totally new prescriptive

black-box testing methods may be described and used.

Interesting, the number of years that the participants had worked as testers in industry, and their current

role in testing, did not affect their coverage of Atomic Rules from EP, BVA or ST during PNTP or Atomic

Rules testing. The length of their experience also did not affect their failure-detection effectiveness. On the

other hand, their current role in testing did affect the number of failures they detected during PNTP testing,

with Testers detecting more than Test Leads. This may be due to Testers having more recent experience

with test design and execution. No significant difference was found in the failure-detection effectiveness

achieved by Testers and Test Leads during Atomic Rules testing, suggesting that the Atomic Rules

approach could fill the knowledge gap for Test Leads who do not have recent experience with black-box

testing.

It was very encouraging to find that Atomic Rules from EP were capable of detecting 93% of the known

failures in the Address Parser, compared to 54% in the Batch Processor. BVA and ST were capable of

detecting between 67% of failures in the Address Parser and 58% to 67% in the Batch Processor. An

interesting topic for future research would be why some Atomic Rules are more effective at detecting

program failures than others and what effect program design has on this. The ideal outcome will be a

mapping of program design characteristics to Atomic Rules that are most effective.

From the test cases derived by the participants on this experiment, five new Atomic Rules could be

defined through SMT. They were BVA12 and BVA13 (select the inside boundary values of lists), ST14

(select list values in reverse), ST17 (add middle character to keywords) and ST19 (reverse all fields) (see

Appendix B). New Atomic Rules were also defined during the proof-of-concept evaluation of SMT. This

suggests that SMT could be useful for capturing new test case design rules in industry. It would be ideal to

conduct further experiments with industry practitioners, to assess whether the test cases they derive during

Exploratory Testing can be described by existing Atomic Rules or whether they give rise to the definition of

new Atomic Rules through SMT. In addition, it would be useful to know whether new Atomic Rules

provides explicit ‘skill-based’ improvements to existing black-box testing methods. This could also include

Conclusions and Future Work Chapter 7

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 274

an evaluation of whether practitioners can understand how to use SMT to define their own Atomic Rules,

and whether they can audit the completeness of their own black-box test sets.

Future work could assess tester confidence levels when they are using prescriptive or non-prescriptive

testing methods, to determine whether their confidence affects the completeness and/or failure-detection

effectiveness of their resulting test cases. Another aspect to consider is whether the acquisition of domain

knowledge allows testers to feel more confident during test design, and whether this in turn allows them to

write more effective test cases or to do so in a more productive manner.

It would be interesting to examine whether the Atomic Rules approach and GQASV do provide a good

substitute for domain knowledge in industry. For example, experimentation could be used to determine

whether experienced testers find GQASV to be a useful approach for specifying program input and output

fields and how much domain knowledge is required to produce ‘adequate’ specifications. It would also be

useful to discover the most useful sources of domain knowledge (e.g. past experience in testing similar

systems, programming experience, textbooks, websites; see Chapter 2, Section 2.6.2 and Chapter 3, Section

3.10.1) that enable testers to write the most effective test cases. Furthermore, after domain knowledge is

collected by experienced testers using GQASV, it would be interesting to know whether novice testers (or

those who are unfamiliar with the domain) could reuse that knowledge to design ‘complete’ test sets with

the Atomic Rules approach. ARTT could provide support for this kind of investigation.

An additional area for experimentation could be to examine whether the Atomic Rules approach makes

it easier for test managers to audit the completeness of the black-box test sets that are produced by testers in

their teams, in order to identify when test sets are ‘complete.’

7.3.1 Additional Uses of the Atomic Rules Approach in Industry

Since the Atomic Rules approach provides a single definition of each black-box testing method, it could

be used by both national and international standardisation bodies to publish precise definitions of each

black-box testing method. Having one standard, prescriptive definition of these methods would make it

easier for organisations to demonstrate compliance to such standards and would make it easier for auditors

to carry out accurate compliance assessments against testing standards. For example, the British Standard

BS-EN 50128 ‘highly recommends’ the use of EP and BVA for testing certain classes of safety critical

systems (BS 50128:2001). Since that standard refers to Myers’ definition of these methods, which suffers

from considerable ambiguities, it is likely that both the black-box testing approach taken by organisations

claiming compliance against the standard, and the compliance assessment approach that is subsequently

taken by auditors, could miss certain crucially important test cases. Regulation of black-box testing may

become more important in industry, as more rigorous testing standards are developed (such as the new

ISO/IEC 29119 Software Testing standard1).

1 As the author is a co-editor of the new ISO/IEC 29119 Software Testing standard, and is responsible for the development of part 4
(Testing Techniques), which will include definitions of black-box testing methods, it is her intention to introduce the concept of more
auditable black-box testing methods descriptions into that standard.

Conclusions and Future Work Chapter 7

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 275

Software testing certification boards like the International Software Testing Qualifications Board

(ISTQB) and local software testing course providers (e.g. K. J. Ross & Associates) could use the Atomic

Rules definition of these methods to improve their training and certification materials. Test managers could

use the Atomic Rules approach to assess whether the testers in their organisation understand how to use

each black-box testing method and to identify weak areas in their knowledge of the methods.

7.4 Future Improvements to the Atomic Rules Approach

A number of improvements are already planned for the Atomic Rules approach, including the following.

 The names of EP Atomic Rules that were misunderstood during the industry experiment will be

enhanced, ideally through consultation with testers in industry.

 When the Atomic Rules approach is taught to testers in future, Test Matrices will be demonstrated

as a useful approach for planning and tracking test coverage.

 Additional worked examples will be provided in teaching materials, to demonstrate the application

of Atomic Rules to special character fields, as this was a problem area during all experiments.

 The Quick Reference Guide will be enhanced to include the four-step test case design process, as

this was not followed by testers during the industrial experiment.

 Future investigation will be carried out to determine whether Atomic Rules can be defined to test

input field dependencies, as this is a known limitation of the Atomic Rules approach.

7.5 Future Improvements to the Atomic Rules Testing Tool

A variety of improvements to the Atomic Rules Testing Tool were proposed in Chapter 4. These are

summarised as follows.

 Automatic generation of program source code for input data validation in various languages, as this

reduces the need for black-box testing by ensuring that programs only accept valid inputs.

 Implementation of Test Case Construction Rules from EP, BVA and ST, as this will enable

automatic generation of complete black-box test cases.

 Enhancement of the Specification Editor to enable automatic import of BNF specifications, as this

will enable more efficient specification creation.

 Enhancement of the Specification Editor to provide feedback on input field definitions for new

specifications, based on the names of previously defined input fields, and automatic advice on the

use of domain knowledge that was previously defined for existing specifications.

 Automatic production of abstract syntax trees for specifications, as this will provide users with a

visual representation of the hierarchy in each specification they create.

 Enhancement of Atomic Rules from BVA to generate test cases for fields that repeat.

Conclusions and Future Work Chapter 7

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 276

 Removal of redundant test data generated by ARTT, as this will result in more efficient testing.

 Automatic generation of test data values for testing output field partitions.

 Automatic derivation of unrestricted specifications for the CPM in the Test Specification

Language, via the automatic combination of test data values that are generated through EP, BVA

and ST, as well as documentation of expected results of specific combinations of test data values.

 Integration with unit testing tools like JUnit, as well as code coverage analysis tools like JCover.

It would also be beneficial to carry out experiments with ARTT with professional testers, to determine

whether this tool could be useful to practitioners in industry and to determine whether it improves the

efficiency of test case derivation in reality. Comparisons of ARTT to other testing case generation tools

such as CaseMaker (see Chapter 2, Section 2.7.3) would also determine whether automation of the Atomic

Rules approach does result in more complete and effective test sets than that which is currently supported

by other black-box test case generation tools in industry.

7.6 Future Experimentation with GQASV and SMT

As GQASV and SMT only underwent a preliminary evaluation, future experimentation must be carried

out before the techniques are used by the software testing industry, to determine whether the potential

benefits of these approaches can be realised by professional testers. For GQASV, an experiment could be

conducted to determine whether more precise input/output field definitions can be produced by professional

testers that are using GQASV, as compared to the approaches they would normally use, in order to

understand and properly define program input/output domains, and to determine whether the domain

knowledge that is captured during the process is useful to testers in current and future projects. For SMT, a

separate experiment could be carried out to identify whether new and useful Atomic Rules can be defined

by professional testers through using the SMT process.

7.7 Final Word

In the words of Dikstra (1969), “Program testing can be used to show the presence of bugs, but never to

show their absence!” We hope that the contributions made by this thesis provide software testers

everywhere with an even better ability to detect the types of program faults that would otherwise prevent

the users of their software from experiencing a ‘bug-free’ existence every time they interact with a program.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 277

Chapter 8

Appendices

"The last project generated a ton of paper and it was still a disaster, so this project will have to
generate two tons."

DeMarco and Lister, “Peopleware”, 1999

Appendix A. Demonstration of the Category Partition Method

In the following, the Category Partition Method (CPM) (see Chapter 2, Section 2.2.8) is applied to a

specification of a ‘find’ command (Figure 8-1), which was originally published by Ostrand and Balcer

(1988). This specification defines one function that can be used to locate instances of a particular string

within a file.

Figure 8-1: Natural language specification of a ‘find’ command (Ostrand & Balcer 1988).

Command:

 find

Syntax:

 find <pattern> <file>

Function:

The find command is used to locate one or more instances of a given pattern in a text file. All liens
in the file that contain the pattern are written to standard output. A line containing the pattern in
written only once, regardless of the number of times the pattern occurs in it.

The pattern is any sequence of characters whose length does not exceed the maximum length of a
line in the file. To include a blank in the pattern, the entire pattern must be enclosed in quotes (“).
To include a quotation mark in the pattern, two quotes in a row (“”) must be used.

Examples:

 find john myfile

 displays lines in the file myfile which contain john john

 find “john smith” myfile

 displays lines in the file myfile which contain john smith

 find “john”” smith” myfile

 displays lines in the file myfile which contain john” smith

The CPM consists of six steps, as follows.

In step one, the specification is decomposed into individual functional units that can each be tested

separately. Since this specification contains one functional unit, this step is already complete.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 278

In step two, input fields called ‘categories’ and equivalence classes called ‘choices’ for each category

are defined1. The specification mentions two input fields, <pattern> and <file>. The characteristics of

<pattern>, which are explicitly defined in the specification, are as follows:

1. length of <pattern> must not exceed maximum line length, assumed to be 80 characters;

2. if <pattern> contains a white space it must be enclosed in quotes; and

3. if <pattern> contains an embedded quote it must be replaced with two quotes in a row.

Other characteristics of <pattern> that were not described in the specification, but that an experienced

tester may wish to consider, are whether:

4. quoted patterns always have to include blank characters;

5. several successive quotes are permitted in a pattern.

The <file> field can be tested as an ‘environmental variable’ file contents or as an ‘input parameter’ file

name. As an environmental variable, the following characteristics can be defined for file contents:

6. the number of occurrences of <pattern> in the file;

7. the number of occurrences of <pattern> on a line that contains it (called the ‘target’ line);

8. the maximum length of the file;

9. the file type (e.g. text, binary, executable);

10. whether <pattern> overlaps itself in a line of the file; and

11. whether <pattern> extends over more than one line.

If <file> is considered to be an input parameter file name, the following choices (which were not

identified by (Ostrand & Balcer 1988)) could be identified through the application of EP and BVA:

12. whether any specific ASCII characters are not allowed in the file name, such as / \ : * ? “ < > |

as these are restricted characters in many operating systems; and

13. the maximum length of the file name (i.e. 80 characters or greater than 80 characters).

In step three, ‘constraints’ can be added to each choice, which dictate how a choice in one category can

restrict choices in another. This reduces the number of test frames that are generated in step four and

prevents ‘contradictory test frames’ (i.e. impossible combinations of choices) from being created, such as

combining an empty pattern with a pattern that is quoted (e.g. see Figure 8-2). Constraints are defined by

annotating contradictory choices with a ‘property’ statement, and by adding ‘selector expressions’ that limit

whether a particular choice can be included in a test case, based on the values of other choices. A property

statement is expressed as [property A, B, …], where A, B, … are property names, while selector expressions

are expressed as [if A] or [if A and B]. For example, if a test contains a pattern which is empty (i.e.

[property Empty]) then the pattern cannot be quoted (i.e. [if NonEmpty]). To limit the scope of their

1 The Goal/Question/Answer/Specify/Verify approach could be used at step 2, when defining the contents of each input field.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 279

example, in step 3 Ostrand and Balcer only included choices and categories that were mentioned in the

original specification (i.e. pattern size (choice 1), quoting (2), embedded white spaces (3), embedded quotes

(4 and 5) and file name (6 to 11)). Thus, choices 12 and 13 are not covered in the example below.

Figure 8-2: Example of a contradictory test frame (Ostrand & Balcer 1988).

Pattern size: empty

Quoting: pattern is quoted

Embedded blanks: several embedded white spaces

Embedded quotes: no embedded quotes

File name: good file name

Number of occurrences of pattern in file: none

Pattern occurrences on the target line: one

In step four, categories, choices and constraints are documented in a ‘restricted test specification’ that is

expressed in the Test Specification Language (TSL) (Figure 8-3). Step 3 can be skipped, resulting in an

‘unrestricted test specification’ (see Figure 8-4), which does not prevent contradictory test frames.

Figure 8-3: Restricted test specification for the find command, expressed in the
Test Specification Language (Ostrand & Balcer 1988).

Parameters:

 Pattern size:

 empty [property Empty]

 single character [property NonEmpty]

 many characters [property NonEmpty]

 longer than any line in the file [property NonEmpty]

 Quoting:

 pattern is quoted [property Quoted]

 pattern is not quoted [if NonEmpty]

 pattern is improperly quoted [if NonEmpty]

 Embedded white spaces:

 no embedded white spaces [if NonEmpty]

 one embedded white space [if NonEmpty and Quoted]

 several embedded white spaces [if NonEmpty and Quoted]

 Embedded quotes:

 no embedded quotes [if NonEmpty]

 one embedded quote [if NonEmpty]

 several embedded quotes [if NonEmpty]

 File name:

 good file name

 no file with this name

 omitted

Environments:

 Number of occurrences of pattern in the file:

 none [if NonEmpty]

 exactly one [if NonEmpty] [property Match]

 more than one [if NonEmpty] [property Match]

 Pattern occurrences on target line:

 # assumes line contains the pattern

 one [if Match]

 more than one [if Match]

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 280

Figure 8-4: Unrestricted test specification for the ‘find’ command, expressed in the
Test Specification Language (# denotes comments) (Ostrand & Balcer 1988).

Parameters:

 Pattern size:

 empty

 single character

 many characters

 longer than any line in the file

 Quoting:

 pattern is quoted

 pattern is not quoted

 pattern is improperly quoted

 Embedded white spaces:

 no embedded white spaces

 one embedded white space

 several embedded white spaces

 Embedded quotes:

 no embedded quotes

 one embedded quote

 several embedded quotes

 File name:

 good file name

 no file with this name

 omitted

Environments:

 Number of occurrences of pattern in the file:

 none

 exactly one

 more than one

 Pattern occurrences on target line:

 # assumes line contains the pattern

 one

 more than one

In step four, an initial set of ‘test frames’ are designed by taking the Cartesian product of choices in the

test specification, excluding those that cannot be combined due to constraints that were placed on them in

step three. The restricted specification depicted in Figure 8-3 results in 678 test frames, which Ostrand and

Balcer considered too high for the (relatively simple) find command (Ostrand & Balcer 1988).

Thus, in step five, the restricted specification can be further refined by adding two additional tags:

[error] and [single] (see Figure 8-5). The [error] tag reduces the number of redundant test frames by

identifying choices that result in invalid test cases, ensuring that only one test frame is derived for each such

choice (this is synonymous with the one-to-one test case design approaches for EP and BVA that are

defined in (BS 7925-2)). For example, Ostrand and Balcer recognised that the choice “no file with this

name” would result in an invalid test frame that the program should reject, regardless of any other valid or

invalid choices; thus, it could be tagged with [error] so that it was not tested in combination with other

choices. In addition, [single] can be used to mark choices that do not have to be combined with other

choices, which can be used to reduce the number of tests executed against certain choices that are of a lower

risk of affecting program correctness.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 281

Applying the [error] tag to the restricted specification for the find command reduces the number of

frames to 125, while tagging three choices with [single] reduces this to 40 frames (Figure 8-5).

Figure 8-5: Refined version of the restricted test specification for the ‘find’ command, expressed in
the Test Specification Language (Ostrand & Balcer 1988).

Parameters:

 Pattern size:

 empty [property Empty]

 single character [property NonEmpty]

 many characters [property NonEmpty]

 longer than any line in the file [property NonEmpty]

 Quoting:

 pattern is quoted [property Quoted]

 pattern is not quoted [if NonEmpty]

 pattern is improperly quoted [error]

 Embedded white spaces:

 no embedded white spaces [if NonEmpty]

 one embedded white space [if NonEmpty and Quoted]

 several embedded white spaces [if NonEmpty and Quoted]

 Embedded quotes:

 no embedded quotes [if NonEmpty]

 one embedded quote [if NonEmpty]

 several embedded quotes [if NonEmpty] [single]

 File name:

 good file name

 no file with this name [error]

 omitted [error]

Environments:

 Number of occurrences of pattern in the file:

 none [if NonEmpty] [single]

 exactly one [if NonEmpty] [property Match]

 more than one [if NonEmpty] [property Match]

 Pattern occurrences on target line:

 # assumes line contains the pattern

 one [if Match]

 more than one [if Match] [single]

In step six, a final set of test frames are generated by again taking the Cartesian product of the choices

that are defined in the test specification, excluding those that cannot be combined due to constraints that

were placed on them in steps three and five. Each test frame is then populated with test data, resulting in

one test case. The test cases can be annotated with additional information, such as a test case identification

number, a key listing the choices covered from each category, any commands that are required as

preconditions to set up the test, the test data that will be used during test execution and the expected result

of the test (Figure 8-6).

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 282

Figure 8-6: Example test case generated from the restricted specification for the find command
(Ostrand & Balcer 1988).

Test Frame:

 Test Case 28: (Key = 3.1.3.2.1.2.1)

 Pattern size: many characters

 Quoting: pattern is quoted

 Embedded blanks: several embedded white spaces

 Embedded quotes: one embedded quote

 File name: good file name

 Number of occurrences of pattern in file: exactly one

 Pattern occurrences on the target line: one

Command to set up the test:

 copy /testing/sources/case_28 testfile

find command to perform the test:

 find “has “” one quote” testfile

Instructions for checking the test:

 The following lien should be displayed:

 This line has “ one quote on it

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 283

Appendix B. Atomic Rules for Black-Box Testing

This section contain Atomic Rules for Equivalence Partitioning (Table 8-1 to Table 8-4), Boundary

Value Analysis (Table 8-6 to Table 8-9), Syntax Testing (Table 8-10 to Table 8-14) and combinatorial

testing methods All Combinations, Each Choice, Base Choice, Orthogonal Array Testing and Specification-

Based Mutation Testing, including Single-Substitution Mutation, Multiple-Substitution Mutation, All-

Permutations Mutation and All-Combinations Mutation (Table 8-16 to Table 8-25).

B.1 Equivalence Partitioning

The following tables contain Atomic Rules that have been defined for Equivalence Partitioning.

Table 8-1: Atomic Rules for Equivalence Partitioning.

Attribute Values Values Values Values

Test Method Equivalence Partitioning Equivalence Partitioning Equivalence Partitioning Equivalence Partitioning

Number EP1 EP2 EP3 EP4

Identifier LLBS GUBS LUBS IR

Name
Less Than Lower
Boundary Selection

Greater Than Upper
Boundary Selection

Lower to Upper
Boundary Selection

Integer Replacement

Description

Select an equivalence
class containing values
below the lower
boundary of a field

Select an equivalence
class containing values
above the upper
boundary of a field

Select an equivalence
class containing values
between the boundaries
of a field (including the
on-boundary values)

Select an equivalence
class containing every
integer value (other than
those in the valid set, if
applicable)

Source (Myers 1979) (Myers 1979) (Myers 1979) N/A

Rule Type DSSR DSSR DSSR DSSR

Set Type Range Range Range List or Range

Valid or Invalid Invalid Invalid Valid Invalid

Original Datatype
Integer, Real, Alpha,
Non-Alphanumeric

Integer, Real, Alpha,
Non-Alphanumeric

Integer, Real, Alpha,
Non-Alphanumeric

All

Test Datatype Same as original Same as original Same as original Integer

Test Data Length Same as original Same as original Same as original Max

Fields Populated 1 1 1 1

Tests Derived 0 0 0 0

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 284

Table 8-2: Atomic Rules for Equivalence Partitioning (continued).

Attribute Values Values Values Values

Test Method Equivalence Partitioning Equivalence Partitioning Equivalence Partitioning Equivalence Partitioning

Number EP5 EP6 EP7 EP8

Identifier RNR SAR MAR MANR

Name
Real Number
Replacement

Single Alpha
Replacement

Multiple Alpha
Replacement

Multiple Alphanumeric
Replacement

Description

Select an equivalence
class containing every
real value (other than
those in the valid set, if
applicable)

Select an equivalence
class containing every
single alpha value (other
than those in the valid
set, if applicable)

Select an equivalence
class containing multiple
alpha values (other than
those in the valid set, if
applicable)

Select an equivalence
class containing multiple
alphanumeric values
(other than those in the
valid set, if applicable)

Source (BS 7925-2) (BS 7925-2) (BS 7925-2) N/A

Rule Type DSSR DSSR DSSR DSSR

Set Type List or Range List or Range List or Range List or Range

Valid or Invalid Invalid Invalid Invalid Invalid

Original Datatype All All All All

Test Datatype Real Single Alpha Multiple Alpha Multiple Alphanumeric

Test Data Length Max 1 Max Max

Fields Populated 1 1 1 1

Tests Derived 0 0 0 0

Table 8-3: Atomic Rules for Equivalence Partitioning (continued).

Attribute Values Values Values Values

Test Method Equivalence Partitioning Equivalence Partitioning Equivalence Partitioning Equivalence Partitioning

Number EP9 EP10 EP11 EP12

Identifier SNAR MNAR NIR VLS

Name
Single Non-
Alphanumeric
Replacement

Multiple Non-
Alphanumeric
Replacement

Null Item Replacement Valid List Selection

Description

Select an equivalence
class containing a single
non-alphanumeric value
(other than those in the
valid set, if applicable)

Select an equivalence
class containing multiple
non-alphanumeric values
(other than those in the
valid set, if applicable)

Select an equivalence
class containing a Null
value

Select an equivalence
class containing all
values in the specified
list

Source N/A N/A N/A (Myers 1979)

Rule Type DSSR DSSR DSSR DSSR

Set Type List or Range List or Range List or Range List or Range

Valid or Invalid Invalid Invalid Invalid Valid

Original Datatype All All All All

Test Datatype
Single Non-
Alphanumeric

Multiple Non-
Alphanumeric

Null Same as original

Test Data Length 1 Max 0 Max

Fields Populated 1 1 1 1

Tests Derived 0 0 0 0

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 285

Table 8-4: Atomic Rules for Equivalence Partitioning (continued).

Attribute Values Values Values Values

Test Method Equivalence Partitioning Equivalence Partitioning Equivalence Partitioning Equivalence Partitioning

Number EP13 EP14 EP15 EP16

Identifier RDVS VTCCMin ITCCMax ITCCMin

Name
Random Data Value
Selector

Valid Test Case
Constructor – Minimised

Invalid Test Case
Constructor – Maximised

Invalid Test Case
Constructor – Minimised

Description

Selects a random value
from an equivalence
class

Construct the minimum
number of tests required
to cover all valid values
from all valid equivalence
classes

Construct one test for
each invalid test data
value (i.e. one field is
assigned an invalid value
selected from an invalid
equivalence class while
all others are assigned
nominal values)

Construct the minimum
number of test cases
reuiqred to cover all
invalid values (i.e. all
fields in each test are
assigned invalid values)

Source N/A (Myers 1979) (Myers 1979) (Myers 1979)

Rule Type DISR TCCR TCCR TCCR

Set Type List or Range List or Range List or Range List or Range

Valid or Invalid
Depends on whether the
class is valid or invalid

Valid Invalid Invalid

Original Datatype All All All All

Test Datatype Same as original Same as original Same as original Same as original

Test Data Length Max Max Max Max

Fields Populated 1
n, where n is the number
of input fields

n, where n is the number
of input fields

n, where n is the number
of input fields

Tests Derived 0
1 to m, where m = # valid
classes selected

m, where m = # invalid
classes selected

m, where m = # invalid
classes selected

Table 8-5: Atomic Rules for Equivalence Partitioning (continued).

Attribute Values Values

Test Method Equivalence Partitioning Equivalence Partitioning

Number EP17 EP18

Identifier NOM VTCCMax

Name Nominal Data Value Selector
Valid Test Case Constructor -
Maximised

Description

Selects the nominal (i.e. mid-
point) value from an equivalence
class

Construct one test for each valid
test data value (i.e. one field is
assigned a valid value selected
from a valid equivalence class
while all others are assigned
nominal values)

Source N/A (Myers 1979)

Rule Type DISR TCCR

Set Type List or Range List or Range

Valid or Invalid
Depends on whether the class is
valid or invalid

Valid

Original Datatype All All

Test Datatype Same as original Same as original

Test Data Length Max Max

Fields Populated 1
n, where n is the number of
input fields

Tests Derived 0
1 to m, where m = # valid
classes selected

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 286

B.2 Boundary Value Analysis

The following tables contain definitions of Atomic Rules for Boundary Value Analysis.

Table 8-6: Atomic Rules for Boundary Value Analysis.

Attribute Values Values Values Values

Test Method Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis

Number BVA1 BVA2 BVA3 BVA4

Identifier LBM LB LBP UBM

Name
Lower Boundary –
Selection

Lower Boundary
Selection

Lower Boundary +
Selection

Upper Boundary –
Selection

Description
Select value just below
the lower boundary of an
equivalence class

Select a value on the
lower boundary of an
equivalence class

Select a value just above
the lower boundary of an
equivalence class

Select a value just below
the upper boundary of an
equivalence class

Source (BS 7925-2) (Myers 1979) (Myers 1979) (Myers 1979)

Rule Type DISR DISR DISR DISR

Set Type Range Range Range Range

Valid or Invalid
Depends on partition
validity

Depends on partition
validity

Depends on partition
validity

Depends on partition
validity

Original Datatype
Integer, Real, Single
Alpha, Single Non-
Alphanumeric

Integer, Real, Single
Alpha, Single Non-
Alphanumeric

Integer, Real, Single
Alpha, Single Non-
Alphanumeric

Integer, Real, Single
Alpha, Single Non-
Alphanumeric

Test Datatype Same as original Same as original Same as original Same as original

Test Data Length Same as original Same as original Same as original Same as original

Fields Populated 1 1 1 1

Tests Derived 0 0 0 0

Table 8-7: Atomic Rules for Boundary Value Analysis (continued).

Attribute Values Values Values Values

Test Method Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis

Number BVA5 BVA6 BVA7 BVA8

Identifier UB UBP FLIS LLIS

Name
Upper Boundary
Selection

Upper Boundary +
Selection

First List Item Selection Last List Item Selection

Description
Select a value on the
upper boundary of an
equivalence class

Select a value just above
the upper boundary of an
equivalence class

Select the first item in a
list

Select the last item in a
list

Source (Myers 1979) (BS 7925-2) (Myers 1979) (Myers 1979)

Rule Type DISR DISR DISR DISR

Set Type Range Range List List

Valid or Invalid
Depends on partition
validity

Depends on partition
validity

Valid Valid

Original Datatype
Integer, Real, Single
Alpha, Single Non-
Alphanumeric

Integer, Real, Single
Alpha, Single Non-
Alphanumeric

All All

Test Datatype Same as original Same as original Same as original Same as original

Test Data Length Same as original Same as original Same as original Same as original

Fields Populated 1 1 1 1

Tests Derived 0 0 0 0

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 287

Table 8-8: Atomic Rules for Boundary Value Analysis (continued).

Attribute Values Values Values Values

Test Method Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis

Number BVA9 BVA10 BVA11 BVA12

Identifier MIR AFLLM1 ALLM1 SLIS

Name
Missing Item
Replacement

Attempt First List Item –
Selection

Attempt Last List Item +
Selection

Second List Item
Selection

Description Replace a field with null
Attempt to select a list
item before the first item
in a list

Attempt to select a list
item after the last item in
a list

Selects the second item
in a list

Source (Myers 1979) N/A N/A N/A

Rule Type DISR DISR DISR DISR

Set Type List or Range List List List

Valid or Invalid Invalid Invalid Invalid Valid

Original Datatype All All All All

Test Datatype Null Same as original Same as original Same as original

Test Data Length 0 Same as original Same as original Same as original

Fields Populated 1 1 1 1

Tests Derived 0 0 0 0

Table 8-9: Atomic Rules for Boundary Value Analysis (continued).

Attribute Values

Test Method Boundary Value Analysis

Number BVA13

Identifier LLIS

Name
Second Last List Item
Selection

Description
Selects the second last
item in a list

Source N/A

Rule Type DISR

Set Type List

Valid or Invalid Valid

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated 1

Tests Derived 0

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 288

B.3 Syntax Testing

The following tables contain definitions of Atomic Rules for Syntax Testing.

Table 8-10: Atomic Rules for Syntax Testing.

Attribute Values Values Values Values

Test Method Syntax Testing Syntax Testing Syntax Testing Syntax Testing

Number ST1 ST2 ST3 ST4

Identifier RMLC RPLC AECE RMFC

Name Remove last character Replace last character
Add extra character to
end of field

Remove first character

Description
Remove the last
character of an input
string

Replace the last
character of a string with
an invalid value

Add an extra character to
the end of a string

Remove the first
character of a string

Source
(Beizer 1990, Marick
1995)

(Marick 1995)
(Beizer 1995, Marick
1995)

N/A

Rule Type DISR DISR DISR DISR

Set Type List or Range List or Range List or Range List or Range

Valid or Invalid Invalid Invalid Invalid Invalid

Original Datatype All All All All

Test Datatype Same as original Same as original Same as original Same as original

Test Data Length
m - 1, where m is the
original field length

Same as original
m + 1, where m is the
original field length

m - 1, where m is the
original field length

Fields Populated 1 1 1 1

Tests Derived 0 0 0 0

Table 8-11: Atomic Rules for Syntax Testing (continued).

Attribute Values Values Values Values

Test Method Syntax Testing Syntax Testing Syntax Testing Syntax Testing

Number ST5 ST6 ST7 ST8

Identifier RPFC AECS ULL LUL

Name Replace first character
Add extra character to
start of field

Uppercase a lowercase
letter

Lowercase an uppercase
letter

Description
Replace the first
character of a string with
an invalid value

Add an extra character to
the start of a string

Change the case of a
uppercase letter to
lowercase

Change the case of a
lowercase letter to
uppercase

Source N/A N/A (Marick 1995) (Marick 1995)

Rule Type DISR DISR DISR DISR

Set Type List or Range List or Range List or Range List or Range

Valid or Invalid Invalid Invalid Invalid Invalid

Original Datatype All All Alpha Alpha

Test Datatype Same as original Same as original Same as original Same as original

Test Data Length Same as original
m + 1, where m is the
original field length

Same as original Same as original

Fields Populated 1 1 1 1

Tests Derived 0 0 0 0

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 289

Table 8-12: Atomic Rules for Syntax Testing (continued).

Attribute Values Values Values Values

Test Method Syntax Testing Syntax Testing Syntax Testing Syntax Testing

Number ST9 ST10 ST11 ST12

Identifier NAI DF AAF SELA

Name Null all input Duplicate Field Add a field
Select Each List
Alternative

Description

Construct a test case
that is empty

Construct a test case
that has one field
duplicated (all other
fields are assigned their
nominal value)

Construct a test case
that contains a new field
(contents of new field
must be defined,
possibly using GQAS)

For a specification with a
list, create test cases
where each alternative in
each list is selected once
(all other fields are
assigned nominal values)

Source (Beizer 1990) (BS 7925-2, Beizer 1995)
(BS 7925-2, Beizer
1995)

(Marick 1995)

Rule Type TCCR TCCR TCCR TCCR

Set Type List or Range All All All

Valid or Invalid Invalid Invalid Invalid Valid

Original Datatype All All All All

Test Datatype Null Same as original Same as original Same as original

Test Data Length 0 Same as original Same as original Same as original

Fields Populated
n, where n is the number
of specification fields

n, where n is the number
of specification fields

n, where n is the number
of specification fields

n, where n is the number
of specification fields

Tests Derived 1 1 1
p, where p is the number
of alternatives

Table 8-13: Atomic Rules for Syntax Testing (continued).

Attribute Values Values Values Values

Test Method Syntax Testing Syntax Testing Syntax Testing Syntax Testing

Number ST13 ST14 ST15 ST16

Identifier SALA SALAR RR SC

Name
Select All List
Alternatives

Select All List
Alternatives in Reverse
Order

Reference Replacement Syntax Cover

Description

Select every alternative
from a list in the one test

Select every alternative
from a list in the reverse
order in the one test

For non-terminal fields
that references other
terminals, create a test
case in which the non-
terminal references itself

Construct a set of test
cases which link-cover
the syntax graph of the
specification under test

Source (Marick 1995) (Marick 1995) (Marick 1995)
(Beizer 1995, Hetzel
1988)

Rule Type DISR DISR TCCR TCCR

Set Type All All All All

Valid or Invalid Invalid Invalid Invalid Valid

Original Datatype All All All All

Test Datatype Same as original Same as original Same as original Same as original

Test Data Length Same as original Same as original Same as original Same as original

Fields Populated 1 1
n, where n is the number
of specification fields

n, where n is the number
of specification fields

Tests Derived 0 0
q, where q is the number
of references to other
non-terminals

r, where r is the number
of basis paths
(Pressman 1992)

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 290

Table 8-14: Atomic Rules for Syntax Testing (continued).

Attribute Values Values Values

Test Method Syntax Testing Syntax Testing Syntax Testing

Number ST17 ST18 ST19

Identifier AMC RMC RF

Name Add Middle Character
Remove Middle
Character

Reverse All Fields

Description
Adds a character to the
middle of a test data
value

Removes a character
from the middle of a test
data value

Constructs a test case in
which all input fields are
reversed

Source N/A N/A N/A

Rule Type DIMR DIMR TCCR

Set Type List or Range List or Range List or Range

Valid or Invalid Invalid Invalid
Depends on whether rule
is applied to valid or
invalid values

Original Datatype All All All

Test Datatype Any Any Same as original

Test Data Length
m - 1, where m is the
original field length

m + 1, where m is the
original field length

Same as original

Fields Populated 1 1 1

Tests Derived 0 0 1

B.4 State Transition Testing

The following Data-Set Selection Rule was defined for supporting State Transition Testing (see Chapter

3, Section 3.6.1).

Table 8-15: An Atomic Rule for State Transition Testing.

Attribute Values

Test Method State Transition Testing

Number STT1

Identifier ILS

Name Invalid List Selection

Description
Selects an equivalence class containing the set of all
input values for a state transition diagram that are
valid at all other states other than the current state

Source N/A

Rule Type DSSR

Set Type List or Range

Valid or Invalid Invalid

Original Datatype All

Test Datatype Same as original

Test Data Length Max

Fields Populated 1

Tests Derived 0

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 291

B.5 Combinatorial Testing Methods

The following tables contain definitions of Atomic Rules for various combinatorial testing methods.

Table 8-16: An Atomic Rule for the combinatorial testing method All Combinations.

Attribute Definition

Test Method Combinatorial Testing

Number CT1

Identifier AC

Name All Combinations

Description
Construct every possible combination of test data values, which may be selected by the Data-Item
Selection Rules and Data-Item Manipulation Rules of other black-box testing methods.

Source (Grindal, Lindström, Offutt & Andler 2004)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived Approximately

N

i iV
1

test cases, where N is the number of parameters in the input string and where

each parameter has Vi values.

Table 8-17: An Atomic Rule for the combinatorial testing method Each Choice.

Attribute Definition

Test Method Combinatorial Testing

Number CT2

Identifier EC

Name Each Choice

Description
Construct a test of test cases by including test data values for each input field in at least one test case.
The test data values may be selected by the Data-Item Selection Rules and Data-Item Manipulation
Rules of other black-box testing methods.

Source (Ammann & Offutt 1994)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived i
N
i VMax 1 test cases, where N is the number of parameters in the input string and where each

parameter has Vi values.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 292

Table 8-18: An Atomic Rule for the combinatorial testing method Base Choice.

Attribute Definition

Test Method Combinatorial Testing

Number CT3

Identifier BC

Name Base Choice

Description

Select a ‘base’ test case in which each input field is assigned one test data value. Construct new test
cases by varying the test data values of each field of the base test case one at a time. The values for
the base test case and the varying values may be selected by the Data-Item Selection Rules and Data-
Item Manipulation Rules of other black-box testing methods.

Source (Ammann & Offutt 1994)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived At least

N

i
iV

1

)1(1 test cases, where N is the number of parameters in the input string and

where each parameter has Vi values.

Table 8-19: An Atomic Rule for the combinatorial testing method Orthogonal Array Testing (also
known as Pair-Wise Testing).

Attribute Definition

Test Method Combinatorial Testing

Number CT4

Identifier OA

Name Orthogonal Array Testing

Description
Construct an orthogonal array of test data values, which may be selected by the Data-Item Selection
Rules and Data-Item Manipulation Rules of other black-box testing methods.

Source (Mandl 1985)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived Approximately
2

iV test cases, where j
N
ji VMaxV 1 where N is the number of parameters in the

input string and where each parameter has Vi values.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 293

Table 8-20: Atomic Rules for the combined combinatorial testing method Base Choice + Orthogonal
Array Testing.

Attribute Definition

Test Method Combinatorial Testing

Number CT5

Identifier BC+OAT

Name Combined Strategy: Base Choice + Orthogonal Array Testing

Description
Apply the base-choice rule first to select a set of base-choice test cases and then create an orthogonal
array of the values that were selected for each field of each test case.

Source (Grindal, Lindström, Offutt & Andler 2004)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived
Approximately

2
iV test cases, where j

N
ji VMaxV 1 where N is the number of parameters in the

input string and where each parameter has Vi values that were selected using the base-choice
approach.

Table 8-21: Atomic Rules for the combined combinatorial testing method Base Choice + Heuristic
Pair-Wise Testing.

Attribute Definition

Test Method Combinatorial Testing

Number CT6

Identifier BC+HPW

Name Combined Strategy: Base Choice + Heuristic Pair-Wise

Description
Apply the base-choice TCCR CT3 to select a set of base-choice test cases and then use the ‘heuristic
pair-wise’ algorithm to them to create a new set of test cases from them.

Source (Grindal, Lindström, Offutt & Andler 2004)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived
Approximately

2
iV test cases, where j

N
ji VMaxV 1 where N is the number of parameters in the

input string and where each parameter has Vi values that were selected using the base-choice
approach.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 294

Table 8-22: An Atomic Rule for the combinatorial testing method Specification-Based Mutation
Testing.

Attribute Definition

Test Method Specification-Based Mutation Testing

Number SBMT1

Identifier SSM

Name Single-Substitution Mutation

Description

Construct a base test case by selecting one a valid test data value for each input field. Then, construct
a series of mutant test cases by substituting one field for another field, one substitution per test case.
Repeat this process until every field has been substituted for every other field. The test data values in
the base test case can be selected by the Data-Item Selection Rules and Data-Item Manipulation Rules
of other black-box testing methods.

Source (Murnane & Reed 2001)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameter in the input string

Tests Derived)1(nn test cases, where n is the number of parameters in the input string.

Table 8-23: An Atomic Rule for the combinatorial testing method Specification-Based Mutation
Testing.

Attribute Definition

Test Method Specification-Based Mutation Testing

Number SBMT2

Identifier MSM

Name Multiple-Substitution Mutation

Description

Construct a base test case by selecting one a valid test data value for each input field. Then, construct
a series of mutant test cases by substituting one field for another n other field, with n substitutions per
test case, where n is the number of fields in the test case. Repeat this field until every pair of fields has
been substituted for every other pair of fields. The test data values in the base test case can be
selected by the Data-Item Selection Rules and Data-Item Manipulation Rules of other black-box testing
methods.

Source (Murnane & Reed 2001)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived)(mnO test cases, where n is the number of parameters in the input string and m is the number of

parameters substituted per mutant.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 295

Table 8-24: An Atomic Rule for the combinatorial method Specification-Based Mutation Testing.

Attribute Definition

Test Method Specification-Based Mutation Testing

Number SBMT3

Identifier APM

Name All-Permutations Mutation

Description
Construct a base test case by selecting one a valid test data value for each input field. Then, construct
all permutations of the base test case. The test data values in the base test case can be selected by the
Data-Item Selection Rules and Data-Item Manipulation Rules of other black-box testing methods.

Source (Murnane & Reed 2001)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived
)!(

!

)1(...)2()1(),(

rn

n

rnnnnrnP

where n is the number of parameters in the entire input string, and r is the number of parameters that
are included in each test case. n = r iff all parameters are included in each test case.

Table 8-25: An Atomic Rule for the combinatorial testing method Specification-Based Mutation
Testing.

Attribute Definition

Test Method Specification-Based Mutation Testing

Number SBMT4

Identifier ACM

Name All-Combinations Mutation

Description
Construct a base test case by selecting one a valid test data value for each input field. Then, construct
all combinations of the base test case. The test data values in the base test case can be selected by
the Data-Item Selection Rules and Data-Item Manipulation Rules of other black-box testing methods.

Source (Murnane & Reed 2001)

Rule Type TCCR

Set Type List or Range

Valid or Invalid Depends on whether rule is applied to valid or invalid values

Original Datatype All

Test Datatype Same as original

Test Data Length Same as original

Fields Populated n, where n is the number of parameters in the input string

Tests Derived !)!(

!
),(

rrn

n
rnC

where n is the number of parameters in the entire input string, and r is the number of parameters that
are included in each test case. n = r iff all parameters are included in each test case.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 296

Appendix C. Atomic Rules’ Quick Reference Guide

The ‘Quick Reference Guide’ that lists Atomic Rules from EP, BVA and ST, which was presented to

participants of the industrial experiment, are shown below (Table 8-26, Table 8-27 and Table 8-28). Five

Atomic Rules from ST are not included, as these additional Atomic Rules were added to this method after

the experiment was complete.

Table 8-26: Atomic Rules for Equivalence Partitioning.

Rule ID Rule Name Rule Type
Valid or
Invalid

EP1 LLBS Less Than Lower Boundary Selection DSSR Invalid

EP2 GUBS Greater Than Upper Boundary Selection DSSR Invalid

EP3 LUBS Lower to Upper Boundary Selection DSSR Valid

EP4 IR Integer Replacement DSSR Invalid

EP5 RNR Real Number Replacement DSSR Invalid

EP6 SAR Single Alpha Replacement DSSR Invalid

EP7 MAR Multiple Alpha Replacement DSSR Invalid

EP8 MANR Multiple Alphanumeric Replacement DSSR Invalid

EP9 SNAR Single Non-Alphanumeric Replacement DSSR Invalid

EP10 MNAR Multiple Non-Alphanumeric Replacement DSSR Invalid

EP11 NIR Null Item Replacement DISR Invalid

EP12 VLIS Valid List Item Selection DISR Valid

EP13 RDVS Random Data Value Selector DISR Depends

EP14 VTCC Valid Test Case Constructor TCCR Valid

EP15 ITCMax Invalid Test Case Constructor – Maximised TCCR Invalid

EP16 ITCMin Invalid Test Case Constructor – Minimised TCCR Invalid

Table 8-27: Atomic Rules for Boundary Value Analysis.

Rule ID Rule Name Rule Type
Valid or
Invalid

BVA1 LBM Lower Boundary – Selection DISR Invalid

BVA2 LB Lower Boundary Selection DISR Valid

BVA3 LBP Lower Boundary + Selection DISR Valid

BVA4 UBM Upper Boundary – Selection DISR Valid

BVA5 UB Upper Boundary Selection DISR Valid

BVA6 UBP Upper Boundary + Selection DISR Invalid

BVA7 FLIS First List Item Selection DISR Valid

BVA8 LLIS Last List Item Selection DISR Valid

BVA9 MIR Missing Item Replacement TCCR Invalid

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 297

Table 8-28: Atomic Rules for Syntax Testing.

Rule ID Rule Name Rule Type
Valid or
Invalid

ST1 RMLC Remove last character DIMR Invalid

ST2 RPLC Replace last character DIMR Invalid

ST3 AECE Add extra character to end DIMR Valid

ST4 RMFC Remove first character DIMR Invalid

ST5 RPFC Replace first character DIMR Invalid

ST6 AECS Add extra character to start DIMR Invalid

ST7 ULL Uppercase a lowercase letter DIMR Invalid

ST8 LUL Lowercase an uppercase letter DIMR Invalid

ST9 NAI Null all input TCCR Depends

ST10 DF Duplicate field TCCR Invalid

ST11 AAF Add a field TCCR Invalid

ST12 SELA Select each list alternative TCCR Valid

ST13 SALA Select all list alternatives TCCR Invalid

ST14 SALAR Select all list alternatives in reverse order TCCR Invalid

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 298

Appendix D. Known Failures in the Address Parser

The table below lists all known failures in the Address Parser program, which was used in the industrial

experiment. This includes a description of the failure, an example input that is capable of detecting a failure,

and a mapping to the Atomic Rules that can be used to detecting the failure.

Table 8-29: Known defects in the Address Parser program.

Failure Description Example Input Example Output

Atomic Rules
Capable of

Detecting the
Failure

1 Address with missing
unit/flat/rsd identifier and
missing space before unit
number is accepted as correct

100 / 200 Main Road
Eltham 3095.

Following address appears in
Addresses-Correct.txt:
100 / 200 Main Rd Eltham 3095

BVA9 or EP11
with EP16

2 Missing unit/flat/rsd at start of
address and missing separator
(/ or ,), or invalid symbol in
place of street name or street
type, or replacing street name
with symbol results, all result in
error messages of street not
found, invalid suburb and no
full stop at end of address

100 200 Main Road
Eltham 3095.
100 # Road Eltham
3095.
100 Main # Eltham
3095.

Following errors reported to error log:
Error... Street not found.
Error... There was no full stop at the
end of the address.
Error... Invalid suburb entered.

EP1, EP2, EP4,
EP5, EP6, EP7,
EP8, EP9,
EP10, EP11,
BVA1, BVA6,
BVA9, ST1,
ST2, ST3, ST4,
ST5, ST6,
ST10, ST11,
ST13, ST14

3 Correct RSD addresses that
include a unit and house
number are output to correct
address file without the RSD
tag

RSD 100 / 100 Main
Street Eltham 3095.

Following address appears in
Addresses-Correct.txt:
100 / 100 Main St Eltham 3095.

EP12, ST12

4 Missing unit or house number
results in error message of
incorrect spaces after house
number

UNIT 100 / Main Road
Eltham 3095.

Following errors reported to error log:
Error... Incorrect spaces after unit or
flat symbol.
Error... Number has too few digits.
Must have 3.
Error... Incorrect spaces after house
or unit number.

EP1, EP11,
BVA9

5 Multiple spaces or invalid data
after C/- or C/o results in error
message of illegal spaces
before address

C/-Main Road Eltham
3095.
C/o1 Main Road
Greensborough 3088.
C/oa Main Road
Greensborough 3088.
C/o Main Road
Greensborough 3088.

Following error reported to error log:
Error... Illegal spaces before address.

EP1, EP2,
EP11, BVA3,
BVA9, ST3,
ST6, ST10

6 Forward slash and hyphen are
accepted in place of full stop at
end of address, which sit just
above and below full stop in
ASCII (this is a seeded fault)

100 Main Street Eltham
3095/

Following addresses appears in
Addresses-Correct.txt:
100 Main St Eltham 3095.
100 Main St Eltham 3095.

EP9 or BVA1
and BVA6

7 Valid postcode Ivanhoe East is
rejected (this is a seeded fault).
Error message is also
incorrectly reported when
multiple spaces are entered
after suburb, or missing
postcode, or missing postcode
and extra spaces between
suburb and postcode.

100 Main Road Ivanhoe
East 3079.
100 Main Road Eltham
3095.
100 Main Road Eltham .

Following error reported to error log:
Error... Postcode does not match
suburb.

EP2, EP3, EP4,
EP5, EP6, EP7,
EP11, EP12,
EP13, BVA3,
BVA9, ST10,
ST12

8 Address with missing street
name or street type is accepted
as valid, correct address output
file is missing street name and
type, and no error is reported

100 Road Eltham 3095.
UNIT 100 / 100 Main
Greensborough 3088.

Following address appears in
Addresses-Correct.txt:
100 Eltham 3095.
UNIT 100 / 100 Main Greensborough
3088.

EP1, EP11,
BVA1, BVA4,
BVA9

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 299

Failure Description Example Input Example Output

Atomic Rules
Capable of

Detecting the
Failure

Continued from previous page…

9 Accepts greater than 40
characters in street name

100
aaaaaaaaaabbbbbbbbb
bccccccccccddddddddd
de St Eltham 3095.

Following address appears in
Addresses-Correct.txt:
100
Aaaaaaaaaabbbbbbbbbbccccccccccd
ddddddddde St Eltham 3095.

EP2, BVA6

10 The street Road St is rejected
as invalid, while other variants
such as Court Street are
accepted. This error is also
detected by multiple spaces
after street and missing street
name.

Rejected:
100 Road St Eltham
3095.
Accepted:
100 Court St Eltham
3095.
Also detected by:
100 Main Road
Eltham 3095.
100 Main Eltham 3095.

Following error reported to errror log:
Error... Invalid suburb entered.

EP1, EP2, EP3,
EP5, EP6, EP7,
EP11, EP12,
BVA1, BVA2,
BVA3, BVA5,
BVA7, BVA8,
BVA9, ST1,
ST2, ST3, ST4,
ST5, ST6,
ST10, ST12,
ST14

11 A large number of spaces
between street name and
street type results in an error
message of street not found

C/o Main Road
Greensborough 3088.

Following error reported to error log:
Error... Street not found.

EP1, EP2,
EP11, BVA1,
BVA3, BVA9
ST1, ST2, ST3,
ST4, ST5, ST6,
ST10, ST12,
ST14

12 Inserting extra spaces between
suburb and postcode results in
error message of spaces
required after suburb

UNIT 100 / 100 Main
Road Greensborough
3088.

Following errors reported to error log:
Error... Space required after suburb.

EP3, EP12,
ST2, ST3, ST5,
ST6, ST11,
ST13, ST14

13 Program is not case sensitive -
it does not report errors for
lowercase at start of street
name, street type or suburb, or
lowercase unit, flat, rsd, c/o or
c/

100 main Road Eltham
3095.
100 Main rd Eltham
3095.

Following address appears in
Addresses-Correct.txt:
100 Main Rd Eltham 3095.
100 Main Rd Eltham 3095.

EP3, EP12,
EP13, ST3,
ST4, ST7, ST8,
ST10, ST12

14 Address strings of 99
characters or more are not
processed by the program and
prevent all other addresses
from being processed.

100
aaaaaaaaaabbbbbbbbb
bccccccccccddddddddd
deeeeeeeeeehhhhhhhh
hhiiiiiiiiiijj St
Greensborough 3088.

All output files are empty, including
the error log

EP2, BVA4,
BVA5, BVA6,
BVA8, ST13,
ST14

15 Street types are abbreviated in
the correct address output file,
regardless of which form they
were input in

100 Main Road Eltham
3095.
100 Main Rd Eltham
3095.

Following address appears in
Addresses-Correct.txt:
100 Main Rd Eltham 3095.
100 Main Rd Eltham 3095.

EP12, ST12

16 Replacing the unit number with
a symbol results in extra error
messages of incorrect flat/unit
symbol and incorrect spaces
after house or unit number

UNIT [/ 200 Main Road
Greensborough 3088.

Following errors reported to error log:
Error... Number has too few digits.
Must have 3.
Error... Incorrect flat/unit symbol.
Error... Number has too few digits.
Must have 3.
Error... Incorrect spaces after house
or unit number.

EP9, BVA1

17 Replacing space after UNIT or
C/o identifier, removing space
after unit number or C/o,
inserting extra spaces between
the UNIT identifier and the unit
number, or adding an invalid
character after the UNIT tag, all
result in addresses being
accepted as correct

UNITa100 / 200 Main
Road Greensborough
3088.
UNIT 100/ 200 Main Road
Greensborough 3088.
C/oMain Road
Greensborough 3088.
UNIT 100 / 200 Main
Road Greensborough
3088.
UNIT1 100 / 200 Main
Road Greensborough
3088.

Following addresses appear in
Addresses-Correct.txt:
UNITa100 / 200 Main Road
Greensborough 3088.
UNIT 100/ 200 Main Road
Greensborough 3088.
C/o Ain Road Greensborough 3088.
UNIT 100 / 200 Main Road
Greensborough 3088.
UNIT 100 / 200 Main Road
Greensborough 3088.

EP1, EP6, EP7,
EP9, EP11,
EP12, BVA1,
BVA3, BVA6,
BVA9, ST1,
ST2 , ST3,
ST4, ST5, ST6

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 300

Failure Description Example Input Example Output

Atomic Rules
Capable of

Detecting the
Failure

Continued from previous page…

18 Invalid symbol in place of
postcode results in error
message of missing full stop
being reported

100 Main Road Eltham
%.

Following error reported to error log:
Error... There was no full stop at the
end of the address.

EP1, EP4, EP5,
EP6, EP7, EP8,
EP9, EP10,
EP11, BVA9,
ST2, ST10

19 Missing space after
UNIT/FLAT/RSD tag results in
error message of number
having too few digits

UNIT100 / 200 Main
Road Greensborough
3088.

Following error reported to error log:
Error... Number has too few digits.
Must have 3.

EP1, EP5, EP9,
EP11, BVA1,
BVA4, BVA9,
ST1, ST4

20 Replacing house number with
a Real results in error
messages incorrectly reporting
there were incorrect spaces
after the house number, space
required after suburb, street
not being found and invalid
suburb being entered

100.11 Main Road
Eltham 3095.

Following errors reported to error log:
Error... Incorrect spaces after house
or unit number.
Error... Space required after suburb.
Error... Street not found.
Error... Invalid suburb entered.

EP2, EP5

21 Missing or invalid unit or house
number results in error
message of incorrect spaces
after house number

a Main Road Eltham
3095.
UNIT 100 / a Main Road
Greensborough 3088.

Following errors reported to error log:
Error... Number has too few digits.
Must have 3.
Error... Incorrect spaces after house
or unit number.

EP6, EP7, ST2,
ST1, ST2, ST3,
ST4, ST5, ST6,
ST11, ST14

22 Invalid characters in house
number correctly results in
error message of invalid house
number, but also that spaces
after house number and suburb
are incorrect, street was not
found, invalid suburb and
missing full stop

a12C Main Road
Greensborough 3088.
[Main Road
Greensborough 3088.
RSD A99 Main Grove
Yan Yean 3755.

Following errors reported to error log:
Error... Number has too few digits.
Must have 3.
Error... Incorrect spaces after house
or unit number.
Error... Space required after suburb.
Error... Street not found.
Error... There was no full stop at the
end of the address.
Error... Invalid suburb entered.

EP3, EP4, EP5,
EP6, EP7, EP8,
EP9, EP10,
EP12, BVA1,
BVA3, BVA6,
ST1, ST2, ST3,
ST5, ST6,
ST11

23 Missing house number results
in two messages reporting that
there were illegal spaces
before the address

 Main Road
Greensborough 3088.

Following errors reported to error log:
Error... Illegal spaces before address.
Error... Illegal spaces before address.
Error... Number has too few digits.
Must have 3.
Error... Incorrect spaces after house
or unit number.

EP11, BVA9

24 Inserting an integer between
the street type and suburb
results in error message of
missing full stop and invalid
suburb

100 Main Road 5555
Greensborough 3088.

Following errors reported to error log:
Error... There was no full stop at the
end of the address.
Error... Invalid suburb entered.

EP4, EP9,
EP10, ST5,
ST6

25 Removing the UNIT/FLAT/RSD
identifier results in error
message of illegal spaces
before address

 100 / 200 Main Road
Greensborough 3088.

Following errors reported to error log:
Error... Illegal spaces before address.
Error... Illegal spaces before address.

EP1, EP11,
BVA9

26 Program does not detect data
after the full stop field.

100 Main Street Eltham
3095.VIC

Following address appears in
Addresses-Correct.txt:
100 Main Street Eltham 3095.

ST3, ST10,
ST11

27 Street type Place is not
accepted as correct and error
message also reports invalid
suburb.

100 Main Place Eltham
3095.

Error... Street not found.
Error... Invalid suburb entered.

ST12

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 301

Appendix E. Known Failures in the Batch Processor

The table below lists all known failures detectable in the Batch Processor program, which was used in

the industrial experiment. This includes a description of the failure, an example input that is capable of

detecting a failure, and a mapping to the Atomic Rules that can be used to detecting the failure.

Table 8-30: Known defects in the Batch Processor program.

Failure Description Example Input Example Output

Atomic Rules
Capable of

Detecting the
Failure

1 Averages across all batches
are rounded, resulting in
invalid results (averages
were stored as integers, not
Reals/doubles)

sbatch 11AAA
A11A 30, AA11A 31
ebatch 11AAA
lbatch

Average computed as 60 EP2, EP3, EP12,
BVA2, BVA3,
BVA4, BVA5,
BVA6, BVA7,
BVA8

2 Did not diagnose non-
matching sbatch and ebatch
id’s

sbatch 11AAA
A11A 30
ebatch 11BBB
lbatch

No error recorded in error log EP1, EP11, BVA2
BVA4, BVA5,
BVA6, BVA7,
BVA8, BVA9, ST12

3 Missing character from
lbatch tag correctly
diagnosed, but with extra
error message of invalid
batchid being reported

sbatch 11AAA
A11A 50
ebatch 11AAA
lbatc

Line # 4: BatchIDCheck
FAILED(format should be
<d><d><l><l><l>)
Line # 5: incorrect end of file,
no lbatch detected

ST1, ST4

4 Did not diagnose data after
sbatch, ebatch, lbatch or
after a recordline

sbatch 11AAA 11AAA
A11A 30 30
ebatch 11AAA 11AAA
lbatch
abcde

No error recorded in error log ST11

5 Did not diagnose missing
sbatch id

sbatch
A11A 30
ebatch 11AAA
lbatch

No error recorded in error log EP11, BVA9

6 Did not diagnose missing or
additional partid

sbatch 11AAA
 30
ebatch 11AAA
lbatch

sbatch 11AAA
A11A A11A 50
ebatch 11AAA
lbatch

No error recorded in error log EP11, BVA9, ST11

7 Did not diagnose missing
ebatch tag

sbatch 11AAA
A11A 30
 11AAA
lbatch

No error recorded in error log EP1, EP11, BVA9

8 Did not diagnose missing
ebatch id

sbatch 11AAA
A11A 30
ebatch
lbatch

No error recorded in error log EP11, BVA9

9 Did not diagnose spaces
before sbatch

 sbatch 11AAA
A11A 30
ebatch 11AAA
lbatch

No error recorded in error log ST11

10 Did not diagnose spaces
before ebatch

sbatch 11AAA
A11A 30
 ebatch 11AAA
lbatch

No error recorded in error log ST11

11 Did not diagnose spaces
before lbatch

sbatch 11AAA
A11A 30
ebatch 11AAA
 lbatch

No error recorded in error log ST11

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 302

Failure Description Example Input Example Output

Atomic Rules
Capable of

Detecting the
Failure

Continued from previous page…

12 Did not diagnose extra
spaces between partid and
value

sbatch 11AAA
A11A 30
ebatch 11AAA
lbatch

No error recorded in error log EP1, EP2, EP11,
BVA3, BVA6,
BVA9

13 Missing input file is not
reported as an error to the
error log

No input.txt file exists in
folder

No error recorded in error log EP11, BVA9

14 Program crashes with a
"divide by zero" error when
the input file does not
contain at least one batch
with one valid recordline.
This includes a batch with a
missing or uppercase
sbatch tag, missing or
invalid values (e.g. alpha
instead of integer or values
< -99 or > 98), missing
spaces between sbatch tag
and id, missing spaces or
invalid characters between
partid and value, and on
empty file

 11AAA
A11A 30
ebatch 11AAA
lbatch

SBATCH 11AAA
A11A 30
ebatch 11AAA
lbatch

sbatch 11AAA
A11A=30
ebatch 11AAA
lbatch

Program crashed EP1, EP2, EP4,
EP5, EP6, EP7,
EP8, EP9, EP10,
EP11, BVA1,
BVA2, BVA3,
BVA4, BVA6,
BVA7, BVA9, ST1,
ST2, ST3, ST4,
ST5, ST6, ST7,
ST10, ST11, ST12,
ST13, ST14

15 Misdiagnoses missing
letters from partid and
missing letters in sbatch and
ebatch id's

sbatch 11
A11A 30
ebatch 11AAA
lbatch

sbatch 11AAA
A11A 30
ebatch 11
lbatch

sbatch 11AAA
11A 30
ebatch 11
lbatch

Line # 2: Incorrect Data Type
for Value Entered, please
ensure it is an integer

EP1, EP11, BVA9,
ST1, ST4, ST5,
ST10

16 Did not diagnose missing
space or extra space after
comma on a recordline

sbatch 11AAA
A11A 30,B22B 25
ebatch 11AAA
lbatch

No error recorded in error log BVA1, BVA4,
BVA9, ST1, ST4

17 Missing digit in sbatch id or
value of -100 (when at least
one recordline is valid) is
reported as an invalid partid

sbatch 1AAA
A11A 50
B11B -100
ebatch 11AAA
lbatch

Line # 1: PartIDCheck
FAILED(format should be
<l><d><d><l>)

ST1, ST2, ST3,
ST6, ST10, ST11

18 Misdiagnoses invalid partid
as an invalid sbatch or
ebatch identifier

sbatch 11AAA
1111A 50
ebatch 11AAA
lbatch

sbatch 11AAA
?A11A 50
ebatch 11AAA
lbatch

Line # 2: BatchIDCheck
FAILED(format should be
<d><d><l><l><l>)

ST1, ST2, ST3,
ST4, ST5, ST6,
ST10

19 Did not diagnose invalid
sbatch or ebatch id, and
output calculations are
incorrect

sbatch 11AAA
A11A 30
ebatch 11
lbatch

sbatch 11
A11A 30
ebatch 11AAA
lbatch

No error recorded in error log
and output calculations are
incorrect

EP1, EP11, BVA9

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 303

Failure Description Example Input Example Output

Atomic Rules
Capable of

Detecting the
Failure

Continued from previous page…

20 Did not diagnose missing
comma between two parts

sbatch 11AAA
A11A 30 B22B 25
ebatch 11AAA
lbatch

No error recorded in error log EP1, EP11, BVA9,
ST1, ST4

21 Did not diagnose extra
comma between two parts

sbatch 11AAA
A11A 30,, B22B 25
ebatch 11AAA
lbatch

No error recorded in error log ST10

22 Program does not diagnose
uppercase S in sbatch tag
when there is at leats one
other valid batch in the file

Sbatch 11AAA
A11A 30, B22B 25
ebatch 11AAA
lbatch

No error recorded in error log ST7

23 Program does not diagnose
partid and value in the
reverse order

sbatch 11AAA
50 A11A
ebatch 11AAA
lbatch

No error recorded in error log Incorrect use of
ST14, could be
detected using
SBMT substitution
rule

24 Does not diagnose missing
value when there are more
than two recordlines in a file

sbatch 11AAA
A11A 50
B11B
ebatch 11AAA
lbatch

No error recorded in error log EP11, BVA9

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 304

Appendix F. Functional Specification of the Atomic Rules Testing Tool

F.1 Overview

This section provides a detailed, low-level functional specification for the Atomic Rules Testing Tool. It

starts by providing an overview of the ‘screens’ (i.e. GUI components) of ARTT (Section F.2) and

illustrating the process of creating Atomic Rules, creating specifications and generating test data (Section

F.3). This is followed by a detailed explanation of the functionality of each GUI screen (Section F.4),

pseudo code that explains how ARTT generates test data (Section F.6) and a definition of the datatypes that

are covered by ARTT (Section F.5).

F.2 High-Level Screen Design and Navigation

As outlined in Chapter 4, ARTT functionality is divided into two main areas: administrator and user

functionality. The screens that are available in the system are as follows (Figure 8-7).

 Main Menu. This screen allows the user to navigate either to user functions or administrator

functions (see Section F.4.1).

 Atomic Rules Editor. This screen allows administrators to create, edit and delete Atomic Rules

(see Section F.4.2).

 Author Selector. This screen is accessed from the Atomic Rules editor. It allows administrators

to select the sources (i.e. authors of textbooks, standards and papers on software testing) that

have published existing Atomic Rules (see Section F.4.3).

 Character Viewer. This screen allows administrators to view the individual characters that are

included in each datatype (e.g. Integer, Real, Alpha), which are used within the Atomic Rules

Editor to specify the Original Datatype and Test Datatype of each Atomic Rule, and within the

Specification Editor to specify the datatype of each input field under test (see Section F.4.4).

 Specification Viewer. This screen allows users to view all specifications that have been created,

and to initiate creation, editing and deletion of specifications (see Section F.4.5).

 Specification Editor. This screen allows users to define the input fields of each specification,

assign domain knowledge to the specification, attach files to the specification and view a BNF

representation of the specification that is automatically generated by ARTT (see Section F.4.6).

 Atomic Rules Selector. This screen allows users to apply a chosen set of Atomic Rules from

EP, BVA and ST to a specification to automatically generate black-box test data (see Section

F.4.7).

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 305

Figure 8-7: Screens and navigation within the Atomic Rules Testing Tool (from Chapter 4).

F.3 Activity Diagrams

The two activity diagrams below illustrate how a user (Figure 8-8) and an administrator (Figure 8-9) can

interact with ARTT2. Nodes in these diagrams that are prefixed with a ‘U’ represent actions that can be

carried out by a user or an administrator, while notes prefixed with ‘S’ represent system actions. The two

scenarios that are represented in Figure 8-8 and Figure 8-9 are as follows.

(a) The user starts the system (from U1).

(b) The user chooses to navigate to user area of functionality within the system (from U2.1).

a. The user creates a new specification (from U3.1).

b. The user edits an existing specification (from U3.2).

c. The user deletes an existing specification (from U3.4).

d. The user applies a set of Atomic Rules to a specification to generate black-box test

data (from U3.3).

(c) The administrator chooses to navigate to administrator functionality (from U2.2).

a. The administrator creates a new Atomic Rule (from U9.1).

b. The administrator edits an existing Atomic Rule (from U9.2).

c. The administrator deletes an existing Atomic Rule (from U9.2).

d. The administrator views the character set covered by a particular datatype (from

U9.4).

2 Flow of event diagrams are useful diagramming can be used in use case testing (CSTP Module 2 2007).

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 306

Figure 8-8: Activity diagram depicting a user interacting with ARTT.

U1
User starts system by double clicking ARTT icon

S2
Specification Viewer is displayed

U2.1
User chooses User Functions

S1
System starts, Main Menu is displayed

U2.2
User chooses Administration Functions

U3.2
User selects a specification

and clicks Edit

U3.1
User clicks New

U3.4
User selects a

specification and
clicks Delete

S10
System asks for

confirmation of delete

U8.1
User confirms

delete

U8.2
User cancels

delete

S11
Specification is

deleted

Return to S2

Return to S2

S3
Specification Editor displayed

New
specification

created

Existing
specification

opened

U4.1
User enters

required details
and clicks OK

U4.2
User clicks

Cancel

Return to S2
S4

System saves
specification to

database

Return to S2

U4.4
User clicks

Atomic Rules

S6
Atomic Rules

Selector screen is
displayed

U3.3
User selects a

specification Select/
Apply Atomic Rules

U4.3
User clicks

View Datatype
Character Sets

S5
Character
Viewer is
Displayed

U5
User clicks Close

Return to S3
or S12

Go to S12

U6
User selects Atomic Rules

S8
System generates tests
and outputs them to file

Return to S7

U7.2
User clicks Apply/OK

S7
Atomic Rules are selected

U7.1
User clicks Generate Test Cases

S9
System saves Atomic

Rules selection

Return to S7

U7.3
User clicks Close

Return to S2
or S3

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 307

Figure 8-9: Activity diagram depicting an administrator (‘Admin’) interacting with ARTT.

S12
Atomic Rules Editor is displayed

From U2.2

U9.1
Admin clicks

New

U9.2
Admin clicks

Edit

U9.3
Admin clicks

Delete

U9.4
Admin clicks View

Datatype
Character Sets

U10
Admin clicks

OK

U9.5
Admin clicks

Close

Go to S5

S13
Form field are cleared

and enabled

S15
Form populated
with details of
selected rule

U11
Admin clicks

Cancel

S14
Changes are

saved

Return to S12

Return to S1
or S3

S16
System asks for
confirmation of

delete

U12.1
Admin confirms

delete

U12.2
Admin cancels

delete

S17
Atomic Rule is

deleted

Return to S12

Return to S12

Return to S1
or S3

F.4 Graphical User Interface Screens and their Associated Functionality

The functionality of each screen within ARTT is described in the following subsections (Section F.4.1

to F.4.7). Each is described using a tabular format, containing the following information:

 Purpose: a brief statement that explains what the screen aims to achieve;

 Screen Capture: a screen capture that illustrates the screen’s GUI; and

 Fields: a detailed description of each field within each screen, including the field’s type. As

some fields are more complex than others, some are described in more detail.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 308

F.4.1 The Main Menu

The Main Menu (Table 8-31) allows users and administrators to navigate to the user functions area of

the tool, which enable the creation of specifications and the generation of test cases, or to the administration

functions area, which enable the creation, editing or deletion of Atomic Rules.

Table 8-31: The Main Menu.

Main Menu

Purpose: this is the first screen that is displayed when the system starts. It allows the user to navigate to:

 the user screens of the system, such as to create specifications or to generate test cases, or

 to the administration screens of the system, such as to create, edit or delete Atomic Rules.

User Interface

Field Field Type Functionality

Administration
Login

Radio Button Selecting this option and clicking OK opens the Atomic Rules Editor (Table
8-32).

User Login Radio Button Selecting this option and clicking OK opens the Specification Viewer (Table
8-36).

OK Button Opens the Atomic Rules Editor or Specification Viewer, depending on which
option is selected.

Exit Button Closes the Main Menu and exits the system.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 309

F.4.2 The Atomic Rules Editor

The Atomic Rules Editor (Table 8-32) allows administrators to create, edit and delete Atomic Rules.

Table 8-32: The Atomic Rules Editor.

Atomic Rules Editor

Purpose: This screen is accessed from the Main Menu (Table 8-31). It allows users to view, create, edit and
delete Atomic Rules. Most fields on this screen correspond directly with attributes of the Atomic Rules schema
(see Chapter 3, Section 3.2.2). On this screen a user can:

 View a rule by single left clicking one in the Atomic Rules list at the top of the screen

 Create a new rule by clicking New, completing all form fields and clicking OK

 Edit a rule by selecting one clicking Edit, making the changes and clicking OK

 Delete a rule by selecting one and clicking Delete

User Interface

Field Field Type Functionality

Atomic Rules Record List Lists all Atomic Rules defined in the system. Clicking on a rule populates all
fields with data for that rule.

New Button Initiates creation of a new Atomic Rule by clearing all form fields.

Edit Button Initiates editing of the currently selected Atomic Rule.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 310

Field Field Type Functionality

Continued from previous page…

Delete Button Initiates deletion of the currently selected rule.

Test Method Combo Box Lists black-box methods Atomic Rules are currently defined for. Options are:

 Equivalence Partitioning

 Boundary Value Analysis

 Syntax Testing

Rule Number Text Box Corresponds to the Number attribute of the Atomic Rules schema.

Identifier Text Box Corresponds to the Identifier attribute of the Atomic Rules schema.

Name Text Box Corresponds to the Name attribute of the Atomic Rules schema.

Description Text Box Corresponds to the Description attribute of the Atomic Rules schema.

Source (…) Text Box &
Button

Corresponds to the References attribute of the Atomic Rules schema. Clicking
the “…” button (right of the field) opens the Author Selector (Table 8-34),
enabling the user to identify the authors that have published the current rule.

Rule Type Combo Box Corresponds to the Rule Type attribute of the Atomic Rules schema.
Options are:

 Data Set Selection Rule (DSSR)

 Data Item Selection Rule (DISR)

 Data Item Manipulation Rule (DIMR)

 Test Case Construction Rule (TCCR)

Rule Class Combo Box Describes the overall functionality of the current rule. Options are:

 Selection – rule selects data (e.g. EP1)

 Insertion – rule inserts values into a partition or test data value (e.g. ST3)

 Deletion – rule removes values from a partition or test data value (e.g. ST1)

 Replacement – rule replaces a field with an invalid partition (e.g. EP4)

 Combinatorial – rule constructs test cases (e.g. EP16)

Field Set
Type

Combo Box Corresponds to Set Type attribute of the Atomic Rules schema. Options are:

 List

 Range

 List and Range

 Neither (e.g. non-terminal fields do not have a set type)

Start Position
&

End Position

Combo Box Describe the first and last positions from which a rule selects test data. Six
classes of start and end positions can appear, as follows (see Table 8-33):

 Datatype start and end positions relate to the boundaries of the datatype of
the field under test, resulting in the selection an equivalence class. For
example, a DSSR could use these to selected a partition from the lower to
upper boundaries of the integer datatype [-32768 – 32767]

 Field start and end positions can be used by a DSSR to select a partition of
value from a range-based field. For example, they could be used to select
values between the lower to upper boundary of an age field, selecting the
partition [0 - 150]. They can also be used by a DISR to select one test data
value from a partition, such as selecting the value 150 from the partition [0 -
150].

 First and Last Field Value can be used by a DSSR to select a partition of
values from a list field. For example, they could be applied to a colour field to
select the partition [Red | Blue | Green]. They can also be used by a DISR to
select one test data value from a list, such as selecting Red from this
partition.

 Nominal can be used by a DSSR, DISR or DIMR to select the mid-point
value of a field, partition or test data value.

 Random can be used by a DSSR, DISR or DIMR to select a randomly
chosen value from a field, partition or test data value.

 First and Last Character can be used by a DIRM to alter a test data value,
such as selecting “R” from the colour “Red” or selecting “reen” from “Green.”

Therefore, the values that appear in the Start and End Position fields depend on

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 311

the value of Rule Type, as follows.
If Rule Type = DSSR then rule selects a partition. Start and End Positions are:

 Datatype Lower Boundary – (e.g. ASCII A – 1 = @)

 Datatype Lower Boundary (e.g. ASCII A = A)

 Datatype Lower Boundary + (e.g. ASCII A + 1 = B)

 Datatype Upper Boundary – (e.g. ASCII Z – 1 = Y)

 Datatype Upper Boundary (e.g. ASCII Z = Z)

 Datatype Upper Boundary + (e.g. ASCII Z + 1 = [)

 Field Lower Boundary – (just below lower boundary of a range)

 Field Lower Boundary (on the lower boundary of a range)

 Field Lower Boundary + (just above the lower boundary of a range)

 Field Upper Boundary – (just below the upper boundary of a range)

 Field Upper Boundary (on the upper boundary of a range)

 Field Upper Boundary + (just above the upper boundary of a range)

 First Field Value (first value in a list)

 Second Field Value (second value in a list)

 Second Last Field Value (second-last value in a list)

 Last Field Value (last value in a list)

 Nominal Value (middle value of a range or list)

 Random Value (random value from a range or list)
If Rule Type = DISR then rule selects a test data value, so End Position will be
disabled. Start Positions are:

 Field Lower Boundary –

 Field Lower Boundary

 Field Lower Boundary +

 Field Upper Boundary –

 Field Upper Boundary

 Field Upper Boundary +

 First Field Value

 Last Field Value

 Nominal Value

 Random Value

 Not Applicable
If Rule Type = DIMR then the rule mutates test data values. Start and End
Positions are:

 Nominal Value

 Random Value

 First Character – – (e.g. add two chars to start of a data value)

 First Character – (e.g. add one char to start of a data value)

 First Character (e.g. mutate first character of a data value)

 First Character + (e.g. mutate second character of a data value)

 First Character ++ (e.g. mutate third character of a data value)

 Last Character – – (e.g. mutate third last character of a data value)

 Last Character – (e.g. mutate second last character of a data value)

 Last Character (e.g. mutate last character of a data value)

 Last Character + (e.g. add one char to end of a data value)

 Last Character ++ (e.g. add two chars to end of a data value)

 Not Applicable (does not select a particular character or value)
If Rule Type = TCCR then these fields will be empty, because TCCRs do not
select test data, they create test cases, so this field is disabled.

Correctness Combo Box Corresponds to the Valid or Invalid attribute of the Atomic Rules schema.
Options are: Valid, Invalid, Valid or Invalid, Depends on field.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 312

Field Field Type Functionality

Continued from previous page…

Fields
Populated

Text Box Corresponds to the # Fields Populated attribute of the Atomic Rules schema.

Test Data
Length

Text Box Corresponds to the Test Data Length attribute of the Atomic Rules schema.

Tests
Derived

Text Box Corresponds to the # Tests Derived attribute of the Atomic Rules schema.

Original
Datatype

&
Test Datatype

Record List Defines the Original Datatype of fields that rules can be applied to, and the Test
Datatype selected by the rule, which correspond to attributes of the same name
in the Atomic Rules schema. For example, BVA1: lower boundary - 1 and BVA6:
upper boundary + 1 can only be applied to range-based datatypes such as
Integer (see Table 8-35); they cannot be applied to list-based datatypes like
Alphanumeric as there is no way to choose an outside boundary value. The
datatypes defined in ARTT extend the base set defined for EP, BVA and ST
(see Chapter 3, Section 3.2.2). The datatypes defined are:

 Integer (all integers from -32768 to 32767)

 Integer+ (all positive integers from 0 to 32767)

 Integer- (all negative integers from -32768 to -1)

 Boolean (i.e. 1 and 0)

 Numeric (i.e. ASCII 48 to ASCII 57)

 Real (all Reals from -32768.00 to 32767.00)

 Real+ (all positive Reals from 0.00 to 32767.00)

 Real- (all negative Reals from -32768.00 to -1.00)

 Alpha (all alphabetical characters from A-Z and a-z)

 Lowercase Alpha (all lowercase alphas from ASCII 97 to ASCII 122)

 Uppercase Alpha (all uppercase alphas from ASCII 65 to ASCII 90)

 Alphanumeric (Alpha Numeric)

 Control Character (all control characters from ASCII 1 to ASCII 31)

 Symbol (Set 1) (all special characters from ASCII 32 to ASCII 47)

 Symbol (Set 2) (all special characters from ASCII 58 to ASCII 64)

 Symbol (Set 3) (all special characters from ASCII 91 to ASCII 96)

 Symbol (Set 4) (all special characters from ASCII 123 to ASCII 127)

 Symbol (Symbol 1 Symbol 2 Symbol 3 Symbol 4)

 Null (empty) (ASCII 0)

 Non-Alphanumeric (Symbol 1 Symbol 2 Symbol 3 Symbol 4)

 ASCII (all characters in the ASCII table)

 Same as original (applies to Test Datatype only)

Rule
Application

Order

Record List Specifies the order in which rules can be applied, based on the four-step test
selection process (see Chapter 3, Section 3.2.1). For example, a DIMR can only
be applied after a DISR, while a DISR can only be applied after a DSSR.

View
Datatype
Character

Sets

Button Opens the Character Viewer (Table 8-35).

OK Button Saves all changes that have been made.

Cancel/Close Button Closes the screen and returns the user to the previous screen. If this is clicked
during edit or new, it will cancel the action before closing the screen.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 313

Table 8-33: Definition of the Rule Types and Rule Classes that dictate the start and end position sets
that are possible for each Atomic Rule.

Rule Type Rule Class

Type & Class
Combination

Possible? Start / End Positions Example

Data Set
Selection
Rule
(DSSR)

Selection Yes List-based fields:

 first value

 last value

 random value

 nominal value

Selects a partition from a list.
E.g. for field <colour> ::= [Red |
Green | Blue] this could select a
valid partition from the first to
last value, by applying EP12:
valid list selection, which would
select [Red | Green | Blue].

Range-based fields:

 min-

 min

 min+

 max-

 max

 max+

 nominal

 random

Selects a partition of test data
from a range of values. For the
valid field <age> ::= [0 – 150]
this could select a valid partition
from min to max, such as
applying EP3: lower to upper
boundary selection, selecting
the partition [0 – 150].

Insertion No – rule class does not apply to DSSRs. While it would be possible to insert
invalid values into a valid partition, this is already covered by EP “replacement”
rules EP4 to EP10.

Deletion No – rule class does not apply to DSSRs. While it would be possible to delete
data values from a valid partition, this is already covered by rules like EP11: null
item replacement.

Replacement Yes List-based fields:

 first value

 last value

Replaces a field entirely with an
invalid data partition, such as
applying EP4: integer
replacement, to entirely replace
any field with the integer range
[-32768 – 32767].

Range-based fields:

 min

 max

Combinatorial No – the combinatorial rule class only applies to TCCRs.

Data Item
Selection
Rule (DISR)

Selection Yes – All DISRs
are selection
rules. Most have
the same start
and end position,
e.g. BVA1: lower
boundary
selection. Some
select more than
1 test data item,
such as ST13:
select all list
alternatives,
which selects
every item from a
list as one test
data item

List-based fields:

 first field value

 last field value

 random value

 nominal value

Selects one value from a
partition, such as by applying
EP13: data value selector to
select a random value from field
<colour> ::= [Red | Green |
Blue] to select the colour Red.

Range-based fields:

 min-

 min

 min+

 max-

 max

 max+

 nominal

 random

Selects one value from a
partitio, such as by applying
EP13: data value selector to
selecting the nominal value
from field <age> ::= [0 – 150] to
select the number 75.

Insertion No – this rule class does not apply to DISRs

Deletion No – this rule class does not apply to DISRs

Replacement No – this rule class does not apply to DISRs

Combinatorial No – the combinatorial rule class only applies to TCCRs.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 314

Rule Type Rule Class

Type & Class
Combination

Possible? Start / End Positions Example

Continued from previous page…

Data Item
Manipulation
Rule (DIMR)

Selection Yes - selects
characters
between the
specified start
and end positions

Character position:

 First Character – –

 First Character –

 First Character

 First Character +

 First Character ++

 Last Character – –

 Last Character –

 Last Character

 Last Character +

 Last Character ++

 Nominal Value

 Random Value

Selects one or more characters
from a data value, such as
applying a rule to select the first
character of the data item Red,
resulting in the mutated test
data value R. Atomic Rules that
perform this type of function are
not defined in existing literature.
Thus, a new rule could be
defined for this combination of
Rule Type and Rule Class
through the Atomic Rules
Editor.

Insertion Yes - inserts
randomly chosen
characters
between the
specified start
and end positions

Adds one or more characters to
a data item, such as by
applying ST3: add extra
character to end to data value
Red to select the mutated value
RedA.

Deletion Yes - deletes
characters
between the
specified start
and end positions

Deletes one or more characters
from a data item, such as by
applying ST1: remove last
character to data item Red to
select the mutated value Re.

Replacement Yes - replaces
characters
between the start
and end positions
with randomly
chosen
characters

Replaces one or more
characters from a data value,
such as applying ST2: replace
last character to the data item
Red, resulting in the mutated
test data value “1ed”.

Combinatorial No – the combinatorial rule class only applies to TCCRs.

Test Case
Construction
Rule
(TCCR)

Selection No – does not apply to TCCRs.

Insertion No – does not apply to TCCRs.

Deletion No – does not apply to TCCRs.

Replacement No – does not apply to TCCRs.

Combinatorial Yes There are no specific
start or end positions
for TCCRs.

NA

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 315

F.4.3 The Author Selector

The Author Selector screen (Table 8-34) allows administrators to assign particular authors to each

Atomic Rule, allowing the reference source of existing Atomic Rule to be recorded.

Table 8-34: The Author Selector.

Author Selector

Purpose: This screen is loaded when the user clicks the ‘…’ button the Atomic Rules Editor (Table 8-32). It
allows users to select authors that have published each Atomic Rule that is defined through the Atomic
Rules Editor.

User Interface

Field Field Type Functionality

Authors Record List This lists all authors defined in the system.

Toggle
Selection

Button Selects () or unselects () the currently selected author.

Close Button Save the author selection, closes the screen and returns to the Atomic Rules
Editor.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 316

F.4.4 The Character Viewer

The Character Viewer (Table 8-32) allows administrators and users to view the contents of datatype sets

that have been defined within the tool. The datatypes currently defined in ARTT were, with the exclusion of

integers and Reals, chosen by dividing the ASCII table into sets of equivalent data, chosen to automate

Atomic Rules representations of EP, BVA and ST.

For example, the tool differentiates between Lowercase Alphas and Uppercase Alphas, as this allows

Syntax Testing rules ST7 and ST8 to be implemented, which swap the case of alphabetical fields to select

invalid test data. In addition, ARTT divides the ASCII table into contiguous sets for integers, alphabetical

characters and non-alphanumeric (i.e. special) characters, enabling outside boundary values to be selected

for certain datatypes. For example, the At “@” symbol sits just below “A” in the ASCII table, allowing @

to be selected as an invalid outside boundary value for uppercase alpha fields.

Depending on the implementation language used to develop ARTT, there are other datatype sets that

could have been implemented that are based on the “development environment domain” (Reed 1990) that

could have been used to define datatype sets. Since ARTT is currently a prototype, future implementations

may include definition of other datatype sets.

Table 8-35: The Character Viewer.

Character Viewer

Purpose: This screen can be accessed either from the Atomic Rules Editor (Table 8-32) or the
Specification Editor (Table 8-37). It allows users to view all characters that are defined within a particular a
datatype.

User Interface

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 317

Field Field Type Functionality

Continued from previous page…

Datatypes Record List Displays all datatypes defined in the system. These extend the datatypes
defined for EP, BVA and ST (see Chapter 3, Section 3.2.2) by
decomposing the ASCII table further than that which is required for these
methods (see Appendix F for complete list of characters and datatypes).
Clicking a datatype populates the Characters within Datatype list with
characters from that datatype. The columns of the table are:
 ID: a unique identifier that is assigned to each datatype
 Name: a unique name given to each datatype
 Set Type: identifies whether the datatype is a range (e.g. integers or

ASCII characters) or a list (e.g. the complete Symbol set)
 Base Datatype: identifies whether the datatype is defined in its own

right (e.g. integer) or is composed of other datatypes (e.g. Alpha, see
below)

 Composed of: identifies the other datatype each datatype is composed
of (e.g. Alpha = Lowercase Alpha Uppercase Alpha)

Characters
within

Datatype

Record List Lists characters within the selected datatype and shows characters outside
datatype boundaries (e.g. ` is just below the lower boundary of Lowercase
Alpha in ASCII).
The columns of this table are:
 Character ID: unique identifier for each character (ASCII characters are

assigned their decimal identifier)
 Name: character name (e.g. smallest integer named “Integer – Lower

Boundary”)
 Description: character description (e.g. smallest integer has the

description “Integer – Smallest”)
 Character: the actual character value
 Start/End Position: used by Atomic Rules during test data generation

(see Start & End Position in Table 8-32).

Output to
File

Button Outputs all datatypes and characters to a comma separated file (csv),
allowing the user to view them all at the same time.

Close Button Closes the screen and returns the user to the previous screen.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 318

F.4.5 The Specification Viewer

The Specification Viewer (Table 8-36) allows users to view all specifications that have been created

previously in the tool and also to create new specifications and edit and delete existing specifications.

Table 8-36: The Specification Viewer.

Specification Viewer

Purpose: This screen is accessed from the Main Menu (Table 8-31). It allows users to:

 Create a new specification by clicking New (opens the Specification Editor)

 View and edit existing specifications by selecting one and clicking Edit (opens the Specification Editor)

 Delete a specification by selecting one and clicking Delete

 Generate test data/cases by selecting a specification and clicking Select/Apply Atomic Rules (opens
the Atomic Rules Selector screen)

User Interface

Field Field Type Functionality

Created
Specifications

Record List Lists all existing specifications that exist in the system.

New Button Opens the Specification Editor (Table 8-37) with all fields cleared,
ready for the creation of a new specification.

Edit Button Opens the Specification Editor (Table 8-37) will all fields
populated with values corresponding to the selected specification.

Delete Button Initiates deletion of the currently selected specification.

Select / Apply
Atomic Rules

Button Opens the Atomic Rules Selector (Table 8-43) for currently
selected specification, allowing the user to generate test data and
test cases.

Close

Button Closes the screen and returns the user to the Main Menu (Table
8-31).

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 319

F.4.6 The Specification Editor

The Specification Editor consists of four main tabs: Fields, Domain Knowledge, Specification Files and

Backus-Naur Form Specifications. The functionality of these tabs is as follows.

 Fields: this tab allows the user to define the characteristics of input fields, which will

eventually be used for test data generation. Since there are two Field Types in the Atomic

Rules schema (i.e. Lists and Ranges), this screen allows the creation of both list-based (Section

F.4.6.1) and range-based (Section F.4.6.2) fields. The number shown to the right of the tab

name (see Table 8-37) is a count of the number of input fields that have been created for the

current specification.

 Domain Knowledge: this tab allows the user record domain knowledge against the current

specification that is captured through the use of GQASV. The number shown to the right of the

tab name (see Table 8-37) is a count of the number of domain knowledge records that have

been defined for the specific input field that is currently being selected for the current

specification.

 Specification Files: this screen allows users to attach program specification documents to the

current specification. The number shown to the right of the tab name (see Table 8-37) is a

count of the number of specification files that have been linked to the current specification.

 Backus-Naur Form Specification: this tab allows users to view the BNF representation of

input fields in the current specification. The BNF is automatically produced by ARTT.

Each of these tabs is explained in detail in the subsections below.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 320

F.4.6.1 The Specification Editor “Fields” Tab for List-Based Input Fields

The GUI and functionality of the Fields tab of the Specification Editor, when list-based fields are being

created or edited, is explained below (Table 8-37).

Table 8-37: The Specification Editor ‘Fields’ tab for a list-based field.

Specification Editor “Fields” tab (List Values frame displayed)

Purpose: This screen is accessed from the Specification Viewer (Table 8-36). This screen has four tabs, as
follows:

 Fields – allows users to view, create, edit and delete fields for a specification

 Domain Knowledge – allows users to store domain knowledge for fields on the Fields tab (Table 8-39)

 Specification Files – allows users to attach Rich Text Document versions of their specification (Table 8-41)

 Backus-Naur Form Specification – generates a Backus-Naur Form representation of the specification,
based on the fields defined on the Fields tab (Table 8-42)

This screen capture shows the List Values frame for defining a list-based field (see Table 8-38 for an example
of the Range Values frame for defining range-based fields). The tab name includes the number of fields
defined in the current specification (e.g. the tab name is “Fields (8)” in the screen capture below).

User Interface

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 321

Field Field Type Functionality

Specification
ID

Text Box Unique number that is assigned by the system to identify each specification.

Name Text Box Name of the specification assigned by the user.

Fields
(Record List)

Record List Contains fields created against the current specification. Clicking on a field
loads data related to that field on the Fields and Domain Knowledge tabs.

New Button Initiates the creation of a new field by clearing all fields on the form.

Edit Button Initiates editing of the currently selected field.

Delete Button Initiates deletion of the currently selected field.

Field Name Text Box Name of the field.

Set Type Combo Box The Set Type of the field. Options are:

 List e.g. <street_type> ::= [St | Street | Road | Road…]

 Range e.g. <age> ::= [0 – 150]

 AND e.g. <name> ::= <first_name> & <surname>

 OR e.g. <number> ::= [1 – 500] | [600 – 1000]

 Non-terminal e.g. <street> ::= <street_name> <street_type>

If Set Type = List, the List Values frame is shown (see screen capture
above).

If Set Type = Range, the Range Values frame is displayed (see Table 8-38).

Do values
repeat?

Combo Box Identifies whether the values in the field repeat, e.g. <house_number> ::= [0-
9]1-4 is composed of integers from 0 to 9 that repeat 1 to 4 times. Options are
Yes and No.

If Do value Repeat? = Yes then fields Min and Max are enabled.

Min Text Box Stores the minimum number of repetitions for fields that repeat.

Max Text Box Stores the maximum number of repetitions for fields that repeat.

Is field
mandatory?

Combo Box Records whether a field is a mandatory or optional. Options are Yes and No.

If Is field mandatory = No then Atomic Rules that select Null (e.g. EP11: null
item replacement) produce valid test data.

Field Parents Record List Lists fields that are parents of the current field, e.g. <street> ::=
<street_name> <street_type>, so <street> is a parent of <street_name> and
<street_type>.

Parent? Combo Box Identifies if a field is a parent of the current field. Options are: Yes and No

Seq No Text Box If several fields are parented by one field, each child field has a sequence
number identifying where it sits in the field order, e.g. for the field <street> ::=
<street_name> <street_type>, <street_name> comes first with sequence
number 1 and <steet_type> comes second with sequence number 2.

Update Button Saves the values of the Parent? and Seq No to the Field Parents list.

List Values Record List Displays all list values for the currently selected field.

Value Text Box Allows the user to add one list value to the current field.

OR Datatype Text Box Instead of choosing a Value, a user can add Datatypes to a list. Options are:

 Numeric

 Integer

 Real

 Lowercase Alpha

 Uppercase Alpha

 Control Characters

 Symbol Set 1

 Symbol Set 2

 Symbol Set 3

 Symbol Set 4

Add Button Adds the Value and/or Datatype chosen by the user to the List Values list.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 322

Field Field Type Functionality

Continued from previous page…

Update Button Updates the value selected in the List Values list with the values defined in
the Value and Datatype fields.

Delete Button Deletes the currently selected list value.

Atomic Rules Button Opens the Atomic Rules Selector (Table 8-43) to generate test data/cases.

View Datatype
Character Sets

Button Opens the Character Viewer (Table 8-35).

Apply Button Saves all changes to the database.

Cancel/Close Button Cancels all changes, closes the form and returns the user to the
Specification Viewer (Table 8-36).

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 323

F.4.6.2 The Specification Editor “Fields” Tab for Range-Based Input Fields

The GUI and functionality of the Fields tab of the Specification Editor, when range-based fields are

being created or edited, is explained below (Table 8-38).

Table 8-38: The Specification Editor ‘Fields’ tab for a range-based field.

Specification Editor “Fields” tab (Range Values frame displayed)

Purpose: This screen is accessed from the Specification Viewer (Table 8-36). The purpose of this tab is the
same as the screen sown in Table 8-37. However, this screen capture shows the Range Values frame for
defining range-based fields.

User Interface

Field Field Type Functionality

Range Values Record List Displays boundary values for the currently selected field. When a
record is selected in the Range Values list, Lower Boundary, Upper
Boundary and Or Datatype are automatically populated.

Lower Boundary Text Box Allows the user to enter a lower boundary for the current field.

Upper Boundary Text Box Allows the user to enter an upper boundary for the current field.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 324

Field Field Type Functionality

Continued from previous page…

OR Datatype Combo Box If the user does not enter anything in the Lower and Upper Boundary
fields they can add a Datatype to the list instead. Options are:

 Numeric

 Integer

 Real

 Lowercase Alpha

 Uppercase Alpha

 Control Characters

 Symbol Set 1

 Symbol Set 2

 Symbol Set 3

 Symbol Set 4

These correspond to the “base” datatypes defined in Appendix F.

Add Button Adds the Value and/or Datatype chosen by the user to the Range
Values list.

Update Button Updates the value selected in the Range Values list with the values
defined in the Lower/Upper Boundary and Datatype fields.

Delete Button Deletes the currently selected range.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 325

F.4.6.3 The Specification Editor “Domain Knowledge” Tab

The Domain Knowledge tab of the Specification Editor allows users to record domain knowledge

captured through GQASV. The GUI and functionality of this tab is explained below (Table 8-39).

Table 8-39: The Specification Editor ‘Domain Knowledge’ tab.

Specification Editor “Domain Knowledge” tab

Purpose: This screen is accessed from the Specification Viewer (Table 8-36). The purpose of this tab is to
allow users to record domain knowledge against each specification field. This allows users to store domain
knowledge they collect through Goal/Question/Answer/Specify (see Chapter 3, Section 3.10) that has not
already been recorded on the Fields tab. When the user clicks on a field in the Fields tab, the Domain
Knowledge tab is automatically populated with data relating to that field. The tab name includes the number
of domain knowledge records defined for the current field (e.g. the tab name is “Domain Knowledge (2)” in
the screen capture below).

User Interface

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 326

Field Field Type Functionality

Continued from previous page…

Domain Knowledge Records Record List Lists all domain knowledge records defined for the
currently selected field.

What does it relate to? Combo Box Allows the user to identify the GQASV question the
domain knowledge relates to. Options are:

 What is the field's datatype?

 What is the field's set type?

 For Set Type = Range: what are min and max
values?

 For Set Type = List: what are min and max valid
data lengths?

 Is the field mandatory?

 Does the field repeat?

 If field repeats, what are min and max repetitions?

 Other (please specify)

Other Text Box If the user selects “Other (please specify)” from What
does it relate to?, this field allowing them to describe
their answer.

Name Text Box A name for the domain knowledge that is being stored.

Description Text Box A description of the domain knowledge that is being
stored.

Source Combo Box The source of the domain knowledge. Options are:

 Personal Knowledge

 Personal Experience

 Book

 Textbook

 Standard

 Conference Paper

 Journal Paper

 White Paper

 Magazine

 Newspaper Article

 Technical Report

 Web Site

 Domain Expert

 Source Code

 Publication Other (please specify)

 Other (please specify)

The field names in the Source Details frame
automatically changes depending on which value is
chosen from this field (see Table 8-40).

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 327

The names of fields on the Domain Knowledge tab are dynamic, as they depend on the value chosen in

the Source field (see last row of Table 8-39). The sources currently supported in ARTT include resources

such as personal knowledge, domain knowledge and personal experience, but also textbooks, standards and

journal papers (see Table 8-40). The list of sources supported by ARTT may be expanded in future to

include other sources like user documentation, help desk instructions, inspection reports, meeting notes or

story cards.

Table 8-40: Field names for the Domain Knowledge tab of the Atomic Rules Testing Tool.

Source
Type Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9

Personal
Knowledge

Source
Name:

Learnt
Years:

Location: Details:

Personal
Experience

Source
Name:

Experience
Years:

Location: Details:

Book Author(s): Title: Series Title: Publisher: Edition: Pages: Date:

Textbook Author(s): Title: Series Title: Publisher: Edition: Pages: Date:

Standard Author(s): Title: Standard
No.

Publisher: Version
No:

Pages: Date:

Conference
Paper

Author(s): Title: Proceedings
Name:

Publisher: Volume: Pages: Date:

Journal
Paper

Author(s): Title: Journal
Name:

Publisher: Volume /
Issue:

Pages: Date:

White
Paper

Author(s): Title: White Paper
No:

Publisher: Version
No:

Pages: Date:

Magazine Author(s): Title: Magazine
Name:

Publisher: Volume /
Issue

Pages: Date:

Newspaper
Article

Author(s): Title: Newspaper
Name:

Publisher: Edition: Pages: Date:

Technical
Report

Author(s): Title: Report No: Publisher: Version
No:

Pages: Date:

Web Site Author(s): Title: URL: Date Last
Updated:

Date Last
Accessed:

 Verification
Check:

Verification
Details:

Domain
Expert

Name: Experience
Years:

Title: Discussion
Date:

Email
Address:

Contact
Phone
No:

Source
Code

Programmer
Name:

Company
Name:

Program
Name:

Function
Name:

Function
Details:

Date Last
Updated:

Date Last
Accessed:

Publication
Other
(please
specify)

Author(s): Title: Description: Publisher: Version /
Edition:

Pages: Date:

Other
(please
specify)

Desc. 1: Desc. 2: Desc.3: Desc.4: Desc.5: Desc.6: Desc.7:

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 328

Figure 8-10: Example of the Source Details fields populating from the database.

Fields names in the
Source Details frame are
loaded from the database
(Table 8-40), based on the
value chosen in the
Source field

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 329

F.4.6.4 The Specification Editor “Specification Files” Tab

The Specification Files tab of the Specification Editor allows users to attach soft copies of specification

documents to the currently open specification (Table 8-41).

Table 8-41: The Specification Editor ‘Specification Files’ tab.

Specification Editor “Specification Files” tab

Purpose: This screen is accessed from the Specification Viewer (Table 8-36). The purpose of this tab is to
allow the user to link and view specifications in rich text format (RTF) to the specification that is currently open.

User Interface

Field Field Type Functionality

Previously Opened
Files

Record List Lists all specification documents that have been linked to the current
specification.

Contents Rich Text
Box

Displays a specification document.

Load Specification
Contents / Clear

Specification Contents

Button When a specification is not loaded, this button is named “Load
Specification Contents.” Clicking it loads a specification into the
Contents field. When a specification is open, this button is named
“Clear Specification Contents.” Clicking it closes the specification and
clears the Contents field.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 330

F.4.6.5 The Specification Editor “Backus-Naur Form” Tab

The Backus-Naur Form tab of the Specification Editor allows users to view an automatically produced

BNF representation of the specification that is currently open (Table 8-42).

Table 8-42: The Specification Editor ‘Backus-Naur Form Specification’ tab.

Specification Editor “Backus-Naur Form Specification” tab

Purpose: This screen is accessed from the Specification Viewer (Table 8-36). The purpose of this tab is to
display automatically generated BNF for the current specification and to allow users to output this to file.

User Interface

Field Field Type Functionality

Specification’s Backus-Naur Form (BNF) Text Box Allows user to view the current specification in
BNF.

Output BNF to File Button Allows the user to output the BNF to a text file.

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 331

F.4.7 The Atomic Rules Selector

The Atomic Rules Selector is allows users to apply Atomic Rules from EP, BVA and ST to the currently

open specification, in order to generate black-box test data (Table 8-43).

Table 8-43: The Atomic Rules Selector.

Atomic Rules Selector

Purpose: This screen can be accessed either from the Specification Viewer (Table 8-36) or the
Specification Editor (Table 8-37). It allows users to apply Atomic Rules to a specification to
automatically generate test data that can be output to an Excel Spreadsheet or a flat text file.

User Interface

Output Files

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 332

Continued from previous page…

Field Field Type Functionality

Output Options Menu This specifies the format in which the test data/cases are
output. Options are:

 Microsoft Excel Spreadsheet

 Text file

The default setting for this field is that both options are selected.

Specification ID Text Box The current specification’s identifier.

Name Text Box The current specification’s name.

Fields Record List Lists all fields defined for the current specification. When a field
is selected, the Atomic Rules shows which Atomic Rules have
been applied to that field.

Atomic Rules Record List Lists all Atomic Rules defined in the system and shows which
can be applied (Applicable?) and have been applied
(Selected?) to the current field.

Select Rules for
Test Method

Combo Box Allows the user to apply all Atomic Rules from a particular
black-box method to the current field. Options are:

 Boundary Value Analysis

 Equivalence Partitioning

 Syntax Testing

Select All Button Selects all Atomic Rules that can be applied to the current field.

Clear Selection Button Clears the selection of all Atomic Rules for the current field.

Toggle Selected Button Toggles the selection of the currently selected Atomic Rule for
the currently field (i.e. changes a tick to a cross and visa versa).

Generate Test
Cases

Button Automatically generates a set of test data/cases for the current
specification by applying all selected Atomic Rules to each field.
Test cases are output to file automatically according to the file
types chosen in the Output Options field.

Apply/OK Button Each time a user makes changes to the Atomic Rules applied
to a particular field, they must click Apply/OK to save those
changes to the database. They must also do this before
generating test cases.

Close Button Closes the screen and returns the user to the calling screen
(either the Specification Editor or the Specification Viewer).

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 333

F.5 Pseudo Code for Test Data Generation

The following figures contain pseudo code for the selection of list-based and range-based equivalence

classes. This process is based on the ‘start position’ and ‘end position’ of the specific Data-Set Selection

Rule that is being applied to the field under test (see Chapter 4, Section 4.3).

Figure 8-11: Pseudo code for selecting an equivalence class from a list-based field.

IF the field under test is a List THEN

 'Assign the start positions of the partition

 IF the chosen start position = first field value THEN
 Partition start position = 1
 ELSE IF the chosen start position = nominal value THEN
 Partition start position = number of values in the list / 2
 ELSE IF the chosen start position = random value THEN
 Partition start position = select a random number
 END IF

 'Assign the end positions of the partition -> must be greater than start position
 IF the chosen end position = last field value THEN
 Partition end position = count of values in list
 ELSE IF the chosen end position = nominal value THEN
 Partition end position = count of values in list / 2
 ELSE IF the chosen end position = random value THEN
 Partition end position = select a random value from the list
 END IF

 'Build the partition
 Count = 0
 FOR each value in the List
 IF Count is between the Start and End Positions THEN
 Add the value to the partition
 END IF
 Count = Count + 1
 NEXT value

END IF

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 334

Figure 8-12: Pseudo code for selecting a partition from a range-based field

IF the field under is a Range THEN

 'Assign start position of the partition

 IF the chosen start position = datatype lower boundary minus THEN
 Partition lower boundary = value just below lower boundary of field’s datatype
 ELSE IF the chosen start position = datatype lower boundary THEN
 Partition lower boundary = value on lower boundary of field’s datatype
 ELSE IF the chosen start position = datatype lower boundary plus THEN
 Partition lower boundary = value just above lower boundary of field’s datatype
 ELSE IF the chosen start position = datatype upper boundary minus THEN
 Partition lower boundary = value just above lower boundary of field’s datatype
 ELSE IF the chosen start position = datatype upper boundary THEN
 Partition lower boundary = value on upper boundary of field’s datatype
 ELSE IF the chosen start position = datatype upper boundary plus THEN
 Partition lower boundary = value just above upper boundary of field’s datatype
 ELSE IF the chosen start position = field lower boundary minus THEN
 Partition lower boundary = value just below lower boundary of field
 ELSE IF the chosen start position = field lower boundary OR first field value Then
 Partition lower boundary = value on lower boundary of field
 ELSE IF the chosen start position = field lower boundary plus THEN
 Partition lower boundary = value just above lower boundary of field
 ELSE IF the chosen start position = field upper boundary minus THEN
 Partition lower boundary = value just below upper boundary of field
 ELSE IF the chosen start position = field upper boundary OR last field value THEN
 Partition lower boundary = value on upper boundary of field
 ELSE IF the chosen start position = upper boundary plus THEN
 Partition lower boundary = value just above upper boundary of field
 ELSE IF the chosen start position = nominal value Then
 Partition lower boundary = upper boundary – lower boundary / 2
 ELSE IF the chosen start position = random value Then
 Partition lower boundary = random value between lower and upper boundaries
 END IF

 'Assign end position of the partition
 IF the chosen end position = datatype lower boundary minus THEN
 Partition lower boundary = value just below lower boundary of field’s datatype
 ELSE IF the chosen end position = datatype lower boundary THEN
 Partition lower boundary = value on lower boundary of field’s datatype
 ELSE IF the chosen end position = datatype lower boundary plus THEN
 Partition lower boundary = value just above lower boundary of field’s datatype
 ELSE IF the chosen end position = datatype upper boundary minus THEN
 Partition lower boundary = value just above lower boundary of field’s datatype
 ELSE IF the chosen end position = datatype upper boundary THEN
 Partition lower boundary = value on upper boundary of field’s datatype
 ELSE IF the chosen end position = datatype upper boundary plus THEN
 Partition lower boundary = value just above upper boundary of field’s datatype
 ELSE IF the chosen end position = field lower boundary minus THEN
 Partition lower boundary = value just below lower boundary of field
 ELSE IF the chosen end position = field lower boundary OR first field value Then
 Partition lower boundary = value on lower boundary of field
 ELSE IF the chosen end position = field lower boundary plus THEN
 Partition lower boundary = value just above lower boundary of field
 ELSE IF the chosen end position = field upper boundary minus THEN
 Partition lower boundary = value just below upper boundary of field
 ELSE IF the chosen end position = field upper boundary OR last field value THEN
 Partition lower boundary = value on upper boundary of field
 ELSE IF the chosen end position = upper boundary plus THEN
 Partition lower boundary = value just above upper boundary of field
 ELSE IF the chosen end position = nominal value THEN
 Partition lower boundary = upper boundary – lower boundary / 2

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 335

 'Continued from previous page…

 ELSE IF the chosen end position = random value THEN
 Partition lower boundary = random value between lower and upper boundaries
 END IF

 'Select the partition

 Partition = partition lower boundary to partition upper boundary

END IF

F.6 Datatypes Defined in the Atomic Rules Testing Tool

The following tables identify all datatypes and characters that are defined in the Atomic Rules Testing

Tool (ARTT), which can be viewed through the Character Viewer screen (see Section F.4.4). These

datatypes and characters are predominantly based on characters that appear in the ASCII table (see

Appendix G).

Table 8-44: Datatypes defined in the Atomic Rules Testing Tool.

Datatype Name Set Type Base Datatype? Composed Of

Boolean List Yes {Boolean}

Numeric List and Range Yes {Numeric}

Integer List and Range Yes {Integer}

Real List and Range Yes {Real}

Lowercase Alpha List and Range Yes {Lowercase Alpha}

Uppercase Alpha List and Range Yes {Uppercase Alpha}

Alpha List No
{Lowercase Alpha} U {Uppercase Alpha}
-(Lowercase Alpha LB- & UB+&
Uppercase Alpha LB- & UB+)

Alphanumeric List No
{Numeric} U {Alpha} - (Numeric LB- &
UB+& Alpha LB- & AlphaUB+)

Control Character List and Range Yes {Control Character}

Symbol (Set 1) List and Range Yes {Symbol (Set 1)}

Symbol (Set 2) List and Range Yes {Symbol (Set 2)}

Symbol (Set 3) List and Range Yes {Symbol (Set 3)}

Symbol (Set 4) List and Range Yes {Symbol (Set 4)}

Symbol List No
{Symbol (Set 1)} U {Symbol (Set 2)} U
{Symbol (Set 3)} U {Symbol (Set 4)}

Null (empty) List and Range Yes {Null (empty)}

Non-Alphanumeric List No

{Symbol (Set 1)} U {Symbol (Set 2)} U
{Symbol (Set 3)} U {Symbol (Set 4) U
{Control Character}} - (Symbol (Sets 1 to
4) LB- & UB+& Control Character LB- &
UB+)

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 336

Table 8-45: Characters within each datatype that are defined in the Atomic Rules Testing Tool.

Datatype Name Character ID Name Description Character Start/End Position

Boolean 48 0 Zero 0 First Field Value

Boolean 49 1 One 1 Last Field Value

Numeric 47 / Forward Slash / Datatype Lower Boundary -

Numeric 48 0 Zero 0 Datatype Lower Boundary

Numeric 49 1 One 1 Datatype Lower Boundary +

Numeric 50 2 Two 2 Non Descript Position

Numeric 51 3 Three 3 Non Descript Position

Numeric 52 4 Four 4 Nominal Value

Numeric 53 5 Five 5 Non Descript Position

Numeric 54 6 Six 6 Non Descript Position

Numeric 55 7 Seven 7 Non Descript Position

Numeric 56 8 Eight 8 Datatype Upper Boundary -

Numeric 57 9 Nine 9 Datatype Upper Boundary

Numeric 58 : Colon : Datatype Upper Boundary +

Integer 1048574
Integer - Lower
Boundary

Integer - Smallest -32768 Datatype Lower Boundary

Integer 1048575
Integer - Upper
Boundary

Integer - Largest 32768 Datatype Upper Boundary

Real 1048572
Real - Lower
Boundary

Real - Smallest -32767 Datatype Lower Boundary

Real 1048573
Real - Upper
Boundary

Real - Largest 32767 Datatype Upper Boundary

Lowercase Alpha 96 ` Single Left Quote ` Datatype Lower Boundary -

Lowercase Alpha 97 a a a Datatype Lower Boundary

Lowercase Alpha 98 b b b Datatype Lower Boundary +

Lowercase Alpha 99 c c c Non Descript Position

Lowercase Alpha 100 d d d Non Descript Position

Lowercase Alpha 101 e e e Non Descript Position

Lowercase Alpha 102 f f f Non Descript Position

Lowercase Alpha 103 g g g Non Descript Position

Lowercase Alpha 104 h h h Non Descript Position

Lowercase Alpha 105 i i i Non Descript Position

Lowercase Alpha 106 j j j Non Descript Position

Lowercase Alpha 107 k k k Non Descript Position

Lowercase Alpha 108 l l l Non Descript Position

Lowercase Alpha 109 m m m Nominal Value

Lowercase Alpha 110 n n n Non Descript Position

Lowercase Alpha 111 o o o Non Descript Position

Lowercase Alpha 112 p p p Non Descript Position

Lowercase Alpha 113 q q q Non Descript Position

Lowercase Alpha 114 r r r Non Descript Position

Lowercase Alpha 115 s s s Non Descript Position

Lowercase Alpha 116 t t t Non Descript Position

Lowercase Alpha 117 u u u Non Descript Position

Lowercase Alpha 118 v v v Non Descript Position

Lowercase Alpha 119 w w w Non Descript Position

Lowercase Alpha 120 x x x Non Descript Position

Lowercase Alpha 121 y y y Datatype Upper Boundary -

Lowercase Alpha 122 z z z Datatype Upper Boundary

Lowercase Alpha 123 { Open Curly Brace { Datatype Upper Boundary +

Uppercase Alpha 64 @ At @ Datatype Lower Boundary -

Uppercase Alpha 65 A A A Datatype Lower Boundary

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 337

Datatype Name Character ID Name Description Character Start/End Position

Continued from previous page…

Uppercase Alpha 66 B B B Datatype Lower Boundary +

Uppercase Alpha 67 C C C Non Descript Position

Uppercase Alpha 68 D D D Non Descript Position

Uppercase Alpha 69 E E E Non Descript Position

Uppercase Alpha 70 F F F Non Descript Position

Uppercase Alpha 71 G G G Non Descript Position

Uppercase Alpha 72 H H H Non Descript Position

Uppercase Alpha 73 I I I Non Descript Position

Uppercase Alpha 74 J J J Non Descript Position

Uppercase Alpha 75 K K K Non Descript Position

Uppercase Alpha 76 L L L Non Descript Position

Uppercase Alpha 77 M M M Nominal Value

Uppercase Alpha 78 N N N Non Descript Position

Uppercase Alpha 79 O O O Non Descript Position

Uppercase Alpha 80 P P P Non Descript Position

Uppercase Alpha 81 Q Q Q Non Descript Position

Uppercase Alpha 82 R R R Non Descript Position

Uppercase Alpha 83 S S S Non Descript Position

Uppercase Alpha 84 T T T Non Descript Position

Uppercase Alpha 85 U U U Non Descript Position

Uppercase Alpha 86 V V V Non Descript Position

Uppercase Alpha 87 W W W Non Descript Position

Uppercase Alpha 88 X X X Non Descript Position

Uppercase Alpha 89 Y Y Y Datatype Upper Boundary -

Uppercase Alpha 90 Z Z Z Datatype Upper Boundary

Uppercase Alpha 91 [Open Square Brace [Datatype Upper Boundary +

Alpha 65 A A A First Field Value

Alpha 66 B B B Non Descript Position

Alpha 67 C C C Non Descript Position

Alpha 68 D D D Non Descript Position

Alpha 69 E E E Non Descript Position

Alpha 70 F F F Non Descript Position

Alpha 71 G G G Non Descript Position

Alpha 72 H H H Non Descript Position

Alpha 73 I I I Non Descript Position

Alpha 74 J J J Non Descript Position

Alpha 75 K K K Non Descript Position

Alpha 76 L L L Non Descript Position

Alpha 77 M M M Non Descript Position

Alpha 78 N N N Non Descript Position

Alpha 79 O O O Non Descript Position

Alpha 80 P P P Non Descript Position

Alpha 81 Q Q Q Non Descript Position

Alpha 82 R R R Non Descript Position

Alpha 83 S S S Non Descript Position

Alpha 84 T T T Non Descript Position

Alpha 85 U U U Non Descript Position

Alpha 86 V V V Non Descript Position

Alpha 87 W W W Non Descript Position

Alpha 88 X X X Non Descript Position

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 338

Datatype Name Character ID Name Description Character Start/End Position

Continued from previous page…

Alpha 89 Y Y Y Non Descript Position

Alpha 90 Z Z Z Non Descript Position

Alpha 97 a a a Nominal Value

Alpha 98 b b b Non Descript Position

Alpha 99 c c c Non Descript Position

Alpha 100 d d d Non Descript Position

Alpha 101 e e e Non Descript Position

Alpha 102 f f f Non Descript Position

Alpha 103 g g g Non Descript Position

Alpha 104 h h h Non Descript Position

Alpha 105 i i i Non Descript Position

Alpha 106 j j j Non Descript Position

Alpha 107 k k k Non Descript Position

Alpha 108 l l l Non Descript Position

Alpha 109 m m m Non Descript Position

Alpha 110 n n n Non Descript Position

Alpha 111 o o o Non Descript Position

Alpha 112 p p p Non Descript Position

Alpha 113 q q q Non Descript Position

Alpha 114 r r r Non Descript Position

Alpha 115 s s s Non Descript Position

Alpha 116 t t t Non Descript Position

Alpha 117 u u u Non Descript Position

Alpha 118 v v v Non Descript Position

Alpha 119 w w w Non Descript Position

Alpha 120 x x x Non Descript Position

Alpha 121 y y y Non Descript Position

Alpha 122 z z z Last Field Value

Alphanumeric 48 0 Zero 0 First Field Value

Alphanumeric 49 1 One 1 Non Descript Position

Alphanumeric 50 2 Two 2 Non Descript Position

Alphanumeric 51 3 Three 3 Non Descript Position

Alphanumeric 52 4 Four 4 Non Descript Position

Alphanumeric 53 5 Five 5 Non Descript Position

Alphanumeric 54 6 Six 6 Non Descript Position

Alphanumeric 55 7 Seven 7 Non Descript Position

Alphanumeric 56 8 Eight 8 Non Descript Position

Alphanumeric 57 9 Nine 9 Non Descript Position

Alphanumeric 65 A A A Non Descript Position

Alphanumeric 66 B B B Non Descript Position

Alphanumeric 67 C C C Non Descript Position

Alphanumeric 68 D D D Non Descript Position

Alphanumeric 69 E E E Non Descript Position

Alphanumeric 70 F F F Non Descript Position

Alphanumeric 71 G G G Non Descript Position

Alphanumeric 72 H H H Non Descript Position

Alphanumeric 73 I I I Non Descript Position

Alphanumeric 74 J J J Non Descript Position

Alphanumeric 75 K K K Non Descript Position

Alphanumeric 76 L L L Non Descript Position

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 339

Datatype Name Character ID Name Description Character Start/End Position

Continued from previous page…

Alphanumeric 77 M M M Non Descript Position

Alphanumeric 78 N N N Non Descript Position

Alphanumeric 79 O O O Non Descript Position

Alphanumeric 80 P P P Non Descript Position

Alphanumeric 81 Q Q Q Non Descript Position

Alphanumeric 82 R R R Non Descript Position

Alphanumeric 83 S S S Non Descript Position

Alphanumeric 84 T T T Non Descript Position

Alphanumeric 85 U U U Nominal Value

Alphanumeric 86 V V V Non Descript Position

Alphanumeric 87 W W W Non Descript Position

Alphanumeric 88 X X X Non Descript Position

Alphanumeric 89 Y Y Y Non Descript Position

Alphanumeric 90 Z Z Z Non Descript Position

Alphanumeric 97 a a a Non Descript Position

Alphanumeric 98 b b b Non Descript Position

Alphanumeric 99 c c c Non Descript Position

Alphanumeric 100 d d d Non Descript Position

Alphanumeric 101 e e e Non Descript Position

Alphanumeric 102 f f f Non Descript Position

Alphanumeric 103 g g g Non Descript Position

Alphanumeric 104 h h h Non Descript Position

Alphanumeric 105 i i i Non Descript Position

Alphanumeric 106 j j j Non Descript Position

Alphanumeric 107 k k k Non Descript Position

Alphanumeric 108 l l l Non Descript Position

Alphanumeric 109 m m m Non Descript Position

Alphanumeric 110 n n n Non Descript Position

Alphanumeric 111 o o o Non Descript Position

Alphanumeric 112 p p p Non Descript Position

Alphanumeric 113 q q q Non Descript Position

Alphanumeric 114 r r r Non Descript Position

Alphanumeric 115 s s s Non Descript Position

Alphanumeric 116 t t t Non Descript Position

Alphanumeric 117 u u u Non Descript Position

Alphanumeric 118 v v v Non Descript Position

Alphanumeric 119 w w w Non Descript Position

Alphanumeric 120 x x x Non Descript Position

Alphanumeric 121 y y y Non Descript Position

Alphanumeric 122 z z z Last Field Value

Control Character 0 NUL Null ctrl-@ Datatype Lower Boundary

Control Character 1 SOH Start of Heading ctrl-A Datatype Lower Boundary +

Control Character 2 STX Start of Text ctrl-B Non Descript Position

Control Character 3 ETX End of Text ctrl-C Non Descript Position

Control Character 4 EOT End of Xmit ctrl-D Non Descript Position

Control Character 5 ENQ Enquiry ctrl-E Non Descript Position

Control Character 6 ACK Acknowledge ctrl-F Non Descript Position

Control Character 7 BEL Bell ctrl-G Non Descript Position

Control Character 8 BS Backspace ctrl-H Non Descript Position

Control Character 9 HT Horizontal Tab ctrl-I Non Descript Position

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 340

Datatype Name Character ID Name Description Character Start/End Position

Continued from previous page…

Control Character 10 LF Line Feed ctrl-J Non Descript Position

Control Character 11 VT Vertical Tab ctrl-K Non Descript Position

Control Character 12 FF Form Feed ctrl-L Non Descript Position

Control Character 13 CR Carriage Feed ctrl-M Non Descript Position

Control Character 14 SO Shift Out ctrl-N Non Descript Position

Control Character 15 SI Shift In ctrl-O Non Descript Position

Control Character 16 DLE Data Line Escape ctrl-P Nominal Value

Control Character 17 DC1 Device Control 1 ctrl-Q Non Descript Position

Control Character 18 DC2 Device Control 2 ctrl-R Non Descript Position

Control Character 19 DC3 Device Control 3 ctrl-S Non Descript Position

Control Character 20 DC4 Device Control 4 ctrl-T Non Descript Position

Control Character 21 NAK Neg Acknowledge ctrl-U Non Descript Position

Control Character 22 SYN Synchronous Idel ctrl-V Non Descript Position

Control Character 23 ETB End of Xmit Block ctrl-W Non Descript Position

Control Character 24 CAN Cancel ctrl-X Non Descript Position

Control Character 25 EM End of Medium ctrl-Y Non Descript Position

Control Character 26 SUB Substitute ctrl-Z Non Descript Position

Control Character 27 ESC Escape ctrl-[Non Descript Position

Control Character 28 FS File Separator ctrl-\ Non Descript Position

Control Character 29 GS Group Separator ctrl-] Non Descript Position

Control Character 30 RS Record Separator ctrl-^ Datatype Upper Boundary -

Control Character 31 US Unit Separator ctrl-_ Datatype Upper Boundary

Control Character 32 Space Space Datatype Upper Boundary +

Symbol (Set 1) 31 US Unit Separator ctrl-_ Datatype Lower Boundary -

Symbol (Set 1) 32 Space Space Datatype Lower Boundary

Symbol (Set 1) 33 ! Exclamation Mark ! Datatype Lower Boundary +

Symbol (Set 1) 34 '' Double Quote '' Non Descript Position

Symbol (Set 1) 35 # Hash # Non Descript Position

Symbol (Set 1) 36 $ Dollar $ Non Descript Position

Symbol (Set 1) 37 % Percent % Non Descript Position

Symbol (Set 1) 38 & Ampersand & Non Descript Position

Symbol (Set 1) 39 ' Single Right Quote ' Nominal Value

Symbol (Set 1) 40 (Open Round Brace (Non Descript Position

Symbol (Set 1) 41) Close Round Brace) Non Descript Position

Symbol (Set 1) 42 * Kleene Star * Non Descript Position

Symbol (Set 1) 43 + Addition Sign + Non Descript Position

Symbol (Set 1) 44 , Comma , Non Descript Position

Symbol (Set 1) 45 - Hyphen - Non Descript Position

Symbol (Set 1) 46 . Period . Datatype Upper Boundary -

Symbol (Set 1) 47 / Forward Slash / Datatype Upper Boundary

Symbol (Set 1) 48 0 Zero 0 Datatype Upper Boundary +

Symbol (Set 2) 57 9 Nine 9 Datatype Lower Boundary -

Symbol (Set 2) 58 : Colon : Datatype Lower Boundary

Symbol (Set 2) 59 ; Semi-Colon ; Datatype Lower Boundary +

Symbol (Set 2) 60 < Backwards Arrow < Non Descript Position

Symbol (Set 2) 61 = Equal Sign = Nominal Value

Symbol (Set 2) 62 > Forwards Arrow > Non Descript Position

Symbol (Set 2) 63 ? Question Mark ? Datatype Upper Boundary -

Symbol (Set 2) 64 @ At @ Datatype Upper Boundary

Symbol (Set 2) 65 A A A Datatype Upper Boundary +

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 341

Datatype Name Character ID Name Description Character Start/End Position

Continued from previous page…

Symbol (Set 3) 90 Z Z Z Datatype Lower Boundary -

Symbol (Set 3) 91 [Open Square Brace [Datatype Lower Boundary

Symbol (Set 3) 92 \ Backwards Slash \ Datatype Lower Boundary +

Symbol (Set 3) 93] Close Square Brace] Nominal Value

Symbol (Set 3) 94 ^ Hat ^ Non Descript Position

Symbol (Set 3) 95 _ Underscore _ Datatype Upper Boundary -

Symbol (Set 3) 96 ` Single Left Quote ` Datatype Upper Boundary

Symbol (Set 3) 97 a a a Datatype Upper Boundary +

Symbol (Set 4) 122 z z z Datatype Lower Boundary -

Symbol (Set 4) 123 { Open Curly Brace { Datatype Lower Boundary

Symbol (Set 4) 124 | Bar | Datatype Lower Boundary +

Symbol (Set 4) 125 } Close Curly Brace } Nominal Value

Symbol (Set 4) 126 ~ Tilde ~ Datatype Upper Boundary -

Symbol (Set 4) 127 DEL Delete DEL Datatype Upper Boundary

Symbol 32 Space Space First Field Value

Symbol 33 ! Exclamation Mark ! Non Descript Position

Symbol 34 '' Double Quote '' Non Descript Position

Symbol 35 # Hash # Non Descript Position

Symbol 36 $ Dollar $ Non Descript Position

Symbol 37 % Percent % Non Descript Position

Symbol 38 & Ampersand & Non Descript Position

Symbol 39 ' Single Right Quote ' Non Descript Position

Symbol 40 (Open Round Brace (Non Descript Position

Symbol 41) Close Round Brace) Non Descript Position

Symbol 42 * Kleene Star * Non Descript Position

Symbol 43 + Addition Sign + Non Descript Position

Symbol 44 , Comma , Non Descript Position

Symbol 45 - Hyphen - Non Descript Position

Symbol 46 . Period . Non Descript Position

Symbol 47 / Forward Slash / Non Descript Position

Symbol 58 : Colon : Nominal Value

Symbol 59 ; Semi-Colon ; Non Descript Position

Symbol 60 < Backwards Arrow < Non Descript Position

Symbol 61 = Equal Sign = Non Descript Position

Symbol 62 > Forwards Arrow > Non Descript Position

Symbol 63 ? Question Mark ? Non Descript Position

Symbol 64 @ At @ Non Descript Position

Symbol 91 [Open Square Brace [Non Descript Position

Symbol 92 \ Backwards Slash \ Non Descript Position

Symbol 93] Close Square Brace] Non Descript Position

Symbol 94 ^ Hat ^ Non Descript Position

Symbol 95 _ Underscore _ Non Descript Position

Symbol 96 ` Single Left Quote ` Non Descript Position

Symbol 123 { Open Curly Brace { Non Descript Position

Symbol 124 | Bar | Non Descript Position

Symbol 125 } Close Curly Brace } Non Descript Position

Symbol 126 ~ Tilde ~ Non Descript Position

Symbol 127 DEL Delete DEL Last Field Value

Null (empty) 100000 Null Null - empty set Non Descript Position

Non-Alphanumeric 0 NUL Null ctrl-@ First Field Value

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 342

Datatype Name Character ID Name Description Character Start/End Position

Continued from previous page…

Non-Alphanumeric 1 SOH Start of Heading ctrl-A Non Descript Position

Non-Alphanumeric 2 STX Start of Text ctrl-B Non Descript Position

Non-Alphanumeric 3 ETX End of Text ctrl-C Non Descript Position

Non-Alphanumeric 4 EOT End of Xmit ctrl-D Non Descript Position

Non-Alphanumeric 5 ENQ Enquiry ctrl-E Non Descript Position

Non-Alphanumeric 6 ACK Acknowledge ctrl-F Non Descript Position

Non-Alphanumeric 7 BEL Bell ctrl-G Non Descript Position

Non-Alphanumeric 8 BS Backspace ctrl-H Non Descript Position

Non-Alphanumeric 9 HT Horizontal Tab ctrl-I Non Descript Position

Non-Alphanumeric 10 LF Line Feed ctrl-J Non Descript Position

Non-Alphanumeric 11 VT Vertical Tab ctrl-K Non Descript Position

Non-Alphanumeric 12 FF Form Feed ctrl-L Non Descript Position

Non-Alphanumeric 13 CR Carriage Feed ctrl-M Non Descript Position

Non-Alphanumeric 14 SO Shift Out ctrl-N Non Descript Position

Non-Alphanumeric 15 SI Shift In ctrl-O Non Descript Position

Non-Alphanumeric 16 DLE Data Line Escape ctrl-P Non Descript Position

Non-Alphanumeric 17 DC1 Device Control 1 ctrl-Q Non Descript Position

Non-Alphanumeric 18 DC2 Device Control 2 ctrl-R Non Descript Position

Non-Alphanumeric 19 DC3 Device Control 3 ctrl-S Non Descript Position

Non-Alphanumeric 20 DC4 Device Control 4 ctrl-T Non Descript Position

Non-Alphanumeric 21 NAK Neg Acknowledge ctrl-U Non Descript Position

Non-Alphanumeric 22 SYN Synchronous Idel ctrl-V Non Descript Position

Non-Alphanumeric 23 ETB End of Xmit Block ctrl-W Non Descript Position

Non-Alphanumeric 24 CAN Cancel ctrl-X Non Descript Position

Non-Alphanumeric 25 EM End of Medium ctrl-Y Non Descript Position

Non-Alphanumeric 26 SUB Substitute ctrl-Z Non Descript Position

Non-Alphanumeric 27 ESC Escape ctrl-[Non Descript Position

Non-Alphanumeric 28 FS File Separator ctrl-\ Non Descript Position

Non-Alphanumeric 29 GS Group Separator ctrl-] Non Descript Position

Non-Alphanumeric 30 RS Record Separator ctrl-^ Non Descript Position

Non-Alphanumeric 31 US Unit Separator ctrl-_ Non Descript Position

Non-Alphanumeric 32 Space Space Nominal Value

Non-Alphanumeric 33 ! Exclamation Mark ! Non Descript Position

Non-Alphanumeric 34 '' Double Quote '' Non Descript Position

Non-Alphanumeric 35 # Hash # Non Descript Position

Non-Alphanumeric 36 $ Dollar $ Non Descript Position

Non-Alphanumeric 37 % Percent % Non Descript Position

Non-Alphanumeric 38 & Ampersand & Non Descript Position

Non-Alphanumeric 39 ' Single Right Quote ' Non Descript Position

Non-Alphanumeric 40 (Open Round Brace (Non Descript Position

Non-Alphanumeric 41) Close Round Brace) Non Descript Position

Non-Alphanumeric 42 * Kleene Star * Non Descript Position

Non-Alphanumeric 43 + Addition Sign + Non Descript Position

Non-Alphanumeric 44 , Comma , Non Descript Position

Non-Alphanumeric 45 - Hyphen - Non Descript Position

Non-Alphanumeric 46 . Period . Non Descript Position

Non-Alphanumeric 47 / Forward Slash / Non Descript Position

Non-Alphanumeric 58 : Colon : Non Descript Position

Non-Alphanumeric 59 ; Semi-Colon ; Non Descript Position

Non-Alphanumeric 60 < Backwards Arrow < Non Descript Position

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 343

Datatype Name Character ID Name Description Character Start/End Position

Continued from previous page…

Non-Alphanumeric 61 = Equal Sign = Non Descript Position

Non-Alphanumeric 62 > Forwards Arrow > Non Descript Position

Non-Alphanumeric 63 ? Question Mark ? Non Descript Position

Non-Alphanumeric 64 @ At @ Non Descript Position

Non-Alphanumeric 91 [Open Square Brace [Non Descript Position

Non-Alphanumeric 92 \ Backwards Slash \ Non Descript Position

Non-Alphanumeric 93] Close Square Brace] Non Descript Position

Non-Alphanumeric 94 ^ Hat ^ Non Descript Position

Non-Alphanumeric 95 _ Underscore _ Non Descript Position

Non-Alphanumeric 96 ` Single Left Quote ` Non Descript Position

Non-Alphanumeric 123 { Open Curly Brace { Non Descript Position

Non-Alphanumeric 124 | Bar | Non Descript Position

Non-Alphanumeric 125 } Close Curly Brace } Non Descript Position

Non-Alphanumeric 126 ~ Tilde ~ Non Descript Position

Non-Alphanumeric 127 DEL Delete DEL Last Field Value

ASCII 0 NUL Null ctrl-@ First Character

ASCII 1 SOH Start of Heading ctrl-A First Character +

ASCII 2 STX Start of Text ctrl-B First Character ++

ASCII 3 ETX End of Text ctrl-C Non Descript Position

ASCII 4 EOT End of Xmit ctrl-D Non Descript Position

ASCII 5 ENQ Enquiry ctrl-E Non Descript Position

ASCII 6 ACK Acknowledge ctrl-F Non Descript Position

ASCII 7 BEL Bell ctrl-G Non Descript Position

ASCII 8 BS Backspace ctrl-H Non Descript Position

ASCII 9 HT Horizontal Tab ctrl-I Non Descript Position

ASCII 10 LF Line Feed ctrl-J Non Descript Position

ASCII 11 VT Vertical Tab ctrl-K Non Descript Position

ASCII 12 FF Form Feed ctrl-L Non Descript Position

ASCII 13 CR Carriage Feed ctrl-M Non Descript Position

ASCII 14 SO Shift Out ctrl-N Non Descript Position

ASCII 15 SI Shift In ctrl-O Non Descript Position

ASCII 16 DLE Data Line Escape ctrl-P Non Descript Position

ASCII 17 DC1 Device Control 1 ctrl-Q Non Descript Position

ASCII 18 DC2 Device Control 2 ctrl-R Non Descript Position

ASCII 19 DC3 Device Control 3 ctrl-S Non Descript Position

ASCII 20 DC4 Device Control 4 ctrl-T Non Descript Position

ASCII 21 NAK Neg Acknowledge ctrl-U Non Descript Position

ASCII 22 SYN Synchronous Idel ctrl-V Non Descript Position

ASCII 23 ETB End of Xmit Block ctrl-W Non Descript Position

ASCII 24 CAN Cancel ctrl-X Non Descript Position

ASCII 25 EM End of Medium ctrl-Y Non Descript Position

ASCII 26 SUB Substitute ctrl-Z Non Descript Position

ASCII 27 ESC Escape ctrl-[Non Descript Position

ASCII 28 FS File Separator ctrl-\ Non Descript Position

ASCII 29 GS Group Separator ctrl-] Non Descript Position

ASCII 30 RS Record Separator ctrl-^ Non Descript Position

ASCII 31 US Unit Separator ctrl-_ Non Descript Position

ASCII 32 Space Space Non Descript Position

ASCII 33 ! Exclamation Mark ! Non Descript Position

ASCII 34 '' Double Quote '' Non Descript Position

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 344

Datatype Name Character ID Name Description Character Start/End Position

Continued from previous page…

ASCII 35 # Hash # Non Descript Position

ASCII 36 $ Dollar $ Non Descript Position

ASCII 37 % Percent % Non Descript Position

ASCII 38 & Ampersand & Non Descript Position

ASCII 39 ' Single Right Quote ' Non Descript Position

ASCII 40 (Open Round Brace (Non Descript Position

ASCII 41) Close Round Brace) Non Descript Position

ASCII 42 * Kleene Star * Non Descript Position

ASCII 43 + Addition Sign + Non Descript Position

ASCII 44 , Comma , Non Descript Position

ASCII 45 - Hyphen - Non Descript Position

ASCII 46 . Period . Non Descript Position

ASCII 47 / Forward Slash / Non Descript Position

ASCII 48 0 Zero 0 Non Descript Position

ASCII 49 1 One 1 Non Descript Position

ASCII 50 2 Two 2 Non Descript Position

ASCII 51 3 Three 3 Non Descript Position

ASCII 52 4 Four 4 Non Descript Position

ASCII 53 5 Five 5 Non Descript Position

ASCII 54 6 Six 6 Non Descript Position

ASCII 55 7 Seven 7 Non Descript Position

ASCII 56 8 Eight 8 Non Descript Position

ASCII 57 9 Nine 9 Non Descript Position

ASCII 58 : Colon : Non Descript Position

ASCII 59 ; Semi-Colon ; Nominal Value

ASCII 60 < Backwards Arrow < Non Descript Position

ASCII 61 = Equal Sign = Non Descript Position

ASCII 62 > Forwards Arrow > Non Descript Position

ASCII 63 ? Question Mark ? Non Descript Position

ASCII 64 @ At @ Non Descript Position

ASCII 65 A A A Non Descript Position

ASCII 66 B B B Non Descript Position

ASCII 67 C C C Non Descript Position

ASCII 68 D D D Non Descript Position

ASCII 69 E E E Non Descript Position

ASCII 70 F F F Non Descript Position

ASCII 71 G G G Non Descript Position

ASCII 72 H H H Non Descript Position

ASCII 73 I I I Non Descript Position

ASCII 74 J J J Non Descript Position

ASCII 75 K K K Non Descript Position

ASCII 76 L L L Non Descript Position

ASCII 77 M M M Non Descript Position

ASCII 78 N N N Non Descript Position

ASCII 79 O O O Non Descript Position

ASCII 80 P P P Non Descript Position

ASCII 81 Q Q Q Non Descript Position

ASCII 82 R R R Non Descript Position

ASCII 83 S S S Non Descript Position

ASCII 84 T T T Non Descript Position

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 345

Datatype Name Character ID Name Description Character Start/End Position

Continued from previous page…

ASCII 85 U U U Non Descript Position

ASCII 86 V V V Non Descript Position

ASCII 87 W W W Non Descript Position

ASCII 88 X X X Non Descript Position

ASCII 89 Y Y Y Non Descript Position

ASCII 90 Z Z Z Non Descript Position

ASCII 91 [Open Square Brace [Non Descript Position

ASCII 92 \ Backwards Slash \ Non Descript Position

ASCII 93] Close Square Brace] Non Descript Position

ASCII 94 ^ Hat ^ Non Descript Position

ASCII 95 _ Underscore _ Non Descript Position

ASCII 96 ` Single Left Quote ` Non Descript Position

ASCII 97 a a a Non Descript Position

ASCII 98 b b b Non Descript Position

ASCII 99 c c c Non Descript Position

ASCII 100 d d d Non Descript Position

ASCII 101 e e e Non Descript Position

ASCII 102 f f f Non Descript Position

ASCII 103 g g g Non Descript Position

ASCII 104 h h h Non Descript Position

ASCII 105 i i i Non Descript Position

ASCII 106 j j j Non Descript Position

ASCII 107 k k k Non Descript Position

ASCII 108 l l l Non Descript Position

ASCII 109 m m m Non Descript Position

ASCII 110 n n n Non Descript Position

ASCII 111 o o o Non Descript Position

ASCII 112 p p p Non Descript Position

ASCII 113 q q q Non Descript Position

ASCII 114 r r r Non Descript Position

ASCII 115 s s s Non Descript Position

ASCII 116 t t t Non Descript Position

ASCII 117 u u u Non Descript Position

ASCII 118 v v v Non Descript Position

ASCII 119 w w w Non Descript Position

ASCII 120 x x x Non Descript Position

ASCII 121 y y y Non Descript Position

ASCII 122 z z z Non Descript Position

ASCII 123 { Open Curly Brace { Non Descript Position

ASCII 124 | Bar | Non Descript Position

ASCII 125 } Close Curly Brace } Last Character --

ASCII 126 ~ Tilde ~ Last Character -

ASCII 127 DEL Delete DEL Last Character

Appendices Chapter 8

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 346

Appendix G. ASCII Table

The table below provides the character codes for each of the 128 characters of the ASCII table.

Table 8-46: The ASCII table.

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 Null 32 20 Space 64 40 @ 96 60 `

1 01 Start of heading 33 21 ! 65 41 A 97 61 a

2 02 Start of text 34 22 “ 66 42 B 98 62 b

3 03 End of text 35 23 # 67 43 C 99 63 c

4 04 End of transmit 36 24 $ 68 44 D 100 64 d

5 05 Enquiry 37 25 % 69 45 E 101 65 e

6 06 Acknowledge 38 26 & 70 46 F 102 66 f

7 07 Audible bell 39 27 ‘ 71 47 G 103 67 g

8 08 Backspace 40 28 (72 48 H 104 68 h

9 09 Horizontal tab 41 29) 73 49 I 105 69 i

10 0A Line feed 42 2A * 74 4A J 106 6A j

11 0B Vertical tab 43 2B + 75 4B K 107 6B k

12 0C Form feed 44 2C ´ 76 4C L 108 6C l

13 0D Carriage return 45 2D - 77 4D M 109 6D m

14 0E Shift out 46 2E . 78 4E N 110 6E n

15 0F Shift in 47 2F / 79 4F O 11 6F o

16 10 Data link escape 48 30 0 80 50 P 112 70 p

17 11 Decide control 1 49 31 1 81 51 Q 113 71 q

18 12 Decide control 2 50 32 2 82 52 R 114 72 r

19 13 Decide control 3 51 33 3 83 53 S 115 73 s

20 14 Decide control 4 52 34 4 84 54 T 116 74 t

21 15 Neg. acknowledge 53 35 5 85 55 U 117 75 u

22 16 Synchronous idle 54 36 6 86 56 V 118 76 v

23 17 End trans. block 55 37 7 87 57 W 119 77 w

24 18 Cancel 56 38 8 88 58 X 120 78 x

25 19 End of medium 57 39 9 89 59 Y 121 79 y

26 1A Substitution 58 3A : 90 5A Z 122 7A z

27 1B Escape 59 3B ; 91 5B [123 7B {

28 1C File separator 60 3C < 92 5C \ 124 7C |

29 1D Group separator 61 3D = 93 5D] 125 7D }

30 1E Record separator 62 3E > 94 5E ^ 126 7E ~

31 1F Unit separator 63 3F ? 95 5F _ 127 7F

Appendix H. Publications

The following papers were published at various national and international conferences, as part of the

research and development that was carried out for this thesis. Although all papers have multiple authors, the

content of those that contain definitions of the Atomic Rules approach, GQASV and SMT was solely

produced by the author of this thesis.

On the Effectiveness of Mutation Analysis as a Black Box Testing Technique

Tafline Murnane
TATE Associates
Carlton Victoria

Australia
tmurnane@tate.com.au

Abstract

The technique of mutation testing, in which the
eflectiveness of tests is determined by creating variants of
a program in which statements are mutated, is well
known. Whilst of considerable theoretical interest the
technique requires costly tools and is computationally
expensive. Very large numbers of ‘mutants’ can be
generated for even simple programs.

More recently it has been proposed that the concept
be applied to specijkation based (black box) testing. The
proposal is to generate test cases by systematically
replacing data-items relevant to a particular part of a
specijkation with a data-item relevant to another. If the
specification is considered as generating a language that
describes the set of valid inputs then the mutation process
is intended to generate syntactically valid and invalid
statements. Irrespective of their ‘correctness’ in terms of
the specijkation, these can then be used to test a
program in the usual (black box) manner.

For this approach to have practical value it must
produce test cases that would not be generated by other
popular black box test generation approaches. This
paper reports a case study involving the application of
mutation based black box testing to two programs of
diflerent types. Test cases were also generated using
equivalence class testing and boundary value testing
approaches. The test cases from each method were
examined to judge the overlap and to assess the value of
the additional cases generated. It was found that less
than 20% of the mutation test cases for a data-vetting
program were generated by the other two methods, as
against 75% for a statistical analysis program. l%is
paper analyses these results and suggests classes of
specifcations for which mutation based test-case
generation may be efective.

1 Introduction

Testing software after it is completed remains an
important aspect of software quality assurance despite the
recent emphasis on the use of formal methods and
‘defect-free’ software development processes. As has
been widely stated, testing does not prove the absence of

0-7695-1254-2/01 $10.00 0 2001 IEEE
12

Associate Professor Karl Reed
Department of Computer Science

and Computer Engineering
La Trobe University Australia

kreed@cs.latrobe.edu.au

errors. However, for some classes of programs it is
possible in principle to define a ‘safe’ operational
envelope based upon the set of test cases that it processes
successfidly [l]. Further, clients will frequently write
contracts with acceptance testing clauses with the
objective of verifying that the software does indeed
perform as specified with the intention of taking legal
action if it does not. Pre-delivery testing by developers
can also provide critical data on the overall effectiveness
of the development cycle by identifying residual fault
rates.

Over time, a number of specification based (black
box or prescriptive) test generation procedures have
become popular and have been the subject of numerous
studies as to their effectiveness. Broadly speaking, these
provide a set of rules of varying detail and clarity that can
be applied to a specification to generate test cases.

Traditional mutation analysis is a testing technique
that was not originally intended for use with specification
based testing. In traditional mutation analysis, a single
fault is introduced into the program source code to create
a new program version called a ‘mutant.’ Tests are
created and are processed by the original and mutant
programs with the goal of causing each mutant to fail (i.e.
to produce output that differs from the non-mutant
program). The effectiveness of the program test set is
evaluated in terms of the number of mutants detected.

Budd and Gopal [2] found it was possible to apply
the concept of mutation analysis to specification based
testing. Rather than creating mutants from the program
source code they are created by mutating the program
specification.

In our proposal for mutation analysis, language
elements (terminal elements) of the specification are used
as mutation substitution elements. Each terminal element
is systematically substituted for every other terminal
element. A single element substitution produces one
mutant specification. A mutation test set is then
developed fiom the mutated specifications.

The goals of this research are:
1. to determine whether or not the mutant tests are

able to detect errors in programs and if so, is
there a class of specifications that would benefit
fiom this type of testing and,

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:05 from IEEE Xplore. Restrictions apply.

2. whether this type of testing generates classes of
tests that are not produced by other popular
forms of black box testing and,

3. whether this type of testing produces small
numbers of program-critical tests.

In the case study reported [3], the effectiveness of
specification based mutation analysis was compared to
boundary value analysis and equivalence class testing. In
what follows, we summarise the case study and its results
and make suggestions of the classes of programs for
which this approach to testing would be effective.

2 Traditional Testing Techniques

2.1 Black Box Testing

The term ‘black box’ testing is used to describe tests
that are derived primarily from a program’s specification.
In principle, the internal program source code is not
considered. Test data derived from the specification is
used to systematically test the input and output behaviour
of the program. [4]. The goal is to generate a test set that
l l l y exercises the program’s functional requirements.
Types of testing in this category include equivalence class
testing, boundary value analysis, cause-effect graphing,
error guessing, model checking and random testing.

2.2 Equivalence Class Testing

Equivalence class testing is based upon the
assumption that a program’s input and output domains
can be partitioned into a finite number of (valid and
invalid) classes such that all cases in a single partition
exercise the same functionality or exhibit the same
behavior. Test cases are designed to test the input or
output domain partitions. Only one test case from each
partition is required, which reduces the number of test
cases necessary to achieve functional coverage [4]. The
success of this approach depends upon the tester being
able to identify partitions of the input and output spaces
for which, in reality, cause distinct sequences of program
source code to be executed [l].

Jorgensen [5] identified one problem with
equivalence partitioning. Often a specification does not
define the output for an invalid equivalence class. Tucker
[6] also noted that problems occur when the test data
chosen for an equivalence class does not represent that
partition in terms of the behaviour of the program
function that is being tested.

Hamlet and Taylor [7] state that ‘‘Partition testing can
be no better than the information that defines its sub-
domains.” If one input in an invalid equivalence class
causes a failure in the program then all other inputs in that
class must also cause a failure. If this is not the case then
the equivalence class is not a good representative of that
part of the program and thus the identification of
additional partitions may be required. Due to the nature of
this approach such problems may not be identified.

2.3 Boundary Value Analysis

Boundary value analysis is performed by creating
tests that exercise the edges of the input and output
classes identified in the specification. Test cases can be
derived fiom the ‘boundaries’ of equivalence classes.
Choices of boundary values include above, below and on
the boundary of the class.

One disadvantage with boundary value analysis is
that it is not as systematic as other prescriptive testing
techniques. This is due to the fact that it requires the
tester to identify the most extreme values inputs can take.
Jorgensen noted that it is this type of abstract thinking
that may allow a tester to improve the quality of the test
sets used [5].

2.4 White Box Testing

White box testing involves the examination and
testing of the program’s internal composition, Test data is
derived from examining the internal logic, branches and
paths of the source code [4]. The goal is either to reach
some coverage goal by testing and executing as many
paths, branches and statements or other source
characteristics as possible [8], or to ensure that certain
expressions, decisions, branches, paths or source-
attributes are exercised in particular a manner [9]. The
number of source-attributes and coverage measures is
language dependent and quite large (see for example Wu
et a1 [lo]).

White box and black box testing are complimentary
and when used together can help to check whether a
program conforms to its specification 161 (see for example
Ofi t t and Liu [1 lll).

Rapps and Weyuker [12] noted that as the input
domain of a program is generally very large, exhaustive
testing is often impractical. Even for a small program
containing a limited number of loops and branches,
executing every statement is usually infeasible. They
furthermore stated that ensuring all paths have been
traversed does not guarantee that all errors in the code
will have been detected, pointing for example to the
problems in detecting ‘def-use’ errors. This view is
supported by Weiser et a1 [9].

2.5 Traditional (Code-Based) Mutation Analysis

The main objective of traditional (code based)
mutation analysis is to determine the effectiveness of a
particular test suite. Faults are systematically introduced
into the program’s source code creating ‘flawed clones’
of the program called mutants. Each mutant has one
language element in a single statement of the original
program changed. The element substitution is based on a
set of operators called ‘mutation operators’ [lo].

A test case is designed for each mutant to try to detect
the ‘seeded’ error. If the output from the mutated and
non-mutated program under this test differs, then the test

O a t t and Liu did state that functional testing had several advantages
over structural testing.

13

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:05 from IEEE Xplore. Restrictions apply.

has been successful in locating the mutant code and is
assumed to be capable of locating similar errors. The
mutant is ‘killed’ and is not executed again against other
test cases [13]. Conversely, if the behaviors of the two
programs are the same then the error was not detected and
the test is discarded. New tests are then designed to try to
detect the mutant code. In a complete mutation test all
possible mutants of a particular program are produced
and tested.

The mutation process may generate changes that
leave the mutant functionally equivalent to the original
program. This type of mutant should not be killed by any
given test case which ‘passes’ testing the original
program. The locating of these ‘equivalent mutants’ is
usually done by hand.

The mutation score is the ratio of the number of
killed mutants to the number of non-equivalent mutants
and is the measure of the adequacy of the test set. Of€utt
and Lee stated that a test set is ‘mutation-adequate’ if the
mutation score is 100% [14]. Generally, mutation scores
of 90% are dficult to reach and scores over 95% are
extremely difficult to achieve [ll]. The ultimate goal of
mutation analysis is to locate test cases which kill all non-
equivalent mutants. Test sets which achieve this are
referred to as “adequate relative to mutation” [13].

3 Specification Based Mutation Analysis

Specification based mutation analysis was first
suggested by Budd and Gopal in 1984 [2]. Their
approach involved mutating formal specifications whose
language was defined using predicate calculus. Input test
cases were generated by changing operators and
predicates of the specification. More recent studies
include the use of model checkers to automatically
generate specification mutation test sets using several
different types of mutation operators (see for example
Black et a1 [16] [17] [18]).

In our case, we treat the specification as a language in
which terminal sets can be mutated [3]. A specification
can be characterised as a set of language elements which
together describe the input and output behavior of a
program, in much the same way as the syntax and
semantics of the programming language determine valid
forms of a program. Each data-item in the specification
can be considered as a language or ‘terminal’ element.
Collections of terminal elements are referred to as
terminal sets. Production rules define how the terminal
elements can be combined.

Substituting one terminal element for another creates
one mutant specification. This process is repeated until
every terminal element has been substituted for every
other terminal element. Since each mutant contains one
substituted element it can be referred to as a ‘single-
defect’ mutant. ‘Double-defect’ mutants can be devised
by substituting two terminal elements at a time.
‘Production rule mutants’ could also be created by
mutating the production rules used to generate the input
cases.

The ‘mutation operator’ substitutes one terminal
element for another. A simple example is as follows. The

terminal set <terminallxtermina12Xtermaina13> could
create the mutant <termina12xtermina12xtermaina13> by
substituting the second terminal element for the first.

One test case is created from each mutant. Mutant
test cases are classified as either a ‘syntactically valid’ or
‘syntactically invalid’ input. A syntactically valid input
would make a program behave in a way that would be
expected from a non-mutant input. In an input of this
type, the terminal element that was substituted is
‘syntactically equivalent’ to the terminal element it
replaced.

The syntactically invalid class of inputs can be
decomposed into ‘correct’ and ‘incorrect’. A syntactically
invalid correct input is one that the program should and
does recognise as containing a syntactic error. A
syntactically invalid incorrect input is one that the
program should recognise as containing a syntactic error
but does not. This type of input may have located an
inadequacy or fault in the program.

Creating a set of double-defect mutants could result
in a more rigorous test set, as could production rule
mutation. However the number test cases generated could
be extremely large. Further, the consequences of the first
mutation may directly interfere and complicate the
implications of the second mutation, clouding the result of
the test.

For some specifications, mutation analysis may
produce a test set that appears to resemble a test set
produced by random testing. The difference is that
mutation analysis produces systematic test sets and is not
dependent on randomisation by the tester.

One characteristic that is a requirement of this type of
mutation analysis is that the specifications are written in a
manner that facilitates the mutation process. It is apparent
that some formal or semi-formal method is required
where each terminal element is clearly defined. In the
case study reported, the use of a semi-formal notation
satisfied that requirement.

A shortcoming of mutation analysis is the cost
involved in generating and executing test cases and
examining the results. It is proposed that this testing
technique would benefit greatly from automatic test case
generation.

4 Previous Studies on Specification Based
Mutation Analysis

Budd and Gopal’s [2] approach to specification based
mutation analysis involves producing specifications in
predicate calculus based upon the predicate structure of
the program under consideration. Their notation is chosen
so that the input-output relationships are clear. In
principle, the specification is mutated so that the new
version contains an expression which if true, constitutes
an illegal input. The expression should dBer from its
correct counterpart in that only one element is altered.
Special steps are taken to deal with quantifiers, and
relational operators may be mutated. An input test case is
then produced which meets the mutated specification (i.e.
makes it true).

14

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:05 from IEEE Xplore. Restrictions apply.

Fabbri, Maldonado, Sugeta and Masiero [15]
examined the use of mutation analysis to validate
specifications presented as state charts, defining an
appropriate mutation operator set to be taken as a fault
model. A tool, ProtedST, was implemented to support
the validation of finite state machine models. The goals of
their research were to investigate ways of selecting useful
test sets and how to ensure that a specification and its
program had been thoroughly tested.

Black, Ammann and Majurski [16] experimented
with using a (low-level language) model checker called
‘Symbolic Model Version’ or S M V to automatically
generate complete specification based mutation test sets.
“Complete” test sets include inputs and expected results.
They used two types of mutation operators, creating both
valid and invalid test sets. The model checker was used to
produce counterexamples for each mutation operator,
where each counterexample was a mutant of the original
specification. They noted that their mutation operators
were only useful for specifications that were described as
finite models (within the context of a model checker).
Branch coverage analysis was used to examine the
usefulness of the test cases generated, finding that the
tests were “quite good, but not perfect.” The reported
advantages of using a model checker for specification
based mutation analysis was that the test case generation
was completely automatic, as was the detection of
equivalent mutants.

Ammann and Black [17] found that in order to make
mutation analysis with a model checker possible they had
to decompose specifications to lower language levels.
They investigated a way of reducing larger state machines
to sub-machines enabling these to be processed by model
checkers. This reduction process was referred to as “finite
focus.” Since model checkers can handle finite state
machines of no more than a few thousand states, the
specification must allow decomposition. Thus the
reduction of the specification’s state machine allowed
very large s o h a r e systems to have test cases generated
automatically. They proved that finite focus was a sound
reduction technique, producing smaller state machines
that were valid and creating a smaller mutation adequate
test set.

Black, O b and Yesha [18] examined a method
involving the use of the S M V model checker to
automatically generate complete mutation test sets ftom
formal specifications using a predefined set of mutation
operators. In order to perform the mutation testing, the
specification had to be in a form that was readable by
SMV. They focussed on redefining and comparing
different types of operators and then reducing the number

of mutation operators required for good test coverage.
They presented classes of operators that provided
Merent levels of coverage (up to 100’Yo) and numbers of
mutants created.

Black et al and Budd et al describe complex
specification mutation schemes involving conditional
logic which will inevitably be reflected in the processing
programs. We consider that in many cases the practical
advantages can be realised by merely permuting the input
specification. Therefore our method of mutation analysis
differs fiom these techniques in the following ways.

1. Only one mutation operator is required making
the process far more simple and practical.

2. If the terminal elements are defined then the
specification does not have to be changed to fit
some predefined format.
The more complex the input specification the
better the result of testing, for no increase in the
complexity of the method.

3.

5 The Case Studies and their Interpretation

The case study involved the comparison of boundary
value analysis and equivalence partitioning to
specification based mutation analysis [3]. The objective
of this comparison was to examine the size and nature of
the ‘overlap’ between the mutation analysis test set and
the boundary value and equivalence class test sets. Two
semi-formal specifications were used in this approach.
Their syntax used a combination of COBOL or PLA
syntax and Backus-Naur Form notation. Both were
programming assignments fiom Software Engineering
subjects of La Trobe University (see [19] and [20]).

5.1 The Address Parser Specification

The first specification defmes the input for an address
parser (data-vetting) program. The input to this program
is an address comprised of specific elements, shown in
Figure 1, The aim of the program is to parse an address
and if it is of a ‘correct’ format, write it to a file. If not the
program is to report which elements of the address are
incorrect. The symbols used in the specification are
explained in Table 1, while the results of testing are
outlined in Table 2. The complete specification included
the requirement of directional indicators, for example the
address 150 Main Road North Eltham 3095. In the
interests of limiting the test set, this variant was not
covered.

15

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:05 from IEEE Xplore. Restrictions apply.

A standard address:
[{ UNIT }] Add& { , / } AdddA <street> A... <suburb> A... <postcode>.

FLAT

Number of Tests Created
Mutation Analysis Equivalence Class Testing Boundary Value Analysis

A special flat/unit address:
[{ UNIT >] Add& <streeth. . . <suburb>/\. . . <postcode>.

FLAT
RSD

%of Overlap with
Mutation Analysis

A country or care-of address:
[{ c/- 13 A... <stree P A . . . <suburbBA ... <postcode>.

c /o

Figure 1 Input elements of the address parser specification.

Table 1 Definition of specification notation. All other symbols are characters

Table 2 The results of testinu the address Darser Drouram.

Total I Passed I Failed I Total 1 Passed I Failed I Total I Passed I Failed I ECT 1 BVA
290 1 10 I 280 I 29 I 10 1 19 I 89 I 31 I 58 1 14.5 I 17.9

A requirement of the address parser program was that
if an invalid address was entered then the program has to
be capable of recognising the ‘incorrect’ element(s) and
output an appropriate message. This ability is illustrated
by test cases one to three of Table 3, which shows sample
data and the test methods capable of generating the test
cases. The standard address is used as an example in this
sample.

Conversely, the output generated by mutation test
cases four and five highlight a program fault which was
not found by boundary value or equivalence class testing.
The fault is that the program produced an output message
that did not correctly state which element of the address
was incorrect. This illustrates that due to the extreme
nature of some of the mutation tests generated, program
faults were detected which were not found by
conventional black box testing approaches.

16

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:05 from IEEE Xplore. Restrictions apply.

d e 3 Sample test data and results of testing the address parser program.
Test Case Program Output Could be Method of Generation

d Generated
by

UNIT 3095 Main Number has too manv digits. MA Substitute vostcode for unit number.
Road Eltham 3095. I

, Y

ECT I Invalid class of unit number.
BVA Upper boundary of unit number.

UNIT 99 Main Number has too few digits. BVA Lower boundary of unit number.
Road Eltham 3095. ECT Invalid class of unit number.
UNIT Test Main Number has too few digits. ECT Invalid class of unit number.
Road Eltham 3095.
UNIT C/o Main Number has too few digits. MA “Care-of’ address identifier
Road Eltham 3095. Space required after suburb.

Street not found.
Invalid suburb.

substituted into the unit number.

I Full stop not found.
UNIT 100 Clo I Space required after suburb. I MA I “Care-of’ address identifier
Eltham 3095. Street not found.

Full stop not found.
Invalid suburb.

substituted into the street name.

5.2 The Statistical Analysis Specification letter identifier. The elements of this specification are
listed in Figure 2. The overall results of testing this
specification are shown in Table 4. Sample test data and
results are shown in Table 5.

The second specification defines the input of a
statistical analysis program which computes the standard
deviation and average of values that are tagged by a one-

Batches of these letters and values are bracketed with the following records.
sbatch.. .<batchnoxeor>
and
ebatch.. .<batchnoxeor>

The last record in any collection of batches is:
lbatch.. .<eor>Jlbatch.. .<eof>

The records in each batch are of the following form:
<recor&: :=<lpart><rpartxeor>
<lpart>::=<null>lA.. .
<rp&: :=<letter>r\ccvalue>l<~&A<letter>A<value>
<letter>::= any letter chosen from the set [B-L, S-W, Z]
<value>::= any valid, non-floating point decimal value in the range [-99,991

1
Figure 2 Input elements of the statistical analysis specification.

17

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:05 from IEEE Xplore. Restrictions apply.

Table 5 Sample test data and results of testing the statistical analysis
nrouram.

TestCase Program Behaviour Could be Method of Generation
* Generated

by
I 1 I sbatch20 I Programacceptstheinput as I MA I Substitute sbatch number for ebatch I

I sbatch sbatch
1 G-99
ebatch 20
sbatch ebatch
G -99
ebatch 20

Valid. number.
ECT
BVA

Valid class of rpart number.
Upper boundary of rpart number.
sbatch tag substituted into the sbatch
number.

Program outputs error message MT
stating that there was no sbatch
number found.
Program outputs error message MT ebatch tag substituted into sbatch
stating that there was no sbatch
number and the rpart and ebatch
tae: was not found.

number.

5.3 An Examination of the Results

In the specification for the address parser, few
terminal elements were syntactically equivalent.
Consequently, ftom the mutation test set produced the
program found only a small number of addresses that
were syntactically valid. For example the house number
could be substituted for the unidflat number without an
error being raised, as both were three digits long.
However if the house or unidflat numbers were swapped
with a text sentence such as the street name the program
found a syntactic error in the input. The element that was
the most interchangeable was the ‘space.’ One-space
markers could be swapped for any one-or-more space
markers without errors being detected in the input. The
reverse was not equivalent, however the space marker
could also be replaced for elements such as all of the
optional address elements.

It was found that there was 17.93% equivalence
between the mutation analysis and the boundary value
analysis test sets, and 14.48% between the mutation
analysis and the equivalence class test sets.

For the statistical program there was an extensive
overlap between the mutation analysis test set and the
boundary value and equivalence class test sets. For
example, all three testing methods located errors in inputs
involving a missing sbatch or ebatch tag and in inputs
containjng a letter or value outside of the specified range.
Another type of test that produced equivalencies was the
replacement of an element with the <null> element. When
replacing with the <null> element, the three test sets
produced equivalent results in most situations. Therefore
there was a large overlap in the tests ftom the three
methodologies.

A 75.96% equivalence was found between the
mutation analysis test set and the boundary value and
equivalence class test sets.

The testing process showed that although the
programs were returning error messages when invalid
inputs were entered, in many cases they were not
correctly stating which section of the input contained the
error. For the statistical program this inadequacy was
located by all three testing methodologies. However, for
the address parser program most mutation test cases were
able to detect these types of errors, whereas the majority
of the boundary value and equivalence class tests did not.

6 Mutation Testing.Amenable Specifications

In the results reported in the previous section, the
address parser specification produced a mutation test set
in which there was a modest overlap with the boundary
value analysis and equivalence class test sets (less than
20%), while the statistical program’s specification
produced a substantial overlap in the test sets (75%),

A closer examination of the two specifications
suggests that some specifications will be more amenable
to mutation based testing than others. While this issue is
the subject of future work, we can make some informal
comments that will be of practical guidance to
practitioners. Consider a simple specification of the
following form.

where each of the <sepi> = {sil,. . .,sa)

and each of the terminalj> = {tj,, ... ,tjm)

In general, the nature of the si. E <sepi> and the Gk E

<terminalj> will be such that it would be unlikely that
substituting some arbitrary f jkE <terminals> for <sep3>
would produce a test case that would have been generated
by either equivalence class testing or boundary value
analysis. However, we also need to consider the case of

18

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:05 from IEEE Xplore. Restrictions apply.

substituting <terminat> for <terminall>, which
would be a valid mutation operation.

Constructing an equivalence class test requires that
there be some basis for dividing the terminal sets (or
combinations of them) to construct equivalence partitions.
We then choose one element fiom the partition as a test
case. If for some reason the intersection of the terminal
sets is non-null then we may have constructed a mutation
test by default. However if the terminal sets are distinct
then by definition, a valid equivalence class test cannot
choose an element fkom another terminal set. Whether or
not invalid equivalence class tests will generate cross-
terminal set substitutions depends upon how the terminal
set is extended to include illegal values.

In the case of boundary value tests, we point out that
if the sets are discrete and finite then the concept of
boundaries may have no practical meaning. If they are in
some sense continuous or are in a sequence, then
boundary values may be considered to exist. Alternatively
the boundary values may be stated explicitly. A typical
specification for such a terminal might be (without loss of
generality) as follows.

<terminali> ::= (R&N:ubi 5 R 5 Ibi}

where ub and lb are upper and lower boundaries
respectively.

In this case, if there are multiple terminal sets with
this definition and their intersection is non-null, then both
mutation analysis and boundary value and equivalence
class testing can generate test cases that will be identical.

7 Conclusions and Future Work

While specification based mutation analysis can
provide a tester with valuable information about the
correctness of program behaviour, it is clear that it would
not benefit all types of specifications. Future work will
include an examination of the feasibility of identifj4ng
specifications that will benefit from mutation analysis and
the development of mutation operators. Empirical
experimentation will determine whether there is a
statistical overlap between specification based mutation
analysis and other popular forms of black box testing. An
additional goal is to investigate whether specification
based mutation analysis is effective at producing
program-critical tests.

It is also clear that given an appropriate set of
(formal) production rules that specify a program’s input, a
test case generator can be constructed using standard
compiler writing techniques. It would then be possible,
given appropriate mutation operators, to generate mutant
test cases automatically. The simple substitution operator
used in the test cases would be straightforward.

Finally, the authors recognise that the approach taken
here has properties similar to random test case generation
and might generally be regarded as a particular case of
this approach.

Acknowledgements

We would like to acknowledge the contributions to
this paper of Mr. John Murnane of the Department of
Science and Mathematics Education, University of
Melbourne, Australia.

We also acknowledge the support of the Department
of Computer Science and Computer Engineering at La
Trobe University, including the work of Mark Santos,
whose use of this technique in a programming assignment
lead to our formalisations and to the case study reported
here.

Finally, we would like to acknowledge the support of
TATE Associates.

References

[11 Karl Reed, Software Reliability, Testing and Security Class
Lecture Notes. CSE31STM, subject of the Department of
Computer Science and Computer Engineering, La Trobe
University, Australia, 1998.

[2] Timothy A. Budd, Ajei S. Gopal. Program Testing by
Specification Mutation. Computer Language, vol. IO, no. I,
Great Britain, 1985, pp. 63-73.

[3] Tafline Mumane. The Application of Mutation Techniques
to Specifcation Testing. Honours Thesis, Department of
Computer Science and Computer Engineering, La Trobe
University, Australia, 1999.

[4] Glenford Myers. The Art of Software Testing. Wiley-
Interscience Publication, 1979.

[5] Paul Jorgesen. Software Testing: A Craftsman’s Approach.
Department of Computer Science and Information Systems,
Grand State University Allendale, Michigan and Software
Paradigms, Rockford, Michigan, CRC Press 1995.

[6] Allen Tucker, Robert Cupper, W. Bradley, Richard Epstein,
Charles Kelemen. Fundamentals of Computing ZZ. Abstractions,
Data Structures, and Large Sojiware Systems. McGraw-Hill
Inc, 1995.

[7] D. Hamlet, R Taylor. Partition Testing Does Not Inspire
Confidence. IEEE Transactions on Software Engineering, vol.
16, no. 12, December 1990, pp. 1402 - 141 1.

[8] Michael Dyer. The Cleanroom Approach to Quality
Software Development. John Wiley & Sons Inc, Canada, 1992.

[9] M. D. Weiser, J. D. Gannon, and P. R. McMullin.
Comparison of Structural Test Coverage Metrics ZEEE
SoJiware, March 1985, Pages 80 - 85.

19

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:05 from IEEE Xplore. Restrictions apply.

[lo] Basili Wu and Karl Reed. A Structure Coverage Tool for
ADA Software Systems. Proceedings of the Joint Ada
Conference, Washington, D.C. (WADAS) March 1987.

[ll] A. offutt, S . Liu Generating Test Data from SOFL
Specifications. Preliminary draft yet to be published, written
April 1997.

[12] Sandra Rapps, Elaine J Weyuker. Selecting Software Test
Data Using Data Flow Information. ZEEE Transactions on
Software Engineering, vol. SE-1 1 no. 4 April 1985.

[13] A. offutt, J. Voas. Subsumption of Conditional Coverage
Techniques by Mutation Testing. Technical Report ISSE-TR-
96-01. 1996.

[14] A. O m , Stephan Lee. An Empirical Evaluation of Weak
Mutation. IEEE Transactions on Sof)ware Engineering, vol. 20,
no. 5, May 1994.

[15] S.C.P.F. Fabbri, J.C. Maldonado, J.C. Sugeta and P.C.
Masiero. Mutation Testing Applied to Validate Specifications
Based on Statecharts. International Symposium on
Software Reliability Engineering, Proceedings Los Alamitos:
IEEE Computer Society, Boca Raton, USA, pp. 210-219.

[16] Paul Am”, Paul Black, William Majurski. Using
Model Checking to Generate Tests from Specifications.
Proceedings of the 2“‘ IEEE Internutional Conference on
Formal Engineering Methods Brisbane Australia, December
1998, pp 46-54.

[17] Paul Am”, Paul Black. Abstracting Formal
Specifications to Generate Software Tests via Model Checking.
Proceedings of the 1gh Digital Avionics System Conference, St.
Louis Missouri, October 1999. IEEE vol. 2, section 10.4.6, pp
1-10.

[18] Paul Black, Vadim Okun, Yaacov Yesha Mutation
Operators for Specifications. ISth Annual Software Engineering
Conference, IEEE Computer Society, Grenoble, France,
September 2000, pp. 81-88.

[19] Karl Reed. CSE31STM Assignment Two. CSE31STM,
subject of Department of Computer Science and Computer
Engineering, Latrobe University, Australia 1998.

[20] Karl Reed. CSE32SRT Assignment Two. CSE32SRT,
subject of Department of Computer Science and Computer
Engineering, Latrobe University, Australia 1998.

20

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:05 from IEEE Xplore. Restrictions apply.

A Preliminary Survey on Software Testing Practices in Australia
1

S.P. Ng
*
, T. Murnane

†
, K. Reed

†
, D. Grant

*
, T.Y. Chen

*

†
School of Engineering & Mathematical Science

La Trobe University
Kingsbury Drive, Bundoora 3086

Australia
Email: {t.murnane, k.reed}@latrobe.edu.au

Phone: (+613) 9479 1377
Fax: (+613) 9479 3060

*
School of Information Technology

Swinburne University of Technology
John Street, Hawthorn 3122

Australia
Email: {sng, dgrant, tchen}@it.swin.edu.au

Phone: (+613) 9214 5505
Fax: (+613) 9819 0823

1 This Survey was funded by the Australian Computer Society under its research program.

Abstract

This paper presents the findings of, to the best of
our knowledge, the first survey on software testing
practices carried out in Australian ICT industry. A
total of 65 organizations from various major capital
cities in Australia participated in the survey, which
was conducted between 2002 and 2003.

The survey focused on five major aspects of
software testing, namely testing methodologies and
techniques, automated testing tools, software testing
metrics, testing standards, and software testing
training and education. Based on the survey results,
current practices in software testing are reported, as
well as some observations and recommendations for
the future of software testing in Australia for industry
and academia.

Keywords: Software engineering, software testing,
survey

1. Introduction

Swinburne University of Technology, in
conjunction with La Trobe University and sponsored
by the Australian Computer Society conducted a
survey on software testing in Australia between 2002
and 2003. Similar surveys are being run in several
other Southeast Asian countries. Software
development organizations from different industry
sectors (government, pubic and private), domestic and
foreign owned, in-house groups and software
companies across various industries were invited to
participate in the survey.

There were a number of reasons for conducting this
survey:-

Firstly, anecdotal evidence from software
developers suggests that testing is becoming an
increasing percentage of the development budget.

Secondly, the authors’ view is that software quality
will become an increasingly important factor in
software marketing. As this evolves, testing strategies
will (in our view) become progressively more
important. A carefully constructed survey has the
potential of identifying the best practices, which can
then be disseminated.

Thirdly, the survey may provide indications of
future research directions.

Fourthly, the comparison with parallel surveys in
the region will assist all national industries to both
improve software quality and identify optimum testing
strategies.

Finally, the results will provide guidance for those
training software developers and software engineers.

The observations reported in this paper were based
on 65 respondents successfully completing the
questionnaire. Interestingly, the results from analyzing
these 65 responses follow almost the same trends
obtained from an earlier analysis performed three
months ago using the first 41 responses. Despite the
relatively small sample population in the survey, the
consistency of the data obtained heightened our
confidence to report the observations in this paper.

The remainder of this paper is structured as follows.
Section 2 explains the methods that were used to plan
and conduct the survey, including the method of
selecting a research sample, the variables that the
survey aimed to measure, the approaches used to invite
subjects, and the methods of collecting data from
respondents. Section 3 reports and discusses the
results of the survey, including organization
information of the respondents. Section 4 analyses and
summarizes the survey findings, and discusses the
implications of the survey on the software testing
industry, as well as its implications on training and

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

education of software testing personnel, both in the
workplace and at universities. Section 5 concludes the
paper and suggests future work.

2. Survey Methodology

2.1 Survey Objectives

Two of the five objectives listed in the introduction
were used as the design objectives for this survey,
since the others are considered as outcomes that flow
from these. The primary objective was to determine
the types of testing techniques, tools, metrics and
standards that organizations in Australia use when
carrying out software testing activities (this of course
embraces several of the listed objectives). The purpose
of this was to provide a concise picture of the current
industry best practices.

The second objective was to determine whether
existing training courses in software testing taught in
the workplace or in similar study at tertiary institutes
adequately cover the types of testing methodologies
and skills that industry requires. If these requirements
were not met, the industry may benefit from the survey
recommendations to address any deficiency observed
and ultimately improve the existing training
opportunities available to practitioners as well as
novice testers.

Based on these two objectives, a number of
hypotheses were employed to design the questionnaire
and shape the direction of the survey.

2.2 Survey Description

The survey targeted senior employees involved with
testing in software development organizations.
Requests were addressed to software testing or project
mangers as the personnel most likely to understand
their testing environments and experiences within their
organization.

Five major areas of software testing related
activities were investigated by the survey. In addition,
an introductory section was also included to assess the
organization size and structure, and where relevant,
history of the organization and its overall procedures
with respect to software development and testing.
Using the conjectures in our hypotheses as means of
constructing specific questions, the questionnaire was
arranged into the following six sections. The
information sought can be summarized as follows.

Section A - Organization Information
This section captured the type and size of the

organization, including specifics such as the current

number of general employees and IT professionals, the
number of applications developed and tested over the
past three years, the allocated and actual budget for
testing among the other various software development
activities, as well as questions relating to whether the
organization wrote specifications and whether changes
to specifications were controlled and tracked.

Section B - Software Testing Methodologies and

Techniques
The extent to which software testing methodologies

and general testing techniques are used in the industry
and the current practices of those organizations
adopting structured methodologies and techniques in
software testing were investigated in this section.

Section C - Automated Software Testing Tools
Questions relating to the extent to which automated

testing tools are used in industry, including commercial
and in-house developed tools, were placed in this
section revealed. The level of satisfaction with such
tools was assessed by querying the respondents’ belief
that the quality of developed software was being
improved by the use of such tools.

Section D - Software Testing Metrics
This section explored the extent to which software

testing metrics are used by industry, and if and how
those metrics are improving the quality of software
under development.

Section E - Software Testing Standards
The usage of standards for software testing in

industry, including published standards such as ISO,
CMM and their quality accreditation, as well as in-
house developed standards was assessed in this
section. Questions were posed to determine whether
the use of standards was considered to improve the
software development processes of the organization.

Section F - Software Testing Training and

Education
This section determined the extent to which

organizations provide training in software testing for
their employees. Also examined was the
organization’s view on the factors that attract software
testing staff to attend training courses as well as the
benefits for testing staff that accrue. The usage of
various sources of training courses (such as
universities or TAFE colleges, external commercial
training courses, in-house training and self-study) were
also queried.

2.3 Survey Method

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

A questionnaire comprised of both closed and open-
type questions was used. Survey interviews were
conducted face to face, over the telephone, via
facsimile or email attachment. To allow for more
flexible arrangements, some respondents were invited
to complete the online questionnaire at our survey web
site2. In all cases, printed or verbal explanatory notes
were provided to respondents to ensure consistent
interpretation of the terminologies and questions in the
questionnaire. In general, respondents took no longer
than thirty minutes to complete the questionnaire.
Confidentiality and privacy were assured to all
individuals returning the questionnaire and the
organization that they represented.

2.4 Sample Selection

Our survey targeted the population at the
organizational level (or alternatively at departmental
level if there was more than one department in an
organization responsible for software development). A
draft questionnaire of the survey was trialed against a
small group of five organizations, and a number of
adjustments were made based on the experiences and
feedback we gathered from the pilot run. As a result,
we aimed at targeting four different types of
participants in this survey. The first preference was
test managers, the second was a member of the test
team, thirdly a software project manager, and finally a
general organizational or departmental manager. This
allowed us to deal with situations where there was no
specific individual responsible for testing in the
organization.

Five approaches to our target audiences were made
over a twelve month period to identify a suitable
sample for the survey. Resources used were:- an
article which appeared in the May 2002 issue of
Australian Computer Society (ACS) magazine,
Information Age, reaching around 14,000 Australian IT
professionals [10]; a one-page insert in the
February/March 2003 issue of Information Age; a list
of 350 companies constructed from Australia’s
national telephone directories; a list of software test-
likely organizations from classified post
advertisements appeared in a newspaper3; and a flyer
to request for participation enclosed in the June 2003
issue of the Software magazine published by Software
Engineering Australia (SEA) with circulation of over
6,000 copies distributed to its members nationally.

2
 URL of the software testing survey web site is

http://acssesurvey.it.swin.edu.au
3 This task is simplified by the fact the largest circulation newspapers
run extensive IT supplements on Tuesdays of each week.

As a result, a total of 65 individuals or companies
participated in the survey. This is a relatively low
response rate, given the large number of organizations
that were invited to participate in the survey, and the
large estimated size of the population.

During the pilot study of the survey, a “focus
groups” sampling method was used, in which we
personally invited companies that survey members had
connections with to participate.

This survey sample was then built in three stages.
In the first round, non-probabilistic sampling called
“convenience sampling” [4] was employed, where the
participants were selected because they were easy to
access or because we believed they had a good chance
of representing the population. In the mail out stage,
“cluster based sampling” [4] was adopted, in which the
target population was filtered using an indicator that
was deemed likely to classify them as not being a
software test-likely organization. Companies which
had shop fronts and software/hardware sales
companies were considered unlikely to be software
development organizations and hence were unlikely to
be performing any software testing. Nevertheless, the
response rates in all data-collection stages of the
project were far below our expected target of 100
responses or more, although based on our
conversations with other researchers, this reflects the
experience of others in Australia attempting to gather
similar information in different disciplines.

The relevance of the sample was, however,
considered to be extremely important, in that over 70%
of respondents had managerial or team leadership roles
in their organization and we are satisfied that the
results from the sample are likely to be “indicative”,
although may not be absolutely conclusive. In
particular, the results show the attributes of those
responding organizations, regardless of whether they
perform software testing in an ad hoc or a systematic
manner.

Discussions among university colleagues have
suggested that the low response rate may indicate that
a large number of software development groups do not
use any vigorous testing methods. It is also possible
that the Australian software developers, similar to their
New Zealand counterparts [3], are “survey averse”,
and that the cost of attaining representative samples is
beyond the scope of our current project budget.
Nevertheless, we intend to investigate the reasons why
practitioners were reluctant to participate in the survey
as part of our follow-up activities of the project.

3. Survey Results

3.1 Organization Information

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

Of the 65 organizations responded to our survey,
more than two-thirds (67.7%) belong to the local
private commercial sector. In addition to these, 15.4%
were from overseas-based private commercial
organizations, 10.8% were from government, and 6.2%
were public non-commercial organizations (Table I).

Table I - Respondents by sector
Sector Type Response %

Government
Public non-commercial organization
Local private commercial organization
Overseas-based private commercial
organization
Joint venture between public and private
sectors

7
4

44
10

0

10.8
 6.2
67.7
15.4

0

Total 65 100.0

The majority industry type of the respondent
organizations was software house and IT consultancies
(49.2%). Other industries included finance and
insurance, manufacturing and engineering, research
and development, and telecommunications (Table II).

Table II - Respondents by industry
Industry Type Response %

Banking, finance & insurance
Education & training
Hotel, tourism, retail & trading
Manufacturing & engineering
Research & development
Software house & IT consultancy
Telecommunications
Other

7
1
2
4
3

32
3

13

10.8
 1.5
 3.1
 6.2
 4.6
49.2
 4.6
20.0

Total 65 100.0

The 65 organizations ranged from large in size with
over 500 employees (24.6% of organizations) to very
small sizes of less than 20 (also 24.6%). Most of these
had substantial experience in software development:
13 organizations claimed to have 6 to 10 years of
relevant software testing experience, 19 organizations
with 11 to 19 years, and 22 organizations have more
than 20 years of experience. Again, although the
survey sample size was not ideal, we believe that these
65 organizations of such diversities do provide us a
valid set of sample data and allow us to reflect the
current software testing practices in the country.

As our main interests are in software testing, our
questions mainly focused on software testing issues,
including budget allocation. We found that only 3 out
of 65 organizations allocated 40% or more of the total
development budget to software testing in the initial
software development plan, while 49 organizations had
allocated less than 40% of the budget to testing.
Among these 49 organizations, most of them (16 each)
allocated between 10 to 19% or between 20 to 29% of
the initial budget to testing alone. Nine organizations
allocated between 30 to 39%, and amazingly there

were 8 organizations which allocated less than 10% of
the total development budget to software testing during
the planning phase. Despite these facts, only 11
organizations (16.9%) reported that they met their
testing budget estimates. Twenty-seven organizations
(41.5%) spent 1.5 times of the estimated cost in testing
and 10 organizations (15.4%) even reported a ratio of
actual to estimated testing cost of 2 or above. Even
more surprisingly, there were 3 organizations (4.6%)
which managed to complete testing activities using
only half of their initial allocated testing budget.

3.2 External Consultants, Testing

Responsibility and Organizational Issues

We were surprised to find that, in the past 3 years,
24 organizations (36.9%) hired external testers to assist
the organization to implement software testing
methods or tools. Of these, 50% outsourced less than
20% of the testing budget to external testers, and
29.2% outsourced between 20 to 39%. In terms of
satisfaction level, 75% were either satisfied or highly
satisfied with the service from external testers and
another 16.7% were neutral. Only 1 organization
(4.2%) was dissatisfied and one other was highly
dissatisfied. These figures clearly indicate that current
external software testing companies are providing a
very high standard of services to their clients in
Australia.

The majority of respondents (70.8%) were found to
appoint a person who is solely responsible for
managing software testing activities in their
organization, showing that testing is becoming a more
independent process in industry.

User acceptance testing and regression testing were
extremely common for all software applications
developed, the results being 31 (47.7%) and 45
organizations (69.2%) respectively. Of the 45
organizations performing regression testing, 24 of
them (53.3%) repeated regression testing for every
new version of the application whilst 13 organizations
(28.9%) conducted regression testing again after every
change in the application.

Another interesting finding was that 50 out of 65
organizations (76.9%) followed formal processes or
procedures for approving changes in requirements and
specifications during the software development
lifecycle. There were also 50 out of 65 organizations
that formally documented requirement and
specification changes during system development. In
other words, the remaining 15 organizations (23%) did
not formally document these changes at all. A closer
scrutiny of the raw survey data indicated that there was
no significant correlation between the 50 organizations
in which formal processes were followed to approve

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

requirement changes and those 50 organizations in
which requirement changes were formally documented
during system development. This observation reveals
the existence of some degrees of inconsistencies and
weaknesses within the software development practices
in industry.

3.3 Software Testing Methodologies and

Techniques

This section investigated the extent of adoption of
software testing methodologies and techniques in
organizations to improve the quality of their software
products. Forty-two out of 65 organizations (64.6%)
claimed the use of at least one structured software
testing methodology in the past 3 years. While it is
encouraging to see that almost two-thirds of the
respondents employ some structured testing
methodologies, the fact that slightly more than one-
third of the organizations are still doing ad-hoc testing
was quite remarkable. In fact, we imagine that the
actual figures for ad-hoc testing may be even
underestimated, as many such organizations may be
reluctant or may not have been interested in
responding to our survey.

The three most popular methodologies included test
case selection, static analysis and dynamic analysis. In
terms of selecting test cases, black-box testing
(particularly boundary value analysis and random
testing) were more common than white-box testing (29
responses for black-box versus 16 for white-box).
Eighteen respondents adopted data flow analysis
techniques. Only 3 organizations reported the use of
mutation analysis and none reportedly use symbolic
analysis. Although the unpopularity of such
techniques may not be conclusive due to the small
sample size in the survey, it is evident that these
techniques are rarely used in the industry despite large
volume of research work has recently been done in
these areas [1, 2, 6, 7]. Comparing static analysis and
dynamic analysis, we observed that document and code
inspection attracted a slightly higher response rate than
code walkthroughs (29 versus 22). In both cases,
manual processes were still more commonly engaged
than automated ones (. The use of automated tools in
software testing will be further discussed in later
sections.

Of the 42 organizations using some form of
structured testing methodology in the past three years,
27 (64.3%) carried out structured testing for more than
80% of their projects, and 21 organizations (50%) have
been adopting structured testing methodologies for
over 5 years. While 10 respondents (23.8%) were
unsure if the cost-effectiveness has been improved by
the use of methodologies, 28 (66.7%) expressed their

affirmative responses, in contrast to only 4 respondents
(9.5%) who expressed their disappointment in adopting
testing methodologies. It would be interesting to
further investigate the reasons why there exists such a
large percentage of respondents who were unsure
about the effects of utilizing systematic testing
approaches.

Major testing activities performed by respondents
(in order of popularity) were designing test cases (55
organizations), documenting test results (54
organizations), re-using the same test cases after
changes were made to the software (also 54
organizations), defining test objectives (48
organizations) and re-designing test cases based on the
analysis of previous test results (41 organizations). We
observed that although some organizations did not
claim to use structured testing methodologies, they did
perform basic testing activities such as designing test
cases and documenting test results on a regular basis.

Among the 56 organizations (86.2%) that used
standard test plan templates, 18 of them (32.1%)
always updated the test plan whenever there was a
change in requirements and specifications. While 22
(39.3%) and 12 (21.4%) organizations respectively
quite often and occasionally updated their test plans,
surprisingly, 4 organizations (7.1%) never update their
test plans, even when requirements and specifications
changes occur. This survey result suggests that some
organizations still may not be practicing the proper
procedures of continuously updating test plans even
though this process is generally regarded as essential to
guarantee the validity and efficiency of test plans.

There were 59 out of 65 organizations (90.8%)
reporting that formal tests were performed to ensure
the developed software meets its requirements and
specifications, suggesting that user acceptance testing
is widely used in industry. Twenty-five organizations
(38.5%) reported that over 80% of their test cases
generated in the past 3 years were derived from
specifications, with 17 organizations (26.2%) reporting
between 60 and 79%. Regarding the percentage of
software faults detected in the past 3 years, 22
organizations (33.8%) found that between 40 to 59 %
of such faults were related to specification defects,
followed by 16 (24.6%) and 15 organizations (23.1%)
falling within the range of 20 to 39% and 0 to 19%
respectively.

As expected, “big bang” was the most popular
integration testing approach (used by 33 organizations)
probably due to its simplicity. This was followed by
bottom-up and top-down approaches, which were used
by 27 and 23 organizations respectively.

Pre-defined criteria were used by 48 respondents
(73.8%) to stop testing of a software system. Face to
face interviews revealed that several organizations still

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

adopt the common practice of ceasing testing once
resources are exhausted, irrespective of possible
number of faults that may remain in the software.
Another common trend was to cease testing as soon as
all “critical” or “show-stopper” faults had been
detected and removed, despite the fact that those
methods used to determine whether all such faults had
been removed were, in most cases, neither formal nor
methodological in nature.

Being software testing researchers, we were
particularly interested in practitioner’s views on the
barriers to adopting testing methodologies in their
workplace. The responses from the survey were
summarized in Table III.

Table III - Barriers to adoption of testing

methodology
Barrier Respon

se
Rank

Do not think there is any barrier

Lack of expertise
Lack of support tools
Costly to use
Difficult to use
Time-consuming to use
Do not think it is useful or cost effective
Do not know of any testing methodology
Other

20

28
18
14
3

20
5
7

14

2

1

2

As indicated in Table III, 43.1% reported that a lack
of expertise as the dominant factor preventing or
disadvantaging organizations from using software
testing methodologies. About 30% of respondents did
not believe there was any barrier to using
methodologies in their organizations. On the other
hand, the same number of respondents regarded testing
methodologies as being time-consuming when used.

The largest problem reported with using testing
methodologies was a lack of expertise, with almost
half of the respondents encountered. In our opinion,
there are two likely causes of this. Firstly, this could
indicate that software testing professionals are not
sufficiently trained in testing methodologies either at
the university or industry level. The second cause may
be that there is a genuine shortage of software testing
professionals with such knowledge in industry. In
either case, it is obvious that training opportunities of
software testers are essential to improve the quality and
reliability of the software products developed in the
country.

3.4 Automated Software Testing Tools

There was substantial usage of automated software
testing tools amongst the respondents. In the past 3
years, 44 organizations (67.7%) have automated some
of their testing activities. Out of these 44

organizations, 30 (68.2%) acquired the tools by
purchasing existing commercial products, while only 6
(13.6%) developed their own tools. Quite
unexpectedly, we found that only 1 organization
(2.3%) out-sourced development of their testing tools.

Among these 44 organizations, automated testing
tools for test execution (35 organizations or 79.5%),
regression testing (33 organizations or 75%), and test
results analysis and reporting (27 organizations or
61%) ranked the top three positions for automated
testing activities. Other activities such as generating
test cases/scripts and test planning/management also
attracted more than one-third of the respondents (20
and 17 organizations respectively). A large proportion
of respondents (36 organizations or 81.8%) in fact
employed multiple automated techniques in software
testing.

Although it is widely believed that software quality
will be improved by the use of automated testing, only
30 of the 44 respondents (68.2%) using testing tools
agreed with this belief. Ten organizations (22.7%)
were unsure, and 4 organizations (9.1%) gave a
negative response to this question.

About half (32) of the 65 respondents reported that
cost was a major barrier to using automated tools for
software testing in their organizations. There were 26
and 16 respondents respectively regarding time and
difficulties as factors which prevented them from using
testing tools in their organizations. The actual
response figures were presented in Table IV.

Table IV - Barriers to adoption of testing tools
Barrier Response Rank

Do not think there is any barrier

Costly to use
Difficult to use
Time-consuming to use
Do not think it is useful
Do not think it is cost-effective
No information resource available
Do not know of any software testing tool
Other

9

32
16
26
4
9
1
4
28

1
3
2

3.5 Software Testing Metrics

Out of the 65 survey respondents, only 38 (58.5%)
used measurable test objectives. Not surprisingly, the
most popular metric reported was defect count (used
by 31 organizations), probably due to its simplicity.

It is encouraging to see that 19 (50%) of the 38
organizations using metrics applied them to more than
80% of the software applications developed in the past
3 years. However, only 21 organizations (55.3%)
agreed that the quality of the developed software
applications was improved by the use of the metrics.
Thirteen organizations (34.2%) were unsure, and 4
organizations (10.5%) even disagreed about the

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

positive effect of metrics on software quality. This
counter-intuitive result certainly deserves further
investigation as follow-up activities of the project.

As shown in Table V, about 30% of the participants
(20 organizations) reported no barrier or disadvantage
in the use of metrics. On the other hand, there was
about a quarter of respondents (17 organizations) who
found the use of metrics to be too time-consuming.

Table V - Barriers to adoption of testing metrics
Barrier Response Ranking

Do not think there is any barrier
Costly to use
Difficult to use
Time-consuming to use
Do not think it is useful
Do not think it is cost-effective
No information resource available
Do not know of any software testing
metrics
Other

20
4
4

17
5
2
6
3

22

1

2

3.6 Software Testing Standards

Software testing standards were being adopted by
47 out of 65 respondents (72.3%). In-house developed
standards were employed by 29 organizations, while
18 organizations used a combination of published and
in-house standards for software testing. Nevertheless,
there were only 3 organizations relying solely on
published standards, indicating that those standards
known to software developers were possibly quite
deficient. On the whole, 39 (83%) of the 47
organizations agreed that such standards did improve
the software development processes used in their
organization, none disagreed, and 7 were unsure
(14.9%)4.

Of the 65 organizations responded to the survey, 22
(33.8%) were quality accredited for their software
development processes. Interestingly, out of these 22
accredited organizations, only 15 (68.2%) believed that
their software development processes were being
improved by acquiring the accreditation, while 4
(18.2%) did not think so and another 3 (13.6%) were
not sure.

Table VI summarizes the respondents’ views on the
barriers to adopting software testing standards in their
organizations. The majority of them (28
organizations) thought that there was no barrier. There
were also significant numbers of responses indicating
that time (15 organizations) and cost (13 organizations)
are the other two main deterrents to the use of testing
standards.

4 One survey participant had mistakenly left this response blank, thus
the total percentage in this category does not add up to 100.

Table VI - Barriers to adoption of standards
Barrier Response Rank

Do not think there is any barrier
Costly to use
Difficult to use
Time-consuming to use
Do not think it is useful
Do not think it is cost-effective
No information resource available
Do not know of any software testing
standards
Other

28
13
4
15
6
5
3
4

18

1
3

2

3.7 Software Testing Training and Education

It was very encouraging to see that 47 (72.3%) out
of the 65 responding organizations provided some
opportunities for their software testing staff to receive
training in software testing. Commercial external
training courses were the most popular (reported by 37
organizations), followed by internal courses (25
organizations) and self-study (22 organizations). In
terms of frequency of training, 28 (59.6%) out of the
47 organizations provided training to staff only on a
needs basis. It is to our disappointment to report that
only 7 organizations (14.9%) offered regular training
to their software testing employees.

Table VII - Barriers to provide training to software

testing staff
Barrier Response Rank

Do not think there is any barrier

Cost
Time
Course
Other

18

31
22
14
10

3

1
2

In terms of barriers to providing training, cost is still
considered to be the most significant factor (31
organizations), followed by availability of time (22
organizations). It is indeed disappointing to see that
there are only 18 (27.7%) out of 65 organizations that
did not believe there was any barrier to provide
training to software testing staff (Table VII).

3.8 Test Organization - Teams, Independent

Testers and Training

Out of the 65 organizations, 44 of them (67.7%) had
an independent testing team. Among these 44, 26
organizations (59.1%) had over 80% of independent
testers in the software testing team (i.e. testing
personnel that do not participate in any software design
or implementation activities). Furthermore, only 10
organizations (22.7%) had over 80% of their testing
team members completing formal training in software
testing, and 7 organizations (15.9%) had 60 to 79%.
However, there were also 15 organizations (34.1%)

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

with less than 20% of their testers being formally
trained. As mentioned earlier, this finding reveals the
inadequacy of formal training of many testing staff,
and suggests that there may be an urgent need to
provide more opportunities for formal training in
software testing.

From the collected data, 27 participants (61.4%)
reported that less than 20% of their testing team
members received training in software testing through
university studies. There were 9 organizations (20.5%)
reported to have over 80% of their testing team
members trained by in-service training courses, whilst
in 7 organizations (15.9%) this was between 60 to
79%. However, as many as 19 organizations (43.2%)
had less than 20% of their testers receiving formal
training by attending in-service training courses. This
high percentage may indicate that there is a possible
divergence between the courses provided by
commercial providers and the actual needs of the
industry. In addition, when asked for their required
minimum qualification for software testers, more than
one-third of organizations specifically required
candidates with some previous testing knowledge and
experiences, indicating that there is a very high
demand to offer more education and training
opportunities to the novice software testers.

4. Analysis and Summary of Survey

Findings

As stated by Kitchenham and Pfleeger in [4], if a
sample is not representative of the population then one
cannot make definite generalizations of the population.
Therefore, due to the smaller than expected survey
sample we were unable to prove or disprove our
hypotheses. Nevertheless, the survey provides some
very valuable insights to the current software testing
practices in Australia. This section gives a broader
analysis of our survey findings.

4.1 Major Barriers and Disadvantages

The most evident barrier to using software testing
methodologies and techniques was found to be a lack
of expertise among the practitioners, with almost half
of the respondents giving the same answer. This
finding suggests that there could be a vast number of
software testing staff who are not been appropriately
trained in the use of formal testing methodologies or
techniques. This may signify a deficiency in the
training of software testing professionals to meet the
actual demand of the industry, or deficiencies in the
techniques themselves.

Cost was ranked first in the list of barriers to the use
of automated testing tools (Table IV) and also in the

list of barriers to provide training to software testing
staff (Table VII) in organizations. In fact, cost was
also ranked highly as a barrier to using testing metrics
and standards in organizations. This could possibly be
due to impact of the IT economy downturn in recent
years, resulting in a much more competitive
environment in the current IT industry.

Time is another critical impediment in the view of
respondents. A high proportion regarded using
automated tools (Table IV), metrics (Table V) and
standards (Table VI) in their organizations as time
consuming.

Difficulty of use was ranked (by about one quarter
of respondents) as the third barrier to adopting
automated testing tools (Table IV). There could be
three reasons for this. Firstly, organizations may not
be familiar enough with automated tools in general, so
when they intend to purchase a tool they have no way
of assessing the type of tool they require or how to
judge the ease of use of the tools. Conversely, it could
be that tool vendors do not provide sufficient on-the-
job training when selling their tools to organizations.
Thirdly, the tools themselves may be difficult to adopt.
The same factor was ranked fifth in the metrics section
(Table V).

4.2 Organization Sectors Adopting Structured

Testing Methodology

It is our initial feeling that Government and public
non-commercial organizations, being public-funded,
are very likely to adopt structured testing methodology.
To our surprise, we found that while there are about
70% of private organizations (both local and overseas)
adopting some form of structured testing methodology,
Government and public organizations reported a
significantly lower percentage. Although this
observation is only indicative due to the small sample
size, it does reveal there is substantial room for
improvement in software testing practices within
government and public organizations.

4.3 Popularity of the Test Case Derivation

Methods

Section 3.3 shows that in general, test case
derivation is reasonably widely used amongst the
respondents. Our conjecture would be that this is a
manual process that connects to some extent with
design practices, and which may support
demonstrations to users more readily than automated
test case generation. It is also possible that existing
undergraduate computer science and software
engineering programs embed this in their programming
and/or testing subjects. The survey results also reveal

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

that deriving test cases from specifications (i.e. using
black-box strategies) was likely to be more popular
than deriving test cases from program codes (white-
box strategies) in industry.

4.4 Testing Budgets

As reported in Section 3.1, about three-quarters of
organizations allocated less than 40% of their
development budget to software testing activities and
only about one-fifth of the organizations could adhere
to or spend less than their allocated testing budget.
This could be a strong indication that software
development organizations are not allocating realistic
budgets to testing, or that their methods of estimating
testing costs are non-realistic. We encourage
organizations to establish databases of both estimated
and actual testing costs in various kinds of software
development projects, thus providing real life data for
more accurate estimation of testing costs in future
projects. It could be interesting to further study the
principal strategies adopted by organizations in
allocating budget to testing in the planning phase of the
projects.

4.5 External Testers

As an overall analysis, there was a substantial level
of satisfaction among organizations that hired external
testers to assist them in software testing activities. We
predicted that in future years, hiring external testers
may become even more popular. This certainly
indicates an increasing need of professional testers in
Australia. At the same time, certification of software
testers may become progressively more important, in
order to guarantee the standard of service offered by
external testers.

4.6 Stopping Rules and Metrics

One major point of concern with the survey
responses was the methods of deciding when to stop
testing (Section 3.3). While there is a number of
practitioners still using such rules, stopping when
resources run out is not regarded as a reasonable metric
[9]. However, defining and using stopping rules is
never simple or easy. Without the use of statistical
models such as fault seeding or confidence bounds as
discussed by Pfleeger [8] or reliability models derived
by Musa and Ackerman [5], it could be potentially
risky and even disastrous to the quality of the software
by using non-statistical criteria.

As a matter of interest, 35 out of the 42
organizations (83.3%) using structured testing
methodologies also used stop-testing criteria, and 33

out of the 42 respondents (78.6%) using structured
testing methodologies also used testing metrics. This
could indicate that the majority of organizations in
industry that use structured methodologies also use
metrics or stop-testing criteria. This phenomenon is
further reinforced by the observation that 30 out of
these 42 organizations (71.4%) employ both stop-
testing criterions as well as metrics. It is also
interesting to observe that out of the 22 organizations
which do not use any structured testing methodology, 9
of them (40.9%) neither use software testing metrics
nor stop-testing criterions at all. It seems fair to say
there still exists a significant fraction of practitioners
performing ad-hoc testing activities in Australia.

4.7 Automated Tools

As reported in Section 3.4, the most popular type of
tools used is to support test execution (35 out of 44
organizations), followed by regression testing (33
organizations), with result analysis and reporting tools
(27 organizations) being the third. This result is not
surprising to us as these activities are very labour
intensive and as such there are plenty of well-
established tools in the market to handle these tasks.

Another interesting point to report is that out of the
42 organizations that use structured testing
methodologies, 34 (80.9%) also used automated tools,
while 10 out of 23 (43.5%) did not use any testing
methodology but did use testing tools. These results
show that there exists a large demand of automated
tools in the software testing industry. Provided that
these tools are of high quality and the tool vendors
provide sufficient training to the users, organizations
are eager to adopt automated tools to facilitate their
testing activities.

4.8 Standards

As reported in Section 3.6, very few organizations
reportedly used published standards. Most
organizations that use standards either develop their
own from scratch or modify published standards to suit
their needs. This insinuates that there may be a
deficiency in the existing published software testing
standards to suit the environment of Australian’s
organizations, and suggests that relevant professional
bodies in Australia, such as ACS or SEA, should
consider forming a special interest group to establish a
set of software testing guidelines specifically for
practitioners in Australia, and then transform these
guidelines into standards when they are further
improved and generally accepted by the majority of
practitioners in Australia.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

4.9 Training and Education

Our results indicate that training courses offered by
universities or TAFE colleges contribute only 10.7%
of the total training opportunities for organizations to
train their testing staff. This may be due to the lack of
practical skills delivered to tertiary students in
traditional software testing courses, or the lack of short
courses in software testing at university. We anticipate
that in the future, more practical research in software
testing will be carried out in universities. Perhaps
these research results could be incorporated into
university courses to provide more modern and useful
skills to students and meet the rising demands of
industry.

5. Conclusions and Future Work

In this paper, we presented and analyzed the
findings of our preliminary software testing survey
conducted in several major capital cities in Australia
between 2002 and 2003. Although the sample size
was smaller than ideal, we are confident that our
findings reveal some trends of the current industry
practices in software testing.

As a second stage of the survey, we plan to increase
the sample population to facilitate a more vigorous
statistical analysis of the obtained data. We would also
like to compare the data from the Australian industry
to that obtained from other Southeast Asian countries
in order to assess the competitiveness of Australia
among its neighbours in the Asia-Pacific region.

Since the reliability of the survey sample has not
been firmly established, all organizations involved in
the mail out that did not respond to our call for
participation will be contacted again to ascertain their
reason for not participating. This may give a better
indication as to the reliability of the survey sample, as
well as whether or not our generalizations are valid.

As we remarked earlier, there is anecdotal evidence
in Australia at least, that substantial resources are
being committed to testing by some developers. At the
same time, users continue to grapple with faulty
software (at a time when extremely high quality
infrastructure systems, e.g. EFTPOS, exist).

The need for surveys of this type is clear.
Establishing the optimum relationship between testing
and software quality; that is ensuring that testing
strategies are in place which yield the highest quality
software, is increasingly important as software begins
to intrude more and more into people’s daily lives. We
are convinced that this survey, despite its limitations,
will assist in this process.

Acknowledgements

The work described in this paper was supported by
a grant from the Australian Computer Society. We
would also like to acknowledge Australian Computer
Society and Software Engineering Australia for
including our promotion flyers in the magazines for
circulation to their members. Dr. Marcelle Schwartz of
La Trobe University provided invaluable statistical
advice, and Thilky Perera of Bond University assisted
in developing the survey sample. Last but not the
least, we are grateful to all respondents of the survey.
Without their efforts and enthusiasms, this survey
could never be successful. Finally, any errors or
omissions are the fault of the authors.

References

[1] P. Ammann, “System Testing via Mutation Analysis of
Model Checking Specifications”, ACM SIGSOFT
Software Engineering Notes, Volume 25, No. 1,
January 2000, pp 30.

[2] Murial Daran, Pascale Thévenod-Fosse, “Software
Error Analysis: a Real Case Study involving Real
Faults and Mutations”, ACM SIGSOFT Software
Engineering Notes, Volume 21, No. 3, May 1996, pp
168-171.

[3] L. Groves, R. Nickson, G. Reeves, S. Reeves and M.
Utting “A Survey of Software Practices in the New
Zealand Software Industry”, Proceedings of the.2000
Australian Software Engineering Conference, Gold
Coast, Queensland, Australia, April 28-30, 2000 pp
189-101.

[4] B. Kitchenham and S. L. Pfleeger, “Principles of
Survey Research, Part 5: Populations and Samples”,
ACM SIGSOFT, Software Engineering Notes, Volume
27, No. 5, September 2000, pp 17-20.

[5] J. D. Musa and A. F. Ackerman, “Quantifying Software
Validation: When to Stop Testing?”, IEEE Software,
May 1989, pp 19–27.

[6] N. Mateev, V. Menon, K. Pingali, “Fractal Symbolic
Analysis”, Proceedings of the 15th international
conference on Supercomputing, June 2001, pp 38-49.

[7] T. Murnane and K. Reed. “On the Effectiveness of
Mutation Analysis as a Black-box Testing Technique”,
Proceedings of the 2001 Australian Software
Engineering Conference, Canberra, Australia, 2001, pp
12-20.

[8] S. L. Pfleeger, Software Engineering: Theory and
Practice, Prentice-Hall, USA, 2001.

[9] R. S. Pressman, Software Engineering: A Practitioners
Approach, McGraw-Hill, International Edition, 1992.

[10] K. Reed, “Testing, testing, testing”, Australian
Computer Society Information Age, April/May 2002, pp
56–58.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:06 from IEEE Xplore. Restrictions apply.

Towards Describing Black-Box Testing Methods as Atomic Rules

Tafline Murnane, Richard Hall and Karl Reed
Department of Computer Science and Computer Engineering

La Trobe University, Bundoora, Australia
{t.murnane, richard.hall, k.reed}@latrobe.edu.au

Abstract
Ideally, all black-box testing methods should be

interpreted in the same way by different testers. In
reality however, inconsistencies and ambiguities in
original method descriptions may lead to differing
interpretations and varying test set quality. In this paper,
we decompose these methods into Atomic Rules for
selecting test data and constructing test cases. We
validate the rules via a worked example and discuss a
pilot experiment to determine whether Atomic Rules are
simpler to learn and use. Our approach also enables
method tailoring and may simplify method comparison.

1. Introduction

Some practitioners may argue that skilled black-box
testers should be able to derive high-yield test sets purely
from knowledge and experience, and that test selection
methods like Equivalence Partitioning (EP) should only
be used to supplement heuristic knowledge [21]. Our
view is that prescriptive black-box methods are essential
in software engineering, and that an artificial division
exists between novices and experts due to at least three
consistency problems in these methods: definition by
exclusion, multiple versions and notational differences.

Some methods do not clearly define how to select
invalid test data. For example, an invalid EP equivalence
class “has something else” [17] is often defined,
containing all inputs other than those that are specified
as valid. Ideally, a member from every class of data
would be selected, but a novice may only be aware of a
subset of these classes. Thus, definition by exclusion
assumes familiarity with the ‘universe of discourse’ with
respect to program inputs. As a result, different testers
may produce vastly dissimilar test sets and,
consequently, statements relating to program correctness
and the nature of faults detected may be meaningless.

In addition, multiple versions of each method exist.
For example, one Boundary Value Analysis (BVA)
approach selects test data on, inside and outside field
boundaries [4], while others do not include inside [5, 9,
10, 14, 17] and outside [8, 14] boundaries. Presently, no
textbook, standard or paper describes every method or
version. Thus, testers may not know how their chosen
approach compares to others, even within an approach.

Method learning is complicated by notational
differences, as a new notation must be understood for
each new method learnt. For example, EP and BVA are
often described as partitioning approaches in which the
input domain is subdivided [17]. Syntax Testing1 (ST) is
not described in this way, despite the fact that partitions
are implicitly created on each input parameter. Also,
boundary values are selected by at least two versions of
ST [2, 12], and both EP and BVA select values that lie
outside the boundaries of numerical fields [17].
Although it may seem as if ST is highly dissimilar to EP
and BVA, these overlaps suggest that these methods
could be described in the same way. In fact, every
method consists of rules for selecting test cases and can
be described by the same three-step process.

1. Select valid and invalid data sets called partitions
for each input and/or output parameter2.

2. Select at least one individual data value from each
partition chosen in (1).

3. Select various combinations of the data values
chosen in (2) to construct test cases.

We believe that the consistency problems discussed
here can be solved by decomposing these methods into
Atomic Rules that are able to produce consistent test sets
regardless of individual knowledge or experience. The
methods we have investigated include those that can be
applied to specifications that give the data definitions of
program input/output parameters. A characterisation
schema for our Atomic Rules is discussed in Section 2.
As proof of concept, in Section 3 we decompose EP and
BVA and show that the resulting Atomic Rules can be
combined to describe the original methods. In Section 4
we use a worked example3 to demonstrate that test cases
derived from a representative specification by the
original EP and BVA approaches can also be produced
by Atomic Rules. Section 5 discusses the preliminary
results of a pilot experiment which analysed method
learnability and usability. Section 6 presents a tailored
approach to black-box testing.

1 Syntax testing is also known as ‘input validation testing’ and
‘grammar-based testing.’
2 In essence, our work suggests that all black-box test case selection
methods are in fact based on the equivalence partitioning concept.
3 Worked examples were used as proof of concept by Rugg, McGeorge
and Maiden [20].

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

2. The Atomic Rule Schema

A characterisation schema for Atomic Rules was
created (see Table 1). Such schemas have been used to
standardize other software engineering “technologies” to
facilitate the selection of appropriate techniques with
respect to specific problem domains (see [3, 11, 18, 19,
20, 22]). We applied this approach to black-box methods
described in thirteen different places [1, 2, 4, 5, 6, 7, 8, 9,
10, 12, 14, 16, 17] to determine their common
characteristics. Four attributes (Table 1: column 1) are
not self-explanatory and thus require discussion: rule
type, original datatype, test datatype and set type.

The rule type attribute differentiates between where
rules are used in the three-step test case selection
process, as follows.

1. Select valid and invalid partitions for each input
and/or output parameter by applying a Data-Set
Selection Rule (DSSR) to each parameter.

2. Select at least one individual data value from each
partition chosen in (1) by applying a Data-Item
Selection Rule (DISR) to each partition.

3. Select various combinations of the data values
chosen in (2) by applying a Test Case
Construction Rule (TCCR) to create test cases.

Original datatype describes the data domain to which
a rule can be applied, while test datatype describes the
data domain that may be selected as test data. For
example, some ST rules only apply to delimiter fields,
while others select data of a different datatype from a
field’s original. Both attributes make use of six datatypes
necessary for EP and BVA rules (see Appendix 2 for our
definitions of integer, real, alpha, alphanumeric, non-
alphanumeric and null). Rules derived from other
methods may use other datatypes (such as those defined
in [13] and [23]).

Finally, set type differentiates between data defined as
lists and ranges. For example, some EP rules only apply
to ranges of numerical data, while others only apply to
data stored in lists [17]. Lists can be expressed as L ::=
[v1 | v2 | … | vn] where n is the number of v values in the
list, and ranges as {R : lb R ub} or R ::= [lb – ub]
which denotes a range of values from lower boundary lb
to upper boundary ub. These terms were adapted from
similar concepts discussed in [8:p79, 10, 14, 17].

3. Decomposition and Recomposition

Twenty-two Atomic Rules (see Appendix 2) were
derived from EP and BVA by analysing various versions
of these methods with respect to the Atomic Rules
schema. To avoid definition by exclusion, all invalid
equivalence classes were selected from within the six
datatypes defined in the previous section (for example,
see EP4…EP8). EP rules are positioned within the three-
step test case selection process as follows.

Table 1: The Atomic Rules schema.
Attribute Type Definition

Test Method enum Method from which the rule was derived.
Number string A unique identifier given to each rule.
Name string A name given to each rule.
Description string Describes what the rule does.

Source enum Reference(s) from which rule was derived.
NA denotes rules defined in this paper.

Rule Type enum Possible values: DSSR, DISR, TCCR (see
discussion in Section 2).

Set Type enum Specifies the set type to which each rule
applies. Options are List and Range.

Valid or
Invalid enum Defines whether the rule selects Valid or

Invalid test data.

Original
Datatype

data
type

Defines the datatypes to which each rule
can be applied: integer, real, alpha,
alphanumeric, non-alphanumeric, null, or
“All” if all datatypes apply.

Test
Datatype

data
type

Defines the datatype of selected test data:
integer, real, alpha, alphanumeric, non-
alphanumeric, null, “All” if all datatypes
apply, or “Same as original” if it is the
same as Original Datatype.

Test Data
Length integer

Specifies the maximum length of selected
test data. If original datatype and test
datatype are the same, then “Same as
original” will appear.

Fields
Populated string Number of input/output parameters for

which the rule selects test data.

Tests
Derived string

Counts the number of test cases derived.
DSSRs and DISRs do not select tests so
they are 0. TCCRs hold an equation to
calculate this, based on the number of
parameters in the test case.

Equivalence Partitioning

1. Select equivalence classes:
a) if set type range then apply rules EP1…EP9,
b) if set type list then apply rules EP4…EP10.

2. Select one data value from each equivalence class
selected in (1) by applying EP11 to each class.

3. Select test cases that are:
a) valid: by applying EP12 to valid data values

chosen in (2),
b) invalid: by applying EP13 to invalid data values

chosen in (2).

We use several EP rules within the equivalent BVA
definition because there is an overlap between EP and
BVA. Consequently, EP rules which select equivalence
classes need to be applied before BVA rules (e.g. see
[17]). EP rules which construct test cases are also used.

Boundary Value Analysis
1. Select valid equivalence classes:

a) if set type range then apply rule EP3,
b) if set type list then apply rule EP10.

2. Select boundary values for:
a) each class chosen in (1a) by applying

BVA1…BVA6 and BVA9 to each class,
b) each class chosen in (1b) by applying

BVA7…BVA9 to each class.
3. Select test cases that are:

a) valid: by applying EP12 to valid data values
chosen in (2),

b) invalid: by applying EP13 to invalid data values
chosen in (2).

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

4. Validation

To validate our approach we need to show
correspondence between the proposed Atomic Rules and
the relevant black-box methods (specifically Myers’ EP
and BVA [17]). For a complete demonstration, it would
be necessary to generate test cases for specifications
covering every possible type of input. However, it is
unnecessary to include all datatypes because data is
either defined as ranges or lists, thus it is adequate to
include at least one example of both. The following
specification, written in standard BNF (see Figure 1)
fulfils this requirement, having both data lists (street,
suburb and postcode) and a data range (house_number).

<address> ::= <house_number><street><suburb><postcode>
<house_number> ::= [1 – 9999]
<street> ::= [Annensen Court | Aaran Close | …| Zoo Court]
<suburb> ::= [Abbotsford | Aberfeldie | … |Yooralla |Yuroke]
<postcode> ::= [0800 | 0801 | 0810 | … |7325 | 7330 | 7331

| 7466 | 7467 | 7468 | 7469 | 7470]
Figure 1: A simple address validation specification [16].

We first generate equivalence classes for this
specification, as our BVA process requires that a number
of EP Atomic Rules already be applied. To show
correspondence, we compare classes derived by Myers’
approach to those selected by EP Atomic Rules (see
Table 2). The third column contains three sub-columns:
the first describes the corresponding Myers’ equivalence
class number (by which the column is ordered), the
second is the identification number of the Atomic Rule
that derived the equivalence class, and the third is the
actual equivalence class chosen by the Atomic Rule.

By visual inspection, every equivalence class selected
by Myers’ approach is matched by at least one class
derived by a corresponding Atomic Rule.

Table 2: Equivalence classes selected by Myers’ approach
and the corresponding Atomic Rules.

Parameter
Myers’

Equivalence Classes

Corresponding
Atomic Rule

Equivalence Classes
house_
number

1) number 1 to 9999
2) number < 1
3) number > 9999
4) has digits
5) has something else

1 & 4) EP3: 1 to 9999
2 & 4) EP1: < 1
3 & 4) EP2: > 9999
5) EP5: real
5) EP6: alpha
5) EP7: alphanumeric
5) EP8: non-alphanumeric
5) EP9: missing value

street 6) pick street from list
7) has letters
8) has something else

6 & 7) EP10: pick from list
8) EP4: integer
8) EP5: real
8) EP7: alphanumeric
8) EP8: non-alphanumeric
8) EP9: missing value

suburb 9) pick suburb from list
10) has letters
11) has something else

9 & 10) EP10: pick from list
11) EP4: integer
11) EP5: real
11) EP7: alphanumeric
11) EP8: non-alphanumeric
11) EP9: missing value

postcode 12) pick postcode from list
13) has digits
14) has something else

12 & 13) EP10: pick from list
14) EP5: real
14) EP5: alpha
14) EP7: alphanumeric
14) EP8: non-alphanumeric
14) EP9: missing value

Next, we compare the boundaries derived by Myers’
BVA to those selected by Atomic Rules, both using valid
equivalence classes (see Table 3). The third column
contains three sub-columns: the identification number of
the matching Myers’ boundary, the number of the
Atomic Rule that derived the corresponding boundary,
and the actual boundary chosen by the Atomic Rule.

Table 3: Boundaries selected by Myers’ approach and by
the corresponding Atomic Rules.

Parameter
(Equivalence

Class) Myers’ Boundaries

Corresponding
Atomic Rule
Boundaries

house_
number
(1 to 9999)

1) below lower
boundary
2) on lower boundary
3) on upper boundary
4) above upper
boundary

1) BVA1: lower boundary - 14

2) BVA2:on lower boundary
3) BVA5: upper boundary
4) BVA6: upper boundary + 1

street
(pick street
from list)

5) select first street
6) select last street

5) BVA7: select first list item
6) BVA8: select last list item

suburb
(pick suburb
from list)

7) select fist suburb
8) select last suburb

7) BVA7: select first list item
8) BVA8: select last list item

postcode
(pick
postcode
from list)

9) select first postcode
10) select last
postcode

9) BVA7: select first list item
in list
10) BVA8: select last item in
list

Additional boundaries could have been selected by
Atomic Rules. For example, the BVA9: Missing Item rule
also applies to the street field. However, these are not
included in Table 3 because complete coverage of
Myers’ boundaries has been achieved.

In both cases, our rules have achieved complete
coverage of the equivalence classes and boundary values
selected by Myers’ approach. Having presented a basic
validation of the Atomic Rules approach, the following
section discusses the results of a preliminary evaluation.

5. Preliminary Evaluation

To determine whether novice testers find Atomic
Rules easier to learn and use than original approaches, a
pilot experiment was conducted. Thirty-three university
students enrolled in a third-year software testing course
were exposed to two different representations of EP and
BVA: Myers’ approach and the corresponding Atomic
Rules. The students were divided into two groups, based
on which approach they learnt first; one group learnt
Myers’ representation first while the second group learnt
the corresponding Atomic Rules first5. A questionnaire
surveyed students on their experience of the approaches.
We now discuss a summary of our preliminary findings6.

Students rated their initial and final understanding of
EP and BVA (Table 4: columns 2-5) using a Likert scale
of: 1 = Very Poor, 2 = Poor, 3 = Average, 4 = Good, 5 =
Very Good, 6 = Excellent. This table shows that all
students increased their understanding of EP and BVA.

4 For rules that increment or decrement upper or lower boundaries by 1,
this unity is equivalent to the minimum positive value that can be
described by whichever number representation scheme is appropriate.
5 The two approaches were taught by different lecturers, thus we plan
to re-run the experiment this year (2005) with the lecturers swapped.
6 See [15] for more information on the experiment design.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

Students also rated their understanding of Myers’
approach and Atomic Rules (Table 4: cols 6-7) using the
same scale. Overall, 57% rated their understanding of
Myers’ approach as below-average, whereas 100% rated
their understanding of Atomic Rules as Good or above.
A t-test showed a significant increase in their self-rated
understanding of Atomic Rules compared to Myers’
approach; t(30) = -7.65, p < .01. Thus, students were
able to gain a better understanding of Atomic Rules.

Table 4: Student survey results.
Understanding of Black-Box

Testing Methods
Understanding of

Approaches
Initial Final

EP BVA EP BVA Myers
Atomic
Rules

Rating Percentages
Very Poor 3 9 0 0 6 0

Poor 15 18 0 0 15 0
Average 36 45 0 3 36 0

Good 15 18 12 21 15 12
Very Good 24 9 58 55 18 70

Excellent 6 0 30 21 3 18
Frequencies Values

Mean 3.61 3.00 5.18 4.94 3.35 5.03
St. Deviation 1.27 1.06 0.64 0.75 1.25 0.56

Students also indicated which method they learnt first
and which they would choose to use in future (Table 5).
Due to variation in enrolments and timetables, more
students learnt Myers’ approach first. A t-test examined
group differences in student’s self-rated understanding of
Myers’ representation (Table 4: col 6) across the order in
which the approach was learnt (Table 5: col 2), showing
a significantly greater understanding if Myers’s approach
was learnt before Atomic Rules; t(29) = 2.67, p = .01.
Conversely, a t-test that examined group differences in
understanding of Atomic Rules (Table 4: col 7) across
approach learnt first (Table 5: col 2) indicated that the
order in which students learnt Atomic Rules did not have
a significant effect on their understanding of the
approach; t(31) = -0.77, p = .45. This suggests that
Atomic Rules are simpler for novices to learn.

Table 5: Approach students leant first versus the approach
they indicated they would use in future.

Approach Leant First (%) Use in Future (%)
Myers 61 9

Atomic Rules 39 91

A chi-square test showed that a significantly higher
number of students indicated that they prefer to use
Atomic Rules in future; 2(1, N=33) = 22.09, p < .001.

6. Atomic Rules Tailoring

The decomposition of black-box methods into Atomic
Rules enables custom combinations of these rules to be
selected for a specific purpose or within particular
constraints (i.e. tailoring [20]). For a simple example,
consider a specification in which all data is of the set
type list (see Figure 2).

<country> ::= [Afghanistan | … |Yemen | … | Zimbabwe]
<telephone_ code> ::= [1 | 7 | 20 | 30 | 31 | … | 88213 | 88216]

Figure 2: A specification for international telephone codes.

With this constraint, only those rules with attribute set
type list are applicable. By inspection (see Appendix 2)
these include EP4…EP13 and BVA7…BVA9.

7. Conclusion

In this paper we developed a representation for black-
box testing methods which addressed three consistency
problems: notational differences, definition by exclusion,
and multiple versions. First, by decomposing the original
methods using a characterisation schema, we created a
uniform notation called Atomic Rules. Second, by using
explicit datatypes within the schema, we avoid definition
by exclusion. Finally, it was unnecessary to populate the
schema with all versions of every method to demonstrate
correspondence with our Atomic Rules. Instead, through
a representative worked example using Myers’ original
definition, we showed that the process of decomposing
several versions of equivalence partitioning and
boundary value analysis was invertible.

We did not attempt to solve the multiple versions
problem here. However, we are presently engaged in
four things: decomposing all black-box methods and
versions into Atomic Rules, determining the optimal
order of rule application, exploring the feasibility of
unifying all methods into a super-method, and
comparing the fault-detection ability of the super-method
to that of the original methods. In so doing, we expect all
redundant overlaps between methods and versions to be
eliminated. For example, EP and BVA both include rules
that select test data from inside and outside field
boundaries. Such redundancy is evident in BVA1: Lower
Boundary - 1 Selection and EP1: < Lower Boundary
Selection. If both EP and BVA were used in testing, it
may be unnecessary to use both rules. Also, while the
results of the pilot experiment that assessed the
learnability and usability of Atomic Rules by novice
testers were encouraging, we plan to repeat this
experiment to eliminate irrelevant environmental
features, such as student preference for lecturer.

We believe that a complete representation of black-
box methods as Atomic Rule is essential for facilitating
test process tailoring. We have demonstrated that the
rules described in this paper can be used for at least one
tailoring example. Ultimately, we would like testers to
be able to select the rules that apply to their specific
problem domain in a consistent and repeatable way.

Acknowledgements

We thank John Murnane of the University of
Melbourne, and the COMPSAC reviewers, for their
invaluable comments. We thank the Victorian State
Government and La Trobe University’s Department of
Computer Science and Computer Engineering for the
research scholarships that support Miss Murnane’s PhD
candidature. Finally, we thank the students of
CSE32STR 2004 for participating in our experiment.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

Appendix 1 – Datatypes/Datatype Schema

This appendix contains the datatype schema (Table 6)
and six datatypes (Table 7) defined for use with EP and
BVA (note that the structure of the two tables only
differs to conserve space). Future research may extend
these datatypes for use in other testing methods.

Table 6: The datatype schema.
Attribute Type Definition
Name string A unique name for each data type.

Set Type enum Describes the set type of the datatype.
Options are List and Range.

Size string
Max length of datatype in bytes. Length can
depend on implementation using the datatype
[13], for which “Max buffer length” will appear.

Example string A simple example.

Table 7: Datatypes defined using the datatype schema.
Name Set Type Size Example

Integer List &
Range

Max buffer
length

List: [-30, 4, 16, -1, 25]
Range: [-16 – 33]

Real List &
Range

Max buffer
length

List: [10.4, -100.5, 3.2]
Range: [-12.1 – 54.23]

Alpha List &
Range 1 byte List: [e, a, n, B, c, H, I]

Range: [e - g]

Alphanumeric List Max buffer
length List: [4z3A, A83, b44]

Non-
Alphanumeric

List &
Range 1 byte List: [“, (, %, *, “, +, &]

Range: [“ - +]
Null (empty) List 0 bytes List: []

Appendix 2 – Atomic Rules for Equivalence
Partitioning and Boundary Value Analysis

Table 8 contains the Atomic Rules that were defined
for EP and BVA using the schema in Table 1.

Table 8: Atomic Rules for Equivalence Partitioning (EP) and Boundary Value Analysis (BVA).
Attribute Values Values Values Values Values

Test Method EP EP EP EP EP
Number EP1 EP2 EP3 EP4 EP5

Name < Lower Boundary
Selection

> Upper Boundary
Selection

Lower to Upper
Boundary Selection Integer Replacement Real Replacement

Description
Select an equivalence
class containing values
below lower boundary

Select an equivalence
class containing values
above upper boundary

Select an equivalence
class containing values
between boundaries

Select an equivalence
class containing every
integer value

Select an equivalence
class containing every
real value

Source [17] & [4] [17] & [4] [17] & 4] [NA [4]
Rule Type DSSR DSSR DSSR DSSR DSSR
Set Type Range Range Range List or Range List or Range
Valid or Invalid Invalid Invalid Valid Invalid Invalid

Original Datatype Integer, Real, Alpha,
Non-Alphanumeric

Integer, Real, Alpha,
Non-Alphanumeric

Integer, Real, Alpha,
Non-Alphanumeric

Real, Alpha,
Alphanumeric, Non-
Alphanumeric

Integer, Alpha,
Alphanumeric, Non-
Alphanumeric

Test Datatype Same as original Same as original Same as original Integer Real
Test Data Length Same as original Same as original Same as original Max length of datatype Max length of datatype
Fields Populated 1 1 1 1 1
Tests Derived 0 0 0 0 0

Attribute Values Values Values Values Values
Test Method EP EP EP EP EP
Number EP6 EP7 EP8 EP9 EP10

Name Alpha Replacement Alphanumeric
Replacement

Non-Alphanumeric
Replacement

Missing Value
Replacement Valid List Selection

Description
Select an equivalence
class containing every
alpha value

Select an equivalence
class containing every
alphanumeric value

Select an equivalence
class containing non-
alphanumeric values

Select an equivalence
class containing a
NULL value

Select an equivalence
class containing all
values in specified list

Source [4] NA NA NA [17]
Rule Type DSSR DSSR DSSR DSSR DSSR
Set Type List or Range List or Range List or Range List or Range List or Range
Valid or Invalid Invalid Invalid Invalid Invalid Valid

Original Datatype
Integer, Real,
Alphanumeric, Non-
Alphanumeric

Integer, Real, Alpha,
Non-Alphanumeric

Integer, Real, Alpha,
Alphanumeric All All

Test Datatype Alpha Alphanumeric Non-Alphanumeric Null Same as original
Test Data Length 1 Max length of datatype 1 0 Max length of datatype
Fields Populated 1 1 1 1 1
Tests Derived 0 0 0 0 0

Attribute Values Values Values Values Values
Test Method EP EP EP BVA BVA
Number EP11 EP12 EP13 BVA1 BVA2

Name Data Value Selector Valid Test Case
Constructor

Invalid Test Case
Constructor

Lower Boundary - 1
Selection

Lower Boundary
Selection

Description
Randomly selects one
data value from an
equivalence class

Construct minimum #
of tests required to
cover all valid classes

Construct one test per
invalid class (one field
invalid, all others valid)

Select value at lower
boundary - 1

Select value at lower
boundary

Source NA [17] [17] [4] [4]
Rule Type DISR TCCR TCCR DISR DISR
Set Type List or Range List or Range List or Range Range Range
Valid or Invalid Depends on the class Valid Invalid Invalid Valid

Original Datatype All All All Integer, Real, Alpha,
Non-Alphanumeric

Integer, Real, Alpha,
Non-Alphanumeric

Test Datatype Same as original Same as original Same as original Same as original Same as original
Test Data Length Max length of datatype Max length of datatype Max length of datatype Same as original Same as original
Fields Populated 1 n, the number of fields n, the number of fields 1 1

Tests Derived 0 1 to m, where m = #
valid classes selected

m, where m = # invalid
classes selected 0 0

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

Attribute Values Values Values Values Values
Test Method BVA BVA BVA BVA BVA
Number BVA3 BVA4 BVA5 BVA6 BVA7

Name Lower Boundary + 1
Selection

Upper Boundary - 1
Selection

Upper Boundary
Selection

Upper Boundary + 1
Selection

First List Item
Selection

Description Select value at lower
boundary + 1

Select value at upper
boundary - 1

Select value at upper
boundary

Select value at upper
boundary + 1 Select first item of a list

Source [4] [4] [4] [4] [17]
Rule Type DISR DISR DISR DISR DISR
Set Type Range Range Range Range List
Valid or Invalid Valid Valid Valid Invalid Valid

Original Datatype Integer, Real, Alpha,
Non-Alphanumeric

Integer, Real, Alpha,
Non-Alphanumeric

Integer, Real, Alpha,
Non-Alphanumeric

Integer, Real, Alpha,
Non-Alphanumeric All

Test Datatype Same as original Same as original Same as original Same as original Same as original
Test Data Length Same as original Same as original Same as original Same as original Same as original
Fields Populated 1 1 1 1 1
Tests Derived 0 0 0 0 0

Attribute Values Values
Test Method BVA BVA
Number BVA8 BVA9

Name Last List Item
Selection

Missing Item
Replacement

Description Select last item of a list Replace field with null
Source [17] [17]
Rule Type DISR DISR
Set Type List List or Range
Valid or Invalid Valid Invalid
Original Datatype All All
Test Datatype Same as original Null
Test Data Length Same as original 0
Fields Populated 1 1
Tests Derived 0 0

References

[1] Beizer, B. Software System Testing and Quality Assurance.
Van Nostrand Reinhold, New York, USA, 1984.
[2] Beizer, B. Software Testing Techniques. Von Nostrand
Reinhold, New York, USA, 1990.
[3] Birk, A. Modelling the Application Domains of Software
Engineering Technologies. IESE Report No. 014.97/E,
Fraunhofer IESE, Germany, 1997.
[4] British Standards Institute. Software Testing: Software
Component Testing Standard. British Computer Society,
SIGIST, 1998.
[5] Craig, R.D., and Jaskiel, S.P. Systematic Software Testing.
Artech House Publishers, USA, 2002.
[6] Grindal, M., Lindström, B., Offutt, A. J., and Andler, S. F.
An Evaluation of Combination Strategies for Test Case
Selection. Technical Report HS-IDA-TR-03-001, Department
of Computer Science, University of Skövde, October 2004, pp
1-74.
[7] Hetzel, W. The Complete Guide to Software Testing. QED
Information Sciences Inc, Wellesley, Massachusetts, USA,
1988.
[8] Jorgensen, P. Software Testing: A Craftsman’s Approach.
Department of Computer Science and Information Systems,
Grand State University Allendale, Michigan and Software
Paradigms, Rockford, Michigan, CRC Press, 1995.
[9] Kaner, C. Testing Computer Software. TAB Books Inc,
USA, 1988.

[10] Lewis, W.E. Software Testing and Continuous Quality
Improvement. CRC Press, Florida, USA, 2000.
[11] Maiden, N.A.M., and Rugg, G. ACRE: Selecting Methods
for Requirements Acquisition. Software Engineering Journal,
11(3):183-192, May 1996.
[12] Marick, B. The Craft of Software Testing: Subsystem
Testing, Including Object-Based and Object-Oriented Testing.
Prentice Hall PTR, Englewood Cliffs, New Jersey, USA, 1995.
[13] Meek, B. A Taxonomy of Datatypes. ACM SIGPLAN
Notices, 24(9):159-167, September 1994.
[14] Mosley, D.J. The Handbook of MIS Application Software
Testing. Methods, Techniques, and Tools for Assuring Quality
Through Software Testing. Prentice-Hall, USA, 1993.
[15] Murnane, T. Design of an Experiment to Analyse Black-
Box Method Learnability and Usability. Technical Report 2/05,
Department of Computer Science and Computer Engineering,
La Trobe University, Bundoora, Australia, 2004.
[16] Murnane, T., and Reed, K. On the Effectiveness of
Mutation Analysis as a Black-box Testing Technique.
Proceedings of the 2001 Australian Software Engineering
Conference (ASWEC '01), Canberra, Australia, IEEE, 2001, pp
12-20.
[17] Myers, G. The Art of Software Testing. John Wiley &
Sons Inc, USA, 1979.
[18] Prieto-Díaz, R. Implementing Faceted Classification for
Software Reuse. Communications of the ACM, 34(5):89-97,
1991.
[19] Prieto-Díaz, R., and Freeman, P. Classifying Software for
Reusability. IEEE Software, 4(1):6-16, 1987.
[20] Rugg, G., McGeorge, P., and Maiden, N. Method
Fragments. Expert Systems, 17(5):248-257, November 2000.
[21] Sommerville, I. Software Engineering. 6th edition, Pearson
Education Limited, England, UK, 2001.
[22] Vegas, S., Juristo, N., and Basili, V. Implementing
Relevant Information for Testing Technique Selection. An
Instantiated Characterization Schema. Kluwer Academic
Publishers, USA, 2003.
[23] Wiederhold, G., and Qian, X. Database Engineering. In
The Encyclopaedia of Software Engineering, vol 1:269-282,
Wiley-Interscience, USA, 1994.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

Tailoring of Black-Box Testing Methods

Tafline Murnane, Karl Reed and Richard Hall
Department of Computer Science and Computer Engineering

La Trobe University, Bundoora, Australia
{t.murnane, k.reed, richard.hall}@latrobe.edu.au

Abstract
Currently, black-box testing methods are effective yet

incomplete. Consequently, test engineers may find it
necessary to perform ad hoc customisation for each
application under test. In this paper, we present
procedures for customising black-box methods that
model such “error guessing” in a reproducible and
reusable way. As a preliminary evaluation, we customise
a generalised representation of black-box methods and
compare the effectiveness of the resulting test cases with
those derived by two existing methods. Our procedures
facilitate the development of both domain-specific and
novel experimental black-box methods.

1. Introduction

The proper usage of black-box testing methods
assumes two conditions hold: input and output fields are
completely specified, and the methods themselves are
complete. In reality, it appears that neither condition
holds the majority of the time.

With respect to field completeness, a 2003/2004
survey of software testing practices amongst Australian
software development organisations found that of sixty-
five organisations interviewed, over half reported that
20-59% of their detected program defects were related to
specification defects [27]. For a specific example of field
incompleteness, consider the following real-life scenario.
An engineer working on a requirements specification for
financial software discovered that the program under
development needed to validate credit card numbers. The
engineer assumed that all members of the development
team were familiar with valid credit card number
formats, and thus omitted specifying their input data
format explicitly. The result is a tester being unable to
derive an effective black-box test set and unable to
verify that the software meets the client’s requirements.

Field definitions can be difficult to extract from
specifications, partly because their data and behaviour
can be specified in multiple places. For example, often
different parts of a specification discuss processing, data
inputs and error checking [1]. Consequently, there exists
a need for a requirement elicitation procedure that
ensures that program input/output data is completely
specified, enabling effective black-box testing. Thus, the
first aim of this paper is to provide an initial version of
such a procedure.

On the other hand, the existence of ad hoc test
methods such as Error Guessing1 question method
completeness [23]. As Jorgensen states, “special values
testing is probably the most widely practiced form of
functional testing. It also is the most intuitive and the
least uniform… There are no guidelines, other than to
use ‘best engineering judgement’. As a result, special
value testing is very dependant on the abilities of the
tester… Even though special value testing is highly
subjective, it often results in a set of test cases which is
more effective in revealing faults than the test sets
generated by the other methods… testimony to the craft
of software testing” [16]. However, while it may be
more effective, its application cannot be guaranteed,
since it is currently “ill-defined” [1], though some
believe these approaches are systematic and amenable to
abstraction [11]. For example, Test Catalogues collect
special values in repositories [17, 22].

There are two ways black-box methods could be
made more complete: by creating a generalised method
and by creating procedures whereby any method could
be systematically customised for a particular application
domain. We have already created a generalised method
[24], a process which was difficult as “testing literature
is mired in confusing (and sometimes inconsistent)
terminology, probably because testing technology has
evolved over decades via scores of writers” [16]. Thus,
its adoption is uncertain as it requires learning more
terminology, and as no generalised method could make
the claim of universality. An example of varying
terminology can be seen in the various names given to
data sets created by dividing the input and output domain
into classes of homogenous data whose mapping
involves executing identical deterministic processes [24].
In Category Partition Testing (CPT) these sets are called
“choices” [28]; in Equivalence Partitioning (EP) they are
called “equivalence classes” [26]; in Syntax Testing (ST)
[10] they are implicitly created.

Thus, the second aim of this paper is to provide an
initial set of procedures for Systematic Method Tailoring
(SMT). They are generalisable because they are
uncoupled from, and thus can be used with, any black-
box testing method.

The organisation of this paper is as follows. In
Section 2 we present our requirement elicitation

1 Error Guessing is also referred to as ‘Special Values Testing’ [16].

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:02 from IEEE Xplore. Restrictions apply.

procedure that ensures that input and output data is
completely specified. In Section 3 we discuss our
generalised representation called ‘Atomic Rules’ and
show how it can be used with GQAS to generate test
data. In Section 4 we present three procedures for
tailoring black-box methods which, in theory, model
Error Guessing. In Section 5 we conduct a preliminary
evaluation of our requirement elicitation procedure and
of the effectiveness of test cases derived by the Atomic
Rules representation of two black-box methods to those
derived by a tailored method. In Section 6 we conclude
and discuss future research.

2. Goal/Question/Answer/Specify

As black-box test sets are derived by applying black-
box methods to program specifications, they require
detailed specifications that describe the application
domain of each program under test in terms of its input
and output fields. We propose a simple yet readily
applied requirement elicitation procedure called
Goal/Question/Answer/Specify (GQAS) which identifies
information that is required to be captured in order to
enable effective black-box testing. This procedure can be
used during requirements elicitation or by testers prior to
testing. Together, GQAS and our three tailoring
approaches (see Section 4) are based on the
Goal/Question/Metric (GQM) paradigm [3, 4, 5, 6].

GQAS collects what we consider to be the minimum
information required to conduct black-box testing. That
is, the datatype, set type and size in terms of minimum
and maximum lengths of input/output data, whether the
field is mandatory or repeats, and (ideally) the valid data
set the program should accept and the invalid data set it
should reject. While the last two items are essential for
deriving valid and invalid test cases, generic tests can be
constructed using only the first three. Also, if the data set
is defined, then the datatype, set type and size can be
deduced and can act as an error checking mechanism.

Each application of this technique results in one
GQAS instance (i.e. one for each field being specified).

GQAS consists of the following four steps:
1. As a goal, state that a particular field is going to be specified

for the purpose of conducting black-box testing.
2. Consider the following questions:

a. What is the field’s datatype? [Integer | Real | Alpha |
Alphanumeric | Non-Alphanumeric]+2

b. What is the field’s set type? [Range | List]
c. For Ranges, what are the minimum and maximum

values; for Lists, what is the minimum and maximum
length of valid data?

d. What valid data set should the program accept and
what invalid data should it reject?

e. Is the field mandatory? [Yes | No]
f. Does the field repeat? [Yes | No]; if Yes, what are the

minimum and maximum number of repetitions?
3. Seek and record answers to these questions by searching

for domain knowledge in textbooks, standards, papers, or

2 These datatypes were defined to enable EP and BVA to be described
using Atomic Rules [24]. This can be extended by adding or combining
datatypes; e.g. Alpha could divide into Single and Multiple Alpha.

websites3, or by speaking to domain experts (e.g. clients or
experienced testers). Each answer may state how it was
obtained, as this may be useful for testing, development or
maintenance of the program being specified and for future
developments in the same domain.

4. Specify the field using a formal notation (e.g. Backus-Naur
Form), including valid and invalid data sets, if available.

Subsequently, a set of test data selection rules that
suit the newly defined field can be selected using a
tailoring approach (Section 4). This step is analogous to
the metrics selection step in GQM. However, one of the
main differences between GQM and GQAS is that
question definition is part of the GQM process, whereas
GQAS has fixed questions as the same information is
required when specifying any input or output field.

Although GQM and a number of other goal-oriented
requirement engineering approaches have been used for
requirement elicitation (e.g. see [9, 12, 19, 20, 32]), to
the best of our knowledge, this is the first recorded use
of GQM in the analysis of specification completeness
and in the collection of domain knowledge, specifically
in support of black-box testing activities.

3. The Atomic Rules Approach

The Atomic Rules approach [24] decomposes black-
box testing methods into autonomous fragments for:-
partitioning the program input and output domains
(Data-Set Selection Rules); selecting test data from each
partition (Data-Item Selection Rules); and constructing
test cases (Test Case Construction Rules). A
characterisation schema describes each rule’s attributes,
giving them a standardised representation (see Appendix
1). The following three-step process encapsulates black-
box test case derivation procedures:

1. Select valid and invalid partitions for each input and/or
output field by applying a Data-Set Selection Rule
(DSSR) to each field.

2. Select at least one individual data value from each
partition chosen in (1) by applying a Data-Item Selection
Rule (DISR) to each partition.

3. Select various combinations of the data values chosen in
(2) by applying a Test Case Construction Rule (TCCR) to
create test cases.

When used in conjunction with a set of Atomic Rules
of a specific method, these procedures can be used to
construct black-box test cases in the usual way. For
example, Myers’ original definitions of EP and
Boundary Value Analysis (BVA) have been
reconstructed with Atomic Rules and have been shown
to derive test cases that are equivalent to those derivable
by the original methods [24].

Our generalised representation of black-box methods
was produced by conducting a thorough study of the
fundamental fragments of EP, BVA, ST and several
combinatorial methods, including Orthogonal Array
Testing [21], Specification-Based Mutation Testing [25]
and those discussed by Grindal et al. [14] (see [24] for
EP and BVA rules and Appendix 1 for ST rules).

3 The correctness of domain knowledge obtained from web sites should
be verified by domain experts before it is relied upon as being accurate.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:02 from IEEE Xplore. Restrictions apply.

GQAS can easily be applied to this generalised
representation as several attributes of the Atomic Rules
schema match questions asked in GQAS. Once a GQAS
instance has been defined, an Atomic Rule set can be
selected through the use of one of our three tailoring
procedures, which are discussed in the following section.

4. Systematic Method Tailoring

In this section we present our three Systematic
Method Tailoring (SMT) procedures:

1. Selection-based tailoring
2. Creation-based tailoring
3. Creation-based tailoring via selection, using:

a. All combinations
b. Paired combinations
c. Selective combinations

Although each is discussed separately, in practice, a
combination of all three approaches may be used.

4.1 Selection-Based Tailoring

In selection-based tailoring, new black-box methods
are defined by matching the set type (i.e. range or list) of
rules in the generalised representation against the set
type of valid data for each field under test. It is a bottom-
up approach that is based on existing black-box methods.
For example, Myers provides different guidelines for
deriving test data for each set type [26].

Thus, a new method mn could be defined by selecting
i to j rules from k to l methods {mn = select(ri, …, rj) : ri,
…, ri+p ∈ mk, …, rj-q, …, rj ∈ ml, mk ≠ ml}, where each
method contains a subset of rules that can be applied to a
specification using the three-step process in Section 3.

For example, rules that could be selected to test
<age> ::= [0 – 150] include BVA1: lower boundary – 1
selection and BVA6: upper boundary + 1 selection.
However, these could not be applied to <colour> ::=
{brown | blue | green}, as it is impossible to predict what
comes before or after the lower and upper boundaries.

4.2 Creation-Based Tailoring

In creation-based tailoring, new Atomic Rules that
have not been defined in existing methods are generated.
This is useful when testers suspect that a specific input
may be effective for testing a particular field, and is
similar to Error Guessing [26]. However, as each rule is
defined using the Atomic Rules schema, it is available
for future reuse.

Thus, a new rule ri+1 that is not in the set of existing
rules R could be defined, {ri+1 : r i+1 ∉ R}. For example:

a. Variations of ST rules [22], e.g. ri+1: first
character selection, which selects the first
character of an input value (see Table 1).

b. Rules that select specific input values, e.g. ri+2:
select 0, to test for divide by zero errors.

c. Rules to select sets of input values, e.g. ri+3:
select all ASCII symbols.

d. Rules that select Unicode characters [2], e.g.
ri+4: Unicode U+00FC (ü) replacement, which
could be effective in testing programs with
international character support.

e. Rules for testing programs with Graphical User
Interfaces, e.g. ri+5: maximum character
selection, which could add characters to a text
field until no more characters will fit. This
could be useful for testing for buffer overflows.

Each rule is defined by creating a new instance of the
Atomic Rules schema (see Table 1).

4.3 Creation-Based Tailoring via Selection

In creation-based tailoring via selection, existing
rules are combined to create new rules. There are three
types of tailoring within this class: all combinations,
paired combinations and selective combinations. In each
of these procedures, new rules are defined by creating
new instances of the Atomic Rules schema.

In all combinations, a set of all rules {r1, …, rn} are
combined, {rn = <r1, …, r1>, …, <rn, …, rn> : ∀ r ∈ R}.
However, this causes a state-space explosion of nn

combinations, where n is the number of rules in the
generalised representation. Thus, this may be only useful
for experimentally locating combinations not found
through other tailoring procedures.

In paired combinations, each rule is paired with every
other rule, where each pairing creates a new rule {rn+1 =
ri ∪ rj, ∀ r ∈ R}. Some examples are:

a. rn+1: uppercase first item = BVA7: first list item
selection ∪ ST7: uppercase a lowercase letter.

b. rn+2: smallest integer replacement = EP4:
integer replacement ∪ BVA2: lower boundary
selection.

c. rn+3: alphabetic letter Z or z replacement =
EP6: alpha replacement ∪ BVA5: upper
boundary selection.

In selective combinations, rule amalgamation is based
on the “gut feel” of the tester that certain combinations
may cause program failure. Again, this is similar to Error
Guessing. For example, if a tester suspects that a
program does not place an upper limit on the number of
digits that can be input into a numerical field, a new rule
rn+4: largest integer/real replacement = EP4: integer
replacement ∪ EP5: real replacement ∪ ri+5: maximum
character selection could be defined.

Some combinations create rules that already exist, for
example, EP7: alphanumeric replacement = EP4:
integer replacement ∪ EP6: alpha replacement. Also,
some rules are contradictory, for example, EP6: alpha
replacement cannot be combined with EP10: valid list
item selection as the first rule selects invalid data while
the second selects valid data. This is similar to the
identification of contradictory test frames in CPT [28].
While a complete listing of contradictory combinations
is outside the scope of this paper, a list is currently under
development.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:02 from IEEE Xplore. Restrictions apply.

Table 1: Definition of a new Atomic Rule ri+1.
Attribute Values Explanation

Test Method Syntax Testing Definition of a new ST rule
Number ri+1 A unique identifier

Name First Character
Selection Name reflects rule functionality

Description
Select the first
character of an
input string

Brief description of what the rule
does

Source NA New rule, so no existing reference
Rule Type DISR Selects one test data value

Set Type List or Range Can be applied to data defined in
a list or a range

Valid or
Invalid Invalid Selects data that the program

should recognise as faulty

Original
Datatype

Multiple: Integer,
Real, Alpha,
Alphanumeric,
Non Alphanumeric

For the resulting test data to be
considered invalid, this rule can
only be applied to datatypes of
greater than one character

Test
Datatype Same as original Does not change the datatype of

the original field
Test Data
Length 1 Selects one character per

application, thus length is 1
Fields
Populated 1 Selects test data for one field per

application
Tests
Derived 0 This is a DISR, thus it does not

construct test cases

5. Preliminary Evaluation

As a preliminary proof of concept, we apply GQAS
and SMT to an internet-based Foreign Exchange
Calculator [34] (Figure 1). To assess their effectiveness,
we compare the results of applying a set of EP and BVA
Atomic Rules to those selected by a new method derived
by SMT. However, as we do not have access to the
program specification, we can apply GQAS to obtain
possible definitions. To limit the scope of the example,
only the Foreign Currency field will be tested. Settings
for fields “I wish to,” “Select the foreign currency” and
“Select the currency type” are shown in Figure 1.
1. Goal: to specify the Foreign Currency field of the Foreign

Exchange Calculator in order to enable black-box testing.
2. Questions:

a. What is the field’s datatype?
b. What is the field’s set type?
c. Ranges: minimum and maximum values; Lists: what is

the minimum and maximum length of valid data?
d. What valid data set should the program accept, and

what invalid data should it reject?
e. Is the field mandatory?
f. Does the field repeat? Minimum/maximum repetitions?

3. Answers:
a. Datatype: based on experience with international

money transfers, acceptable datatypes are Integer and
Real (i.e. non floating-point numbers).

b. Set type: based on experience with banking systems, it
is reasonable to assume that the interval of allowable
values is continuous, thus set type is Range.

c. Minimum/maximum range values: various searches
were used to discover this and we discuss them here
to give the reader an understanding of the process
followed. First, a search of the St George website with
“international transfer” located “Foreign Exchange
Services” [35], which included a telephone number.
When called, the operator reported that there were no
minimum or maximum limits placed on exchanges.
However, through programming domain knowledge,
we know unlimited input lengths can cause buffer
overflow and conversion exceptions. Thus, the next
search determined the financial worth of the richest
person on Earth (i.e. Bill Gates), which may be a
sensible value to use. According the Forbes this is

US$46.5 billion [18]. However, if the top twenty-five
billionaires saved their money with the same bank,
their total financial worth could be more sensible.
According to Forbes, this is US$496.8 billion [18].
Taking this even further, we may consider the GDP of
the largest economy in the world, the USA, US$10.8
trillion [33]. These answers provide application domain
data that is potentially sensible for defining this field.
However, the maximum variable size of the
programming language used, and combined
implementation and runtime domain issues, could be
considered. The application was written in JavaScript
(discovered by viewing the source code), which is
capable of representing numbers in the range4

±1.7976931348623157x10308 [13]. For this application,
this limit would be the maximum output value when
converting to a particular currency or when an input is
represented internally. Thus, this figure needs to be
divided by the largest possible exchange rate, which
are available real-time on the Reserve Bank of
Australia website [31]. Plausible values are 0.1 to
1000. Thus, sensible minimum and maximum range
values could be ±1.7976931348623157x10305.

d. Valid data set: as described in step c.
e. Is the field mandatory? Yes.
f. Does the field repeat? No.

4. Specify:<foreign_currency> ::=
[-1.7976931348623157x10305–1.7976931348623157x10305]

Atomic Rules from EP and BVA can now be applied
to generate test data (Table 2), followed by the definition
of test cases by a tailored method (Table 3). Although
the input field permits more numbers to be added, for
test case 15 (Table 3), an arbitrarily large number chosen
to represent the maximum possible digits is 120,000.

Although floating point representations are used
throughout this discussion, when providing input to the
program, an integer or fixed point decimal value
containing 309 digits to the left of the decimal point was
used. Thus, the inputs specified by test cases 8 to 13
contain 309 digits, the first section of which is the 17
digit mantissa of the resultant value. For example, in the
case of test case 9, the number input to the program is
17976931348623157 followed by 297 “9”’s.

In fact, there are two sets of values that could have
been used, depending upon whether we were testing
implementation domain/run-time issues (i.e. variable
storage limits) or application domain issues (i.e. sensible
values for maximum amounts) [30]. While it could be
more sensible to derive test cases based on the latter, for
the purposes of this example, we have focused on
implementation domain issues.

As Table 2 and Table 3 show, the tailored method
detects a suspected fault with test case 14 (see Figure 5)
that is not detected by EP or BVA. Further examination
revealed that inputting the string “<> followed by any
other symbols and clicking Calculate causes the symbols
to be printed to the right of the input field.

Both EP and the tailored method detect that the
program does not limit input data lengths (Table 2, tests
1 and 2; Table 3, test 15), causing a suspected buffer
overflow (Figure 3). Note that the resulting screen does
not specify what was wrong with the input. BVA did not
detect this as the exchange rate used was overestimated.

4 For the purposes of this discussion, we only consider exponents > 0.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:02 from IEEE Xplore. Restrictions apply.

Table 2: Equivalence Partitioning and Boundary Value
Analysis test cases for the Foreign Currency field.

Rule Test Data Result

1 EP1: < lower
boundary selection

-1.797693134
8623157x10350

Suspected buffer
overflow (Figure 3)

2 EP2: > upper
boundary selection

+1.797693134
8623157x10350

Suspected buffer
overflow (Figure 3)

3
EP3: lower to
upper boundary
selection

50000 Correct result
output (Figure 2)

4 EP6: alpha
replacement g

Input rejected,
validation message
shown (Figure 4)

5 EP7: alphanumeric
replacement g55f

Input rejected,
validation message
shown (Figure 4)

6
EP8: non-
alphanumeric
replacement

*
Input rejected,
validation message
shown (Figure 4)

7
EP9/BVA9:
missing value
replacement

Input rejected,
validation message
shown (Figure 4)

8
BVA1: lower
boundary – 1
selection

-1.79769313486
23158x10305 - 1

Correct result
output (Figure 2)

9 BVA2: lower
boundary selection

-1.79769313486
23158x10305

Correct result
output (Figure 2)

10
BVA3: lower
boundary + 1
selection

-1.79769313486
23158x10305 + 1

Correct result
output (Figure 2)

11
BVA4: upper
boundary – 1
selection

1.797693134862
3158x10305 - 1

Correct result
output (Figure 2)

12 BVA5: upper
boundary selection

1.797693134862
3158x10305

Correct result
output (Figure 2)

13
BVA6: upper
boundary + 1
selection

1.797693134862
3158x10305 + 1

Correct result
output (Figure 2)

Table 3: Test cases of a tailored black-box method derived
using SMT for the Foreign Currency field (each of these

rules were defined in Section 4).
Rule Test Data Result

14 ri+3: select all
ASCII symbols

!@#$%^&*
()_+{}|:”<>
?[]\;’,./~`

Input rejected, validation
message shown (Figure 4).
Symbols output to the right
of the Foreign Currency
Field (Figure 5)

15
rn+4 largest
integer/real
replacement

120000
9’s

Suspected buffer overflow
(Figure 3)

16
ri+4: Unicode
U+00FC (ü)
replacement

ü Input rejected, validation
message shown (Figure 4)

Figure 1: Screen capture of the St George Bank’s online
Foreign Exchange Calculator [34].

Figure 2: Result of executing the program with valid values.

Figure 3: Result of executing the program with very large
input, causing a suspected buffer overflow fault.

Figure 4: Validation message displayed when the program
is executed against an invalid datatype.

Figure 5: Symbols output to the right of the Foreign
Currency field when test case 14 of Table 3 is applied.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:02 from IEEE Xplore. Restrictions apply.

6. Conclusions and Future Research

In this paper we presented two procedures: the first
(Goal/Question/Answer/Specify, GQAS) allows testers
to ensure fields are completely specified; the second
(Systematic Method Tailoring, SMT) facilitates
customisation of black-box methods when they are
incomplete. GQAS is a necessary precondition for
successful application of SMT, as without complete field
specification, it is impossible to generate effective test
sets for verifying program correctness. SMT has three
components: selection of appropriate black-box testing
method fragments, creation of new fragments when
existing fragments are incomplete; and creation of new
fragments as a result of synthesising existing fragments.

We evaluated these procedures by applying them to
an internet-based application. First, we articulated a
complete field specification using GQAS. Then, we
applied SMT, EP and BVA to one field, and compared
the results in terms of their error detection effectiveness.
We showed that SMT identified a suspected fault that EP
and BVA could not detect, improving the effectiveness
of the black-box testing conducted.

We developed these procedures because black-box
testing (and its teaching) should improve if it is more
systematic, its results are more reproducible, and if it is
less dependent on tester knowledge and experience (i.e.
on Error Guessing). These procedures also facilitate the
capturing of ad hoc test data selection rules used by
experienced testers; these rules could be shared in the
software engineering community and incorporated into
software engineering education curricula.

Thus, we believe these procedures can be applied in
both industry and academia. In industry, our procedures
can be used to develop domain-specific customised test
suites that better satisfy the testing requirements of each
application under test. Our GQAS procedure could
facilitate the integration of test engineers into the
requirements elicitation process, which could assist
iterative software development. These procedures also
present academia with an opportunity to explore
combinations of existing test data selection rules and
derivations of new rules and new black-box methods,
using a common framework and terminology.

The development of our procedures potentially raises
the profile of formal black-box methods, and allows the
‘craft’ of software testing to be articulated. Software
testers are provided with a language for describing the
ways in which they generate ad hoc tests, assisting in
communication within testing teams and potentially
assisting in the transfer of knowledge and experience
from senior to junior testers.

In future research, we will formally evaluate (via the
use of industry surveys and experiments) whether the
procedures presented here capture the implicit processes
followed by testers when conducting Error Guessing. In
addition, we will determine whether there are patterns to
the types of Atomic Rules that cannot be combined, and
will investigate whether there is a mathematical limit to
the number of rules that can be created, such that a
universal black-box method, while perhaps not practical,
is theoretically possible. Finally, in larger-scale industry-
based experiments, we will compare the effectiveness,
usability and drawbacks of tailored black-box methods
to traditional methods and will determine whether
improvements can be seen in using GQAS as a
requirements elicitation technique.

7. Acknowledgements

We thank the Department of Computer Science and
Computer Engineering of La Trobe University for their
continuing financial support of Ms. Murnane’s PhD
candidature. We also thank SPRIG (the Staff and
PostgRaduate Information technology research Group)
for their support and encouragement of research students
within the Department.

8. Appendix 1

Tables 4 to 7 contain Atomic Rules for Syntax Testing
(ST). A number of these overlap with Equivalence
Partitioning and Boundary Value Analysis rules [24], as
the methods are similar. For example, EP4–EP8 cover
rules defined in [10, 7], BVA1–BVA6 cover definitions in
[8, 22] and EP9 and BVA9 in [7, 10, 15, 22]. Thus, only
rules unique to ST are included. Note that Source = NA
denotes new rules not covered by existing methods.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:02 from IEEE Xplore. Restrictions apply.

Table 4: Atomic Rules for Syntax Testing.
Attribute Values Values Values Values Values

Test Method ST ST ST ST ST
Number ST1 ST2 ST3 ST4 ST5

Name Remove last character Replace last character Add extra character to
end of field Remove first character Replace first character

Description
Remove the last
character of an input
string

Replace the last
character of a string
with an invalid value

Add an extra character
to the end of a string

Remove the first
character of a string

Replace the first
character of a string
with an invalid value

Source [8, 22] [22] [7, 22] NA NA
Rule Type DISR DISR DISR DISR DISR
Set Type List or Range List or Range List or Range List or Range List or Range
Valid or Invalid Invalid Invalid Invalid Invalid Invalid
Original Datatype All All All All All
Test Datatype Same as original Same as original Same as original Same as original Same as original

Test Data Length m - 1, where m is the
original field length Same as original m + 1, where m is the

original field length
m - 1, where m is the
original field length Same as original

Fields Populated 1 1 1 1 1
Tests Derived 0 0 0 0 0

Table 5: Atomic Rules for Syntax Testing (continued).
Attribute Values Values Values Values Values

Test Method ST ST ST ST ST
Number ST6 ST7 ST8 ST9 ST10

Name Add extra character to
start of field

Uppercase a
lowercase letter

Lowercase an
uppercase letter Null all input Duplicate Field

Description Add an extra character
to the start of a string

Change the case of a
uppercase letter to
lowercase

Change the case of a
lowercase letter to
uppercase

Construct a test case
that is empty

Construct a test case
that has one field
duplicated (all other
fields are assigned
their nominal value)

Source NA [22] [22] [8] [10, 7]
Rule Type DISR DISR DISR TCCR TCCR
Set Type List or Range List or Range List or Range List or Range All
Valid or Invalid Invalid Invalid Invalid Invalid Invalid
Original Datatype All Alpha Alpha All All
Test Datatype Same as original Same as original Same as original Null Same as original

Test Data Length m + 1, where m is the
original field length Same as original Same as original 0 Same as original

Fields Populated 1 1 1
n, where n is the
number of fields in the
specification

n, where n is the
number of fields in the
specification

Tests Derived 0 0 0 1 1

Table 6: Atomic Rules for Syntax Testing (continued).
Attribute Values Values Values Values Values

Test Method ST ST ST ST ST
Number ST11 ST12 ST13 ST14 ST15

Name Add Additional Field Select Each List
Alternative

Select All List
Alternatives

Select All List
Alternatives in
Reverse Order

Reference
Replacement

Description

Construct a test case
that contains a new
field (contents of new
field must be defined,
possibly using GQAS)

For a specification that
includes a list, create
a set of test cases in
which each alternative
in the list is selected
once (all other fields
are assigned their
nominal value)

Select every
alternative from a list
in the one test

Select every
alternative from a list
in the reverse order in
the one test

For a non-terminal
fields that references
another terminal,
create a test case in
which the non-terminal
references itself

Source [10, 7] [22] [22] [22] [22]
Rule Type TCCR TCCR DISR DISR TCCR
Set Type All All All All All
Valid or Invalid Invalid Valid Invalid Invalid Invalid
Original Datatype All All All All All
Test Datatype Same as original Same as original Same as original Same as original Same as original
Test Data Length Same as original Same as original Same as original Same as original Same as original

Fields Populated
n, where n is the
number of fields in the
specification

n, where n is the
number of fields in the
specification

1 1
n, where n is the
number of fields in the
specification

Tests Derived 1 p, where p is the
number of alternatives 0 0

q, where q is the
number of references
to other non-terminals
in the specification

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:02 from IEEE Xplore. Restrictions apply.

Table 7: Atomic Rules for Syntax Testing (continued).
Attribute Values

Test Method ST
Number ST16
Name Syntax Cover

Description Construct a set of test cases which link-cover
the syntax graph of the specification under test

Source [7, 15]
Rule Type TCCR
Set Type All
Valid or Invalid Valid
Original Datatype All
Test Datatype Same as original
Test Data Length Same as original
Fields Populated n, where n is the number of specification fields
Tests Derived r, where r is the number of basis paths [29]

References

[1] Abbott, J. Software Testing Techniques. NCC Publications,
Manchester, England, UK, 1986.
[2] Aliprand, J., Allen, J., Becker, J., Davis, M., Everson, M.,
Freytag, A., Jenkins, J., Ksar, M., McGowan, R., Muller, E.,
Moore, L., Suignard, M., and Whistler, K. (editors). The
Unicode Standard Version 4.0. Addison-Wesley, USA, 2003.
[3] Basili, V. R. Software Modeling and Measurement: The
Goal/Question/Metric Paradigm. Technical Report UMIACS-
TR-92-96, University of Maryland, USA, pp. 1-24, Sept 1992.
[4] Basili, V. R., Gainluigi, C., Rombach, H. D. The Goal
Question Metric Approach. The Encyclopaedia of Software
Engineering, 1:528-532, Wiley & Sons Inc., 1994.
[5] Basili, V. R., and Selby, R. W. Data Collection and
Analysis in Software Research and Management. Proceedings
of the American Statistical Association of Biomeasure Society
Joint Statistical Meetings, Philadelphia, USA, August 1984.
[6] Basili, V., and Weiss, D. A Methodology for Collecting
Valid Software Engineering Data. IEEE Transactions on
Software Engineering, SE-10(6):728-738, November 1984.
[7] Beizer, B. Black Box Testing. Techniques for Functional
Testing of Software and Systems. John Wiley & Sons Inc.,
USA, 1995.
[8] Beizer, B. Software Testing Techniques. Von Nostrand
Reinhold, New York, USA, 1990.
[9] Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., and
Paraboschi, S. Designing Data Marts for Data Warehouses.
ACM Transactions on Software Engineering and Methodology,
10(4), pp. 452-483, October 2001.
[10] British Standards Institute. Software Testing: Software
Component Testing Standard. British Computer Society, 1998.
[11] Craig, R.D., and Jaskiel, S.P. Systematic Software Testing.
Artech House Publishers, USA, 2002.
[12] Dubois, E., Yu, E., and Petit, M. From Early to Late
Formal Requirements: a Process-Control Case Study.
Proceedings of the 9th International Workshop on Software
Specification and Design, pp. 34-42, IEEE, April 1998.
[13] Flanagan, D. JavaScript: The Definitive Guide. O’Reilly
& Associates, Inc., USA, 4th edition, 2002.
[14] Grindal, M., Lindström, B., Offutt, A. J., and Andler, S. F.
An Evaluation of Combination Strategies for Test Case
Selection. Technical Report HS-IDA-TR-03-001, Department
of Computer Science, University of Skövde, pp. 1-74, 2004.
[15] Hetzel, W. The Complete Guide to Software Testing. QED
Information Sciences Inc, USA, 1988.
[16] Jorgensen, P. Software Testing: A Craftsman’s Approach.
Department of Computer Science and Information Systems,
Grand State University, Allendale, CRC Press, 1995.

[17] Kaner, C., Bach, J., and Pettichord, B. Lessons Learned in
Software Testing: A Context-Driven Approach. John Wiley &
Sons, Inc., New York, USA, 2002.
[18] Kroll, L., and Gildman, L. (editors). The World’s
Billionaires, http://www.forbes.com/billionaires/, date last
updated: 3/10/05, date last accessed: 4/11/05.
[19] Lamsweerde, A. van, and Willemet, L. Inferring
Declarative Requirements Specifications from Operational
Scenarios. IEEE Transactions on Software Engineering,
24(12):1089-1114, December 1998.
[20] Letier, E., and Lamsweerde, A. van. Reasoning about
Partial Goal Satisfaction for Requirements and Design
Engineering. Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, ACM Press, USA, pp. 53-62, 2004.
[21] Mandl, R. Orthogonal Latin Squares: An Application of
Experiment Design to Compiler Testing. Communications of
the ACM, 28(10):1054-1058, Oct 1985.
[22] Marick, B. The Craft of Software Testing: Subsystem
Testing, Including Object-Based and Object-Oriented Testing.
Prentice Hall PTR, USA, 1995.
[23] Mosley, Daniel J. The Handbook of MIS Application
Software Testing. Methods, Techniques, and Tools for Assuring
Quality Through Testing. Prentice-Hall, Inc., USA, 1993.
[24] Murnane, T., Hall, R., and Reed, K. Towards Describing
Black-Box Testing Methods as Atomic Rules. Proceedings of
the 29h Annual International Computer Software and
Applications Conference, Scotland, pp. 437-442, July 2005.
[25] Murnane, T., and Reed, K. On the Effectiveness of
Mutation Analysis as a Black-box Testing Technique.
Proceedings of the 2001 Australian Software Engineering
Conference, Australia, IEEE, pp. 12-20, 2001.
[26] Myers, G. The Art of Software Testing. John Wiley &
Sons Inc, USA, 1979.
[27] Ng, S., Murnane, T., Reed, K., Grant, D., and Chen, T. Y.
A Preliminary Survey of Software Testing in Australia.
Proceedings of the 2004 Australian Software Engineering
Conference, Australia, IEEE, pp. 116-125, April 2004.
[28] Ostrand, T. J., and Balcer, M. J. The Category-Partition
Method for Specifying and Generating Functional Tests.
Communications of the ACM, 31(6):676-686, June 1988.
[29] Pressman, R. S. Software Engineering: A Practitioners
Approach. McGraw-Hill, Singapore, 1992.
[30] Reed, K. An Outline of a Knowledge Based Approach to
Software Project Planning. Position paper, Department of
Computer Science and Computer Engineering, La Trobe
University, Bundoora, Australia, 1990.
[31] Reserve Bank of Australia website, Exchange Rates.
http://www.rba.gov.au/Statistics/exchange_rates.html, date last
updated: 4/11/05, date last accessed: 4/11/05.
[32] Sommerville, I., Sawyer, P., and Viller, S. Viewpoints for
Requirements Elicitation: a Practical Approach. Proceedings of
the 3rd International Conference on Requirements Engineering
(ICRE ’98), Colorado Springs, USA, IEEE, pp. 74-81, 1998.
[33] Special Broadcasting Service. World Guide: The Complete
Fact File on Every Country. Hardie Grant Books, 2003.
[34] St George Bank. St George Bank Calculators,
http://www.stgeorge.com.au/calculators/default.asp?orc=busin
ess, date last updated: unknown, date last accessed: 4/11/05.
[35] St George Bank. Foreign Exchange Services,
http://www.stgeorge.com.au/smallbus/intern_soln/foreign_xser
vice/default.asp?orc=business, date last updated: unknown,
date last accessed: 4/11/05.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:02 from IEEE Xplore. Restrictions apply.

On the Learnability of Two Representations of Equivalence Partitioning and
Boundary Value Analysis

Tafline Murnane1, Karl Reed and Richard Hall

Department of Computer Science and Computer Engineering
La Trobe University, Bundoora, Australia

tpmurnane@students.latrobe.edu.au, k.reed@latrobe.edu.au, richard.hall@latrobe.edu.au

Abstract

Currently, Equivalence Partitioning and Boundary
Value Analysis are taught at La Trobe University using
Myers’ original representation of these black-box testing
methods. We previously proposed an alternative
representation called Atomic Rules. In this paper we
present the statistical results of two similar experiments
that examine which of these approaches enable students
to write more complete and correct black-box test sets
and which approach students prefer to use. We compare
the results of these experiments and discuss how the
results could change the teaching of black-box testing
methods at La Trobe University and in industry.

1. Introduction

In this paper we present the results of two similar
experiments in which two groups of novice software
testers were exposed to two different representations of
Equivalence Partitioning (EP) and Boundary Value
Analysis (BVA): Myers’ original definition [19] and the
corresponding Atomic Rules representation [17]. The
aim was to determine which representation enabled the
testers to write more complete and correct black-box test
sets. The testers who participated in the experiment were
third and fourth year students enrolled in a software
testing subject at La Trobe University. Thirty-two
students participated in 2004 and forty in 2005.

Each group was given a two-hour lecture on one of
the representations (Figure 1). During a subsequent
tutorial, students were tested on their comprehension of
EP and BVA by deriving black-box test cases from a
fictional specification. To ensure every student had equal
opportunity to learn the two representations, the groups
were subsequently swapped and the process repeated. An
Initial Questionnaire was used in the first lecture to
collect data on student’s current understanding of black-
box testing methods and on their previous programming
and testing experience. A Reflect and Review
Questionnaire was used in the final lecture to collect data
on student’s initial and final understanding of EP and
BVA and on their preferred method representation.

 1 Ms. Murnane is also currently working as a Software Test Consultant
for K. J. Ross & Associates in Melbourne, Australia.

Figure 1: The experiment process.

While the aims of the two experiments and materials

presented during lectures were the same for both years,
three changes were made in 2005 that were significant
enough for it to be considered to be a different
experiment. As each group’s lecture took place at the
same time in different locations, two lecturers were
required. In 2004, the first author of this paper taught
Atomic Rules while the second taught Myers. Then, to
eliminate the extraneous variable of student preference
for lecturer, the lecturers were swapped in 2005. Also,
the 2004 results suggested that students could handle
more challenging specifications during tutorials. Thus,
longer and more complex specifications were used in
2005. Lastly, to ensure students had enough time to
complete their work, tutorials were increased from one
hour in 2004 to two hours in 2005. To avoid conflict
with other university classes or commitments (a factor
which could impact student performance [6]), all work
for this part of the experiment was completed in class.

These experiments are part of a larger project which
explores the learnability, usability and effectiveness of
black-box testing methods. In this paper we investigate
representation learnability, which we define to be the
ease at which a novice can gain knowledge of a

Introductory Lecture
Initial Questionnaire

(all students)

Final Lecture
Reflect & Review Questionnaire

(all students)

Tutorial
Atomic Rules

Representation

Lecture
Atomic Rules

Representation

Tutorial
Myers

Representation

Lecture
Myers

Representation

Group 2

Tutorial
Myers

Representation

Lecture
Myers

Representation

Tutorial
Atomic Rules

Representation

Lecture
Atomic Rules

 Representation

Group 1

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

particular concept, and usability, which we define to be
the level of satisfaction a tester feels when using a
particular representation. The larger project will involve
an industry-based case study in which we will compare
the effectiveness of Atomic Rules and Systematic
Method Tailoring (which enables new Atomic Rules and
new black-box methods to be defined [18]) to the black-
box methods used by professional testers. We will also
determine whether industry testers use ad hoc or
exploratory test case selection rules that are not covered
by existing black-box methods, and if so, will determine
whether they can be described as Atomic Rules.

The remainder of this paper is structured as follows.
We present a brief overview of Atomic Rules in Section
2. We discuss our experiment design in Section 3,
including hypotheses, group allocation, threats to
validity and the specifications used during tutorials. A
preliminary analysis of the 2004 Reflect and Review
questionnaire was published in [17]; in Section 4 we
present the full experiment results, including data
collected on other questionnaires and during tutorials.
These results are discussed in Section 5. Finally, we
present out conclusions and future work in Section 6.

2. Overview of the Atomic Rules Approach

The Atomic Rules approach decomposes black-box
testing methods into individual elements for partitioning
a program’s input and output domains, selecting test data
from each partition, optionally mutating the selected data
values, and constructing test cases [17]. The aim of
developing this generalised representation was to make
black-box methods easier to learn and use by describing
them more precisely. It resolves a number of consistency
problems inherent in the original methods, including
ambiguity issues that could cause testers using the same
methods to produce vastly dissimilar test sets, and the
problem of numerous versions of each method existing
in the literature [17]. A characterisation schema was
developed to give the methods a standard representation
(Table 1) and the following four-step procedure2 was
produced to standardise and describe the black-box test
case selection process:

1. Select valid and invalid partitions for each input and/or
output field by applying a Data-Set Selection Rule
(DSSR) to each field.

2. Select at least one individual data value from each
partition chosen step in 1 by applying a Data-Item
Selection Rule (DISR) to each partition.

3. Mutate the data values selected in step 2 by applying a
Data-Item Manipulation Rule (DIMR) to each data value.

4. Select various combinations of the data values chosen in
steps 2 and 3 by applying a Test Case Construction Rule
(TCCR) to create test cases.

When applied with the Atomic Rules from a
particular black-box method or a variety of methods, this
four-step test case selection procedure can be used to
construct black-box test cases in the usual way [17].

2 Although step 3 was defined after the initial publication of the Atomic
Rules approach [17] and after the experiment, it is included here for
completeness.

For example, consider the field <age> ::= [0 – 150].
An EP DSSR that selects all values between the lower
and upper boundaries of range-related fields (Table 1)
could be applied, selecting the valid equivalence class [0
– 150]. A BVA DISR that selects the upper boundary
value of an equivalence class could be applied to this
class, selecting the valid data value 150. A Syntax
Testing DIMR that adds an extra character (e.g. the letter
a) to the start of a data value could be applied, selecting
the invalid data value a150. If this was included in an
input string with another field such as Surname ::= [A-Z,
a-z, -]1-100, an EP TCCR that selects a test case
containing one invalid value per test could be applied,
which could result in the invalid test case Smith a150.

Table 1: Example of an Atomic Rule [15].

Attribute Values
Test Method Equivalence Partitioning
Number EP3
Name Lower to Upper Boundary Selection

Description
Select an equivalence class containing all
values that lie between the lower and upper
boundaries of a field

Source [19]
Rule Type DSSR
Set Type Range
Valid or Invalid Valid
Original Datatype Integer, Real, Alpha, Non-Alphanumeric
Test Datatype Same as original
Test Data Length Same as original
Fields Populated 1
Tests Derived 0

3. Experiment Design

The primary independent variable used in these
experiments was the first black-box testing method
representation learnt. The approach to manipulating the
independent variable was the type technique [13]
whereby the type of variable presented is varied over
two separate treatments. In the following, we describe
the experiment hypotheses, group allocation and threats
to validity that relate to this experiment.

3.1 Hypotheses

To compare the learnability and usability of the two
representations, we measured the completeness (H11) and
correctness (H13) of the black-box test sets derived, the
efficiency of derivation (H12), the questions asked during
derivation (H14) and the level of satisfaction the students
experienced while deriving test cases (H15). Thus, the
following hypotheses were defined.

Completeness:

H01: The completeness of the black-box test set derived by
novice testers is independent of the approach used.
H11: Novice testers using Atomic Rules derive a more
complete test set compared to those using Myers’ approach.

Efficiency:
H02: The efficiency of black-box test case derivation by
novice testers is independent of the approach used.
H12: Novice testers using Atomic Rules derive test cases
more efficiently compared to those using Myers’ approach.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

Errors made (Correctness):
H03: The number of errors made by novice testers during
black-box test case derivation is independent of the
approach used.
H13: Novice testers using Atomic Rules make fewer errors
during test case derivation compared to those using Myers’
approach.

Questions asked:
H04: The number of questions asked by novice testers during
black-box test case derivation is independent of the
approach used.
H14: Novice testers using Atomic Rules ask fewer questions
compared to those using Myers’ approach.

User satisfaction:
H05: There is no difference between the usability of Atomic
Rules or Myers’ approach when used by novice testers in
the derivation of black-box test cases.
H15: Novice testers find Atomic Rules simpler to use than
Myers’ approach when deriving black-box test cases.

These hypotheses are similar to several that were used

in an experiment that compared how effective novice
testers were in selecting appropriate software testing
methods when using descriptions of the methods from a
characterisation schema versus novices who used
textbook descriptions of the methods [23].

3.2 Group Allocation

The participants in our experiments were divided into
two comparison groups [13]. To provide repetition, each
group was divided into two subgroups, with each
deriving test cases from a different specification (Table
2). A discussion of how group allocation affects validity
is given in Section 3.4.

Table 2: Number of participants per group and subgroup.

Year Group Myers Atomic Rules
Subgroup 1 13 8
Subgroup 2 5 6 2004

Total 18 14
Subgroup 1 10 8
Subgroup 2 10 12 2005

Total 20 20

3.3 Input Data Specifications

The main requirement that was placed on the
specifications that were used during tutorials was that
they had to include at least one numerical range, one list
of values and a number of different datatypes; e.g.
alphas, numbers and symbols. This allowed students to
derive tests for a ‘base’ set of set types and datatypes.

One of the 2004 specifications was for a fictional
Personal Details Recording System (Figure 2), while one
of the 2005 specifications was for a Patient Record
System (Figure 3). Both were written in a semi-formal
notation and contained input fields defined using a
combination of Backus-Naur Form and natural language.

There were two primary differences between these
specifications: length and complexity. In 2004, the top
level non-terminal node contained five fields (including
two spaces) whereas the corresponding node in 2005
contained fourteen fields. Thus, the 2005 specifications

were substantially longer. Also, the 2005 specifications
contained a recursive field definition, which made test
case derivation more challenging (e.g. <level_digits>
field). To compensate for this change, the tutorials were
extended from one hour in 2004 to two hours in 2005.

Specification:

<personal_details> ::= <id_number> <s> <surname> <s> <gender>

<id_number> ::= [100 – 999]

<surname> ::= 1 to 100 characters from the sets alpha and non-
 alphanumeric (i.e. letters and/or symbols)

<gender> ::= {Male | Female}

<s> ::= one to seven single spaces

Example Record:

555 Smith Male
Figure 2: Specification 1 – Personal Details System.

Specification:
<patient_record> ::=
<name>ˆ…“<ailment>”ˆ…<floor_no>,ˆ…<building>,ˆ…<patient_no>

<name> ::= 1 to 100 characters from sets alpha and non-alphanumeric
 (i.e. letters and symbols)

<ailment> ::= 1 to 150 characters from sets alpha and non-
 alphanumeric (i.e. letters and symbols)

<floor_no> ::= <level_no> ˆ Floor

<level_no> := <level_digits><level_postfix>

<building> ::= {Fredrick Building | John-Scott Memorial Ward | Mary
 House | Norman Building | … | Zane Square Building |
 Zoo Ward}

<patient_no> ::= <d><d><d><d>

<d> ::= [0 – 9]

<level_digits> ::= <d> | <level_digits> <d>

<level_postfix> ::= {nd | rd | st | th}

ˆ ::= one space

ˆ… ::= one or more spaces

Example Record:
Joe Hamish Bloggs “Viral pneumonia, ear infection, and lower
abdomen pain” 5th Floor, John-Scott Memorial Ward, 1234

Figure 3: Specification 2 – Patient Record System.

3.4 Threats to Validity

In this section we explore threats to internal and
external validity [13] that apply to our experiments.

Internal Threats to Validity

History. Experiment outcomes can be biased by time
lapses between the application of the treatment variable
and measurement of the dependent variable or between
pre-test and post-test measurements [8] or if discussions
take place between groups during that time [9]. This
posed a minimal threat as treatment took place during a
lecture that was between two hours and three days prior
to measurement. To combat this threat, participants were
asked not to discuss the experiment with each other until
after the final lecture. As there was no assignment or
exam during the experiment, we did not expect students
to have a great need to hold discussions during that time.

Maturation. Changes or differences in a participant’s
internal condition (e.g. age, hunger, fatigue, boredom)
[8], knowledge level [9], lecturer preference, or

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

enthusiasm [23] can bias results. For example, students
who are excited about being involved in an experiment
on a new technique may work harder on that technique.
To ensure this did not bias results, Myers’ representation
was referred to as Model 1 and Atomic Rules as Model 2
and students were not told which was new until after the
final lecture. Also, students were informed that there
would be a gift for every member of the class at the end
of the experiment whether they chose to participate or
not, which we hoped would compensate them for any
disruption they may have experienced during the
experiment3. To combat boredom, students were
reminded that the work they completed during tutorials
would prepare them for their assignments and exam and
also for future work in industry. As tutorial attendance
was not compulsory, bored students could choose not to
attend class but were informed that the subject was an
important part of their courses. As the experiments were
run over six separate classes, it was hoped that fatigue
and hunger did not affect results. Selecting students from
the same year levels should have negated the knowledge
threat [9]. To mitigate the potential lecturer preference
bias threat, the lecturers were swapped in 2005.

Instrumentation. This threat relates to research
observers becoming accustomed to experiment materials
or increasing their experience in measuring data [9]. To
ensure the same standards were followed throughout
analysis, standard measurement scales and analysis
processes were followed. Also, to standardise analysis,
one person was responsible for all data analysis.

Selection. Random group allocation can be used to
mitigate the threat that the groups will be biased; e.g. if
one group has a higher mean intelligence level than the
other [9]. Conversely, if participants allocate themselves
to groups, then the sample within each group is
voluntary, not random, allocation [4]. While random
allocation was achieved in 2005 by drawing participant
names out of a hat, it was not achieved in 2004 due to a
timetabling problem, which resulted in students
allocating themselves to groups according to their
chosen tutorial day/time. However, an analysis of the
average grade in each group for that subject revealed that
there was no significant difference between the two
groups (see Section 4). Thus, this threat should not have
biased experiment results.

Testing. Bias can occur if participants are given the
same test more than once and they become familiar with
the types of responses required [9]. Although our
participants derived test cases for the two representations
over two weeks, we have not included the results of the
second week in our analysis as it would not measure
their understanding of the representation learnt. Rather,
it would test how well they adjusted to learning a second
representation. We may analyse this statistic in future, as
it may be useful as a preliminary assessment of whether
industry testers would adjust to using Atomic Rules after
having used different approaches as part of their jobs.

3 A gift of chocolate, which was allowed by the university’s ethics
committee, was given to all students as our way of thanking them.

Reliability. This relates to the consistency of results
being obtained from the same person with the same or
equivalent tests on different occasions, allowing an error
of measurement to be calculated [1]. The simplest
approach is to repeat the experiment on two separate
occasions, where the error of measurement is a reliability
coefficient which is the correlation between the two
scores for each individual [1]. Since our experiments
took place during university semesters, there was not
enough time to repeat the same test twice. However,
within each group, the same test was repeated across two
subgroups. This allowed us to test experiment reliability.

Population and sample. Validity can be affected if the
sample is not representative of the entire population [10].
Convenience sampling was the method of recruitment in
our experiments, where participants were selected as
they were easily accessible [10]. We recognize that our
samples are not representative of all novice testers,
specifications or black-box methods; e.g. approaches
such as Syntax Testing were not covered. Thus, our
results are considered to be indicative, not conclusive.

Threats to internal validity which were not applicable
to our experiments included diffusion of treatments,
compensatory equalization, compensatory rivalry and
resentful demoralization, as these only applicable when
using control groups [9]. We could not use control
groups in our experiments, as students in those groups
would have been disadvantaged in their assignment and
exam as a result of not learning the two representations.

Also, in experiments involving students, participants
sometimes work on tasks at home; thus copying is a
threat [23]. However, in our case, all tasks for the main
body of the experiment were completed in class and
every second student was given a different specification
during tutorials so they could not copy from each other.

In addition, a bias can exist if participants do not
follow the processes and procedures of the techniques
prescribed [23]. We asked students to show all workings
while deriving test cases as we were interested in
discovering when they did not follow the method
procedures, as this may identify method ambiguity.

External Threats to Validity

Language. Participants may be disadvantaged if
experiment materials are not written in their native
language [23]. Some international students were
involved in our experiments and all materials were
written in English. However, since the students were
enrolled at an English-speaking university, it was
expected that they would be able to understand the
language used, and if not, that they would ask a question.

Interaction of setting and treatment. This relates to
the ability to generalise experiment findings across other
environmental settings [9], which in our case is
determining whether our results are applicable to
industry professionals. This threat is not applicable in
our experiment as industry testers can be considered to
be expert software testers, while our experiment was
aimed at novices.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

Interaction of history and treatment. This threat
relates to the ability to generalise research outcomes to
the past and future; e.g. if a classroom experiment runs
during the main semester, the outcomes may be different
than if it were conducted over the summer break, due to
different types of students being enrolled at that time [9].
One way of resolving this threat is to replicate the
experiment at a different time of year. Our experiments
were run during the same semester over two years and
we do not anticipate having the resources to repeat the
experiments over summer as very few third and fourth
year subjects run during that time at La Trobe University
and there have never been any official student requests
to do so in this software testing subject.

4. Results

In this section we present data on the demographic of
students involved in the experiments, followed by results
for each of the five hypotheses. These results are then
discussed in Section 5. Note that one-tailed tests were
used in all significance tests.

Demographic

In the initial questionnaire, students were asked about
their prior software testing and industry experience.
Twenty-six out of thirty-two students completed this
questionnaire in 2004 (81.25%), while thirty-seven out
of forty completed it in 2005 (92.5%).

Many students reported having prior experience with
software testing during university lectures and/or
university assignments (Table 3). However, while 19.2%
in 2004 and 13.5% in 2005 reported having no prior
experience with software testing methods, 73.1% in
2004 and only 48.6% in 2005 stated that they received
such experience through university lectures.

Table 3: Prior software testing experience.

Software Testing Experience
2004

(n = 26)
2005

(n = 37)
None 19.2% 13.5%
University Lectures 73.1% 48.6%
University Assignments 61.5% 62.2%
As a Tutor 0% 0%
Other 11.5% 16.2%

We also found that 84.6% of the 2004 group had prior

experience with black-box testing methods, compared to
only 54.1% in 2005 (Table 4). These statistics suggests
that there may have been a decrease in the amount of
software testing training that was given to students in the
2005 group in the earlier years of their degrees.

Table 4: Prior experience with black-box testing methods.

Ever used any black-box
testing methods?

2004
(n = 26)

2005
(n = 37)

Yes 84.6% 54.1%
No 15.4% 45.9%

Participants rated their level of experience with the

following black-box methods: Boundary Value Analysis
(BVA), Cause-Effect Graphing (CEG), Decision Tables

(DT), Equivalence Partitioning (EP), Orthogonal Array
Testing (OAT), Random Testing (RT), Specification-
Based Mutation Testing (SBMT), State-Transition
Diagram Testing (STT), Syntax Testing (ST) and Worst
Case Testing (WCT). Although statistics were only
required for EP and BVA, we enquired about nine other
methods to obtain an overall picture of the class’s
current black-box testing experience. Students rated their
understanding using a Likert scale of: 1 = none, 2 =
basic, 3 = intermediate, 4 = advanced and 5 = expert
(Tables 5 and 6). With the exception of BVA and RT in
2004, the majority of students reported having limited
amounts of experience with black-box testing methods.

Table 5: Participants initial understanding of black-box

testing methods in 2004 (n = 26).
Black-Box Testing Methods

B
VA

C
EG

D
T

EP

EG

O
A

T

R
T

SB
M

T

ST
T

ST

W
C

T

Rating Percentages (%)
None 19 96 54 65 73 100 46 96 73 54 65
Basic 15 0 8 4 8 0 15 0 8 8 15

Intermediate 31 4 27 8 12 0 31 4 12 23 12
Advanced 23 0 8 23 4 0 4 0 8 15 8

Expert 12 0 4 0 4 0 4 0 0 0 0

Table 6: Participants initial understanding of black-box

testing methods in 2005 (n = 37).
Black-Box Testing Methods

B
VA

C
EG

D
T

EP

EG

O
A

T

R
T

SB
M

T

ST
T

ST

W
C

T

Rating Percentages (%)
None 65 95 76 84 81 97 73 97 87 78 90
Basic 16 0 5 5 8 0 19 0 8 14 5

Intermediate 16 5 16 11 11 3 8 3 5 8 5
Advanced 3 0 3 0 0 0 0 0 0 0 0

Expert 0 0 0 0 0 0 0 0 0 0 0

Interestingly, very few students reported having any

prior experience working in industry (Table 8).

Table 7: Prior industry experience.

Position in Industry
2004

(n = 26)
2005

(n = 37)
Project Manager 3.8% 0%
Technical Team Leader 3.8% 0%
Business Analyst 0% 0%
Programmer 3.8% 2.7%
Analyst 3.8% 2.7%
Test Team Leader 3.8% 0%
Test Team Member 0% 2.7%
Other 0% 5.4%

A comparison of the mean overall grade of each

group in the subject showed that there was no significant
difference between the groups in 2004 or 2005 (Table 7).

Table 8: Comparison of overall grades for each group.

Year N Approach Mean
Std
Dev t-test

18 Myers 66.17 20.88
2004 14 Atomic

Rules 73.29 14.56 t(38) = .428, p = .336

20 Myers 68.1 19.49
2005 20 Atomic

Rules 65.8 14.1
t(30) = -1.08, p = .143

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

Completeness (H01/H11)

To assess completeness we compared the percentage
of EP equivalence classes, BVA boundary values and EP
and BVA test cases derived correctly by each group.

In 2004, a t-test showed a significant difference
between the groups for EP equivalence class and test
case derivation, where the mean was higher for the
Atomic Rules group (Tables 9, 10). According to
Cohen’s Effect Size [16], these relationships were
strong. The 2004 BVA results were inconclusive (Tables
11, 12). Conversely, the mean EP class (Tables 9, 10)
and BVA boundary value (Table 11) coverage was
higher for Myers’ group in 2005 and Cohen’s Effect Size
showed moderate to strong relationships. The results for
BVA test cases in 2005 were inconclusive (Table 12).

Interestingly, the mean EP and BVA coverage
achieved by Myers’ group in 2004 and 2005 was
relatively the same in both years (Tables 9 to 12).

Table 9: Percentage of coverage of EP equivalence classes.

Year N Approach Mean
Std
Dev t-test

Cohen’s
Effect
Size

18 Myers 49.76 16.95
2004 14 Atomic

Rules 78.86 26.10

t(30) =
-3.82,

p = .0003

1.35
strong

20 Myers 48.61 16.13
2005 20 Atomic

Rules 26.54 12.65

t(38) =
4.815,

p < .001

1.53
strong

Table 10: Percentage of coverage of EP test cases.

Year N Approach Mean
Std
Dev t-test

Cohen’s
Effect
Size

18 Myers 36.23 23.29
2004 14 Atomic

Rules 78.86 26.10

t(30) = -
4.87,

p = .0002

1.73
strong

20 Myers 38.94 20.92
2005 20 Atomic

Rules 23.65 15.11

t(38) =
2.649,

p = .006

0.85
moderate

Table 11: Percentage of coverage of BVA boundary values.

Year N Approach Mean
Std
Dev t-test

Cohen’s
Effect
Size

18 Myers 18.88 19.98
2004 14 Atomic

Rules 23.81 26.82

t(30) =
.58,

p = .28
NA

20 Myers 26.00 19.51
2005 20 Atomic

Rules 11.52 12.80

t(38) =
2.776,

p = .004

.90
moderate

Table 12: Percentage of coverage of BVA test cases.

Year N Approach Mean
Std
Dev t-test

Cohen’s
Effect
Size

18 Myers 14.88 18.83
2004 14 Atomic

Rules 18.81 26.22

t(40) =
-.39,

p = .35
NA

20 Myers 10.22 16.92
2005 20 Atomic

Rules 9.56 12.63

t(38) =
.141,

p = .445
NA

In addition to data collected during tutorials, students

in 2005 were asked to derive black-box test cases in their
class assignment using one of the representations (Table
13). We found that significantly more students chose to
use the Atomic Rules approach in that year.

Table 13: Representation used in the assignment (n = 38).

Year Approach
Used in

Assignment Chi-Square
Myers 27.5% 2005

Atomic Rules 67.5%
χ2(1, N = 38) = 6.737,

p = .009

In addition, the average assignment mark in 2005 for

students who used the Atomic Rules representation in
their assignment was significantly higher (Table 14).

Table 14: Average mark achieved in the assignment (n = 38).

Year Approach Mean Mark t-test
Myers 67.91 2005

Atomic Rules 85.52
t(36) = -1.93, p = .03

Efficiency (H02/H12)

We calculated the speed at which students completed
test case derivation by counting the number of students
who ran out of time before finishing test case derivation
during tutorials. We found significantly more students in
the Atomic Rules group ran out of time before
completing their work in both 2004 and 2005 (Table 15).

Table 15: Number of participants who ran out of time.

Year Approach N

Out of
Time

(Count)

Out of
Time

(Percent)
Test of Two
Proportions

Myers 18 5 27.77%
2004 Atomic

Rules 14 10 71.43%

δ = -.4366,
z = -2.45,
p = .007

Myers 20 7 35%
2005 Atomic

Rules 20 19 95%

δ = -.6,
z = -3.98,
p < .001

Correctness (H03/H13)

To assess correctness, we counted the number of
errors that students made during tutorials. We found that
significantly fewer errors were made by students in the
Atomic Rules group during EP equivalence class
derivation in 2004 (Table 16). A similar result was seen
in BVA boundary value definition in 2004, although the
result was just outside the 95% confidence interval
(Table 18). However, no significant difference was
found between the groups during BVA or EP test case
derivation in 2004 (Tables 17, 19) or during EP and
BVA derivation in 2005 (Tables 16 to 19).

Table 16: Errors made in EP equivalence class derivation.

Year N Approach
Mean
Rank

Sum of
Ranks Mann-Whitney U

18 Myers 20.81 374.50
2004 14 Atomic

Rules 10.96 153.50
U = 48.5,
p = .001

20 Myers 21.65 433
2005 20 Atomic

Rules 19.35 387
U = 177,
p = .274

Table 17: Errors made in EP test case derivation.

Year N Approach
Mean
Rank

Sum of
Ranks Mann-Whitney U

18 Myers 15.56 280
2004 14 Atomic

Rules 17.71 248
U = 109,
p = .245

20 Myers 21.55 431
2005 20 Atomic

Rules 19.45 389
U = 179,
p = .292

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

Table 18: Errors made in BVA boundary value derivation.

Year N Approach
Mean
Rank

Sum of
Ranks Mann-Whitney U

18 Myers 18.5 333
2004 14 Atomic

Rules 13.93 195
U = 90,

p = .0675

20 Myers 22.15 443
2005 20 Atomic

Rules 18.85 377
U = 167,
p = .192

Table 19: Errors made in BVA test case derivation.

Year N Approach
Mean
Rank

Sum of
Ranks Mann-Whitney U

18 Myers 17 306
2004 14 Atomic

Rules 15.86 222
U = 117,
p = .349

20 Myers 20.70 414
2005 20 Atomic

Rules 20.30 406
U = 196,
p = .463

Questions Asked (H04/H14)

Participants were asked to document the questions
they asked during tutorials. However, we found that only
three students in 2004 and no students in 2005 recorded
questions. Possible reasons could be that students:

1. were reluctant to ask questions,
2. did not have enough time to record questions, or
3. had a sound understanding of the methods taught.
Although we hope the third option was the case, we

do not have enough data to clarify this. In future
experiments we could ask students on a questionnaire
whether they recorded any questions, and if not, why.

User Satisfaction (H05/H15)

To assess user satisfaction, students completed a
Reflect and Review Questionnaire. Thirty-two students
completed this questionnaire in 2004 (100% of the class)
and twenty-eight in 2005 (70% of the class).

In 2004, students were asked which model they would
prefer to use in future and this was compared to the
model they learn first (Table 20) [17]. A chi-square test
indicated that significantly more students would prefer to
use the Atomic Rules approach in future.

Table 20: Approach students leant first versus approach

they indicated they would use in future (n = 32).

Year Approach
Leant
First

Use in
Future Chi-Square

Myers 61% 9%
2004 Atomic

Rules 39% 91%
χ2(1, N = 32) = 21.16,

p < .001

In 2005 we posed a slightly different question.
Students were asked to rate the likelihood that they
would use the models in future (Table 21) using a Likert
scale of: 1 = very unlikely, 2 = somewhat unlikely, 3 =
neither likely nor unlikely, 4 = somewhat likely, 5 = very
likely. However, the mean response was relatively even
for both groups and no significant difference was found.

Table 21: Likelihood of using approaches in future (n = 28).
Model use in
future (mean)

Year Approach

Model
Learn t

First Myers
Atomic
Rules t-test

Myers 46.43% 3.46 3.47 t(26) = -.01,
p = .307 2005 Atomic

Rules 53.57% 3.23 3.73 t(26) = -1.12,
p = .445

Students also rated their understanding of the two
representations using a Likert scale of: 1 = very poor, 2 =
poor, 3 = average, 4 = good, 5 = very good, 6 =
excellent. In both years, students reported that their
understanding of EP and BVA had improved by the end
of the experiment (Tables 22 and 23, columns 2-5).

In 2004, 57% of students rated their understanding of
Myers’ representation as below-average, whereas 100%
rated their understanding of Atomic Rules as good or
above (Table 22, cols 2-5). A significant difference was
found in their self-rated understanding of the Atomic
Rules approach as compared to Myers’ approach, where
the mean was higher for Atomic Rules; t(30) = -7.65, p
< .01. Thus, students reported that they were able to gain
a better understanding of Atomic Rules [17].

Table 22: Self-rated understanding in 2004 (n = 32) [17].

Understanding of Black-Box
Testing Methods

Understanding of
Approaches

Initial Final
EP BVA EP BVA Myers

Atomic
Rules

Rating Percentages (%)
Very Poor 3 9 0 0 6 0

Poor 15 18 0 0 15 0
Average 36 45 0 3 36 0

Good 15 18 12 21 15 12
Very Good 24 9 58 55 18 70

Excellent 6 0 30 21 3 18
Frequency Values

Mean 3.61 3.00 5.18 4.94 3.35 5.03
Std Dev 1.27 1.06 0.64 0.75 1.25 0.56
Missing 0 0 0 0 1 0

In addition, 82% of students in 2005 rated their

understanding of Atomic Rules as Good to Excellent,
compared to only 54% for Myers’s representation (Table
23, cols 2-5). Furthermore, a significant difference was
found in the student’s self-rated understanding of the two
representations, where the mean was again higher for
Atomic Rules; t(26) = -3.22, p = .03. Thus, the students
in 2005 also reported that they were able to gain a better
understanding of the Atomic Rules representation.

Table 23: Self-rated understanding in 2005 (n = 28).

Understanding of Black-Box
Testing Methods

Understanding of
Approaches

Initial Final
EP BVA EP BVA Myers

Atomic
Rules

Rating Percentages (%)
Very Poor 32 21 4 4 4 4

Poor 21 18 0 0 21 0
Average 29 29 7 11 21 11

Good 7 21 36 25 29 46
Very Good 11 7 50 46 25 29

Excellent 0 4 4 14 0 7
Frequency Values

Mean 2.43 2.86 4.39 4.54 3.50 4.22
Std Dev 1.32 1.38 .96 1.11 1.20 1.01
Missing 0 0 0 0 0 1

4.1 Related Research

In this section we discuss a number of case studies
that assess testing methods taught at university. We also
explore a number of other empirical studies that compare
the effectiveness of black-box methods to other testing
methods and reflect on the approaches they use to assess
test method effectiveness, as well as the number of

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

participants used in those studies. We then examine the
continuing debate in the literature as to whether students
should be used in software engineering experimentation.

Roper et al. suggest that one way to progress towards
firmer concepts of test method effectiveness is to
develop tighter definitions of the methods themselves so
that the experimental derivation of test data becomes
predictable and repeatable [21]. This was of our main
objectives in developing the Atomic Rules approach and
one of our primary motivations in assessing the
learnability and usability of traditional black-box
methods. In our experiments we examined learnability in
terms of the ease at which novice testers gained
knowledge of particular concepts and usability in terms
of the satisfaction the novice testers felt when using the
representations. This included assessment of the level of
completeness and correctness of derived test cases. Chen
and Poon used similar measures when reviewing forty-
eight student projects for the types of classifications that
students missed as well as they numbers and types of
mistakes they made when using the black-box
Classification Tree Method (CTM) [7]. In another case
study on CTM that was run 104 students and rerun with
fifty-eight students, participants were asked to test
programs that they had developed themselves using
whatever test methods they felt were appropriate [25].
Their programs were graded by an automated test suite
in terms the number of test cases that resulted in correct
program output4. Then, the students were taught CTM
and were asked to retest their programs using that
method, to critically evaluate CTM, compare it to the
test methods they previously used and to rate their future
preference of test methods. With the exception of the
critical evaluation, these measures are similar to those
that were used in our experiment and to those we plan to
use in our industry case study.

Other studies use metrics such as fault-detection
effectiveness to assess test method effectiveness. Basili
and Selby conducted an experiment involving a total of
forty-two students (twenty-nine juniors, thirteen
intermediates) and thirty-two industry professionals, in
which they compared the fault detection effectiveness,
fault detection rate and classes of faults detected by three
testing techniques: black-box testing (EP and BVA),
white-box testing (100% statement coverage) and code
reading (by stepwise abstraction) [3]. They found that
the industry professionals were able to detect the most
faults with code reading and did so at a faster rate. They
were also able to detect more faults with black-box
methods than white-box methods; however, these did not
differ in fault detection rate. In one university group the
same numbers of faults were detected with code reading
and black-box methods and both detected more faults
than white-box methods. The rate at which students
detected faults did not differ for any technique.

Kamsties and Lott repeated this experiment with fifty
students and found that while the defect detection

4 Hoffman et al. also used automated testing tools to grade
student’s work [11].

effectiveness of the two dynamic approaches (white-box
and black-box) were comparable to that of the static
approach (code reading), participants detected more
faults using black-box methods [15]. This experiment
was also repeated by Wood et al. with forty-seven
student participants [24]. They found that participants
detected similar numbers of faults for all three
techniques; however, their effectiveness depended on the
nature of the program under test and the program faults.

In a different experiment that compared the
probability that test cases derived by EP, BVA and RT
would be capable of detecting specific program faults,
only one person was involved in test case derivation
[20]. Reed noted that participants using black-box
methods during experiments often select test cases that
are not representative of other testers, therefore
experiments could not be generalised unless large
enough groups of testers and test cases were used. Thus,
Reed sought to derive every test case that satisfied the
black-box methods under study.

In our industry case study we plan to use some of the
more commonly used metrics for assessing test method
effectiveness, such as comparing the number of defects
detected by experienced software testers when using the
Atomic Rules approach to the number that are detected
when testers use their own systematic and exploratory
black-box methods. We also plan to compare the results
of our university experiments to that of the industry case
study, to determine whether experienced software testers
are able to derive complete test sets using Atomic Rules.

Our university experiments involved a total of
seventy-two students and we hope to obtain participation
from at least thirty industry professionals. These figures
are comparable with subject numbers from other studies,
both inside and outside the domain of software testing.
For example, in one study outside the domain of testing,
an experiment was run with thirty-six students was rerun
by a different researcher with fifty-nine students and
ninety-nine industry professionals who were paid
standard consultancy rates [2]. Remuneration could
account for this relatively high number of industry
participants. For example, in another experiment outside
testing, only twelve industry professionals participated
[12] and they did not appear to be remunerated. Thus,
remuneration may be an effective approach of obtaining
more industry participation in our future case study.

Carver et al. state that running pilot experiments with
students is effective preparation for industry-based
experiments [6]. In addition, Tichy stated that student
experiments could be used to predict future trends in
experiments that are rerun with industry professionals
[22]. Tichy also stated that graduate computer science
students are only marginally different from industry
professionals [22]. In addition, Carver et al. discuss a
study in which a significant difference was found
between graduate and undergraduate students, but only
small differences were found between graduates and
industry professionals [6]. Thus, one negative aspect that
has been reported on the use of students as experimental
subjects is that experiment results may not be able to be

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

generalised to industry professionals [6]. However, our
university experiments have been excellent preparation
for our industry case study, as they have facilitated an
initial assessment of the learnability and usability of
Atomic Rules and have identified threats to validity that
need to be considered and controlled. Also, we consider
our results to be suggestive of what the general
population of professional testers might experience when
learning and using the Atomic Rules approach, and this
will be properly verified through the industry case study.

5. Discussion

Students in the Atomic Rules group in 2004 were able
to produce significantly more complete and correct EP
equivalence classes and test cases, although the BVA
results were inconclusive. On the other hand, students in
Myers’ group in 2005 produced more complete EP
equivalence classes and test cases and BVA boundary
values. However, we believe this was due to the 2005
students being given a longer and more complicated
specification during tutorials. As test cases generally
take longer to hand-write using the Atomic Rules
approach, significantly more students in the Atomic
Rules group in both 2004 and 2005 did not have enough
time to complete the tutorial tests. Despite this, in 2004
the Atomic Rules group still achieved much higher mean
coverage levels than those using Myers’ approach.

The setting of a potentially overly-complicated test in
the 2005 tutorials could have been caused by the second
system effect, which is where system engineers, having
developed small, elegant solutions the first time around,
have a tendency to design overly complicated solutions
the second time [5]. It is only by the design of a third
system that the engineer will develop an effective
solution that is not under or over designed [5]. As
students did well with the Atomic Rules approach in the
2004 tutorials, we felt it was reasonable to increase the
length and complexity of the specifications used in 2005.
A third experiment using a complex and a non-complex
specification in the one experiment could clarify whether
specification complexity caused students in the Atomic
Rules group to produce less complete test sets than
Myers’ group in 2005.

Nonetheless, students in the Atomic Rules group
produced more correct answers than Myers’ group in
both years, in that they made fewer mistakes during test
case derivation. In addition, significantly more students
in 2004 reported that they would prefer to use the
Atomic Rules approach in future. Also, more students in
2005 used Atomic Rules in their assignment and
achieved higher assignment marks than those that used
Myers’ representation. Furthermore, in both years a
significant difference was found in student’s self-rated
understanding of the two approaches, where the mean
was higher for the Atomic Rules representation. Thus,
students in both years felt that they had gained a better
understanding of the Atomic Rules representation by the
end of the experiment.

These results suggest that Atomic Rules could be a
more effective representation to teach to novice software
testers at university. However, the collection of more
data would allow us to draw more solid conclusions. It is
hoped that the industry-based case study we are currently
planning will provide us with such data.

One observation that was made during the experiment
was that the structure of the Atomic Rules approach can
stifle tester creativity, even for novice testers. As Atomic
Rules is much more systematic than Myers’ original
definitions, it did not allow the students to derive test
cases based on their own knowledge and experience.
During data analysis, it became apparent that some
testers in Myers’ group created test cases that were not
derivable from Myers’ representation. As noted by
Kaner et al., prior testing experience can be used to
identify effective test cases through error guessing in
similar testing scenarios, even if a tester cannot
remember where they gained the domain knowledge
[15]. We developed an approach called Systematic
Method Tailoring which allows testers to systematically
define new test case selection rules and new black-box
testing methods based on their own knowledge and
experience, allowing these to be retained for future
reuse. In our industry case study, we will determine
whether the ad hoc test case selection rules that are used
by industry testers can be captured as Atomic Rules.

We do not believe that student preference for lecturer
had an affect on the experiment results, as it would be
fair to assume that the results of the two groups would
have swapped in 2005 if this was the case.

6. Conclusions and Future Work

In this paper we presented the results of two similar
classroom experiments that compared the learnability
and usability of two representations of Equivalence
Partitioning and Boundary Value Analysis: Myers’
original definitions and the corresponding Atomic Rules
representation. The aim was to compare the learnability
and usability of these two representations. The
experiments were run with two groups of novice testers
over two years at La Trobe University. While our results
cannot be generalised across the entire population of
novice testers, program specifications or black-box
testing methods, they do suggest that the Atomic Rules
representation makes black-box testing methods easier to
learn and use in some situations and that students feel
that they are able to gain a better understanding of
Atomic Rules than Myers’ representation. They also
suggest that this topic warrants further investigation.

We feel that these experiments have been excellent
preparation for an industry-based case study that we are
currently planning for 2007, in which we will compare
the fault detection effectiveness of the Atomic Rules
approach to the effectiveness of the systematic and
exploratory black-box testing methods that are used by
experienced software testers in industry. In addition, in
our university experiments we found that the Atomic
Rules approach can stifle tester creativity. However, in

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

previous research we proposed Systematic Method
Tailoring as an approach for defining new Atomic Rules
and new black-box testing methods [16]. Thus, in the
industry-based case study we will also determine
whether professional testers use any test case selection
rules that are not covered by traditional black-box
methods, and if so, we will determine whether they can
be described via Systematic Method Tailoring as Atomic
Rules. This verification process will also allow us to
further assess whether Atomic Rules and Systematic
Method Tailoring are effective representations to teach
to novice and professional testers in both academia and
industry. We will also seek to compare the findings of
our university experiments to our industry-based case
study, to analyse the differences in the test sets that are
derived by experienced and inexperienced testers, such
as differences in the completeness and quality of the test
sets and the speed at which they are derived.

During our industry case study we will also evaluate
the effectiveness of an automated testing tool that we are
developing, which implements Atomic Rules and
Systematic Method Tailoring. This tool automatically
generates a set of black-box test cases for specifications
input either through a graphical user interface or via an
upload facility for specifications expressed in Backus-
Naur Form. This tool could increase the efficiency of the
Atomic Rules approach and make black-box test case
selection more efficient and precise.

Acknowledgements

We sincerely thank the students of the Department of
Computer Science and Computer Engineering at La
Trobe University who participated in our experiment.
We also thank the postgraduate students and staff of the
Department who gave constructive feedback during a
seminar on the preliminary findings of our experiment.
We would also like to thank the reviewers of this paper
for their constructive feedback.

Lastly, we thank Sue Cook of the Human Ethics
Committee of the Faculty of Science, Technology and
Engineering, La Trobe University, for her valuable
feedback on our experiment design.

References

[1] Anastasi, A., and Urbina, S. Psychological Testing. Prentice
Hall, New Jersey, USA, 1997.
[2] Arisholm, E., and SjØberg, D. Evaluating the Effect of a
Deligated versus Centralized Control Style on the
Maintainability of Object-Oriented Software. IEEE
Transactions on Software Engineering, 30(8):521-534, 2004.
[3] Basili, V., and Selby, R. Comparing the Effectiveness of
Software Testing Strategies. IEEE Transactions on Software
Engineering, SE-13(12): 1278–1296, 1987.
[4] Berry, D.M. and Tichy, W.F. Comments on Formal
methods application: an empirical tale of software
development. IEEE Transactions on Software
Engineering, 29(6):567-571, June 2003.
[5] Brooks, F. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley Publishing, 1975.

[6] Carver, J., Jaccheri, L., and Morasca, S. Issues in Using
Students in Empirical Studies in Software Engineering
Education. Proceedings of the 9th International Software
Metrics Symposium, Sydney, Australia, 2003.
[7] Chen, T. Y., and Poon, P. L. Experience with Teaching
Black-Box Testing in a Computer Science/Software
Engineering Curriculum. IEEE Transactions on Education,
47(1):42-50, February 2004.
[8] Christensen, L. Experimental Methodology. Pearson/Allyn
and Bacon, Boston, Massachusetts, USA, 2004.
[9] Creswell, J. Educational Research. Planning, Conducting
and Evaluating Quantitative and Qualitative Research.
Pearson Education, New Jersey, USA, 2002.
[10] Gorard, S. Quantitative Methods in Educational Research:
the Role of Numbers Made Easy. Continuum, UK, 2001.
[11] Hoffman, D., Strooper, P., and Walsh, P. Teaching and
Testing. Proceedings of the 9th Conference on Software
Engineering Education, IEEE, pp. 248-258, April 1996.
[12] Hungerford, B., Henver, A., and Collins, R. Reviewing
Software Diagrams: A Cognitive Study. IEEE Transactions on
Software Engineering, 30(2):82-30, February 2004.
[13] Johnson, B., and Christensen L. Educational Research.
Quantitative, Qualitative and Mixed Approaches. Pearson
Education, USA, 2004.
[14] Kamsties, E., and Lott, C. An Empirical Evaluation of
Three Defect-Detection Techniques. Proceedings of the 5th
European Software Engineering Conference, September 1995.
[15] Kaner, C., Falk, J., and Nguyen, H. Testing Computer
Software. John Wiley & Sons, 2nd edition, 1999.
[16] Mujis, D. Doing Quantitative Research in Education with
SPSS. SAGE publications Ltd., London, UK, 2004.
[17] Murnane, T., Hall, R., and Reed, K. Towards Describing
Black-Box Testing Methods as Atomic Rules. Proceedings of
the 29th Annual International Computer Software and
Applications Conference, Scotland, pp. 437-442, July 2005.
[18] Murnane, T., Hall, R., and Reed, K. Tailoring of Black-
Box Testing Methods. Proceedings of the 2006 Australian
Software Engineering Conference, Sydney, Australia, IEEE,
pp. 292-299, April 2006.
[19] Myers, G. The Art of Software Testing. John Wiley &
Sons Inc, USA, 1979.
[20] Reid, S. An Empirical Analysis of Equivalence
Partitioning, Boundary Value Analysis and Random Testing.
Proceedings of the 4th International Software Metrics
Symposium, IEEE, 1997.
[21] Roper, M., Miller, J., Brooks, A., and Wood, M. Towards
the Experimental Evaluation of Software Testing Techniques.
Technical Report, Department of Computer Science, University
of Strathclyde, Glasgow, 1993.
[22] Tichy, W. Hints for Reviewing Empirical Work in
Software Engineering. Empirical Software Engineering, 5:309-
312, 2000.
[23] Vegas, S., Juristo, N., and Basili, V. Implementing
Relevant Information for Testing Technique Selection. An
Instantiated Characterization Schema. Kluwer Academic
Publishers, USA, 2003.
[24] Wood, M., Roper, M., Brooks, A., and Miller, J.
Comparing and Combining Software Defect Detection
Techniques: A Replicated Empirical Study. Proceedings of the
6th European Software Engineering Conference / 5th AGM
SIGSOFT Symposium on the Foundations of Software
Engineering, Switzerland, pp. 262-277, September 1997.
[25] Yuen, T. Y., Ng, S. P., Poon, P. L., and Chen, T. Y. On
the Testing Methods Used by Beginning Software Testers.
Information and Software Technology, Elsevier, 46:329-335,
2004.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:04 from IEEE Xplore. Restrictions apply.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 391

Chapter 9

References

"Last, but not least, avoid clichés like the plague.”
William Safire, American Grammarian and Writer, 1990.

Abbott, J 1986, Software Testing Techniques, NCC Publications, Manchester, England, UK.

Acree, A 1980, ‘On Mutation’, PhD Thesis and Technical Report GIT-ICS-80/12, School of Information
and Computer Science, Georgia Institute of Technology, Atlanta, GA, USA.

Agresti, A 2007, An Introduction to Categorical Data Analysis, 2nd Edition, Wiley, USA.

Agruss, C & Johnson, B 2000 ‘Ad Hoc Software Testing: A Perspective on Exploration and Improvisation’,
accessed 25 March 2008, from <http://www.testingcraft.com/ad_hoc_testing.pdf>.

Aliprand, J, Allen, J, Becker, J, Davis, M, Everson, M, Freytag, A, Jenkins, J, Ksar, M, McGowan, R,
Muller, E, Moore, L, Suignard, M, & Whistler, K (eds.) 2003, The Unicode Standard Version 4.0, Addison-
Wesley, USA.

Ammann, P & Black, P 1999, ‘Abstracting Formal Specifications to Generate Software Tests via Model
Checking’, Proceedings of the 18th Digital Avionics Systems Conference (DASC’99), volume 2, October,
pp. 10.A.6, Missouri, USA, IEEE.

Ammann, P, Black, P & Majurski, W 1998, ‘Using Model Checking to Generate Tests from Specifications’,
Proceedings of the 2nd IEEE International Conference on Formal Engineering Methods, IEEE Computer
Society, pp. 46.

Ammann, P & Offutt, J 1994, ‘Using Formal Methods to Derive Test Frames in Category-Partition
Testing’, Proceedings of the Ninth Annual Conference on Safety, Reliability, Fault Tolerance, Concurrency
and Real Time, Security (COMPASS '94), IEEE, pp. 69-79.

Anastasi, A & Urbina, S 1997, Psychological Testing, Prentice Hall, New Jersey, USA.

Andersson, C Thelin, T, Runeson, P & Dzamashvili, N 2003, ‘An Experimental Evaluation of Inspection
and Testing for Detection of Design Faults’, Proceedings of the 2003 International Symposium on
Empirical Software Engineering, pp. 174-184.

Andriole, S. J. (ed.) 1986, Software Validation, Verification, Testing and Documentation, Petrochelli Books
Inc., USA.

Arisholm, E & SjØberg, D 2004, ‘Evaluating the Effect of a Deligated versus Centralized Control Style on
the Maintainability of Object-Oriented Software’, IEEE Transactions on Software Engineering, 30(8):521-
534.

Australia Post 2008, ‘Postcode Search’, Australia Post, accessed 8 June 2008, from
<http://www1.auspost.com.au/postcodes/>.

Abbott, J 1986, Software Testing Techniques, NCC Publications, UK.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 392

Bach, J 2000, ‘Session-Based Test Management’, Software Testing and Quality Engineering, issue 11.

Bach, J 2001, ‘What is Exploratory Testing?’, Sticky Minds, accessed 4 January 2007, from
<http://www.stickyminds.com/sitewide.asp?Function=edetail&Object=2555>.

Bach, J 2003, ‘Exploratory Testing Explained’, Satisfice, accessed 4 January 2007, from
<www.satisfice.com>.

Bach, J & Bach, J 2006, ‘Dynamics of Exploratory Testing’, paper to support presentation at PNSQX 2006,
titled Exploratory Testing as Competitive Sport, accessed February 12 2008, from
<http://www.quardev.com/content/whitepapers/ExploratoryTestingasSport_JonBach_PNSQC06pdf.pdf>.

Backus, J 1958, ‘The Syntax and Semantics of the Proposed International Algebraic Language of the Zurich
ACMGAMM Conference’, Proceedings International Conference on Information Processing, UNESCO,
London, UK, pp. 125-132.

Balcer, M, Hasling, W & Ostrand, T 1989, ‘Automatic Generation of Test Scripts from Formal Test
Specifications’, ACM SIGSOFT Software Engineering Notes, 14(8):210-218, December.

Barutchu, A 2004, private communication with the author.

Barber, S 2007, ‘What Software Testers can Learn from Children’, accessed 28 January 2008, from
<http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1261232,00.html>.

Barnes, R 1979, PL/I for Programmers, North-Holland.

Basili, V 1991, ‘Software Modeling and Measurement: the Goal/Question/Metric Paradigm’, Technical
Report, Department of Computer Science, University of Maryland, USA.

Basili, V 1992, ‘Software Modeling and Measurement: The Goal/Question/Metric Paradigm’, Technical
Report UMIACS-TR-92-96, University of Maryland, USA, September, pp. 1-24.

Basili, V, Gainluigi, C & Rombach, H 1994, ‘The Goal Question Metric Approach’, The Encyclopedia of
Software Engineering, Wiley & Sons Inc., 1:528-532.

Basili, V & Selby, R 1984, ‘Data Collection and Analysis in Software Research and Management’,
Proceedings of the American Statistical Association of Biomeasure Society Joint Statistical Meetings,
Philadelphia, USA, August: 13-16.

Basili, V & Selby, R 1987, ‘Comparing the Effectiveness of Software Testing Strategies’, IEEE
Transactions on Software Engineering, SE-13(12): 1278–1296.

Basili, V & Weiss, D 1984, ‘A Methodology for Collecting Valid Software Engineering Data’, IEEE
Transactions on Software Engineering, SE-10(6):728-738, November.

Bauer, J & Finger, A 1979, ‘Test Plan Generation using Formal Grammars’, Proceedings of the 4th
International Conference on Software Engineering, Germany, ACM, pp. 425-432.

Bazzichi, F & Spadafora, I 1982, ‘An Automatic Generator for Compiler Testing’, IEEE Transactions on
Software Engineering, 8(4):343-353.

Beizer, B 1984, Software System Testing and Quality Assurance. Van Nostrand Reinhold, New York, USA.

Beizer, B 1990, Software Testing Techniques, Von Nostrand Reinhold, USA.

Beizer, B 1995, Black Box Testing. Techniques for Functional Testing of Software and Systems,. John
Wiley & Sons Inc., USA.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 393

Berry, D & Tichy, W 2003, ‘Comments on Formal Methods Application: an Empirical Tale of Software
Development’, IEEE Transactions on Software Engineering, 29(6):567-571, June.

Bertolino, A 2004, ‘Software Testing’, Software Engineering Body of Knowledge (SWEBOK), Chapter 5,
IEEE.

Bertolino, A 2007, ‘Software Testing Research: Achievements, Challenges, Dreams’, Proceedings of the
2007 International Conference on the Future of Software Engineering, pp. 85-103.

Bidgoli, H 2004, The Internet Encyclopedia. John Wiley and Sons.

Birk, A 1997, ‘Modelling the Application Domains of Software Engineering Technologies’, IESE Report
No. 014.97/E, Fraunhofer IESE, Germany.

Black, R 2007, Pragmatic Software Testing: Becoming an Effective and Efficient Test Professional, John
Wiley & Sons, USA.

Bonifati, A, Cattaneo, F, Ceri, S, Fuggetta, A, & Paraboschi, S 2001, ‘Designing Data Marts for Data
Warehouses’, ACM Transactions on Software Engineering and Methodology, 10(4):452-483, October.

Bottaci, L & Mresa, E 1999, ‘Efficiency of Mutation Operators and Selective Mutation Strategies: An
Empirical Study’, Software Testing, Verification and Reliability, 9:205-232.

Bouquet, F, Dadeau, F & Legeard, B 2006, ‘Automated Boundary Test Generation from JML
Specifications’, Lecture Notes in Computer Science, Springer-Verlag, 4085:428-443.

British Standards Institute (BS) 2008, ‘Non-Functional Testing’, accessed 20 March 2008, from
<http://www.testingstandards.co.uk/non_functional_testing_techniques.htm>.

Brooks, F 1975, The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley Publishing.

Brown, P 1979, Writing Interactive Compilers and Interpreters, John Wiley & Sons Ltd.

British Standards Institute (BS) 2001, BS-EN 50128:2001 Railway Applications – Communications,
Signalling and Processing Systems – Software for Railway Control and Protection Systems, British
Standards Institute.

British Standards Institute (BS) 2009, ‘BS 7925-1:2009 Glossary of Terms Used in Software Testing’,
British Computer Society, accessed 24 February 2009, from <http://www.testingstandards.co.uk/bs_7925-
1_online.htm>.

British Standards Institute (BS) 2001, BS 7925-2:2001 Software Testing: Software Component Testing
Standard, British Computer Society.

Budd, T & Gopal, A 1984, ‘Program Testing by Specification Mutation’, Computer Languages, 10(1):63-
73, Penguin Press, UK.

Burnstein, I 2003, Practical Software Testing: A Process-Oriented Approach, Springer-Verlag, USA.

Carver, J, Jaccheri, L, Morasca, S & Shull, F 2003, ‘Issues in Using Students in Empirical Studies in
Software Engineering Education’, Proceedings of the 9th International Software Metrics Symposium,
Sydney, Australia.

Case Maker (Part 3) 2007, ‘Case Maker User Manual. Part 3: Test Cases’, accessed 12 April 2009, from
<http://www.casemaker.de/download.htm>.

Case Maker (Part 4) 2007, ‘Case Maker User Manual. Part 4: Test Data’, accessed 12 April 2009, from
<http://www.casemaker.de/download.htm>.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 394

Celentano, A, Reghizzi, S, Vigna, P, Ghezzi, C, Granata, G & Savoretti, F 1980, ‘Compiler Testing using a
Sentence Generator’, Software Practice and Experience, 10:897-918.

Chen, T & Poon, P 1996, ‘Classification-Hierarchy Table: a Methodology for Constructing the
Classification Tree’, Proceedings of the 1996 Australian Software Engineering Conference (ASWEC’96),
IEEE Computer Society.

Chen, T & Poon, P 2004, ‘Experience with Teaching Black-Box Testing in a Computer Science/Software
Engineering Curriculum’, IEEE Transactions on Education, 47(1):42-50, February.

Chen, T, Poon, P & Tse, T 1999, ‘A New Restructuring Algorithm for the Classification-Tree Method’,
Proceedings of the Software Technology and Engineering Practice, IEEE Computer Society.

Chen, T & Yu, Y 1994, ‘On the Relationship Between Partition and Random Testing’, IEEE Transactions
on Software Engineering, 20(12):977-980, December.

Chen, T & Yu, Y 1996, ‘On the Expected Number of Failures Detected by Subdomain Testing and Random
Testing’, IEEE Transactions on Software Engineering, 22(2):109-119, February.

Chonoles, M & Schardt, J 2003, UML 2 for Dummies, Wiley, USA.

Chow, T 1978, ‘Testing Software Design Modelled by Finite-State Machines’, IEEE Transactions on
Software Engineering, SE-4(3), May.

Christensen, L 2004, Experimental Methodology. Pearson/Allyn and Bacon, Boston, Massachusetts, USA.

Codework Solutions 2009, ‘JCover. Java Code Coverage Testing and Analysis’, JCover, accessed 12 April
2009, from <http://www.codework.com/JCover/product.html>.

Cohen, M, Gibbons, P, Mugridge, W & Colbourn, C 2003, ‘Constructing Test Suites for Interaction
Testing’, Proceedings of the 25th International Conference on Software Engineering (ICSE’03), Portland,
Oregon, pp. 38-48.

Copeland, L 2004, A Practitioner's Guide to Software Test Design, Artech House, Inc., USA.

Craig, R & Jaskiel, S 2002, Systematic Software Testing, Artech House Inc., USA.

Creswell, J 2002, Educational Research. Planning, Conducting and Evaluating Quantitative and
Qualitative Research, Pearson Education, New Jersey, USA.

K. J. Ross & Associates 2007, ‘Certified Software Test Professional Foundation, Module 2 – Black-Box
Testing Methods’, K. J. Ross & Associates, Melbourne, Australia.

DeMarco, T & Lister, T 1999, Peopleware: Productive Projects and Teams, 2nd edition, Dorset House
Publishing, USA.

DeMillo, R, Lipton, R & Sayward, F 1978, ‘Hints and Tips for the Practicing Programmer’, IEEE
Computer, 11(4):34-41, April.

DeMillo, R, McCracken, W, Martin, J & Passafiume, J 1987, Software Testing and Evaluation,
Benjamin/Cummings, USA.

Díaz & Hilterscheid Unternehmensberatung GmbH (date unknown)‚ CaseMaker Car Insurance Tutorial,
Version 3.071, Berlin, Germany.

Dijkstra, E 1969, ‘Notes on Structured Programming’, Technical Report 70-WSK-03, Technological
University Eindhoven, Netherlands.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 395

Dubois, E, Yu, E, & Petit, M 1998, ‘From Early to Late Formal Requirements: a Process-Control Case
Study’, Proceedings of the 9th International Workshop on Software Specification and Design, IEEE, pp. 34-
42, April.

Duncan, A & Hutchison, J 1981, ‘Using Attributed Grammars to Test Designs and Implementations’,
Proceedings of the 5th International Conference on Software Engineering, California, USA, IEEE, pp. 170-
178.

Kruger, J & Dunning, D 1999, ‘Unskilled and Unaware of It: How Difficulties in Recognizing One's Own
Incompetence Lead to Inflated Self-Assessments’, Journal of Personality and Social Psychology,
77(6):1121–34.

Dustin, E 2003, Effective Software Testing: 50 Specific Ways to Improve Your Testing, Addison-Wesley.

Duran, J & Ntafos, S 1981, ‘A Report on Random Testing’, Proceedings of the 5th International Conference
on Software Engineering, IEEE, pp. 179-183.

Duran, J & Ntafos, S 1984, ‘An Evaluation of Random Testing’, IEEE Transactions on Software
Engineering, 10(4):438–444.

Dyer, M 1992, The Cleanroom Approach to Quality Software Development. Wiley, USA.

Elmendorf, W 1974, ‘Functional Analysis using Cause-Effect Graphs’, Proceedings of SHARE XLJII, New
York, Share.

Everett, G & McLeod, R 2007, Software Testing: Testing Across the Entire Software Development Life
Cycle. John Wiley & Sons, Inc., USA.

Fabbri, S, Maldonado, J, Sugeta, T & Masiero, P 1999, ‘Mutation Testing Applied to Validate
Specifications Based on Statecharts’, Proceedings of the 10th International Symposium on Software
Reliability Engineering, IEEE, pp. 210.

Fielding, Dr M 2004, private communication with the author.

Fewster, M & Graham, D 2000, Software Test Automation. Effective Use of Test Execution Tools, Addison-
Wesley, USA.

Flanagan, D 2002, JavaScript: The Definitive Guide 4th edition, O’Reilly & Associates, Inc., USA.

Fultyn, R 1982, ‘Computer-Assisted Software Testing’, Proceedings of the 1982 ACM Annual
Conference/Annual Meeting, ACM, USA, pp. 7-12.

Fuchs, N & Schwitter, R 1996, ‘Attempto Controlled English (ACE)’, Proceedings of the First
International Workshop on Controlled Language Applications (CLAW 96), Katholieke Universiteit Leuven,
March.

Goodenough, J & Gerhart, S 1975, ‘Toward a Theory of Test Data Selection’, IEEE Transactions Software
Engineering, SE-2(2):156-173, June.

Gorard, S 2001, Quantitative Methods in Educational Research: the Role of Numbers Made Easy,
Continuum, UK.

Graham, D1994, Testing. In Encyclopedia of Software Engineering, 2:1003-1353, John Wiley & Sons,
USA..

Grindal, M 2007, ‘Handling Combinatorial Explosion in Software Testing’, PhD Thesis, University of
Skövde.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 396

Grindal, M, Lindström, B, Offutt, A, & Andler, S 2004, ‘An Evaluation of Combination Strategies for Test
Case Selection’, Technical Report HS-IDA-TR-03-001, Department of Computer Science, University of
Skövde, October.

Grindal, M, Offutt, J & Andler, S 2004, ‘An Evaluation of Combination Strategies for Test Case Selection’,
Technical Report HS-ISA-TR-03-001, Department of Computer Science, University of Skövde, October.

Grindal, M, Offutt, J & Andler, S 2005, ‘Combination Testing Strategies: A Survey’, Software Testing,
Verification and Reliability, 15:167-199, John Wiley & Sons Ltd, USA.

Grochtmann, M, & Grimm, K 1993, ‘Classification Tress for Partition Testing’, Software Testing,
Verification and Reliability, 3(2):63-82.

Grochtmann, M, Grimm, K, & Wegener, J 1993, ‘Tool-Supported Test Case Design for Black-Box Testing
by Means of the Classification-Tree Editor’, Proceedings of the 1st European International Conference on
Software Testing, Analysis and Review (EuroSTAR 1993), London, UK, Qualtech Conferences, October,
pp. 169-176.

Gutjahr, W 1999, ‘Partition Testing vs. Random Testing: the Influence of Uncertainty’, IEEE Transactions
on Software Engineering, 25(5):661-674, September/October.

Hackman J & Oldham, G 1980, Work Redesign, Addison-Wesley, USA.

Hamlet, D & Taylor, R 1988, ‘Partition Testing does not Inspire Confidence’, Proceedings of the 2nd
Workshop on Software Testing, Verification and Analysis, Canada, July, pp. 206-215.

Hamlet, D & Taylor, R 1990, ‘Partition Testing does not Inspire Confidence’, IEEE Transactions on
Software Engineering, 16(12):1402–1411.

Hass, K, Wessels, D & Brennan, K 2007, Getting it Right: Business Requirement Analysis Tools and
Techniques, Management Concepts.

Healey, J F 2005, Statistics: A Tool for Social Research, 5th Edition, Wadsworth Cengage Learning, USA.

Hetzel, W 1988, The Complete Guide to Software Testing, QED Information Sciences Inc, USA.

Hoffman, D, Strooper, P, & Walsh, P 1996, ‘Teaching and Testing’, Proceedings of the 9th Conference on
Software Engineering Education, IEEE, April, pp. 248-258.

Homer, W & Schooler, R 1989, ‘Independent Testing of Compiler Phases Using a Test Case Generator’,
Software Practice and Experience, 19(1):53-62, January.

Houssais, B 1977, ‘Verification of an ALGOL 68 Implementation’, Proceedings of the Strathclyde ALGOL
68 Conference, Glasgow, Scotland, March.

Howden, W 1976, ‘Reliability of the Path Analysis Testing Strategy’, IEEE Transactions on Software
Engineering, SE-2(3):208-215, September.

Howden, W 1980, ‘Functional Program Testing’, IEEE Transactions on Software Engineering, SE-
6(2):162-169, March.

Howden, W 1981, ‘A Survey of Dynamic Analysis Methods’, In Software Testing and Validation
Techniques, 2nd edition, IEEE Computer Society Press, USA.

Hungerford, B, Henver, A, & Collins, R 2004, ‘Reviewing Software Diagrams: A Cognitive Study’, IEEE
Transactions on Software Engineering, 30(2):82-30, February.

Hutcheson, M 2003, Software Testing Fundamentals, Methods and Metrics, Wiley Publishing Inc., USA.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 397

Institute of Electrical and Electronic Engineers (IEEE) 2008, IEEE 829:2008 IEEE Standard for Software
and System Test Documentation, IEEE, USA.

Institute of Electrical and Electronic Engineers (IEEE), 2004, IEEE 1012:2004 Standard for Software
Verification and Validation, IEEE, USA.

International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 2008,
ISO/IEC 12207:2008 Software and Systems Engineering – Software Life Cycle Processes, International
Organization for Standardization.

International Organization for Standardization/International Electrotechnical Commission (ISO/IEC), 2008,
ISO/IEC 15288:2008 Software and Systems Engineering – System Life Cycle Processes, International
Organization for Standardization.

International Organization for Standardization/International Electrotechnical Commission, (ISO/IEC) 2008,
ISO/IEC 24765 Software and Systems Engineering – Vocabulary, International Organization for
Standardization.

International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 2009,
ISO/IEC 24765:2009 Software and Systems Engineering – Vocabulary. International Organization for
Standardization.

International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 2006,
ISO/IEC 25062:2006 Software Engineering – Software Product Quality Requirements and Evaluation
(SQuaRE) – Common Industry Format (CIF) for Usability Test Reports, International Organization for
Standardization.

International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 2008,
ISO/IEC 29119 Software Testing, Part 1, Concepts and Vocabulary, Draft version available on request from
ISO/IEC JTC1/SC7 (Software and Systems Engineering) Working Group 26 (Software Testing) and the
author, International Organization for Standardization.

International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 2005,
ISO/IEC 9126:2005, Software Engineering – Product Quality, Part 1: Quality Model, International
Organization for Standardization.

International Software Testing Qualifications Board (ISTQB) & Erik van Veenendall (ed.) 2005, Standard
Glossary of Terms Used in Software Testing, Glossary Working Party of the ISTQB, Version 101, 29
September.

Itkonen, J, Mäntylä, M & Lassenius, C 2007, ‘Defect Detection Efficiency: Test Case Based vs.
Exploratory Testing’, Proceedings of the First International Symposium on Empirical Software
Engineering and Measurement, pp. 61-70.

Itkonen, J & Rautiainen, K 2005, ‘Exploratory Testing: A Multiple Case Study’, Proceedings of the 4th
International Symposium on Empirical Software Engineering, IEEE, pp. 84-93.

Jeng, B & Weyuker, E 1989, ‘Some Observations on Partition Testing’, Proceedings of the ACM SIGSOFT
3rd Symposium on Software Testing, Analysis, and Verification (TAV3), Key West, USA, December, pp.
38–47.

Johnson, B, & Christensen L 2004, Educational Research. Quantitative, Qualitative and Mixed
Approaches, Pearson Education, USA.

Jorgensen, P 1995, Software Testing: A Craftsman’s Approach, Department of Computer Science and
Information Systems, Grand State University Allendale, Michigan and Software Paradigms, Rockford,
Michigan, CRC Press, USA.

Jorgensen, P 2002, Software Testing: A Craftsman’s Approach, 2nd edition, CRC Press, USA.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 398

JSynTest, ‘Man Machine Systems. Automated Syntax Testing using JSynTest’, accessed 26 February 2007,
from <http://www.mmsindia.com/JSynTest-Overview.pdf>.

JUnit 2009, ‘Resources for Test Driven Development’, accessed 20 July 2009, from
<http://www.junit.org/>.

Kamsties, E & Lott, C 1995, ‘An Empirical Evaluation of Three Defect-Detection Techniques’, Lecture
Notes In Computer Science, 9:362-383.

Kaksonen, R, Laakso, M & Takanen, A 2008, ‘Vulnerability Analysis of Software through Syntax Testing’,
accessed Sunday 9 March 2008, from <http://www.ee.oulu.fi/research/ouspg/protos/analysis/WP2000-
robustness/>.

Kaner, C 1988, Testing Computer Software, 1st edition, TAB Books Inc, USA.

Kaner, C, Bach, J, & Pettichord, B 2001, Lessons Learned in Software Testing: A Context-Driven
Approach, John Wiley & Sons, Inc., USA.

Kaner, C, Falk, J, & Nguyen, H 1999, Testing Computer Software, 2nd edition, John Wiley & Sons, USA.

Kent, J 2008, ‘An Entity Model of Software Testing: A Foundation for the Future’, Proceedings of the 18th
European International Conference on Software Testing, Analysis and Review (EuroSTAR 2008),
Stockholm, Sweden, 30 November to 3 December.

Kit, E 1995, Software Testing in the Real World: Improving the Process, ACM Press, USA.

Klugh, H E 1986, Statistics: The Essential for Research, 3rd Edition, Lawrence Erlbaum Associates, USA.

Kroll, L, & Gildman, L (eds.) 2005, ‘The World’s Billionaires’, accessed 4 November 2005, from
<http://www.forbes.com/billionaires/>.

Knuth, D 1964, ‘Backus Normal Form vs. Backus Naur Form’, Communications of the ACM, 7(12):735-
736, December.

Knuth, D 1973, ‘Seminumerical Algorithms’, The Art of Computer Programming, Volume 2, Addison-
Wesley, USA.

Koslowski, B 1996, Theory and Evidence: the Development of Scientific Reasoning, MIT Press, Boston.

Lamsweerde, A van & Willemet, L 1998, ‘Inferring Declarative Requirements Specifications from
Operational Scenarios’, IEEE Transactions on Software Engineering, 24(12):1089-1114, December.

Lauterbach, L & Randell, W 1989, ‘Experimental Evaluation of Six Test Techniques’, Proceedings of the
Fourth Annual Conference on Computer Assurance (COMPASS ’89), June, pp. 19-23.

Lee, J & Dorocak, J 1973, ‘Conditional Syntactic Specification’, Proceedings of the ACM Annual
Conference/Annual Meeting, ACM, USA, pp. 101-105.

Lee, S & Offutt, J 2001, ‘Generating Test Cases for XML-Based Web Component Interactions Using
Mutation Analysis’, Proceedings of the 12th International Symposium on Software Reliability Engineering
(ISSRE'01), IEEE Computer Society, pp. 200.

Lehmann, E, & Wegener, J 2000, ‘Test Case Design by Mean of the CTE XL’, Proceedings of the 8th
European International Conference on Software Testing, Analysis and Review (EuroSTAR 2000),
Copenhagen, Denmark, December 2000, Qualtech Conferences, December, pp. 1-10.

Lewis, W 2000, Software Testing and Continuous Quality Improvement, CRC Press, Florida, USA.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 399

Letier, E, & Lamsweerde, A van 2004, ‘Reasoning About Partial Goal Satisfaction for Requirements and
Design Engineering’, Proceedings of the 12th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ACM Press, USA, pp. 53-62.

Liskov, B & Zilles, S 1975, ‘Specification Techniques for Data Abstractions’, Proceedings of the
International Conference on Reliable Software, ACM, pp. 72-87.

Maiden, N & Rugg, G 1996, ‘ACRE: Selecting Methods for Requirements Acquisition’, Software
Engineering Journal, 11(3):183-192, May.

Mandl, R 1985, ‘Orthogonal Latin Squares: An Application of Experiment Design to Compiler Testing’,
Communications of the ACM, 28(10):1054-1058, October.

Marick, B 1995, The Craft of Software Testing: Subsystem Testing, Including Object-Based and Object-
Oriented Testing, Prentice Hall PTR, Englewood Cliffs, New Jersey, USA.

Marr, J & Lawlis, P 1991, ‘Automatic Determination of Recommended Test Combinations for Ada
Compilers’, Proceedings of the 8th Annual Washington Ada Symposium & Summer SIGAda Meeting,
Virginia, USA, pp. 77-89.

McDermid, J (ed.) 1991, Software Engineer’s Reference Book, Butterworth-Heinmann Ltd., UK.

Meek, B 1994, ‘A Taxonomy of Datatypes’, ACM SIGPLAN Notices, 24(9):159-167.

Merkel, R 2005, ‘Analysis and Enhancements of Adaptive Random Testing’, PhD dissertation, Swinburne
University, Hawthorn, Australia.

Microsoft 2003, ‘Using the Windows Applications Exploratory Test Methodology’, Microsoft TechNet,
accessed 4 January 2007, from <http://technet2.microsoft.com/WindowsServer/en/library/5d448271-1c45-
4b5d-a800-57a7545c99f41033.mspx?pf=true>.

Miller, J & Maloney, C 1963, ‘Systematic Mistake Analysis of Computer Programs’, Communications of
the ACM, 6(2):58-63.

Mosley, D 1993, The Handbook of MIS Application Software Testing. Methods, Techniques, and Tools for
Assuring Quality through Testing, Prentice-Hall Inc., USA.

Mosley, D & Posey, B 2002, Just Enough Software Test Automation, Prentice-Hall Inc., USA.

Mujis, D 2004, Doing Quantitative Research in Education with SPSS, SAGE publications Ltd., UK.

Murnane, T 1999, ‘The Application of Mutation Techniques to Specification Testing’, Honours thesis,
Department of Computer Science and Computer Engineering, La Trobe University, Bundoora, Australia.

Murnane, T, Hall R & Reed, K 2005, ‘Towards Describing Black-Box Testing Methods as Atomic Rules’,
Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC
'05), Scotland, IEEE Computer Society, pp. 437-442.

Murnane, T & Reed, K 2001, ‘On the Effectiveness of Mutation Analysis and a Black-Box Testing
Technique’, Proceedings of the 2001 Australian Software Engineering Conference (ASWEC ’01), Australia,
IEEE Computer Society, pp. 12-20.

Murnane, T, Reed, K & Hall, R 2006, ‘Tailoring of Black-Box Testing Methods’, Proceedings of the 2006
Australian Software Engineering Conference (ASWEC ’06), Australia, IEEE, April, pp. 292-299.

Murnane, T, Reed, K & Hall, R 2007, ‘On the Learnability of Two Representations of Equivalence
Partitioning and Boundary Value Analysis’, Proceedings of the 2007 Australian Software Engineering
Conference (ASWEC ’07), Australia, IEEE Computer Society, pp. 274-283.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 400

Musa, J 1993, ‘Operational Profiles in Software Reliability Engineering’, IEEE Software, 10(2):14-32,
March.

Myers, G 1978, ‘A Controlled Experiment in Program Testing and Code Walkthroughs/Inspections’,
Communications of the ACM, 21(9):760–768.

Myers, G 1979, The Art of Software Testing, John Wiley & Sons Inc, USA.

Myers, G 2004, The Art of Software Testing, 2nd Edition, revised and updated by Badgett, T & Thomas, T
with Sandler, C, John Wiley & Sons Inc, USA.

Naik, K & Tripathy, P 2008, Software Testing and Quality Assurance: Theory and Practice. John Wiley &
Sons, Inc., USA.

Naur, P (ed.) 1960, ‘Report on the Algorithmic Language ALGOL 60’, Communications of the ACM,
3(5):299-314, May.

Ng, S, Murnane, T, Reed, K, Grant, D, & Chen, T 2004, ‘A Preliminary Survey of Software Testing in
Australia’, Proceedings of the 2004 Australian Software Engineering Conference, Australia, IEEE, April,
pp. 116-125.

Nguyen, H, Hackett, M, Johnson, B & Johnson, R 2003, Testing Applications on the Web: Test Planning
for Mobile and Internet-based Systems, 2nd edition, John Wiley and Sons, USA.

Ntafos, S 1988, ‘A Comparison of Some Structural Testing Strategies’, IEEE Transactions on Software
Engineering, 14:868-874.

Ntafos, S 1998, ‘On Random and Partition Testing’, Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis, Florida, USA, March, pp. 42-48.

Offutt, A & Lee, S 1994, ‘An Empirical Evaluation of Weak Mutation’, IEEE Transactions on Software
Engineering, 20(5), May.

Offutt, A & Liu, S 1999, ‘Generating Test Data from SOFL Specifications’, Journal of Systems and
Software, 49(1):49-62.

Ostrand, T 2002, ‘Generating Formal Specifications from Test Information’, Proceedings of the Workshop
on Formal Approaches to Testing, Masaryk University, Brno, Czech Republic.

Ostrand, T & Balcer, M 1988, ‘The Category-Partition Method for Specifying and Generating Functional
Tests’, Communications of the ACM, 31(6):676-686, June.

Ould, M & Urwin, C (eds.) 1986, Testing in Software Development, Press Syndicate of the University of
Cambridge, UK.

Oualline, S 2003, Practical C++ Programming, 2nd Edition, O'Reilly, USA.

The Oxford English Dictionary 1970, volume V, H-K, Oxford University Press, Ely House, London.

Page, A, Johnston, K & Rollison, B 2009, How We Test Software at Microsoft, Microsoft Press, USA.

Paakki, J 1995, ‘Attribute Grammar Paradigms - A High-Level Methodology in Language Implementation’,
ACM Computing Surveys, 27(2):196-255, June.

Parrington, N & Roper, M 1989, Understanding Software Testing, Ellis Horwood Ltd., UK.

Patton, R 2006, Software Testing, Sams Publishing, USA.

Perry, W 1983, A Structured Approach to Systems Testing, Prentice-Hall, USA.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 401

Perry, W 2000, Effective Methods for Software Testing, 2nd edition, John Wiley & Sons Inc., USA.

Perry, W 2006, Effective Methods for Software Testing, John Wiley & Sons Inc., USA.

Pfleeger, S 2001, Software Engineering: Theory and Practice, Prentice-Hall, USA.

Project Management Institute (PMI) 2004, A Guide to the Project Management Body of Knowledge
(PMBOK® Guide), 4th edition, Project Management Institute.

Potts, C & Bruns, G 1988, ‘Recording Reasons for Design Decisions’, Proceedings of the 10th International
Conference on Software Engineering (ICSE’88), pp. 418-427, IEEE Press.

Pressman, R 1992, Software Engineering: A Practitioners Approach, 3rd edition, McGraw-Hill, USA.

Prieto-Díaz, R 1991, ‘Implementing Faceted Classification for Software Reuse’, Communications of the
ACM, 34(5):89-97.

Prieto-Díaz, R & Freeman, P 1987, ‘Classifying Software for Reusability’, IEEE Software, 4(1):6-16.

Pezzand, M & Young, M 2008, Software Testing and Analysis: Process, Principles and Techniques, John
Wiley & Sons Inc., USA.

Rae, A, Hausen, H & Robert, P 1995, Software Evaluation for Certification: Principles, Practice and Legal
Liability, McGraw-Hill Book Company, UK.

Reed, K 1981, ‘Software Testing and Reliability Class Assignment’, Royal Melbourne Institute of
Technology (RMIT), , Bundoora, Victoria, Australia.

Reed, K 1990, ‘An Outline of a Knowledge Acquisition Based Approach to Software Project Planning.
Position paper for CASE90’, Department of Computer Science and Computer Engineering, La Trobe
University, , Bundoora, Victoria, Australia..

Reed, K 1998, ‘Software Testing and Reliability (CSE32STR) Course Notes’, Department of Computer
Science and Computer Engineering, La Trobe University, Bundoora, Victoria, Australia.

Reed, K 2007, private communication with the author.

Reid, S 1994, ‘Test Effectiveness in Software Module Testing’, Proceedings of the 2nd European
International Conference on Software Testing, Analysis and Review (EuroSTAR 1994), Brussels.

Reid, S 1997, ‘An Empirical Analysis of Equivalence Partitioning, Boundary Value Analysis and Random
Testing’, Proceedings of the 4th International Software Metrics Symposium (METRICS'97), pp. 64.

Reid, S 2007, ‘The Personal Test Maturity Model’, Software Quality Systems Conference UK (SQC-UK),
Software Quality Systems, UK.

Reid, S, Harman, M, Hierons, R, Holcombe, M, Jones, B, Roper, M & Woodward, M 1999, ‘A Framework
for Measurement in Software Testing’, 7th European International Conference Software Testing Analysis &
Review (EuroSTAR'99), November 8-12, Spain.

Reserve Bank of Australia 2005, ‘Exchange Rates’, accessed 4 November 2005, from
<http://www.rba.gov.au/Statistics/exchange_rates.html>.

Richardson, D & Clarke, L 1981, ‘A Partition Analysis Method to Increase Program Reliability’,
Proceedings of the 5th International Conference on Software Engineering, California, USA, pp. 244-253.

Richardson, D & Clarke, L 1985, ‘Partition Analysis: A Method Combining Testing and Verification’,
IEEE Transactions on Software Engineering, 11(12):1477-1490.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 402

Roper, M, Miller, J, Brooks, A, & Wood, M 1993, ‘Towards the Experimental Evaluation of Software
Testing Techniques’, Technical Report, Department of Computer Science, University of Strathclyde,
Glasgow.

Rosen, K & Michaels, J 2000, Handbook of Discrete and Combinatorial Mathematics, CRC Press, USA.

Rubin, J 1994, Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests, John
Wiley & Sons Inc., USA.

Runeson, P 2003, ‘Using Students as Experiment Subjects – An Analysis on Graduate and Freshmen
Student Data’, Proceedings 7th International Conference on Empirical Assessment and Evaluation in
Software Engineering (EASE'03), pp 95-102.

Rugg, G, McGeorge, P, & Maiden, N 2000, ‘Method Fragments’, Expert Systems, 17(5):248-257,
November.

Safire, W 1990, Fumblerules: A Lighthearted Guide to Grammar and Good Usage, Doubleday, New York.

Daley, N, Hoffman, D & Strooper, P 2002, ‘A Framework for Table Driven Testing of Java Classes’,
Software Practice and Experience, 32:465-493.

Salas, P 2007, ‘Using MBT for Privacy Testing’, Presentation at the Test Automation Workshop 2007
(TAW’07), Centre for Software Assurance, Bond University, Gold Coast, Australia.

Sauder, L 1962, ‘A General Test Data Generator for COBOL’, Proceedings of the AFIPS Spring Joint
Computer Conference, volume 21, American Federation of Information Processing Societies, pp. 317-323,
May.

Selby, R, Basili, V & Baker, F 1987, ‘Cleanroom Software Development: An Empirical Evaluation’, IEEE
Transactions on Software Engineering, SE-13(9):1027-1037, September.

Seo, K & Choi, E 2006, ‘Comparison of Five Black-Box Testing Methods for Object-Oriented Software’,
Proceedings of the Fourth International Conference on Software Engineering Research, Management and
Applications, (SERA’06), IEEE Computer Society, August, pp. 213-220.

Singh, H, Conrad, M & Sadeghipour, S 1997, ‘Test Case Design Based on Z and the Classification-Tree
Method’, Proceedings of the First IEEE International Conference on Formal Engineering Methods, IEEE
Computer Society, pp. 81-90.

Sommerville, I 1994, Software Engineering, Pearson Education Ltd., UK.

Sommerville, I 2001, Software Engineering, 6th edition, Pearson Education Limited, UK.

Sommerville, I, Sawyer, P, & Viller, S 1998, ‘Viewpoints for Requirements Elicitation: a Practical
Approach’, Proceedings of the 3rd International Conference on Requirements Engineering (ICRE ’98),
Colorado Springs, USA, IEEE, pp. 74-81.

Special Broadcasting Service (SBS) 2003, World Guide: The Complete Fact File on Every Country, Hardie
Grant Books, Australia.

St George Bank 2005, ‘St George Bank Calculators’, accessed 4 November 2005, from
<http://www.stgeorge.com.au/calculators/default.asp?orc=business>.

St George Bank Foreign Exchange Services 2005. ‘Foreign Exchange Services’, accessed 4 November
2005, from <http://www.stgeorge.com.au/smallbus/intern_soln/foreign_xservice/default.asp?orc=business>.

Tamres, L 2002, Introducing Software Testing, Pearson Education Ltd., Great Britain.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 403

Tichy, W 2000, ‘Hints for Reviewing Empirical Work in Software Engineering’, Empirical Software
Engineering, 5:309-312.

Thayer, R, Lipow, M, & Nelson, E 1978, Software Reliability, North-Holland, Amsterdam.

Tsoukalas, M, Duran. J & Ntafos, 1993, ‘On Some Reliability Estimation Problems in Random and
Partition Testing’, IEEE Transactions on Software Engineering, 19(7):687-697, July.

Tsubery, Y 2007, ‘Implementation Of CaseMaker in MIS BU – Comverse’, accessed 9 August 2009, from
<http://www.casemaker.eu/casestudies/casestudy_comverse.pdf>.

Vegas, S, Juristo, N, & Basili, V 2003, Implementing Relevant Information for Testing Technique Selection.
An Instantiated Characterization Schema, Kluwer Academic Publishers, USA.

Vegas, S 2004, ‘Identifying the Relevant Information for Software Testing Technique Selection’,
Proceedings of the 2004 International Symposium on Empirical Software Engineering (ISESE’04), IEEE.

VModell® XT 2008, ‘Part 1: Fundamentals of the V-Modell’, accessed 24 February 2009, <http://ftp.uni-
kl.de/pub/v-modell-xt/Release-1.2/Dokumentation/pdf/V-Modell-XT-Teil1.pdf>.

Offutt, A & Voas, J 1996, ‘Subsumption of Conditional Coverage Techniques by Mutation Testing’,
Technical Report ISSE-TR-96-01, Department of Information and Software Engineering, George Mason
University, January.

von Mayrhauser, A 1990, Software Engineering: Methods and Management. Academic Press, USA.

Watkins, J 2001, Testing IT: Off-the-Shelf Software Testing Processes. Cambridge University Press, UK.

Weiser, M, Gannon, J, & McMullin, P 1985, ‘Comparison of Test Coverage Metrics’, IEEE Software,
19(2):80-85, March.

Weyuker, E & Jeng, B 1991, ‘Analyzing Partition Testing Strategies’, IEEE Transactions on Software
Engineering, 17(7):703-711, July.

Weyuker, E & Thoman, J 1980, ‘Theories of Program Testing and the Application of Revealing
Subdomains’, IEEE Transactions on Software Engineering, SE-6(3):236-246, May.

Wikipedia Unicode 2008, ‘Mapping of Unicode Characters’, accessed 29 February 2009, from
<http://en.wikipedia.org/wiki/Mapping_of_Unicode_characters>.

Wikipedia Context Free 2008, ‘Context Free Grammars’, accessed 9 March 2008, from
<http://en.wikipedia.org/wiki/Context-free_grammar>.

Wild, C & Eckhardt, D 1989, ‘Reasoning About Software Specifications: A Case Study’, Proceedings of
the AIAA Computers in Aerospace VII Conference, pp. 297-306.

Wild, C, Zeil, S, Feng, G & Chen, J 1992, ‘Employing Accumulated Knowledge to Refine Test
Descriptions’, Software Testing, Verification and Reliability, 2(2):53-68, July.

Wolpe, H 1958, ‘Algorithm for Analyzing Logical Statements to Produce a Truth Function Table’,
Communications of the ACM, 1(3):4-13, March.

Wood, M, Roper, M, Brooks, A & Miller, J 1997, ‘Comparing and Combining Software Defect Detection
Techniques: A Replicated Empirical Study’, Proceedings of the 6th European Software Engineering
Conference / 5th AGM SIGSOFT Symposium on the Foundations of Software Engineering, Switzerland,
September, pp. 262-277.

Woodward, M 1993, ‘Errors in Algebraic Specifications and an Experimental Mutation Testing Tool’,
Software Engineering Journal, July, pp. 211–224.

References Chapter 9

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 404

Younessi, H 2002, Object-Oriented Defect Management of Software, Prentice Hall PTR, USA.

Yu, Y, Ng, S, Poon, P & Chen, T 2003, ‘On the Use of the Classification-Tree Method by Beginning
Software Testers’, Proceedings of the 2003 ACM Symposium on Applied Computing. ACM, pp. 1123-1127.

Yuen, T, Ng, S, Poon, P & Chen, T 2004, ‘On the Testing Methods Used by Beginning Software Testers’,
Information and Software Technology, Elsevier, 46:329-335.

Zhu, H, Hall, P & May, J 1997, ‘Software Unit Test Coverage Adequacy’, ACM Computing Surveys,
29(4):366-427, December.

