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Abstract 

Ideally, any black-box testing method would be interpreted in the same way by different testers, such that 

when it is applied to a program specification, it results in an identical test set, regardless of each tester’s 

domain knowledge and experience. Further, each method should be complete and lead to the generation of 

all possible test cases that are derivable by the method for each specification. In reality, inconsistencies, 

ambiguities and a lack of precision in existing definitions of methods like Equivalence Partitioning (EP) and 

Boundary Value Analysis (BVA) can lead to differing interpretations and thus varying test set quality. The 

absence of precise definitions also makes verification of test quality and conformance to method guidelines 

difficult.  

Furthermore, while prescriptive methods like EP and BVA can be used effectively by experienced testers 

for defect detection, evidence suggests that non-prescriptive approaches like Exploratory Testing can allow 

testers to detect more defects. Domain knowledge utilised during this process often cannot be shared or 

reused since the approaches lack procedures for capturing this information. Black-box testing effectiveness 

can also depend on the quality of program specifications, since incomplete or ambiguous specifications can 

lead to inadequate testing. 

In this thesis, the ‘Atomic Rules’ approach is introduced to provide a prescriptive notation for black-box 

testing methods, to resolve their ambiguities and improve their usability and effectiveness. This approach 

decomposes each method into test selection rules that cover partition selection, test data selection, test data 

manipulation and test case construction. Each Atomic Rule is represented in a characterisation schema, 

allowing them to be prescriptively defined, while a four-step test case design process provides the methods 

with a uniform notation.  

Three experiments were conducted to validate this approach. The outcomes suggest that Atomic Rules is 

effective for teaching black-box testing methods to novice and experienced testers and can enable more 

effective testing.  

A customisation approach called Systematic Method Tailoring (SMT) allows new Atomic Rules to be 

defined and supports domain knowledge capture during non-prescriptive testing. A specification technique 

called Goal/Question/Answer/Specify/Verify (GQASV) facilitates definition of precise input/output data 

specifications, enabling more effective testing. A prototype testing tool demonstrates automation of Atomic 

Rules, SMT and GQASV. 
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Glossary 

The following terms and abbreviations have been used throughout this thesis.  

Table 1: Terms and abbreviations. 

Term / Abbreviation  Meaning 

Acceptance Testing A level of test conducted from the viewpoint of the user or customer, 
used to establish criteria for acceptance of a system. Typically based 
upon the requirements of the system. (Craig & Jaskiel 2002) 

Ad Hoc Testing Testing carried out using no recognised test case design technique. (BS 
7925-1) 

American National Standards 
Institute (ANSI) 

The American National Standards Institute.  

 Atomic Rule One individual test case design rule from a test case design method that 
can be used to design an equivalence class, select a test data value, 
manipulate/mutate a test data value or contract a test case.  

Backus-Naur Form (BNF) A metalanguage for specifying computer language syntax. (Rosen & 
Michaels 2000) 

Black-Box Testing See Black-Box Testing Method.  

Black-Box Testing Method Test case design that is based on an analysis of the specification of the 
system under test without reference to its internal workings. (adapted 
from (BS 7925-1)) 

Boundary Value Analysis 
(BVA) 

A test case design method in which test cases are designed to cover the 
boundary values of a component or system (adapted from (BS 7925-1)) 

British Standards Institution 
(BSI)  

The British Standards Institution.   

Compatibility Testing Testing whether the system is compatible with other systems with which 
it should communicate. (BS 7925-1) 

Component A minimal software item for which a separate specification is available. 
(BS 7925-1) 

Coverage A metric that describes how much of a system has been (or will be) 
invoked by a test set. Coverage is typically based upon the code, design, 
requirements, or inventories. (Craig & Jaskiel 2002) 

Data-Item Selection Rule 
(DISR) 

One Atomic Rule from a test case design method that describes how to 
select a test data value from an equivalence class. 

Data-Item Manipulation Rule 
(DIMR) 

One Atomic Rule from a test case design method that describes how to 
manipulate or mutate a test data value. 

Data-Set Selection Rule 
(DSSR) 

One Atomic Rule from a test case design method that describes how to 
select an equivalence class.  
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Term / Abbreviation  Meaning 

Decision Tables (DT) Tables that list all possible conditions (inputs) and all possible actions 
(outputs). (Craig & Jaskiel 2002) 

Defect See Fault.  

Dynamic Testing Testing of an object with execution on a computer. 

Effectiveness  
(in the context of software 
testing and test case design 
methods) 

The accuracy and completeness with which testers achieve specified test 
case design goals. 

Efficiency  
(in the context of software 
testing and test case design 
methods) 

Resources expended in relation to the accuracy and completeness with 
which testers achieve specified test case design goals.   

Equivalence Class  A portion of the component’s input or output domains for which the 
component’s behaviour is assumed to be the same from the component’s 
specification. (BS 7925-1) 

Equivalence Partitioning (EP) A test case design method in which test cases are designed to execute 
representatives from equivalence classes. (adapted from (BS 7925-1)) 

Error A human action that produces an incorrect result, such as software 
containing a fault. (ISO/IEC 24765:2009) 

Error Guessing (EG) A test case design method where the experience of the tester is used to 
postulate what faults might occur, and to design tests specifically to 
expose them. (adapted from (BS 7925-1))  

Exploratory Testing (ET) A testing approach where the test design and execution are conducted 
concurrently. (adapted from (Craig & Jaskiel 2002)) 

Expected Result The behaviour predicted by the specification of an object under specified 
conditions. (called the ‘predicted outcome’ in (BS 7925-1)) 

Fault A manifestation of an error in software. (ISO/IEC 24765:2009) 

Failure An event in which a system or system component does not perform a 
required function within specified limits (ISO/IEC 24765:2009) 

Failure Detection 
Effectiveness 

The ability of a test case design method to detect failures in software. 

Functional Testing  See Black-Box Testing Method.  

Grey-Box Testing  Test case selection that is based on an analysis of the specification and 
source code of the system under test.  

The Institute of Electrical and 
Electronic Engineers (IEEE) 

The Institute of Electrical and Electronic Engineers, Inc. Publisher of 
engineering standards. (Craig & Jaskiel 2002) 

Independent Testing An organizational strategy where the testing team and leadership is 
separate from the development team and leadership. (Craig & Jaskiel 
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Term / Abbreviation  Meaning 

2002) 

Input A variable (whether stored within a component or outside it) that is read 
by the component. (BS 7925-1) 

Input Data See input value.  

Input Data Specification  A specification of the input data of a program.  

Input Domain  The set of all possible inputs to a program. (adapted from (BS 7925-1)) 

Input Value An instance of an input. (BS 7925-1) 

Integration Testing A level of test undertaken to validate the interface between internal 
components of a system. Typically based upon the system architecture. 
(Craig & Jaskiel 2002) 

The International 
Organization for 
Standardisation (ISO) 

The International Organization for Standardisation. Publishes of industry 
standards.  

Learnability  
(of a Test Case Design 
Method) 

Attributes of a test case design method that determine the effort required 
by a tester to learn how to apply the method competently. 

Metalanguage Language used to describe another language (for example, XML is the 
metalanguage for XHTML). (Bidgoli 2004) 

Module See Component.  

Nominal Value The mid-point of an equivalence class. (Jorgensen 1995) 

Non-Functional Testing  Testing of those requirements that do not relate to functionality. i.e. 
performance, usability, etc. (BS 7925-1) 

Operability  
(of a Test Case Design 
Method)  

Attributes of a test case design method that determine the effort required 
by a tester to use the test method competently. 

Outcome The outcome of a test case.  

Output A variable (whether stored within a component or outside it) that is 
written to by the component. (BS 7925-1) 

Output Domain  The set of all possible outputs of a program. (adapted from (BS 7925-1)) 

Output Value An instance of an output. (BS 7925-1) 

Partition  See Equivalence Class. 

Random Testing (RT) Testing using data that is in the format of real data, but with all of the 
fields generated randomly. (Craig & Jaskiel 2002) 

Regression Testing  Retesting previously tested features to ensure that a change or bug fix has 
not affected them. (Craig & Jaskiel 2002) 
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Term / Abbreviation  Meaning 

Requirement A condition or capability that must be met or possessed by a system, 
product, service, result, or component to satisfy a contract, standard, 
specification, or other formally imposed document. Requirements include 
the quantified and documented needs, wants, and expectations of the 
sponsor, customer, and other stakeholders. (PMI 2004) 

Requirements  See requirement.  

Requirements Traceability Demonstrating that all requirements are covered by one or more test 
cases. (Craig & Jaskiel 2002) 

Requirements Traceability 
Matrix (RTM) 

A matrix used to track requirements coverage.  

Satisfaction  
(in the context of software 
testing and test case design 
methods) 

Freedom from discomfort and positive attitudes towards the use of a 
testing case design method. 

Specification  A description of a component's function in terms of its output values for 
specified input values under specified preconditions. (BS 7925-1) 

Specified Input An input for which the specification predicts an outcome. (BS 7925-1) 

Stakeholder Individual or organization having a right, share, claim, or interest in a 
system or in its possession of characteristics that meet their needs and 
expectations. (ISO/IEC 12207:2008) 

State Transition Testing A test case design method in which test cases are designed to execute 
state transitions. (adapted from (BS 7925-1)) 

Static Testing Testing of an object without execution on a computer. (BS 7925-1) 

Syntax Testing (ST) A test case design method for a component or system in which test case 
design is based upon the syntax of the input. (adapted from (BS 7925-1)) 

System Testing  A (relatively) comprehensive test undertaken to validate an entire system 
and its characteristics. Typically based upon the requirements and design 
of the system. (Craig & Jaskiel 2002) 

Test Case A set of test inputs, execution conditions, and expected results developed 
for a particular objective, such as to execute a particular program path or 
to verify compliance with a specific requirement. (ISO/IEC 24765:2009). 

Test Case Construction Rule One Atomic Rule from a test case design method that describes how to 
design a test case.  

Test Case Design Method A method used to derive or select test cases. (BS 7925-1) 

Test Condition An item or event of a component or system that could be verified by one 
or more test cases, e.g. a function, transition, feature, quality attribute, or 
structural element. (ISTQB 2005) 

Test Data Data (including inputs, required results, and actual results) developed or 
used in test cases and test procedures. (Craig & Jaskiel 2002) 
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Term / Abbreviation  Meaning 

Test Data Value A single item of test data.  

Test Method See Test Case Design Method. 

Test Method Usability The extent to which a test case design method can be understood, learnt 
and used by software testers to achieve specified test case design goals 
effectively, efficiently and with satisfaction, within the context of 
applying software testing methods. 

Test Oracle An oracle provides a method to generate expected results for the test 
inputs and compare the expected results with the actual results of 
execution of the system under test. (adapted from (Naik & Tripathy 
2008))  

Test Procedure  Detailed instructions for the setup, execution, and evaluation of results 
for a given test case. (IEEE 1012:2004) 

Test Script Commonly used to refer to the automated test procedure used with a test 
harness. (BS 7925-1) 

Test Set  A collection of one or more test cases for the software under test. 
(adapted from (BS 7925-1))  

Understandability  
(of a Test Case Design 
Method) 

Attributes of a test case design method that determine the effort required 
by a tester to recognise the logical concept of the method and its 
applicability.  

Unit Testing A level of test undertaken to validate a single unit of code. Typically 
conducted by the programmer who wrote the code. (Craig & Jaskiel 
2002) 

User Acceptance Testing See Acceptance Testing.  

Validation  Confirmation, through the provision of objective evidence, that the 
requirements for a specific intended use or application have been 
fulfilled. (ISO/IEC 15288:2008) 

Verification The process of evaluating a system or component to determine whether 
the products of a given development phase satisfy the conditions imposed 
at the start of that phase. (IEEE 1012:2004) 

White-Box Testing   Test case design that is based on an analysis of the internal structure of 
the source code of a program. (adapted from (BS 7925-1)) 
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The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 1 

Chapter 1 

Introduction 

“It can be frustrating, as a tester, to watch someone who has no experience in testing spend five 
minutes using a piece of software and crash it.” 

Ron Patton, 2006 

1.1 Overview 

In 1969, Dijkstra famously observed that “Program testing can be used to show the presence of bugs, 

but never to show their absence!” (Dijkstra 1969), meaning that no amount of software testing can 

guarantee that a program is fault-free. On the other hand, software testing can be used to prove that a 

program both meets its requirements and does not fail when given specific types of inputs. Meeting this 

objective can be defined as achieving ‘quality’, which the Institute of Electrical and Electronic Engineers 

(IEEE) define as “the degree to which a system, component, or process meets specified requirements” 

(IEEE 829:2008). This definition of quality refers to the term ‘requirement’, which the joint technical 

committee of the International Organization for Standardisation (ISO) and the International Electrotechnical 

Commission (IEC) define as “a condition or capability needed by a user to solve a problem or achieve an 

objective” (ISO/IEC 24765:2008). One approach to determining whether faults or quality (i.e. satisfied user 

requirements) are present in a program is through the use of ‘test case design methods’ (also known as 

‘testing techniques’ (Dustin 2003, Copeland 2004, Burnstein 2003)). Since ‘exhaustive testing’ (e.g. testing 

all source code paths or input combinations) has long been considered impractical (Goodenough & Gerhart 

1975), test case design methods arose to facilitate the selection of ‘effective’ test cases that ‘cover’ program 

source code and requirements in various ways. The results of testing can be used to communicate the 

current level of program quality to relevant stakeholders, including users, the financers of software 

development projects, project managers, test managers, business analysts, developers and testers. In the 

most general sense, testing reduces uncertainty about the quality of a program and its release readiness. 

Test case design methods can be divided into thee classes: black-box, white-box and grey-box (see 

Section 1.3). While each of these concepts could support a thesis in its own right, the focus of this thesis is 

on the usability and failure-detection effectiveness of black-box testing methods (see Section 1.4). Black-

box testing methods can be divided into two classes: prescriptive and non-prescriptive. The term ‘non-

prescriptive testing’ is used in this thesis to describe any unscripted test case design approach that is based 

on a tester’s domain knowledge and experience, which could be drawn from their knowledge of prescriptive 

testing methods, but where the tester does not explicitly follow any specific test case design guidelines. This 
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has also been called ‘reactive testing’ (Black 2007), ‘lateral testing’ (after De Bono’s lateral thinking 

techniques) (Fewster & Graham 2000), ‘unstructured testing’ and ‘ad hoc testing’ (Nguyen et al. 2003). 

In prescriptive black-box testing, test cases are designed by applying ‘test case design rules’ (also called 

‘test case design guidelines’ (Myers 1979) and ‘heuristics’ (DeMillo et al. 1987)) from black-box testing 

methods to program requirements. Prescriptive methods intend to add precision and procedure to the testing 

process, and can provide a basis for measuring test coverage and adequacy (Zhu, Hall & May 1997). On the 

other hand, non-prescriptive testing is unstructured and unscripted, being based on a tester’s unique domain 

knowledge and experience. This can stem from a tester’s knowledge of, or experience with, prescriptive 

testing methods (Craig & Jaskiel 2002), testing heuristics (Watkins 2001), tests that previously detected 

faults (Watkins 2001), program implementation and design (Bertolino 2004, Watkins 2001), hardware 

(Mosley 1993), platforms (Bertolino 2004) and programmer assumptions (Myers 1979). Non-prescriptive 

approaches like Error Guessing are said to compensate for the “inherent incompleteness” of EP and BVA 

(Mosley & Posey 2002). In one empirical study of failures detected in independently developed launch-

intercept control software, it was established that 83-90% of faults and 90-97% of failures were detected by 

‘special values’ (Wild, Chen & Eckhardt 1989), which can be chosen through non-prescriptive testing. Non-

prescriptive testing approaches are believed by some to be among the most popular in the software testing 

industry (Jorgensen 1995). Empirical data supporting this includes a survey of software testing practices in 

Australia, which revealed that out of 65 organisations interviewed, just over one third (35.4%) chose to use 

non-prescriptive approaches to testing over prescriptive black-box testing methods (Ng et al. 2004). 

The aim of this thesis is to investigate and improve the usability and failure-detection effectiveness of 

prescriptive and non-prescriptive approaches to black-box testing. The investigation is focussed on 

resolving seven problems with existing definitions of black-box testing methods (see Section 1.4), which 

can affect the usability and failure-detection effectiveness of the methods. Problems resolution is achieved 

through the creation of a new approach to describing black-box testing methods called ‘Atomic Rules’ (see 

Section 1.5). In the Atomic Rules approach, black-box testing methods are decomposed into individual test 

case design rules called ‘Atomic Rules.’ Each Atomic Rule is defined using a characterisation schema, 

while a four-step test case design process provides a common notation for describing all black-box testing 

methods. The Atomic Rules approach has been evaluated via two classroom experiments and an industrial 

experiment, as well as through the implementation of a proof-of-concept testing tool (see Section 1.7). Two 

approaches called Systematic Method Tailoring (SMT) and Goal/Question/Answer/Specify/Verify 

(GQASV) are also introduced, to further improve the effectiveness of black-box testing.  

1.2 Test Method Usability  

Before exploring problems that affect the usability of black-box testing methods, the term usability 

needs to be defined within the context of software testing and the study of test case design methods. This 

facilitates identification of qualitative and quantitative attributes that can be used to assess test method 

usability. Benchmark definitions from software engineering are provided first and are then redefined within 

the context of software testing.  
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Within the context of software engineering, ISO/IEC define the term usability as follows (ISO/IEC 

24765:2008):  

“Usability. The extent to which a product can be used by specified users to achieve specified 

goals with effectiveness efficiency and satisfaction in a specified context of use.”  

In this thesis, the term ‘effective’ is used within two contexts. A test method can be ‘effective’ if a tester 

can use it to derive an ‘accurate’ and ‘complete’ test set (see Section 1.2.1). A test method has a ‘failure-

defection effectiveness’ that can rate its ability to detect program failures (see Section 1.2.2). 

ISO/IEC further defines three sub-attributes of usability as understandability, learnability and 

operability (ISO/IEC 9126-1:2005), as follows.  

“Understandability. Attributes of software that bear on the user’s effort for recognising the 

logical concept and its applicability.” 

“Learnability. Attributes of software that bear on the user’s effort for learning its application 

(for example, operation control, input, output).” 

“Operability. Attributes of software that bear on the user’s effort for operation and operation 

control.” 

ISO/IEC 9126-1:2005 also includes ‘attractiveness’ and ‘usability compliance’ under its definition of 

usability. Attractiveness is excluded here since this can be assessed under ‘satisfaction’ (see Section 1.2). 

Usability compliance is excluded as there are no laws or regulations in software testing that dictate how a 

test method should be represented. 

Within the context of software testing and the study of test case design methods, the objective is for a 

tester to design an adequate (e.g. effective) set of test cases. Thus, in the definitions below, the terms 

product and software have been replaced by the term software testing method, while user has been replaced 

by the phrase software tester. This results in the following definitions.  

Understandability. Attributes of a test case design method that determine the effort required 

by a tester to understand a test method and to understand if, when and how it applies to the 

program under test1. 

Learnability. Attributes of a test case design method that determine the effort required by a 

tester to learn how to apply the method competently. 

Operability. Attributes of a test case design method that determine the effort required by a 

tester to use the test method competently. 

The ISO/IEC definition of usability also refers to the terms effective, efficient and satisfaction. ISO/IEC 

provide benchmark definitions for these, as follows (ISO/IEC 25062:2006, ISO/IEC24765:2008).  
                                                           
1 The definition of understandability does not include the effort to use the test method, as this is covered by operability.  
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“Effectiveness. The accuracy and completeness with which users achieve specified goals.”  

“Efficiency. Resources expended in relation to the accuracy and completeness with which users 

achieve goals.”   

“Satisfaction. Freedom from discomfort, and positive attitudes towards the use of the 

product.” 

Within the context of software testing and the study of test case design methods, these terms can be 

redefined as follows.  

Effectiveness. The accuracy and completeness with which testers achieve specified test case 

design goals during the application of a test case design method2.  

Efficiency. Resources expended in relation to the accuracy and completeness with which testers 

achieve specified test case design goals during application of a test case design method.   

Satisfaction. Freedom from discomfort and positive attitudes towards the use of a test case 

design method. 

While the first two measures (effectiveness and efficiency) can be measured objectively, the third 

(satisfaction) is included since subjective reactions to a test case design method may effect the extent to 

which that method is adopted.  

Combining the above definitions, test method usability can be defined as follows.  

Test Method Usability. The extent to which a test case design method can be understood, learnt 

and used by software testers to achieve specified test case design goals effectively, efficiently 

and with satisfaction, within the context of applying software testing methods.  

These definitions will be used throughout this thesis to examine and evaluate black-box test method 

usability. They apply to novice and experienced testers, since both are affected by the ease of which a test 

method can be learnt, understood and used. Since a tester’s own personal experience can impact on whether 

they find a test method ‘usable’ and whether they are capable of using it ‘effectively’, experience will be 

taken into account during experimental analysis3.  

1.2.1 Assessing Usability  

To facilitate assessment of test method usability in an experimental context, quantitative and qualitative 

attributes need to be identified for measuring various aspects of usability, as follows.   

 Understandability can be qualitatively evaluated by assessing whether a tester understands the 

conditions under which a test case design method should be applied. It can also be quantitatively 

assessed by examining their ability to apply the method correctly (measured by effectiveness, see 

                                                           
2 A more traditional definition of test effectiveness as “failure-detection effectiveness” is provided in Section 1.2.2. 
3 Influences external to the test method can also affect a tester’s ability to derive effective test cases (e.g. specification quality). 
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below). Although subjective, it can also be measured by a tester’s self-rated understanding of a test 

method. 

 Learnability can be quantitatively measured by the time it takes a tester to become competent in 

the use of a test method. It can be quantitatively and qualitatively assessed by examining the 

quantity and types of questions asked by a tester when they are learning to apply a test method.  

 Operability can be quantitatively assessed by examining the proportion of correct test cases 

derived by a tester during application of a test case design method (measured by effectiveness, see 

below). Although subjective, it can also be quantitatively assessed by examining a tester’s opinion 

of how easy the method is to use.  

 Effectiveness consists of sub-attributes completeness and accuracy, as follows.  

o Completeness can be quantitatively measured as the proportion of all test cases that are 

derivable by an expert software tester when applying a particular test case design 

method (referred to as the ‘total’ number of test cases derivable). 

o Accuracy can be quantitatively and qualitatively assessed by the frequency and types of 

mistakes (i.e. errors) made by a tester during application of a test case design method.  

 Efficiency can be quantitatively measured by examining the productivity of a tester; i.e. by the 

number of correct test cases that are derived by a tester during application of a test case design 

method over the total time taken.  

 Satisfaction is subjective but can be qualitatively assessed by comparing a tester’s preference for 

using one test case design method over another.  

These will be used to evaluate the usability of black-box testing methods (see Chapters 5 and 6).  

1.2.2 Failure-Detection Effectiveness  

In the previous section, effectiveness was defined as “The accuracy and completeness with which testers 

achieve specified test case design goals during the application of a test case design method.” A more 

traditional definition of effectiveness in test case design is the ability of a test method to detect program 

faults (defects) or failures (‘activated’ defects) (Reid et al. 1999). Since one fault can cause more than one 

failure, and one failure can be caused by more than one fault, the following definition, referred to as 

“failure-detection effectiveness” (to differentiate it from the definition of effectiveness given in the previous 

section) will also be used in this thesis when assessing test method effectiveness. 

Failure-Detection Effectiveness. The ability of a test case design method to detect failures in 

software.  

This can be calculated as the proportion of all program failures that are detectable by a test case design 

method, when the method is applied by an expert tester. This can be affected by the size of the program 

under test, the number and severity of faults it contains and the capability of the tester. This definition will 
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be used in Chapter 6 when evaluating the ability of black-box test case design methods to detect program 

failures.  

1.3 Black-Box Testing Methods  

Before exploring problems with existing black-box testing methods that affect their usability and 

failure-detection effectiveness, (see Section 1.4), it is important to consider the place of these methods 

within the broader context of software testing. 

Black-box testing methods can be applied at any of the four ‘levels’ of testing that are commonly 

recognised in the software testing industry: Unit, Integration, System and Acceptance (Pfleeger 2001). 

More recently, a fifth level called Maintenance Testing was identified (Figure 1-1)4 (ISO/IEC 29119-1). 

During Unit Testing, individual program modules are tested separately to check that they each meet their 

requirements. In Integration Testing, interactions between components are tested. During System Testing, 

the fully integrated system is tested to ensure it functions correctly in a test environment that is as close to 

the operational (i.e. production) environment as possible. Acceptance Testing is also used to determine 

whether the complete system meets its user requirements, and is often used as a means for obtaining ‘sign 

off’ from the customer, indicating that they agree that the system is ready for release. After systems have 

been accepted by customers, they often require enhancement and repair. Thus, during Maintenance Testing 

the system is tested after new code is implemented and re-tested or regression tested after existing code is 

changed, to ensure that it still meets user requirements. If changes are substantial then Maintenance Testing 

can consist of all four levels of testing (i.e. Unit, Integration, System and Acceptance Testing).  

Figure 1-1: A five-level model for testing (ISO/IEC 29119-1).  

 

 

Independence between testing and development teams is often sought during certain levels of testing. 

Independent testers are often able to detect defects that developers miss because they think differently from 

them (Kaner et al. 2001) and since developers are can be subjective about the quality of their own source 

code. This avoids the conflict of interest between the necessity to find defects and the need to take 
                                                           
4 This concept of Maintenance Testing has been defined in the new ISO/IEC 29119 Software Testing standard that is currently under 
development by ISO/IEC JTC1/SC7, Working Group 26 (Software Testing), for which Ms. Murnane is an editor.  
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responsibility for them (Pressman 1992) and the necessity to meet delivery schedules5. Nonetheless, Unit 

Testing is often carried out by program developers, since some methods used at that level (e.g. white-box 

testing methods) require an understanding of program source code. Integration and System Testing are 

usually performed by independent testers who are not directly involved with the development of the 

program source code, while Acceptance Testing is often carried out by the system’s end-users, using a 

predefined test suite that is chosen by the customer.  

The relationship between the four traditional levels of testing and the phases of the software 

development lifecycle (SDLC) can best be seen in the V-Model for software development, in which each 

development phase is supported by a level of testing and where the outputs of each development phase (i.e. 

requirements, specifications, designs, source code) can be used for test case design (Figure 1-2).  

Figure 1-2: The V-Model (adapted from (Burnstein 2003) and (V-Modell® XT 2008)). 

 

 

Across the SDLC, there are two main classes of testing: static and dynamic testing (Burnstein 2003). 

Static testing has also been referred to as ‘verification testing’ (Perry 2006) and ‘static analysis’ (Burnstein 

2003, Naik & Tripathy 2008), while dynamic testing has also been called ‘validation testing’ (Perry 2006) 

and ‘dynamic analysis’ (Burnstein 2003, Naik & Tripathy 2008).  

In static testing, program source code, requirements, specifications and other documentation (e.g. user 

and installation manuals) are manually ‘tested’ through the application of static testing methods, including 

reviews, walkthroughs, inspections, desk debugging, requirements testing (Perry 2006) and desk checking 

(Everett & McLeod 2007), each with varying levels of formality. The aim of static testing is to identify 

defects (e.g. ambiguities, inconsistencies, deviations from user requirements) in the program source code 

and program documentation as early in the SDLC as possible. As Burnstein observes (2003), some 

members of the software testing community do not consider static testing techniques like inspections, 

walkthroughs and reviews to be ‘testing’ techniques. Instead, they consider static testing to be a form of 

software quality assurance. Conversely, other members of the testing community (including (Burnstein 

2003, Everett & McLeod 2007, Hetzel 1988) and this author) consider static testing to be a form of testing. 

                                                           
5 Testers are also often trained in the use of prescriptive testing methods that can be used to systematically question the completeness 
and correctness of requirements, specifications and source code. For the same reason, it is also beneficial to seek independent testing of 
program documentation (e.g. requirements) (Everett & McLeod 2007). 

Requirements 

Specification 

Code 

Design 

Acceptance Testing

System Testing 

Unit Testing 

Integration Testing 



Introduction  Chapter 1 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 8 

Furthermore, the author follows the ISO/IEC standard definition of quality assurance, which is “a set of 

activities designed to evaluate the process by which products are developed or manufactured” (ISO/IEC 

24765:2009), which is clearly a different activity to testing.   

In dynamic testing, the program is executed to determine whether it meets its requirements and 

specifications (Perry 2006). Arguably the most common form of testing that is used within the software 

testing industry, dynamic testing encompasses any prescriptive or non-prescriptive test case design method 

that can be used to identify test cases, which can then be run against a program as a means of determining 

whether it meets its requirements. Therefore, this includes black-box testing methods.  

Within both static and dynamic testing, there are two main classes of test case design methods: 

functional and non-functional (e.g. see (Everett & McLeod 2007, BS-NFT 2008)). Functional testing 

methods are used to identify test cases that determine whether a program satisfies its functional 

requirements, such as business rules or core functionality. Non-functional testing methods are used to derive 

test cases that check whether a program satisfies its so-called non-functional requirements, such as 

performance, reliability, usability and security.  

Within functional testing, there are three main classes of test case design: white-box, black-box and 

grey-box (Figure 1-3).  

White-box test case design is based on knowledge of the internal structure of the program source code. 

The aim is to design test cases that ‘cover’ the code in various ways, such as testing ‘all paths’ or ‘all 

branches.’ Statement testing, path testing, branch testing, condition testing and data-flow testing are all 

examples of white-box testing methods (Weiser et al. 1985, Pfleeger 2001). White-box testing can uncover 

faults that may be unlikely to be revealed through black-box testing, such as boundary faults on condition 

statements that are not specifically documented in program specifications. White-box testing methods are 

typically used by developers during Unit Testing, but can also be applied during Integration and System 

Testing when checking the correctness of program control flows and component interactions. White-box 

testing is also known as glass-box testing (Burnstein 2003), clear-box testing (Burnstein 2003), structural 

testing (Perry 2006) and logic-driven testing (Myers 1979).  

Black-box test case design is based primarily on knowledge gained from program documentation, 

including requirements, specifications and user manuals. The aim is to design a set of test cases that cover a 

program’s functionality and input/output domains in various ways. For example, Equivalence Partitioning 

was designed to provide guidance on the partitioning of program input and output domains into sets of 

equivalent data, and is intended to reduce the number of individual test data values that must be executed 

against the program in order to achieve adequate input/output domain coverage (Myers 1979). Boundary 

Value Analysis and Syntax Testing were designed to select test data values that target particular fault 

classes (Burnstein 2003). Use Case Testing guides in the design of test cases that can be used to check for 

correctness in program workflows and program/user interactions.  
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Rather than being based on how a program is written, black-box testing allows programs to be tested 

from the user’s perspective. Black-box testing methods can be prescriptive or non-prescriptive (see Table 

1-1) and can be applied at any level of testing, although their semantics may change depending on the level 

at which they are applied. For example, Boundary Value Analysis could be used during Unit Testing to test 

the boundaries of input fields or at System Testing to test the maximum number of users that can be 

simultaneously logged into a system. Although black-box testing methods were designed for dynamic 

testing, most can be utilised for static testing, such as using Boundary Value Analysis to question whether 

boundaries are defined in input/output data specifications (see Chapter 2).  

Black-box testing is also known as functional testing (Perry 2006), specification testing (Burnstein 

2003), specification-based testing (Pezzand & Young 2008), closed-box testing (Pfleeger 2001), 

input/output driven testing (Myers 1979), data-driven testing (Myers 1979) and behaviour testing (Everett 

& McLeod 2007). 

A black-box testing method can also be utilised in a grey-box manner, if the tester uses knowledge of 

the source code and/or coding techniques during test case design. Similarly, during white-box test design, a 

tester will likely utilise knowledge of program inputs and outputs. 
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Figure 1-3: Black-box, white-box and grey-box testing methods (adapted from (Burnstein 2003)). 
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Table 1-1: Classification of black-box testing methods as prescriptive or non-prescriptive. 

Black-Box Testing Method Prescriptive Non-Prescriptive 

Boundary Value Analysis (BVA)   

Category Partition Method (CPM)   

Cause-Effect Graphing (CEG)   

Classification Trees (CT)   

Combinatorial Test Methods    

Decision Tables/Trees   

Equivalence Partitioning (EP)   

Error Guessing (EG)   

Exploratory Testing (ET)   

Random Testing (RT)   

State-Transition Testing   

Syntax Testing (ST)   

Test Matrices, Catalogues and Categories   

Use Case Testing   

 

Grey-box testing is a hybrid of white-box and black-box testing, in which test case design is based on 

knowledge of the program source code and specifications (e.g. see (Dustin 2003)). An example of grey-box 

testing is Partition Analysis, where test cases are chosen by locating input data partitions that execute the 

same program source code paths (Howden 1976, Richardson & Clarke 1981, Richardson & Clarke 1985) 

(Table 1-2). The precision of black-box testing can be improved through the use of grey-box information. 

Thus, although black-box testing methods were not specifically designed for grey-box testing, some can be 

applied using a combination of black-box and grey-box information (Table 1-2).  

One approach to classifying the differences between black-box and white-box testing methods was 

proposed by Vegas, Juristo and Basili (2003), who developed an instantiated characterization schema to 

classify black-box and white-box testing methods, as well as data-flow and mutation testing methods. The 

schema was designed to support testers in the selection of the “best suited” methods for testing. While the 

schema enabled classification of various black-box testing methods, it did not address the key problems 

with existing black-box testing methods that are introduced in the next section (see Section 1.4). 
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Table 1-2: Classification of test case design methods as black-box, white-box or grey-box.  

Functional Testing Methods 

Test Method Classification 
 denotes methods defined for the stated purpose,  
~ denotes methods that can be used for the stated purpose 
but that were not originally designed for it 

Black-Box White-Box Grey-Box  

Boundary Value Analysis (BVA)  ~ ~ 

Branch Condition Combination Testing    

Branch Condition Testing    

Branch/Decision Testing    

Category Partition Method (CPM)    

Cause-Effect Graphing (CEG)    

Classification Trees (CT)    

Combinatorial Test Methods    

Data Flow Testing    

Decision Tables/Trees    

Equivalence Partitioning (EP)   ~ 

Error Guessing (EG)  ~ ~ 

Exploratory Testing (ET)  ~ ~ 

Linear Code Sequence and Jump Testing    

Modified Condition Decision Testing    

Mutation Testing     

Partition Testing     

Path Testing    ~ 

Random Testing (RT)    

Statement Testing    

State-Transition Testing   ~ 

Syntax Testing (ST)    

Test Matrices, Catalogues and Categories    

Use Case Testing    

 

1.4 Seven Problems with Existing Black-Box Testing Methods 

While an extensive literature search indicated that the earliest definitions of test case design methods 

were white-box-based (Miller & Maloney 1963), one of the earliest references found that treated an 

algorithm as a “black-box” was in 1958 (Wolpe 1958). The earliest found examples of prescriptive black-

box and grey-box testing methods were Sauder’s (compiler) syntax testing method in 1962 (Sauder 1962), 

grey-box Partition Analysis in 1976 (Howden 1976, Richardson & Clarke 1981) and Myers’ black-box 

Equivalence Partitioning (EP) and Boundary Value Analysis (BVA) in 1979 (Myers 1979)6. The first non-

prescriptive black-box testing approaches to be defined were Error Guessing in 1979 (Myers 1979) and 

Exploratory Testing in 1988 (Kaner 1988). Many of the earliest prescriptive black-box testing methods have 

been enhanced over the past thirty years and are still widely taught and used today. Despite this, a number 

of problems with their existing definitions need to be addressed.  

                                                           
6 Myers’ textbook ‘The Art of Software Testing’ (1979) is still one of the most oft-referenced textbooks on software testing today (e.g. 
see (Burnstein 2003, Jorgensen 1995, Kit 1995, Mosley 1993, Copeland 2004, Page et al. 2009, Mosley & Posey 2002, Parrington & 
Roper 1989)).  
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Ideally, any prescriptive testing method would be interpreted in the same way by different testers, such 

that when it is applied to a program specification, it results in an ‘equivalent’ test set, regardless of a tester’s 

unique domain knowledge or experience. Further, each method would be complete and lead to the 

generation of all possible test cases that are derivable by the method for the given specification. In reality, 

inconsistencies, ambiguities and a lack of precision in existing black-box test methods definitions can lead 

to differing interpretations and thus varying test set quality. Some practitioners may argue that skilled 

black-box testers should be capable of deriving high-yield test sets using only their domain knowledge and 

experience; in their view, test methods like EP should only be used to supplement heuristic knowledge 

(Sommerville 2001). This raises the question of how testers obtain such skill in the first place. In practice 

however, prescriptive black-box testing methods are an essential part of the software testing process.  

In this thesis, the following five problems that affect the usability and failure-detection effectiveness of 

existing black-box testing methods were initially identified and explored (Murnane, Hall & Reed 2005):   

1. definition by exclusion;  

2. multiple versions;  

3. method overlap;  

4. notational and terminological differences; and 

5. reliance on domain knowledge.  

Two additional problems, which were identified as the research into this topic progressed and which are 

also addressed in this thesis, are that existing black-box testing methods can be: 

6. difficult to audit; and 

7. difficult to automate.  

Definition by exclusion relates to black-box test case design methods that involve ‘partitioning.’ During 

partitioning, program input and output domains are divided into classes of homogenous data, whose 

mapping involves executing (ideally) identical deterministic processes. As Ostrand and Balcer (1988) 

observe, “Various methods of creating a test partition are discussed in the literature. Despite the general 

agreement on this key technique of functional testing and its use since the earliest days of computing, the 

partitioning process lacks a systematic approach.” For example, Myers (1797) provides the following 

guideline for EP:  

“If an input condition specifies a ‘must be’ situation (e.g. ‘first character of the identifier must 

be a letter’), identify one valid equivalence class (it is a letter) and one invalid equivalence class 

(it is not a letter).” 

This describes the identification of two partitions of data: one containing valid test data values and the 

other containing all other (invalid) values that were not included in the valid set. Ideally, a member of every 

class of data would be included in the invalid partition, but novice testers may only be aware of a subset of 
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classes that are available. Thus, depending on a tester’s interpretation of the test method, their assumptions 

about the program under test, their domain knowledge and their experience, each tester could produce a 

vastly dissimilar test set, resulting in black-box testing that is not repeatable or predictable. For example, for 

programs developed on ‘western’ keyboards, data in the invalid class could be identified through the ASCII 

(American Standard Code for Information Interchange) table (e.g. see (Oualline 2003)), which defines 94 

printable characters that can be divided into classes of uppercase alpha, lowercase alpha, numeric and non-

contiguous non-alphanumeric (i.e. special) characters (see Appendix G). In other programs, Unicode 

character sets (Aliprand et al. 2003) may need to be considered. For programs utilising EBCDIC (Extended 

Binary Coded Decimal Interchange Code), various classes of data could be defined for each non-contiguous 

set of alpha and non-alphanumeric characters that are defined in that encoding scheme. Thus, definition by 

exclusion assumes testers are familiar with the ‘universe of discourse’ of program inputs. In reality, 

program specifications often do not specify the valid and invalid data sets that should be considered by 

developers and testers, let alone the encoding schemes that are in use. In addition, test method definitions 

like those provided by Myers (1979) can be interpreted differently by each tester. As a consequence, the 

effectiveness of resulting test sets may be diminished and statements relating to program correctness and the 

nature of program faults detected may be meaningless. Ambiguous test method definitions may also lead to 

testers being unsure of how to apply the test method correctly. The lack of prescriptive guidelines for black-

box testing also makes black-box test data generation difficult to automate.  

Multiple versions of each black-box testing method exist. For example, some definitions of BVA 

describe the selection of test data on, inside and outside field boundaries (BS 7925-2), while others do not 

include inside (Craig & Jaskiel 2002, Kaner 1988, Lewis 2000, Mosley 1993, Myers 1979) and outside 

(Jorgensen 1995, Mosley 1993) boundaries (see Section 2.3). Presently, no textbook, standard or paper 

describes the complete version (i.e. all test case design rules) from all black-box testing methods. Thus, a 

tester may not know how their chosen approach compares to all others, even within a method and, as a 

result, they may be unaware of how complete (or incomplete) their resulting test set will be.  

Without a standard definition of each method, it can be difficult to audit the completeness of black-box 

testing. For example, the British Standard BS EN 50128 ‘highly recommends’ the use of EP and BVA for 

certain testing classes of safety critical systems (BS 50128:2001). However, the completeness of black-box 

testing that is claimed to be conformant with that standard cannot be guaranteed, since it depends on which 

version of the methods are used and the level of precision that each version provides.  

Notational and terminological differences in the definitions of these methods further impact on test 

method usability. As Jorgensen (1995) observed, “Much of testing literature is mired in confusing (and 

sometimes inconsistent) terminology, probably because testing technology has evolved over decades and 

via scores of writers.” As a result, a new notation often must be understood for each new method learnt. For 

example, various names have been used to describe the process of partitioning program input and output 

domains into homogenous data sets. In the Category Partition Method (CPM) these sets are called ‘choices’ 

(Ostrand & Balcer 1988) while in EP they are called ‘equivalence classes’ and ‘partitions’ (Myers 1979). 

While EP and BVA are described as ‘partitioning’ approaches (e.g. see (Myers 1979)), ST is not described 
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in this way, despite the fact that partitions are implicitly created on each input and output field (see Section 

2.2.3). These differences may make it difficult for novice and experienced testers to learn new test case 

design methods. This problem is compounded by black-box test method definitions that only provide 

examples that demonstrate method application without prescriptive definitions of the test case design rules 

underlying each method (e.g. see definitions of EP in (Kaner 1988, Tamres 2002)). If test case design rules 

cannot be easily identified by testers, it could result in incomplete test sets and ineffective testing.  

Method overlap between black-box testing methods can result in duplicated test cases and inefficient 

testing. For example, boundary values are selected by at least two versions of ST (Beizer 1990, Marick 

1995), while EP, BVA and ST all include test case design rules to select test data values that lie outside the 

boundaries of numeric fields (e.g. see (Myers 1979, Beizer 1990)). Although ST is described differently to 

EP and BVA, these overlaps suggest that all three methods could be defined using a common notation.  

Non-prescriptive black-box testing approaches like Exploratory Testing and Error Guessing have a 

reliance on domain knowledge that is usually implicit and not specified (see Section 2.2.5). During non-

prescriptive testing, novice testers may not be aware of the need to consider relevant domain knowledge and 

may also be unfamiliar with the “application domain7” (Reed 1990) of the program under test. As a result, 

they may produce incomplete and ineffective test sets. Also, there are currently no systematic procedures 

for capturing the definition of new test case design rules that are used during non-prescriptive testing. As a 

result, detected failures may not be reproducible and auditing issues may arise when the completeness or 

efficiency of non-prescriptive testing cannot be determined or proven to relevant stakeholders. The 

existence of prescriptive procedures (with consistent terminology) for documenting new test case design 

rules could facilitate improvement of the domain knowledge and skills of both novice and experienced 

testers as well as an improvement in test effectiveness.  

A related issue is that when specifications of program input and output domains are unavailable, test 

case design is often based on the domain knowledge of expert testers who understand the program’s 

application domain. Experienced testers may be capable of conducting efficient and effective black-box 

testing solely from their own unique domain knowledge and experience (see Section 2.6.2) and may do so 

without documenting their decisions. As a result, novice testers may not be able to learn from their more 

experienced peers if the test case design rules they use and the assumptions they make about the definitions 

of program input and output fields are not documented.  

1.5 Aims and Contributions  

The primary aim of this thesis is to explore how these seven problems affect the usability and failure-

detection effectiveness of prescriptive and non-prescriptive approaches to black-box testing, and to present 

a new representation for describing black-box testing methods called the Atomic Rules approach (Murnane, 

Hall & Reed 2005), which aims to resolve these problems and improve test method usability and failure-

                                                           
7 Reed proposed a Knowledge Acquisition Based Approach to Software Project Planning (KABASPP) approach, which defines five 
knowledge areas from which domain knowledge can be obtained: application domain, application solution domain, development 
environment domain, run time environment domain and the managerial domain (Reed 1990). Each consists of knowledge concepts that 
are used in carrying out particular tasks on a software development projects.  
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detection effectiveness. In the Atomic Rules approach, black-box testing methods are decomposed into 

individual test case design rules called ‘Atomic Rules.’ Each Atomic Rule is defined in characterisation 

schema (Table 1-3), which ensures that each test case design rule is defined in a prescriptive and uniform 

notation. The following four-step test case design process allows each black-box testing method to be 

defined in a uniform notation (Figure 1-4):   

1. Partition the input and output domains of the program into sets of equivalent data, by applying 

Data-Set Selection Rules (DSSRs). 

2. Select test data values from each partition by applying Data-Item Selection Rules (DISRs).  

3. Optionally manipulate8 the test data values by applying Data-Item Manipulation Rules (DIMRs).   

4. Construct test cases by creating combinations of test data values through the application of Test 

Case Construction Rules (TCCRs).  

The aim of the four-step test case design process (Figure 1-4) and the Atomic Rules schema (Table 1-3) 

is to ensure that black-box testing methods are defined using a consistent, prescriptive notation.   

Table 1-3: Example of an ‘Atomic Rule.’ 

Attribute Values 

Test Method Equivalence Partitioning  

Number EP1 

Identifier LLBS 

Name Less than Lower Boundary Selection 

Description 
Select an equivalence class containing values 
below the lower boundary of a field 

Source (Myers 1979) 

Rule Type DSSR 

Set Type Range 

Valid or Invalid Invalid 

Original Datatype Integer, Real, Alpha, Non-Alphanumeric9  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated 1 

# Tests Derived 0 

 

                                                           
8 The definition of Syntax Testing in (BS 7925-2) includes a test case design rule that ‘mutates’ test data values. In this thesis the word 
‘manipulate’ (instead of ‘mutate’) is used to describe any test case design rule that derives an invalid test data value by altering a valid 
test data value (e.g. by removing a character from the end of a valid keyword).  
9 Atomic Rules EP1 to EP3 can be applied to any datatype that contains contiguous data. Alpha and non-alphanumeric can be 
considered contiguous if the ASCII table is used to identify values outside the valid boundaries.  
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Figure 1-4: The four-step black-box test case design process. 

 

 

 

 

 

The Atomic Rules approach aims to resolve the seven problems with existing black-box testing methods 

as follows. The Atomic Rules schema and four-step test case design process were defined by identifying the 

common attributes of eleven different black-box testing methods that were described differently in fifteen 

different places (see Chapter 3, Section 3.2). This results in a uniform notation that eliminates notational 

and terminological differences between black-box testing methods and facilitates more prescriptive 

comparisons between methods. The approach allows multiple versions of each method to be combined to 

create one set of Atomic Rules. This also resolves method overlap by locating and eliminating redundant 

rules that appear in more than one method, or more than once within a method.  

This also makes the methods easier to audit; by providing one prescriptive definition of each black-box 

testing method, the Atomic Rules approach simplifies and disambiguates the process of auditing black-box 

test set completeness. Test cases that are submitted for audit can be checked for conformance against the 

Atomic Rules definition of specific black-box testing methods, by comparing the set of Atomic Rules from 

each method to those that were (or were not) applied to derive the test cases (see Chapter 3, Section 3.5). 

Standardisation organisations such as ISO could use the Atomic Rules definition of black-box testing 

methods to standardise their definitions. 

Definition by exclusion and reliance on domain knowledge are resolved by defining explicit 

‘datatypes’ (e.g. integer, real, alpha, non-alphanumeric) for use in the Atomic Rules characterisation 

schema, enabling definition of the ‘universe of discourse’ for program inputs. Individual Atomic Rules are 

then defined for EP, allowing the input domain to be partitioned by datatype, eliminating the need for 

testers to identify invalid partitions ad hoc. This also makes the methods easier to automate (see Chapter 4). 

Atomic Rules from methods like EP, BVA and ST can also be used to support the use of other black-

box testing methods, such as State Transition Testing, Use Case Testing and the Category Partition Method 

(see Chapter 3, Section 3.6).  

Corresponding Atomic Rule Types 

Test Case Construction Rule 

1. Partition the input and output domains of the program 
into equivalence classes by applying Data-Set 
Selection Rules to each input and output field.  

2. Select individual test data values by applying Data-Item 
Selection Rules to the partitions chosen in step 1.  

3. Optionally manipulate the test data values by applying 
Data-Item Manipulation Rules to the test data values 
chosen in step 2.  

4. Design test cases by applying Test Case Construction 
Rules to the test data values derived in steps 2 and 3. 

Four-Step Black-Box Test Case Design Process 

 

 

Data-Set Selection Rule 

Data-Item Selection Rule 

Data-Item Manipulation Rule 
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Two approaches for supporting Atomic Rules are also presented in this thesis: Systematic Method 

Tailoring (SMT) and Goal/Question/Answer/Specify/Verify (GQASV) (Murnane, Reed & Hall 2006).  

Systematic Method Tailoring facilitates the customisation of black-box testing (see Chapter 3, Section 

3.10) through the creation of new Atomic Rules and new black-box testing methods. SMT also provides 

testers with a prescriptive procedure and notation for documenting non-prescriptive test case design rules, 

allowing them to be shared with other (novice or experienced) testers. This reduces the inherent reliance on 

domain knowledge of non-prescriptive testing approaches like Error Guessing and Exploratory Testing.  

Goal/Question/Answer/Specify/Verify is a new specification elicitation procedure that guides testers in 

the resolution of undefined or poorly defined input and output fields, as well as facilitating the 

documentation of domain knowledge that is utilised during the specification process (see Chapter 3, Section 

3.10). This reduces reliance on domain knowledge by ensuring specification-based domain knowledge is 

thoroughly documented and facilitates more effective black-box testing.  

An additional contribution of this thesis is the definition of ‘test method usability’ and the identification 

of measurement and assessment approaches for evaluating test method usability (see Section 1.2).  

1.6 Scope  

This research was initially focussed on black-box testing methods that can be used to partition the input 

and output domains of a program, select data values from each partition and construct test cases (i.e. steps 

1, 2 and 4 of the four-step test case design process, see Figure 1-4). As such, development of the Atomic 

Rules approach began with an investigation into possible representations for test case design rules from two 

of the most well-known black-box testing methods, Equivalence Partitioning and Boundary Value Analysis.  

This was followed by the execution of two university-based experiments, which investigated whether 

the Atomic Rules representation of EP and BVA improved the usability of these methods (Section 1.7). The 

research was then extended to include Syntax Testing and Random Testing (RT). In a subsequent industrial 

experiment, the investigation was further extended to determine whether test case design rules utilised by 

experienced testers could be represented as Atomic Rules, which covered Error Guessing (EG) and 

Exploratory Testing (ET).  

The investigation was then extended to determine whether combinatorial testing methods All 

Combinations, Each Choice, Base Choice, Orthogonal Array Testing and Specification-Based Mutation 

Testing could be represented as Atomic Rules. Whilst these methods typically consist of algorithms for test 

case construction that go beyond simple test data design, it is possible to represent them in a similar way to 

methods like EP. Thus, these methods are also within scope.   

Test Matrices, Test Catalogues, Test Categories and the Category Partition Method (CPM) are also 

within scope, as they can support test case analysis and design by mapping Atomic Rules from EP, BVA 

and ST that have been applied to each program under test. Use Case Testing and State Transition Testing 

are within scope as they can be improved by utilising Atomic Rules from EP, BVA and ST.  
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Cause-Effect Graphing and Decision Tables (Myers 1979) are outside the scope of this research, as they 

test relationships between inputs and outputs and between combinations of inputs. Thus, they do not 

provide specific guidelines for input/output field partitioning or test data generation.  

1.7 Evaluation  

Three separate experiments were conducted to evaluate whether the Atomic Rules approach improves 

the usability and failure-detection effectiveness of existing black-box testing methods. The experiments 

formed the core evaluation of the Atomic Rules approach.  

The first two were classroom experiments, which were carried out over two consecutive years with 

students from La Trobe University in Melbourne, Australia (see Chapter 5). The aim was to compare the 

usability of the Atomic Rules representation of EP and BVA to that of Myers’ original definitions of these 

methods, to determine which enables novice testers to write more complete and correct black-box test sets.  

An industrial experiment was then carried out to compare the usability and failure-detection 

effectiveness of black-box testing methods that are used by professional testers as part of their jobs, to that 

of the Atomic Rules representation of EP, BVA and ST (see Chapter 6). The participants were working for 

a large government organisation in Brisbane, Australia, and had software testing experience ranging from 

novice to expert.  

A proof-of-concept evaluation of GQASV and SMT was also carried out against a real-world 

application (see Chapter 3). Automation of the Atomic Rules approach, GQASV and SMT was another 

interesting avenue for investigation. To this end, a prototype called the Atomic Rules Testing Tool (ARTT) 

has been developed (see Chapter 4). ARTT implements the Atomic Rules definition of EP, BVA and ST to 

enable automatic generation of black-box test data. ARTT demonstrates that the Atomic Rules approach 

defines black-box testing methods precisely enough to enable automation.  

1.8 Thesis Structure  

This thesis is structured as follows. A survey of relevant literature is provided in Chapter 2, including an 

extensive analysis of existing black-box test method definitions. The Atomic Rules approach is introduced 

in Chapter 3, including the Atomic Rules schema and four-step test case design process, as well as the 

supporting approaches GQASV and SMT. The Atomic Rules Testing Tool is presented in Chapter 4. This is 

followed by presentation of the two university-based experiments in Chapter 5 and the industrial 

experiment in Chapter 6. Conclusions and future work are discussed in Chapter 7.  
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Chapter 2 

Black-Box Testing – History and Practice 

"If I have seen further than you and Descartes it is by standing upon the shoulders of giants." 
Sir Isaac Newton in a letter to Robert Hooke, 1675/1976. 

2.1 Overview 

ISO/IEC define the term test case as “a set of test inputs, execution conditions, and expected results 

developed for a particular objective, such as to execute a particular program path or to verify compliance 

with a specific requirement” (ISO/IEC 24765:2008) (see Section 1.1). Black-box testing methods provide 

guidance on the design of test cases that can be used to verify that programs meet their requirements (i.e. 

that they comply with a specific requirement), whether those requirements are explicitly documented or 

implicitly known by individual testers on the testing team. This can include testing that a program accepts 

and processes ‘valid’ inputs correctly as specified and produces the correct output, or that it rejects ‘invalid’ 

inputs and displays appropriate error messages as required. Black-box test cases can be designed from 

business requirements, functional specifications, technical specifications and design specifications 

(Burnstein 2003) and can also be based on the unique domain knowledge and experience of each tester.  

As was pointed out in Chapter 1, the usability and failure-detection effectiveness of black-box testing 

methods is currently affected by seven problems with existing definitions of these methods. In this chapter, 

a review of relevant literature is presented to explore these seven problems. This review includes the 

following black-box testing methods: 

1. Equivalence Partitioning (Section 2.2.1); 

2. Boundary Value Analysis (Section 2.2.2); 

3. Syntax Testing (Section 2.2.3); 

4. Random Testing (Section 2.2.4); 

5. Non-prescriptive approaches to black-box testing (Section 2.2.5): 

o Error Guessing (Section 2.2.5.1); and 

o Exploratory Testing (Section 2.2.5.2); 

6. Test Catalogues, Test Categories and Test Matrices (Section 2.2.6); 

7. Combinatorial test methods (Section 2.2.7) including: 
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o All Combinations (Section 2.2.7.1); 

o Each Choice (Section 2.2.7.2); 

o Base Choice (Section 2.2.7.3); 

o Orthogonal Array Testing (Section 2.2.7.4) and 

o Specification-Based Mutation Testing (Section 2.2.7.5); 

8. Category Partition Method (Section 2.2.8) and 

9. Classification Trees (Section 2.2.9). 

The remainder of this chapter is structured as follows. To support the literature review, terms that are 

used throughout the chapter are discussed in Section 2.1.1, followed by approaches to specifying program 

requirements and classes of program input and output fields in Section 2.1.2. A review of relevant literature 

begins with the definition of a common notation for reviewing the methods in Section 2.2, followed by a 

detailed review of each test method in Sections 2.2, 2.3 and 2.4. Approaches to selecting test methods are 

discussed in Section 2.5. Factors that can influence test effectiveness are discussed in Section 2.6. 

Automation of black-box testing is discussed in Section 2.7. A chapter summary is provided in Section 2.8.  

2.1.1 Terminology  

To support this literature review, definitions and explanations of the following terms are provided:  

1. fault; 

2. error; 

3. failure; 

4. test case; 

5. test data value (also called ‘test input’); 

6. input field; 

7. expected result;  

8. test case design rule; 

9. test procedure;  

10. test script; and 

11. test condition.  

ISO/IEC define the terms error as “a human action that produces an incorrect result, such as software 

containing a fault” and fault as “a manifestation of an error in software” (ISO/IEC 24765:2008). Thus, an 

error is a mistake a programmer makes when interpreting a requirement, resulting in the implementation of 

faulty program source code that does not meet end-user requirements. ISO/IEC define the term failure as 
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“an event in which a system or system component does not perform a required function within specified 

limits” (ISO/IEC 24765:2008). The execution of a black-box a test case against a program can cause one or 

more faults to manifest, thereby resulting in program failure. 

As stated earlier, the term test case is defined by ISO/IEC as “a set of test inputs, execution conditions, 

and expected results developed for a particular objective, such as to execute a particular program path or to 

verify compliance with a specific requirement” (ISO/IEC 24765:2008). Therefore, test case design requires 

the selection of test inputs, which are referred to as ‘test data values’ in this thesis to differentiate them from 

the ‘input fields’ of a program that they are designed to test. Test data values can be valid or invalid, 

according to what the program should accept or reject respectively. For example, an input field ‘vehicle 

type’ could be defined in Backus-Naur Form (BNF) (Knuth 1964) as <vehicle_type> ::= [Car | Truck | 

Motorbike]. A valid test data value ‘Truck’ could be selected to check that the program accepts valid input 

data, while an invalid test data value ‘Bicycle’ could be used to test that the program (correctly) rejects 

invalid input data.  

Each test case includes one or more test data values, one for each input field covered by the test case. 

For example, if a test case covers a component that accepts two inputs, <vehicle_type> ::= [Car | Truck | 

Motorbike] and <max_speed> ::= [120 – 240], a test case could consist of test data values ‘Car’ and ‘240’.  

Test cases also include expected results that define the predicated behaviour of the program under test 

when it is executed with a particular test case (BS 7925-1). Expected results can be identified from program 

documentation or can be based on the domain knowledge and experience of program testers. For example, 

the expected result of a test case that consists of only valid test data values would explain what ‘correct’ 

behaviour the program should exhibit in response to the valid input, while a test case containing any invalid 

test data values would explain how the program should reject the input and (ideally) what error message 

should be displayed, describing why the input was rejected.   

Test case design rules are the individual guidelines of black-box testing methods that can be used to 

design test cases. For example, Myers (1979) defines the following guideline for Equivalence Partitioning, 

which consists of a number of test case design rules, as follows:  

“If an input condition specifies a range of values (e.g. “the item count can be from 1 to 999”), 

identify one valid equivalence class (1  item count  999) and two invalid equivalence classes 

(item count < 1 and item count > 999).” 

This guideline can be decomposed into three different test case design rules:   

1. item count from lower boundary to upper boundary (1  item count  999);   

2. item count less than lower boundary (item count < 1); and 

3. item count greater than upper boundary (item count > 999).  
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The terms test procedure and test script are also used in software testing literature. A standard definition 

of a test procedure is “detailed instructions for the setup, execution, and evaluation of results for a given 

test case” (IEEE 1012:2004). Test script is a similar term that is “commonly used to refer to the automated 

test procedure used with a test harness” (BS 7925-1).  

Some descriptions of black-box testing methods discuss the identification of test conditions (also called 

‘test objectives’ (Craig & Jaskiel 2002)) prior to test case design, where each test case is specifically 

derived to cover at least one test condition. A number of definitions of the term test condition are cited in 

the literature, as follows.  

 The International Software Testing Qualifications Board (ISTQB) define test condition as “an 

item or event of a component or system that could be verified by one or more test cases, e.g. a 

function, transition, feature, quality attribute, or structural element” (ISTQB 2005).  

 Kent (2008) describes test conditions as refinements to requirements that define the expected 

behaviour of a system.  

 Craig and Jaskiel (2002) consider test conditions to be categories of things that need to be tested, 

which are sets of high level and low level requirements.   

 Both Fewster and Graham (2000) and Dustin (2003) consider equivalence classes and boundary 

values to be test conditions (identified by EP and BVA respectively);  

In this thesis, test conditions are considered to be refinements of program requirements (as argued by 

Kent (2008)). Requirements and test conditions can be defined at high and low levels of detail. High-level 

requirements can also be converted into test conditions that define requirements in more detail. For 

example, the following high-level functional requirement could be specified in a ‘business requirement 

specification,’ which typically specifies program requirements at relatively high levels of detail: 

Requirement 1: the program must add two numbers together.  

This defines the requirement at a very high level of detail1. This requirement could be converted directly 

into a high-level test condition, as follows:  

Test Condition 1: check that the program can add two numbers together correctly.  

This requirement could be converted into a test condition that is specified at a low level of detail: 

Test Condition 2: check that the program can take two signed 16-bit integers in the range −32,768 

to +32,767 as input, sum them together and output the result as a 32-bit integer to the screen, in a 

field that has a maximum range of −2,147,483,648 to +2,147,483,647. Any other input should be 

rejected, with a corresponding error message being displayed to the user.  

                                                           
1 In Reed’s KABASPP model (1990), this would be equivalent to defining a requirement in the program application domain.  
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Test condition 2 defines this requirement much more precisely2. On the other hand, test conditions can 

sometimes only be specified in this way if testers are aware of design decisions made by developers; for 

example, this could be identified by reviewing design specifications or by speaking with developers. 

Further definitions of terms used throughout this thesis can be found in the glossary (see page xvi).  

2.1.2 Classes of Input and Output Fields 

Program input and output fields are typically expressed in the literature in two ways: as lists and ranges 

(these terms were adapted from similar concepts in (Jorgensen 1995, Lewis 2000, Mosley 1993, Myers 

1979, Page et al. 2009)).  

Lists are typically specified in the literature in one of two ways, as follows:  

 L ::= [v1 | v2 | … | vn]   (2.1) 

 L ::= [v1 , v2 , …, vn] (2.2)  

where n is the number of v values contained in list L.  

Ranges are also commonly specified in the literature in one of two ways, as follows: 

 {R : lb  R  ub}  (2.3)  

 R ::= [lb – ub] (2.4) 

which defines a range of values from lower boundary lb to upper boundary ub.  

Lists and ranges can also repeat and be optional or mandatory. Repetition can be specified by appending 

a superscript lb – ub to the specification of a list or a range, where lb and ub indicate the minimum and 

maximum times the field can repeat respectively. List repetition can be specified as: 

 L ::= [v1 | v2 | … | vn]
lb – ub  (2.5) 

 L ::= [v1, v2, …, vn]
lb – ub (2.6) 

Range repetition can be specified as:  

 {R : lb  R  ub}lb – ub  (2.7) 

 R ::= [lb – ub]lb – ub (2.8) 

where the superscript lb – ub indicates that the field that can repeat from lb (lower boundary) to ub (upper 

boundary) times.  

                                                           
2 In Reed’s KABASPP model, this defines a requirement within the program’s run-time environment domain (Reed 1990).  
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The same notation can be used to indicate if a field is optional or mandatory. Using the notation above, 

optional ranges and lists can be specified as: 

 {R : lb  R  ub}0 – 1  (2.9) 

 R ::= [lb – ub]0 – 1 (2.10) 

 L ::= [v1 | v2 | … | vn]
0 – 1  (2.11) 

 L ::= [v1, v2, …, vn]
0 – 1 (2.12) 

where the superscript 0 – 1 indicates that the fields can appear zero or one times.  

Similarly, a mandatory lists and ranges can be specified as follows: 

 {R : lb  R  ub}1   (2.13) 

 R ::= [lb – ub]1 (2.14) 

 L ::= [v1 | v2 | … | vn]
1   (2.15) 

 L ::= [v1, v2, …, vn]
1 (2.16) 

where the superscript 1 indicates that the field must appear exactly once.  

In the absence of a superscript element (see expressions 2.1 to 2.4 above), it is assumed that the field is 

mandatory and must appear exactly once.  

2.1.2.1 Examples  

Consider the following examples. In Section 2.1.1, the following test condition was defined:  

Test Condition 2: check that the program can take two signed 16-bit integers in the range −32,768 to 

+32,767 as input, sum them together and output the result as a 32-bit integer to the screen, in a field that has 

a maximum range of −2,147,483,648 to +2,147,483,647. 

This test condition could give rise to the definition of two range-based fields, as follows: 

 <input_integer> ::= [-32,768 − 32,767]2   

 <output_integer> ::= [−2,147,483,648 − 2,147,483,647] 

This indicates that exactly two 16-bit integers must be input, while one 32-bit integer will be output.  

Consider another example involving a list, in which the following test condition was initially defined:  

Test Condition 3: check that the user can select between one and seven passenger vehicle types from 

the following list: boat, car, motorbike, plane, tractor, train, truck. 
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This test condition would give rise to one list-based field: 

 <vehicle> ::= [boat | car | motorbike | plane | tractor | train | truck]1-7 

2.2 Black-Box Testing Methods 

Before reviewing relevant literature, it is first necessary to define the notation used when reviewing their 

common elements. As introduced in Section 1.4, black-box testing method typically focuses on just one of 

the following four key steps of black-box test case design:   

1. Partition the input and output domains of the program into sets of equivalent data, by applying 

Data-Set Selection Rules (e.g. see Equivalence Partitioning in Section 2.2.1).  

2. Select test data values from each partition by applying Data-Item Selection Rules (e.g. see 

Boundary Value Analysis in Section 2.2.2).  

3. Optionally manipulate3 the test data values by applying Data-Item Manipulation Rules (e.g. see 

Syntax Testing in Section 2.2.3).   

4. Construct test cases by creating combinations of test data values via the application of Test Case 

Construction Rules (e.g. see Orthogonal Array Testing in Section 2.2.7.4).  

These four steps are utilised throughout this chapter to describe the ‘functionality’ of the individual test 

case design rules of each black-box testing method.  

Program specifications often do not provide sufficient information to allow a tester to partition the input 

and output domains of a program into valid and invalid equivalence classes (covered by step 1 above), in 

which case the tester is usually required to create adequately detailed field definitions prior to (or as a part 

of) the partitioning process. For example, in Section 2.1.1, test condition 2 provides sufficient information 

to allow a tester to partition the input and output domains of the program. Conversely, test condition 1 

requires the tester to make assumptions about the minimum and maximum values that are allowable in each 

field, which may result in test cases that do not meet user requirements. Since black-box testing methods do 

not usually provide guidance on how to obtain and verify the correctness of detailed definitions of program 

input and output fields, a new approach called Goal/Question/Answer/Specify/Verify is introduced (see 

Chapter 3), which can be used to elicit and record such information.  

2.2.1 Equivalence Partitioning (EP) 

During Equivalence Partitioning, the input and output domains of the program under test are 

‘partitioned’ into disjoint, mutually-exclusive sets of ‘equivalent’ data, in the sense that if one element in a 

set detects a program fault, then all elements in the set should find the same fault (Myers 1979) and execute 

the same program paths (Howden 1976). When a program is executed with any one test data value from an 

equivalence class, it is assumed that the program does not have to be tested against any other values from 
                                                           
3 For example, the definition of Syntax Testing in (BS 7925-2) includes a test case design rule that ‘mutates’ test data values. In this 
thesis the word ‘manipulate’ is used to describe any test case design rule that derives an invalid test data value by altering a valid test 
data value (e.g. by removing a character from the end of a valid keyword).  
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that partition because its white-box behaviour is presumed to be identical for all values from that set (Myers 

1979). Similarly, if any member of an equivalence class causes program failure then it is expected that all 

other elements from that class will cause the same failure (Hamlet & Taylor 1990). Such partitions are 

called “revealing” (Weyuker & Ostrand 1980) or “homogenous” (Hamlet & Taylor 1990). Partitioning is 

claimed to reduce the number of test cases that are required to achieve predefined test coverage goals by 

covering a large subset of all possible tests with the smallest number of test cases (Myers 1979).  

EP has been called the “most basic” black-box testing method because it guides testers in the design of a 

compact test sets that achieve adequate coverage (Copeland 2004). EP’s guidelines for partitioning the 

program input and output domains “prescribe” test case design. They can also act as a point of reference for 

measuring test coverage (Grindal, Offutt & Andler 2005). EP can be applied to high and low-level 

specifications (Richardson & Clarke 1985) and can be white-box, black-box or grey-box (Hamlet & Taylor 

1990). Grey-box partitioning approaches were published as early as 1976 (Howden 1976), while the first 

purely black-box partitioning method was defined by Myers’ EP in 1979 (Myers 1979)4. Many authors still 

cite Myers’ definition (e.g. see (Burnstein 2003, Jorgensen 1995, Kit 1995, Mosley 1993, Copeland 2004, 

Page et al. 2009, Mosley & Posey 2002, Parrington & Roper 1989)). 

Myers (1979) defined eight guidelines for EP (Figure 2-1).  

                                                           
4 Kaner (1988) advocates Myers textbook as “the best in print” and, as further testament to its popularity, Myers’ text was reprinted in 
2004, twenty-five years after its first publication (Myers 2004).  
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Figure 2-1: Myers’ (1979) guidelines for Equivalence Partitioning. 

Myers’ (1979) guidelines for Equivalence Partitioning5  

Guidelines for equivalence class design 

1. If an input condition specifies a range of values (e.g. “the item count can be from 1 to 999”), identify 
one valid equivalence class (1  item count  999) and two invalid equivalence classes (item count < 1 
and item count > 999). 

2. If an input condition specifies a number of values (e.g. “one through six owners can be listed for the 
automobile”), identify one valid class and two invalid equivalence classes (no owners and more than six 
owners). 

3. If the input condition specifies a set of values and there is reason to believe that each is handled 
differently by the program (e.g. “type of vehicle must be BUS, TRUCK, TAXICAB, PASSENGER, or 
MOTORCYCLE”), identify a valid equivalence class for each one and one invalid equivalence class 
(e.g. “TRAILER”). 

4. If an input condition specifies a “must be” situation (e.g. “first character of the identifier must be a 
letter”), identify one valid equivalence class (it is a letter) and one invalid equivalence class (it is not a 
letter). 

5. If there is reason to believe that elements in an equivalence class are not handled in an identical 
manner by the program, split the equivalence class into smaller equivalence classes.   

Guidelines for test case design 

6. Assign a unique number to each equivalence class. 

7. Until all valid equivalence classes have been covered by (incorporated into) test cases, write a new test 
case covering as many of the uncovered valid equivalence classes as possible. 

8. Until all invalid equivalence classes have been covered by test cases, write a test case that covers one, 
and only one, of the uncovered equivalence classes.   

 

The following interpretation and examples are provided to critique Myers’ definition of EP.  

Guideline 1. This defines three Data-Set Selection Rules for partitioning range-based fields. The field in 

this example can be restated as <item_count> ::= [1 – 999]. For this field, Myers proposes 

the use of three DSSRs, as follows.  

1. Select a partition containing valid values; for the field in this example, this would select 

partition <valid_item_count> ::= [1 – 999]. This DSSR is defined prescriptively and 

does not require further clarification.  

2. Select an equivalence class containing values that lie below the lower boundary of the 

field, which would select the set item_count < 1. One problem is that this DSSR does not 

state that a minimum boundary value must be chosen for the partition, which might only 

be known through grey-box information. For example, if the input was processed as a 

signed 32-bit integer, this partition could be defined as <invalid_item_count_1> ::= 

[−32,768 – 1].   

3. Select an equivalence class containing values that lie above the upper boundary of the 

field, selecting the set item_count > 999. Similar to rule 1, this DSSR does not indicate 

                                                           
5 These guidelines are expressed in Myers’ exact words.  
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that a maximum value must be chosen for this partition. For example, the partition could 

be defined as <invalid_item_count_2> ::= [1000 – 32,767].   

Guideline 2. This also defines three DSSRs for partitioning range-based fields, which are essentially the 

same as those described under guideline 1 and, as such, they do not provide any new 

guidance on partitioning. The field in this example can be restated as <owner_count> ::= [1 

– 6]. The DSSRs applied to this field are as follows.  

4. Select a partition containing only valid values, which can be specified as 

<valid_owner_count> ::= [1 – 6]. This could be covered by guideline 1, rule 1.  

5. Select an equivalence class containing one value owner_count = 0. This could be derived 

more prescriptively by applying guideline 1, rule 2, selecting partition 

<invalid_owner_count_1> ::= [−32,768 – 0] (assuming 32-bit integers), followed by a 

Data-Item Selection Rule from BVA that selects the upper boundary of the partition, 

which would select the value 0.   

6. Select an equivalence class containing values in the set owner_count > 6, which could be 

covered by guideline 1, rule 3, resulting in partition <invalid_owner_count_2> ::= [7 – 

32,767] (assuming 32-bit integers).  

Guideline 3. This defines two DSSRs for partitioning list-based fields, where each valid input in the field 

is inserted into a separate partition (which is likely only known through grey-box 

information) and where identification of the invalid class requires domain knowledge. The 

field could be redefined as <vehicle> ::= [BUS | TRUCK | TAXICAB | PASSENGER | 

MOTORCYCLE], while the guideline utilises two DSSRs, as follows.  

7. Select a separate equivalence class for each vehicle type, resulting in partitions 

<vehicle1> ::= [BUS], <vehicle2> = [TRUCK], <vehicle3> = [TAXICAB], <vehicle4> 

= [PASSENGER], <vehicle5> = [MOTORCYCLE].  

8. Select an equivalence class containing vehicle types not in the valid set. For this example, 

this could include values like CYCLE, TAXI, TRAILER, TRICYCLE and SCOOTER. 

More prescriptive testing could be achieved by defining DSSRs that select invalid 

partitions by datatype, including numeric and non-alphanumeric (i.e. special) characters 

at a minimum (e.g. see Chapter 3, Section 3.1.1.1).       

Guideline 4. This defines two DSSRs that partition a field that could be treated as a list or range, 

depending on how the program processes inputs (which is grey-box information). For 

example, the input field in this example could be specified either as a list defined as 

<letter_list> ::= [A | B | C | … | Y | Z | a | b | c | … | y | z] or a range defined as 

<letter_range> ::= [ascii(A) – ascii(Z) | ascii(a) – ascii(z)] (assuming the ASCII table was 

used for partitioning). The guideline then recommends two DSSRs, as follows.  

9. Select an equivalence class containing letters. Depending on the tester’s assumption, this 

would either derive a list-based partition <valid_letter_list> ::= [A | B | C | … | Y | Z | a | 
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b | c | … | y | z] or a range-based partition <valid_letter_range> ::= [ascii(65) – 

ascii(90) | ascii(97) – ascii(122)].  

10. Select an equivalence class containing anything other than letters, which is ambiguous, 

but would ideally include numeric and non-alphanumeric characters at a minimum (e.g. 

see Chapter 3, Section 3.1.1.1). For example, if the ASCII table was used, depending on 

whether the field was treated as a list or range, this could result in a list-based partition 

<invalid_letter_list> ::= [space | ! | “ | … | > | ? | @ | [ | \ | \ | ^ | _ | ` | { | | | } | ~] 

(where space represents the space character) or a range-based partition 

<invalid_letter_range> ::= [space – @ | [ – ` | { – ~].  

Guideline 5. This guideline recommends further division of any partition that contains a subset of 

characters that are suspected to be handled differently by the program. Thus, similar to 

guidelines three and four, it suggests partitioning based on grey-box information.  

Guideline 6. This guideline recommends assignment of a unique identifier to each equivalence class, to 

enable traceability from partitions to test cases.  

Guideline 7. This defines one Test Case Construction Rule (TCCR) that works by assigning as many 

input fields per test case with a valid value from a valid partition. This TCCR is repeatedly 

applied until all valid partitions have been ‘covered’ by at least one test case.  

Guideline 8. This defines one TCCR that works by assigning one input field per test case with an invalid 

value from any invalid partition derived for that field, whilst assigning all other input fields a 

valid value. This TCCR is repeatedly applied until all invalid partitions have been ‘covered’ 

by at least one test case.    

One problem with Myers’ partitioning guidelines is that they lack precision (Ostrand & Balcer 1988) 

and have been referred to as “testing heuristics” (i.e. rules of thumb) (DeMillo et al. 1987), as the individual 

knowledge and experience of each tester can affect the completeness of resulting test sets. Other definitions 

of EP have improved on Myers’ original definition (e.g. see (Tamres 2002, Kaner 1988, BS 7925-2, Craig 

& Jaskiel 2002), which are discussed below). Despite this, all publications of EP suffer from (at least) five 

problems: definition by exclusion, reliance on domain knowledge, multiple versions, difficult to audit and 

difficult to automate.  

As introduced in Chapter 1, Myers’ fourth guideline describes a “must-be” condition (also called a 

“Boolean condition” (Pressman 1992)) (see Figure 2-1) in which an invalid equivalence class is selected 

containing all inputs other than those in the valid class. This DSSR provides little guidance as to the 

contents of the invalid class. Ideally, a member from every class of data (e.g. integer, real, alpha, non-

alphanumeric/special characters) would be represented in the invalid class, but a novice tester may only be 

aware of a subset of these. Thus, definition by exclusion assumes familiarity with the ‘universe of 

discourse’ with respect to program inputs, and reduces the learnability and operability of EP (Murnane, 

Reed & Hall 2006). As a result, different testers using this defining of EP may produce vastly dissimilar test 

sets from the same program specification (Patton 2006). Furthermore, the inherent ambiguity in this method 
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also makes it difficult to automate this method. On the other hand, Patton considers Myers’ guidelines to be 

acceptable, as long as the coverage of each equivalence class is assessed through peer review, adding that 

EP is “science, but it’s also art” (Patton 2006). Clearly, Myers’ version of EP relies on the domain 

knowledge of the testers involved, reducing the repeatability and predictability of black-box test case design 

and resulting in test case design procedures that are not automatable. Myers’ definition of EP cannot be 

considered complete, since it is not guaranteed to result in reproducible test sets.    

Definition by exclusion is partially resolved by Tamres’ (2002) definition of EP, in which the universe 

of discourse is defined through ‘datatype’ and ‘data set’ definitions (Abbott (1986) describes this as “data-

oriented” testing) that apply to each Data-Set Selection Rule. Tamres explains the approach using a login 

screen consisting of input fields ‘username’ and ‘password’ and buttons ‘OK’ and ‘Cancel.’ For the input 

fields, Tamres described the use of DSSRs that define valid partitions by datatype, including datatypes 

lowercase alpha, uppercase alpha, numeric and non-alphanumeric, and a DSSR to select valid partitions 

including [o, O] and [c, C] as data that activates the OK and Cancel buttons respectively from the 

keyboard. Tamres also used DSSRs to identify invalid non-alphanumeric partitions [-, _, $, !, &, ~] for 

username and [@, #, %, *, ^, “, (, ), [, ], {, }, /, ?, <, ?] for password.  

While Tamres used DSSRs to define the contents of valid and invalid equivalence classes by datatype 

and by test data values in significantly more detail than Myers, Tamres’ definition of EP is incomplete. The 

non-alphanumeric class should ideally classify all non-alphanumeric character from the ASCII table as 

either valid or invalid; in Tamres’ example, characters from the set [+ = | : ; ‘ , < > .] are not specifically 

included in the equivalence classes defined for username and password. Tamres’ also did not include a 

guideline for selecting greater than the maximum number of characters for an input field, which is covered 

by Myers’ first guideline (Figure 2-1). Furthermore, while Tamres’ definition provides examples of the 

types of equivalence classes that could be selected for one example login screen, it did not include generic 

guidelines like those defined by Myers. Consequently, Tamres’ definition of EP could cause omission of 

important equivalence classes, which would likely reduce the effectiveness of black-box testing.  

Definition by exclusion for EP is also partially resolved by Kaner (1988), who utilises the ASCII table 

to identify invalid equivalence classes for a set of example fields. Kaner’s definition of EP covers DSSRs 

that partition input fields consisting of uppercase and lowercase alphas, for which three invalid equivalence 

classes are defined as follows:   

1. ASCII code below that for ‘A’; 

2. ASCII code between the codes for ‘Z’ and ‘a’; and 

3. ASCII code greater than the code for ‘z’.  

Other than the alpha datatype, Kaner’s definition of EP does not define DSSRs that cover other ASCII 

datatypes, such as integer, special character and control character. For some programs, particularly those 

with command line interfaces, test data values from each class could be treated differently. For example, 

ctrl^Z may cause program termination in UNIX environments, while very large integer inputs could cause 
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program failure if they are not properly handled by the program. The identification of invalid datatypes 

from character encoding sets becomes further complicated when the input domain is the Unicode table, 

which currently contains over 100,000 individual characters (Wikipedia Unicode 2008), whereas the ASCII 

table contains only 94 printable characters (Oualline 2003), which is a more manageable size. Also, like 

Tamres, Kaner demonstrates the selection of equivalence classes for example fields and as such, he does not 

provide generic guidelines that apply to any field type. Kaner’s guidelines are also presented across nine 

sub-sections and two tables, which could make it difficult for a tester to identify whether or not they have 

derived all required equivalence classes.  

Definition by exclusion in EP is also partially resolved by Black, who explains the method through 

illustrative examples that utilise various DSSRs, which partition the input domain by ASCII datatype, 

including integer, real, character, string, date, time and currency (Black 2007). While Black’s definition of 

EP is no more prescriptive than Tamres or Kaner, it does introduce a unique approach to graphically 

representing partitions (Figure 2-2). In the example below (which was adapted from (Black 2007)), a valid 

input field is defined as any string of 6 to 10 ASCII characters situated between ASCII(48) (the number 0) 

and ASCII(90) (the letter Z), which can be represented as <input> ::= [ASCII(48) – ASCII(90)]6-10. From 

this, any character below ASCII(48) or above ASCII(90) is regarded as invalid, while any string less than 6 

characters or greater than 10 characters in length is also considered invalid (Figure 2-2).     

Figure 2-2: Example graphical representation of equivalence classes (adapted from (Black 2007)). 
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valid integer range [0 – 75), four invalid classes are identified: > 75, < 0, real number and alphabetic. 

However, this definition is missing DSSRs that select special characters and control characters. The 

DSSRs in the standard are also not generic, as they are only explained for two example numeric fields. 

Since numeric data are the “easiest to deal with” (Abbott 1986), additional DSSRs for selecting other 

datatypes are required to ensure that EP is thorough and to allow novice testers to become competent in EP.   

Hence, prescriptive DSSRs for selecting invalid equivalence classes by datatype are included in some 

definitions of EP, including (BS 7925-2, Kaner 1988, Tamres 2002). These definitions of the method enable 

greater coverage of valid and invalid input domains. On the other hand, Craig and Jaskiel (2002) argue that 

while special characters and decimals can be selected as invalid equivalence classes for numerical fields, 

they should be identified through non-prescriptive approaches like Error Guessing. Supporting this view, 

Andriole (1986) argues that there is “no direct, easily stated procedure” for selecting equivalence classes 

while Parrington and Roper (1989) claim that the only way to identify partitions is to analyse specifications 

for “keywords and phrases” and then identify valid and invalid classes for each one. This is particularly true 

when input and output fields are specified in natural language. Nonetheless, this author’s view is that 

prescriptive definitions of DSSRs for EP would allow testers to define more complete and correct 

equivalence classes for any program under test (see Chapter 3 for a prescriptive approach to defining 

DSSRs for EP, called ‘Atomic Rules’).   

Inadequate testing can also occur when the boundaries and contents of input and output fields are not 

explicitly specified, leading to a reliance on domain knowledge. Consider an input field <age> ::= [0 – 

150] in the context of a program that estimates life insurance premium cost. A developer who has 

experience in the domain of life insurance and may know that this field should be partitioned into two valid 

classes <pensioner> ::=  [65 – 150] and <non-pensioner> ::= [0 – 64] and implement the program 

accordingly. On the other hand, if these partitions are not explicitly specified and the tester is unfamiliar 

with the domain of life insurance, then the program may be inadequately tested through EP (Figure 2-3)6.   

                                                           
6 This example uses domain knowledge that is so widely known that a tester should not make this exact mistake; however it illustrates 
the problem. 
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 Figure 2-3: Inadequate specification of input fields, resulting in incomplete testing (Reed 1998). 

 

S1 ::= [0 – 150]

TD1: 75

covers

Specification Partitions (SX) and Test Data (TDY)

C1 ::= [0 – 64]

Code Partitions (CZ)

Partition C1 is untested

C2 ::= [65 – 150]

 
 

 

Another example of reliance on domain knowledge and its effect on EP is when the ‘set type’ of input 

fields is not properly specified. Consider an input field that accepts valid Australian postcodes. The simplest 

definition for this field could be: 

 <postcode> ::=  <d><d><d> | <d><d><d><d>  
 <d> ::=  [0 – 9]  

However, this includes invalid postcodes, such as 0000, 1000 and 9999. An alternate definition is: 

 <postcode> ::=  [200 – 9729]   

This still includes some invalid postcodes, such as 201 and 799. The most accurate definition would be a 

list every postcode that is currently recognised by Australia Post (Australia Post 2008]: 

 <postcode> ::=  [200 | 221 | 800 | 801 | 804 | 810 | 811 | ... 
  | 1001 | 1002 | 1003 | 1004 | 1005 | ...  
  | 2000 | 2001 | 2002 | 2004 | 2006 | ... 
  | 9023 | 9464 | 9726 | 9728 | 9729]  

Depending on how this field is specified and on the domain knowledge and experience of the 

programmer and tester, this field may be inadequately implemented and ineffectively tested.  

Problems also arise when partitions are non-homogenous, resulting in program behaviour that is not 

consistent across an entire equivalence class (Jeng & Weyuker 1989), such as when a program behaves 

correctly when given a test data value from a partition but fails when given another value from the same 

partition (Hamet & Tailor 1990). In reality, this suggests that the specification did not allow the tester to 

identify the fact that the input field that was being partitioned that should have been divided into multiple 

equivalence classes, each which should have been tested separately. Also, specifications often do not 
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describe the ‘expected output’ for test data that is selected from invalid partitions (Jorgensen 1995), which 

can make the comparison of expected and actual testing results difficult.  

There are also currently no easily automatable approaches for extracting partitions from specifications 

expressed in natural language. On the other hand, if program input and output fields are specified in a 

formal notation like BNF, and if DSSRs for EP are prescriptively defined, then this method would be 

amenable to automation, which would make the application of the method more repeatable and predictable 

(an automation approach for EP is presented in Chapter 4).  

Another problem with EP, which was highlighted by the various versions of the method that were 

discussed throughout this section, is that multiple versions of this method have been published. This could 

make it difficult for both novice and experienced tester to determine how ‘complete’ their test sets are (e.g. 

how adequately each test set covers the input and output domains of each program under test, and whether 

all possible test case design rules from EP have been used). This also makes it difficult to audit the 

completeness of each black-box test set, since a number of test case design rules in each publication of EP 

are ambiguous and would need to be known to the auditor and interpreted in the same way by them.  

2.2.2 Boundary Value Analysis (BVA) 

Program faults often occur at the boundaries of data domains rather than at their centres (Pressman 

1992). Boundary Value Analysis provides guidelines for selecting test data values that lie on, just above and 

just below the boundaries of input and output fields. Boundary values are typically selected by DISRs that 

select test data values from the edges of equivalence classes. The aim of BVA is to select a high yield test 

set that explores all program boundaries (Myers 1979). Although BVA increases the total number of test 

cases that are defined, it is also claimed to target the most error-prone values, increasing test effectiveness 

(Ould & Urwin 1986). BVA can be used to detect input and output errors as well as buffer overrun faults, 

which present a major security threat for online systems (Patton 2006). It is also believed that if a program 

can function correctly under extreme conditions then it will almost certainly operate well in ordinary 

scenarios (Patton 2006). BVA is considered to be more prescriptive than EP, since test data values in EP 

can be chosen from anywhere inside a partition, whereas in BVA the end points of the partitions are always 

selected (Graham 1994). It has been argued that the use of prescriptive guidelines for BVA increases the 

completeness of resulting test sets and the likelihood of detecting program faults (Pressman 1992). The 

facilitation of BVA is considered by some to be one of the greatest contributions of EP (Copeland 2004).  

Myers (1979) was the first to define BVA as a purely black-box testing method and his treatment is 

widely cited (e.g. see (Pressman 1992, Kit 1995, Marick 1995, Andriole 1986, Tamres 2002, Parrington & 

Roper 1989, Mosley & Posey 2002, Copeland 2004, Rae et al. 1995, Sommerville 1994)). Myers defined 

six guidelines for BVA (Figure 2-4), covering the selection of boundary values from on and just outside the 

edges of equivalence classes. Other definitions of BVA include the selection of values that lie just inside 

equivalence classes (e.g. see (BS 7925-2, Copeland 2004, Graham 1994, Watkins 2001)). 
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Figure 2-4: Myers’ (1979) guidelines for Boundary Value Analysis. 

Myers’ (1979) guidelines for Boundary Value Analysis7  

1. If an input condition specifies a range of values, write test cases for the edges of the range, and 
invalid-input test cases for situations just beyond the ends. For instance, if the valid domain of an 
input value is -1.0 - +1.0, write test cases for the situations -1.0, 1.0, -1.001 and 1.001. 

2. If an input condition specifies a number of values, write test cases for the minimum and maximum 
number of values and one beneath and beyond these values. For instance, if an input file can 
contain 1 – 255 records, write test cases for 0, 1, 255 and 256 records.  

3. Use guideline 1 for each output condition. For instance, if a program computes the monthly FICS 
deduction and if the minimum is $0.00 ad the maximum is $1165.25, write test cases that cause 
$0.00 and $1165.25 to be deducted. Also, see if it is possible to invent test cases that might causes 
a negative deduction or a deduction of more than $1165.25.  

4. Use guideline 2 for each output condition. If an information retrieval system displays the most 
relevant abstracts based on an input request, but never more than four abstracts, write test cases 
such that the program displays zero, one and four abstracts, and write a test case that might cause 
the program to erroneously display five abstracts.  

5. Of the input or output of a program is an ordered set (e.g. a sequential file, linear list, table), focus 
attention on the first and last elements of the set.  

6. In addition, use your ingenuity to search for other boundary conditions. 

 

For example, consider a range-based field <age> ::= [0 – 150], for which one valid partition [0 - 150] 

is chosen (Figure 2-5). Six boundary values can be identified by applying six different DISRs: -1, 0, 1, 149, 

150 and 151. These DISRs correspond to values that lie just below the lower boundary (min-), on the lower 

boundary (min), just above the lower boundary (min+), just below the upper boundary (max-), on the upper 

boundary (max) and just above the upper boundary (max)8, where ‘+’ and ‘-’ refer to the smallest increment 

possible per datatype; for example, this could be +1 or -1 for integers and +0.01 or -0.01 for reals with two 

decimal places. Assuming this input was processed as an integer, for invalid classes < 0 and > 150, min and 

max values that lie at the extreme edges of the integer range -32768 and 32767 could be selected (BS 7925-

2) (Figure 2-5).  

Figure 2-5: Boundary values for a range-based field. 
 

 
 

 

                                                           
7 These guidelines are expressed in Myers exact words.  
8 The terms min, min+, nom, max- and max originated from the BVA testing tool T (Jorgensen 2002).  
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Lists can also be tested through BVA. Consider a field that defines an ordered list of Australian capital 

cities: <city> ::= [Adelaide | Brisbane | Canberra | Darwin | Hobart | Melbourne | Perth | Sydney] (Figure 

2-6). The first and last test data values ‘Adelaide’ and ‘Sydney’ could be chosen by DISRs that select on-

boundary values, while the second and second-last values ‘Brisbane’ and ‘Perth’ could be selected by 

DISRs that test values just inside the boundaries of the list. If this field was implemented as a keyword-

based input of a program with a command line interface (CLI), the ‘outside’ boundary values could not be 

tested (e.g. it does not make sense to subtract one from the keyword ‘Adelaide’). On the other hand, if the 

field was implemented as a record list or a drop down list in a program with a Graphical User Interface 

(GUI), it would be sensible to use a BVA DISRs that tests ‘just below’ and ‘just above’ the field 

boundaries, to try to force the program to move off the end of the list array.   

Figure 2-6: Boundary values for a list-based field. 

 
 

 

As is the case with EP (and other black-box methods), multiple versions of BVA can be found in the 

literature. Not all definitions describe all boundary value selection rules (see Table 2-1), complicating 

auditing of test set completeness. While some define DISRs that select values on, inside and outside field 

boundaries (BS 7925-2, Copeland 2004, Graham 1994, Watkins 2001), others do not include inside (Craig 

& Jaskiel 2002, Kaner 1988, Lewis 2000, Mosley 1993, Myers 1979) and outside (Jorgensen 1995, Mosley 

1993) boundaries. In addition, only two publications of BVA define DISRs that select boundary values 

from the extreme edges of integer ranges (Ould & Urwin 1986, BS 7925-2). These subtle but important 

differences can also make it difficult to audit the completeness of each boundary value test set, since the 

auditor would need to use the same definition of the method as the tester.  

Craig and Jaskiel (2002) and Hutcheson (2003) argue that DISRs that select min+ (just above the lower 

boundary) and max- (just below the upper boundary) do not add much value as they are redundant when the 

‘nominal’ value is selected, which is usually chosen during EP. Jorgensen (1995) maintains that the nominal 

value should be selected during BVA, though this violates the concept of selecting ‘boundary’ values; 

hence, min+ and max- should be considered during BVA. Jorgensen (1995) describes min+ and max- as 

belonging to a separate method called Robustness Testing and describes the Cartesian product of min, min-, 

nominal, max and max+ as Worst Case Testing. On the other hand, taking the Cartesian product of test data 

values is covered by combinatorial testing (see Section 2.2.7). At least one definition of BVA does not 

consider the selection of max+ characters to be feasible when testing GUI dialog boxes, as developers often 

limit the number of characters that can be input through the keyboard (Tamres 2002). As was demonstrated 
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in the capital city example above, this should still be tested, since field and array lengths may not be limited 

correctly by developers.  

Thus, some versions of BVA fail to describe all boundary value selection rules. As a result, novice 

testers may not learn the complete set of BVA test selection rules and both novice and experienced testers 

may overlook certain high-yield boundary values during testing.  

Table 2-1: Test selection rules for Boundary Value Analysis and their coverage in the literature. 
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Another problem affecting BVA is that boundary conditions are often subtle (Myers 1979) and may not 

be obvious or explicitly specified (Patton 2006). Consequently, the effectiveness of BVA can rely on the 

domain knowledge of each tester (e.g. see Myers’ sixth guideline in Figure 2-4). Examples of “subtle” 

boundaries include memory storage sizes, such as testing the edges of bytes and kilobytes (Patton 2006), 

minimum and maximum lengths of disc block transfers sizes (Graham 1994) and input fields that rely on 

ASCII table boundaries, such as testing with the ‘at’ symbol (@) that lies just below the lower boundary of 

uppercase alphabetical characters [A – Z] (Patton 2006, Kaner 1988). The use of this “application solution 

domain knowledge9” (Reed 1990), which could be obtained from programmers (Patton 2006), could cause 

BVA to be seen as a grey-box testing method, since it is based on knowledge of the program source code or 

the system hardware design. On the other hand, it could be argued that such information should be 

explicitly described in program specifications, as that would support developers in writing higher quality 

source code and would facilitate more thorough and effective testing. However, the type of critical thinking 

that is required to gain such domain knowledge could enable testers to improve the overall quality of their 

test suites (Jorgensen 1995). Nevertheless, it would be beneficial to have a requirements elicitation 

technique that testers could use to specify input and output fields to a level of detail that enables more 

                                                           
9 Reed defines application solution domain knowledge as “the collection of machine executable descriptions (algorithms) which make 
it possible to realise the application as software” (Reed 1990). 
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effective black-box testing (as part of this research, Goal/Question/Answer/Specify/Verify has been 

developed to deal with this problem; see Chapter 3).  

2.2.3 Syntax Testing (ST) 

Syntax testing is a method for deriving test cases from input fields that are formally specified, often in a 

metalanguage like BNF (Beizer 1984). From the formal specification, an Abstract Syntax Tree (AST) is 

typically constructed, revealing hierarchical parent (non-terminal) and child (terminal) relationships (see 

Figure 2-7). Valid test cases are designed by systematically ‘covering’ the branches of the AST, while 

invalid tests can be designed by introducing faults into the terminal and non-terminal nodes of the AST.  

Consider the following example, which involves a specification for a program that parses Australian 

street addresses (see Figure 2-7). A valid test case could be designed by selecting a valid value from each 

terminal node in the AST, which could result in the valid test case ‘500 Main Road North Melbourne 3000.’ 

One approach to designing an invalid test case could be to insert an invalid alpha value in place of the 

<house_number> field, which could result in the invalid test case ‘a Main Road North Melbourne 3000.’ 

Many of the test case design rules defined for ST overlap with rules from EP and BVA (see discussion 

below). Invalid test case design rules for ST can be based on likely programmer errors and program faults 

(Marick 1995). Test case design can be manual or automated through specification parsers and test case 

generators (see Section 2.7). The process of deriving test cases from formal specifications can assist in 

locating program and specification faults (Graham 1994). 

ST evolved from grammatical testing methods that were defined in the 1960’s (Sauder 1962) and from 

compiler testing methods (e.g. see (Houssais 1977, Celentano et al. 1980, Duncan & Hutchison 1981, 

Bazzichi & Spadafora 1982, Homer & Schooler 1989, Marr & Lawlis 1991)). ST was used to automatically 

generate valid test programs for testing an Algol 68 compiler (Houssais 1977) and was researched 

extensively during the development and testing of FORTRAN and COBOL (DeMillo et al. 1987). ST can 

be used to derive invalid test programs, which provide programmers with examples of the types of input 

errors that their compilers may have to handle (DeMillo et al. 1987).  
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Figure 2-7: Simplified specification for the inputs to an Address Parser program10. 

Specification 

 <address>  ::= <house_number>  <street>  <suburb>  <postcode> 
 <house_number>  ::= [1 – 9999] 

 <street>  ::= <name>   <type>  { <direction>}0-1 

 <name>  ::= {[A – Z | a – z] | [A – Z | a – z] [ | - | .][A – Z | a – z]}1 - 40  
 <type>  ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt] 

 <direction>  ::= [North | South | East | West ] 

 <suburb>  ::= [Abbotsford | Aberfeldie | … |Yooralla |Yuroke] 

 <postcode>  ::= [200 | 221 | 800 | 801 | 804 | 810 | … | 9726 | 9728 | 9729] 

  ::= [ ]  #i.e. one space 

Abstract Syntax Tree 

address

house_number postcode

[1 – 9999]

suburb

[Abbotsford | 
Aberfeldie | … 

|Yooralla |Yuroke]

200 | 221 | 800 | 801 
| 804 | 810 | … | 

9726 | 9728 | 9729

street

name type Direction
?

{[A – Z | a – z] | [A – Z | a – z] 
[^ | - | .][A – Z | a – z]}1 - 40

[ Street | St | 
Road | Rd | 

Avenue | Ave 
| Court | Crt]

[ North | South | 
East | West ]

^ ^ ^

^

^

 
Optional nodes are denoted by a superscript “?” 

 

Beizer (1995) identified various types of programs that can benefit from ST, including string 

recognisers, data validation code, command-driven programs, communication systems, database query 

languages, context-dependent menus and Macro languages that automate repetitive instructions such as the 

MS-DOS batch command language. Although Beizer (1990) did not recommend the use of ST for testing 

modern compilers, since the fact that they are automatically generated makes the types of faults detected not 

worth the effort required to generate the tests. Conversely, Marick (1995) argues that automatically 

generated parsers may still require ST to determine whether there are faults in the parser’s syntax 

description. Kit (1995) considers ST to be less effective for testing programs that have explicit languages, 

such as compilers, but more effective against programs that have “hidden” languages, such as interactive 

commands to operating systems. Beizer (1990) argued that if program developers see enough defect reports 

citing program faults that were detected through ST, they may learn how to avoid making syntax-handling 

errors in the first place, reducing the effectiveness of the method but increasing the programmer’s ability to 

build robust code. In this way, ST could be useful for teaching programmers how to produce higher quality 

programs in the first place.  

                                                           
10 This specification is a simplified version of specifications given in assignments by Associate Professor Karl Reed at La Trobe 
University in 1998 and RMIT in 1981. The specification and corresponding program are used throughout this thesis to provide 
examples of various black-box testing methods and in the industry experiment discussed in Chapter 6.   
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Beizer (1995) claimed that the biggest payoff in ST is in the derivation of invalid test cases, though 

consideration should be given to the number of faults introduced per test case. Fault masking, where two 

faults cancel each other out to produce valid behaviour, can be avoided by introducing one fault per test 

case (Beizer 1995) and while double or triple defect tests may not increase test effectiveness (Beizer 1984), 

they may be useful for testing the diagnostic power of a system. Beizer (1995) further claimed that input 

errors introduced through ST can be syntactic or semantic, where syntactic faults are tested by incorrect 

input structure and semantic faults are tested by altering a field’s input domain, such as changing the upper 

and lower boundaries of a numerical field, though Kit (1995) maintained that ST is not useful for semantics 

testing. It could be argued that altering a field’s definition, such as its boundaries, leads to the selection of 

test data that lies outside the boundaries of the valid input domain, which is not the same as testing the 

semantics of a program and which is tested through BVA.  

This highlights one of four problems with ST: method overlap, multiple versions, definition by 

exclusion and difficult to audit.  

Many test case design rules from ST overlap with EP and BVA. In fact, 80% of test case design rules 

defined in five different and unique publications of ST overlap with other black-box testing methods (see 

Table 2-3, col. 3 ‘Is rule unique?’). For example, invalid datatypes and boundary values can be selected 

through ST (see Table 2-3, rules 2 to 5, 8, 10, 15 to 23, 27, 30), which overlaps with EP and BVA. This 

overlap could result in the design of additional and unnecessary test cases and inefficient testing. The only 

real differences between ST and EP/BVA are as follows.  

1. Abstract Syntax Trees are not usually designed during EP or BVA, although they could be if 

these methods were applied to a formal specification.  

2. ST is usually applied to formal specification, whereas this is not mandatory requirement for EP 

and BVA. However, the application of EP and BVA to formal specifications would likely 

improve the completeness of resulting test sets.  

3. ST can produce invalid test data values through the use of Data-Item Manipulation Rules, 

which ‘mutate’ valid values (see “generic mutation” rules for ST in (BS 7925-2)), whereas 

typical definitions of EP and BVA (e.g. from (Myers 1979)) do not include DIMRs.  

In the author’s view, specifying input and output fields in a formal language like BNF also increases the 

precision of the specification, which can result in the production of higher-quality source code, as well as 

more thorough testing, regardless of the particular test methods used (see Section 2.6).  

There is also method overlap within ST. For example, separate rules have been defined for repeating 

‘delimiter’ and ‘regular’ fields (e.g. see Table 2-3, rule 13 for delimiters overlaps with rules 15 to 22 for 

regular fields). Since the repetition of a delimiter field is conceptually the same as repeating any other type 

of field, separate test case design rules are not required for both. Nonetheless, it can be useful to 

demonstrate the testing of delimiter fields to novice testers to ensure they understand how to test them.  
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As with EP and BVA, multiple versions of ST have been defined by various different authors (see Table 

2-2, column 4 ‘Rule Defined By’). At present, no textbook, standard or paper describes every test case 

design rule for ST, which could result in the derivation of inadequate test sets and complicate the process of 

auditing test set completeness. This can also make it difficult to audit the completeness of each test set that 

is derived for ST. It would be beneficial to define one version of ST that encompasses all test case design 

rules from each version of the method, removes overlaps both within ST and with other black-box testing 

methods and makes test set comparison and auditing simpler.  

Definition by exclusion exists in the test case design rules of ST. For example, the rules “introduce an 

invalid value for a field” and “introduce an invalid value for all fields” (see Table 2-2, rules 2 and 3) do not 

specify what type of invalid test data should be selected, which is similar to the definition by exclusion 

problem that is inherent in Myers’ fourth guideline for EP (see Section 2.2.1).   
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Table 2-2: Test data and test case design rules for Syntax Testing. 

Rule 
# Error Class Test Case Design Rule 

Rule 
Type 

Rule Defined By 
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1 
High-level 
syntax errors 

Introduce errors at highest level of AST (e.g. through invalid field 
combinations) 

TCCR      

2 Field value-
related syntax 
errors 

Introduce an invalid value for a field DSSR      

3 Introduce an invalid value for all fields  DSSR     
4 Choose invalid symbols for a field (e.g. subtraction instead of addition) DSSR      

5 Choose invalid datatypes (e.g. numbers or symbols instead of alphas) DSSR      

6 Remove characters from the end of a field (e.g. “DI” instead of “DIR”)  DIMR     
7 Add extra characters to the end of a field (e.g. “DIRR” instead of “DIR”) DIMR      

8 
Choose none of the legal alternatives for a field that contains 
alternatives  

DSSR     
9 Choose all alternatives for one field in one test case in reverse order  TCCR     

10 Delimiter 
errors 

Leave out a delimiter  DSSR      

11 
Choose a delimiter that is valid at another syntax level but not at the 
current level  

TCCR      

12 Substitute another field for a delimiter  TCCR      

13 Repeat a delimiter  DISR      

14 Create errors in paired delimiters (e.g. add or remove delimiters) DSSR      

15 Repetition One less than the minimum number of repetitions DISR     
16 Minimum number of repetitions DISR     
17 One more than the minimum number of repetitions DISR      

18 1 repetition DISR     
19 One less than the maximum number of repetitions DISR      

20 Maximum number of repetitions DISR     
21 One more than the maximum number of repetitions DISR      

22 > 1 repetition DISR     
23 Incorrect value in the last repetition of a field  DSSR     

24 
Field-value 
errors (non-
syntax errors) 

Select invalid values for input fields DSSR      

25 
Syntax-
context errors 
(errors 
associated 
with field 
dependency 
and 
positioning) 

Substitute a field that is correct at another level of syntax but not the 
current level 

TCCR      

26 
Substitute fields from same level of syntax, creating invalid order of 
valid fields  

TCCR      

27 Miss a field DSSR     
28 Add an extra field TCCR      

29 Repeat a field TCCR     
30 

Select values relating to database variable type input is stored in. e.g. if 
field is string 0 to 255 characters, try 0, 255 and 256  

DISR      

31 
State-
dependency 
errors 

No detail was provided for this rule N/A      
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Table 2-3: The overlap between Syntax Testing and other black-box testing methods. 

Rule 
# 

Syntax Testing 
Error Class 

Syntax Testing  
Test Case Design Rule 

Is rule 
unique? Comments  

1 
High-level syntax 
errors 

Introduce errors at highest level of AST; 
e.g. through invalid field combinations  

No 
Covered by combinatorial testing methods 
(Section 2.2.7) 

2 
Field value-related 
syntax errors Introduce an invalid value for a field No 

Covered by Myers’ 3rd and 4th EP guidelines for 
selecting invalid partitions (Section 2.2). Also 
subsumes all rules in this ST Error Class. 

3 Introduce an invalid value for all fields  No 
Covered by combinatorial methods (Section 
2.2.7) and Myers’ 3rd and 4th EP guidelines for 
selecting invalid partitions (Section 2.2) 

4 
Choose invalid symbols for a field (e.g. 
subtraction instead of addition sign) 

No Covered by Myers’ 3rd EP guideline (Section 2.2) 

5 
Choose invalid datatypes (e.g. numbers or 
symbols instead of alphas) 

No 
Covered by Myers’ 3rd and 4th EP guidelines for 
selecting invalid partitions (Section 2.2) 

6 
Remove characters from the end of a field 
(e.g. “DI” instead of “DIR”)  

Yes Rule is unique  

7 
Add extra characters to the end of a field 
(e.g. “DIRR” instead of “DIR”) 

Yes Rule is unique 

8 
Choose none of the legal alternatives for a 
field that contains alternatives  

No 
Covered by Myers’s 2nd EP guideline for 
selecting zero alternatives (Section 2.2) 

9 
Choose all alternatives for one field in one 
test case in reverse order  

Yes Rule is unique 

10 
Delimiter errors 

Leave out a delimiter  No 
Covered by Myers’s 2nd EP guideline for 
selecting zero alternatives (Section 2.2) 

11 
Choose a delimiter that is valid at another 
syntax level but not at the current level  

No 
Covered by combinatorial testing methods 
(Section 2.2.7) 

12 Substitute another field for a delimiter  No 
Covered by combinatorial testing methods 
(Section 2.2.7) 

13 Repeat a delimiter  No Covered by Rule # 21 in this table 

14 
Create errors in paired delimiters (e.g. add 
or remove delimiters) 

No Covered by Rule # 27 and 28 in this table 

15 
Repetition One less than the minimum number of 

repetitions 
No 

Covered by BVA guidelines for selecting a value 
just below a lower boundary (Section 2.2.2) 

16 Minimum number of repetitions No 
Covered by BVA guidelines for selecting a value 
on a lower boundary (Section 2.2.2) 

17 One more than min number of repetitions No 
Covered by BVA guidelines for selecting a value 
just above a lower boundary (Section 2.2.2) 

18 1 repetition No 
Covered by BVA guidelines for selecting 
boundary values (Section 2.2.2)  

19 One less than max number of repetitions No 
Covered by BVA guidelines for selecting a value 
just above an upper boundary (Section 2.2.2) 

20 Maximum number of repetitions No 
Covered by BVA guidelines for selecting a value 
on an upper boundary (Section 2.2.2) 

21 
One more than the maximum number of 
repetitions 

No 
Covered by BVA guidelines for selecting a value 
just above upper boundary (Section 2.2.2) 

22 > 1 repetition No 
Covered by Myers’ 1st guideline for selecting a 
partition above an upper boundary (Section 2.2) 

23 
Incorrect value in the last repetition of a 
field  

No 
Covered by combining a BVA rule to select the 
last boundary value (Section 2.2.2) with an EP 
rule that selects invalid partition (Section 2.2) 

24 
Field-value errors 
(non-syntax errors) 

Select invalid values for input fields No Covered by Rule # 2 in this table 

25 
Syntax-context 
errors (errors 
associated with 
field dependency 
and positioning) 

Substitute a field that is correct at another 
level of syntax but not the current level 

No 
Covered by combinatorial testing methods 
(Section 2.2.7) 

26 
Substitute fields from same level of 
syntax, creating invalid order of valid fields 

No 
Covered by combinatorial testing methods 
(Section 2.2.7) 

27 Miss a field No 
Covered by Myers’s 2nd EP guideline for 
selecting zero alternatives (Section 2.2) 

28 Add an extra field Yes Rule is unique  

29 Repeat a field Yes Rule is unique  

30 
Select values relating to database variable 
type input is stored in. e.g. if field is string 
0 to 255 characters, try 0, 255 and 256  

No 
Covered by Myers’ 2nd BVA guideline (Section 
2.2) 

31 
State-dependency 
errors 

No detail or examples were provided for 
this rule 

No 
Assumed covered by other EP, BVA and ST 
rules, where the expected outcome of the test 
case depends on system state  
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2.2.4 Random Testing (RT) 

Random Testing is a black-box testing method in which test data values are chosen at random from the 

input domain of the program under test. As there is usually a pattern to the test data values that are chosen 

by human testers if they perform RT manually, automation is seen as a necessity (Kaner 1988). The first 

pseudo-random number generators were developed in the 1940’s, such as those by von Neumann and 

Lehmer (Knuth 1973) (see (Merkel 2005) for a survey). RT is an integral part of IBM’s “Cleanroom” 

software development methodology (Selby, Basili & Baker 1987). Craig and Jaskiel (2002) regard RT as a 

useful technique for “crash-proofing” a system, and though it may be effective for detecting defects that 

cannot be located through other black-box testing methods (Lewis 2000), it has also been argued that it 

should not be used in isolation from them (Watkins 2001). Four main approaches to RT are described in the 

literature: completely random generation (e.g. see (Kaner 1988)), random generation within equivalence 

classes (e.g. see (Craig & Jaskiel 2002)), random combination testing (e.g. see (Craig & Jaskiel 2002, 

McDermid 1991)) and statistical random testing (e.g. see (Younessi 2002)).  

In completely random input generation, input strings are chosen entirely at random by applying DISRs 

that select random test data values for each program input field. For example, for the field <name> ::= [A – 

Z, a – z, -]1-50, this approach could select a random string of alphabetical characters, numbers and non-

alphanumeric characters, such as fdhs8fd&^%^&G3F. This approach is considered to be inefficient, since 

large amounts of test data are often required to cover all equivalence classes of the program (Kaner 1988).   

Random generation within equivalence classes offers an improvement to RT, by first applying DSSRs 

from EP to partition the input domain, and then by applying DISRs that randomly select inputs from the 

(valid and invalid) partitions, facilitating adequate input domain coverage. In this approach, each partition 

should be covered by at least one test case (Craig & Jaskiel 2002). For example, for the <name> field, this 

approach could be used to randomly select strings of characters from the valid partition [A – Z, a – z, -]1-50 

and invalid strings that are too long (> 50 characters), too short (0 characters) or that contain invalid 

characters (e.g. integer, real, non-alphanumeric). Input domain coverage can be further enhanced by 

generating a different value for each partition every time testing is carried out.  

In random combinatorial testing (also called “semi-random testing” (Craig & Jaskiel 2002)), TCCRs are 

applied to randomly select ordered pairs of values from valid input partitions to produce test cases 

(McDermid 1991). The disadvantage is that pairs of values may be reselected as test case design progresses.  

In statistical random testing, test data generation is based on a probability distribution of the input 

domain (Younessi 2002). Common distributions are normal, negative exponential, Erlang, Poisson, 

Weibull, Student T (vonMayrhauser 1990) and uniform (Duran & Ntafos 1984). The distribution can also 

be based on the expected runtime distribution of the system, which is known as the “operational profile” 

(Thayer, Lipow & Nelson 1978, Musa 1993), which usually takes into account the frequencies at which 

particular inputs occur as well as likely sequences or combinations of inputs. This facilitates prediction of 

future reliability based on the reliability of the system when it is in use (Bertolino 2004). While this 

approach has been recommended for System Testing (Burnstein 2003) and for testing just prior to release 
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(Thayer, Lipow & Nelson 1978) (i.e. Acceptance Testing), its effectiveness relies on the accuracy of the 

chosen distribution, which may be unknown prior to release (Younessi 2002) and may change as the system 

matures (Weyuker & Jeng 1991).  

There has been much debate on the effectiveness of RT. It was criticised by Myers (1979) as being “the 

poorest methodology” of all black-box methods, for having the least chance of any method to detect errors 

and to select an optimal test set. Craig and Jaskiel (2002) argue that randomly generated test cases may not 

be realistic and also claim there is no way of measuring their coverage or risk, although random generation 

within equivalence classes presents one approach for assessing coverage. A number of studies have 

compared Random Testing to grey-box Partition Testing (e.g. selecting test data values from the input 

domain that achieve various levels of source code branch or path coverage). Duran and Ntafos (1981, 1984) 

compared Random and Partition Testing by dividing the input domain of a simulated faulty program into 

twenty-five partitions that had randomly assigned failure rates. They found that Partition Testing had a 

higher probability of detecting at least one failure when the same numbers of tests were selected for both 

methods, but that it was more effective if it was used to select twice as many tests as Partition Testing.  

Jeng and Weyuker analysed the theoretical conditions under which RT and Partition Testing would 

detect at least one failure (Jeng & Weyuker 1989, Weyuker & Jeng 1991). They argue that Partition Testing 

is “most successful” when partition selection is fault-based (e.g. testing for boundary errors) rather than 

control-flow or data-flow based. Chen and Yu (1994) extended Weyuker and Jeng’s work, finding that 

Partition Testing can be as effective as RT, providing the number of test cases selected is proportional to the 

size of each partition (i.e. proportional partition testing). Ntafos (1988) developed a simulator to compare 

RT to proportional Partition Testing, finding that proportional Partition Testing is theoretically more 

effective when fewer test data values per partition are selected.  This was supported by Chen and Yu 

(1996), who analytically compared RT and Partition Testing from the perspective of the expected number 

of failures detected, finding that Partition Testing was as effective as RT when partitions with failure rates 

that are greater than that of the entire input domain have higher sampling rates. Hamlet and Taylor (1988, 

1990) reported a similar result from a theoretical comparison of these two techniques, finding that Partition 

Testing is only effective when partitions with a high failure rate are identified. The challenge with these 

latter approaches is that typically the failure intensity of each partition is not known in advance of testing.  

2.2.5 Non-Prescriptive Approaches to Black-Box Testing 

Non-prescriptive test case design is an unstructured and typically unscripted approach to testing that is 

often based on the unique domain knowledge and experience of each tester. In the most extreme case, it can 

be carried out ad hoc (also called ‘ad-lib testing’ (Beizer 1984)), without prior knowledge of the program 

under test and without any test case design prior to test execution. Non-prescriptive testing supplements the 

inherent incompleteness of prescriptive methods like EP and BVA (Mosley 1993) because it can be used to 

identify test cases that are not selectable through the use of prescriptive black-box testing methods.  

Although ad hoc testing has been criticised by Copeland (2004) as being “sloppy, careless, unfocussed, 

random and unskilled”, others regards the fact that it does not require special training, knowledge or 
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experience as a benefit (Patton 2006). Differences in such opinions may be caused by the varying degrees 

of ad hoc testing, from completely unstructured to semi-formal.  

As Watkins (2001) argues, “some people have a natural flair for finding defects in software systems.” 

During ad hoc testing, “pathological testers” (Reed 2007) may be using their own individual undocumented 

and yet systematic approaches to test case design (Craig & Jaskiel 2002). Although the most basic form of 

ad hoc testing is to “behave like a dumb user” (Patton 2006), approaches like Error Guessing (EG) and 

Exploratory Testing (ET) (discussed below) provide guidance to non-prescriptive testing. These approaches 

can be effective because they are based on the domain knowledge and expertise of experienced testers. 

Even when prescriptive testing is rigorous and ad hoc testing does not detect any major faults, this 

knowledge can improve confidence in a system (Beizer 1984). Although ad hoc testing can be enjoyable 

(Craig & Jaskiel 2002) it can also be frustrating for experienced testers to see novice (or “pathological”) 

testers easily and quickly “crash” programs with this approach (Patton 2006). 

A problem with all non-prescriptive testing approaches is that test cases are often not documented and, 

as a result, they cannot be reused during regression testing (Myers 1978) or for reproducing failures. A 

simple improvement (that is based on good testing practice) is to record the steps taken during testing and 

the expected and actual results of each test, as this facilitates analysis of whether the test section rules used 

during testing should become part of the prescriptive testing methods routinely used against the system 

under test (Craig & Jaskiel 2002). This allows testing to be tailored to the specific domain of each system 

under test. For example, EG rules identified through analysis of the “application solution domain” (Reed 

1990) of mathematical software include testing for divide by zero errors and taking the square root of 

negative numbers (Mosley 1993), while rules from the “technology domain” (Reed 1990) of testing systems 

with relational databases include testing with escape characters that form part of the database query 

language. If effective test case design rules for each application and technology domain are identified and 

recorded, this facilitates more effective testing regardless of each tester’s individual domain knowledge or 

experience (this is one of the aims of a new customisation approach called Systematic Method Tailoring; 

see Chapter 4).  

Two popular non-prescriptive approaches to black-box testing, Error Guessing and Exploratory Testing, 

are discussed below.  

2.2.5.1 Error Guessing (EG) 

The first non-prescriptive black-box testing approach was Error Guessing, which was published by 

Myers in 1979 (Myers 1979). In this approach, testers identify a list of “error-prone situations” and derive 

test cases that are capable of detecting each potential fault (Myers 1979).  Jorgensen argues that EG “is 

probably the most widely practiced form of functional testing. It also is the most intuitive and the least 

uniform… There are no guidelines, other than to use ‘best engineering judgement’. As a result, special 

value testing is very dependent on the abilities of the tester… Even though special value testing is highly 

subjective, it often results in a set of test cases which is more effective in revealing faults than the test sets 
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generated by the other methods… testimony to the craft of software testing”11 (Jorgensen 1995). Error 

Guessing has also been referred to as “special values testing” (Jorgensen 1995, Perry 2000), “free-form 

testing” (Lewis 2000), “inspirational testing” (Black 2007) and (perhaps less commonly) “seat of the 

pants/skirt” testing (Jorgensen 1995). 

EG has a reliance on domain knowledge that may originate from a tester’s understanding of the design 

or implementation of the system under test or similar systems (Bertolino 2004, Watkins 2001), testing 

methods (Craig & Jaskiel 2002) and heuristics (Watkins 2001), the types of tests that previously detected 

faults (Watkins 2001), hardware (Mosley 1993), platforms (Bertolino 2004) and programmer assumptions 

(Myers 1979).  

Craig and Jaskiel (2002) argue that the thought processes involved in EG may be similar to the 

procedures carried out during prescriptive black-box testing. In fact, many published descriptions of this 

method overlap significantly with prescriptive black-box testing methods (see Table 2-4). For example, 

Myers (1979), Andriole (1986) and Graham (1994) all include the selection of boundary values in their 

definitions of EG, which overlaps with BVA. Graham (1994) recommends selecting invalid datatypes 

through EG, which overlaps with EP. Interestingly, of the thirty different test case design rules that are 

defined for EG in five different textbooks on software testing ((Graham 1994, Jorgensen 1995, Mosley 

1993, Mosley 1993, Myers 1979)), only six (20%) are unique (see Table 2-4). Thus, 80% of these rules 

overlap with other prescriptive black-box testing methods. Multiple versions of EG exist, probably because 

it is based on the domain knowledge of each author. 

One unique aspect of EG is that it can be applied to test case design rules from other prescriptive black-

box testing methods to facilitate selection of the most effective rules for testing (Watkins 2001); e.g. by 

identifying rules that previously detected faults (Kit 1995) or that focus on testing critically important 

aspects of the system (Craig & Jaskiel 2002) (i.e. risk-based testing). Black-box testing methods can be 

chosen for their ability to detect particular types of faults (Jorgensen 1995), such as by applying BVA to 

systems that suffer from boundary-related errors, which is similar to EG.  

Abbott (1986) claims that the effectiveness of EG cannot be guaranteed since it is “ill-defined” with no 

universal approach. Although Andriole (1986) states that EG “carries no guarantee for success, but neither 

does it carry any penalty”, in the author’s view, it can result in wasted time and effort if different testers 

who are testing the same program overlap in their derived test sets. Nonetheless, EG is believed by some to 

be more efficient and effective than prescriptive black-box testing methods (Watkins 2001, Jorgensen 

1995). Mosley and Posey (2002) argue that EG compensates for the “inherent incompleteness” of EP and 

BVA. Empirical data supporting this includes a study of failures detected in independently developed 

launch-intercept control software, where it was established that 83-90% of faults and 90-97% of failures 

were detected by special values (Wild, Chen & Eckhardt 1989). Nonetheless, EG is believed by some to be 

one of the most commonly used black-box testing methods in industry (Jorgensen 1995). For example, in a 

survey of software testing practices in Australia, which revealed that out of 65 organisations interviewed, 

                                                           
11 Jorgensen (1995) did not quote any sources to support his view that Error Guessing is more effective than other testing methods.   
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just over one third (35.4%) choose to use ad hoc testing approaches over prescriptive black-box testing 

methods (Ng et al. 2004).  

Given the apparent popularity and effectiveness of EG as an approach to defect detection, if (as 

mentioned in Section 2.2.5) the black-box test case design rules that are proven to be effective against 

particular ‘error prone situations’ are recorded, then this information can be shared with and taught to 

novice and experienced testers to facilitate more effective testing, regardless of each tester’s existing 

domain knowledge and experience. Test Catalogues, Categories and Matrices (see Section 2.2.6) could be 

used to achieve this, as could Systematic Method Tailoring.  
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Table 2-4: Overlap between Error Guessing and prescriptive black-box testing methods. 

Context Error Guessing Rule 
Rule 
Type 

Is rule 
unique? If rule is not unique, rule overlaps with…

Rule Defined 
By 

Testing a 
sorting 
routine 

Input list is empty DISR No BVA min selection rule (Table 2-1) (Myers 1979) 

Input list contains one entry DISR No BVA min+ selection rule (Table 2-1) (Myers 1979) 

All entries in list have same 
value 

TCCR Yes - (Myers 1979) 

Input list is already sorted TCCR Yes - (Myers 1979) 

Function that 
grades 
multiple 
choice 
examination 
answers  

Does program accept blank? DISR No BVA min selection rule (Table 2-1) (Myers 1979) 

Substitute student answer 
records for student information 
records 

TCCR No 
Specification-Based Mutation Testing rule 
(Section 2.2.7.5) 

(Myers 1979) 

Correct or student answer 
record are missing 
identification flags 

DISR No 
BVA min- rule (i.e. selects a null length 
string) (Table 2-1) 

(Myers 1979) 

Two students have same name 
or number 

TCCR No ST duplication rules (Table 2-3) (Myers 1979) 

Calculate median grade with 
odd and an even number of 
students 

TCCR Yes - 
(Myers 1979, 
Mosley 1993) 

Number of questions in the 
exam contains a negative 
number 

DISR No 
EP less than lower boundary selection rule 
(Figure 2-1) 

(Myers 1979) 

Generic 
Divide by zero DISR No 

BVA min- rule (i.e. selects a null length 
string) (Table 2-1) 

(Graham 1994, 
Mosley 1993) 

Empty file DISR No BVA min selection rule (Table 2-1) (Graham 1994)

Empty record DISR No BVA min selection rule (Table 2-1) (Graham 1994)

Empty field DISR No BVA min selection rule (Table 2-1) (Graham 1994)

Negative number DSSR No 
EP less than lower boundary selection rule 
(Figure 2-1) 

(Graham 1994)

Alpha character for numeric 
field 

DSSR No EP “must be” rules (Figure 2-1) (Graham 1994)

Decimal point DSSR No 
EP “must be” rule (Figure 2-1) or ST invalid 
datatype rule (see Table 2-3) 

(Graham 1994)

Embedded comma DISR No Delimiter-based ST rule (Table 2-3) (Graham 1994)

Minimum size DISR No BVA min selection rule (Table 2-1) (Graham 1994)

Square root of negative 
number 

DSSR No 
Could be chosen by EP less than lower 
boundary rule (Figure 2-1)  

(Mosley 1993) 

Maximum size DISR No BVA max selection rule (Table 2-1) (Graham 1994)

Function to 
calculate the 
next date 

February 28 DISR No BVA max selection rule (Table 2-1) 
(Jorgensen 

1995) 

February 29 DISR No BVA max+ selection rule (Table 2-1) 
(Jorgensen 

1995) 

Leap years DISR Yes - 
(Jorgensen 

1995) 

Table length 
Processing variable length 
tables 

DSSR 
or 

DISR 
No 

Could be chosen through an EP or BVA 
rule that tests field count (Figure 2-1 & 
Table 2-1) 

(Mosley 1993) 

Cyclic mater 
file/database 
updates 

Improper handling of duplicate 
keys 

TCCR No ST field duplication rule (Table 2-3) (Mosley 1993) 

Unmatched keys DSSR No EP invalid value selection rule (Figure 2-1) (Mosley 1993) 

Overlapping storage areas TCCR Yes - (Mosley 1993) 

Overwriting of buffers 
DISR 

or 
DSSR 

No 
BVA max+ selection (see Table 2-1) or EP 
greater than upper boundary selection 
(Figure 2-1) for buffer length  

(Mosley 1993) 

Forgetting to initialise buffer 
areas 

TCCR Yes - (Mosley 1993) 



Black-Box Testing – History and Practice  Chapter 2 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 52 

2.2.5.2 Exploratory Testing (ET) 

The term Exploratory Testing was first used by Kaner in 1988 (Kaner 1988) to describe the process that 

experienced software testers follow when they design and execute non-prescriptive test cases against a 

program on the fly, while simultaneously learning about it (Craig & Jaskiel 2002). Rather than being a 

black-box testing method per se, it is a non-prescriptive testing approach that can constitute black or grey-

box testing. Unlike EG, where lists of error prone situations are identified in advance of test execution, in 

ET each new test case is designed on the fly, based on knowledge gained during execution of previous test 

cases. ET was invented by professional testers and some of the largest organisations in the world use it. For 

example, Microsoft uses ET during testing of their Windows operating system (Microsoft 2003), including 

for the purposes of compatibility testing new versions of Windows (Page et al. 2009). 

Jonathan and James Bach (2006) liken ET to a game of twenty questions, where one person thinks of an 

object (i.e. an animal, vegetable or mineral) and a guesser asks up to twenty questions with yes/no answers 

to try to deduce what the object is. They point out that this game would not work using a scripted testing 

approach, where all twenty questions were designed in advance and could not be adapted from the results of 

each answer. Therefore, ET is an iterative approach in which the identification of each test case depends on 

the results of previous tests (Dustin 2003) where each new test case has potential of being more effective 

than the last (Kaner et al. 2001). Agruss and Johnson (2000) argue that the numbers and severity of faults 

that can be detected through this approach “can be astounding.”  

ET encourages creativity (Itkonen & Rautiainen 2005) as it does not “disrupt the intellectual processes 

that make testers able to find important problems quickly” (Bach 2001). While there are no formal 

procedures defined for ET (Itkonen & Rautiainen 2005), the general approach is to choose an area of a 

program and design and execute a test case against it (often without recording them) and then use the actual 

results of testing to decide what to test next. ET can be performed “freestyle” without any guidelines or 

“session-based” where during timed, uninterrupted sessions (Copeland 2004). Sessions typically run from 

45 minutes to 2 hours and are supported by “charters” (documents used to record testing goals), “session 

sheets” (documents that are used to record what occurred during testing) and “session debriefings” 

(meetings in which testers discuss the results of testing) (Bach 2000). Session-based ET ensures testers have 

enough time to perform ET effectively and allows them to remain focussed throughout testing (Copeland 

2004). It facilitates planned, managed and controlled ET (Itkonen & Rautiainen 2005).  

Similar to EG, ET can be used to select test cases that cannot be identified through scripted testing 

(Bach 2003). As Copeland (2004) claims, one of the skills experienced exploratory testers require is the 

ability to “choose appropriate test design techniques”, suggesting that they are also more skilled at 

strategising the best approaches to testing systems in a general sense12. The knowledge and experience 

utilised during ET can originate from a tester’s understanding of effective test case design rules from 

prescriptive testing methods (Craig & Jaskiel 2002). Thus, ET has a reliance on domain knowledge (Craig 

                                                           
12 This raises the question of how test strategy development can be taught to inexperienced testers. One approach is to strategise and 
prioritise the choice of test methods based on the identification of testing and technology-related risks (K. J. Ross & Associates 2007). 
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& Jaskiel 2002) and the test case design rules utilised during ET can overlap with rules from prescriptive 

testing methods.  

As Kaner et al. recognised (2001), sharing the testing heuristics utilised during ET with other testers can 

“improve the quality of their guesses.” On the other hand, exploratory test cases are often not documented 

(Itkonen & Rautiainen 2005). Accordingly, ET could benefit from recording the actual test case design rules 

that are used during testing (Dustin 2003) as this would allow them to be reused and shared with other 

testers. Test Catalogues, Categories and Matrices or Systematic Method Tailoring could support the 

documentation of the test case design rules that are used during ET. As Everett and McLeod attest (2007), 

“Although some interesting results have been obtained by experienced testers using the “exploratory 

testing” approach, its premise… appears to contradict prudent testing practices for the inexperienced tester.” 

Other challenges with ET, which were specifically reported by Microsoft, are that ET “generally doesn’t 

scale well” for testing large-scale or mission-critical systems and that it is “not the best approach” for 

testing on long-term maintenance project (Page et al. 2009). 

Nonetheless, many practitioners agree that ET can enable testing to be focussed on the most important 

or error prone areas of a system (Craig & Jaskiel 2002, Copeland 2004, Page et al. 2009), which is an 

example of risk-based testing. The operational profile (Thayer, Lipow & Nelson 1978, Musa 1993) of a 

system can be used in a similar way, to ensure ET is carried out on the areas of a system that will undergo 

the most usage (the operational profile could theoretically be used to support any prescriptive black-box 

testing method (e.g. EP, BVA, ST) to prioritise testing to the most important aspects of the system first). ET 

can be effective for uncovering additional information about previously detected defects (Copeland 2004) 

and can be used to provide rapid feedback to developers on the success of system changes (Itkonen & 

Rautiainen 2005). ET can be effective in prototyping environments, where it can be utilised by end-users to 

evaluate systems early in the SDLC (Rubin 1994). This is because it can be applied to systems that have not 

been properly specified, as the processes followed during ET allows testers to learn about the system under 

test and what constitutes valid and invalid input (Tamres 2002). It can also be useful prior to prescriptive 

testing (Patton 2006) as a means for locating error-prone areas of a system that require further exploration.  

ET can be used to test a program without requirements; however, assumptions testers make may be 

different from developer’s assumptions and neither may satisfy end-user requirements. It can be challenging 

to test complex aspects of a system effectively without requirements and this can result in untested 

requirements (Dustin 2003) and ineffective testing, particularly if testers do not have enough domain 

knowledge in the system (Patton 2006, Itkonen & Rautiainen 2005). Copeland (2004) argued that user 

manuals should be used during ET, as they allow testing to be carried out from the end-user’s perspective, 

while Itkonen & Rautiainen ( 2005) argued that user manuals and even marketing material can improve ET 

effectiveness. It could equally be argued that user manuals can improve prescriptive black-box testing.  

Dustin (2003) believes that “all test efforts” require ET, regardless of whether requirements are 

documented or not, but also notes that when specifications are ambiguous or incomplete, domain 

knowledge from developers and customers may need to be utilised in order to determine how to test the 

system effectively. It would be advantageous to define a prescriptive approach for recording the domain 
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knowledge utilised during ET, as this would enable it to be reused and for it to be shared with other novice 

and experienced testers (e.g. see Chapter 3 for a definition of a new approach called 

Goal/Question/Answer/Specify/Verify).  

One final reported disadvantage of ET is that it cannot prevent defects (Copeland 2004). Since testing 

can only prove the presence of defects, never their absence (Dijkstra 1969), this is a moot point.  

2.2.6 Test Catalogues, Test Categories and Test Matrices  

Test Catalogues, Test Categories and Test Matrices are three similar approaches that can be used to map 

black-box test case design rules to input field types, in order to plan and trace black-box testing. They offer 

a simple solution to documenting the contexts in which particular test case design rules are applicable and 

effective, allowing this information to be stored and reused against the same or similar systems and for it to 

be shared with other testers. They also enable testing to be tailored to the specific testing needs of each 

program under test. The test case design rules included in the catalogues, categories and matrices can be 

selected from prescriptive black-box testing methods like EP, BVA and ST, from the domain knowledge of 

experienced testers and from grey-box information (e.g. knowledge of program source code).  

Test Catalogues consist of lists of test case design rules that can be applied to specific types of input 

field (Table 2-5) (Marick 1995). Marick (1995) defined Catalogues for testing Unix-based programs and for 

various datatypes (e.g. numerical data) and program data structures like trees and lists.   

Test Categories are comprised of questions that guide testing for specific types of input fields and for 

examples of expected results for testing with invalid inputs (Figure 2-8) (Tamres 2002). Questions included 

in Test Categories can be identified ad hoc by experienced testers or can be chosen from prescriptive black-

box testing methods. For example, the Category “do it twice” (Figure 2-8) is similar to test case design rules 

for testing repetition in ST, the “expected system behaviour” for this category is similar to Myers’ BVA 

rules (1979) that attempt to force output fields to take on particular boundary values and questions for valid 

and invalid categories are similar to partitioning rules from EP. Tamres (2002) identified Test Categories 

for various black-box (Figure 2-8), white-box and non-functional scenarios.  

The unique aspect of this approach that sets it apart from prescriptive black-box methods is that the 

questions within each Category prompt the tester to consider the classes of test data that can be chosen for 

various types of input fields, rather than defining the exact points of the input domain that must be tested. 

This encourages creativity and can provide a mechanism for recording test cases during Exploratory Testing 

(see Section 2.2.5.2). Test Categories are reminiscent of Error Guessing (see Section 2.2.5.1), in which a 

tester questions the types of faults may be inherent in the system under test and then uses that information to 

determine how to test the system. The questions within Test Categories could also be used to question the 

completeness of input data specifications, as they could be used to prompt deliberation on the types of 

inputs that should be accepted or rejected by the program and the expected behaviour for each one.  
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Table 2-5: Example of a Test Catalogue for testing a numerical field (Kaner et al. 2001) and the 
black-box testing methods that define the rules in the catalogue. 

Test Case Design Rule (Kaner et al. 2001) Corresponding Black-Box Testing Method & Rule Rule Type 

Nothing BVA: lower boundary –  DISR 

Empty field (clear the default value) BVA: lower boundary –  DISR 

Outside of upper bound (UB) # of digits or characters BVA: upper boundary +  DISR 

0 Error Guessing: select 0  DISR 

Valid value EP: select value from valid partition  DISR 

At lower bound (LB) of value – 1 BVA: lower boundary –  DISR 

At lower bound (LB) of value BVA: lower boundary  DISR 

At upper bound (UB) of value BVA: upper boundary  DISR 

At upper bound (UB) of value + 1 BVA: upper boundary +  DISR 

Far below the LB of value 
EP/BVA: select lower boundary of partition that lies 
below lower boundary of a valid field 

DSSR/DISR

Far above the UB of value 
EP/BVA: select upper boundary of partition that lies 
above the upper boundary of a valid field 

DSSR/DISR

At LB number of digits or characters BVA: lower boundary  DISR 

At LB – 1 number of digits or characters BVA: lower boundary –   DISR 

At UB number of digits or characters BVA: upper boundary  DISR 

At UB + 1 number of digits or characters BVA: upper boundary +  DISR 

Far more than UB number of digits or characters 
EP/BVA: select upper boundary of partition of digits or 
characters that are longer than the max field length 

DSSR/DISR

Negative 
Error Guessing: select a negative number or 
EP: select value from partition that lies below lower 
boundary of the valid field 

DSSR 

Non-digits, especially / (ASCII 47) and : (ASCII 58) Error Guessing: select special values  DSSR 

Wrong datatype (e.g. decimal into integer) EP: select invalid datatype  DSSR 

Expressions  Error Guessing: select special values DSSR 

Leading spaces ST: add extra characters to start of a field  DIMR 

Many leading spaces ST: add extra characters to start of a field DIMR 

Leading zero ST: add extra characters to start of a field DIMR 

Many leading zeros ST: add extra characters to start of a field DIMR 

Leading + sign ST: add extra characters to start of a field DIMR 

Many leading + signs ST: add extra characters to start of a field DIMR 

Nonprinting characters (e.g. Ctrl+char) Error Guessing: select special values  DSSR 

Operating system filename reserved chars (e.g. “\*.:”) Error Guessing: select special values DSSR 
Language reserved characters Error Guessing: select special values DSSR 
Upper ASCII characters (128-254) Error Guessing: select special values DSSR 
ASCII 255 (often interpreted as end of file) Error Guessing: select special values DSSR 
Uppercase characters EP: select invalid datatype (alphabetic characters) DSSR 

Lowercase characters EP: select invalid datatype (alphabetic characters) DSSR 

Modifiers (e.g. Ctrl, Alt, Shift-Ctrl) Error Guessing: select special values DSSR 

Function keys (e.g. F2, F3, F4) Error Guessing: select special values DSSR 
Enter nothing but wait for a long time before pressing 
the Enter or Tab key, clicking OK, or doing 
something equivalent that takes you out of a field 

Error Guessing: select special values 
DSSR/DISR/ 

TCCR 

Enter one digit but wait for a long time before 
entering another digit or digits and then press the 
Enter key 

Error Guessing: select special values 
DSSR/DISR/ 

TCCR 

Enter digits and edit them using the backspace and 
arrow keys  

Error Guessing: select special values 
DSSR/DISR/ 

TCCR 
Enter digits while the system is reacting to interrupts 
of different kinds (e.g. printer activity, clock events, 
mouse movement) 

Error Guessing: select special values 
DSSR/DISR/ 

TCCR 

Enter digit, shift focus to another application, return 
to the application to see where focus is 

Error Guessing: select special values 
DSSR/DISR/ 

TCCR 
 



Black-Box Testing – History and Practice  Chapter 2 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 56 

Figure 2-8: Test Categories for black-box testing (Tamres 2002). 

Test Category: no data provided 

Possible questions: 

 How can the system be starved? 

 What happens if the system is not provided with any 
data? 

 What does it mean to withhold data? 

 What are the default values or states? 

Expected system behaviour can include: 

 post an error message; 

 provide a default value; 

 reuse the prior value or state; 

 prompt the user for missing data; 

 void the transaction;  

 abort execution and enter a message in the log file. 

Test Category: do it twice 

Possible questions: 

 What happens if you provide the same data or input 
twice in succession? 

Expected system behaviour can include: 

 post an error message; 

 overwrite the previous value or state; 

 prompt user to approve overwriting prior value; 

 ignore the second incident; 

 process the second request as a separate 
independent path. 

Test Category: valid data  

Possible questions: 

 What are valid instances of this data? 

 What is the valid input range? 

 What are the boundary data? 

 What is the format of a valid packet? 

 What information is provided in a valid transaction? 

Test Category: invalid data 

Possible questions: 

 What does it mean to exceed the bounds? 

 What are the consequences? 

 What constitutes bad data for the application under 
test? 

Examples of invalid data for numerical fields: 

 values out of range; 

 negative numbers; 

 decimals; 

 leading zeros or spaces; 

 alphabetic characters. 

Examples of invalid data for alphanumeric fields: 

 leading spaces; 

 non-alphanumeric characters; 

 special keystrokes, such as CONTROL-SHIFT 
combinations. 

Examples of invalid data for signal driven input include: 

 bad timing specifications; 

 timeout; 

 bad signal; 

 missing acknowledge response; 

 bad checksum; 

 noise. 

Possible system behaviour for invalid conditions include: 

 post an error message; 

 prompt user for correct data; 

 reuse a prior valid value or state; 

 void the transaction; 

 abort execution and enter a message in the log file; 

 ignore incident and try to process request as given. 

 

Test Matrices can be used to map black-box test case design rules to types of program input/output 

fields (e.g. integers, rational numbers, filenames, dates) or to program actions (e.g. create, read, update, 

delete, replace, append or overwrite files) (Table 2-6) (Kaner et al. 2001). The top row of the matrix 

consists of test case design rules, the left column comprises input and output fields and the cells of the 

matrix can be used to track which rules can be applied to each field and whether the program has passed or 

failed each test. Although test case design rules can be selected from prescriptive black-box testing methods 

like EP, BVA and ST, brainstorming has also been suggested as an effective approach for rule identification 

(Kaner et al. 2001) (which is essentially an ad hoc approach to testing).  



Black-Box Testing – History and Practice  Chapter 2 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 57 

Table 2-6: Example of a Test Matrix (adapted from (Kaner et al. 2001)). 
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One challenge is that standard guidelines for creating new Catalogues, Categories or Matrices have not 

been published. These approaches rely on the domain knowledge of each individual tester and as such, they 

could be enhanced through the definition of systematic approaches for identifying the types of input and 

output fields that can be mapped to particular types of input and output fields. This could be facilitated by 

Systematic Method Tailoring. A further enhancement could be to define test case design rules in a more 

prescriptive format, as this would allow the rules described in Catalogues, Categories and Matrices to be 

interpreted in the same way by different testers. This could be supported by the Atomic Rules approach.  

2.2.7 Combinatorial Test Methods  

In black-box testing methods like EP and BVA, test cases are usually derived by manually choosing and 

then combining valid and invalid test data values (e.g. see the “one-to-one” and “many-to-one” test case 

construction rules defined in (BS 7925-2)). Combinatorial test methods enable the automatic generation of 

black-box test cases via the application of combinatorial algorithms (i.e. TCCRs) to test data values that are 

derived during the application of methods like EP, BVA and ST. Combinatorial testing methods such as 

pair-wise testing (see Section 2.2.7.4) can be used to reduce the number of test cases that are generated by 

other black-box testing methods (Watkins 2001). Many of the concepts underlying combinatorial testing 

originate from mathematics (e.g. see Section 2.2.7.1.1). 

Grindal, Offutt & Andler (2005) distinguish between deterministic and non-deterministic combinatorial 

strategies (Figure 2-9). Deterministic strategies always produce the same result given any set of test data 

values. Deterministic strategies can be further divided into instant strategies that produce a complete test set 

at once and iterative strategies that derive test sets step by step. Non-deterministic strategies utilise 

randomisation at some point in their algorithms.  

Although combinatorial test methods are not the main focus of this thesis, they can be supported by the 

new approaches presented in Chapter 3. Thus, in the following sections, this family of testing approaches 

are explained and explored. 
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Figure 2-9: Classification scheme for combinatorial test methods (Grindal et al. 2005). 

 

 

2.2.7.1 All Combinations (AC) 

One of the most popular algorithms in testing is All Combinations, where test cases are chosen by taking 

the n-ary Cartesian product of a test data set, resulting in a set of ordered tuples. This is also known as the 

direct product of sets and the cross product. It results in a test set that achieves n-wise coverage, where all 

possible combinations of data values from n fields are covered by at least one test case (Grindal et al. 2005).  

The Cartesian product of two sets A and B is called the binary Cartesian product, denoted A × B, which 

is the set of all ordered pairs of data values from A and B: 

A × B = {(a, b) | a A  b  B}. 

Likewise, the Cartesian product of n sets, denoted A1 × … × An, is the set of all ordered tuples: 

A1 × … × An = {(a1, …, an) | a1 A1  …  an  An}. 

For n fields, where field Pi has Vi test data values, the number of test cases selected is (Grindal, Offutt & 

Andler 2004): 
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Consider the fields ‘name’ and ‘city’ defined as <name> = [Adrian | Joanna | John | Mary | Nicole | 

Steve] and <city> = [Adelaide | Brisbane | Canberra | Darwin | Hobart | Melbourne | Perth | Sydney], for 

which test data values <name_values> = {John, Mary, Steve} and <city_values> = {Melbourne, Sydney} 

are chosen. All Combinations can be used to selects 3 x 2 = 6 test cases: (John, Melbourne), (John, Sydney), 
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(Mary, Melbourne), (Mary, Sydney), (Steve, Melbourne), (Steve, Sydney). The order of elements is 

retained, ensuring that each field is only assigned values that have been chosen from its own partition. In 

any real-world example, this approach is likely to cause a combinatorial explosion that can make it 

prohibitively expensive.  

Jorgensen (1995) used this approach to define two new test methods: Worst Case Testing (Cartesian 

product of valid boundary values) and Robust Worst Case Testing (Cartesian product of all boundary 

values). These approaches make this algorithm more economically feasible due to the relatively limited size 

of the test data domain.  

2.2.7.1.1 Permutations and Combinations in Mathematics 

All Combinations in testing is different to the concept of Combinations in a branch of mathematics 

called Combinatorics, which relates to field placement rather than test data converge and is a function of the 

number of fields n chosen from r fields that are included in a test case. Consider three input fields ABC. 

There is 3C3 = 1 test case, ABC, which could be selected if all three fields are included and not repeated. If 

two fields are included (e.g. if the third is null) then this results in 3C2 = 3 test cases, AB, AC and BC. Thus, 

in the Combinations algorithm, the fields retain their order.  

A simular concept is Permutations, which is also a function of n and r. For three fields ABC there are a 

maximum of 3P3 = 6 permutations: ABC, ACB, CAB, BCA, BAC and CBA. Thus, in this algorithm the fields 

do not necessarily retain their order, though no fields are repeated.  

2.2.7.2 Each Choice (EC) 

The Each Choice algorithm ensures that all test data values from a set are included in at least one test 

case, achieving 1-wise coverage (Grindal, Offutt & Andler 2004). This has been used in EP, BVA 

(Jorgensen 1995) and the Base-Choice approach (Ammann & Offutt 1994) (see Section 2.2.7.3).  

For n input fields, where field Pi has Vi values, the number of test cases generated by this algorithm is 

(Grindal et al. 2004): 
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n

i
VMax

1
 

This generates 1 to n test cases, depending on how many ‘uncovered’ test data values are included in 

each new test case. For example, consider three input fields A, B and C, for which test data values A = [1, 2, 

3], B = [1, 2] and C = [1] have been chosen. A minimum of three test cases are required to cover every test 

data value at least once, resulting in test cases (1, 1, 1), (2, 2, 1) and (3, 1, 1). Additional test cases could 

also be selected, such as (1, 2, 1) or (3, 2, 1).  

2.2.7.3 Base Choice (BC) 

The Base-Choice algorithm was proposed by Ammann and Offutt (1994) as an approach to selecting 

test cases for the Category Partition Method (see Section 2.2.7.6). In this approach, a base test case is 
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chosen first by assigning the most ‘typical’ test data values to it, which could be default values, values 

chosen from equivalence classes or from the anticipated operational profile of the system under test. Test 

cases are then added to the test set by alternating the value of one field at a time with all other test data 

values chosen for that field. The size of the resulting test set is a function of n fields, where the ith field has 

jk data values (Ammann & Offutt 1994):  
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1
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Consider three fields A, B and C with a chosen collection of test data values A = [1, 2, 3], B = [1, 2] and 

C = [1]. If ‘typical’ values resulted in a base-choice test case of (1, 2, 3), then two additional tests would be 

required by alternating one parameter at a time: (1, 1, 3) and (1, 2, 1). This satisfies 1-wise coverage and 

single error coverage (Grindal et al. 2004) and provides a formal definition for the typical approach to test 

case design used in prescriptive methods like EP and BVA, where each test case covers exactly one value 

from one partition at a time. This results in fewer test cases than All Combinations and ensures that the 

most important test data values are included in the final test set.  

2.2.7.4 Orthogonal Array (OA) (Pair-Wise) Testing 

Orthogonal Arrays (OAs) were first used in testing by Mandl in 1985 (Mandl 1985). They originate 

from the mathematical concept of Latin Squares. An OA is a two-dimensional array in which any two 

columns contain all combinations of pairs of values and if any pair occurs multiple times then each will 

appear exactly the same number of times (Copeland 2004). Each row is a tuple of test data values that form 

one test case, with the entire set satisfying pair-wise coverage (Grindal et al. 2004). The standard notation 

for representing an OA is Lr(N
c), where r is the number of rows, c the number of columns (i.e. fields under 

test) and N is the maximum number of values that can be chosen for each field (Copeland 2004). For a 

program with n fields, where field Pi has Vi values, an OA will result in Vi
2 test cases, which is calculated as 

(Grindal et al. 2004): 
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OAs can be used to generate test cases from test data values chosen through EP, BVA and ST. They can 

also be used to test (valid and/or invalid) combinations of conditions for Compatibility Testing (see 

Glossary for definition). For example, an OA could be designed for testing the compatibility of web-based 

application with various browsers (e.g. Safari, Internet Explorer, Opera), plug-ins (e.g. Real Player, Media 

Player), servers (e.g. Microsoft IIS, Apache, Netscape Enterprise) and operating systems (e.g. Windows, 

Macintosh OSx, Linux)13. An OA that achieves pair-wise coverage for this particular set of configuration 

values is L9(3
4), which results in nine test cases (Table 2-7). Any pair of columns in the array contains every 

combination of pairs of values for each of the four fields.  

                                                           
13 This list of browsers, plug-ins, servers and operating systems is exemplar only; it is not intended to be exhaustive. For example, the 
OA could be extended to consider versions of each system and other systems (e.g. see (Craig & Jaskiel 2002) and (Cohen et al. 2003)).  
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Table 2-7: Orthogonal Array for testing an Internet-based application. 

Test Case Browser Plug-In Application Server Operating System 

1 Safari None IIS Windows 

2  Safari Real Player Apache Macintosh OSx 

3 Safari Media Player Netscape Enterprise Linux 

4 Internet Explorer None IIS Windows 

5 Internet Explorer Real Player Apache Macintosh OSx 

6 Internet Explorer Media Player Netscape Enterprise Linux 

7 Opera None IIS Windows 

8 Opera Real Player Apache Macintosh OSx 

9 Opera Media Player Netscape Enterprise Linux 

 

In the OA above (Table 2-7), each column has the same ‘range’ (i.e. three test data values each). An OA 

can also have columns with different ‘ranges’ (Copeland 2004). For example, an L18(2
137) array contains 

one column of two values (21) and seven columns of three values (37), resulting in eighteen test cases (L18). 

It can sometimes be difficult to choose an OA with a size that fits the number of columns and range of 

values per column precisely (Copeland 2004). Consider an OA for five fields, each with eight, three, six, 

three and three data values respectively. A perfectly sized OA would be Lr(8
16133), but an OA of this size 

does not exist (Copeland 2004). The next largest size L64(8
243) is chosen and any field that is not assigned a 

value after all pairs have been covered can be assigned a random or specific value (Copeland 2004).  

2.2.7.5 Specification-Based Mutation Testing 

The fundamental concept of mutation testing is that an artefact under test is modified by applying a 

‘mutation operator’ that introduces a specific type of fault. Mutation can be program-based, which can be 

used to check the ability of a test set to locate certain types of faults, or specification-based to systematically 

generate black-box test cases.  

Program-based mutation was originally proposed by DeMillo, Lipton and Sayward in 1978 (DeMillo et 

al. 1978). In this approach, mutation operators are used to introduce various types of faults into program 

source code. Each type of fault is based on the types of mistakes programmers commonly make during 

development, including replacing a relational operator with an invalid relational operator (e.g. replacing a < 

sign with > in a conditional statement). Mutants are said to be ‘killed’ when test cases executed against the 

mutant and original programs produce different output. Tests that kill mutants are considered to be 

“effective with respect to mutation” and killed mutants are not executed again against any other test case 

(Voas & Offutt 1996). If a test case does not locate a mutant (i.e. the mutant and original programs produce 

the same output) then the test is discarded and new tests are designed to try to detect the mutant code.  

The ‘mutation score’ is a ratio of the number of killed mutants to mutants that are not equivalent to the 

original program, which is a measure of test set adequacy. A test set is ‘mutation-adequate’ if the mutation 

score is 100% (Offutt & Lee 1994). Typically, scores over 90% are difficult to reach and those over 95% 

are extremely difficult to achieve (Offutt & Liu 1999). Although program mutation showed promise, it was 

never widely adopted by industry (Ng et al. 2004), possibly because it suffers a combinatorial explosion 
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that can result in high testing cost. Also, since program mutation is an approach to testing test quality, it is 

often seen by industry professionals as an additional and unnecessary expense. The number of mutants that 

can be generated for any given program is O(N2), where N is the number of variable references in the 

program (Acree 1980). In one experiment that used the Mothra automated mutation testing system, 951 

mutants were generated for a simple 30 line triangle classification program (Offutt & Lee 1994).  

Specification-based mutation was originally proposed by Budd and Gopal in 1985 (Budd & Gopal 

1984). In this approach test cases are designed by mutating program specifications. Depending on the 

language used in the specification, specification mutants can look similar to program mutants, such as the 

replacement of a relational operator with an invalid operator. Specification mutation has been applied to 

various specifications languages, including predicate calculus, state charts, model checkers, Boolean 

algebra, Extensible Markup Language (XML) and BNF (see Table 2-8).  

Budd and Gopal (1984) defined five mutation operators for predicate calculus specifications. Fabbri, 

Maldonado, Sugeta and Masiero (1999) experimented with specification mutation to validate statechart 

specifications, defining a mutation operator set that was taken as a fault model. Their goal was to 

investigate methods of selecting useful test sets and test methods for ensuring that a specification and 

program are thoroughly tested. Ammann, Black and Majurski (1998) developed a model checker called 

Symbolic Model Verifier (SMV) to automatically generate specification mutants they referred to as 

‘complete’ in the sense that they included inputs and expected results. Ammann and Black (1999) found 

that in order to make mutation with of a model checker possible, specifications need to be decomposed to 

lower language levels. They investigated an approach to reducing large-scale state machines using a 

technique called “finite focus,” which allowed tests to be automatically derived for very large software 

systems. They proved that finite focus was a sound reduction technique, producing smaller mutation-

adequate test sets.  

Woodward (1993) defined nine mutation operators for Boolean algebra specifications by examining 

errors made in the assignments of 59 third year and 20 postgraduate university students in a course on 

software engineering. Lee and Offutt (2001) applied specification mutation to test the semantic correctness 

of XML messages communicated between web components. Syntactic errors were not considered as XML 

parsers that are freely available can be used to test for this. Since XML allows the definition of unique 

languages for each Document Type Definition (DTD), they could not define universal mutation operators 

that could be applied to all DTDs. Instead, they defined a generic class of operators and instantiated the 

class to create DTD-specific operators that were applied to the constraints of the language to produce 

mutants. Two example mutation operators were defined, although future work included the aim of 

identifying additional mutation operators.  
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Table 2-8: Specification-based mutation operators for various specification languages. 

Mutation operators for predicate calculus specifications 
(Budd & Gopal 1984): 

1. Relational operator replacement  

2. Arithmetic operator replacement 

3. Operand increment/decrement 

4. Operand substitution 

5. True/false replacement*  

6. Logical operator replacement*  

7. Quantifier changes* 

* Operators 6, 7 and 8 were discarded by Budd and Gopal as 
they were either too expensive, subsumed by other 
operators or were not useful (Budd & Gopal 1984).  

Mutation operators for Boolean algebra specifications 
(Woodward 1993): 

1. OpsAttrDel – delete operator attribute 

2. OpsAttrIns – insert operator attribute 

3. OpsAttrRpl – replace an operator attribute 

4. EqnsOpRplOp – replace non-constant operator with 
non-constant operator 

5. EqnsOpRplCon – replace non-constant operator with 
constant operator  

6. EqnsOpsRplVar – replace non-constant operator with 
VAR 

7. EqnsConRplOp – replace constant operator with non-
constant operator 

8. EqnsConRplCon – replace constant operator with 
constant operator 

9. EqnsConRplVar – replace constant operator with VAR 

10. EqnsVarRplOp – replace VAR with non-constant 
operator  

11. EqnsVarRplCon – replace VAR with constant operator  

12. EqnsVarRplVar – replace VAR with VAR 

13. EqnsDel – delete an equation 

14. EqnsIfDel – delete conditional part of equation 

15. EqnsOrd – reorder an equation  

Mutation operators for BNF specifications (Murnane 
1999, Murnane & Reed 2001): 

1. substitute one terminal for another terminal  

2. substitute n - 1 terminals for n other terminals  

3. substitution one non-terminal for another non-terminal 

Mutation operators for finite state machines (Fabbri et al. 
1999): 

1. wrong-start-state 

2. arc-missing 

3. event-missing 

4. event-extra 

5. event-exchanged 

6. destination-exchanged 

7. output-missing 

8. output- exchanged 

9. state-missing 

Mutation operators for extended finite state machines (Fabbri 
et al. 1999): 

1. expression deletion 

2. boolean expression negation 

3. term associativity shift 

4. arithmetic operator by arithmetic operator 

5. relational operator by relational operator 

6. logical operator by logical operator 

7. logical negation 

8. variable by variable replacement 

9. variable by constant replacement 

10. constant by required constant replacement 

11. constant by scalar variable replacement 

Mutation operators for statechart features (Fabbri et al. 1999): 

1. transition’s history deletion 

2. transition with history by transition replacement 

3. history-missing 

4. h by h* replacement 

5. h* by h replacement 

6. h-extra 

7. h*-extra 

8. in(s) condition-missing 

9. in(s) condition state replacement 

10. not-yet(e) condition-missing 

11. not-yet(e) condition event replacement 

12. exit(s) event-missing 

13. exit(s) event state replacement 

14. entered(s) event-missing 

15. entered(s) event state replacement 

16. broadcasting origin transition replacement 

17. broadcasting destination transition replacement 

 

Specification mutation has also been applied to BNF specifications (Murnane 1999, Murnane & Reed 

2001) (Figure 2-10, Figure 2-11). In this approach, mutation operators are applied to a specification to 

construct test cases, where each (terminal) input field is substituted for every other field, one substitution 

per test (see Figure 2-11, ‘endogenous’ mutation). When fields are substituted for each other but not for 

themselves, the number of mutants is N(N-1), which is O(N2), where N is the number of input fields in the 

test case. Double-defect mutants can be selected by substituting two fields per test. Although this may result 

in a more rigorous test set, the number of resulting tests is N!, which is prohibitively large. Specification 
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mutation can be performed by substituting non-terminal fields or invalid datatypes into the fields under test, 

which corresponds to the selection of invalid datatypes in EP (Figure 2-11, see ‘exogenous’ mutation).  

Figure 2-10: A simplified version of an address specification expressed in BNF. 

 <address> ::= <house_number>  <street>  <suburb>  <postcode> 
<house_number>  ::= [1 – 999] 

 <street>  ::= {Annensen Court, Aaran Close, …, Zelda Court} 

 <suburb>  ::= {Abbotsford, Aberfeldie, …, Yooralla, Yuroke} 

 <postcode>  ::= [200 | 221 | 800 | 801 | 804 | 810 | … | 9726 | 9728 | 9729] 

   ::= [ ]  #i.e. one spaces 

 

Figure 2-11: Example of specification-based mutation for the address parser.  

 

 

2.2.7.6 Commonality within Combinatorial Test Methods  

Most combinatorial test methods have two attributes in common: they consist of algorithms for test case 

design and the expected number of test cases can usually be calculated, or at least estimated. Nonetheless, 

there is no standard notation for describing them in the literature. Notational and terminological 

differences between the methods could be resolved by defining a common notation for all black-box testing 

methods (see Chapter 3 for one such approach).  

2.2.8 The Category Partition Method (CPM) 

Specifications that are written in natural language can be “wordy and unstructured,” which can make 

test case design difficult (Ostrand & Balcer 1988). The Category Partition Method (CPM) was developed 

by Ostrand and Balcer (1988) to formalise the documentation of black-box test cases in a language they 

named the ‘Test Specification Language’ (TSL). CPM comprises six steps, as follows:  

1. Decompose the specification into functional units that can each be tested separately.  

2. Identify ‘categories’ for each functional unit, which are essentially input fields and environmental 

conditions whose state can affect functional unit behaviour. Each category is then partitioned into 

disjoint equivalence classes called ‘choices.’  

3. Identify the expected result of combinations of choices and constraints, which limit how the 

occurrence of a choice in one category can restrict the choices in another.  

<address>::=<house no>  <street>  <suburb>  <postcode>

R+ 

Mutate via field substitution 
(endogenous mutation)  

Mutate by inserting invalid data, e.g. a positive Real (exogenous mutation) 

Specification Input Domain S 

Program Input Domain D 
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4. Document categories and choices in TSL (see Figure 2-12 and Figure 2-13), facilitating automatic 

generation of test cases through the TSL processor tool, by defining the relationships between 

inputs and outputs. Two types of specifications can be produced: unrestricted and restricted. 

Unrestricted specifications contain the Cartesian-product of categories. In restricted specifications, 

choices are annotated with constraints describing relationships between choices and expected 

outputs, to limit the ways in which ‘test frames’ (Figure 2-14) are constructed by making the values 

that can be selected from one category dependant on the value of another. Restricted specifications 

result in fewer test frames. Test frames (Figure 2-14) describe the structure of each test case. 

5. Analyse the test frames to ensure that no ‘impossible’ combinations of choices have been defined 

(see Figure 2-14) and to ensure that they result in an acceptable number of tests. To achieve this, 

steps four and five can be repeated until the test frames are appropriately refined.  

6. Create test cases by selecting one value from the choices of each category within each test frame. 

Test procedures14 can be constructed by joining together sequences of related test cases.  

Appendix A provides a complete example from (Ostrand & Balcer 1988), which illustrates these six 

steps being applied to an example specification for a ‘find’ command.  

Balcer, Hasling and Ostrand consider TSL and the TSL processor to be two of the most beneficial 

aspects of the CPM; translating specifications into TSL facilitates identification of ambiguous and 

inconsistent requirements, allowing specification faults to be identified prior to test case design, while the 

TSL processor makes test design and maintenance more efficient and precise (Ostrand & Balcer 1988, 

Balcer, Hasling & Ostrand 1989). Employing the use of TSL early in the software development lifecycle 

could allow testers to become involved in the program specification and review process, which could result 

in clearer and more testable requirements, and would also allow testers to learn about system under test 

earlier, allowing them to be better-prepared for testing. 

                                                           
14 Test procedures are test cases that are joined together to test sequences of functionality within a program. They include procedural or 
environmental requirements that must be met in order for the tests to be executed. For example, individual test cases could be written 
for testing the components of an online banking application, which separately test the login screen, funds transfer and logout; these 
three tests could be joined together into a test procedure that tests a scenario in which a user logs in, performs a funds transfer and logs 
out. In (Ostrand & Balcer 1988) and (Balcer, Hasling & Ostrand 1989), Test Procedures are referred to as Test Scripts, whereas in this 
thesis, Test Scripts are considered to be automated test procedures (e.g. see definition of Test Script in the Glossary).   
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Figure 2-12: Structure of a test specification expressed in the Test Specification Language (TSL) 
(Balcer, Hasling & Ostrand 1989). 

TEST <test-name> 
 [<description-string>] 
 [SETUP {<string>}] 
 FORM {<string>} 
 CLEANUP {<string>}] 
PARAMETER <param-name> 
 [<description-string>] 
 [<setup-cleanup>] 
  * <choice-1> 
   [<value-list>] 
   [<setup-cleanup>] 
  … 
  * <choice-n> 
   [<value-list>] 
   [<setup-cleanup>] 

ENVIRONMENT <environment-name> 
 [<description-string>] 
 [<setup-cleanup>] 
  * <choice-1> 
   [<setup-cleanup>] 
  … 
  * <choice-n> 
   [<setup-cleanup>] 
RESULT <result-name> 
 [<description-string>] 
 [<setup-cleanup>] 
 [VERIFY <verification-code>] 
 IF <result-expression-1> 
  … 
 IF <result-expression-n>  

 

Figure 2-13: Specification for a ‘find’ command and the corresponding Test Specification Language 
specification (Ostrand & Balcer 1988). 

Specification in Natural Language* Corresponding TSL Specification 

Command 

find 

Syntax 

find <pattern> <file> 

Function 

The find command is used to locate one or more instances of a given 
pattern in a text file. All lines in the file that contain the pattern are written 
to standard output. A line containing the pattern in written only once, 
regardless of the number of times the pattern occurs in it.  

The pattern is any sequence of characters whose length does not exceed 
the maximum length of a line in the file. To include a blank in the pattern, 
the entire pattern must be enclosed in quotes (“). To include a quotation 
mark in the pattern, two quotes in a row (“”) must be used.  

Examples 

find john myfile 

 displays lines in the file myfile which contain john 

find “john smith” myfile 

 displays lines in the file myfile which contain john smith 

find “john”” smith” myfile 

 displays lines in the file myfile which contain john” smith 

 

* Note: this specification is written exactly as it appears in (Ostrand & 
Balcer 1988).  

Parameters 

Pattern size 

 empty 

 single character 

 many characters 

 longer than any line in the file 

Quoting 

 pattern is quoted 

 pattern is not quoted 

 pattern is improperly quoted 

Embedded white spaces 

 no embedded white spaces 

 one embedded white space 

 several embedded white spaces 

Embedded quotes 

 no embedded quotes 

 one embedded quote 

 several embedded quotes 

File name 

 good file name 

 no file with this name 

 omitted 

Environments 

Number of occurrences of pattern in the file 

 none 

 exactly one 

 more than one 

Pattern occurrences on target line 

 # assumes line contains the pattern 

 one 

 more than one 
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Figure 2-14:  Example of a contradictory test frame (Ostrand & Balcer 1988). 

Pattern size: empty* 

Quoting: pattern is quoted* 

Embedded blanks: several embedded white spaces 

Embedded quotes: no embedded quotes 

File name: good file name 

Number of occurrences of pattern in file: none 

Pattern occurrences on the target line: one  

* contradiction: pattern cannot be empty if it is quoted 

 

Ostrand and Balcer (1988) compared CPM to Goodenough and Gerhart’s Condition Table method 

(1975), Elmendorf’s Cause-Effect Graphing (1974), Weyuker and Ostrand’s Revealing Subdomains (1980) 

and Richardson and Clarke’s Partition Analysis (1981). Although the concepts of partitioning categories 

into choices and selecting data values from each choice to construct test cases are essentially the same 

process as partitioning input fields and selecting test data values during EP and BVA, CPM has not been 

compared to or integrated with these methods. For example, in Figure 2-13 the category ‘pattern size’ is 

partitioned into choices empty, single character, many characters, longer than any line in the file, which 

could be selected more prescriptively through EP and BVA, since these methods were designed to guide 

testers specifically in the selection of this type of test data. As CPM does not provide prescriptive guidelines 

for identifying choices or test data values from each choice, this approach could be improved by combining 

TSL with the test case design rules from EP, BVA and ST.  

2.2.9 Classification Trees  

Classification Trees were originally proposed by Grochtmann et al. in 1993 as an improvement to CPM 

(Grochtmann & Grimm 1993, Grochtmann, Grimm & Wegener 1993). In this approach, categories and 

choices are represented in a tree, with categories as root nodes, choices as leaf nodes and intermediate nodes 

representing the decomposition of categories into sub-categories (Figure 2-15). Test cases are constructed in 

the same way as CPM (i.e. by taking the Cartesian product of choices and removing impossible choice 

combinations), although other combinatorial test methods could be used to define test cases (see Section 

2.2.7). Test cases are recorded as horizontal lines beneath the tree that intersect with choices included in 

each test case, with black dots at the line’s intersection marking the selection of a test data value for 

inclusion in a test case. Some automated support for Classification Trees is provided through the 

Classification Tree Editor (see Section 2.7).  

Classification Trees have been improved by a number of researchers. Chen, Poon and Tse (1999) 

developed an algorithm for removing duplicate tree nodes. For example, for resolving the duplicate node in 

Figure 2-15, in which ‘Price of Ticket’ appears under the ‘Class of Seat’ and ‘Total Mileage’ branches. 

Chen and Poon (1996) developed classification-hierarchy tables for capturing and documenting the 

hierarchy of classification trees. Singh, Conrad and Sadeghipour (1997) built Classification Trees from 

formal Z specifications. As with CPM, the Classification Tree approach could be improved by combining 

prescriptive test case design rules from EP, BVA and ST with the visual representation provided by the 

Classification Tree 
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Figure 2-15: Classification Tree for an airline bonus points programme (Chen, Poon & Tse 1999). 

Specification* 

The software under test is the program bonus being developed for Number-One Airline. It calculates the bonus points 
earned by passengers from their trips. Passengers can then claim various benefits such as free accommodation in leading 
hotels using the bonus points awarded. The program calculates the bonus points according to the following specification.  

(1) Classes of Seats 

There are three classes of seats, namely first, business, and economy. 

(2) Upgrading of Classes 

Passengers holding an economy-class ticket are eligible for upgrading their tickets to a business class free of charge, 
provided that:  

(a) there are vacancies in the business class, 

(b) the passengers are holding a frequent-flyer card, and 

(c) the total mileage for the trip is less than 1000. 

Under no circumstances can an economy-class or business-class ticket be upgraded to the first class. 

(3) Discounts 

Discounts are only available to: 

 economy-class tickets, and 

 the total mileage for the trip is not less than 1000. There are two types of discounts, namely staff discount 
and passenger discount. 

For (2c) and (3b), any distance less than one mile will not be counted. The number of bonus points earned will be 
calculated from the combination above. 

Classification Tree 

 

 

* This specification and corresponding Classification Tree are shown here exactly as they appear in (Chen et al. 1999). 
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2.3 Summary of Black-Box Test Case Design Steps and Methods  

As outlined in Section 2.2, each black-box testing method typically focuses on one of the following four 

steps of test case design: 

1. Partition the input and output domains of the program into sets of equivalent data, by applying 

Data-Set Selection Rules.  

2. Select test data values from each partition by applying Data-Item Selection Rules.  

3. Optionally manipulate15 the test data values by applying Data-Item Manipulation Rules.   

4. Construct test cases by creating combinations of test data values via the application of Test Case 

Construction Rules.  

Although some methods touch on more than one of these steps (e.g. EP provides guidance on 

partitioning, test data selection and test case design), a method’s strength usually lies in just one of these 

steps, as outlined below (Table 2-9).  

Table 2-9: Test case design steps covered by black-box testing methods. 

Black-Box Testing Method 

Four Steps of Test Case Design  

Step 1. Partition the 
input and output 
domains of the 
program by applying 
DSSRs to each field 

Step 2. Select test 
data values from each  
partition by applying 
DISRs to each 
partition  

Step 3. Optionally 
manipulate test data 
values by applying 
DIMRs to each test 
data value 

Step 4. Construct 
test cases by 
combining test data 
values by applying of 
TCCRs 

All Combinations     

Base Choice     

Boundary Value Analysis  
Often uses DSSRs 

from EP   
Often uses TCCRs 

from EP 

Category Partition Method     

Classification Trees Non-systematic Non-systematic   

Each Choice     

Equivalence Partitioning      
Error Guessing Non-systematic Non-systematic Non-systematic Non-systematic 

Exploratory Testing Non-systematic Non-systematic Non-systematic Non-systematic 

Orthogonal Array Testing      

Random Testing 
Often uses DSSRs 

from EP     

Specification-Based 
Mutation Testing      

Syntax Testing Implicitly performed    
Test Matrices, Catalogues & 
Categories 

Can provide guidance Can provide guidance Can provide guidance  

 

                                                           
15 For example, the definition of Syntax Testing in (BS 7925-2) includes a test case design rule that ‘mutates’ test data values. In this 
thesis the word ‘manipulate’ is used to describe any test case design rule that derives an invalid test data value by altering a valid test 
data value (e.g. by removing a character from the end of a valid keyword).  
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2.4 Combining Testing Methods  

A number of novel black-box methods have been proposed by combining other black-box testing 

methods. Howden developed a new method called Functional Testing, which combines test case design 

rules from BVA, EP, EG with All Combinations (Howden 1980). Grindal et al. (2004) produced two new 

combinatorial methods by combining Base Choice with Orthogonal Arrays and with Heuristic Pair-Wise 

Testing. Jorgensen (1995) combined BVA with All Combinations to produce Worst Case Testing and with 

Robustness Testing to produce the Worst Case Robustness Testing (see Section 2.2.2). Jorgensen also 

extended Myers’ (1979) and Mosley’s (1993) definitions of EP by combining EP with combinatorial 

methods to produce Traditional, Strong and Weak EP (Jorgensen 1995). Thus, creating new black-box 

methods from the ‘atomic elements’ of existing methods is something that has been achieved in the past 

(see Chapter 3 for the Systematic Method Tailoring approach to customisation).  

2.5 Approaches to Test Method Selection  

As Beizer observed (1990), the application of “unsuitable” test methods can result in the design of 

inappropriate test cases. Effective test method selection approaches are an essential part of effective black-

box testing. In the subsections below, various approaches to test method selection are described, which base 

selection on: 

1. the steps of the test case design process targeted by the method (Section 2.5.1); 

2. the classes of error detected by the method (e.g. see (Jorgensen 1995)) (Section 2.5.2); 

3. a characterisation schema that differentiates between the ‘functionality’ of each method (Vegas 

et al. 2003) (Section 2.5.3); 

4. a decision table that classifies the conditions under which each black-box test method should be 

selected (Jorgensen 1995) (Section 2.5.4); and 

5. test effectiveness (Section 2.5.5).  

2.5.1 Test Method Selection by Test Design Step 

Each of the black-box methods discussed in this chapter targets one or more of the following four steps 

of black-box test case design (e.g. see Section 2.3, Table 2-9):  

1. partitioning the input and output domains (i.e. using Data-Set Selection Rules); 

2. selecting test data values from each partition (i.e. using Data-Item Selection Rules);  

3. manipulating the chosen test data values (i.e. using Data-Item Manipulation Rules); and  

4. constructing test cases (i.e. using Test Case Construction Rules).  

Black-box testing methods could be chosen for their ability to target one ore more of these steps. On the 

other hand, current descriptions of black-box testing methods do not clearly identify which steps of the test 



Black-Box Testing – History and Practice  Chapter 2 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 71 

case design process are targeted by each method. Mapping test case design rules to specific types of input 

fields has been achieved by Test Catalogues, Categories and Matrices. However, these approaches do not 

describe the black-box testing methods that each test case design rule belongs to. Consequently, testers who 

are unfamiliar with the specific mechanics of each black-box testing method may find it difficult to map 

between the rules in a Test Catalogue, Category or Matrix with the black-box testing methods they were 

derived from. The Atomic Rules approach and Systematic Method Tailoring are possible solutions to these 

problems.   

2.5.2 Test Method Selection by Error Class 

Black-box testing methods can be chosen for their ability to detect certain classes of error (Jorgensen 

1995). For instance, BVA targets the mishandling of boundary values and EP and ST can be used to test a 

program’s input parsing capabilities. Test Catalogues, Categories and Matrices can facilitate this mapping. 

On the other hand, they do not include guidelines to assist testers in creating new mappings of input fields 

to test case design rules for each program under test.  

2.5.3 Test Method Selection via Vegas et al.’s Characterisation Schema  

Vegas et al. (2003, 2004) developed a characterisation schema for classifying black-box and white-box 

testing methods, which utilises information about the methods, the system under test, the test environment 

and knowledge of tester abilities to facilitate selection of the “best suited” methods for testing (see Table 2-

10, Table 2-11). The schema has been instantiated for four types of methods:  

1. black-box testing methods: BVA and RT (see Sections 2.2.2 and 2.2.4); 

2. white-box testing methods: sentence, decision, path and thread coverage (e.g. see (Myers 1979, 

Pressman 1992)); 

3. data-flow methods: all-c-uses, all-p-uses, all-uses, all-du-paths and all-possible-rendezvous 

(e.g. see (Pfleeger 2001)); and 

4. mutation testing: standard and selective program mutation (e.g. see (Bottachi & Mresa 1999)).  

The characterisation schema clearly distinguishes between these four types of methods, which can assist 

with identifying the conditions under which a black-box testing method should be used over a white-box 

method. Yet it does not clearly identify the conditions under which one specific black-box testing method 

should be used over another. For example, there is very little difference between the definitions of BVA and 

RT (see Table 2-11). This schema could be enhanced by additional attributes that clearly differentiate 

between the individual test case design rules that are included in each black-box testing method. Since the 

schema has not been instantiated for methods like EP and ST, it could also be improved by deriving schema 

instances for these methods.  
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Table 2-10: Characterisation schema for assist with test method selection (Vegas et al. 2003). 

Level Element Attribute Value 

Tactical 

Objective 

Purpose 
Type of evaluation and quality attribute to be tested in the 
system 

Defect type Defect types detected in the system 

Effectiveness  
What capability the set of cases should have to detect 
defects 

Scope 
Element Elements of the system on which the test acts 

Aspect Functionality of the system to be tested 

Operational 

Agents 
Knowledge  Knowledge required to be able to apply the technique 

Experience Experience required to be able to apply the technique 

Tools 

Identifier Name of the tool and the manufacturer 

Automation Part of the technique automated by the tool 

Cost Cost of tool purchase and maintenance 

Environment 
Platform (software and hardware) and programming 
language with which the tool operates 

Support Support provided by the tool manufacturer 

Technique 

Comprehensibility  Whether or not the technique is easy to understand 

Cost of application How much effort it takes to apply the technique 

Inputs Inputs required to apply the technique 

Adequacy criterion Test case generation and stopping rule 

Test data cost Cost of identifying the test data 

Dependencies Relationships of one technique with another 

Repeatability Whether two people generate the same test cases 

Sources of Information  Where to find information about the technique 

Test Cases 

Completeness Coverage provided by the set of cases 

Precision  How many repeated test cases the technique generates 

Number of generated cases Number of cases generated per software size unit 

Object 

Software type Type of software that can be tested using the technique 

Software architecture Development paradigm to which it is linked 

Programming language Programming language with which it can be used 

Development method Development method or life cycle to which it is linked 

Size 
Size that the software should have to be able to use the 
technique 

Use 

Project 

Reference projects Earlier projects in which the technique has been used 

Tools used Tools used in earlier projects 

Personnel Personnel who worked on earlier projects 

Satisfaction  

Opinion General opinion about the technique after having used it 

Benefits Benefits of using the technique 

Problems Problems with using the technique 
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Table 2-11: Characterisation schemas instantiated for Boundary Value Analysis and Random Testing 
(Vegas et al. 2003). 

Level Element Attribute Boundary Value Analysis Random Testing 

Tactical 

Objective 

Purpose Find defects Find defects 

Defect type Any Any 

Effectiveness  Finds 55% of defects 
42% probability of finding a 
fault 

Scope 
Element Any 

Units (functions), complete 
systems 

Aspect Any Any 

Operational 

Agents 
Knowledge  None None 

Experience None Errors people usually make 

Tools 

Identifier - - 

Automation - - 

Cost - - 

Environment - - 

Support - - 

Technique 

Comprehensibility  High High 

Cost of application Low Low 

Inputs Code specification  Code specification  

Adequacy criterion 
Functional: Boundary Value 
Analysis  

Functional: Random testing 

Test data cost Low Low 

Dependencies 
When applied with black-box 
effectiveness may rise to 75% 

Might (and should) be 
completed with other technique  

Repeatability No No 

Sources of Information  
(Beizer 1995, Sommerville 
2001) 

(Beizer 1995, Myers 1979, 
Sommerville 2001, Pfleeger 
2001)  

Test Cases 

Completeness - - 

Precision  - - 

Number of generated 
cases 

Depends on the complexity of 
the input domain  

As many as wanted 

Object 

Software type Any Any 

Software architecture Any Any 

Programming language Any Any 

Development method Any Any 

Size Any Any 

Use 

Project 

Reference projects - - 

Tools used - - 

Personnel - - 

Satisfaction  

Opinion - 
Fine for complementing other 
methods or acceptance testing  

Benefits - It is very easy to apply 

Problems - 

- Although mean effectiveness 
is high, variance is also high 

- Maximum benefits obtained 
with people with experience 
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2.5.4 Test Method Selection via Jorgensen’s Decision Table 

As an initial step towards developing an “expert system” for black-box test method selection, Jorgensen 

(1995) developed a decision table based on the goals of testing and characteristics of the system under test, 

which could be used for informing test method selection (Table 2-12). While the decision table provides 

insight into the high-level differences between some black-box methods, it does not cover prescriptive 

methods like ST and RT or non-prescriptive approaches like EG and ET. It also does not explain the 

differentiation between Physical and Logical variables.  

Table 2-12: Decision table for selecting black-box test methods (Jorgensen 1995). 

Conditions Rules 

c1. variables are Physical Logical 

c2. independent variables? Y N Y N 

c3. fault assumption is Single Multiple - Single Multiple - 

c4. exception handling? Y N Y N - Y N Y N - 

Actions           

a1. boundary value analysis  Y         

a2. robustness testing Y          

a3. worst case testing    Y       

a4. robust worst case   Y        

a5. traditional equivalence class Y  Y   Y  Y   

a6. weak equivalence class Y Y Y   Y Y    

a7. strong equivalence class    Y Y   Y Y Y 

a8. decision tables     Y     Y 

 

2.5.5 Test Method Selection by Effectiveness 

Test methods can, in principle, be selected by their effectiveness (e.g. failure-detection effectiveness, 

defined in Chapter 1), which can be determined through empirical study and theoretic analysis. Yet, not 

enough empirical study has been carried out into test method effectiveness for this to be considered a 

reliable approach for decision making (Vegas et al. 2003). While many researchers have experimentally 

compared the effectiveness of white-box and black-box testing methods (e.g. see (Myers 1978, Basili & 

Selby 1987, Kamsities & Lott 1995, Wood et al. 1997)) and random testing to white-box and grey-box 

partition testing (e.g. see (Duran & Ntafos 1984, Jeng & Weyuker 1989, Weyuker & Jeng 1991, Hamlet & 

Taylor 1990, Tsoukalas et al. 1993, Chen & Yu 1994, Ntafos 1998, Gutjahr 1999)), there has been less 

research into the effectiveness of purely black-box methods like EP, BVA and ST. Also, most studies focus 

on test set quality and not on aspects that affect novice testers, such as ease of adoption (i.e. test method 

learnability). Instead, they focus on a variety of quantitative metrics for assessing effectiveness, such as: 

 fault detection effectiveness (i.e. number faults detected / total number of known faults) (Reid 

et al. 1999); 

 faults detected per severity level (e.g. critical versus cosmetic faults) (Itkonen et al. 2007); 
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 test efficiency (i.e. number faults detected / total time spent in testing) (Reid et al. 1999); and  

 source code coverage (Seo & Choi 2006).  

Ideally, these metrics could form a basis for test method selection16. For example, if the aim of testing is 

to detect more failures, then theoretically, a method that has been proven through experimentation to have a 

higher failure detection ratio could be selected for use. On the other hand, since each experiment typically 

uses a different set of metrics, it can be difficult to make accurate comparisons between them and to draw 

reliable conclusions. More experimentation into test method effectiveness is required before this can be 

used as an accurate approach for test method selection.  

 Another issue is that while non-prescriptive approaches like EG are believed by some to be among the 

most popular in industry (Jorgensen 1995), few studies have compared the effectiveness of prescriptive 

black-box testing methods (e.g. as they are described in textbooks) to those used by professional testers in 

industry. Bach (2001) argues that “computer scientists are not qualified to study [the use of non-prescriptive 

approaches like] ET, because to study ET is to study how people think: cognitive psychology”, suggesting 

that it could be challenging to assess how professional testers actually perform testing. This view is 

supported by Kaner et al. (2001) who states that the type of thinking that is required during ET is similar to 

that which is required in fields like sociology, and that textbooks on psychology (e.g. (Koslowski 1996)) 

explain why testing is “more than simply looking at external behaviour and checking it against simple 

expectations” (Kaner et al. 2001). Despite these caveats, empirical evaluation of black-box testing methods 

is necessary to provide evidence-based decision making. As a result, relevant experiments from both 

industry and academia are discussed below.  

Reid (1997) is one of the only researchers to empirically compare pure black-box EP, BVA and RT, 

where effectiveness was based on the probability that a test case would detect a fault that was previously 

found in a system already in use. Existing defect reports were used to identify known faults in the seventeen 

system modules, where each module contained one fault (i.e. seventeen faults in total). Although all test 

cases were derived by the primary researcher, the approach used was to derive all possible inputs that 

satisfied the test method (e.g. derive all possible equivalence classes for all program modules). The 

hypotheses were that BVA is more effective than EP and that both are more effective than RT. Reid did 

find BVA to be far more effective than EP, but it required more than three times as many test cases (Table 

2-13). Only eight random test cases per module were required for RT to be as effective as EP. On the other 

hand, 50,000 random tests had to be selected for it to be as effective as BVA. For test case construction, no 

significant difference was found between minimised and one-to-one BVA, while minimized EP was slightly 

less effective than one-one-one EP.  

                                                           
16 Ntafos (1988) used the level of automated support available to determine effectiveness; however, this is qualitative. 
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Table 2-13: Results of an empirical comparison of EP, BVA and RT (from (Reid 1997)). 

Measure 
EP  

(1 to 1) 
EP  

(Minimised) 
BVA  

(1 to 1) 
BVA  

(Minimised) 
Random 
Testing 

Probability of fault detection 33% 31% 73% 79% 12% 

Average number faults detected 5.7 5.3 12.4 13.4 2 

Average number test cases 
required to detect one fault 

7.6 4.9 25.1 13.6 Not stated 

 

Ostrand and Balcer (1988) used CPM to derive black-box test cases for ninety-one high level functions 

of a configuration management system, which was implemented in 35,000 lines of Ada. One tester 

produced a TSL specification for all ninety-one requirements, while four others reviewed them for 

inconsistencies. The TSL processor produced 1,022 test cases. Writing the TSL specifications took around 

three weeks, during which test script writing took the most time (although the researchers did not quantify 

this observation). Test execution took around two weeks, during which modifications to test scripts and 

specifications were required. In total, thirty-nine program faults were detected, showing that CPM is 

effective for defect detection, though it could also be argued that it is costly in terms of the time taken to 

produce test suites. Ostrand and Balcer (1988) did not compare this outcome with other experiments.   

Yu et al. (2003) conducted an experiment with 104 final-year computer science students, who had at 

least one year of full-time work experience. The aims were to identify test methods the students initially 

chose to use for testing a program they coded themselves and to compare their opinions of those methods to 

the Classification Trees approach, which they were taught after the initial coding and testing phases. The 

advantages that were reported by the students include that the Classification Tree approach is “systematic” 

(63% of the group) and that the visual representation provided by the trees gives the approach an advantage 

over other white-box and black-box methods, as they are easy to read and understand and they illustrate 

relationships between test cases (54% of the group). One of the reported disadvantages was that 

Classification Trees can become too large and complicated if specifications are not properly decomposed. 

Other disadvantages were that each tester may produce different test sets from the approach and that test set 

quality depends on specification quality, though these problems apply to all prescriptive black-box methods.  

A number of experiments have identified possible relationships between test effectiveness and tester 

experience. These include experiments by Lauterbach and Randall (1989) and Itkonen et al. (2007). 

Lauterbach and Randall (1989) carried out a case study with four professional testers who used three static 

methods (code reviews, error and anomaly detection and structure analysis) and three dynamic methods 

(white-box branch testing, black-box testing and RT), although the paper did not name which specific 

black-box methods were used. The metrics utilised were defect detection effectiveness (i.e. the percentage 

of known defects detected by a method) and effort required to conduct testing. While they found that black-

box testing resulted in lower levels of code coverage, they also found that the choice of tester had a greater 

impact on test effectiveness than did the choice of test method. This suggested that tester experience can 

have a significant impact on testing effectiveness, which is an issue that can be masked by using students in 

experimentation.  
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Itkonen et al. (2007) compared the effectiveness of ET to EP, BVA and combinatorial testing in an 

experiment involving seventy-nine advanced software engineering students. Although they found no 

significant difference between numbers of faults detected by the non-prescriptive and prescriptive 

approaches, they found that the testers were able to detect more obvious and more obscure faults through 

ET, as well as more user interface and usability problems. On the other hand, they found more technical 

faults of a less severe nature through prescriptive testing. It could be argued that the group’s inexperience 

with testing reduced their effectiveness during ET and if more experienced “pathological” testers (Reed 

2007) were used they may have been able to produce more effective test cases. This view is supported by 

the findings of the Lauterbach/Randall study (1989).   

Itkonen and Rautiainen (2005) conducted an industry-based case study with six software testers from 

three software development companies, which were code-named Mercury (1 participant), Neptune (4 

participants) and Vulcan (2 participants) who were already using ET. Although the findings reported by 

Itkonen and Rautiainen (2005) are insightful and support a number of advantages and disadvantages to ET 

reported here, as only six participants were used in the case study, the results can only be considered to be 

indicative. The participants did not derive test cases during the study. Instead, data was collected on the 

types of defects and defect counts identified with ET in the past. The average number of defects detected 

per hour was higher for Neptune and Mercury, which may have been due to them using session-based ET as 

this approach allows testers to remain uninterrupted and focussed throughout testing. On the other hand, the 

participants from Vulcan who were using traditional ET did not feel that being interrupted altered their test 

effectiveness. Itkonen and Rautiainen could not confirm whether Vulcan’s metrics were accurate. The 

metrics from Mercury may have been affected by the maturity of the system under test, as their product was 

relatively new and was likely to contain more defects. Nonetheless, Itkonen and Rautiainen concluded that 

ET did improve test productivity, particularly when testing complicated aspects of a system. They 

considered ET to be effective for defect detection. For example, in this study, 4.8 and 8.7 defects per hour 

were detected at the two companies using session-based ET, compared to less than 3 defects per hour in a 

study of Use Case Testing (Anderson et al. 2003) and 2.47 defects per hour in a case study of functional 

testing (Wood et al. 1997). Also, 15% of faults detected at Mercury were considered to be “serious.” 

Interestingly, none of the participants from the Itkonen/Rautiainen case study had any prior training in 

software testing. Although they reported setting goals for ET, none claimed to use any prescriptive black-

box testing methods, despite the fact that they reported testing with combinations of inputs and boundary 

values, suggesting that the test case design rules they used overlap with prescriptive black-box methods. 

Interviews of 40 to 70 minutes were conducted with the participants using a standard questionnaire (Table 

2-14). One of the challenges was identifying testers with enough domain knowledge that enabled them to 

use the system under test like a professional user. Itkonen and Rautiainen questioned what effect that 

domain knowledge, testing experience and testing training has on the defect detection ability of the tester, 

as they found that each participant tested the software differently. In addition, all three companies reported 

that assessing test coverage was a problem with ET. Recording the test case design rules used and the 

domain knowledge utilised during ET could be one solution, as it would enable this information to be 

shared with novice testers (see Chapter 3 for relevant approaches). 
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Ideally, metrics like failure-detection effectiveness could be used as a basis for test method selection. 

Realistically, more experimentation is required before this can be used for decision making.  

Table 2-14: Advantages of Exploratory Testing reported at Mercury, Neptune and Vulcan  
(Itkonen & Rautiainen 2005) ( indicates that all participants agree with the statement). 

Advantages of Exploratory Testing 
Mercury 

1 participant 

Neptune 

4 participants 

Vulcan 

2 participants 

Software can be used in many ways and there are many combinations 
between features, thus writing detailed test cases for everything is difficult, 
laborious and even impossible; thus, ET is a “natural choice” 

   

ET is well suited to testing from a user’s perspective    

ET emphasises utilisation of tester knowledge, experience and creativity to 
find defects    

ET enables quick feedback on features from testers to developers    

ET adapts well in situations in which requirements and software frequently 
change and in which specifications are often ambiguous or incomplete    

ET enables learning about a system and the knowledge that is gained can 
be utilised during future work, including training and customer support.      

When user manuals are used to guide ET, it also enables them to be 
evaluated for effectiveness and correctness     

ET enables testing of the features of a system as a whole, allowing issues 
to be detected that would otherwise go undetected during scripted testing     

ET provides more versatile testing that delves deeper into tested features    

Each time the system is tested it is done so in a different way and enables 
exploration for new defects    

ET enables testing aspects of the software that would not be included in 
test plans or test cases 

Five out of seven interviewees (paper did not 
mention which companies)  

ET was high in efficiency and effectiveness     

ET enables defects to be detected in a short period of time    

ET enables more defects to be detected during system testing, possibly 
due to testers deriving more destructive input    

ET allows testers to quickly obtain an overall picture of system quality     

Disadvantages of Exploratory Testing Mercury Neptune Vulcan 

It is difficult to determine the efficiency of ET in the long term, as test 
coverage is difficult to estimate, which possibly leaves many features 
untested 

 1 person  

A lack of test documentation makes it difficult to determine test coverage 
and what should be tested next    

ET is less efficient and effective when performed by less experienced 
testers who have less domain knowledge     

Relying on the expertise of testers makes ET more prone to human error    

Using ET to test complex systems is very time consuming  1 person  

It is impossible to find testers with enough experience to act as 
professional users  1 person  

As individual testers have different backgrounds an experience, they all 
perform ET from different viewpoints; however, this was also seen as an 
advantage in the versatility of the testing  

   

Defects are not easily reproducible when using ET (however, this was not 
a problem at Mercury as testers kept detailed logs during ET)      
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2.6 External Influences on Test Set Quality 

Reid (1994) identified a number of factors that can affect test set quality and, ultimately, the chance that 

a test case will detect a defect (Figure 2-16). This included specification notation, tester skill level, the level 

of independence between testers and developers, the quality of program source code and the required level 

of test coverage and the impact of this on the test methods that are chosen for testing a program. The 

elements of Reid’s diagram can be used for considering external factors that could affect test set 

effectiveness during experimentation (e.g. see Chapters 5 and 6).  

Figure 2-16: Factors affecting the quality of testing (Reid 1994). 
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Something that Reid did not consider was whether a tester’s domain knowledge of the system under test 

can have an impact on their test effectiveness. This factor, along with specification notation (i.e. 

specification language) are discussed in more detail in the following two sections. 

2.6.1 Effect of Specification Language on Black-Box Testing  

As Parrington and Roper (1989) state, “the purpose of a specification is to provide a clear, precise and 

unequivocal statement of the function to be implemented.” This is not often achieved in practice, since 

specifications are usually written in natural language and consist of ambiguous vocabulary and undefined 

terms (Parrington & Roper 1989). Specifications are considered to be the greatest source of error in 
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software development (Patton 2006). For example, a survey of software testing practices in Australian 

found that out of 65 organisations, 34% and 25% respectively reported that 40 to 59% and 20 to 39% of 

program faults were caused by specification defects (Ng et al. 2004). Although specification languages are 

not the main topic of this thesis, they can affect a tester’s ability to apply prescriptive black-box testing 

methods effectively. Thus, a number of issues with specification languages are discussed.  

Fuchs and Schwitter (1996) argue that specifications are usually written in natural language because 

they need to be readable by all stakeholders, while Abbott (1986) observed that specifications that define 

the characteristics of input and output fields can be difficult for end-users to understand. Nonetheless, 

specifications that do not define the nature of valid and invalid program inputs (Jorgensen 1995) (e.g. 

boundary values) can result in inadequate testing (Marick 1995, Abbott 1986). The professional experience 

of the author of this thesis17 is that that the majority of specifications produced in industry require further 

clarification and refinement before specification-based test case design is possible. For example, the syntax 

(e.g. boundaries, valid datatypes, valid data sets) of input and output fields are rarely defined, while the 

expected behaviour of the program for invalid inputs is seldom specified. Although this information can 

theoretically be obtained from software developers or by analysing program source code, this does not 

support independent black-box testing and it can still result in inadequate testing if developers do not have a 

complete or correct understanding of user requirements. Abbott (1986) suggested that two specifications 

should be produced, one for testers and one for end users. Parrington and Roper (1989) recommend that all 

user requirements should be rewritten to remove ambiguity and ensure test cases can be selected from them.  

Consequently, Parrington and Roper (1989) proposed a specification structure that defines the inputs, 

outputs and functions of each component under test (Figure 2-17). Although this ensures that each input and 

output is defined, it does not include a language for defining the syntax of the inputs and outputs. The Test 

Specification Language (TSL) proposed by Ostrand and Balcer (1988) (see Section 2.2.7.6) supports the 

systematic documentation of equivalence classes for each input field, but did not provide a means for 

producing detailed syntax definitions for each input and output field. The use of formal specification 

languages could enhance Parrington and Roper’s specification structure and Ostrand and Balcer’s TSL. 

Figure 2-17: Specification structure proposed by Parrington and Roper (Parrington & Roper 1989). 

 Input: 

  …  }   Interface 

 Processing: 

  … 

 Output:  

  … }   Interface 

 

                                                           
17 This observation is based on three years of industry-based programming experience and almost four years of experience of working 
as a senior test consultant with a software testing consultancy in Australia.  
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Formal languages allow specifications to be expressed in “unambiguous language” that enables 

specification defects and ambiguities to be more easily detected than in specifications expressed in natural 

language (Liskov & Zilles 1975). On the other hand, formal specifications can be difficult to read without 

training (Fuchs & Schwitter 1996) and few industrial organisations use them (Ostrand 2002). One formal 

language that is “readily learned, easily understood, and widely accepted” (Lee & Dorocak 1973) is 

Backus-Naur Form (BNF) (Backus 1958, Naur 1960, Knuth 1964). BNF is based on context-free 

grammars, which consist of production rules that define the terminal and non-terminal elements of program 

input and output fields precisely (Paakki 1995)18. BNF has proven to be an effective for specifying the 

syntax of input fields for the purposes of applying EP, BVA, specification-based mutation testing (Murnane 

& Reed 2001) and ST (Beizer 1995). It enables precise definition of the minimum and maximum boundary 

values of range-based fields and individual data elements of list-based fields (see Figure 2-18). It facilitates 

the construction of Abstract Syntax Trees (see Section 2.2.3), which can be used to illustrate the 

relationships between each input field and which facilitate automatic test case generation (e.g. see 

(Kaksonen, Laakso & Takanen 2008)). Thus, specifying input and output fields in BNF can enable more 

effective black-box testing, regardless of which particular test method is applied.  

Figure 2-18: Example of a BNF specification for the street name of an address. 

 <street>  ::= <name>   <type>  { <direction>} 

 <name>  ::= [A – Z | a – z | - ]1 - 40  

 <type>  ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt | …] 

 <direction>  ::= [North | South | East | West ] 

  ::= [ ]  #i.e. one space 

 

2.6.2 Effects of Domain Knowledge on Black-Box Testing  

Interestingly, most publications of non-prescriptive testing approaches like EG and ET (see Section 

2.2.5) suggest that there is no system to the seemingly ‘intuitive’ process that takes place during test case 

design and execution. For example, Jorgensen (1995) refers to EG as the “most intuitive” black-box 

method. Kaner (1988) maintained that “in complex situations, your intuition will often point you toward a 

tactic that was successful (you found bugs with it) under similar circumstances. Sometimes you won’t be 

aware of this comparison. You might not even consciously remember the previous situations. This is the 

stuff of expertise.” Agruss and Johnson (2000) argued that “much of what experienced software testers do is 

highly intuitive, rather than strictly logical.”  

The Oxford English Dictionary (1970) defines intuition as “the immediate apprehension of an object by 

the mind without the intervention of any reasoning process” and “immediate apprehension by the intellect 

alone.” Regardless of whether the tester is consciously aware of the process they follow when using non-

prescriptive testing approaches, there may still be a pattern to the types of test case design rules they use. As 

                                                           
18 Wikipedia (Context Free 2008) provides a general definition of context-free grammars.  
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Kaner et al. (2001) observe, a tester’s skill with ET can increase as they become more familiar with a 

system, including the market it was developed for, the risks associated with developing it and the failures 

previously detected in it. As Barber (2007) claimed, “the more we know about what a system or application 

is supposed to do, the more intuitive we believe it is.” These views suggest that the intuition a tester uses 

during ET could be logical and procedural domain knowledge they have gained over time, which could be 

based (among other things) on their knowledge of effective test case design rules from prescriptive black-

box testing methods (Craig & Jaskiel 2002). There may also be information about the domain of a system 

that gives experienced “pathological” testers clues on how to test it effectively. It is also possible that 

individual testers have their own unique collection of test case design rules that they routinely use when 

using non-prescriptive approaches to testing.  

In fact, many prescriptive black-box testing methods are based on domain knowledge of program faults 

and failures. As Wild et al. argue (1992), program faults are often the result of programmers 

misunderstanding the problem domain of a program. Many prescriptive methods are based on specific types 

of program faults. For example, BVA is based on the view that programmers often make ‘off-by-one’ 

errors, which can be identified through “application solution” domain knowledge (Reed 1990). It is also 

realistic to assume that there are other high-yield black-box test case design rules that are commonly used 

by experienced testers that have not yet been published in software testing literature. If those rules could be 

explicitly defined, this knowledge could be used to enhance black-box testing methods and to improve the 

defect detection skills of both novice and experienced testers (see Chapter 3 for GQASV and SMT, which 

can support this). This knowledge could also be used to classify black-box methods on the extent to which 

they rely on domain knowledge.  

2.7 Automation of Black-Box Testing Methods  

Since testing can involve the design of thousands of test cases and specification changes can cause 

changes to many of those tests, automation can be necessary (Bauer & Finger 1979). In 1983, Perry argued 

that “testing has been primarily a manual operation and often an inefficient function in many organisations 

since it can suffer from human error and is often very time consuming.” (Perry 1983). Today there are many 

automated tools available to support black-box testing and to analyse and improve test coverage and 

effectiveness. For example, model based testing tools provide support at the system testing level, while the 

‘xUnit’ family of tools support automated unit testing (Bertolino 2007). Saley, Hoffman and Strooper 

(2002) developed a white-box tool that automatically generates boundary values for testing Java classes. 

JCover can support analysis of code coverage achieved when testing Java programs (Codework 2009).  

The tools that are of most interest in this thesis are those that can be used for the generation of black-box 

test data values and test cases. This includes tools for Random Testing (Section 2.7.1), Syntax Testing 

(Section 2.7.2), black-box testing (Section 2.7.3), Classification Trees (Section 2.7.4) and a new prototype 

testing tool called the Atomic Rules Testing Tool (ARTT), which automates Atomic Rule definitions of EP, 

BVA and ST (see Chapter 3 and 4).  
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2.7.1 Automated Random Testing 

In terms of automation, Random Testing is probably the most well supported black-box testing method. 

Pseudo-random number generators are provided with most standard programming languages and are 

available in simple-to-use functions like randbetween in Microsoft Excel. Combinatorial test methods are 

also well supported, as numerous algorithms are available (see Section 2.2.7).  

2.7.2 Automated Syntax Testing 

Automated Syntax Testing dates back to as early as the 1960’s and 1970’s. In 1962, Sauder 

implemented a tool that parsed data declarations in COBOL programs to determine the nature of valid 

inputs in order to generate test data (Sauder 1962). In 1977, Houssais conducted an experiment to measure 

the detection of faults in an Algol 68 compiler using a test data generation tool that automatically produced 

syntactically and semantically correct test programs (Houssais 1977). Although Houssais did not provide an 

example of the language in which the specifications were written, it did state that the grammar was a subset 

of affix grammars for Algol 68. Examples of the types of test cases that were generated were testing loops 

with 1, 2, 3 and ‘many’ iterations. While Houssais maintained that the method could be used to generate 

invalid test programs, this was not included in his research or experimentation, nor was an explanation of 

how this could be achieved. Thus, the main shortcomings of this paper were that it did not explain how the 

test programs were derived and did not describe the test generation algorithm utilised.  

In 1982, Fultyn described an automated approach for constructing valid inputs from BNF specifications 

(Fultyn 1982), which could be considered to be a form of ST. The approach involved random selection of 

terminals and randomly made decisions about whether to include optional constructs in test cases. One 

advantage was that program features that would not usually be executed by users were tested. On the other 

hand, neither the testing strategy nor the automated tool was verified through experimentation or analysis.  

A more recent tool that automates Syntax Testing is JSynTest (JSynTest). This tool takes a specification 

expressed in a variant of BNF as input, generates an Abstract Syntax Tree (referred to as an “AND-OR 

graph”) and outputs a Java program that can either be used to generate test cases or become part of the input 

validation code of the system under test. Beizer (1995) observed that automation of Syntax Testing is 

readily achieved through LEX and YACC and commercial tools like T, which has also been used to 

automate BVA (Jorgensen 2002). Bouquet, Dadeau and Legeard (2006) developed a grey-box testing tool 

that automatically selects boundary values from “built in” datatypes such as integers and characters from 

Java classes expressed in the Java Modelling Language (JML).  

2.7.3 Automated Black-Box Testing  

CaseMaker is a commercial testing tool that can be used to automatically generate test data values and 

test cases for EP, BVA, EG, Decision Tables and Pair-wise testing (Figure 2-19) (Díaz & Hilterscheid). 

CaseMaker can generate test cases from input data specifications produced in Microsoft Word or as UML 

statecharts and business rules expressed in a formal notation. Equivalence classes are automatically 

generated for range-based fields by identifying partitions below the lower boundary (invalid partition), 
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above the upper boundary (invalid partition), between the lower and upper boundaries (valid partition) and 

by selecting ‘any other value’ (invalid partition defined by exclusion). For lists, partitions are generated by 

selecting the valid items in the input list (valid partition) and ‘any other value’ (invalid partition defined by 

exclusion). Test data values are automatically generated from each equivalence class, which can include the 

nominal value, boundary values, random values and all values. Expected results called “effects” can be 

added to each test data value and dependencies between values can be specified (Case Maker Part 3 2007). 

Test cases are then automatically generated using a Pair-wise algorithm. Test cases can be output in 

comma-separated format (csv), HTML, XLS and Microsoft Word. Comma-separated files can be input into 

Microfocus’ (formally Compuware’s) automation tool called Test Partner and can then be used to design 

automated test scripts.   

Interestingly, CaseMaker does not generate test data values that lie just outside and just inside the 

boundaries of range-based fields. Although ST is not directly supported by the tool, ‘functions’ can be 

applied to the test data values that are selected by the tool, to manipulate (i.e. mutate) them in a similar 

fashion to ST (Case Maker Part 4 2007). Manipulation functions include date and time conversion 

functions, mathematical (e.g. absolute value, maximum and maximum values, round, square root), text 

conversion (e.g. convert from lower case to upper case and visa versa, concatenate), trigonometric (e.g. 

sine, cosine, tangent) and constants (e.g. speed of light, gravity). CaseMaker also enables allocation of 

prefixes and suffixes to test data values (e.g. % and $).  

A case study that assessed CaseMaker against Comverse’s Mobile Internet Solutions system revealed 

that the tool improved test coverage and reduced testing by two person weeks (from a total duration of two 

person months) and in one component, it reduced the duration of manual test data derivation by three to 

four times (Tsubery 2007).  

Figure 2-19: Equivalence class generation in CaseMaker (Díaz & Hilterscheid). 
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2.7.4 Classification Trees 

An automated tool called the Classification-Tree Editor (CTE) has been developed for supporting the 

construction of Classification Trees (Lehmann & Wegener 2000). While this tool supports the 

documentation of Classification Trees and the generation of test cases, it does not automate the 

identification of equivalence classes, boundary values or syntax testing values for input fields.  

2.8 Summary  

In this chapter, the features, advantages, disadvantages, similarities and differences of a wide variety of 

black-box testing methods were presented. This literature survey included a detailed examination of at least 

seven problems that affect the usability and failure-detection effectiveness of existing black-box testing 

methods: definition by exclusion, multiple versions, method overlap, notational and terminological 

differences, reliance on domain knowledge, difficult to audit and difficult to automate.  

Common terminology used in black-box test case design was introduced first (Section 2.1.1). This was 

followed by a discussion of the four key steps of black-box test case design (Section 2.2). Individual black-

box testing methods were presented and the seven problems with black-box testing methods mentioned 

above were discussed (Sections 2.2.1 to 2.2.9). A summary of how each of the black-box testing methods 

explored touches on the four steps of black-box test case design was then presented (Section 2.3). 

Approaches to combining (Section 2.4) and selecting test methods (Section 2.5) were then presented. This 

included a review of experimental comparisons of black-box testing methods (Section 2.5.5). External 

influences on test case quality were explored (Section 2.6), including specification language and domain 

knowledge. Approaches to black-box test method automation were also reviewed (Section 2.7) 

The seven problems with existing descriptions of black-box testing methods that were explored in this 

chapter indicate a need for a prescriptive, uniform notation for representing these methods that resolves 

these problems and that ultimately improves the usability and failure-detection effectiveness of these 

methods. Improved approaches to specifying program input and output fields would also enable more 

effective testing, as would approaches for guiding testers in the creation of customised black-box testing 

methods.  

In the next chapter, three new approaches to supporting more effective black-box testing are introduced, 

in an attempt to resolve these issues. They are the Atomic Rules approach, Systematic Method Tailoring 

and Goal/Question/Answer/Specify/Verify. 
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Chapter 3 

A Generalised Representation for Black-Box Testing 
Methods  

"As a matter of cosmic history, it has always been easier to destroy than to create." 
Mr. Spock, Star Trek II: The Wrath of Khan, 1982 

3.1 Overview 

As stated in the introduction, the goal of this thesis is to investigate and resolve seven problems with 

existing descriptions of black-box testing methods that affect the usability and failure-detection 

effectiveness of the methods; these were: definition by exclusion, multiple versions, method overlap, 

notational and terminological differences, reliance on domain knowledge, difficult to audit and difficult to 

automate. In this chapter, a new representation for describing black-box testing methods called the Atomic 

Rules approach is introduced, in an attempt to resolve these problems. Two supporting approaches are also 

introduced, Systematic Method Tailoring and Goal/Question/Answer/Specify/Verify.  

In the Atomic Rules approach, black-box testing methods are decomposed into individual test case 

design rules called ‘Atomic Rules.’ Each Atomic Rule is defined in an instance of a characterisation schema 

called the ‘Atomic Rules schema,’ which defines the characteristics of each individual test case design rule 

in a uniform notation. The Atomic Rules are then utilised within the four-step black-box test case design 

process (which was introduced in Chapter 1), allowing each black-box testing method to be defined in a 

uniform notation. For example, the illustration below demonstrates the decomposition of Myers’ original 

definition of Equivalence Partitioning into Atomic Rules and the redefinition of this test method in the four-

step test case design process (Figure 3-1).   
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Figure 3-1: Example of developing an Atomic Rules definition of Myers’ (Myers 1979)  
definition of Equivalence Partitioning. 

 

 

Once a black-box testing method has been described in the Atomic Rules approach, it can be applied to 

the specification of a program’s inputs and outputs to generate black-box test cases in a far more repeatable 

and predictable fashion that would be possible using its original formulation (Figure 3-2). Eleven black-box 

testing methods have been represented in the Atomic Rules approach, including Equivalence Partitioning, 

Boundary Value Analysis, Syntax Testing and combinatorial methods Each Choice, Base Choice, 

Orthogonal Array Testing, Heuristic Pair-Wise, All Combinations, Specification-Based Mutation Testing 

and the combined approaches Base Choice/Orthogonal Array Testing and Base Choice/Heuristic Pair-Wise 

Testing (see Appendix B).  
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Figure 3-2: Illustration of applying the Atomic Rules definition of Equivalence Partitioning to a 
specification to design black-box test data and test cases.  

 

 

In summary, the Atomic Rules approach resolves the seven problems with traditional black-box testing 

methods in the follow ways.  

The uniformity of the Atomic Rules characterisation schema and four-step test case design process 

resolves notational and terminological differences between methods by providing them with a common 

vocabulary and process model. Method overlap is resolved during method decomposition by identifying 

Atomic Rules that overlap both within and between methods. Multiple versions of the same method are 

resolved by creating one set of Atomic Rules that covers the test case design rules of all published versions 

of that method. This also makes the methods easier to audit, since checks for test set completeness can be 
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based on the one prescriptive definition of each black-box testing method. Definition by exclusion is 

resolved by defining a series of Atomic Rules for Equivalence Partitioning that each select equivalence 

classes for one explicit datatype (e.g. integer, real, alpha, non-alphanumeric), thereby expressing the 

universe of discourse for program inputs. This also reduces reliance on domain knowledge, as it provides 

testers what one definition of the universe of discourse with respect to program inputs and ensures that each 

Atomic Rule is defined to a level of detail that facilitates the design of effective and predictable test cases, 

regardless of a tester’s own unique domain knowledge and experience. The prescriptive notation and 

process used in the Atomic Rules approach also the methods easier to automate. In Chapter 4, a prototype 

testing tool called the Atomic Rules Testing Tool is presented. ARTT automates the application of Atomic 

Rules from EP, BVA and ST to specifications input by the user and can also be used to record domain 

knowledge captured during GQASV and to define new Atomic Rules through SMT. 

Reliance on domain knowledge is also reduced via two new approaches called SMT and GQASV. SMT 

enables the creation of new Atomic Rules that are based on each tester’s own unique domain knowledge, 

allowing that knowledge to be specified, shared and reused. GQASV supports the definition of precise input 

data specifications to support more effective black-box testing (when such specifications are not readily 

available) and also supports the capture of domain knowledge that is utilised during the specification 

process, allowing the knowledge gained during the specification process to be shared and reused.  

An additional benefit is that individual Atomic Rules from EP, BVA and ST can be used to aid test data 

selection for methods like State Transition Testing, Use Case Testing and the Category Partition Method.  

The current chapter begins by describing the Atomic Rules’ four-step test case design process (Section 

3.2.1) and characterisation schema (Section 3.2.2). Decomposition of black-box testing methods into 

Atomic Rules is demonstrated for EP, BVA, ST and one combinatorial testing method (Section 3.3.1.4). 

This is followed by worked examples that demonstrate the application of the Atomic Rules definition of EP, 

BVA and ST to an example specification for an Address Parser (Section 3.4). Additional benefits of the 

Atomic Rules approach are then discussed, including how it simplifies the checking the completeness of 

black-box test sets (Section 3.5) and how it can be used to support State Transition Testing (Section 3.6.1), 

Use Case Testing (Section 3.6.2) and the Category Partition Method (Section 3.6.3). Then, improvements 

(Section 3.7) and limitations (Section 3.8) of the Atomic Rules approach are presented. This is followed by 

research related to the development of characterisation schemas and method decomposition (Section 3.9). 

Goal/Question/Answer/Specify/Verify and Systematic Method Tailoring are then introduced (Section 3.10) 

and demonstrated against a real-world online foreign currency calculator (Section 3.10.3).  

3.2 The Atomic Rules Approach  

The Atomic Rules approach was developed by analysing the common elements of eleven different 

black-box testing methods, including Equivalence Partitioning (EP), Boundary Value Analysis (BVA), 

Syntax Testing (ST) and combinatorial methods Each Choice, Base Choice, Orthogonal Array Testing, 

Heuristic Pair-Wise, All Combinations, Specification-Based Mutation Testing (SBMT) and the combined 

approaches Base Choice/Orthogonal Array Testing and Base Choice/Heuristic Pair-Wise Testing, which 



A Generalised Representation for Black-Box Testing Methods Chapter 3 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 91 

were described differently in fifteen different sources (Beizer 1984, Beizer 1990, BS 7925-2, Craig & 

Jaskiel 2002, Graham 1994, Grindal et al. 2004, Hetzel 1988, Jorgsensen 1995, Kaner 1988, Lewis 2000, 

Mandl 1985, Marick 1995, Mosley 1993, Murnane & Reed 2001, Myers 1979). This revealed a common set 

of attributes that could be used to characterise the test case design rules within the methods. The attributes 

were used to build the Atomic Rules schema (Section 3.2.2). This also evolved into a four-step test case 

design process for black-box testing (Section 3.2.1).  

A significant number of other ‘duplicate’ publications of EP, BVA, ST and combinatorial testing 

methods were also cited during this investigation, including (Abbott 1986, Beizer 1995, Burnetein 2003, 

Copeland 2004, Grindal et al. 2005, Hetzel 1988, Hutcheson 2003, Jorgensen 2002, Kaner et al. 2001, Kit 

1995, Mosley & Posey 2002, Myers 2004, Ould & Urwin 1986, Page et al. 2009, Parrington & Roper 1989, 

Patton 2006, Perry 2000, Pressman 1992, Rae et al. 1995, Sommerville 1994, Tamres 2002, Watkins 2001). 

3.2.1 The Four-Step Black-Box Test Case Design Process  

As introduced in Chapter 2, each black-box testing method typically focuses on just one of the four key 

steps of black-box test case design, as follows.   

1. partitioning of the input domain of a program; 

2. selection of individual test data values from each partition;  

3. manipulation or “mutation” of the test data values; and  

4. combining test data values to construct test cases.  

Although some black-box testing methods cover more than one of these steps, a published definition of 

a method usually focuses on just one of these steps. For example, EP provides guidance on partitioning the 

input domain, selecting test data and designing of test cases. Although it covers three of the four steps of 

black-box test case design, it specialises in providing guidance for input and output domain partitioning. 

Also, several methods share common test case design steps. For example, boundary values are typically 

selected from the edges of equivalence classes that are typically identified through EP (e.g. see (Myers 

1979)). While ST is not described as a partitioning approach and does not include explicit guidelines for 

partition selection, partitions must implicitly be selected for each input field to enable selection of syntax-

based test data values. These insights led to the definition of a fundamental four-step test case design 

process for black-box testing that was defined in Chapter 1 (Figure 1-4) (Murnane et al. 2005, 2007). An 

analysis of the eleven different black-box testing methods studied in this research revealed that each could 

be decomposed into a set of Atomic Rules, where each Atomic Rule has a ‘rule type’ that corresponds to 

one of these four steps (see Chapter 1, Figure 1-4). When used in conjunction with a set of Atomic Rules 

from a particular method, this four-step process can be used to construct black-box test cases in the usual 

way (Section 3.4). 

 



A Generalised Representation for Black-Box Testing Methods Chapter 3 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 92 

3.2.2 The Atomic Rules Schema  

The Atomic Rules schema (Table 3-1) comprises fourteen attributes that were identified by analysing 

the common features of test case design rules from the eleven different black-box testing methods under 

examination (see Section 3.2). The attributes of this schema are as follows.   

1. Test Method. The name of the test method the test case design rule was derived from (e.g. 

Equivalence Partitioning, Boundary Value Analysis, Syntax Testing).  

2. Number. A unique identifier given to each rule, which starts with an abbreviation of the name of 

the test method and ends with an incremental number (e.g. EP1, EP2, EP3).   

3. Identifier. An abbreviation of the Name field.   

4. Name. The name of the rule.  

5. Description: Describes the ‘functionality’ of the rule (i.e. test data or test cases it derives).  

6. Source. The reference from which the rule was derived. For example, many EP rules were derived 

from (Myers 1979), while many ST rules were derived from (Beizer 1995) and (Marick 1995). 

Atomic Rules that were defined as a part of this research have “N/A” in this field.  

7. Rule Type. There are four types of Atomic Rules, corresponding to the four-steps test case design 

process. Data-Set Selection Rules (DSSRs) partition the input and output domains of a program 

into equivalence classes, Data-Item Selection Rules (DISRs) select test data values from each 

partition, Data-Item Manipulation Rules (DIMRs) “mutate” test data values and Test Case 

Construction Rules (TCCRs) combine test data values into test cases.  

8. Set Type. This corresponds to the set type of the input field the rule can be applied to. For 

example, some Atomic Rules can only be applied to contiguous data ranges (e.g. DISRs from 

BVA), while others can only be applied to list-based fields (e.g. DSSRs from EP that select values 

lists). Thus, the values List and Range can appear in this field.  

9. Valid or Invalid: Describes whether the rule selects valid test data that a program should accept 

as correct or invalid test data that it should reject as incorrect.   

10. Original Datatype. This records the datatypes of input and output fields that the rule can be 

applied to. For example, one ST rule substitutes a lowercase letter for an uppercase letter and this 

can only be applied to fields of datatype ‘alpha.’  

11. Test Datatype. This records the datatype of test data selected by the rule. For example, some EP 

rules specifically select invalid datatypes as test data.  

12. Test Data Length. This contains the length (in characters) of test data selected by the rule. For 

example, some ST rules select one character as test data, while others select strings. 

13. # Fields Populated. This records the number of fields that are populated with test data when the 

rule is applied. For example, BVA rules select test data for one field at a time, whereas Test Case 

Construction Rules can populate all fields of a test case at once.   



A Generalised Representation for Black-Box Testing Methods Chapter 3 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 93 

14. # Tests Derived. For Test Case Construction Rules, this field contains an equation of the number 

of test cases derived.  

Each of these characteristics is defined as an attribute in the Atomic Rules schema (Table 3-1).  

Table 3-1: The Atomic Rules characterisation schema.  

Attribute Type Definition 

Test Method enum 

Black-box testing method that the Atomic Rule was originally derived from. Options 
are: Equivalence Partitioning, Boundary Value Analysis, Syntax Testing, 
Specification-Based Mutation Testing, Each Choice, Base Choice, Orthogonal Array 
Testing, Heuristic Pair-Wise, All Combinations, Specification-Based Mutation Testing 
and the combined approaches Base Choice/Orthogonal Array Testing and Base 
Choice/Heuristic Pair-Wise Testing, N/A (for new Atomic Rules that are defined 
through SMT).  

Number String Unique identifier given to each rule. 

Identifier String Abbreviation of rule name.  

Name String Unique name given to each rule. 

Description String Brief description of what the rule does. 

Source enum 
References from which rule was derived. N/A denotes Atomic Rules defined in this 
thesis. 

Rule Type enum 
Corresponds to the four-step test case design process. Options are: Data-Set 
Selection Rule (DSSR), Data-Item Selection Rule (DISR), Data Item Manipulation 
Rule (DIMR) or Test Case Construction Rule (TCCR) (see Section 3.2.1).  

Set Type enum Specifies the set type each rule applies to. Options are: List, Range or Both. 

Valid or 
Invalid 

enum Identifies whether the rule selects valid or invalid test data.  

Original 
Datatype 

datatype 
Defines datatypes to which each rule can be applied. Options are: Integer, Real, 
Single Alpha, Multiple Alpha, Multiple Alphanumeric, Single Non-Alphanumeric, 
Multiple Non-Alphanumeric, Null, or “All” if rule applies to all datatypes. 

Test 
Datatype 

datatype 
Defines datatype of selected test data. Options are: Integer, Real, Single Alpha, 
Multiple Alpha, Multiple Alphanumeric, Single Non-Alphanumeric, Multiple Non-
Alphanumeric, Null or ‘Same as original’ if rule does not change the field’s datatype. 

Test Data 
Length 

integer 
Specifies the maximum length of test data selected by the rule. If original datatype 
and test datatype are the same, then ‘Same as original’ will appear. If test datatype 
depends on the maximum length of selected data, then ‘Max’ will appear in this field.  

# Fields 
Populated 

string Number of input fields for which the rule selects test data during one application. 

# Tests 
Derived 

string 
Count of the number of test cases derived by the rule. DSSRs, DISRs and DIMRs do 
not select test cases, thus they have “0” under this attribute. TCCRs can hold an 
equation to calculate this, based on the number of fields in the test case. 

 

The semantics of most of the attributes in the Atomic Rules schema (Table 3-1) are evident from their 

definition. However, there are three attributes that require further explanation:  

 Set Type,  

 Original Datatype and  

 Test Datatype.   
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Set Type defines whether an Atomic Rule can be applied to an input data field that is specified as a ‘list’ 

or a ‘range’ (referred to as ‘list-based’ and ‘range-based’ fields). For example, some EP rules only apply to 

ranges of contiguous data, while others only apply to data stored in lists (Myers 1979). Lists can be 

expressed as L ::= [v1 | v2 | … | vn] or L ::= [v1, v2, …, vn] where n is the number of v values contained in list 

L. Ranges can be represented as {R : lb  R  ub} or R ::= [lb – ub], which denotes the range of values from 

lower boundary lb to upper boundary ub. These terms were adapted from similar concepts discussed in 

(Jorgensen 1995, Lewis 2000, Mosley 1993, Myers 1979, Page et al. 2009). For example, in their definition 

of EP, Page, Johnston and Rollison (2009) use the term ‘Range’ to describe a set of contiguous data and 

‘Group’ to describe sets of related items that are each processed in the same way by the program. 

Original Datatype and Test Datatype make use of eight ‘base’ datatypes that are required for defining 

black-box test case design rules. A characterisation schema for classifying datatypes was defined to specify 

each one in a standard notation (Table 3-2). The schema was then populated for eight base datatypes: 

integer, real, single alpha, multiple alpha, multiple alphanumeric, single non-alphanumeric, multiple non-

alphanumeric and null (Table 3-3) (‘single alphanumeric’ was not defined as a datatype, since it is not 

possible to define a single character string with two datatypes represented). Defining eight Atomic Rules for 

EP that each correspond to one of these datatypes resolves definition by exclusion (see Section 3.3.1.1). 

Table 3-2: Characterisation schema for defining the datatype of program input and output fields1. 

Attribute Type Definition 

Name string A unique name for each datatype. 

Set Type enum Describes the set type of the datatype. Options are List and Range. 

Size  string 
Max length of datatype in bytes. Length can depend on implementation using the 
datatype (Meek 1994), for which “Max buffer length” will appear.  

Example string A simple example.  
 

Table 3-3: Datatypes defined for use in the Atomic Rules schema  
(used by Atomic Rules schema fields Original Datatype and Test Datatype). 

Name Set Type Size Example 

Integer List or Range Max buffer length 
List: [-30, 4, 16, -1, 25] 
Range: [-16 – 335]  

Real List or Range Max buffer length 
List: [10.4, -100.5, 3.2] 
Range: [-12.1 – 54.23] 

Single Alpha List or Range 1 byte 
List: [e, a, n, B, c, H, I] 
Range: [e – g] 

Multiple Alpha List Max buffer length 
List: [Melbourne, Sydney, Adelaide, Perth, 
Darwin, Hobart, Canberra, Brisbane] 

Multiple 
Alphanumeric  

List Max buffer length List: [4z3A, A83, b44]  

Single Non-
Alphanumeric 

List or Range 1 byte 
List: [“, (, %, *, “, +, &] 
Range: [“– +] 

Multiple Non-
Alphanumeric  

List Max buffer length List: [*&%, ()*&^&^$, {}:”<>?] 

Null (empty) List or Range 0 bytes 
List: [ ] 
Range: [ ] 

 
                                                           
1 The columns of Table 3-2 relate to the domains of Reed’s KABASPP model (Reed 1990) as follows. Name (col. 1), Set Type (col. 2) 
and Example (col. 4) are from the application solution domain and Size (col. 3) is from the development and run-time domain.   
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3.3 Representing Black-Box Testing Methods as Atomic Rules  

Fifty-two Atomic Rules were defined for the eleven black-box testing methods analysed in this thesis 

(see Appendix B). To demonstrate the decomposition of original descriptions of black-box testing methods 

into Atomic Rules, Atomic Rule definitions of EP, BVA, ST and All Combinations are provided below.  

3.3.1.1 Decomposing Equivalence Partitioning  

Using the above definitions, it is possible to decompose Myers’ original definition of EP (Myers 1979) 

into a set of Atomic Rules, and to show that the test case design procedure for this method is readily 

concerted into the four-step test case design process (see Section 3.2.1) that has been developed. In 

addition, decomposition of test case design rules from two other definitions of EP (published in (Jeng & 

Weyuker 1989, BS 7925-2)) are included, allowing all method variations to be included (i.e. definitions 

from (Abbott 1988, BS 7925-2, Burnstein 2003, Copeland 2004, Craig & Jaskiel 2002, Jorgensen 1995, 

Kaner 1988, Kit 1995, Mosley 1993, Mosley & Posey 2002, Myers 1979, Page et al. 2009, Patton 2005, 

Parrington & Roper 1989, Pressman 1992, Tamres 2002) are included). This consolidation would be 

difficult to achieve without both the Atomic Rules and the four-step process having been defined. 

Myers’ (1979) test case design guidelines (Table 3-4, col. 1) are first decomposed into individual test 

case design rules (Table 3-4, col. 2) and then each rule is defined as an Atomic Rule (Table 3-4 col. 3 and 

Table 3-5). Consider Myers’ (1979) first guideline, which is as follows: 

“If an input condition specifies a range of values (e.g. “the item count can be from 1 to 999”), 

identify one valid equivalence class (1  item count  999) and two invalid equivalence classes 

(item count < 1 and item count > 999).” 

This guideline can be decomposed into the following test case design rules, which can then be 

documented as individual Atomic Rules.  

1. Equivalence class ‘item count < 1’ is covered by a test case design rule that selects an 

equivalence class containing all values below the lower boundary of the field, which becomes 

Atomic Rule EP1: Less Than Lower Boundary Selection.   

2. Equivalence class ‘item count > 999’ is covered by a test case design rule that selects an 

equivalence class containing all values above the upper boundary of the field, which becomes 

Atomic Rule EP2: Greater Than Upper Boundary Selection.  

3. Equivalence class ‘1  item count  999’ is covered by a test case design rule that selects an 

equivalence class containing all values between the lower and upper boundary of a field, which 

becomes Atomic Rule EP3: Lower to Upper Boundary Selection.  

Thus, each test case design rule is documented as an Atomic Rule that selects test data for a range-based 

field (Table 3-5). This process allows method overlap to be resolved. For example, Myers’ first and second 

guidelines both identify equivalence classes for range-based fields (Table 3-4 col. 1, guidelines 1 and 2). 
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Thus, they can be decomposed into three test case design rules (Table 3-4 col. 2, rules a to c) and three 

corresponding Atomic Rules (Table 3-4 col. 3, EP1, EP2 and EP3). EP1 to EP3 can be applied to any field 

containing contiguous data, including alpha and non-alphanumeric, if the ASCII table is used to identify 

values that lie outside field boundaries. These three Atomic Rules can also be used to test field repetition. 

For example, consider the field <vehicle> ::= [car | truck | motorbike | van]1-4, which specifies a list of 

vehicle types from which a user can choose one to four vehicles. These rules could be used to identify 

equivalence classes for testing when the user chooses less than one vehicle (i.e. zero vehicles, using EP1), 

greater than four vehicles (using EP2) and between one and four vehicles (using EP3).  

Table 3-4: Decomposing Myers’ definition of Equivalence Partitioning into Atomic Rules. 

Myers’ Definition of Equivalence Partitioning  

Corresponding Atomic Rules2 Myers’ (1979) Definition of EP  Test Case Design Rules  

1. “If an input condition specifies a 
range of values (e.g. “the item count 
can be from 1 to 999”), identify one 
valid equivalence class (1  item 
count  999) and two invalid 
equivalence classes (item count < 1 
and item count > 999)” 

2. “If an input condition specifies a 
number of values (e.g. “one through 
six owners can be listed for the 
automobile”), identify one valid class 
and two invalid equivalence classes 
(no owners and more than six 
owners)” 

a. Select a partition containing 
values between the lower and 
upper boundary of a field (covers 
‘1  item count  999’ and ‘one to 
six owners’) 

b. Select a partition containing 
values below the lower boundary 
of a field (covers ‘item count < 1’ 
and ‘0 owners’) 

c. Select a partition containing 
values below the lower boundary 
of a field (covers ‘item count > 
999’ and ‘more than six owners’) 

EP3: Lower to Upper Boundary Selection  

EP1: Less Than Lower Boundary Selection  

EP2: Greater Than Upper Boundary 
Selection 

3. “If the input condition specifies a set 
of values and there is reason to 
believe that each is handled 
differently by the program (e.g. “type 
of vehicle must be BUS, TRUCK, 
TAXICAB, PASSENGER, or 
MOTORCYCLE”), identify a valid 
equivalence class for each one and 
one invalid equivalence class (e.g. 
“TRAILER”)” 

d. identify a valid equivalence class 
for each one 

EP12: Valid List Selection  

e. identify one invalid equivalence 
class 

EP4: Integer Replacement 

EP5: Real Number Replacement 

EP6: Single Alpha Replacement 

EP7: Multiple Alpha Replacement 

EP8: Multiple Alphanumeric Replacement 

EP9: Single Non-Alphanumeric 
Replacement 

EP10: Multiple Non-Alphanumeric 
Replacement 

4. “If an input condition specifies a 
“must be” situation (e.g. “first 
character of the identifier must be a 
letter”), identify one valid 
equivalence class (it is a letter) and 
one invalid equivalence class (it is 
not a letter)” 

f. Select a partition containing all 
letters 
(overlaps with f) 

EP12: Valid List Selection or 

EP3: Lower to Upper Boundary Selection   

g. Select a partition containing 
everything that is not a letter 
(overlaps with f) 

EP4: Integer Replacement 

EP5: Real Number Replacement  

EP7: Multiple Alpha Replacement 

EP8: Multiple Alphanumeric Replacement 

EP9: Single Non-Alphanumeric 
Replacement 

EP10: Multiple Non-Alphanumeric 
Replacement 

5. “If there is reason to believe that 
elements in an equivalence class are 
not handled in an identical manner 
by the program, split the equivalence 
class into smaller equivalence 
classes” 

N/A This guideline is part of the partitioning that 
occurs during application of guidelines 1 to 
4. Thus, this does not require an Atomic 
Rule.  

 

                                                           
2 See Appendix B for definitions of these Atomic Rules in the Atomic Rules characterisation schema.  
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Definition by exclusion in Myers’ (1979) fourth guideline can also be resolved, as follows:  

“If an input condition specifies a “must be” situation (e.g. “first character of the identifier 

must be a letter”), identify one valid equivalence class (it is a letter) and one invalid 

equivalence class (it is not a letter).” 

This guideline is decomposed into test case design rules that select valid partitions and ‘replacement’ 

rules that select invalid partitions by datatype (Table 3-4 col. 3, EP3, EP4 to EP10 and EP12). The 

selection of the valid partition ‘it is a letter’ is covered as follows3.  

 If the assumption is that that the input is treated by the programmer as a list then select an 

equivalence class containing all values in that list, which becomes EP12.  

 If the assumption is that the input is treated as a range then select an equivalence class 

containing all values between the lower and upper boundaries of the field.   

The selection of the invalid partition ‘it is not a letter’ is covered by defining the following 

‘replacement’ rules that select invalid partitions by datatype: 

 EP4: Integer Replacement, which replaces the field with an equivalence class containing 

integers 

 EP5: Real Number Replacement, which replaces the field with an equivalence class containing 

real numbers 

 EP7: Multiple Alpha Replacement, which replaces the field with an equivalence class 

containing multiple alphabetic characters 

 EP8: Multiple Alphanumeric Replacement, which replaces the field with an equivalence class 

containing multiple alphanumeric characters 

 EP9: Single Non-Alphanumeric Replacement, which replaces the field with an equivalence 

class containing individual non-alphanumeric characters 

 EP10: Multiple Non-Alphanumeric Replacement, which replaces the field with an equivalence 

class containing multiple non-alphanumeric characters 

 EP12: Null Item Replacement, which replaces the field with the empty set  

One other replacement rule is required to select invalid equivalence classes for non-alpha fields: 

 EP6: Single Alpha Replacement, which replaces the field with an equivalence class containing 

individual alphabetical characters 

These replacement rules cover the 94 printable characters of the ASCII table, as well as contiguous 

datatypes ‘integer’ and ‘real’4. They facilitate input domain partitioning by datatype, defining a ‘universe of 

                                                           
3 Depending on how the program was written, a programmer may treat the set of allowable alphabetical characters as an ASCII range 
(e.g. [ASCII(65) – ASCII(90)] or as a list (e.g. [A | B | C | … | Z]).  
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discourse’ for program inputs (see Section 1.5). Replacement rules could be defined for other numerical 

datatypes such as ‘float’ and for other character sets such as those defined in the Unicode table (see Section 

3.10.2.2).  

Theoretically, replacement rules that select specific datatypes (i.e. EP4 to EP11) can be applied to input 

fields of the same datatype, as long as they are used to select equivalence classes that exclude the valid 

inputs for that field. For example, EP7: Multiple Alpha Replacement could be applied to a field <colour> 

::= [red | green | blue], to select any combination of upper and lowercase alphabetical characters other than 

those in the valid set.  

A number of other test case design rules for EP were utilised by Myers (1979) and other authors (see list 

below). Thus, the following Atomic Rules have been defined.  

 EP14: Valid Test Case Constructor – Minimised, which constructs test cases by covering as many 

valid partitions as possible per test case (e.g. see (Myers 1979))  

 EP15: Invalid Test Case Constructor – Maximised, which constructs test cases by covering as 

many invalid partitions as possible per test case (e.g. see (Myers 1979)) 

 EP16: Invalid Test Case Constructor – Minimised, which constructs test cases by covering one 

invalid partitions as possible per test case (e.g. see (BS 7925-2)) 

 EP18: Valid Test Case Constructor – Maximised, which constructs test cases by covering as many 

valid partitions as possible per test case (e.g. see (BS 7925-2)) 

 EP13: Random Data Value Selector, which covers the selection of a single randomly chosen test 

data value from an equivalence class (e.g. see (Jeng & Weyuker 1989)).  

 EP17: Nominal Data Value Selector, which selects the mid-point of an equivalence class (e.g. see 

(Myers 1979)) 

Since Data-Set Selection Rules from EP are used by other black-box testing methods, they could be 

labelled as ‘common’ rules. As the strength of EP is in the selection of equivalence classes, these rules have 

remained within this method. This assumes that EP will always be used to identify equivalence classes prior 

to boundary value selection. 

This completes the decomposition of EP into Atomic Rules.  

                                                                                                                                                                              
4 The particular range of integers or real numbers that is selected can depend on the programming language being used in the system 
under test, which is part of the “application solution domain” (Reed 1990) of the program. This information can be identified through 
grey-box testing and through GQASV (e.g. see Section 3.10.3).  
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Table 3-5: Three Atomic Rules from Equivalence Partitioning.  

Attribute Values Values Values 

Test Method Equivalence Partitioning  Equivalence Partitioning  Equivalence Partitioning  

Number EP1 EP2 EP3 

Identifier LLBS GUBS LUBS 

Name 
Less than Lower Boundary 
Selection 

Greater than Upper 
Boundary Selection 

Lower to Upper Boundary 
Selection 

Description 

Select an equivalence class 
containing values below the 
lower boundary of a field 

Select an equivalence class 
containing values above the 
upper boundary of a field 

Select an equivalence class 
containing values between the 
boundaries of a field (including 
the on-boundary values)   

Source (Myers 1979) (Myers 1979) (Myers 1979) 

Rule Type DSSR DSSR DSSR 

Set Type Range Range Range 

Valid or Invalid Invalid Invalid Valid 

Original Datatype 
Integer, Real, Alpha, Non-
Alphanumeric  

Integer, Real, Alpha, Non-
Alphanumeric  

Integer, Real, Alpha, Non-
Alphanumeric  

Test Datatype  Same as original Same as original Same as original 

Test Data Length Same as original Same as original Same as original 

# Fields Populated 1 1 1 

# Tests Derived 0 0 0 

 

For clarity, the following list explains how the attributes of one Atomic Rule, EP1: Less Than Lower 

Boundary Selection were assigned (see Table 3-5 col. 2).   

1. Test Method: this Atomic Rule was derived from Equivalence Partitioning. 

2. Number: this unique identifier combines an abbreviation of the test method name EP and an 

incremental number (starting at 1), resulting in EP1. 

3. Identifier: LLBS is an abbreviation of the rule name ‘Less than Lower Boundary Selection.’  

4. Name: Less than Lower Boundary Selection describes the selection of a partition of data that lies 

below the lower boundary of a field.  

5. Description: this describes the rule function in more detail. This rule selects a partition of data that 

lies below the lower boundary of a field. 

6. Source: this rule was defined by Myers, thus its reference source is (Myers 1979).   

7. Rule Type: this rule is a Data-Set Selection Rule (DSSR) because it partitions the input and/or 

output domain of a program.  

8. Set Type: this rule applies to ranges of contiguous data.  

9. Valid or Invalid: this selects an invalid partition that lies below the lower boundary of a field.  

10. Original Datatype: since the rule only applies to range-based fields, it can only be applied to 

datatypes that are contiguous. Thus, it applies to datatypes Integer, Real, Single Alpha and Single 
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Non-Alphanumeric (if an ASCII table is used to select values below a lower boundary of a 

numeric, alpha or non-alphanumeric range).  

11. Test Datatype: this rule does not alter the datatype of the original field. Thus, the value of this 

attribute is Same as original.  

12. Test Data Length: Same as original appears under this attribute as the length of the selected test 

data depends on the length of the datatype the rule is being applied to. For example, if the rule is 

applied to an integer field, the programming language used to implement the program under test 

may impose a minimum to maximum range of -35535 to 35536.   

13. # Fields Populated: this rule selects test data for 1 field at a time.  

14. # Tests Derived: this rule does not construct test cases. Thus, the value of this attribute is 0.   

The Atomic Rules four-step test case design process can now be documented for EP (Figure 3-3).  

Figure 3-3: The four-step test design process for Equivalence Partitioning.  

Equivalence Partitioning 

1. Select equivalence classes as follows. 

a. If an input or output field has a set type  range then apply Atomic Rules EP1 to EP11 to the 
field to select equivalence classes. 

b. If an input or output field has a set type  list then apply Atomic Rules EP4 to EP12 to select 
equivalence classes. 

2. Select one test data value from each equivalence class selected in step 1 by applying Atomic Rule 
EP13 and/or EP17 to each class. 

3. Omit step 3, as EP does not cover test data manipulation.  

4. Select test cases that are: 

a. valid: by applying EP14 and EP18 to valid test data values chosen in step 2; 

b. invalid: by applying EP15 and EP16 to invalid test data values chosen in step 2. 

 

This section has demonstrated the decomposition of Myers’ definition of EP into Atomic Rules in a 

manner which, as was pointed out at the beginning of this subsection, allows all major definitions of EP to 

be consolidated. Appendix B contains all Atomic Rules that were derived for EP, while Section 3.4.1.1 

demonstrates the application of Atomic Rules from EP to an example input data specification. 

3.3.1.2 Decomposing Boundary Value Analysis 

Myers’ guidelines for BVA (Table 3-6, col. 1) can also be decomposed into test case design rules (Table 

3-6, col. 2) and then documented as Atomic Rules (Table 3-6, col. 3 and Table 3-7). During this process, 

method overlaps within BVA can be resolved (see Table 3-6, cols. 2 and 3). Myers’ definition includes 

rules for testing the boundaries of range-based and list-based fields, as follows.  

For range-based fields, Myers’ (1979) provides the following guideline:  
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“If an input condition specifies a range of values, write test cases for the edges of the range, 

and invalid-input test cases for situations just beyond the ends. For instance, if the valid 

domain of an input value is -1.0 - +1.0, write test cases for the situations -1.0, 1.0, -1.001 and 

1.001.” 

This guideline can be decomposed into the following Atomic Rules (see Table 3-6, col. 3):  

 BVA1: Lower Boundary – Selection  

 BVA2: Lower Boundary Selection  

 BVA5: Upper Boundary Selection  

 BVA6: Upper Boundary + Selection  
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Table 3-6: Decomposition of Myers' definition of Boundary Value Analysis into Atomic Rules.  

Myers’ Guidelines for Boundary Value Analysis 

Corresponding Atomic Rules5  Myers’ (1979) Guidelines  Test Case Design Rules  

1. If an input condition specifies a 
range of values, write test cases for 
the edges of the range, and invalid-
input test cases for situations just 
beyond the ends. For instance, if the 
valid domain of an input value is -1.0 
- +1.0, write test cases for the 
situations -1.0, 1.0, -1.001 and 
1.001. 

a. Select a value on the lower 
boundary (covers -1.0) 

BVA2: Lower Boundary Selection  

b. Select a value on the upper 
boundary (covers 1.0) 

BVA5: Upper Boundary Selection  

c. Select a value just below the 
lower boundary (covers) -1.001 

BVA1: Lower Boundary – Selection  

d. Select a value just above the 
upper boundary (covers 1.001) 

BVA6: Upper Boundary + Selection  

2. If an input condition specifies a 
number of values, write test cases 
for the minimum and maximum 
number of values and one beneath 
and beyond these values. For 
instance, if an input file can contain 1 
– 255 records, write test cases for 0, 
1, 255 and 256 records.  

e. Select a value just below the 
lower boundary (covers 0 
records) (overlaps with a) 

BVA1: Lower Boundary – Selection 

f. Select a value on the lower 
boundary (covers 1 record) 
(overlaps with b) 

BVA2: Lower Boundary Selection  

g. Select a value on the upper 
boundary (covers 255 records) 
(overlaps with c) 

BVA5: Upper Boundary Selection  

h. Select a value just above the 
upper boundary (covers 256 
records) (overlaps with d) 

BVA6: Upper Boundary + Selection  

3. Use guideline 1 for each output 
condition. For instance, if a program 
computes the monthly FICS 
deduction and if the minimum is 
$0.00 ad the maximum is $1165.25, 
write test cases that cause $0.00 
and $1165.25 to be deducted. Also, 
see if it is possible to invent test 
cases that might causes a negative 
deduction or a deduction of more 
than $1165.25.  

i. Test the lower boundary of the 
output field (covers $0.00) 

BVA2: Lower Boundary Selection 
(can be applied only to the output field)

j. Test the upper boundary of the 
output field (covers $1165.25) 

BVA5: Upper Boundary Selection  
(can be applied only to the output field)

k. Test just below the lower 
boundary of the field (covers 
negative deduction) 

BVA1: Lower Boundary – Selection 
(can be applied only to the output field)

l. Test just above the upper 
boundary of the field (covers 
more than $1165.25) 

BVA6: Upper Boundary + Selection 
(can be applied only to the output field)

4. Use guideline 2 for each output 
condition. If an information retrieval 
system displays the most relevant 
abstracts based on an input request, 
but never more than four abstracts, 
write test cases such that the 
program displays zero, one and four 
abstracts, and write a test case that 
might cause the program to 
erroneously display five abstracts.  

m. Run a query that tests just 
below the lower boundary of 
the output field (covers 0 
abstracts) 

BVA1: Lower Boundary – Selection 
(can be applied only to the output field) 

n. Run a query that tests on the 
lower boundary of the output 
field (covers 1 abstract) 

BVA2: Lower Boundary Selection  
(can be applied only to the output field)

o. Run a query that tests on the 
upper boundary of the output 
field (covers 4 abstracts) 

BVA5: Upper Boundary Selection  
(can be applied only to the output field)

p. Run a query that tests just 
above the upper boundary of 
the output field (covers 5 
abstracts) 

BVA6: Upper Boundary + Selection  
(can be applied only to the output field)

5. If the input or output of a program is 
an ordered set (e.g. a sequential file, 
linear list, table), focus attention on 
the first and last elements of the set.  

q. First element  BVA7: First List Item Selection  

r. Last element  BVA8: Last List Item Selection  

6. In addition, use your ingenuity to 
search for other boundary 
conditions. 

NA An Atomic Rule cannot be defined for 
this guideline.  

                                                           
5 See Appendix B for definitions of these Atomic Rules in the Atomic Rules characterisation schema.  
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Myers’ (1979) definition does not cover testing just inside the boundaries of range-based fields, which is 

included in other definitions of BVA (e.g. (BS 7925-2)). Thus, the following two rules are also defined.  

 BVA3: Lower Boundary + Selection 

 BVA4: Upper Boundary – Selection.  

Each of these rules increment or decrement the upper or lower boundary of an equivalence class by one 

‘unit of measure’, which is the minimum value that can be added or subtracted from the boundary according 

to the datatype of the field under test. For example, consider the examples below, where the Atomic Rule 

BVA1: Lower Boundary – Selection is applied to five different range-based fields.  

1. If BVA1 is applied to an integer partition [1 – 9999] it will subtract 1 from the lower boundary to 

select the test data value ‘0’. 

2. If BVA1 is applied to a real number partition [2.00 – 4.00] it will subtract 0.01 from the lower 

boundary to select the test data value ‘1.99’. Since real numbers may theoretically have infinite 

precision, the value that is added or subtracted from the boundary is the smallest possible decimal 

value from the field under test. The precision would typically depend on how the program was 

designed and may also depend on the maximum allowable field length rather than the allowable 

number of decimal places. If the precision of the field is not defined for the tester, they could use 

Goal/Question/Answer/Specify/Verify to obtain such a definition. In fact, difficulties can arise 

when the program does not actually constrain the precision of the input fields to that which was 

specified. For example, in this example, the program may accept 3.999 as input, but reject 4.001. 

In what follows, we assume that input precision is as specified, and that any deviations constitute 

faults that will be detected elsewhere.  

3. If BVA1 is applied to the alphabetical character partition [A – Z], using the ASCII collating 

sequence, the test data value ‘@’ would be selected as it lies just below the lower boundary of the 

partition (identification of test data values in this way may need to be guided through grey-box 

information; for example, by seeking guidance from developers).  

4. If BVA1 is applied to an non-alphanumeric range [“ –  /], the test data value ‘!’ would be selected 

as it lies just below the lower boundary of the partition in the collating sequence.  

5. If BVA1 is applied to a field that repeats, e.g. <vehicle> ::= [car | truck | motorbike | van]1-4, it 

would subtract 1 from the lower boundary of the repetition partition [1 – 4], which would test the 

field with zero repetitions (i.e. it would test the field with null).  

For list-based fields, Myers’ definition can be decomposed into the following two Atomic Rules.  

 BVA7: First List Item Selection 

 BVA8: Last List Item Selection 
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Although BVA2: Lower Boundary Selection and BVA5: Upper Boundary Selection could have been 

utilised to select the lower and upper boundaries of list-based fields, it was felt that a separate set of rules 

should be defined for lists, since only on-boundary and just-inside boundary values can be selected for lists. 

While Myers’ definition of BVA does not cover the testing of inside boundary values for list-based 

fields, this was used as a basis for selecting test cases by participants of an industry-based testing 

experiment that is discussed in Chapter 6. Thus, the following two Atomic Rules can be defined to cover 

these boundaries.   

 BVA12: Second List Item Selection  

 BVA13: Second Last List Item Selection  

To ensure list-based and range-based fields are tested with null (e.g. for testing keyword-based fields 

with a zero string length), the following rule was also defined.   

 BVA9: Null Item Replacement 

Although BVA9: Null Item Selection overlaps with EP11: Null Item Replacement, both have been 

included to ensure that if only EP is applied to a program, then this rule will not be missed. 

Myers (1979) also addresses testing the boundaries of output fields, as illustrated in his third and fourth 

guideline, for example:  

“Use guideline 1 for each output condition. For instance, if a program computes the monthly 

FICS deduction and if the minimum is $0.00 ad the maximum is $1165.25, write test cases that 

cause $0.00 and $1165.25 to be deducted. Also, see if it is possible to invent test cases that might 

causes a negative deduction or a deduction of more than $1165.25.” 

Although Atomic Rules BVA1 to BVA6 can be used to identify boundary values for output fields, using 

the current Atomic Rules approach, they cannot be used to identify the input values that are required to 

force the output boundaries to be exercised. For example, in Myers’ third guideline the following boundary 

values are selected.  

 Monthly FICS deduction = $0.00 

 Monthly FICS deduction = $1165.25 

 Monthly FICS deduction = negative deduction (i.e. -$0.01) 

 Monthly FICS deduction = more than $1165.25 (i.e. $1165.26) 

The input values that are needed to test these output boundaries currently cannot be selected by Atomic 

Rules, since the approach to converting inputs to outputs needs to be identified and understood either by a 

‘test oracle’ (defined by Howden (1981)) or by a human tester (see Section 3.8 for more information). The 

input values that may be capable of producing these output BVA values often can only be obtained by 
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tracing backwards from them, through the application solution domain algorithms, to effectively ‘solve the 

equations’ represented  by the specification. This is considered to be beyond the current work. 

The four-step test case design process can now be demonstrated for BVA (Figure 3-4). Since boundary 

values are usually selected from the edges of equivalence classes (Myers 1979), partitioning rules from EP 

are utilised within this definition. Invalid datatype replacement rules EP4 to EP11 are not included, as it is 

unnecessary to select boundary values from partitions have already been covered during EP. Test Case 

Construction Rules from EP are utilised, since BVA does not include unique rules for test case selection. 

Appendix B covers definitions of all Atomic Rules for BVA, while Section 3.4.1.2 illustrates the 

application of Atomic Rules from BVA to an example input data specification. 

Table 3-7: Three Atomic Rules from Boundary Value Analysis. 

Attribute Values Values Values 

Test Method Boundary Value Analysis  Boundary Value Analysis  Boundary Value Analysis  

Number BVA1 BVA2 BVA3 

Identifier LBM1 LB LBP1 

Name Lower Boundary –  Selection Lower Boundary Selection Lower Boundary +  Selection 

Description 
Select value just below the 
lower boundary  

Select a value on the lower 
boundary 

Select a value just above the 
lower boundary  

Source (BS 7925-2) (Myers 1979) (Myers 1979) 

Rule Type DISR DISR DISR 

Set Type Range Range Range 

Valid or Invalid Invalid Valid Valid 

Original Datatype 
Integer, Real, Single Alpha, 
Single Non-Alphanumeric  

Integer, Real, Single Alpha, 
Single Non-Alphanumeric  

Integer, Real, Single Alpha, 
Single Non-Alphanumeric  

Test Datatype  Same as original Same as original Same as original 

Test Data Length Same as original Same as original Same as original 

# Fields Populated 1 1 1 

# Tests Derived 0 0 0 
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Figure 3-4: The four-step test design process for Boundary Value Analysis. 

Boundary Value Analysis 

1. Select equivalence classes that exercise boundary values, as follows: 

a. If an input has a set type  range then apply Atomic Rules EP1, EP2 and EP3 to select 
equivalence classes. 

b. If an input has a set type  list then apply rule EP12 to select equivalence classes. 

2. Select boundary values as follows: 

a. For each range-based equivalence class chosen in step 1a, apply BVA1 to BVA6 and 
BVA9 to select individual boundary values.  

b. For each list-based equivalence class chosen in step 1b, apply BVA7 to BVA13 to select 
individual boundary values. 

3. Omit step 3, since BVA does not cover test data manipulation 

4. Select test cases that are: 

a. valid: by applying EP14 and EP18 to valid test data values chosen in step 2;  

b. invalid: by applying EP15 and EP16 to invalid test data values chosen in step 2. 

 

3.3.1.3 Decomposing Syntax Testing 

Five different versions of ST were analysed to identify test case design rules and to identify 

corresponding Atomic Rules for this method (Table 3-8 cols. 1 and 2). During this process, method overlaps 

were able to be resolved both within the method and with other methods (Table 3-8, col. 3).  

For example, one test case design rule defined for ST is to “Introduce an invalid value for a field” (Table 

3-8, rule 2). This is covered by Atomic Rules from EP that select partitions outside field boundaries (EP1 

and EP2) and that replace fields with invalid datatypes (EP4 to EP11). Although the first publications of 

syntax testing methods were in the 1960’s (e.g. see (Sauder 1962)) and this preceded the first definition of 

EP as a black-box testing method in 1979 (Myers 1979), test case design rules from EP are generally 

defined in more detail. Thus, Atomic Rules from EP can be utilised during ST to provide more precision to 

test case design (see Figure 3-5, step 1). A complete mapping of test case design rules from ST to Atomic 

Rules from other methods is provided in Table 3-8.   

From the five versions of ST that were reviewed, only five Atomic Rules were found to be unique to ST 

(see Table 3-8, rules 6, 7, 9, 28, 29). These are as follows.   

 ST1: remove last character 

 ST3: add extra character to end 

 ST14: select all list alternatives in reverse order 

 ST11: add a field  

 ST10: duplicate a field 

Based on the ‘spirit’ of these rules, a number of new Atomic Rules were defined for ST, as follows.  
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 ST2: replace last character (derived from Rule # 6 and 7) 

 ST4: remove first character (derived from Rule # 6) 

 ST5: replace first character (derived from Rule # 6 and 7) 

 ST6: add extra character to start (derived from Rule # 6) 

 ST7: uppercase a lowercase letter (derived from Rule # 2 for alphabetic fields) 

 ST8: lowercase an uppercase letter (derived from Rule # 2 for alphabetic fields) 

 ST9: Null all input (derived from Rule # 3) 

 ST12: select each list alternative (derived from Rule # 9) 

 ST13: select all list alternatives (derived from Rule # 9) 

Each of these was documented in the Atomic Rules schema (e.g. see Table 3-9). The complete set of 

Atomic Rules for this method can be found in Appendix B.  An example of this method being applied to an 

input data specification can be found in Section 3.4.1.3.  
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Table 3-8: Decomposition of Syntax Testing into Atomic Rules (from Section 2.4). 

Rule 
# 6 

Syntax Testing  
Test Case Design Rules  Corresponding Atomic Rules7  

1 
Introduce errors at highest level of AST; e.g. through invalid field 
combinations  

Method overlap – covered by Atomic Rules for 
combinatorial testing (see Appendix B) 

2 Introduce an invalid value for a field 
Method overlap – covered by EP1, EP2 and EP4 
to EP11 

3 Introduce an invalid value for all fields  Method overlap – covered by EP4 to EP11  

4 
Choose invalid symbols for a field (e.g. subtraction instead of addition 
sign) 

Method overlap – covered by EP9 

5 Choose invalid datatypes (e.g. numbers or symbols instead of alphas) Method overlap – covered by EP4 to EP11  

6 Remove characters from the end of a field (e.g. “DI” instead of “DIR”)  ST1: Remove Last Character 

7 Add extra characters to the end of a field (e.g. “DIRR” instead of “DIR”) ST3: Add Extra Character to End 

8 Choose none of the legal alternatives for a field that contains alternatives  Method overlap – covered by EP12 

9 Choose all alternatives for one field in one test case in reverse order  
ST14: Select All List Alternatives in Reverse 
Order 

10 Leave out a delimiter  Method overlap – covered by EP12 

11 
Choose a delimiter that is valid at another syntax level but not at the 
current level  

Method overlap – covered by Atomic Rules for 
combinatorial testing (see Appendix B) 

12 Substitute another field for a delimiter  
Method overlap – covered by Atomic Rules for 
combinatorial testing (see Appendix B) 

13 Repeat a delimiter  Method overlap – covered by BVA6 

14 Create errors in paired delimiters (e.g. add or remove delimiters) Method overlap – covered by EP4 to EP12 

15 One less than the minimum number of repetitions Method overlap – covered by BVA1 

16 Minimum number of repetitions Method overlap – covered by BVA2 

17 One more than min number of repetitions Method overlap – covered by BVA3 

18 1 repetition 
Method overlap – covered by BVA1 to BVA6 
(whether ‘1’ is a lower or upper boundary) 

19 One less than max number of repetitions Method overlap – covered by BVA4 

20 Maximum number of repetitions Method overlap – covered by BVA5 

21 One more than the maximum number of repetitions Method overlap – covered by BVA6 

22 > 1 repetition 
Method overlap – covered by BVA1 to BVA6 
(whether ‘1’is a lower or upper boundary) 

23 Incorrect value in the last repetition of a field  Method overlap – covered by EP4 to EP12 

24 Select invalid values for input fields Method overlap – covered by EP4 to EP12 

25 
Substitute a field that is correct at another level of syntax but not the 
current level 

Method overlap – covered by Atomic Rules for 
combinatorial testing (see Appendix B) 

26 
Substitute fields from same level of syntax, creating invalid order of valid 
fields  

Method overlap – covered by Atomic Rules for 
combinatorial testing (see Appendix B) 

27 Miss a field Method overlap – covered by EP12 

28 Add an extra field ST11: Add a Field 

29 Repeat a field ST10: Duplicate a Field 

30 
Select values relating to database variable type input is stored in. e.g. if 
field is string 0 to 255 characters, try 0, 255 and 256  

Method overlap – covered by BVA2, BVA5, BVA6 

31 State dependency errors  
Method overlap – covered by EP, BVA and ST, 
but expected outcome depends on system state 

                                                           
6 These rules and corresponding numbers were defined in Chapter 2, section 2.4.  
7 See Appendix B for definitions of these Atomic Rules in the Atomic Rules characterisation schema.  
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Table 3-9: Three Atomic Rules from Syntax Testing. 

Attribute Values Values Values 

Test Method Syntax Testing  Syntax Testing  Syntax Testing  

Number ST1 ST2 ST3 

Identifier  RMLC RPLC AECE 

Name Remove last character Replace last character  
Add extra character to end 
of field 

Description 
Remove the last character of 
an input string 

Replace the last character of 
a string with an invalid value 

Add an extra character to 
the end of a string 

Source (Beizer 1990, Marick 1995) (Marick 1995) (Beizer 1995, Marick 1995) 

Rule Type DISR DISR DISR 

Set Type List or Range List or Range List or Range 

Valid or Invalid Invalid Invalid Invalid 

Original Datatype All All All 

Test Datatype  Same as original Same as original Same as original 

Test Data Length 
m - 1, where m is the original 
field length 

Same as original 
m + 1, where m is the 
original field length 

# Fields Populated 1 1 1 

# Tests Derived 0 0 0 

 

The four-step test case design process can now be described for ST (Figure 3-5). As discussed in Section 

2.4, partitioning is implicitly performed during ST prior to the selection and mutation of test data values. 

Thus, the ST process utilises Data-Set Selection Rules from EP. Also, since some versions of ST include 

the selection of boundary values and nominal values, corresponding Atomic Rules from EP and BVA are 

utilised (Table 3-8, col. 3). This process also utilises a number of combinatorial Test Case Construction 

Rules (Figure 3-5, step 4c). A demonstration of the Atomic Rules definition of ST being applied to an 

example specification is provided in Section 3.4.1.3. Although the process of creating an abstract syntax 

tree cannot be described specifically by the Atomic Rules approach, one could be constructed for the 

program under test, prior to the application of each Atomic Rule.  
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Figure 3-5: The four-step test design process for Syntax Testing. 

Syntax Testing 

1. Select equivalence classes as follows.  

a. If an input or output field has a set type  range then apply Atomic Rules EP1 to EP11 to the field 
to select equivalence classes.  

b. If an input or output field has a set type  list then apply Atomic Rules EP4 to EP12 to select 
equivalence classes.  

2. Select individual test data values as follows. 

a. For each range-based equivalence class chosen in step 1a, apply BVA1 to BVA6, BVA9 and 
EP13 and/or EP17 to select individual test data values.  

b. For each list-based equivalence class chosen in step 1b, apply BVA7 to BVA13 to select individual 
test data values. 

3. Manipulate the test data values chosen in step 2 by applying ST1 to ST14, ST17 and ST18 to each 
value.  

4. Select test cases that are: 

a. valid: by applying ST14, EP14 or EP16 to the valid test data values chosen in steps 2 and 3, 

b. invalid: by applying ST15, EP15 or EP16 to the invalid test data values chosen in steps 2 and 3.  

c. combinatorial: by applying a selection of Atomic Rules from EP15, EP16 and EP18, CT1 to CT6 
and SBMT1 to SBMT4.  

 

3.3.1.4 Decomposing the Combinatorial Method Each Choice  

Combinatorial testing methods facilitate the generation of black-box test cases typically via the 

application of algorithms to the test data values that are derived through the use of other black-box testing 

methods, such as EP, BVA and ST. Each combinatorial test method can be decomposed into one Test Case 

Construction Rule that can then be described using the Atomic Rules schema. In this section, the method All 

Combinations is decomposed into an Atomic Rule as an example of this process (Table 3-10). Atomic 

Rules for other combinatorial methods are provided in Appendix B.  

For All Combinations, the fields of the Atomic Rules schema are populated as follows.  

1. Test Method: this Atomic Rule is from Combinatorial Testing. 

2. Number: this unique identifier combines an abbreviation of the test method name (CT) with an 

incremental number (starting at 1), resulting in CT1. 

3. Identifier: AC is an abbreviation of the rule name All Combinations.  

4. Name: All Combinations is the name of the test method.  

5. Description: this rule constructs test cases by generating all possible combinations of test data 

values chosen by other black-box testing methods. For example, it could be used to select all 

combinations of boundary values or all combinations of system configurations, such as when 

testing the compatibility of several Internet browsers on various different operating systems. 

6. Source: this version of the method was sourced from (Grindal et al. 2004).   
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7. Rule Type: this is a Test Case Construction Rule (TCCR).  

8. Set Type: this rule can be applied to any type of field; thus it applies to Lists and Ranges. 

9. Valid or Invalid: this depends on whether this rule is applied to valid or invalid test data.  

10. Original Datatype: this rule can be applied to an input field of any datatype.  

11. Test Datatype: the rule does not alter the input field datatype; thus Same as original appears.  

12. Test Data Length: Same as original appears under this attribute as the length of the selected test 

data depends on the length of the original datatype.   

13. # Fields Populated: this rule populates all input fields of a test case; thus, it populates n fields, 

where n is the number of input fields in the test case.  

14. # Tests Derived: this rule selects approximately 

N

i iV
1

 test cases, where N is the number of 

parameters in the input string and where each parameter has Vi values.  

 This results in the definition of one Atomic Rule for combinatorial testing (Table 3-10). 

Table 3-10: An Atomic Rule for the combinatorial testing method All Combinations. 

Attribute Definition 

Test Method Combinatorial Testing 

Number CT1 

Identifier  AC 

Name All Combinations  

Description 
Construct every possible combination of test data values, which may be 
selected by the Data-Item Selection Rules and Data-Item Manipulation 
Rules of other black-box testing methods. 

Source (Grindal et al. 2004) 

Rule Type TCCR 

Set Type List or Range  

Valid or Invalid Depends on whether rule is applied to valid or invalid values  

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived Approximately 

N

i iV
1

test cases, where N is the number of parameters 

in the input string and where each parameter has Vi values.   

 

The four-step test case design process can now be defined once for all combinatorial testing methods 

(Figure 3-6). Since these methods do not include test case design rules for partitioning the input domain or 

selecting or manipulating test data values, Atomic Rules from EP, BVA and ST can be utilised.  
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Figure 3-6: The four-step test design process for Combinatorial Testing Methods. 

Combinatorial Testing 

1. Select equivalence classes as follows.  

a. If an input field has a set type  range then apply Atomic Rules EP1 to EP11 to the field to 
select equivalence classes.  

b. If an input field has a set type  list then apply Atomic Rules EP4 to EP12 to select 
equivalence classes.  

2. Select individual test data values from the equivalence classes derived in step 1 by applying 
Atomic Rules BVA1 to BVA9 and EP13 and/or EP17 to each partition. 

3. Optionally manipulate the test data values chosen in step 2 by applying ST1 to ST14, ST17 and 
ST18 to each test data value.  

4. Select test cases by applying a selection of Atomic Rules CT1 to CT6 or SBMT1 to SBMT4 to the 
test data values chosen in steps 2 and 3.  

 

3.4 Demonstration of the Atomic Rules Approach  

The application of the Atomic Rules representation of EP, BVA and ST is illustrated in the sections 

below for an input data specification of an Address Parser (Figure 3-7; the specification is an adaptation of 

one that was developed by Reed (1981)). The specification consists of many different field types, including 

a range field <house_number>, list fields <street_type> and <direction> and optional fields { 

<direction>}0-1 (where ‘0-1’ indicates that the fields are optional). It also includes a ‘complex’ field 

<street_name>, which can contain 1 to 40 alphabetical characters or alphabetical characters followed by a 

space, hyphen or period, followed by alphabetical characters.  

The Atomic Rules approach requires a detailed definition of the program input domain, such as the one 

that is provided in Figure 3-7. If a detailed definition is not available, then 

Goal/Question/Answer/Specify/Verify could be used to obtain one.   
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Figure 3-7: Simplified specification of the inputs to an Address Parser program. 

 <address>  ::= <house_number>  <street>  <suburb>  <postcode> 

 <house_number>  ::= [1 – 9999] 

 <street>  ::= <street_name>   <street_type> { <direction>}0-1 

 <street_name> ::= {[A – Z | a – z] | [A – Z | a – z] [ | - | .][A – Z | a – z]}1 – 40 

 <street_type>  ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt] 

 <direction>  ::= [North | South | East | West ] 

 <suburb>  ::= [Abbotsford | Aberfeldie | … |Yooralla |Yuroke] 

 <postcode>  ::= [200 | 221 | 800 | 801 | 804 | 810 | … | 9726 | 9728 | 9729] 

 ::= [ ]  #i.e. one space 
 

address

house_number postcode

[1 – 9999]

suburb

[Abbotsford | 
Aberfeldie | … 

|Yooralla |Yuroke]

200 | 221 | 800 | 801 
| 804 | 810 | … | 

9726 | 9728 | 9729

street

name type Direction
?

{[A – Z | a – z] | [A – Z | a – z] 
[^ | - | .][A – Z | a – z]}1 - 40

[ Street | St | 
Road | Rd | 

Avenue | Ave 
| Court | Crt]

[ North | South | 
East | West ]

^ ^ ^

^

^

 

 

Usually, when the Atomic Rules definition of a black-box testing method is applied to an input data 

specification, every Atomic Rule from the method would be systematically applied to every applicable 

input field. For the Address Parser, Atomic Rules with a ‘Set Type’ of ‘Range’ would be applied to all 

range-based fields. For example, EP1 to EP3 could be applied to the <house_number>field to select 

equivalence classes, followed by BVA1 to BVA6 to select boundary values. These same rules could be 

applied to the ‘length’ of <street_name> (i.e. to the 1 to 40 character range). Similarly, Atomic Rules with 

a ‘Set Type’ of ‘List’ could be applied to <street_type>, <direction>, <suburb>, <postcode> and 

whitespace (). However, to reduce the scale of examples in the sections below, Atomic Rules from EP, 

BVA and ST are only applied to a small number of input fields (see sections for details).  

The Test Matrix below provides a complete mapping of Atomic Rules from EP, BVA and ST to the 

input fields of this program (Table 3-11). While this can result a very large number of test data values and 

test cases, it also enables very thorough black-box testing. When such rigorous testing is not required, the 

Test Matrix can be used to assess the maximum rule-to-field coverage achievable, from which a tester can 

selectively apply a subset of Atomic Rules. Automatic generation of test data and test cases can also assist 

with this process by increasing test case derivation efficiency (see Chapter 4).  
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Table 3-11: Test Matrix indicating which Atomic Rules from EP, BVA and ST can be applied to the 
input fields of the Address Parser program. 

Atomic 
Rule # Atomic Rule Name 

Key:  
 indicates that the Atomic Rule can be applied to the field. 
 indicates that the Atomic Rule cannot be applied to the field due to 
incompatibility between the Rule Type and the Set Type of the field. 
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EP1 Less Than Lower Boundary Selection  8      9 
EP2 Greater Than Upper Boundary Selection         
EP3 Lower to Upper Boundary Selection         
EP4 Integer Replacement         
EP5 Real Number Replacement         
EP6 Single Alpha Replacement         
EP7 Multiple Alpha Replacement         
EP8 Multiple Alphanumeric Replacement         
EP9 Single Non-Alphanumeric Replacement         
EP10 Multiple Non-Alphanumeric Replacement         
EP11 Null Item Replacement         
EP12 Valid List Item Selection         
EP13 Random Data Value Selector         
EP14 Valid Test Case Constructor – Maximised          
EP15 Invalid Test Case Constructor – Maximised         
EP16 Invalid Test Case Constructor – Minimised         
EP17 Nominal Value Selector         
EP18 Valid Test Case Constructor – Maximised          
BVA1 Lower Boundary – Selection  10       
BVA2 Lower Boundary Selection         
BVA3 Lower Boundary + Selection         
BVA4 Upper Boundary – Selection         
BVA5 Upper Boundary Selection         
BVA6 Upper Boundary + Selection         
BVA7 First List Item Selection  11       
BVA8 Last List Item Selection         
BVA9 Null Item Replacement         
BVA10 Attempt First List Item –  Selection         
BVA11 Attempt Last List Item + Selection         
BVA12 Second List Item Selection         
BVA13 Second Last List Item Selection         
ST1 Remove last character         
ST2 Replace last character         
ST3 Add extra character to end         

                                                           
8 EP1, EP2 and EP3 can be applied to the contents of the <street_name> field, if character ranges [A – Z] and [a – z] are treated as 
ASCII ranges by the program (i.e. as ASCII 65 to 90 and ASCII 79 to 122).  
9 EP1 to EP3 can be applied to the number of times the whitespace appears (i.e. once is valid, more or less than once is invalid).  
10 BVA1 to BVA6 can be applied to the edges of the alphabetic ranges [A – Z] and [a – z] if they are treated as ASCII ranges.  
11 BVA7 and BVA8 can be applied to the character partitions [A – Z] and [a – z] if they are treated by the program as lists.   



A Generalised Representation for Black-Box Testing Methods Chapter 3 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 115 

Atomic 
Rule # Atomic Rule Name 

Key:  
 indicates that the Atomic Rule can be applied to the field. 
 indicates that the Atomic Rule cannot be applied to the field due to 
incompatibility between the Rule Type and the Set Type of the field. 
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Table continued from previous page…  

ST4 Remove first character         
ST5 Replace first character         
ST6 Add extra character to start         
ST7 Uppercase a lowercase letter         
ST8 Lowercase an uppercase letter         
ST9 Null all input         
ST10 Duplicate field         
ST11 Add a field         
ST12 Select each list alternative         
ST13 Select all list alternatives         
ST14 Select all list alternatives in reverse order         
ST15 Reference Replacement         
ST16 Syntax Cover         
ST17 Add Middle Character         
ST18 Remove Middle Character         
ST19 Reverse All Fields         

 

3.4.1.1 Applying the Atomic Rules Definition of Equivalence Partitioning  

In this example, the Atomic Rules representation of EP is applied to a range-based field 

<house_number>, a list-based field <street_type> and the ‘complex’ field <street_name>. These fields 

were chosen as they cover a wide range of field types. EP implements three of the four black-box test case 

design steps. In step 1, partitions are identified by applying EP1 to EP11 to <house_number>, EP4 to EP12 

to <street_type> and EP1 to EP12 to <street_name> (Table 3-12). In step 2, EP17 is applied to each 

partition to select the nominal value from each class (Table 3-13). Step 3 is not applied since it is only used 

by test methods that manipulate test data values (Table 3-14). In step 4, EP14 and EP16 are applied to 

derive two example test cases (Table 3-14). In practice, this fourth step would be applied repeatedly until all 

test data values have been covered by at least one test case. Steps 1, 2 and 4 would be also be applied to all 

other input fields (i.e. <street_name>, <direction>, <suburb>, <postcode> and whitespace).   
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Table 3-12: Example of applying step 1 of the Atomic Rules definition of Equivalence Partitioning to 
an example Address Parser specification. 

Step 1. Select equivalence classes as follows: 

a. if set type  range then apply Atomic Rules EP1 to EP11, 

b. if set type  list then apply Atomic Rules EP4 to EP12. 

Input Field Definition Equivalence Classes  

Field:  
<house_number> 
 
Field Type:  
Range 
 
Field Definition: 
<house_number> ::= [1 – 9999] 
 

Atomic Rule # Equivalence Class Selected Valid or Invalid 
EP1 values < 1 Invalid 
EP2  values > 9999 Invalid 
EP3  values 1 to 9999 Valid 
EP4  any integer, except values 1 to 9999  Invalid 
EP5  any real number  Invalid 
EP6  any single alpha character Invalid 
EP7  any multiple alpha characters Invalid 
EP8 any multiple alphanumeric characters Invalid 
EP9 any single non-alphanumeric symbol Invalid 
EP10 any multiple non-alphanumeric symbols Invalid 
EP11 null  Invalid 

Field:  
<street_name> 
 
Field Type:  
List and Range  
 
Field Definition: 
<street_name> ::= {[A – Z | a – z] | [A – Z | a – z] 
[ | - | .][A – Z | a – z]}1 – 40 

Partitions for <street_name> length: 1 – 40  
Atomic Rule # Equivalence Class Selected Valid or Invalid
EP1 < 1 character Invalid 
EP2  > 40 characters  Invalid 
EP3  1 to 40 characters  Valid 

Partitions for <street_name> contents: [A – Z | a – z |  | - ] 
Atomic Rule # Equivalence Class Selected Valid or Invalid
EP4  any integer  Invalid 
EP5  any real number  Invalid 
EP8  any multiple alphanumeric characters  Invalid 
EP9  any single non-alphanumeric symbols  
 excluding  and - Invalid 
EP10  any multiple non-alphanumeric symbols 
 excluding  and - Invalid 
EP11  null – already covered by application of EP1  
 to <street_name> length 
EP12  Anything from the valid list [A – Z | a – z]  
 | [A – Z | a – z] [ | - | .][A – Z | a – z] Valid12 

Field:  
<street_type> 
 
Field Type:  
List 
 
Field Definition:  
<street_type> ::= [Street | St | Road | Rd |  
Avenue | Ave | Court | Crt] 

Atomic Rule # Equivalence Class Selected Valid or Invalid
EP4  any integer  Invalid 
EP5  any real number  Invalid 
EP6  any single alpha character Invalid 
EP7  any multiple alpha characters,  
 except those in valid set Invalid 
EP8  any multiple alphanumeric characters  Invalid 
EP9  any single non-alphanumeric symbol Invalid 
EP10  any multiple non-alphanumeric symbols Invalid 
EP11  null Invalid 
EP12  Anything from the valid list [Street | St |  
 Road | Rd | Avenue | Ave | Court | Crt] Valid 

 
 

                                                           
12 When the “” character is chosen as a test data value, it will print as one white space “ ”.  
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Table 3-13: Example of applying step 2 of the Atomic Rules definition of Equivalence Partitioning to 
an example Address Parser specification. 

Step 2. Select one test data value from each equivalence class selected in step 1 by applying EP13 or EP17 to each class 
(EP17 is applied in this particular example). 

Equivalence Classes Test Data Values 

For the <house_number> field: 
value < 1 
value > 9999 
value 1 to 9999 
any integer excluding 1 to 9999  
any real number  
any single alpha character 
any multiple alpha characters 
any multiple alphanumeric characters 
any single non-alphanumeric symbol 
any multiple non-alphanumeric symbols 
null  

Test Data Values Selected by EP17 Valid or Invalid 
-15000  Invalid 
15000  Invalid 
5000  Valid 
10000  Invalid 
23.53  Invalid 
M  Invalid 
OnM  Invalid 
O56M  Invalid 
>  Invalid 
>=<  Invalid 
  Invalid 

For the length of the <street_name>: 
Street name length < 1 character 
Street name length > 40 characters 
Street name length 1 to 40 characters 

Corresponding Test Data Values Valid or Invalid 
  Invalid 
abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz Invalid 
abcdefghijkl  Valid13 

For the contents of the <street_name>: 
any integer  
any real number  
any multiple alphanumeric characters 
any single non-alphanumeric symbol except  and -
any multiple non-alphanumeric symbols except  
and - 
anything from the valid list [A – Z | a – z] | [A – Z | a 
– z] [ | - | .][A – Z | a – z] 

Corresponding Test Data Values Valid or Invalid 
10000  Invalid 
23.53  Invalid 
O56M  Invalid 
>  Invalid 
>=<  Invalid
  Invalid 
Lm nop  Valid 

For the <street_type> field: 
any integer  
any real number  
any single alpha character 
any multiple alpha characters, except valid set 
any multiple alphanumeric characters 
any single non-alphanumeric symbol 
any multiple non-alphanumeric symbols 
null 
anything from the valid list [Street | St | Road | Rd | 
Avenue | Ave | Court | Crt] 

Corresponding Test Data Values Valid or Invalid 
10000  Invalid 
23.53  Invalid 
M  Invalid 
OnM  Invalid 
O56M  Invalid 
>  Invalid 
>=<  Invalid 
  Invalid 
Rd  Valid 

 
 

                                                           
13 Testing the <street_name> field with test data values “abcdefghijklmnopqurt” and “lm nop” will test the program for how it handles 
syntactically valid and invalid test data. This will not test the program with semantically correct test data. Semantic correctness would 
be tested if the valid street names were derived from a valid street name file.   
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Table 3-14: Example of applying steps 3 and 4 of the Atomic Rules definition of Equivalence 
Partitioning to an example Address Parser specification. 

Step 3. This step manipulates test data values and is currently covered by Syntax Testing. Thus, it is not applicable.  

Step 4. Select test cases that are: 

a. valid, by applying EP14 and EP18 to valid data values chosen in step 2, 

b. invalid, by applying EP15 and EP16 to invalid data values chosen in step 2. 

Test Data Values Test Cases 

Test data values for <house_number>  
-15000 
15000 
5000 
10000 
23.53 
M 
OnM 
O56M 
> 
>=< 
Test data values for <street_name>  
  (i.e. null) 
abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz 
abcdefghijkl 
10000 
23.53 
O56M 
> 
>=< 
Lm nop 
Test data values for <street_type>  
10000 
23.53 
M 
OnM 
O56M 
> 
>=< 
 (i.e. null) 
Road 

Depending on which Test Case Construction Rule was applied 
(EP14, EP15 or EP16), this would result in a large number of 
test cases. Thus, the complete test set that would are derivable 
is not shown here. Instead, two example test cases are shown.  

  
Atomic Rule EP14 (Valid Test Case Constructor) could be 
applied to cover valid test data values <house_number> = 5000, 
<street_name> = abcdefghijkl and <street_type> = Rd, while all 
other fields were assigned their nominal value, to select the 
following test case.  

 
5000 abcdefghijklmnopqurt Rd La Trobe 3086 

 
Atomic Rule EP16 (Invalid Test Case Constructor - Minimised) 
could be applied to derive a test case to cover the invalid test 
data value <house_number> = -10000, while all other fields were 
assigned their nominal value, as follows.  

 
-10000 abcdefghijklmnopqurt Rd La Trobe 3086 

 
In the above, two test cases have been derived covering four 
test data values. In practice, this would be repeated until all test 
data values (in the left hand column) are covered by at least one 
test case.  
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3.4.1.2 Applying the Atomic Rules Definition of Boundary Value Analysis  

In the following example, the Atomic Rules definition of BVA is applied to the same three fields of the 

Address Parser <house_number>, <street_name> and <street_type> as follows. In step 1, Atomic Rules 

from EP are utilised to partition the input domain (Table 3-15). In step 2, BVA1 to BVA9 are applied to 

select boundary values from each partition (Table 3-15 step 2). Step 3 is not applied since this only applies 

to test methods that manipulate test data values (i.e. ST) (Table 3-16). In step 4, EP14 and EP16 are utilised 

twice to derive two example test cases (Table 3-17). In practice, step 4 would be repeated until all test data 

values had been covered by at least one test case, while steps 1, 2 and 4 would be reapplied for all other 

input fields.  

Table 3-15: Example of applying step 1 of the Atomic Rules definition of Boundary Value Analysis to 
an example Address Parser specification. 

Step 1. Select equivalence classes as follows: 

a. if set type  range then apply Atomic Rules EP1 to EP3, 

b. if set type  list then apply Atomic Rule EP12. 

Input Field Definition Equivalence Classes  

Field:  
<house_number> 
 

Field Type:  
Range 
 

Field Definition: 
<house_number> ::= [1 – 9999] 

Atomic Rule # Equivalence Class Selected Valid or Invalid 
EP1 values < 1 Invalid 
EP2  values > 9999 Invalid 
EP3  values 1 to 9999 Valid 

Field:  
<street_name> 
 

Field Type:  
List and Range 
 

Field Definition: 
<street_name> ::= {[A – Z | a – z] | [A – Z | a – z] 
[ | - | .][A – Z | a – z]}1 – 40 

Equivalence classes for <street_name> length: 1 – 40  
Atomic Rule # Equivalence Class Selected Valid or Invalid
EP1 < 1 character Invalid 
EP2  > 40 characters  Invalid 
EP3  1 to 40 characters  Valid 

Equivalence classes for <street_name> contents: [A – Z | a – z |  | - ] 
Atomic Rule # Equivalence Class Selected Valid or Invalid
EP12  Anything from the valid list  
 [A – Z | a – z] |  
 [A – Z | a – z] [ | - | .][A – Z | a – z] Valid 

Field:  
<street_type> 
 

Field Type:  
List 
 

Field Definition:  
<street_type> ::= [Street | St | Road | Rd |  
Avenue | Ave | Court | Crt] 

Atomic Rule # Equivalence Class Selected Valid or Invalid
EP12  Anything from the valid list [Street | St |  
 Road | Rd | Avenue | Ave | Court | Crt] Valid 
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Table 3-16: Example of applying step 2 of the Atomic Rules definition of Boundary Value Analysis to 
an example Address Parser specification. 

Step 2. Select boundary values as follows. 
a. For each range-based equivalence class chosen in step 1a, apply BVA1 to BVA6 and BVA9 to select individual data values.  
b. For each list-based equivalence class chosen in step 1a, apply BVA7 to BVA13 to select individual data values 

Equivalence Classes Test Data Values 
For the <house_number> field: 
value < 1 
Assume value is stored as a 16-bit integer, 
minimum value −32768  
Partition tested: [-32768 – 0] 

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 -32769 Invalid 
BVA2 -32768 Invalid 
BVA3 -32767 Invalid 
BVA4 -1 Invalid 
BVA5 0 Invalid 
BVA6 1 Valid 
BVA9  Invalid 

For the <house_number> field: 
value > 9999 
Assume value is stored as a 16-bit integer, 
maximum value 32767 
Partition tested: [10000 – 32767] 

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 9999 Valid 
BVA2 10000 Invalid 
BVA3 10001 Invalid 
BVA4 32766 Invalid 
BVA5 32767 Invalid 
BVA6 32768 Invalid

For the <house_number> field: 
Value 1 to 9999 

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 0 (already covered)14 NA 
BVA2 1 (already covered) NA 
BVA3 2 Valid 
BVA4 9998 Invalid 
BVA5 9999 (already covered) NA 
BVA6 10000 (already covered) NA

For the length of the <street_name>: 
Street name length < 1 character 
Minimum length = 0 
Partition tested: [0 – 1] 

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 cannot select string of < 0 characters NA 
BVA2 0 characters (already covered) NA
BVA3 1 character Valid 
BVA4 0 character (already covered) NA 
BVA5 1 character (already covered)  NA 
BVA6 2 characters  Valid 
BVA9 0 characters (already covered) NA 

For the length of the <street_name>: 
Street name length > 40 characters 
Assume 8-bit string, maximum length = 256  
Partition tested: [41 – 256] 
 

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 39 characters   Valid 
BVA2 40 characters Invalid 
BVA3 41 characters Invalid 
BVA4 255 characters Invalid 
BVA5 256 characters Invalid 
BVA6 257 characters Invalid

For the length of the <street_name>: 
Street name length 1 to 40 characters 
 

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA1 0 characters (already covered) NA 
BVA2 1 character (already covered) NA 
BVA3 2 characters (already covered) NA 
BVA4 39 characters (already covered) NA 
BVA5 40 characters (already covered) NA 
BVA6 41characters (already covered) NA

For the contents of the <street_name>: 
anything from the valid list  
[A – Z | a – z] | [A – Z | a – z] [ | - | .][A – Z | a – z] 
Assume the characters are stored in lists rather 
than ASCII ranges 

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA7 A Valid
BVA7 a Valid 
BAV7    (white-space) Valid 
BVA7 - Valid 
BVA7 . Valid 
BVA8 Z Valid 
BVA8 z Valid 
BVA8   (white-space) (already covered) NA 
BVA8 - (already covered) NA 
BVA8 . (already covered) NA 
BVA9 (null) (already covered) NA 
BVA12 B Valid 
BVA12 b Valid 
BVA13 Y Valid 
BVA13 y Valid 

For the <street_type> field: 
anything from the valid list [Street | St | Road | Rd | 
Avenue | Ave | Court | Crt] 

Atomic Rule # Boundary Value Selected Valid or Invalid
BVA7 Street Valid 
BVA8 Crt Valid 
BVA9 (null) (already covered)  NA 
 

                                                           
14 If a boundary has previously been covered by another test data value, then it does not need to be covered again.  
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Table 3-17: Example of applying steps 3 and 4 of the Atomic Rules definition of Boundary Value 
Analysis to an example Address Parser specification. 

Step 3. This step manipulates test data values and is currently covered by Syntax Testing. Thus, it is not applicable for BVA.  

Step 4. Select test cases that are: 

a. valid, by applying EP14 and EP18 to valid data values chosen in step 2, 

b. invalid, by applying EP15 and EP16 to invalid data values chosen in step 2. 

Test Data Values Test Cases 

Test data values for <house_number>  
-32769 10000 
-32768  10001 
-32767 32766 
-1 32767 
0 32768 
1 9998 
2 9999 9998 
Test data values for <street_name> Length 
0 characters 41 characters 
1 character  255 characters 
2 characters 256 characters 
39 characters 257 characters 
40 characters 
Test data values for <street_name> Conrtents 
A Z 
A z 
 (white space) B 
- b 
. Y   
 y 
Test data values for <street_type>  
Street 
Crt 

Depending on which Test Case Construction Rule was applied 
(EP14, EP15 or EP16), this would result in a large number of 
test cases. Thus, the complete test set that would are derivable 
is not shown here. Instead, two example test cases are shown.  
  
Atomic Rule EP14 (Valid Test Case Constructor) could be 
applied to cover valid test data values <house_number> = 1, 
<street_name> = A and <street_type> = Street, with all other 
fields being assigned their nominal value, which could result in 
the following test case13.  
 

1 A Street La Trobe 3086 
 
Atomic Rule EP16 (Invalid Test Case Constructor – Minimised) 
could be applied to cover the invalid test data value 
<street_name> length = 0 characters, with all other fields being 
assigned their nominal value, as follows.  
 

1  Street La Trobe 3086 
 
In the above, two test cases have been derived, covering four 
test data values. In practice, this would be repeated until all test 
data values (in the left hand column) are covered by at least one 
test case.  

 

3.4.1.3 Demonstration of Syntax Testing  

The Atomic Rules definition of ST can be applied to the <house_number> field of the Address Parser 

specification (Figure 3-8) as follows. ST implements all four steps of the black-box test case design process, 

as follows. In step 1, Atomic Rules EP1 to EP11 are utilised to partition the <house_number> field into 

equivalence classes (Figure 3-8 step 1). In step 2, EP13 is utilised to select random values from each 

equivalence class (Figure 3-8, step 2). In step 3, ST2 is applied to manipulate the test data values chosen in 

step 2 (Figure 3-8, step 3), In practice, step 3 would be repeated with ST1 to ST8, ST17 and ST18 to 

manipulate the test data values in other ways. In step 4, EP15 is applied to derive a sample of test cases 

(Figure 3-8, step 4). In practice, the fourth step would also be repeated until all test data values chosen in 

step 3 were covered by at least one test case. All four steps in this process would also be repeated for all 

other input fields of the Address Parser specification.   
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Figure 3-8: Demonstration of the application of the Atomic Rules definition of Syntax Testing.  

Step 4. Select test cases that are: 

a. valid, by applying EP14 to valid data values chosen in step 2, 

b. invalid, by applying EP15, EP16 and ST19 to invalid data values chosen in step 2. 
c. combinatorial, by applying a selection of CT1 to CT6 and/or SBMT1 to SBMT4.  

Step 3. Manipulate the test data values chosen in 
step 2 by applying ST1 to ST14, ST17 and ST18 to 
each test data value.  

Step 2. Select individual test data values as follows. 

a. For each range-based equivalence class chosen in step 1a, apply BVA1 to BVA6 and 
BVA9 to select individual data values.  

b. For each list-based equivalence class chosen in step 1a, apply BVA7 to BVA13 to 
select individual data values 

Input Field: 

<house_number> ::= [1 - 9999] 

Step 1. Select equivalence classes as follows: 

a. if set type  range then apply Atomic Rules EP1 to EP11, 

b. if set type  list then apply Atomic Rules EP4 to EP12. 

DSSR <house_number> ::= [1 – 9999] 

Number < 0   (EP1) 
Number > 9999  (EP2) 
Number 1 to 9999  (EP3) 
Real    (EP5) 
Single alpha   (EP6) 
Multiple alpha   (EP7) 
Multiple alphanumeric  (EP8) 
Singe non-alphanumeric  (EP9) 
Multiple non-alphanumeric  (EP10) 
Null    (EP11) 

Number < 0 
Number > 9999 
Number 1 to 9999 
Real  
Single alpha 
Multiple alpha 
Multiple alphanumeric 
Singe non-alphanumeric 
Multiple non-alphanumeric 
Null  

-14023    (EP13) 
29876   (EP13) 
870   (EP13) 
25.12   (EP13) 
D   (EP13) 
AiyuB   (EP13) 
M4L5djj   (EP13) 
<   (EP13) 
(&’=   (EP13) 
   (EP13) 

-20000 
20000 
5000 
25.12 
L 
LmN 
M4L5N 
< 
:;<=> 
 

 
-1402A    (ST2) 
2987B   (ST2) 
87C   (ST2) 
25.1D   (ST2) 
E   (ST2) 
AiyuF   (ST2) 
M4L5djG   (ST2) 
H   (ST2) 
(&’=I   (ST2) 
   (ST2) 

Atomic Rules 
Applied

For example, if 
Atomic Rule EP15 
is applied to the test 
data values chosen 
in steps 2 and 3, 
while all other fields 
were assigned their 
“nominal” value, this 
could result in the 
following test cases. 

 
-14023 abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

29876 abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

870 abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

25.12 abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

D abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

AiyuB abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

M4L5djj abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

< abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

(&’= abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

 
…continued next page 

Partitions

Atomic Rules 
Applied

Test Data  
Values

Atomic Rules 
Applied

Manipulated  
Test Data Values 

Atomic Rules 
AppliedTest Cases

Partitions 

Test Data Values 

-14023 
29876 
870 
25.12 
D 
AiyuB 
M4L5djj 
< 
(&’= 
 

Manipulated  
Test Data Values 

For example, if 
Atomic Rule ST2 
was applied, it 
would manipulate 
the test data 
values as follows. 

-1402A 
2987B 
87C 
25.1D 
E 
AiyuF 
M4L5djG 
H 
(&’=I 

For example, if 
Atomic Rule EP13 
was applied, it 
would select 
random test data 
values as follows. 

DISR 

DIMR 

TCCR 



A Generalised Representation for Black-Box Testing Methods Chapter 3 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 123 

Figure 3-9: Demonstration of the application of the Atomic Rules definition of Syntax Testing 
(continued).  

 

3.5 Auditing the Completeness of Black-Box Testing  

A major benefit of the Atomic Rules approach is that it simplifies auditing the completeness of black-

box testing through the use of Test Matrices. For example, consider the coverage that has been achieved so 

far by applying EP to the Address Parser specification in the previous section. Through the Atomic Rules 

approach, this coverage can be easily traced via a Test Matrix that tracks which Atomic Rules have (or have 

not) been applied to each input field (Table 3-18). 

This level of traceability is particularly useful for organisations that are developing software to meet 

regulatory standards that dictate the use of particular black-box testing methods. For example, the railway 

engineering standard EN 50128 (which is used by railway engineering organisations in Australia including 

Westinghouse and Ansaldo STS) “highly recommends” the use of EP and BVA for testing any safety-

related system (BS-EN 50128:2001). An assessor who is checking an organisation’s compliance to this 

standard would require the organisation to demonstrate that they have applied EP and BVA adequately. 

Since the standard refers to Myers’ (1979) definition of these methods, the assessor may not be able to 

definitively determine whether all possible equivalence classes and boundary values had been covered 

during testing. In contrast, this would be very obvious and much more easily demonstrable for any 

organisation using the Atomic Rules approach.   

Step 4 - Continued. Select test cases that are: 

a. valid, by applying EP14 to valid data values chosen in step 2, 

b. invalid, by applying EP15, EP16 and ST19 to invalid data values chosen in step 2. 
c. combinatorial, by applying a selection of CT1 to CT6 and/or SBMT1 to SBMT4.  

For example, if 
Atomic Rule EP15 
is applied to the test 
data values chosen 
in steps 2 and 3, 
while all other fields 
were assigned their 
“nominal” value, this 
could result in the 
following test cases. 

-1402A abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

2987B abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

87C abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

25.1D abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

E abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

AiyuF abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

M4L5djG abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

H abcdefghijklmnopqurt Rd La Trobe 3086  (EP15) 

(&’=| abcdefghijklmnopqurt Rd La Trobe 3086  (EP15)

Atomic Rules 
AppliedTest Cases

-14023 
29876 
870 
25.12 
D 
AiyuB 
M4L5djj 
< 
(&’= 
 

Manipulated  
Test Data Values 

-1402A 
2987B 
87C 
25.1D 
E 
AiyuF 
M4L5djG 
H 
(&’=I 

TCCR 
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Table 3-18: Coverage of Atomic Rules from Equivalence Partitioning achieved  
against the fields of the Address Parser specification. 

Atomic 
Rule # Atomic Rule Name 

Key:  
  indicates Atomic Rules that have been applied to each field. 
 NA indicates Atomic Rules that cannot be applied to each field due to 

incompatibility between the Rule Type and the Set Type of the field. 
 Whitespaces indicate Atomic Rules that have not yet been applied.  

Input Fields 

<
h

o
u

se
_n

u
m

b
e

r>
 :

:=
 

[1
 –

 9
99

9
] 

<
st

re
et

_
n

am
e>

 :
:=

 {
[A

 –
 Z

 |
 

a 
– 

z]
 |

 [
A

 –
 Z

 |
 a

 –
 z

] 
[

 | 
- 

| 
.]

[A
 –

 Z
 | 

a 
– 

z]
} 

(i
.e

. c
o

n
te

n
ts

  
o

n
ly

) 

<
st

re
et

_
n

am
e>

 l
en

g
th

 1
 t

o
 

40
 c

h
ar

ac
te

rs
 

<
st

re
et

_
ty

p
e>

 :
:=

 [
S

tr
ee

t 
| 

S
t 

| R
o

ad
 | 

R
d

 |
 A

ve
n

u
e 

| 
A

ve
 | 

C
o

u
rt

 |
 C

rt
] 

<
d

ir
ec

ti
o

n
>

 :
:=

 [
N

o
rt

h
 |

 
S

o
u

th
 | 

E
as

t 
| W

es
t 

] 

<
su

b
u

rb
>

 :
:=

 [
A

b
b

o
ts

fo
rd

 | 
A

b
er

fe
ld

ie
 |

 …
 |

Y
o

o
ra

lla
 

|Y
u

ro
ke

] 

<
p

o
st

c
o

d
e>

 :
:=

 [
20

0 
| 2

21
 | 

80
0 

| 8
01

 |
 8

04
 |

 8
10

 | 
…

 |
 

97
26

 |
 9

72
8 

| 
97

29
] 

:
:=

 [
 ]

 #
i.e

. 
o

n
e 

sp
ac

e
 

EP1 Less Than Lower Boundary Selection  NA  NA NA NA NA NA 

EP2 Greater Than Upper Boundary Selection  NA  NA NA NA NA NA 

EP3 Lower to Upper Boundary Selection  NA  NA NA NA NA NA 

EP4 Integer Replacement   NA      
EP5 Real Number Replacement   NA      
EP6 Single Alpha Replacement   NA      
EP7 Multiple Alpha Replacement   NA      
EP8 Multiple Alphanumeric Replacement   NA      
EP9 Single Non-Alphanumeric Replacement   NA      
EP10 Multiple Non-Alphanumeric Replacement   NA      
EP11 Null Item Replacement         
EP12 Valid List Item Selection         
EP13 Random Data Value Selector         
EP14 Valid Test Case Constructor – Minimised         
EP15 Invalid Test Case Constructor – Maximised         
EP16 Invalid Test Case Constructor – Minimised         
EP17 Nominal Value Selector         
EP18 Valid Test Case Constructor – Maximised          

 

3.6 Using the Atomic Rules Approach in other Black-Box Testing 

The Atomic Rules defined for EP, BVA and ST can be used to enable prescriptive test data design for 

supporting other black-box testing methods, such as: 

 State Transition Testing (a form of model-based testing); 

 Use Case Testing; and 

 Category Partition Testing and Classification Trees. 

This is demonstrated in the following three sections.  

3.6.1 Applying Atomic Rules to State Transition Testing  

In State Transition Testing, test cases are derived from a model of the state behaviour of a program to 

test its behaviour when certain events occur (e.g. see (BS 7925-2)). A State Transition Diagram illustrates 
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the states a program may occupy, transitions between states, events that cause transitions between states and 

actions or outcomes of the transition, where appropriate. Test cases are constructed to exercise transitions, 

states and combinations thereof. At the simplest level, test cases comprise a start state, an event (i.e. an 

input) that causes a transition, (usually) an outcome and an end state.  

Definitions of State Transition Testing typically describe techniques for constructing test cases that 

ensure that valid transitions are correctly exercised for valid sequences of events and that ‘error’ states are 

reached in response to invalid input. They do not provide prescriptive guidelines for selecting (valid and 

invalid) test data values that are required to ‘activate’ each transition. Atomic Rules from EP, BVA and ST 

can be utilised to fill this gap, providing precise method of deriving those test data values.  

Consider the specification for a component manage_display_changes that controls a digital clock 

display (Figure 3-10) (originally defined in (BS 7925-2)). The clock can either display the date or time or 

can be in states where it is being reset. The inputs to the component are commands to set the date (DS) and 

time (TS), to change modes between displaying the date and time (CM) and reset (R). From the textual 

specification of this component, a state transition diagram can be drawn (Figure 3-11).   

Figure 3-10: Specification for a component that manages the display on a clock (BS 7925-2). 

Component manage_display_changes 

The component responds to input requests to change an externally held display mode for a time display 

device. The external display mode can be set to one of four values: Two correspond to displaying either 

the time or the date, and the other two correspond to modes used when altering either the time or date. 

There are four possible input requests: 'Change Mode', 'Reset', 'Time Set' and 'Date Set'. A 'Change 

Mode' input request shall cause the display mode to move between the 'display time' and 'display date' 

values. If the display mode is set to 'display time' or 'display date' then a 'Reset' input request shall 

cause the display mode to be set to the  corresponding 'alter time' or 'alter date' modes. The 'Time Set' 

input request shall cause the display mode to return to 'display time' from 'alter time' while similarly the 

'Date Set' input request shall cause the display mode to return to 'display date' from 'alter date'. 
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Figure 3-11: State Transition Diagram for ‘manage_display_changes’ (from (BS 7925-2)). 

 

 

Six test cases are required to cover the six individual transitions in the State Transition Diagram (Table 

3-19) (BS 7925-2). This is commonly known as “0-switch” coverage (Chow 1978).  

Table 3-19: Test cases to achieve 0-switch coverage of manage_display_changes (BS 7925-2). 

Test Case 1 2 3 4 5 6 

Start State S1 S1 S3 S2 S2 S4 

Input CM R TS CM R DS 

Expected Output D AT T T AD D 

Finish State S2 S3 S1 S1 S4 S2 

 

Since State Transition Testing focuses only on transition coverage, not input domain coverage, Table 3-

19 is missing actual test data values that would need to be included with the commands ‘date set’ (DS) and 

‘time set’ (TS), in order to cause transition from one state to another. For example, it is assumed that the 

tester would need to enter an actual test data values like ‘1200’ to set the time to midday. The Atomic Rules 

approach can be utilised at this point to enable prescriptive test data design when selecting inputs to these 

test cases. For example, one approach to specifying the time field is <time> ::=[00:00 – 23:59]. If the 

transition from state S3 to S1 were being tested, then the following Data-Set Selection Rules from EP could 

be applied to this field to select equivalence classes.  

1. EP1: < 00:00 (invalid and presumably impossible, but worth recording as a potential test) 

2. EP2: > 23:59 (invalid) 

3. EP3: 00:00 to 23:59 (valid) 

‘reset’ (R) 
 

alter time (AT) 
 

CHANGING  
TIME (S3) 

 

DISPLAYING 
DATE (S2) 

 

CHANGING 
DATE (S4) 

 

DISPLAYING 
TIME (S1) 

‘time set’ (TS) 
 

display time (T) 

‘change mode’ (CM) 
 

display date (D) 

‘change mode’ (CM) 
 

display time (T) 

‘reset’ (R) 
 

alter date (AD) 

‘date set’ (DS) 
 

display date (D) 
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The <time> field could also be specified as <time> ::= <hh>:<ss>, where <hh> ::= [00 – 23] and <ss> 

::= [00 – 59], which would ensure that the boundaries of the ‘seconds’ field are appropriately tested (e.g. see  

Table 3-22 in Section 3.6.3). 

Data-Item Selection Rules EP13 (random value), EP17 (nominal value) and BVA1 to BVA6 (boundary 

values) could then be applied to each partition to select test data values. For example, they could be applied 

to partition number 3 to select the following values.  

4. Partition 3: 00:00 to 23:59 (valid) 

a. EP13: 13:34 (valid) 

b. EP17: 12:00 (valid) 

c. BVA1: -99:99 (invalid and assumed impossible, but worth noting) 

d. BVA2: 00:00 (valid) 

e. BVA3: 00:01 (valid) 

f. BVA4: 23:58 (valid) 

g. BVA5: 23:59 (valid) 

h. BVA6: 23:60 (invalid) 

Execution of the transition from S3 to S1 with these test data values would ensure that the transition is 

tested and source code that validates the input data just prior to transition is also rigorously tested.  

The selection of other invalid test data values (e.g. invalid datatypes) is limited by the input domain of 

the system under test. Unlike a program that takes inputs from a keyboard, the input domain of this system 

is limited by the available buttons on the clock interface, some of which will be considered invalid at state 

S3. Since there are no existing Atomic Rules in EP, BVA or ST that can be used to select this type of 

invalid equivalence class, a new rule STT1 can be defined as follows. 

5. STT1: Invalid List Selection (see Appendix B, Section B.4) 

a. Selects the invalid partition [date set | change mode | reset] 

EP18 was defined specifically to support state transition testing. Since there are only three items 

selected by the rule in this invalid partition, it would be reasonable to design test cases that cover all three 

values. Test Case Construction Rule ST12 could be applied derive these.  

This example has illustrated how the Atomic Rules approach can be utilised to provide prescriptive test 

data design to support State Transition Testing.  

3.6.2 Applying Atomic Rules to Use Case Testing 

Activity diagrams allow the flow of events through a use case to be specified by depicting the 

interaction between the system and the user (Chonoles & Schardt 2003) and are one of the modelling 

notations defined in the Unified Modelling Language (UML). Business Analysts and developers in industry 
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often use Activity Diagrams to specify business workflows through systems, while testers can use them to 

identify test cases for testing those workflows. Atomic Rules from EP, BVA and ST can be used to 

prescriptively generate inputs for populating test cases derived through Use Case Testing. 

Consider an activity diagram for a login screen (Figure 3-12). The ‘normal’ flow of events tracks the 

user entering a valid username and password and clicking the ‘Ok’ button, while alternate flows cover the 

user clicking ‘Cancel’ and entering an invalid username/password combination (Figure 3-12).  

Figure 3-12: An activity diagram that illustrating the flow of events for a login screen.  

 

[Pass]

[Fail] 

(U1) 
Enter Username 

(U3) 
Click Ok 

(U4) 
Click Cancel 

User System 

(S3) 
Log User into System 

(S4) 
Display Main Menu 

(S1) 
Prompt for Login 

Represents the ‘normal’ 
flow of events 

(S2) 
Validate Username & Password 

(U2) 
Enter Password 

Represents ‘alternate’ 
flows of events 
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Test cases can be derived from this diagram to cover normal (Table 3-20) and alternate flows. 

Table 3-20: Test case covering the ‘normal’ path of login (adapted from (Nguyen et al. 2003)). 

Use Case ID  Login 01 

Use Case Name Login Screen  

Test Case Number TC1 

Test Case Name Login Screen – Normal  

Path Covered S1, U1, U2, U3, S2, S3, S4 

Pre-conditions User has started the program   

Inputs Enter valid username 
Enter valid password 
Click Ok button  

Expected Results  User is logged into system, Main Menu is displayed 

Post-conditions Flag is set in database to show user is logged in 

 

Although these test cases ensure that workflows through the system are thoroughly tested, use case 

testing itself does not provide assistance with the selection of test data values for population of the ‘Inputs’ 

field of the test case (Table 3-20 row 7). Atomic Rules from EP, BVA and ST can be utilised at this point, 

to provide prescriptive design of valid and invalid test data values.  

For example, let us assume that the username and password fields may contain between 8 and 20 

lowercase alphas, uppercase alphas, integers [0 – 9] and all non-alphanumeric ASCII characters. The 

following Data-Set Selection Rules could be applied to test the contents of the two fields. 

1. EP12: partition containing all lowercase alpha characters (valid) 

2. EP12: partition containing all uppercase alpha characters (valid) 

3. EP12: partition containing all non-alphanumeric characters (valid) 

4. EP12: partition containing integers [0 – 9] (valid) 

Invalid datatype selection rules EP4 to EP12 do not have to be applied, since all datatypes they cover are 

included in the partitions above. However, the length of the field can be tested. 

5. EP1: < 8 characters (invalid) 

6. EP2: > 20 characters (invalid) 

7. EP3: 8 to 20 characters (valid) 

A variety of Data-Item Selection Rules could then be applied to select individual test data values. For 

example, DISR EP13 could be applied to select a random value from each partition, as follows.  

1. EP12: partition containing all lowercase alpha characters 

a. Apply EP17 to select character ‘b’ 

2. EP12: partition containing all non-alphanumeric characters 

a. Apply EP17 to select character ‘F’ 
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3. EP12: partition containing all non-alphanumeric characters 

a. Apply EP17 to select ‘+‘  

4. EP12: partition containing integers [0 – 9] 

a. Apply EP17 to select integer ‘3’ 

5. EP1: < 8 characters  

a. Apply EP17 to select 2 characters 

6. EP2: > 20 characters 

a. Apply EP17 to select 58 characters 

7. EP3: 8 to 20 characters 

a. Apply EP17 to select 14 characters 

A test case could be designed to cover 1a, 1b, 1c, 1d and 7a, resulting in a test data value 

bF+3bF+3bF+3bF, which would execute the normal path (Table 3-21) (this test data was constructed by 

repeating the pattern of test data values that were selected under 1a, 1b, 1c, 1d until the 14 characters 

defined by 7a were covered). For the test to pass, the database would need to include a ‘valid’ user with 

username and password bF+3bF+3bF+3bF.  

Table 3-21: Updated test case covering the ‘normal’ path of the login screen.  

Use Case ID  Login 01 

Use Case Name Login Screen  

Test Case Number TC1 – version 2 

Test Case Name Login Screen – Normal  

Path Covered S1, U1, U2, U3, S2, S3, S4 

Pre-conditions User has started the program   

Inputs Enter valid username bF+3bF+3bF+3bF 
Enter valid password bF+3bF+3bF+3bF 
Click Ok button  

Expected Results  User is logged into system, Main Menu is displayed 

Post-conditions Flag is set in database to show user is logged in 

 

This example has illustrated how the Atomic Rules approach can be utilised to prescriptively derive test 

data values for supporting Use Case Testing.  

3.6.3 Applying Atomic Rules to the Category Partition Method 

The Category Partition Method (CPM) was developed by Ostrand and Balcer (1988) to formalise the 

documentation of black-box test cases in a language they named the ‘Test Specification Language’. One of 

the criticisms of the CPM in Chapter 2 (Section 2.9) is that it does not provide any guidance on the selection 

of ‘choices’ (i.e. equivalence classes) for input fields. The Atomic Rules approach can be utilised during 

step 2 of the CPM to formalise the process of identifying ‘choices’ via the application of Data-Set Selection 

Rules from EP.  
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Consider the component manage_display_changes (Table 3-22, col. 1), which was introduced in Section 

3.6.1. The input fields in this specification are defined in BNF, enabling thorough black-box testing of this 

component15 (see Table 3-22, col. 1, Syntax). Data-Set Selection Rules from EP can be applied to each input 

field, to select a set of ‘choices’ (i.e. partitions), which can then be documented in the Test Specification 

Language (see Table 3-22, col. 2). This demonstrates how the Atomic Rules approach can be utilised by 

CPM to formalise the process of deriving and documenting choices.  

Table 3-22: Specification of the manage_display_changes command. 

Component Specification Corresponding TSL Specification* 

Command 
manage_display_changes 
 
Syntax 
<manage_display_changes> ::= <command> [<date> | <time>]0-1 
 <command>  ::= [CM | R | DS | TS] 
 <date>  ::= <day><month><year> 
 <day>  ::= [1 – 31] 
 <month>  ::= [1 – 12] 
 <year>16  ::= [1970 – 3000]  
 <time> ::= <hh><ss> 
 <hh> ::= [00 – 23] 
 <ss> ::= [00 – 59] 
 
Function – manage_display_changes  
The component responds to input requests to change an externally 
held display mode for a time display device. The external display 
mode can be set to one of four values: Two correspond to 
displaying either the time or the date, and the other two correspond 
to modes used when altering either the time or date. 
 
There are four possible input requests: 'Change Mode', 'Reset', 
'Time Set' and 'Date Set'. A 'Change Mode' input request shall 
cause the display mode to move between the 'display time' and 
'display date' values. If the display mode is set to 'display time' or 
'display date' then a 'Reset' input request shall cause the display 
mode to be set to the  corresponding 'alter time' or 'alter date' 
modes. The 'Time Set' input request shall cause the display mode 
to return to 'display time' from 'alter time' while similarly the 'Date 
Set' input request shall cause the display mode to return to 'display 
date' from 'alter date'. 
 
Examples 
DS 01012000 
 displays the date 01/01/2000 
TS 1459 
 displays the time 14:59 (i.e. 2:59 pm) 
R 
 resets the date or time that was displayed 
 CM 
 Changes the display from date to time and visa versa  

Equivalence Classes for each Parameter
 
Command 
 EP12: valid item from list [CM | R | DS | 
TS] 
Day 
 EP1: day < 1 
 EP2: day > 31 
 EP3: day 1 – 31 
Month 
 EP1: month < 1 
 EP2: month > 12  
 EP3: month 1 – 12 
Year 
 EP1: year < 1970 
 EP2: year > 3000 
 EP3: year 1970 – 3000 
hh  
 EP1: hh < 00 
 EP2: hh > 23 
 EP3: hh 00 – 23 
ss  
 EP1: ss < 00 
 EP2: ss > 59 
 EP3: ss 00 – 59 
 
Environments 
 
Not required, as only one command can be 
given to the system at once.  
 
* Additional test cases could be identified by 
a human tester for testing valid and invalid 
combinations of days, months and years. 
For example, testing days like February 29 
within leap years and non-leap years or 
testing for the 31st day in months with and 
without 31 days. This form on of 
combination testing is outside the scope of 
the Atomic Rules approach (see Section 
3.8).  

 

                                                           
15 The syntax for this input could have been defined using Goal/Question/Answer/Specify/Verify (GQASV) (see Section 3.10).  
16 This year range was chosen as the following formula (implemented in C#) can be utilised to calculate leap years between these 
dates: return (year % 4 == 0) && (year % 100 != 0) || (year % 400 = 0) (returns true for leap years) (Page et al. 2009). 
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3.7 Evolution of the Atomic Rules Approach  

The first version of the Atomic Rules approach (Murnane, Hall & Reed 2005) was defined through an 

analysis of EP and BVA. This definition was then improved by carrying out experiments with university 

students and industry professionals (see Chapters 5 and 6) and by extending the research to include ST. 

Since EP and BVA do not manipulate (i.e. ‘mutate’) test data, the original Atomic Rules test case design 

process included only three steps (Figure 3-13). The fourth step of the process was added when the 

investigation was extended to ST (e.g. the definition of ST in (BS 7925-2) includes field manipulation).  

Figure 3-13: The original Atomic Rules three-step test selection process (Murnane et al. 2005). 

1. Select valid and invalid data sets called ‘equivalence classes’ or ‘partitions’ for 

each input field by applying a Data Set Selection Rule (DSSR) to each field.  

2. Select at least one individual data value from each partition chosen in (1) by 

applying a Data Item Selection Rule (DISR) to each partition.  

3. Select combinations of data values chosen in (2) to construct test cases by 

applying a Test Case Construction Rule (TCCR) to the data values. 

 

Atomic Rules for EP were enhanced, based on the outcome of the university experiment. In the original 

EP rule set, datatype replacement rules EP4 to EP11 could only be applied to fields of a different datatype 

to that of the field under test. For example, EP4: Integer Replacement could only be applied to non-integer 

fields. During the university experiment it was realised that replacement rules could be applied to fields of 

the same datatype, provided that the equivalence class selected excludes all values in the valid class. This is 

evident in a previous example where EP7: Multiple Alpha Replacement was applied to the <street_type> to 

select any multiple alpha character not in the valid set (see Section 3.4).  

The final improvement was the definition of new Atomic Rules for BVA (BVA10 to BVA13) and ST 

(ST17 to ST19), which were identified by participants of the industry experiment. 

3.8 Limitations of the Atomic Rules Approach  

One limitation of the Atomic Rules approach is that it does not support testing of input field 

dependencies, where the test data value chosen from the equivalence class of one field depends on the value 

chosen from the class of another field. Consider the example of a date picker whose implementation is 

based on the Gregorian calendar and which is composed of three input fields.  

 <day>  ::= [1 – 31] 

 <month>  ::= [1 – 12] 

 <year>  ::= [1582 – 9999]  
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Invalid combinations include 31/2 and selecting 29 days in non-leap years such as 29/2/2009. While a 

function could be defined for calculating whether a particular combination is possible, Atomic Rules cannot 

be defined for selecting these as aside from automatic selection, they can only be manually chosen by a 

tester who has appropriate domain knowledge of valid day/month/year combinations.   

A similar limitation is that Atomic Rules cannot select combinations of test data values for testing 

output partitions (introduced in Section 3.3.1.2), as this can only be carried out manually by a human tester. 

Consider the following example that demonstrates the application of EP to the specification of a component 

generate_grading, which takes as input a coursework mark out of 25 and an exam mark out of 75 and 

generates a total grade in the range ‘A’ to ‘D’ (BS 7925-2) (Figure 3-14).  

Figure 3-14: Specification for the component generate_grading (BS 7925-2). 

Component generate_grading 

The component is passed an exam mark (out of 75) and a coursework (c/w) mark (out of 25), from which 
it generates a grade for the course in the range 'A' to 'D'. The grade is calculated from the overall mark 
which is calculated as the sum of the exam and c/w marks, as follows: 

greater than or equal to 70 - 'A' 

greater than or equal to 50, but less than 70 - 'B' 

greater than or equal to 30, but less than 50 - 'C' 

less than 30 - 'D' 

Where a mark is outside its expected range then a fault message ('FM') is generated. All inputs are 
passed as integers. 

 

Partitions can be identified for coursework mark and exam mark by applying EP1 to EP3:  

1. EP1: coursework mark < 0 (invalid) 

2. EP2: coursework mark > 25 (invalid) 

3. EP3: coursework mark 0 – 25 (valid) 

4. EP1: exam mark < 0 (invalid) 

5. EP2: exam mark > 75 (invalid) 

6. EP3: exam mark 0 – 75 (valid) 

Invalid datatype replacement rules can also be applied to these fields, to ensure that Fault Messages 

appears for non-integers. Since EP4 is covered by partitions 1, 2, 4 and 5, it is not included below.  

7. EP5: real number in place of the coursework mark (invalid) 

8. EP5: real number in place of the exam mark  (invalid) 

9. EP5: a single alpha character in place of the coursework mark (invalid) 

10. EP5: a single alpha character in place of the exam mark  (invalid) 

11. EP7: multiple alphas characters in place of the coursework mark (invalid) 

12. EP7: multiple alphas characters in place of the exam mark (invalid) 
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13. EP8: multiple alphanumeric characters in place of the coursework mark (invalid) 

14. EP8: multiple alphanumeric characters in place of the exam mark (invalid) 

15. EP9: a single non-alphanumeric character in place of the coursework mark (invalid) 

16. EP9: a single non-alphanumeric character in place of the exam mark (invalid) 

17. EP10: multiple non-alphanumeric characters in place of the coursework mark (invalid) 

18. EP10: multiple non-alphanumeric characters in place of the exam mark (invalid) 

19. EP11: null in place of the coursework mark (invalid) 

20. EP11: null in place of the exam mark (invalid) 

Each partition could then be tested by applying EP13 or EP17 to select nominal or random values.  

The complexity arises when the output partitions of total mark are considered, as follows.  

21. EP3: grade ‘A’ induced by total mark [70 – 100] (valid) 

22. EP3: grade ‘B’ induced by total mark [50 – 69] (valid) 

23. EP3: grade ‘C’ induced by total mark [30 – 49] (valid) 

24. EP3: grade ‘D’ induced by total mark [0 – 29] (valid) 

25. EP1: Fault Message induced by total mark < 0 (invalid) 

26. EP2: Fault Message induced by total mark > 100 (invalid) 

To ensure all output partitions are ‘covered’ by at least one test case, test data values for exam mark 

need to be chosen based on the value of coursework mark. For example, test data values exam mark = 20 

and coursework mark = 60 exercise partition number 21. It is not possible to define an Atomic Rule that 

will mechanically identify all combinations of input exam marks and coursework marks that cause a 

particular output partition to be exercised. A human tester is required to complete this step. Although this is 

a current limitation of the approach, this could be solved in future research (see Chapter 7).   

3.9 Related Research  

The Atomic Rules characterisation schema provides a classification system for representing black-box 

testing methods more prescriptively. Such classification systems are common in software engineering. 

Characterisation schemas have been used to standardise other software engineering ‘technologies’ 

facilitating the selection of appropriate techniques with respect to specific problem domains.  

For example, Prieto-Díaz and Freeman used faceted classification to develop a system for the 

characterisation and retrieval of reusable code components (Prieto-Díaz 1991, Prieto-Díaz & Freeman 

1987). Maiden and Rugg (1996) used faceted classification to develop the ACquisition of REquirements 

(ACRE) framework, which guides the selection of suitable requirement acquisition (RA) methods. ACRE 

consists of twelve methods that are chosen as representatives of all methods, six facets that determine 

method selection and six tables that rank how well each method fits the terms of each facet. Continuing this 



A Generalised Representation for Black-Box Testing Methods Chapter 3 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 135 

research, Rugg, McGeorge and Maiden (2000) decomposed RA and knowledge acquisition (KA) methods 

into discrete sub-tasks called “method fragments.” They noted that while there were there a variety of 

methods available, many had common sub-tasks. Also, many versions of each method exist, some of which 

produce different results given the same elicitation problem. Method decomposition made their strengths 

and weaknesses easier to assess. ACRE also facilitated the development of customised elicitation methods. 

These concepts align well with the Atomic Rules approach and were used during the development of the 

approach to refine the concept of Atomic Rules, the identification of method versions and the development 

of Systematic Method Tailoring.  

Birk (1997) used faceted classification and the Goal/Question/Metric (GQM) paradigm (Basili & Selby 

1984, Basili & Weiss 1984, Basili 1991, Basili 1992, Basili et al. 1994) to develop a schema that 

characterized software ‘technologies’ and aided in their selection. The aim was to develop a decision 

support system for technology selection. Future work on the prototype Atomic Rules testing tool will 

include such a system in which users can select the Rules that apply to their specific problem domain (see 

Chapter 4).  

Vegas, Juristo and Basili (2003) developed an instantiated characterization schema to classify testing 

methods, to facilitate the selection of the “best suited” methods for specific projects (see Chapter 2, Section 

2.5.3). While their schema enabled classification of various black-box testing methods, it did not 

specifically provide solutions to the seven problems with existing black-box testing methods that are 

addressed in this thesis, nor did it address the need for precise, prescriptive methods. It also does not clearly 

identify the conditions under which one specific black-box testing method should be used over another. For 

example, there is little difference between the definitions of BVA and RT (see Chapter 2, Table 2-10).  

3.10 Goal/Question/Answer/Specify/Verify and Systematic Method 
Tailoring  

Goal/Question/Answer/Specify/Verify and Systematic Method Tailoring are two additional approaches 

that were developed in support of the Atomic Rules approach. They are ultimately aimed at enabling more 

effective black-box testing. GQASV is described first (Section 3.10.1), followed by SMT (Section 3.10.2). 

A demonstration of both approaches is also provided, for an online, real-world foreign currency calculator 

(Section 3.10.3).   

3.10.1 Goal/Question/Answer/Specify/Verify (GQASV) 

An unstated requirement for the effective use of black-box testing methods is that program input fields 

are completely specified. As discussed in Chapter 2, a survey of software testing practices in Australia 

found that of sixty-five organisations interviewed, over half reported that 20-59% of their program defects 

were related to specification defects (Ng et al. 2004). For a specific example of field incompleteness, 

consider the following real-life scenario. A business analyst (BA) working on a requirements specification 

for financial software discovered that the program under development needed to validate credit card 

numbers. The BA assumed that all members of the project team were familiar with valid credit card number 
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formats and thus omitted specifying their input data format explicitly. Consequently, during testing, the 

system tester was unable to derive a complete or effective black-box test set for that requirement and thus 

was unable to verify whether that part of the program satisfied its end-user needs. The input field definitions 

were also difficult to extract from program requirements, partly as their data and behaviour were specified 

in multiple places. As Abbot observed (1986), a program’s functionality, inputs, outputs and error checking 

are often discussed over various (separate) sections of a specification and can even appear in completely 

separate specifications. Consequently, there exists a need for a requirement elicitation procedure that 

ensures program input/output fields are completely specified, thus enabling effective black-box testing.  

3.10.1.1 The GQASV Process 

GQASV is proposed as a simple yet readily applied requirement elicitation procedure that can be used 

by business analysts or testers to develop precise definitions of program input and output fields, as well as 

to gather domain knowledge that is useful for conducting effective black-box testing (Murnane, Reed & 

Hall 2006). GQASV is a modest extension of  the well-known Goal/Question/Metric paradigm (Basili & 

Selby 1984, Basili & Weiss 1984, Basili 1991, Basili 1992, Basili et al. 1994) to support the analysis of 

specification completeness and the collection of domain knowledge, specifically in support of black-box 

testing.   

The input and output field definitions developed through GQASV specify the datatype, set type and size 

of each field in terms of minimum and maximum lengths, whether the field is mandatory or repeats, and the 

valid data set the program should accept and (ideally) the invalid data set it should reject. While the last two 

items are essential for selecting valid and invalid test cases, generic tests can be constructed using only 

datatype, set type and size, as they define the minimum amount of information required for proper 

application of the Atomic Rules approach. If the valid input data set is defined, then the datatype, set type 

and size of each field can be deduced and can act as an error checking mechanism. GQASV also facilitates 

the capture of domain knowledge that is utilised by testers during the specification process, allowing this 

information to be reused and shared with other novice and experienced testers when learning about the 

application domain of the program under test. 

Each application of the technique results in one GQASV instance (i.e. one for each field specified). 

GQASV comprises the five steps, as follows17.   

1. As a goal, state that a particular field is going to be specified for the purpose of conducting 

effective black-box testing.  

2. Consider the following questions: 

a. What is the field’s datatype? [Integer | Real | Single Alpha | Multiple Alpha | Multiple 

Alphanumeric | Single Non-Alphanumeric | Multiple Non-Alphanumeric] 

b. What is the field’s set type? [Range | List] 

                                                           
17 The verification step of this process (i.e. step 5) is new; thus, it was not defined in the original publication of this method in 
(Murnane, Reed & Hall 2006).  
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c. For ranges, what are the minimum and maximum values? For Lists, what is the 

minimum and maximum length of valid data?  

d. What valid data set should the program accept and what invalid data should it reject?  

e. Is the field mandatory? [Yes | No] 

f. Does the field repeat? [Yes | No]; if Yes, what are the minimum and maximum number 

of repetitions? 

3. Seek and record answers to these questions by searching for domain knowledge in textbooks, 

standards, papers, websites or by consulting with domain experts (e.g. consultants working in 

the domain, business analysts, developers, clients and experienced testers). Each answer 

should state how it was obtained, as this can be useful for the testing, development or 

maintenance of the program being specified and for future software development in the same or 

similar domains. Furthermore, the correctness of domain knowledge obtained from websites 

should be verified by a domain expert before it is relied upon. 

4. Specify the field using a formal notation (e.g. Backus-Naur Form), including valid and invalid 

data sets, if available.  

5. Verify the correctness of the field definition by verifying its completeness with a domain expert 

(e.g. a client or business analyst who understands the client’s needs) and (ideally) with a system 

developer, who can verify whether the implementation of this field is the same as its 

specification (see footnote in Section 3.10.2.1 for an example of the importance of this step).  

Subsequently, a collection of Atomic Rules that match the characteristics of the newly defined field can 

be chosen using Systematic Method Tailoring. This step is analogous to the metrics selection step in GQM. 

However, a fundamental difference is that while question identification in GQM requires some undefined 

knowledge and expertise that is not apparent from the method, GQASV has a fixed set of questions that are 

always required when specifying any input or output field, making it possible to work with the approach 

when one has limited application domain knowledge.  

An analysis of the literature suggests that while GQM and a number of other goal-oriented requirement 

engineering approaches have been used for requirement elicitation (e.g. see (Bonifati et al. 2001, Dubois, 

Yu & Petit 1998, Lamsweerde & Willemet 1998, Letier & Lamsweerde 2004, Sommerville et al. 1998)), 

this appears to be the first use of GQM for the analysis of specification completeness and the identification 

and documentation of domain knowledge, specifically in support of more effective black-box testing.  

A demonstration of GQASV is provided in Section 3.10.3, along with a demonstration of Systematic 

Method Tailoring, which is introduced in the next section. 

3.10.2 Systematic Method Tailoring (SMT) 

Non-prescriptive approaches to black-box testing, such as Error Guessing and Exploratory Testing, 

compliment prescriptive black-box testing (Craig & Jaskiel 2002) and are seen by many practitioners as an 

important aspect of the testing process. Yet there are currently no techniques available to guide testers in the 

capture of test case design rules that are used during non-prescriptive testing, other than to create lists of 
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“error prone situations” (Myers 1979) that have not previously been documented by testers. As Jorgensen 

(1995) claims, “special values testing is probably the most widely practiced form of functional testing. It 

also is the most intuitive and the least uniform… There are no guidelines, other than to use ‘best 

engineering judgement’. As a result, special value testing is very dependent on the abilities of the tester”. 

On the other hand, Craig and Jaskiel (2002) maintain that “Good exploratory testers often keep notes or 

checklists of tests that appear to be useful, to reuse on future releases. These ‘notes’ may (or may not) even 

look a lot like test scripts.” For example, Test Matrices and Test Catalogues (see Chapter 2, Section 2.7).  

can be used to create repositories of “special values” (Kaner et al. 2001, Marick 1995). However, Test 

Matrices and Catalogues do not provide testers with any guidance on how to document the generic test case 

design rules that are used to derive special values. They also do not provide guidance on how to construct 

‘tailored’ black-box testing methods from the test case design rules that are collected during Error Guessing 

and Exploratory Testing.  

As an enhancement to the Atomic Rules approach, three new procedures for the Systematic Method 

Tailoring of black-box testing are proposed (Murnane, Reed & Hall 2006). These new approaches support 

the capture of domain-knowledge based test case design rules that are used during non-prescriptive testing 

and can be used to construct new black-box testing methods. They are:  

1. selection-based tailoring (Section 3.10.2.1); 

2. creation-based tailoring (Section 3.10.2.2); 

3. creation-based tailoring via selection, using: 

3a. all combinations (Section 3.10.2.3); 

3b. paired combinations (Section 3.10.2.3); and 

3c. selective combinations (Section 3.10.2.3). 

Although each approach is discussed independently, in practice, a combination of all three approaches 

may be used. A demonstration of SMT is provided in Section 3.10.3.  

3.10.2.1 Selection-Based Tailoring 

In selection-based tailoring, new black-box methods can be defined by ‘selecting’ existing Atomic 

Rules that match the Set Type (i.e. Range or List) of an Atomic Rule against the Set Type of valid data for 

each field under test, allowing new black-box testing methods to be defined that suit the unique testing 

needs of each program under test. In other words, a new Atomic Rule-based black-box testing method can 

be constructed by either selecting a set of Atomic Rules from the complete set of existing rules, or by 

selecting rules from a pre-existing Atomic Rule-based black-box testing method. This can be done at any 

level of the Atomic Rules schema. This is a bottom-up approach that is based on the approach taken in 

traditional black-box testing methods. For example, Myers (1979) provides different guidelines for 

selecting test data for range-based and list-based fields.  
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Consider the following example. Atomic Rules that could be selected for testing a range-based input 

field <age> ::= [0 – 150] include test selection Rules BVA1: lower boundary – 1 selection and BVA6: 

upper boundary + selection (see Appendix B for rule definitions). These could not be applied to a list-based 

field defined as <colour> ::= [blue | green | red], as this field is a nominal set and it is impossible to 

predict what comes before or after its lower and upper boundaries. An interesting point to consider is, had 

the application programmer treated this field as a contiguous range-based field, where each colour is 

defined by a numerical range in the colour spectrum, e.g. <colour_wavelength> ::= [450  - 495 nm, 495 - 

570 nm, 620 - 750 nm], then Atomic Rules BVA1 and BVA6 would be applicable. This highlights the 

importance of the verification step in GQASV (see Section 3.10.1.1), as it ensures that each input and 

output field is specified and tested in an appropriate manner.   

3.10.2.2 Creation-Based Tailoring 

In creation-based tailoring, new Atomic Rules that have not been defined in existing black-box testing 

methods are defined. This is useful when testers suspect that a specific input may be effective for testing a 

particular field, and is similar to Error Guessing (Myers 1979). The benefit is that as each rule is defined 

using the Atomic Rules schema, it is described in a more prescriptive manner that makes the rule available 

for future reuse. Thus, a new Atomic Rule ri+1 that is not currently in the set of existing Rules R could be 

defined, {ri+1 : r i+1  R}. Examples of new Atomic Rules that could be defined include the following: 

1. Variations of ST Rules that have not been defined in existing literature, such as ri+1: first 

character selection, which selects the first character of an input value (Table 3-23).  

2. Rules that select specific input values, such as ri+2: select 0, to test for divide by zero errors.  

3. Rules to select sets of input values, such as ri+3: select all ASCII symbols, to select a string of 

special characters from the ASCII table.  

4. Rules that select Unicode characters (Aliprand et al. 2003), such as ri+4: Unicode U+00FC (ü) 

replacement, which would be useful for performing Internationalisation Testing of programs 

that must support international languages.  

5. Rules for testing programs with Graphical User Interfaces, for example: 

a. ri+5: maximum character selection, which could add characters to a text field until no more 

characters will fit. This could be useful for testing for buffer overflow faults. 

b. ri+6: minimum – 1 list position selection, which could attempt to select a record before the 

start of a record list to determine whether the program will run off the end of the record 

list. A similar rule could attempt to access a record beyond the end of a list.  

6. Rules that select escape characters and keywords that are part of the programming or database 

query language of the system under test. For example, for HTML programs: 

a. ri+7: HTML tag character selection, which could attempt to test with non-alphanumeric 

characters < and >, which are part of the HTML syntax.  
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Each new rule can be defined as an instance of the Atomic Rules schema (e.g. see Table 3-23). 

Table 3-23: Creation of a new Atomic Rule defined through Systematic Method Tailoring. 

Attribute Values 

Test Method Syntax Testing 

Number ri+1 

Name First Character Selection 

Description Select the first character of an input string 

Source N/A 

Rule Type DISR 

Set Type List or Range 

Valid or Invalid Invalid 

Original 
Datatype 

Multiple: Integer, Real, Single Alpha, Multiple Alpha, Multiple 
Alphanumeric, Single Non-Alphanumeric, Multiple Non-Alphanumeric 

Test Datatype  Same as original 

Test Data Length 1 

# Fields 
Populated 

1 

# Tests Derived 0 

 

3.10.2.3 Creation-Based Tailoring via Selection  

In creation-based tailoring via selection, existing Atomic Rules are combined to create new Rules. 

There are three types of tailoring within this class:  

1. all combinations;  

2. paired combinations; and 

3. selective combinations.  

In each of these procedures, which are defined below, new Atomic Rules are defined by creating new 

instances of the Atomic Rules schema.  

In all combinations, the set of all Atomic Rules {r1, …, rn} are combined, resulting in the n-ary 

Cartesian product R1 × … × Rn = {(r1, …, rn) | r1 R1  …  rn  Rn}. However, this results in 




n

i
i

R
1

combinations, where n is the number of existing Atomic Rules that have been identified for black-

box testing. Thus, this may be only useful for experimentally locating combinations not found through other 

tailoring procedures.  

In paired combinations, each Atomic Rule is paired with every other rule, resulting in the binary 

Cartesian product Ri × Rj = {(rm, rn) | rm  Ri  rn  Rj}, where each pairing creates a new rule. Some 

examples are: 

1. rn+1: uppercase first item = BVA7: first list item selection × ST7: uppercase a lowercase letter. 
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2. rn+2: smallest integer replacement = EP4: integer replacement × BVA2: lower boundary selection. 

3. rn+3: alphabetic letter Z or z replacement = EP6: single alpha replacement × BVA5: upper boundary 

selection.  

In selective combinations, rule amalgamation is based on a tester’s ‘intuition’ that certain combinations 

may cause program failure (for a discussion on tester ‘intuition,’ see Chapter 6, Section 6.6.3). Again, this is 

similar to Error Guessing. For example, if a tester suspects that a program does not place an upper limit on 

the number of digits that can be input into a numerical field, a new rule rn+4: largest integer/real number 

replacement = EP4: integer replacement × EP5: real number replacement × ri+5: maximum character 

selection could be defined.  

Some combinations create Rules that already exist. In the current set of Atomic Rules for EP, BVA and 

ST, those combinations are: 

1. EP10: multiple alphanumeric replacement = EP4: integer replacement × EP7: multiple alpha 

replacement. 

2. ST9: null all input = EP16: invalid test case constructor (minimised) × (EP11: null item 

replacement | BVA9: null item replacement). 

Also, some Rules are contradictory. EP replacement Rules EP4 to EP11 cannot be combined with 

EP12: valid list selection as the replacement Rules selects invalid data while EP12 selects valid data. This 

is similar to the identification of contradictory test frames in CPM (Ostrand & Balcer 1988).  

3.10.3 Demonstration of GQASV and SMT 

As a preliminary proof of concept, GQASV and SMT are applied to an online Foreign Currency 

Exchange Calculator (Figure 3-16) (Murnane, Reed & Hall 2006). To assess their effectiveness, the results 

of applying a set of EP and BVA Atomic Rules to those selected by a new method derived by SMT are 

compared. To limit the scope of the example, only the “Foreign Currency” field of this program shall be 

tested. Settings for fields “I wish to,” “Select the foreign currency” and “Select the currency type” are 

shown in Figure 3-16. As the program specification is not accessible, GQASV is applied to obtain a 

definition of the ‘Foreign Currency’ field. 

1. Goal: to specify the Foreign Currency field of the Foreign Exchange Calculator, in order to enable 

more effective black-box testing.  

2. Questions:  

a. What is the field’s datatype? 

b. What is the field’s set type?  

c. Ranges: minimum and maximum values; Lists: what is the minimum and maximum 

length of valid data?  

d. What valid data set should the program accept, and what invalid data should it reject?  

e. Is the field mandatory?  
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f. Does the field repeat? Minimum/maximum repetitions? 

3. Answers: 

a. Datatype: based on experience with international money transfers, acceptable 

datatypes are Integer and Real (i.e. non floating-point numbers).  

b. Set type: based on experience with banking systems, it is reasonable to assume that 

the interval of allowable values is continuous, thus set type is Range.  

c. Minimum/maximum range values: various searches were used to discover this. They 

are included here to give the reader an understanding of the process followed. First, a 

search of the St George Bank website for the term “international transfer” located on 

the page “Foreign Exchange Services” (St George Foreign Exchange Services), which 

included a telephone number. When called, the operator reported that there were no 

minimum or maximum limits placed on currency exchanges. However, through GUI-

based application domain knowledge, it is known that unlimited input lengths can 

cause buffer overflow and conversion exceptions in internet-based applications. The 

next search determined the financial worth of the richest person on Earth, Bill Gates (at 

the time of the case study), which may be a sensible value to use. According the 

Forbes this was US$46.5 billion (Kroll & Gildman 2005). However, if the top twenty-five 

billionaires saved their money with the same bank, their total financial worth could be 

more sensible. According to Forbes, this was US$496.8 billion (Kroll & Gildman 2005). 

Taking this even further, one may consider the GDP of the largest economy in the 

world, the USA, US$10.8 trillion (Special Broadcasting Service 2003). These answers 

provide “application solution domain” (Reed 1990) data that is potentially sensible for 

defining this field. However, the maximum variable size of the programming language 

used, and combined implementation and runtime domain issues, could be considered. 

The client-side application was written in JavaScript (discovered by viewing the source 

code), which is capable of representing numbers in the range18 

1.7976931348623157x10308 (Flanagan 2002). For this application, this limit would be 

the maximum output value when converting to a particular currency or when an input is 

represented internally19. Thus, this figure needs to be divided by the largest possible 

exchange rate, which are available real-time on the Reserve Bank of Australia website 

(Reserve Bank 2005). Plausible values are 0.1 to 1000. Thus, sensible minimum and 

maximum range values could be 1.7976931348623157x10305.  

d. Valid data set: as described in step c.  

e. Is the field mandatory? Yes. 

f. Does the field repeat? No. 

4. Specify: <foreign_currency> ::= [-1.7976931348623157x10305 –1.7976931348623157x10305]  

5. Verify: in a real-world software testing scenario, a domain expert (e.g. a client or business analyst) 

would be available to verity the completeness of this field definition. As this was carried out for 

demonstration purposes only and a domain expert was not available, this definition could not be 

verified.   

                                                           
18 For the purposes of this discussion, we only consider exponents > 0. 
19 In Reed’s KABASPP model (Reed 1990), this would represent knowledge gained from the development domain of the program.  
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Atomic Rules from EP and BVA can now be applied to generate test data (Table 3-24), followed by the 

selection of test cases by a tailored method (Table 3-25). Although the input field permits more numbers to 

be added, for test 15 (Table 3-25), an arbitrarily large number chosen to represent the maximum possible 

digits is 120,000. Although floating point representations are used throughout this discussion, when 

providing input to the program, an integer or fixed point decimal value containing 309 digits to the left of 

the decimal point was used. Thus, the inputs specified by test cases 8 to 13 (Table 3-25) contain 309 digits, 

the first section of which is the 17 digit mantissa of the resultant value. For example, in the case of test case 

9, the number input to the program is 17976931348623157 followed by 297 “9”’s.  

In fact, two different sets of values could have been used in this exercise, depending upon whether 

implementation “domain/run-time” issues (i.e. variable storage limits) or “application domain” issues (i.e. 

sensible values for maximum amounts) were being tested (Reed 1990). While it could be more sensible to 

derive test cases based on the latter, for the purposes of this proof of concept exercise, in this example 

implementation domain issues have been chosen as the focal point. 

As Table 3-24 and Table 3-25 show, the tailored method detects a suspected fault with test case 14 

(Figure 3-19) that is not detected by EP or BVA. Further examination revealed that inputting the string “<> 

followed by any other symbol and clicking the Calculate button causes those symbols to be printed to the 

right of the input field. Both EP and the tailored method detect that the program does not limit input data 

lengths (Table 3-24, test cases 1 and 2; Table 3, test case 15), causing a suspected buffer overflow (Figure 

3-17). The resulting screen does not specify what was wrong with the input. BVA did not detect this as the 

exchange rate used was overestimated.  

This example demonstrates that the use of GQASV and SMT can result in more effective black-box 

testing. It also shows how recording Atomic Rule numbers that have been applied against each input field 

during testing can simplify the process of assessing test set completeness (Table 3-24). Interestingly, a re-

test of this scenario approximately three months after this initial proof of concept testing was carried out 

revealed that the fault detected by test cases 1, 2, and 15 had been repaired. However, it was not possible to 

determine whether it was fixed due to the testing that had been carried out during this proof of concept. The 

fault identified by test case 14 is still evident in the software as of 20th July 2008. 
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Table 3-24: Equivalence Partitioning and Boundary Value Analysis test cases for the Foreign 
Currency field of the St George Bank Foreign Currency Calculator. 

# Rule Test Data Result 

1 
EP1: < lower boundary 
selection 

-1.7976931348623157x10305 
Suspected buffer overflow (Figure 3-
19) 

2 
EP2: > upper boundary 
selection 

+1.7976931348623157x10305 
Suspected buffer overflow (Figure 3-
19) 

3 
EP3: lower to upper 
boundary selection 

50000 Correct result output (Figure 3-16) 

4 
EP6: single alpha 
replacement 

G 
Input rejected, validation message 
shown (Figure 3-18) 

5 
EP7: multiple 
alphanumeric 
replacement 

G55f 
Input rejected, validation message 
shown (Figure 3-18) 

6 
EP8: single non-
alphanumeric 
replacement 

* 
Input rejected, validation message 
shown (Figure 3-18) 

7 
EP11/BVA9: null item 
replacement 

 
Input rejected, validation message 
shown (Figure 3-18) 

8 
BVA1: lower boundary –  
selection 

-1.7976931348623158x10305 
- 1 

Correct result output (Figure 3-16)  

9 
BVA2: lower boundary 
selection 

-1.7976931348623158x10305 Correct result output (Figure 3-16) 

10 
BVA3: lower boundary +  
selection  

-1.7976931348623158x10305 
+ 1 

Correct result output (Figure 3-16) 

11 
BVA4: upper boundary –  
selection 

1.7976931348623158x10305 
- 1 

Correct result output (Figure 3-16) 

12 
BVA5: upper boundary 
selection 

1.7976931348623158x10305 Correct result output (Figure 3-16) 

13 
BVA6: upper boundary +  
selection 

1.7976931348623158x10305 
+ 1 

Correct result output (Figure 3-16)  

 

Table 3-25: Test cases of a tailored black-box method derived through SMT for the Foreign Currency 
field of the Foreign Currency Exchange Calculator (rules defined in Section 3.10.2).  

# Rule Test Data Result 

14 
ri+3: select all  
ASCII symbols 

!@#$%^&*()_+{}|:”<>?[]\;’,./~
` 

Input rejected, validation message 
shown (Figure 3-18). Symbols output to 
the right of the Foreign Currency Field 
(Figure 3-19) 

15 
rn+4 largest integer/real 
replacement 

120000 9’s Suspected buffer overflow (Figure 3-19) 

16 
ri+4: Unicode U+00FC 
(ü) replacement 

Ü 
Input rejected, validation message 
shown (Figure 3-18) 
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Figure 3-15: St George Bank’s online Foreign Currency Exchange Calculator  
(St George Calculator 2005). 

 
 

Figure 3-16: Result of executing the Foreign Currency Exchange Calculator with valid values. 
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Figure 3-17: Result of testing the Foreign Currency Exchange Calculator with very large input, 
causing a suspected buffer overflow failure. 

 
 

Figure 3-18: Validation message displayed when the Foreign Currency Exchange Calculator is tested 
with an invalid datatype. 
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Figure 3-19: Demonstration of symbols that are output to the right of the Foreign Currency field on 
the Foreign Currency Exchange Calculator, when test case 14 of Table 3-24 is applied. 

  

3.11 Summary  

The Atomic Rules approach, Goal/Question/Answer/Specify/Verify and Systematic Method Tailoring 

have been presented as solutions to seven problems with existing black-box testing methods (definition by 

exclusion, multiple versions, method overlap, notational and terminological differences and reliance on 

domain knowledge), with the ultimate aim of improving the usability and failure-detection effectiveness of 

the methods.  

Definition by exclusion was resolved by defining explicit datatypes that delineate the scope of valid and 

invalid equivalence classes that are selected by each Atomic Rule. This also partially resolved reliance on 

domain knowledge, by defining Atomic Rules to a level of detail that facilitates the development of 

effective and predictable test sets, regardless of each tester’s domain knowledge and experience. Systematic 

Method Tailoring (SMT) further resolved reliance on domain knowledge by facilitating the definition of 

new Atomic Rules and new black-box testing methods through the capture of domain knowledge that is 
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used by professional testers during non-prescriptive testing. Reliance on domain knowledge was further 

resolved by GQASV, which supports testers in developing precise specifications of input program input and 

output fields, enabling more effective black-box testing. Domain knowledge utilised during the 

specification process is also captured by GQASV, allowing it to be reused and shared with other testers. 

Notational and terminological differences were resolved by creating a characterisation schema that 

defines the characteristics of each black-box test case design rule in a uniform way and by developing a 

four-step test case design process that is common to all black-box testing methods. Method overlap was 

resolved by identifying Atomic Rules that overlap, both within and between different black-box testing 

methods. Multiple versions of the same method were resolved by developing one set of Atomic Rules that 

cover the test case design rules of all published versions of that method. This makes the methods easier to 

audit, since it provides one set of Atomic Rules that cover all versions of each method. The process of 

auditing the completeness of black-box test sets was demonstrated by creating a Test Matrix to track the set 

of Atomic Rules that were (or were not) applied to a program. 

The prescriptive nature of the Atomic Rules approach, GQASV and SMT makes black-box test case 

generation easier to automate. A prototype called the Atomic Rules Testing Tool, which automates these 

concepts, is presented in Chapter 4. Currently, ARTT can automatically generate black-box test data from 

specifications that are input through a graphical user interface, record domain knowledge gained through 

GQASV and define new Atomic Rules through SMT. The ultimate aim of ARTT is to make black-box test 

case design even more efficient and precise.  

An additional benefit of the Atomic Rules approach, which was presented in this chapter, is that Atomic 

Rules from EP, BVA and ST can aid test data selection for methods like State Transition Testing, Use Case 

Testing and the Category Partition Method.  

Two limitation of this approach were presented in this chapter. Currently, the Atomic Rules approach 

cannot be used to test field dependencies, where the value chosen for one field of a test case depends on the 

value chosen for another. Atomic Rules also cannot currently be used for selecting input test data values for 

testing output field partitions. On the other hand, future research in this area may enable support of these 

two aspects of black-box test case design (see Chapter 7).   
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Chapter 4 

Automating the Atomic Rules Approach  

"There are only two industries that refer to their customers as ‘users’.” 
Edward Tufte 

4.1 Overview 

The Atomic Rules approach, GQASV and SMT were developed to improve the usability and failure-

detection effectiveness of black-box testing. Since these approaches exhibit a high degree of regularity 

coupled with considerable fine-grained detail, it was considered that automation was both possible and 

desirable. It was also felt that an appropriate tool could support and record the decision-making process, 

providing reusable records of, for example, the actual knowledge sources used and outcomes obtained when 

applying GQASV. While it was not originally intended, such a tool could be considered to be an application 

domain specific Design Reasoning Recording (DRR) system (Potts & Bruns 1988), albeit with some 

limitations in the DRR sense (Potts & Bruns (1988) is cited as a pioneering and classic description of this 

class of system).  

In this chapter, a prototype called the Atomic Rules Testing Tool, which provides automation support to 

the Atomic Rules approach, GQASV and SMT, is presented. The aim of ARTT is to improve the efficiency 

and accuracy to black-box test data generation. ARTT automates test data generation as follows (Figure 4-

1). A graphical user interface allows the user to create specifications of program input fields. The user can 

then choose to apply a subset of Atomic Rules from EP, BVA and ST to each input field. ARTT then 

applies the chosen set of Atomic Rules to the specified input fields to generate black-box test data values, 

based on the Atomic Rule application order prescribed in the four-step test case design process (see Chapter 

3, Section 3.2.1). ARTT enables the capture of domain knowledge that is collected during the specification 

process through GQASV and, in addition, the definition of new Atomic Rules through creation-based SMT. 

ARTT supports any level of testing, although it is particularly useful during Unit, Integration and System 

Testing, during which input field validation testing is typically performed.  
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Table 4-1: Process of creating a specification and generating test data in the Atomic Rules Testing Tool. 

Create New Specification

Specify Domain Knowledge

Save Specification

Generate Black-Box Test Data

Specify Input Fields

Click Generate Test Cases

Select Atomic Rules from EP, BVA 
and ST to apply to each input field

Specification is available 
to view in EBNF

Test cases are output to file 

Test cases output in 
Microsoft Excel Format

Test cases output in 
Flat Text Format

EBNF Version of Specification

 

 

ARTT currently implements Data-Set Selection Rules, Data-Item Selection Rules and Data-Item 

Manipulation Rules. Future work will include implementation of Test Case Construction Rules (see Section 

4.10), as well as the automatic generation of program source code for input data validation in various 

programming languages. For example, if an input field should only accept integers within a certain range, 

then ARTT could apply a set of Atomic Rules to automatically generate source code that accepts integers 

within that range and rejects all other inputs. This would reduce the need for rigorous input/output testing.  
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This chapter is structured as follows. An overview of the screens and navigation in ARTT is provided in 

Section 4.2, while the architecture is discussed in Section 4.3. The approach to test data generation is 

described in Section 4.2. Specification creation in ARTT is discussed in Section 4.4.1. The application of 

Atomic Rules to specifications is covered in Section 4.4.2. This is followed by an example of test data 

generation in Section 4.4.3. The implementation of GQASV and SMT are covered in Sections 4.5 and 4.6. 

The specification notation used in ARTT is described in Section 4.7. Benefits and limitations are discussed 

in Sections 4.8 and 4.9 and future improvements in Section 4.10. A chapter summary is given in Section 

4.11. Detailed functional specifications for ARTT are provided in Appendix F.  

4.2 Screens and Navigation  

ARTT functionality is divided into two main functional areas: administrator and user functions. These 

are implemented within seven screens, as follows .   

1. Main Menu: this screen supports navigation to the user and administration functions (see 

Figure 4-1 and Appendix F, Section F.4.1).   

2. Atomic Rules Editor: this allows administrators to create, edit and delete Atomic Rules (see 

Appendix F, Section F.4.2).   

3. Author Selector: this allows administrators to populate the Source field of Atomic Rules (see 

Section 3.2.2), and is accessible from the Atomic Rules Editor (see Appendix F, Section F.4.3).  

4. Character Viewer: this screen allows administrators and users to view the individual characters 

that are included within the datatypes (e.g. Integer, Real, Alpha) that are supported by ARTT. 

This screen can be accessed from the Atomic Rules Editor to view the contents of the Original 

Datatype and Test Datatype of each Atomic Rule, and from the Specification Editor to view the 

contents of input fields that are specified by datatype (see Appendix F, Section F.4.4).  

5. Specification Viewer: this allows users to view all specifications that have been created, and to 

initiate the creation, editing and deletion of specifications (see Appendix F, Section F.4.5).  

6. Specification Editor: this allows users to create specifications, by creating, editing and deleting 

input fields, assigning domain knowledge to each input field and attaching files to the 

specification. Users can also view an automatically generated EBNF representation of their 

specification on this screen (see Appendix F, Section F.4.6).  

7. Atomic Rules Selector: this allows users to apply a set of Atomic Rules from EP, BVA and ST 

to a specification, to automatically generate black-box test data (see Appendix F, Section F.4.7).  

Although there are user and administrator functions within ARTT, there is no login screen, since data 

security is not a risk. 
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Figure 4-1: Screens and navigation within the Atomic Rules Testing Tool. 

Navigation within the Atomic Rules Testing Tool

Main Menu

User FunctionsAdministrator Functions

Atomic 
Rules 

Selector

Character 
Viewer

Specification 
Viewer

Atomic Rules 
Editor

Specification 
Editor

Author 
Selector

Enables navigation to 
administrator and user functions

Allows administrators to 
create, edit and delete 

Atomic Rules

Populates the 
Source field of 

each Atomic 
Rule 

Displays 
characters 

assigned to 
datatypes

Allows users to view all 
specifications and to initiate 
creation, editing and 
deletion of specifications

Allows users to 
apply Atomic Rules 
to specifications to 
generate test data

Allows users to 
specify input fields 
and domain 
knowledge for 
specifications

 

4.3 Architecture  

ARTT was developed in Microsoft Visual Basic 6.0 (VB6) in a Windows XP environment. It has a 

three-tiered architecture with the GUI and business logic being implemented in VB6 and the database 

developed in Microsoft Access 2003 (Figure 4-2). The application tier communicates with the database via 

an ODBC Data Source that utilises ActivieX Data Objects and Jet OLE DB 4.0.  
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Figure 4-2: High-level architecture of the Atomic Rules Testing Tool. 

 
 

4.4 Test Data Generation  

The process of generating black-box test data values through ARTT is as follows.  

1. A user specifies the characteristics of program input fields through the Specification Editor 

screen (see Section 4.4.1). 

2. The user then selects a set of Atomic Rules to automatically apply to the specification 

through the Atomic Rules Selector screen (see Section 4.4.2). 

3. ARTT applies the chosen set of DSSRs, DISRs and DIMRs against the specified input fields 

to automatically generate equivalence classes, test data values and manipulated test data 

values. This is done by mapping the Set Type and Datatype of each input field to the Set 

Type and Original Datatype of each Atomic Rule. Equivalence classes and test data values 

are output to file in both plain text and Microsoft Excel format.  

This process is described in detail in the subsections below.  

Database 
 Developed in Microsoft Access 2003 

 

User Interface 
 Developed in Microsoft VB6 

 

Business Logic 
 Source code developed in  

Microsoft Visual Basic 6 
 Database access implemented 

through Active X Data Objects  
and Jet OLE DB 4.0 

 

 
Database 
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4.4.1 Specification Creation  

The input fields that test data is going to be generated from can be specified through the Specification 

Editor (Figure 4-3 and Appendix F Section F.3.6). The following information is recorded for each field.  

1. Field name   

2. Set type (Range or List) 

3. For list-based fields, the individual values that are stored in the list or a list of datatypes that 

are accepted by the field as valid. For range-based fields, the minimum and maximum 

values of contiguous data that is allowed in the field or a contiguous datatype 

4. The minimum and maximum number of times the field repeats (i.e. zero or more)  

5. Whether the field is mandatory or optional 

6. Parent fields of the field, which allows the hierarchy of the specification to be defined (e.g. 

see Figure 4-4)  

Figure 4-3: Specifying the input fields of a program in the Atomic Rules Testing Tool. 
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For example, consider the specification for the Address Parser program provided in Chapter 3 (Figure 3-

9). For the list field <street_type> ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt], the following 

information would be recorded (e.g. see Appendix F, Section 3.6.1).  

1. Field name: street_type 

2. Set type: list 

3. Individual values stored in the list: Street, St, Road, Rd, Avenue, Ave, Court, Crt 

4. Minimum and maximum number of times the field repeats: zero (field does not repeat) 

5. Mandatory or optional: mandatory  

6. Parent field: street_name (see Figure 4-4) 

Similarly, for the range-based field <house_number> ::= [1 – 9999], the following information would 

be recorded (e.g. see Appendix F, Section 3.6.2).  

1. Field name: house_number 

2. Set type: range 

3. Contiguous data allowed in the field: 1 – 9999  

4. Minimum and maximum number of times the field repeats: zero (field does not repeat) 

5. Mandatory or optional: mandatory  

6. Parent field: address  

Thus, the Specification Editor screen allows the individual fields of a specification to be defined in a 

systematic format and also allows the hierarchy of the specification to be defined.  

Figure 4-4: Abstract Syntax Tree depicting example parent/child relationships in a (hierarchical) 
Address Parser specification. 

 

 

<street> 

<street_name> <street_type> 

[Street | St | Road | Rd | 
Avenue | Ave | Court | Crt] 

{[A – Z | a – z] |  
[A – Z | a – z] [- | .] 
[A – Z | a – z]}1 - 40 

Children of the 
<street> field

Parent of fields 
<street_name> 
and <street_type> 

Input field definitions 
of <street_name> 
and <street_type> 
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4.4.2 Atomic Rules Selection  

Once the program input fields have been specified, the Atomic Rules Selector allows the user to select a 

set of Atomic Rules that will be applied to each input field (Figure 4-5 and Appendix F Section F.3.7).  

ARTT only allows a user to apply Atomic Rules that match the Set Type and Datatype of the input field. 

For example, if test data was being generated for a field defined as <house_number> ::= [0 – 9]1-4 (which 

is an alternate definition of the house number field), then rules BVA1 to BVA6 could be applied since they 

are applicable to range-based fields and contiguous datatypes, whereas BVA8 and BVA9 could not be 

applied as these only apply to list-base fields (e.g. see Figure 4-5, ‘Applicable’ column).   

From the list of ‘applicable’ rules, the user can choose to apply a set of Atomic Rules EP, BVA, ST or 

can choose to apply all applicable rules from these methods (e.g. see Figure 4-5, ‘Selected’ column).  

Figure 4-5: Selecting Atomic Rules to apply to an example specification. 

 

 

4.4.3 Test Data Generation  

Once the user has selected a set of Atomic Rules to apply to each input field, clicking the ‘Generate Test 

Cases’ button on the Atomic Rules Selector screen (see Figure 4-5) activates the automated test data 

generation process. ARTT generates test data by applying each Atomic Rule to each field of a specification, 

according to the four-step test selection process, which is implemented in four main algorithms:  
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1. Select Partition 

2. Select Data Item 

3. Manipulate Data Item 

4. Construct Test Cases 

Currently, only the first three functions of this process are implemented. Future work on ARTT will 

include development of algorithms that construct test cases (see section 4.10). 

Consider a field <house_number> ::= [1 – 9999]. If the user applies Data-Set Selection Rules EP1, 

EP2, EP3, and EP5 to this field, ARTT would automatically generate the following equivalence classes.  

1. EP1: [-32768 – 0] 

2. EP2: [10000 – 32767] 

3. EP3: [1 – 9999] 

4. EP5: real numbers in the range [-32768.00 – 32767.00] 

Further, if the user applies Data-Item Selection Rules EP13 and BVA1 to BVA6 to this field, the 

following test data values would be automatically generated from these equivalence classes. One of the 

limitations of ARTT is it does not yet automatically identify test data values that overlap (e.g. see 1f and 3b 

in the list below). This is planned as a future feature of this tool.  

1.  EP1: [-32768 – 0] 

a. EP13: select a random value, such as -25040 

b. BVA1: -32767 

c. BVA2: -32768 

d. BVA3: -32769 

e. BVA4: -1 

f. BVA5: 0 

g. BVA6: 1 

2. EP2: [10000 – 32767] 

a. EP13: select a random value, such as 10936 

b. BVA4: 9999 

c. BVA5: 10000 

d. BVA6: 10001 

e. BVA1: 32766  

f. BVA2: 32767  

g. BVA3: 32768  

3. EP3: [1 – 9999] 
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a. EP13: select a random value, such as 8723 

b. BVA1: 0 (already covered by 1g) 

c. BVA2: 1 (already covered by 1h) 

d. BVA3: 2 

e. BVA4: 9998 

f. BVA5: 9999 (already covered by 1c) 

g. BVA6: 10000 (already covered by 1d) 

4. EP5: real numbers in the range [-32768.00 – 32767.00] 

a. EP13: select a random value, such as 18732.97 

b. BVA1: -32767.99 

c. BVA2: -32768.00 

d. BVA3: -32768.01 

e. BVA4: 32766.99 

f. BVA5: 32767.00 

g. BVA6: 32767.01 

Then, if the user applies the Data-Item Manipulation Rule ST2: Replace Last Character to this field, the 

following ‘mutated’ test data values are generated from the list of test data values above. In each of the 

mutated data items below, the last character is replaced by another character that is randomly chosen from 

the ASCII table. This produces many test data values that overlap (e.g. items 1c and 1d belong to the same 

equivalence class). Future implementations of ARTT will remove these types of redundant test data values. 

1. EP1: [-32768 – 0] 

a. EP13: select a random value, such as -2504D 

b. BVA1: -3276k 

c. BVA2: -3276’ 

d. BVA3: -3276[ 

e. BVA4: -A 

f. BVA5: @ 

g. BVA6: ! 

2. EP2: [10000 – 32767] 

a. EP13: select a random value, such as 1093p 

b. BVA4: 999. 

c. BVA5: 1000m 

d. BVA6: 1000Q 

e. BVA1: 3276’ 
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f. BVA2: 3276b  

g. BVA3: 3276R  

3. EP3: [1 – 9999] 

a. EP13: select a random value, such as 8728 

b. BVA1: # 

c. BVA2: + 

d. BVA3: ; 

e. BVA4: 999S 

f. BVA5: 999v 

g. BVA6: 1000l 

4. EP5: real numbers in the range [-32768.00 – 32767.00] 

a. EP13: select a random value, such as 18732.9M 

b. BVA1: -32767.9( 

c. BVA2: -32768.0$ 

d. BVA3: -32768.0j 

e. BVA4: 32766.9. 

f. BVA5: 32767.0] 

g. BVA6: 32767.0+ 

In a matter of seconds, ARTT will output the set of equivalence classes, test data values and 

manipulated test data values that are generated to a text file (Figure 4-6) and to a Microsoft Excel 

spreadsheet (Figure 4-7). This completes the process of test data generation. Some names and numbers of 

Atomic Rule have changed since the prototype of the Atomic Rules Testing was first developed. For 

example, EP11: Random Test Data Selector and EP14: Nominal Value Selector are illustrated in this figure 

but are now referred to as EP13: Random Data Value Selector and EP17: Nominal Data Value Selector. 

Thus, the names and numbers of some of rules that appear in the following two diagrams differ from those 

defined in the Appendix.  



Automating the Atomic Rules Approach   Chapter 4 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 160 

Figure 4-6: Example of test data values output to a text file by the Atomic Rules Testing Tool. 

 
 

When test data is output to Microsoft Excel spreadsheets, it includes the Rule Identifiers (Rule ID) that 

were used in the test data generation process (Figure 4-7). 
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Figure 4-7: Example of test data values output to a Microsoft Excel spreadsheet by the Atomic Rules 
Testing Tool. 

 

4.5 Implementation of Goal/Question/Answer/Specify/Verify 

ARTT also provides support for GQASV. When the user enters the specification for each input field 

through the Specification Editor screen (see Section 4.4.1), they can also choose to record the source of any 

domain knowledge they may have consulted during the specification process (Figure 4-8). For example, if 

the user consulted a programming textbook for the definition of the datatype of an input field, then they 

could record the name of that textbook against the field. In the current version, only the name of the 

knowledge source can be recorded. More precise identification of the source, such as page number and a 

navigation tool for online sources, will be included in future developments of the tool. 

ARTT collects the following information on the source of the domain knowledge.  
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1. A question asking the user “What does [the domain-knowledge] relates to?” Predefined 

questions the user can choose from are as follows.  

a. What is the field's datatype? 

b. What is the field's set type? 

c.  For Set Type = Range: what are min and max values? 

d. For Set Type = List: what are min and max valid data lengths? 

e. Is the field mandatory? 

f. Does the field repeat? 

g. If field repeats, what are min and max repetitions? 

h. Other (please specify). If the user chooses other, then they can specify their own 

question in the ‘Other’ field.  

2. A Name and Description to uniquely identify the domain knowledge. This will appear in the 

Domain Knowledge list when the field is saved (see Figure 4-8).  

3. The Source (type) of the domain knowledge, which can be chosen from the following list: 

a. Personal Knowledge 

b. Personal Experience 

c. Book 

d. Textbook 

e. Standard 

f. Conference Paper 

g. Journal Paper 

h. White Paper 

i. Magazine 

j. Newspaper Article 

k. Technical Report 

l. Web Site 

m. Domain Expert 

n. Source Code 

o. Publication Other (please specify) 

p. Other (please specify). If the user chooses other, then they can specify their own 

question in the ‘Other’ field. 

4. The user is then able to enter the details of the source. The fields that appear in the ‘Source’ 

frame (see Figure 4-8) depend on the particular ‘source type’ that was chosen in the 

previous step. The fields that appear can include the author, title, description and publisher 

of the source (see Appendix F Section F3.6.3 for more information).   
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This allows the user to record the source location of all information they utilised when they were 

specifying the input fields of the program under test.  

Figure 4-8: Recording domain-knowledge information gained for each input field being specified.  

 

4.6 Implementation of Systematic Method Tailoring  

ARTT automates two forms of SMT: selection-based tailoring and creation-based tailoring. Selection-

based tailoring, which was demonstrated in the previous section, allows users to apply Atomic Rules from 

various different black-box testing methods in combination to automatically generate ‘novel’ test data.  

ARTT enables creation-based tailoring via the definition of new Atomic Rules through the Atomic 

Rules Editor (Figure 4-9). On this screen the user can view the characteristics of each Atomic Rule and 

define new rules. The screen includes all attributes of the Atomic Rules schema, as well as a number of 

additional fields that are required for automation of this approach. These are as follows (attributes that 

correspond to fields of the Atomic Rules schema are marked with an asterisk *). 

1. Test Method*. Name of the test method the rule is defined for. Options are Equivalence 

Partitioning, Boundary Value Analysis and Syntax Testing.  
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2. Rule Number*. Abbreviation of the test method name followed by an incremental number.  

3. Identifier*. Abbreviation of the Name field.  

4. Name*. The name of the Atomic Rule.  

5. Description*. A brief description of what the rule does.  

6. Source*. The reference from which the rule was derived (this can be selected from the 

Author Selector screen; see Appendix F, Section F.3.3).  

7. Rule Type*. Corresponds to the step of the four-step test case design process that this rule 

implements. Options are Data-Set Selection Rule, Data-Item Selection Rule, Data-Item 

Manipulation Rule and Test Case Construction Rule.  

8. Rule Class. There are five classes of rules implemented in ARTT, as follows.  

a. Selection rules select equivalence classes (e.g. EP1 to EP3) and test data values (e.g. 

BVA1).  

b. Insertion rules add individual test data values into equivalence classes and to other 

test data values (e.g. ST3 and ST6).  

c. Deletion rules remove values from equivalence classes and test data values (e.g. ST1 

and ST4) 

d. Replacement rules replace equivalence classes with invalid partitions (e.g. EP4 to 

EP11) and values within test data items with invalid values (e.g. ST2 and ST5).  

e. Combinatorial rules construct test cases (e.g. EP14 to EP16). ARTT currently does 

not implement this class of rules (see future work, see Section 4.10).  

9. Field Set Type*. Set type of the field that the rule can be applied to. Options are List, 

Range, List and Range or Neither (e.g., non-terminal fields like the <address> field of the 

Address Parser specification could be tested by Syntax Testing rules that substitute non-

terminal fields for other terminal or non-terminal fields). 

10. Start Position and End Position. These define the start and end points between which 

equivalence class and test data value are selected from fields under test. The user can 

choose from six types of start and end positions, as follows.  

a. Datatype start and end positions select equivalence classes between two boundaries 

of the datatype of the field under test. For example, if the field under test is an integer 

field, then a DSSR could be defined to select an equivalence class between the lower 

and upper boundaries of the datatype selecting the class [-32768 – 32767].  

b. Field start and end positions can be used by DSSRs to select an equivalence class 

from a range-based field. For example, they could select values between the lower 

and upper boundaries of a field <house_number> ::= [1 – 9999], which would select 

the valid partition [1 – 9999]. They can also be used by DISRs to select one data 

value from a partition, such as selecting the upper boundary of the <house_number> 

field, selecting the value 9999.  
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c. List value start and end positions can be used by DSSRs to select an equivalence 

class from a list-based field. For example, they could be applied to the field 

<street_type> ::= [Street | St | Road | Rd | Avenue | Ave | Court | Crt] to select the 

valid partition [Street | St | Road | Rd | Avenue | Ave | Court | Crt]. They can also be 

used by DISRs to select one data value from a list, such as selecting the lower 

boundary value Street from this partition.  

d. Nominal start and end positions can be used by DSSRs, DISRs and DIMRs to 

select the mid-point value from a field, equivalence class (e.g. selecting the keyword 

‘Rd’ from the <street_type> field) or test data value (e.g. selecting the middle 

character ‘u’ from the keyword ‘Court’).  

e. Random start and end positions can be used by DSSRs, DISRs or DIMRs to select 

a randomly chosen value from a field, partition or data value. 

f. First and last character start and end positions can be used by DIRMs to alter a 

single test data value, such as selecting the letter ‘R’ from the keyword ‘Road’ or 

selecting ‘reet’ from the keyword ‘Street’.  

Therefore, the values that appear in the Start and End Position fields depend on the value 

of Rule Type, as follows.  

If Rule Type = DSSR then rule selects a partition. Start and End Positions are:  

i. Datatype Lower Boundary – (e.g. ASCII A – 1 = @) 

ii. Datatype Lower Boundary (e.g. ASCII A = A) 

iii. Datatype Lower Boundary + (e.g. ASCII A + 1 = B) 

iv. Datatype Upper Boundary – (e.g. ASCII Z – 1 = Y) 

v. Datatype Upper Boundary (e.g. ASCII Z = Z) 

vi. Datatype Upper Boundary + (e.g. ASCII Z + 1 = [ ) 

vii. Field Lower Boundary – (just below lower boundary of a range) 

viii. Field Lower Boundary (on the lower boundary of a range) 

ix. Field Lower Boundary + (just above the lower boundary of a range) 

x. Field Upper Boundary – (just below the upper boundary of a range) 

xi. Field Upper Boundary (on the upper boundary of a range)  

xii. Field Upper Boundary + (just above the upper boundary of a range) 

xiii. First Field Value (first value in a list) 

xiv. Last Field Value (last value in a list) 

xv. Nominal Value (middle value of a range or list)  

xvi. Random Value (random value from a range or list) 

If Rule Type = DISR then rule selects a test data value, so End Position will be disabled. 

Start Positions are: 
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i. Field Lower Boundary – 

ii. Field Lower Boundary  

iii. Field Lower Boundary +  

iv. Field Upper Boundary – 

v. Field Upper Boundary 

vi. Field Upper Boundary + 

vii. First Field Value 

viii. Second Field Value  

ix. Second Last Field Value  

x. Last Field Value 

xi. Nominal Value 

xii. Random Value 

xiii. Not Applicable 

If Rule Type = DIMR then the rule manipulates individual test data values. Start and End 

Positions are: 

i. Nominal Value 

ii. Random Value 

iii. First Character – – (e.g. add two chars to start of a data value) 

iv. First Character – (e.g. add one char to start of a data value)  

v. First Character (e.g. mutate first character of a data value)  

vi. First Character + (e.g. mutate second character of a data value)  

vii. First Character ++ (e.g. mutate third character of a data value)   

viii. Last Character – – (e.g. mutate third last character of a data value) 

ix. Last Character – (e.g. mutate second last character of a data value) 

x. Last Character (e.g. mutate last character of a data value) 

xi. Last Character + (e.g. add one char to end of a data value) 

xii. Last Character ++ (e.g. add two chars to end of a data value) 

xiii. Not Applicable (does not select a particular character or value) 

If Rule Type = TCCR then these fields will be empty, because TCCRs do not select test 

data, they create test cases, so this field is disabled. 

11. Correctness*. Specifies whether the rule will select valid or invalid data in terms of what 

the program should accept and reject respectively.  

12.  # Fields Populated*. This specifies the number of fields that will be populated with test 

data when the rule is applied.  
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13. Test Data Length*. This specifies the length of the test data that will be derived by the 

rule.  

14. # Tests Derived*. For Test Case Construction Rules, this field contains an equation of the 

number of test cases derived. 

15. Original Datatype and Test Datatype*. These attributes allow the user to choose the 

datatypes the rule can be applied to (Original Datatype) and the datatypes the rule generates 

(Test Datatype). For example, BVA1: Lower Boundary – Selection and BVA6: Upper 

Boundary + Selection can only be applied to range-based datatypes such as ‘integer’; they 

cannot be applied to list-based datatypes like ‘alphanumeric’ as there is no way to choose 

an outside boundary value from this datatype. The original and test datatypes implemented 

in ARTT extend the base set defined for EP, BVA and ST (see Section 3.2.2), as follows 

(see Appendix G for complete datatype definitions):  

a. Integer (all integers from -32768 to 32767) 

b. Integer+ (all positive integers from 0 to 32767) 

c. Integer- (all negative integers from -32768 to -1) 

d. Boolean (i.e. 1 and 0) 

e. Numeric (i.e. ASCII 48 to ASCII 57) 

f. Real (all Reals from -32768.00 to 32767.00) 

g. Real+ (all positive Reals from 0.00 to 32767.00) 

h. Real- (all negative Reals from -32768.00 to -1.00) 

i. Alpha (all alphabetical characters from A-Z and a-z) 

j. Lowercase Alpha (all lowercase alphas from ASCII 97 to ASCII 122) 

k. Uppercase Alpha (all uppercase alphas from ASCII 65 to ASCII 90) 

l. Alphanumeric (Alpha  Numeric) 

m. Control Character (all control characters from ASCII 1 to ASCII 31) 

n. Symbol (Set 1) (all special characters from ASCII 32 to ASCII 47) 

o. Symbol (Set 2) (all special characters from ASCII 58 to ASCII 64) 

p. Symbol (Set 3) (all special characters from ASCII 91 to ASCII 96) 

q. Symbol (Set 4) (all special characters from ASCII 123 to ASCII 127) 

r. Symbol (Symbol 1  Symbol 2  Symbol 3  Symbol 4) 

s. Null (empty) (ASCII 0) 

t. Non-Alphanumeric (Symbol 1  Symbol 2  Symbol 3  Symbol 4) 

u. ASCII (all characters in the ASCII table)  

v. Same as original (applies to Test Datatype only) 

16. Rule Application Order. This allows the user to specify which Atomic Rules the rule can 

be applied after. For example, DIMRs like BVA1 to BVA9 can be applied to a field after 
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DSSRs EP1 to EP11 have been applied to select partitions. Thus, this corresponds to the 

rule application order specified in the four-step test case design process.   

Example pseudo code that was used to implement the application of a Data-Set Selection Rule to list-

based and range-based fields to select an equivalence classes is given in Appendix F, Section F.4.  

Figure 4-9: The Atomic Rules Editor. 

 

4.6.1 Example of a New Atomic Rule 

The following example illustrates how the fields of the Atomic Rules Editor (Figure 4-9) can be 

populated to define a new Atomic Rule. The example is based on the new rule BVA12: Second List Item 

Selection, which was identified during the industry evaluation of the Atomic Rules approach (see Chapter 6 

Section 6.4.11 and Appendix B Section B.2). 

1. Test Method. Boundary Value Analysis.  

2. Rule Number. BVA12. 

3. Identifier. SLIS.  

4. Name. Second List Item Selection.  
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5. Description. Selects the second item in a list.   

6. Source. N/A (rule was defined as a part of this research).  

7. Rule Type. Data-Item Selection Rule (DISR).  

8. Rule Class. Selection 

9. Field Set Type. List. 

10. Start Position and End Position. 

a. Start Position. Second field value.  

b. End Position: Second last field value.  

11. Correctness. Valid (assuming the equivalence class contains only valid values).  

12.  # Fields Populated. 1.  

13. Test Data Length. Same as original.  

14. # Tests Derived. 0. 

15. Original Datatype and Test Datatype.  

a. Original Datatype. Applies to all datatypes except Boolean and Null, as all other 

datatypes have a second and second-last item.  

i. Numeric (i.e. ASCII 48 to ASCII 57) 

ii. Real (all Reals from -32768.00 to 32767.00) 

iii. Real+ (all positive Reals from 0.00 to 32767.00) 

iv. Real- (all negative Reals from -32768.00 to -1.00) 

v. Alpha (all alphabetical characters from A-Z and a-z) 

vi. Lowercase Alpha (all lowercase alphas from ASCII 97 to ASCII 122) 

vii. Uppercase Alpha (all uppercase alphas from ASCII 65 to ASCII 90) 

viii. Alphanumeric (Alpha  Numeric) 

ix. Control Character (all control characters from ASCII 1 to ASCII 31) 

x. Symbol (Set 1) (all special characters from ASCII 32 to ASCII 47) 

xi. Symbol (Set 2) (all special characters from ASCII 58 to ASCII 64) 

xii. Symbol (Set 3) (all special characters from ASCII 91 to ASCII 96) 

xiii. Symbol (Set 4) (all special characters from ASCII 123 to ASCII 127) 

xiv. Symbol (Symbol 1  Symbol 2  Symbol 3  Symbol 4) 

xv. Non-Alphanumeric (Symbol 1  Symbol 2  Symbol 3  Symbol 4) 

xvi. ASCII (all characters in the ASCII table)  

b. Test Datatype. Same as original, as the rule does not alter the datatype of the original 

field.  

16. Rule Application Order. Can be applied after EP1 to EP10.    
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Thus, this demonstrates how the attributes of the new rule BVA12: Second List Item Selection can be 

assigned in ARTT to define a new Atomic Rule.   

4.7 Specification Notation   

ARTT outputs specifications in a language that uses a combination of extended BNF (EBNF) (see 

(Knuth 1964) for early definition of BNF) and PL/I (Barnes 1979) syntax (Table 4-2). One of the unique 

aspects of this notation is that it uses a ‘REPEATS’ tag to specify the minimum and maximum number of 

times a field can repeats (see Table 4-2 row 4, Figure 4-2 and Figure 4-10).  

Table 4-2: The EBNF language to be used by the SBSMT simulator. 

Character Meaning 

<c> <c> is a terminal field 

<d> ::= <c> <d> is a non-terminal composed of <c> 

<c>REPEATS[MIN-MAX] <c> repeats between MIN and MAX times  

<c>?  <c> is optional 

<c> | <d> Select one of the terminals <c> or <d>  

[a – d] A range of lowercase alpha characters from a to d 

[A | B | C | D] A list of uppercase alpha characters  
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Figure 4-10: Example of the EBNF representation of a specification stored in ARTT.  

 

Figure 4-11: Example of an EBNF specification output by ARTT.  
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4.8 Benefits 

ARTT presents a number of important benefits to the software testing community, as follows. 

a) ARTT improves the efficiency of black-box test data generation (compared to manual testing). 

For example, manual design of test data values using EP, BVA and ST for one input field could 

take up to an hour or more, compared to a matter of seconds in ARTT.  

b) Reducing the amount of manual testing effort required during testing allows testers to allocate 

more time to complex testing issues that cannot be solved through automation.  

c) ARTT ensures accuracy and repeatability in the black-box test data generation, as the same 

algorithm is used every time the tool is executed.  

d) ARTT facilitates the automatic generation of novel test data by applying new combinations of 

Atomic Rules from EP, BVA and ST to input fields to select new types of test data.  

e) Each Atomic Rule is documented with a list of reference sources (e.g. textbooks, standards, 

journals), which allows testers to locate additional information on each rule.    

f) ARTT forces the characteristics of input fields to be properly specified, ensuring that thorough 

documentation for each field is stored and allowing it to be reused.  

g) ARTT supports the capture of domain knowledge utilised during the specification process, 

allowing this information to be reused and shared with other testers.  

h) ARTT supports testers in the creation of new Atomic Rules, allowing new rules to be recorded, 

used and shared with other testers.  

4.9 Limitations 

The current limitations of ARTT are as follows. 

a) ARTT currently only automates DSSRs, DISRs and DIMRs from EP, BVA and ST. Future 

work will include the development of algorithms for automating TCCRs, as well as 

implementation of Atomic Rules from other black-box testing methods.  

b) Test data is only generated for input fields, not output fields. This would require identification 

of the conditions under which a particular output will be generated, most likely through 

implementation of algorithms (e.g. testing the output of a function that calculates total sales 

made requires the sum of prices paid for each item sold).  

c) Input field specifications must be input through a GUI. Future implementations will include an 

automatic upload facility to input specifications in EBNF. 

d) When a new input field is specified, it would be useful if ARTT could automatically identify 

any similar field definitions in the ARTT database. For example, if a new field <street> was 

specified, any existing fields with the same name could be presented to the user, with an option 
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of adopting the existing definition. This would reduce the time to specify input fields and would 

allow different testers to learn from each other. 

e) ARTT does not support prioritisation of test data. It would be useful if the most effective 

Atomic Rules (and the test data they generate) could be flagged by a user, according to existing 

research on which black-box test case design rules are the most effective1.  

f) ARTT does not currently generate test data for testing field repetition. For example, if a field is 

specified as <house_number> ::= [0-9]REPEATS[1-4], ARTT does not apply rules to test the 

repetition of the field (e.g. to select test data that contains too many digits).  

4.10 Future Improvements 

A number of improvements are planned for the Atomic Rules Testing Tool (ARTT), as follows.   

 ARTT can be extended to automatically generate program source code for input data validation in 

various languages. For example, if a program input field should only accept integers within a 

certain range, then ARTT could apply Atomic Rules from EP and BVA to generate source code 

that accepts integers within the valid range and rejects all other input values. This would reduce the 

need for black-box testing and would ensure that programs only accept valid input data.  

 Since ARTT currently only generates test data, not test cases, in future the tool will be extended to 

include implementation of black-box TCCRs, which will enable the automatic generation of 

complete black-box test cases.  

 The Specification Editor will be enhanced to allow users to import EBNF specifications, enabling 

more efficient specification creation.  

 The Specification Editor could be enhanced to provide users with guidance on the creation of input 

fields for new specifications, based on the names of previously defined input fields in existing 

specifications, which would enable reuse of specifications and domain knowledge. For example, if 

a user previously created a specification for an Address Parser program, which consisted of input 

fields like <street_name> and <suburb>, then any time a user creates a new specification with input 

fields of the same (or similar) names, ARTT could automatically suggest that the user utilise the 

previous definitions. ARTT could also be enhanced to recommend the use of any domain 

knowledge that was attached to the previously defined input fields, as well as the set of Atomic 

Rules that were applied to that specification.  

 The Domain Knowledge tab of the Specification Editor will be enhanced to include more precise 

identification of the source of each item of domain knowledge, such as page number and a 

navigation tool to access, search and reference online sources. 

                                                           
1 For example, Atomic Rule prioritisation could be based on the outcomes of the experiment reported in Chapter 6 of this thesis. 
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 The Domain Knowledge of the Specification Editor could also be enhanced to identify 

commonalities in the domain knowledge recorded against different specifications.  

 ARTT will be extended to automatically produce an abstract syntax tree of specifications that are 

input by the user, providing them with a visual representation of the hierarchy in each specification. 

 The implementation of Atomic Rules for BVA will be enhanced to support generation of test data 

values for fields that repeat.  

 A function will be implemented to remove redundant test data generated by ARTT. For example, in 

Section 4.4.3, the same test data values are generated a number of times.   

 Future work may also include the implementation of automated functions for generating test data 

values for testing output partitions (discussed in Chapter 3, Section 3.8). 

 ARTT could also be enhanced to automatically construct ‘unrestricted specifications’ for the 

Category-Partition Method (CPM), by automatically combining test data values generated through 

EP, BVA and ST. ARTT could also allow testers to record the expected results of specific 

combinations of test data values, allowing complete CPM test scripts to be automatically generated.  

 ARTT could be enhanced to integrate with unit testing tools like JUnit (JUnit) and code coverage 

analysis tools like JCover (Codework 2009), to gather information on the level of code coverage 

achieved by the test data and test cases that are generated when applying specific sets of Atomic 

Rules to particular program specifications.  

4.11 Summary  

In this chapter, the design and implementation of a prototype called the Atomic Rules Testing Tool 

(ARTT) was presented. The aim of developing ARTT was to improve the efficiency and accuracy of black-

box test data generation. Currently, ARTT can be used to generate black-box test data by applying Atomic 

Rules from EP, BVA and ST to a specification of the input fields of a program. ARTT supports the capture 

of domain knowledge through GQASV and supports the definition of new Atomic Rules through SMT. In 

addition, ARTT is an example of a new approach to tool support for GQM-style processes. 
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Chapter 5 

University Evaluation of the Atomic Rules Approach  

"Not everything that can be counted counts, and not everything that counts can be counted." 
Albert Einstein 

5.1 Overview 

As has already been pointed out, the Atomic Rules approach has been proposed to improve the usability 

and effectiveness of black-box testing methods by solving seven problems with method descriptions: 

definition by exclusion, multiple versions, overlap, notational and terminological differences, reliance on 

domain knowledge, difficult to audit and difficult to automate. In this chapter, the details of two classroom 

experiments that examined the usability of the Atomic Rules approach are presented. The experiments 

involved 32 undergraduate and graduate university students in 2004 (n = 32) and forty in 2005 (n = 40) 

who were enrolled in a combined third/fourth year subject on software testing at La Trobe University and 

who were considered to be novice software testers. The aim of the experiments was to compare the usability 

of the Atomic Rules representation of Equivalence Partitioning (EP) and Boundary Value Analysis (BVA) 

(Murnane, Hall & Reed 2005) to that of Myers’ (1979) original definitions (see Chapter 2).  

In the first week of the experiment (see Figure 5-1), all students attended an ‘introductory’ lecture, 

during which they were informed that an experiment would be taking place over a four week period and 

that they could chose to provide permission for their data to be included in the data analysis for this thesis if 

they wished (a requirement of ethics approval). They also completed an Initial Questionnaire, which was 

used to identify their current understanding of black-box testing methods and to gain an understanding of 

their prior programming and software testing experience.  

In the second week of the experiment, the class was divided into two groups. While Group 1 was given 

a two-hour lecture on Myers’ representation of EP and BVA, Group 2 was given a lecture on the 

corresponding Atomic Rules. During a subsequent tutorial, each group’s comprehension of EP and BVA 

was assessed by asking them to derive black-box test cases using specially prepared ‘toy’ specifications.  

In the third week, the groups were swapped and the process was repeated (i.e. Group 1 learnt Atomic 

Rules while Group 2 learnt Myers’). This was to ensure that all students had equal opportunity to learn the 

two representations in preparation for their assignment and exam, and to assess whether what they learnt 

about the representations in week 1 allowed them to improve the correctness of their test cases in week 2.  
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In the final week of the experiment, all students attended a one-hour lecture, which summarised the 

experiment aims. They were also asked to complete a Reflect and Review Questionnaire, to identify their 

initial and final understanding of EP and BVA and their preferred method representation. The students were 

not told what the aims of the experiment were until the end of the experiment (after completing the Reflect 

and Review questionnaire), to ensure that this knowledge did not bias their answers during the experiment.   

Figure 5-1: Overview of the experiment process. 

 

 

While the aims of the two experiments and the materials presented during lectures were the same for 

both years, three changes were made in 2005 that were significant enough for it to be considered to be a 

different experiment. As each group’s lecture took place at the same time in different locations, two 

lecturers were required. In 2004, Ms. Murnane taught the Atomic Rules representation while Associate 

Professor Karl Reed taught Myers’ representation. To eliminate the extraneous variable of student 

preference for lecturer, the lecturers were swapped in 2005. Also, the 2004 results suggested that students 

could handle more challenging specifications during tutorials. Thus, longer and more complex 

specifications were used in 2005. Lastly, to ensure students had enough time to complete their work, the 

tutorials were increased from one hour in 2004 to two hours in 2005. To avoid conflict with other university 

classes or commitments (a factor that could impact student performance (Carver et al. 2003)), all work for 

this part of the experiment was completed in class. 

The remainder of this chapter is structured as follows. The experimental design is presented in Section 

5.2, including hypotheses, group allocation, specifications used and threats to validity. Results are presented 

Group 2 
 

Group 1  
 

Group 1  
 

Group 2 
 

Introductory Lecture (all students to attend)  
Complete ethics approval forms and Initial Questionnaire  

Final Lecture (all students to attend) 
Reflect & Review Questionnaire 

Tutorial 
Atomic Rules Representation 

Lecture 
Atomic Rules Representation 

Tutorial 
Myers’ Representation 

Lecture 
Myers’ Representation 

Tutorial 
Myers’ Representation 

Lecture 
Myers’ Representation 

Tutorial 
Atomic Rules Representation 

Lecture 
Atomic Rules Representation 
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in Section 5.3, followed by discussions of related research in Section 5.3.7 and experiment results in 

Section 5.5. The chapter is concluded with a summary in Section 5.6.   

5.2 Experiment Design 

The primary independent variable in these experiments was the first black-box testing method 

representation learnt by the students. The approach to manipulating the independent variable was the “type” 

technique (Johnson & Christensen 2004) in which the type of variable presented is varied over two separate 

treatments. One-tailed tests were used in all significance tests.  

All tests for statistical significance were chosen by considering the particular class of experiment that 

was planned and the type of data it would generate, and then by consulting a series of textbooks on 

experimentation and statistical analysis (Anastasia & Urbina 1997, Carver et al. 2003, Christensen 2004, 

Creswell 2002, Healey 2005, Johnson & Christensen 2004, Klugh 1986, Vegas et al. 2003) and seeking 

advice from a statistician (Fielding 2004) and a PhD student in psychology (Barutchu 2004). Since there are 

typically more than one significance test that can be used for data analysis and hypothesis testing, this 

ensured that the specific tests that were chosen were appropriate. This included the t-test (Healey 2005, 

Klugh 1986, Barutchu 2004), chi-square test (Healey 2005, Klugh 1986, Barutchu 2004), Mann-Whitney U 

(Klugh 1986, Barutchu 2004), marginal homogeneity (Agresti 2007, Barutchu 2004), test of two 

proportions (Healey 2005, Fielding 2004) and cross-tabulation (Healey 2005, Barutchu 2004). The ‘Results 

Coach’ in SPSS (Statistical Package for the Social Sciences) was also used to support the choice of tests 

and to perform all calculations.  

In the following subsections, the experiment hypotheses, group allocation and threats to validity are 

explored.  

5.2.1 Hypotheses 

Hypotheses for this experiment were based on the following definition of test method usability that was 

introduced in Chapter 1.  

Test Method Usability. The extent to which a test case design method can be understood, learnt 

and used by software testers to achieve specified test case design goals effectively, efficiently 

and with satisfaction, within the context of applying software testing methods.  

Using the quantitative and qualitative attributes of this definition of usability that were defined in 

Chapter 1, the following null (H0X) and scientific/alternate hypotheses (H1X) (Christensen 2004) were 

identified.  

Completeness (effectiveness): 

H01: The completeness of the black-box test set derived by novice testers is independent of the 

representation used.  
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H11: Novice testers using the Atomic Rules approach derive a more complete test set compared 

to those using Myers’ representation. 

Efficiency: 

H02: The efficiency of black-box test case derivation by novice testers is independent of the 

representation used.  

H12: Novice testers using the Atomic Rules approach derive test cases more efficiently compared 

to those using Myers’ representation. 

Errors Made (effectiveness – accuracy): 

H03: The number of errors made by novice testers during black-box test case derivation is 

independent of the representation used.  

H13: Novice testers using the Atomic Rules approach make fewer errors during test case 

derivation compared to those using Myers’ representation. 

Questions asked (learnability): 

H04: The number of questions asked by novice testers during black-box test case derivation is 

independent of the representation used.  

H14: Novice testers using the Atomic Rules approach ask fewer questions compared to those 

using Myers’ representation. 

Satisfaction: 

H05: The preference of novice testers towards the use of black-box testing methods is 

independent of the representation used.  

H15: Novice testers prefer to use the Atomic Rules approach for black-box test case design 

compared to the use of Myers’ representation. 

Understandability: 

H06: A tester’s understanding of black-box testing methods is independent of the representation 

used.  

H16: Novice testers rate the Atomic Rules approach to black-box test case design as easier to 

understand than Myers’ representation. 

These hypotheses are similar to those used in an experiment by Vegas et al. (Vegas et al. 2003), which 

examined whether novice testers were able to select appropriate software testing methods from 

characterisation schema-based representations of black-box, white-box and fault-based testing methods, as 

compared to selecting appropriate techniques from textbook descriptions. 

Attributes that have not been measured by the hypotheses above are as follows: 

 Operability in terms of how easy a method is to use was not assessed, as data to measure this 

unfortunately not collected during the experiment. 
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 Learnability in terms of how long it takes a tester to become competent was also not assessed, as 

the university semester only permitted the experiment to be carried out over two weeks of classes 

and each class had a limited duration.  

5.2.2 Group Allocation 

In each year, the participants were divided into two comparison groups. To provide repetition, each 

group was divided into two subgroups, with each deriving test cases from a different specification (Table 

2). A discussion of the affect of group allocation on experiment validity is provided in Section 5.2.4.1.   

Table 5-1: Group allocation. 

Year Group Myers Atomic Rules 

2004 

subgroup 1 13 8 

subgroup 2 5 6 

Total 18 14 

2005 

subgroup 1 10 8 

subgroup 2 10 12 

Total 20 20 

 

5.2.3 Input Data Specifications  

The main requirement of the specifications used during tutorials was that they had to include at least one 

numerical range, one list of values and a various datatypes (e.g. alphas, numbers and non-alphanumeric) to 

ensure that students have the opportunity to derive test cases for a ‘base’ collection of set types and 

datatypes. The two fictional specifications used in 2004 were for a Personal Details Recording System 

(Figure 5-2) and an Office Location Recording System (Figure 5-3), while the 2005 specifications were for 

a Patient Record System (Figure 5-4) and a Book Referencing System (Figure 5-5). All specifications were 

written in a semi-formal notation and contained input fields defined using a combination of Backus-Naur 

Form (BNF) and natural language.  

There were two primary differences between these specifications: length and complexity. In 2004, the 

top level non-terminal node contained five fields, including two white-space fields, whereas the 

corresponding node in 2005 contained fourteen fields. Thus, the 2005 specifications were substantially 

longer. Also, the 2005 specifications contained a recursive field definition, which made test case derivation 

more challenging; e.g., the <level_digits> field was recursive. To compensate for this change, the tutorials 

were extended from one hour in 2004 to two hours in 2005.   
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Figure 5-2: Specification for a personal details recording system. 

Specification 

 <personal_details>  ::= <id_number> <s> <surname> <s> <gender> 

 <id_number>  ::= [100 – 999] 

 <surname>  ::= 1 to 100 characters from the sets alpha and non-alphanumeric  
    (i.e. letters and/or symbols) 

 <gender>  ::= [Male | Female] 

 <s>  ::= one to  seven single spaces 

Example Record 

555 Smith Male 

 

Figure 5-3: Specification for an office location recording system. 

Specification 

 <office_location>  ::= <floor_number> <s> <room_name> <s> <desk_type> 

 <floor_number>  ::= [001 – 200] 

 <room_name>  ::= 1 to 100 characters from the sets alpha and non-alphanumeric  
    (i.e. letters and/or symbols) 

 <desk_type>  ::= [Desk | Cubicle] 

 <s>  ::= one to  seven single spaces 

Example Record 

100       The Blue Room     Cubicle 
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Figure 5-4: Specification for a patient details record system. 

Specification 

 <patient_record>  ::= <name> …“<ailment>”…<floor_no>,…<building>,…<patient_no> 

 <name>  ::= 1 to 100 characters from sets alpha and non-alphanumeric  
    (i.e. letters and symbols) 

 <ailment>  ::= 1 to 150 characters from sets alpha and non-alphanumeric  
    (i.e. letters and symbols) 

 <floor_no>  ::= <level_no>  Floor 

 <level_no>  ::= <level_digits><level_postfix> 

 <building>  ::= [Fredrick Building | John-Scott Memorial Ward | Mary House | Norman Building 
    | … | Zane Square Building | Zoo Ward] 

 <patient_no>  ::= <d><d><d><d> 

 <d>  ::= [0 – 9] 

 <level_digits>  ::= <d> | <level_digits> <d> 

 <level_postfix>  ::= [nd  | rd | st | th] 

   ::= one space 

 …  ::= one or more spaces 

Example Record 

Joe Hamish Bloggs “Viral pneumonia, ear infection, and lower abdomen pain” 5th Floor, John-Scott 
Memorial Ward, 1234 

 

Figure 5-5: Specification for a book referencing system. 

Specification 

 <book_reference>  ::= <author>…“<title>”…<edition >,…<publisher>,…<year> 

 <author>  ::= 1 to 150 characters from sets alpha and non-alphanumeric  
    (i.e. letters and symbols) 

 <title>  ::= 1 to 100 characters from sets alpha and non-alphanumeric  
    (i.e. letters and symbols) 

 <edition>  ::= <edition_no> 
 

Edition  

 <edition_no>  ::= <edition_digits><edition_postfix> 

 <publisher>  ::= [Addison-Wesley | Artech House | Babbage Press | C & G Publishing Inc | … 
    | Zipper Press Inc | Zoo House Publishers Inc] 

 <year>  ::= <d><d><d><d> 

 <d>  ::= [0 – 9] 

 <edition_digits>  ::= <d> | <edition_digits> <d> 

 <edition_postfix>  ::= [nd  | rd | st | th] 

   ::= one space 

 …  ::= one or more spaces 

Example Record 

Walter Savitch “Problem Solving with C++ - The Object of Programming” 5th Edition, Addison-Wesley, 
2005 
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5.2.4 Threats to Validity 

5.2.4.1 Internal Threats to Validity 

History. Experiment outcomes can be biased by time lapses between the application of treatment 

variables and measurement of dependent variables, between pre-test and post-test measurements 

(Christensen 2004) or if discussions take place between groups during that time (Creswell 2002). This 

posed a minimal threat in this case, since treatment took place during a lecture that was between two hours 

and three days prior to measurement. To combat this threat, participants were asked not to discuss the 

experiment with each other until after the final lecture. As there was no assignment or exam during the 

experiment, based on the material, the students were not expected to have a great need to hold discussions 

during the three weeks of the experiment. 

Maturation. Changes or differences in a participant’s internal condition (e.g. age, hunger, fatigue, 

boredom) (Christensen 2004), knowledge level (Creswell 2002), lecturer preference, or enthusiasm (Vegas 

et al. 2003) can bias results. For example, students who are excited about being involved in an experiment 

on a new technique may work harder on that technique. To ensure this did not bias results, Myers’ 

representation was referred to as Model 1 and the Atomic Rules approach as Model 2. Students were not 

told which was new until after the final lecture. Also, students were informed that there would be a gift for 

every member of the class at the end of the experiment whether they chose to participate or not, which was 

hoped to compensate them for any disruption they may have experienced during the experiment. A gift of 

chocolate, which was allowed by the university’s ethics committee, was given to all students to thank them 

for their participation in the experiment. To combat boredom, students were reminded that the work they 

completed during tutorials would prepare them for their later assignments and exam in the subject and also 

for future work in industry. As lecture and tutorial attendance was not compulsory, bored students could 

choose not to attend class but all students were informed that the subject was an important part of their 

courses, in the hope that this would motivate them to attend. As the experiments were run over six separate 

classes, it was assumed that fatigue and hunger would not affect results. Selecting students from the same 

year levels should have negated the knowledge threat (Creswell 2002). To mitigate the potential lecturer 

preference bias threat, the lecturers were swapped in 2005.  

Instrumentation. This threat relates to research observers becoming accustomed to experiment materials 

or increasing their experience in measuring data (Creswell 2002). To ensure the same standards were 

followed throughout analysis, standard measurement scales and analysis processes were followed. To 

standardise the analysis processes followed, one person was responsible for all data analysis.    

Selection. Random group allocation can be used to mitigate the threat that the groups were biased; e.g. if 

one group has a higher mean intelligence level than the other (Creswell 2002). Conversely, if participants 

allocate themselves to groups, then the sample within each group is voluntary, not random, allocation 

(Berry & Tichy 2003). While random allocation was achieved in 2005 by drawing participant’s names out 

of a hat, it was not achieved in 2004 due to a timetabling problem, which resulted in students allocating 

themselves to groups according to their chosen tutorial day/time. Subsequent analysis of the average grade 
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achieved within the two groups for the subject revealed no significant difference between the groups (see 

Section 5.2.4.3). Thus, this threat should not have biased experiment results. 

Testing. Bias can occur if participants are given the same test more than once and become familiar with 

required responses (Creswell 2002). Although the experiment subjects derived test cases for the two 

representations over two weeks, results of the second week were not included in experiment analysis, as this 

would not measure their understanding of the representation learnt. Rather, it would test how well they 

adjusted to learning a second representation. This statistic could be analysed in future, in an assessment of 

whether industry testers would adjust to using Atomic Rules after having used different approaches as part 

of their jobs.  

Reliability. This relates to the consistency of results being obtained from the same person with the same 

or equivalent tests on different occasions, allowing an error of measurement to be calculated (Anastasia & 

Urbina 1997). The simplest approach is to repeat the experiment on two separate occasions, where the error 

of measurement is a reliability coefficient which is the correlation between the two scores for each 

individual (Anastasia & Urbina 1997). Since these experiments took place during university semesters, 

there was not enough time to repeat the same test twice. However, within each group, the same test was 

repeated across two subgroups, which enabled testing of experiment reliability. 

Population and sample. Validity can be affected if the sample is not representative of the entire 

population (Gorard 2001). Convenience sampling was used in these experiments, where participants were 

selected because they were easily accessible to the research team (Gorard 2001). As the resulting samples 

were not representative of all novice testers, program specifications or black-box testing methods (e.g. 

approaches such as Syntax Testing were not covered), the results are considered to be indicative. 

Threats to internal validity, which were not applicable to these experiments, include diffusion of 

treatments, compensatory equalization, compensatory rivalry and resentful demoralization, as these only 

apply when using control groups (Creswell 2002). Control groups could not be used, as students in those 

groups would have been disadvantaged in their assignment and exam as a result of not learning the two 

representations. Also, in experiments involving students, participants sometimes work on tasks at home; 

thus copying is a threat (Vegas et al. 2003). In these experiments, all tasks were completed in class and 

every second student was given a different specification during tutorials so they could not copy from each 

other. A bias can also exist if participants do not follow the processes and procedures of the techniques 

prescribed (Vegas et al. 2003). Therefore, students were asked to show all workings during test case 

derivation, so that it was possible to verify that they followed the prescribed procedures of each test method, 

as this could be used to identify whether there were any ambiguities in the methods. 

5.2.4.2 External Threats to Validity 

Language. Participants may be disadvantaged if experiment materials are not written in their native 

language (Vegas et al. 2003). Although some international students were involved and all materials were 
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written in English, as the students were enrolled at an English-speaking university, it was expected that they 

would be able to understand the language used and if not, that they would ask questions. 

Interaction of setting and treatment. This relates to the ability to generalise experiment findings across 

other environmental settings (Creswell 2002), such as determining whether the experiment results are 

applicable to industry professionals. This threat is not applicable as industry-based testers can be considered 

to be expert software testers, whereas these experiments were aimed at novices.  

Interaction of history and treatment. This relates to the ability to generalise research outcomes to the 

past and future; e.g. if a classroom experiment runs during the main semester, the outcomes may be 

different if it were conducted over summer break, due to different types of students being enrolled 

(Creswell 2002). One way of resolving this is to replicate the experiment at a different time of year. These 

experiments were run during the same semester over two years and the experiments could not be repeated 

over summer as very few third and fourth year subjects run at that time at La Trobe University and there 

have never been any official student requests to do so in this software testing subject. 

5.2.4.3 Construct Validity Threats 

Measures. If participants can guess the measures that will be used during data analysis then this may 

affect how they answer questions (Creswell 2002). For example, measures need to be complex enough so 

that participants are less likely to provide answers that specifically make them appear more competent in 

the particular techniques being used (Creswell 2002). To mitigate this threat, participants were not told how 

the data was going to be analysed until after the experiment was complete.  

5.3 Results 

5.3.1 Demographic 

In the Initial Questionnaire, students were asked about their prior software testing and industry 

experience. Twenty-six out of thirty-two students completed this questionnaire in 2004 (81.25%), while 

thirty-seven out of forty completed it in 2005 (92.5%). Many students reported having prior experience with 

testing in university lectures and assignments (Table 5-2). While 19.2% in 2004 and 13.5% in 2005 reported 

having no prior experience with software testing methods, 73.1% in 2004 and only 48.6% in 2005 reported 

gaining that experience through university lectures.  

Table 5-2: Prior software testing experience. 

Software Testing Experience 

2004 % 

(n = 26) 

2005 % 

(n = 37) 

None 19.2 13.5 

University Lectures 73.1 48.6 

University Assignments 61.5 62.2 

As a Tutor 0 0 

Other 11.5 16.2 
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Also, 84.6% in 2004 reported having prior experience with black-box methods, compared with only 

54.1% in 2005 (Table 5-3). These results suggests that there may have been a decrease in the amount of 

software testing training given to students in the 2005 group in earlier years of their degrees.    

Table 5-3: Prior experience with black-box testing methods. 

Ever used any black-box 
testing methods? 

2004 % 

(n = 26) 

2005 % 

(n = 37) 

Yes 84.6 54.1 

No 15.4 45.9 

 

The students rated their experience with the following black-box testing methods: Boundary Value 

Analysis (BVA), Cause-Effect Graphing (CEG), Decision Tables (DT), Equivalence Partitioning (EP), 

Orthogonal Array Testing (OAT), Random Testing (RT), Specification-Based Mutation Testing (SBMT), 

State-Transition Diagram Testing (STT), Syntax Testing (ST) and Worst Case Testing (WCT). Although 

data was only required for EP and BVA, the questionnaire enquired about nine other methods to obtain an 

overall picture of the group’s current black-box testing knowledge. Students rated their understanding using 

a Likert scale of: 1 = none, 2 = basic, 3 = intermediate, 4 = advanced and 5 = expert (Table 5-4 and Table 5-

5). With the exception of BVA and RT in 2004, the majority of students reported having limited amounts of 

experience with black-box testing methods.  

Table 5-4: Participants initial understanding of black-box testing methods in 2004 (n = 26). 

Rating 

Black-Box Testing Methods 

B
V

A
 

C
E

G
 

D
T

 

E
P

 

E
G

 

O
A

T
 

R
T

 

S
B

M
T

 

S
T

T
 

S
T

 

W
C

T
 

Percentages (%) 

None 19 96 54 65 73 100 46 96 73 54 65 

Basic 15 0 8 4 8 0 15 0 8 8 15 

Intermediate 31 4 27 8 12 0 31 4 12 23 12 

Advanced 23 0 8 23 4 0 4 0 8 15 8 

Expert 12 0 4 0 4 0 4 0 0 0 0 

 

Table 5-5: Participants initial understanding of black-box testing methods in 2005 (n = 37). 

Rating 

Black-Box Testing Methods 

B
V

A
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E
G
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A
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S
B

M
T

 

S
T

T
 

S
T

 

W
C

T
 

Percentages (%) 

None 65 95 76 84 81 97 73 97 87 78 90 

Basic 16 0 5 5 8 0 19 0 8 14 5 

Intermediate 16 5 16 11 11 3 8 3 5 8 5 

Advanced 3 0 3 0 0 0 0 0 0 0 0 

Expert 0 0 0 0 0 0 0 0 0 0 0 

 

Interestingly, very few students reported having prior experience working in industry (Table 5-6).  
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Table 5-6: Prior industry experience. 

Position in Industry 

2004 % 

(n = 26) 

2005 % 

(n = 37) 

Project Manager 3.8 0 

Technical Team Leader 3.8 0 

Business Analyst 0 0 

Programmer 3.8 2.7 

Analyst 3.8 2.7 

Test Team Leader 3.8 0 

Test Team Member 0 2.7 

Other 0 5.4 

 

A comparison of the mean overall grade of each group in the subject showed that there was no 

significant difference between the groups in 2004 or 2005 (Table 5-7).  

Table 5-7: Comparison of overall grades for each group. 

Year N Approach Mean % Std Dev t-test 

2004 
18 Myers 66.17 20.88 

t(38) = .428, p = .336 
14 Atomic Rules 73.29 14.56 

2005 
20 Myers 68.1 19.49 

t(30) = -1.08, p = .143 
20 Atomic Rules 65.8 14.1 

 

5.3.2 Completeness (Effectiveness) (H01/H11) 

To assess completeness, a ‘complete’ set of test data values and test cases for EP and BVA were derived 

by the author of this thesis, to represent the ‘ultimate’ test sets that were derivable for the specifications 

under test. This was carried out by applying every test case design rule from both Myers’ definition of EP 

and BVA and the corresponding Atomic Rules, to every possible input field.  

Then, the percentage of EP equivalence classes, BVA boundary values and EP and BVA test cases 

derived correctly by each group of students was compared. In 2004, a t-test revealed a significant difference 

between the groups for EP equivalence class and EP test case derivation, where the mean was higher for the 

Atomic Rules group (Table 5-8, Table 5-9). According to Cohen’s Effect Size (Mujis 2004), these 

relationships were ‘strong.’ The 2004 BVA results were inconclusive (Table 5-10, Table 5-11). Conversely, 

in 2005 the mean EP equivalence class and test case coverage (Table 5-8, Table 5-9) and BVA boundary 

value coverage (Table 5-10) was significantly higher for Myers’ group and Cohen’s Effect Size showed 

moderate to strong relationships. The results for BVA test cases in 2005 were inconclusive (Table 5-11).  

Interestingly, the mean EP and BVA coverage by Myers’ group in 2004 and 2005 was relatively similar 

over both years (Table 5-8, Table 5-10).  
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Table 5-8: Percentage of coverage of EP equivalence classes (completeness – H01/H11). 

Year N Approach Mean % Std Dev t-test 
Cohen’s 

Effect Size 

2004 
18 Myers 49.76 16.95 

t(30) = -3.82, p = .0003 1.35 – strong 
14 Atomic Rules 78.86 26.10 

2005 
20 Myers 48.61 16.13 

t(38) = 4.815, p < .001 1.53 – strong 
20 Atomic Rules 26.54 12.65 

 

Table 5-9: Percentage of coverage of EP test cases (completeness – H01/H11). 

Year N Approach Mean % Std Dev t-test 
Cohen’s 

Effect Size 

2004 
18 Myers 36.23 23.29 

t(30) = -4.87, p = .0002 1.73 – strong 
14 Atomic Rules 78.86 26.10 

2005 
20 Myers 38.94 20.92 

t(38) = 2.649, p = .006 
0.85 – 

moderate 20 Atomic Rules 23.65 15.11 

 

Table 5-10: Percentage of coverage of BVA boundary values (completeness – H01/H11). 

Year N Approach Mean % Std Dev t-test 
Cohen’s 

Effect Size 

2004 
18 Myers 18.88 19.98 

t(30) = .58, p = .28 NA 
14 Atomic Rules 23.81 26.82 

2005 
20 Myers 26.00 19.51 

t(38) = 2.776, p = .004 
.90 – 

moderate 20 Atomic Rules 11.52 12.80 

 

Table 5-11: Percentage of coverage of BVA test cases (completeness – H01/H11). 

Year N Approach Mean % Std Dev t-test 
Cohen’s 

Effect Size 

2004 
18 Myers 14.88 18.83 

t(40) = -.39, p = .35 NA 
14 Atomic Rules 18.81 26.22 

2005 
20 Myers 10.22 16.92 

t(38) = .141, p = .445 NA 
20 Atomic Rules 9.56 12.63 

 

The results obtained in 2005 appear to not support the view that the Atomic Rules approach improves 

the usability of EP and BVA, while then results from 2004 do support it.  In 2005, a significantly larger 

specification was used. As a result, the Atomic Rules approach required the derivation of significantly 

larger numbers of equivalence classes and boundary values, since it contains more rigorous test case design 

rules than Myers’ definition. For example, Myers’ “has something else” rule is decomposed into seven 

different Atomic Rules (see Chapter 3, Section 3.2.3). As a result, testers using the Atomic Rules approach 

have to derive significantly more equivalence classes (Table 5-12) and boundary values (Table 5-13) to 

produce test sets that are as complete as those using Myers’ approach, and in this experiment, the students 

may simply have not had enough time to do this properly. Myers’ definition of EP was able to produce 23 

and 61 equivalence classes in 2004/2005, compared to 50 and 133 for the Atomic Rules approach (Table 5-

12). Myers’ definition of BVA was able to produce 28 and 45 boundary values in 2004/2005, compared to 

45 and 75 for the Atomic Rules approach. Thus, the efficiency of the representations must be considered 

when examining test method usability (see Section 5.3.3).  
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Table 5-12: Number of equivalence classes derivable when EP is applied ‘completely’ to the 
specifications under test.  

Year Approach 
Equivalence Classes Coverable  

(count) Ratio 

2004 
Myers 23 

1:2.17 
Atomic Rules 50 

2005 
Myers 61 

1:2.18 
Atomic Rules 133 

 

Table 5-13: Number of boundary values derivable when BVA is applied ‘completely’ to the 
specifications under test.   

Year Approach 
Boundary Values Coverable 

(count) Ratio 

2004 
Myers 28 

1:1 
Atomic Rules 28 

2005 
Myers 45 

1:1.76 
Atomic Rules 79 

 

5.3.2.1 Completeness in Class Assignments  

In 2005, the students were also asked to derive black-box test cases in their assignment using one of the 

approaches used in the experiment. This task was carried out in the four weeks following the experiment. It 

was interesting to find that significantly more students chose to use the Atomic Rules approach in their 

assignment in that year (Table 5-14).  

Table 5-14: Representation used in the assignment (n = 38).  

Year Approach 
Used in Assignment 

(%) Chi-Square 

2005 
Myers 27.5 

2(1, N = 38) = 6.737, p  = .009 
Atomic Rules 67.5 

 

The average assignment mark in 2005 for students who chose to use the Atomic Rules approach was 

significantly higher (Table 5-15). Students who used Myers’ representation scored an average of 68% on 

their assignment, while those who used the Atomic Rules approach achieved an average of 86%, which is 

nearly 20% or two grades different (i.e. the difference between a ‘C’ and an ‘A’ grade).  

Table 5-15: Average mark achieved in the assignment compared by approach (n = 38).  

Year 
Approach Used 
on Assignment 

Mean Assignment 
Mark (%) t-test 

2005 
Myers 67.91 

t(36) = -1.93, p = .03 
Atomic Rules 85.52 

 

A question that was raised after the experiment was complete was whether the ‘brighter’ students chose 

to use the Atomic Rules approach in their assignment because they knew they could achieve a higher grade 

with that approach. This was assessed by comparing the two groups of students by the approach used 
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(Myers or Atomic Rules) with the ‘overall mean mark’ they achieved in the subject, which was a 

combination of their exam mark that was worth 70% of their overall grade, and an assignment mark that 

was worth 30% of their overall grade. (Table 5-16). Interestingly, no significant difference was found, 

indicating that student intelligence levels did not affect their choice of representation on the assignment. 

Table 5-16: Average mark achieved in the subject compared by approach (n = 38).  

Year 
Approach Used 
on Assignment 

Mean Overall Subject 
Mark (%) t-test 

2005 
Myers 63.18 

t(36) = -1.03, p = .15 
Atomic Rules 69.44 

 

5.3.3 Efficiency (H02/H12) 

Efficiency can be assessed by tester productivity (see Section 1.3.1), which in this experiment is the 

number of correct EP equivalence classes and BVA boundary values derived over the total time taken (60 

minutes in 2004, 120 minutes in 2005). EP and BVA test cases were excluded as many students did not 

have enough time to derive test cases (see Section 5.3.3.2). Erroneous equivalence classes and boundary 

values were excluded since the definition of efficiency refers to ‘correct’ test cases.  

5.3.3.1 Productivity 

Productivity was assessed in two stages. First, a comparison of the mean number of correct EP 

equivalence classes (Table 5-17) and BVA boundary values (Table 5-18) was performed (i.e. despite time 

taken). For EP, a t-test indicated a significant difference in 2004 and a difference that was just outside the 

95% confidence interval in 2005, where the mean was higher for students using the Atomic Rules approach 

and Cohen’s effect size indicated moderate to strong relationships (Table 5-17). This indicates that novice 

testers are more productive when using the Atomic Rules approach. The 2004 and 2005 results for 

boundary value derivation were inconclusive (see Table 5-18). 

Table 5-17: Number of correct EP equivalence classes derived (efficiency – H02/H12). 

Year N Approach 

Max Number  of 
Equivalence 

Classes Derivable 

Mean Number of 
Correct Equivalence 

Classes Derived Std Dev t-test 

Cohen’s 
Effect 
Size 

2004 
18 Myers 23 8.89 4.43 

t(30) = -8.01, p < .01 
3.33 – 
strong 14 Atomic Rules 50 37.93 12.99 

2005 
20 Myers 61 25 12.82 

t(38) = 1.62, p = .06 
0.52 –  

moderate 20 Atomic Rules 133 32.9 17.6 
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Table 5-18: Percentage of correct EP equivalence classes derived (efficiency – H02/H12). 

Year N Approach 

Max  Number of 
Boundary Classes 

Derivable 

Mean Number of 
Correct Boundary 

Values Derived Std Dev t-test 

Cohen’s 
Effect 
Size 

2004 
18 Myers 28 5.83 5.04 

t(30) = .603, p = .28 NA 
14 Atomic Rules 28 4.57 6.80 

2005 
20 Myers 45 11.30 8.68 

t(38) = 1.20, p = .11 NA 
20 Atomic Rules 79 7.90 9.72 

 

The second stage of evaluating efficiency compared tester productivity as determined by the quantity of 

equivalence classes (Table 5-19) and boundary values (Table 5-20) derived per unit of time (60 minutes in 

2004 and 120 minutes in 2005). For EP, a t-test indicated a significant difference in 2004 and a difference 

that was just outside the 95% confidence interval in 2005, where the mean was higher for students using the 

Atomic Rules approach and Cohen’s effect size indicated moderate to strong relationships (Table 5-19). 

This suggests that novice testers are able to be more productive using the Atomic Rules approach.  

The results for BVA in both years were inconclusive, as no significant differences were found. This was 

caused by most students not having enough time to complete their BVA derivations during the tutorials.   

Table 5-19: Productivity of the testers in terms of the number of equivalence classes derived over 
total time taken (efficiency – H02/H12). 

Year N Approach 

Mean Number of 
Correct Equivalence 
Classes Derived Per 

Unit of Time Std Dev t-test 
Cohen’s 

Effect Size 

2004 
18 Myers .15 .07 

t(30) = 8.01, p < .01 3.23 – strong 
14 Atomic Rules .63 .21 

2005 
20 Myers .20 .10 

t(38) = -1.57, p = .06 
0.58 – 

moderate  20 Atomic Rules .27 .14 

 

Table 5-20: Productivity of the testers in terms of the number of boundary values derived over total 
time taken (efficiency – H02/H12). 

Year N Approach 

Mean Number of 
Correct Boundary 

Values Derived Per 
Unit of Time Std Dev t-test 

Cohen’s 
Effect Size 

2004 
18 Myers .10 .08 

t(30) = 60, p = .28 NA 
14 Atomic Rules .08 .11 

2005 
20 Myers .09 .07 

t(38) = 1.20, p = .11 NA 
20 Atomic Rules .07 .77 

 

5.3.3.2 Total Time Taken  

As the previous section shows, the number of test cases derived by the students was affected by whether 

they were given enough time to complete test case design. This can be assessed by counting the number of 

students who ran out of time during tutorials before finishing test case derivation. Significantly more 

students in the Atomic Rules group ran out of time before completing their work in both years (Table 5-21), 

indicating that using the Atomic Rules approach to test case design takes more time than Myers’ approach. 
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Thus, had students been given more time to derive test cases, they may have been able to produce more 

complete test sets.  

Table 5-21: Number of participants who ran out of time (efficiency– H02/H12). 

Year Approach N 
Out of Time 

(Count) Out of Time (%) Test of Two Proportions 

2004 
Myers 18 5 27.77 

δ = -.4366, z = -2.45, p = .007 
Atomic Rules 14 10 71.43 

2005 
Myers 20 7 35 

δ = -.6, z = -3.98, p < .001 
Atomic Rules 20 19 95 

 

5.3.4 Errors Made (Accuracy) (H03/H13) 

To assess accuracy, the number of errors made by students during test case derivation was counted. 

Significantly fewer errors were made in the Atomic Rules group during EP equivalence class derivation in 

2004 (Table 5-22). A similar result was seen in BVA boundary value derivation in 2004, although the result 

was just outside the 95% confidence interval (Table 5-24). No significant difference was found between the 

groups during BVA or EP test case derivation in 2004 (Table 5-23, Table 5-25) or during EP and BVA 

derivation in 2005 (Table 5-22 to Table 5-25). This suggests that the prescriptive nature of the Atomic 

Rules approach does not make the methods any harder to learn or to use correctly than Myers’ approach.  

Table 5-22: Errors made during EP equivalence class derivation (correctness – H03/H13). 

Year N Approach Mean Rank 
Sum of 
Ranks Mann-Whitney U 

2004 
18 Myers 20.81 374.50 

U  = 48.5, p = .001 
14 Atomic Rules 10.96 153.50 

2005 
20 Myers 21.65 433 

U  = 177, p = .274 
20 Atomic Rules 19.35 387 

 

Table 5-23: Errors made during EP test case derivation (correctness – H03/H13). 

Year N Approach Mean Rank 
Sum of 
Ranks Mann-Whitney U 

2004 
18 Myers 15.56 280 

U  = 109, p = .245 
14 Atomic Rules 17.71 248 

2005 
20 Myers 21.55 431 

U  = 179, p = .292 
20 Atomic Rules 19.45 389 

 

Table 5-24: Errors made during BVA boundary value derivation (correctness – H03/H13). 

Year N Approach Mean Rank 
Sum of 
Ranks Mann-Whitney U 

2004 
18 Myers 18.5 333 

U  = 90, p = .0675 
14 Atomic Rules 13.93 195 

2005 
20 Myers 22.15 443 

U  = 167, p = .192 
20 Atomic Rules 18.85 377 
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Table 5-25: Errors made during BVA test case derivation (correctness – H03/H13). 

Year N Approach Mean Rank 
Sum of 
Ranks Mann-Whitney U 

2004 
18 Myers 17 306 

U  = 117, p = .349 
14 Atomic Rules 15.86 222 

2005 
20 Myers 20.70 414 

U  = 196, p = .463 
20 Atomic Rules 20.30 406 

 

5.3.5 Questions Asked (Learnability) (H04/H14) 

Participants were asked to document the questions they asked during tutorials. Only three students in 

2004 and no students in 2005 recorded questions. Possible reasons could be that students: 

1. were reluctant to ask questions,  

2. did not have enough time to record questions, or 

3. had a sound understanding of the methods taught.  

Although it is hoped that the third option was the actual reason, not enough data was collected to clarify 

this. In future experiments students could be asked on a questionnaire whether they recorded any questions, 

and if not, why.  

5.3.6 Satisfaction (H05/H15) 

Satisfaction was assessed through the Reflect and Review Questionnaire. Thirty-two students completed 

this in 2004 (100% of the class) and twenty-eight in 2005 (70% of the class).  

In 2004, students were asked which model they would prefer to use in future and this was compared to 

the model they learned first (Table 5-26) (Murnane, Hall & Reed 2005). A chi-square test indicated if they 

had the opportunity, significantly more students would prefer to use the Atomic Rules approach in future. 

While it is possible that the students answered this question in favour of the Atomic Rules approach simply 

to show that they had an interest in the new approach to the teaching staff, since they were not told which of 

the two approaches were new and as they were told the responses would remain anonymous, it is hopeful 

that this did not bias their response.  

Table 5-26: Approach students leant first versus approach they indicated they would use in future (n 
= 32) (satisfaction – H05/H15).  

Year Approach Leant First  Use in Future Chi-Square 

2004 
Myers 61% 9% 

2(1, N = 32) = 21.16, p  < .001 
Atomic Rules 39% 91% 

 

In 2005, a slightly different question was posed. Students were asked to rate the likelihood that they 

would use the models in future (Table 5-27) using a Likert scale of: 1 = very unlikely, 2 = somewhat 
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unlikely, 3 = neither likely nor unlikely, 4 = somewhat likely, 5 = very likely. However, the mean response 

was almost the same for both groups and no significant difference was found.  

Table 5-27: Likelihood of using approaches in future (n = 28) (satisfaction – H05/H15). 

Year Approach 
Model Learnt 

First 

Model use in future (mean) 

t-test Myers Atomic Rules 

2005 
Myers 46.43% 3.46 3.47 t(26) = -.01, p = .307 

Atomic Rules 53.57% 3.23 3.73 t(26) = -1.12, p = .445 

 

5.3.7 Understandability (H06/H16) 

Three approaches for assessing test method understandability that were defined in Chapter 1 are: 

1. to determine whether a tester understands the conditions under which a bb test case design 

method should be applied;  

2. to determine whether a tester is able to apply the test method correctly; and  

3. by assessing their self-rated understanding of the test method.  

Although option 1 has been used in other software testing experiments (e.g. (Vegas 2004) used it to 

determine whether testers could identify the conditions under which one test method should be applied over 

another), it could not be used in this experiment since the students were given specific instructions to apply 

either Myers’ representation for EP and BVA or the corresponding Atomic Rules. Option 2 has already 

been assessed under the hypotheses for effectiveness (see Section 5.3.2). Option 3 was addressed as 

follows.  

On the Reflect and Review Questionnaire, the students were asked to rate their ‘initial’ and ‘final’ 

understanding of EP and BVA, using a using a Likert scale of: 1 = very poor, 2 = poor, 3 = average, 4 = 

good, 5 = very good, 6 = excellent (see Table 5-28 cols 2-5 and Table 5-29 cols 2-5).  In both years, 

students reported that their understanding of EP and BVA had improved by the end of the experiment, 

indicating that their participation in the experiment had improved their understanding of these test methods 

(Table 5-28 cols 2-5 and Table 5-29 cols 2-5).  

The students were also asked to rate their initial and final understanding of Myers’ representation and 

the Atomic Rules approach, using a Likert scale of: 1 = very poor, 2 = poor, 3 = average, 4 = good, 5 = very 

good, 6 = excellent (see Table 5-28 cols 6-7 and Table 5-29 cols 6-7). In 2004, 57% of students rated their 

understanding of Myers’ representation as below-average, while 100% rated their understanding of Atomic 

Rules as good or above (Table 5-28, cols 2-5). In 2005, 82% of students rated their understanding of 

Atomic Rules as Good to Excellent, compared to only 54% for Myers’s representation (Table 5-29, cols 2-

5). In both years, a significant difference was found in these ratings, where the mean was higher for Atomic 

Rules approach (in 2004, t(30) =  -7.65, p < .01, while in 2005, t(26) =  -3.22, p = .03). Thus, the students in 

both years reported that they were able to gain a better understanding of the Atomic Rules representation of 

EP and BVA.  
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Table 5-28: Self-rated understanding of test methods and representations in 2004 (n = 32) 
(Understandability – H06/H16). 

Rating 

Understanding of  
Black-Box Testing Methods 

Understanding of 
Representations  

Initial Final 

Myers 
Atomic 
Rules EP BVA EP BVA 

Percentages (%) 

1. Very Poor 3 9 0 0 6 0 

2. Poor 15 18 0 0 15 0 

3. Average 36 45 0 3 36 0 

4. Good 15 18 12 21 15 12 

5. Very Good 24 9 58 55 18 70 

6. Excellent 6 0 30 21 3 18 

Frequency Values 

Mean 3.61 3.00 5.18 4.94 3.35 5.03 

Std Dev 1.27 1.06 0.64 0.75 1.25 0.56 

Missing 0 0 0 0 1 0 

 

Table 5-29: Self-rated understanding of test methods and representations in 2005 (n = 28) 
(Understandability – H06/H16). 

Rating 

Understanding of  
Black-Box Testing Methods 

Understanding of 
Representations  

Initial Final 

Myers 
Atomic 
Rules EP BVA EP BVA 

Percentages (%) 

1. Very Poor 32 21 4 4 4 4 

2. Poor 21 18 0 0 21 0 

3. Average 29 29 7 11 21 11 

4. Good 7 21 36 25 29 46 

5. Very Good 11 7 50 46 25 29 

6. Excellent 0 4 4 14 0 7 

Frequency Values 

Mean 2.43 2.86 4.39 4.54 3.50 4.22 

Std Dev 1.32 1.38 .96 1.11 1.20 1.01 

Missing 0 0 0 0 0 1 

 

At the end of the experiment, the student’s final understanding of EP and BVA was also compared by 

the approach they learnt first (i.e. Myers or Atomic Rules) to determine whether there was any relationship 

between these. No significant difference was found, indicating that the order in which they learnt the 

approaches did not affect their self-rated understanding.  
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Table 5-30: Affect of representation learnt on understanding of Equivalence Partitioning 
(Understandability – H06/H16). 

Year Approach 
Model Learnt 

First 

Final 
Understanding 
of EP (Mean) t-test 

2004 
Myers 61% 5.05 

t(30) = .537, p = .30 
Atomic Rules 39% 4.92 

2005 
Myers 46.43% 4.31 

t(26) = -.42, p = .33 
Atomic Rules 53.57% 4.47 

 

Table 5-31: Affect of representation learnt on understanding of Boundary Value Analysis 
(Understandability – H06/H16). 

Year Approach 
Model Learnt 

First 

Final 
Understanding 
of BVA (Mean) t-test 

2004 
Myers 61% 5.20 

t(30) = .16, p = .43 
Atomic Rules 39% 5.17 

2005 
Myers 46.43% 4.23 

t(26) = -1.38, p = .09 
Atomic Rules 53.57% 4.80 

 

5.4 Related Research  

A number of researchers have evaluated testing methods taught at universities and compared the 

effectiveness of black-box test methods to other testing methods. In this section, these studies are discussed 

in terms of their approaches for assessing effectiveness and the numbers of participants included in these 

studies. This section also contributes to the continuing debate in the literature as to whether students should 

be used in software engineering experiments.  

Roper et al. (1993) suggest that one way to progress towards a better understanding of test method 

effectiveness is to develop tighter definitions of the methods themselves, so experimental derivation of test 

data becomes predictable and repeatable. This would also allow deviations from the method to be detected 

unambiguously. This was one of the main aims in developing the Atomic Rules approach and one of the 

primary motivations behind assessing black-box test method usability. In the university experiments, 

learnability was examined in terms of the ease with which novice testers gained an understanding of 

particular concepts, and usability in terms of the satisfaction the students felt when using the two black-box 

test method representations. This included assessment of the completeness and correctness of test cases 

derived. Chen and Poon (2004) used similar measures when reviewing forty-eight student projects to 

identify the types of classifications students missed and the numbers and types of mistakes they made when 

using the Classification Tree Method. In another study of CTM, run with 104 students and rerun with fifty-

eight students, participants tested programs they developed themselves, using whatever test methods they 

felt were appropriate (Yuen et al. 2004) (see Chapter 2). Their programs were graded by an automated test 

suite in terms the number of tests that resulted in correct output (Hoffman, Strooper and Walsh (1996) also 

used automated testing tools to grade student’s work). Then, the students were taught CTM and asked to 

retest their programs with that method, to critically evaluate CTM, compare it to the test methods they 
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previously used and to rate their future preference of test methods. With the exception of the critical 

evaluation, these measures are similar to those that were used in the university experiments and to those that 

are used in the industry experiment (Chapter 6).  

Fault-detection effectiveness has also been used as a measure of test method effectiveness. Basili and 

Selby (1987) conducted a seminal experiment with forty-two students (twenty-nine novices, thirteen 

intermediates) and thirty-two industry professionals, in which they compared the fault detection 

effectiveness, fault detection rate and classes of faults detected by three testing techniques: black-box 

testing (EP and BVA), white-box testing (100% statement coverage) and static testing (code reading by 

stepwise abstraction). Contrary to what may have been believed at the time, they found that the industry 

professionals were able to detect the most faults with code reading and did so at a faster rate. They were 

also able to detect more faults with black-box testing than white-box testing, but there was no difference in 

the rate at which they detected the faults. In one university group, the same numbers of faults were detected 

with code reading and black-box testing and both detected more faults than white-box testing, although the 

rate at which students detected faults did not differ for any method. Kamsties and Lott (1995) repeated this 

experiment with fifty students and found that while the fault-detection effectiveness of the two dynamic 

approaches (white-box and black-box) were comparable to that of the static approach (code reading), 

participants detected more faults using black-box testing. This experiment was also repeated by Wood et al. 

(1997) with forty-seven students. They found that the students detected similar numbers of faults for all 

three techniques, but their effectiveness depended on the nature of the program under test and the nature of 

program faults.  

Thus, fault-detection effectiveness is a common basis for evaluating test method effectiveness. 

Unfortunately, this could not be measured in the university experiments discussed in this chapter, since 

programs were not used (i.e. only ‘toy’ specifications were used in the experiment, not working programs). 

On the other hand, this measure was used in the industry-based experiment that is discussed in Chapter 6. 

Another factor that was not covered in the experiments by Basili and Selby, Kamsties and Lott or Wood et 

al., is whether tester domain knowledge has any impact on test case effectiveness. This was also 

investigated in the industry-based experiment (see Chapter 6, Section 6.5.3).  

Reid (1997) conducted an experiment that compared the probability that test cases derived by EP, BVA 

and RT would be capable of detecting specific classes of program faults. He noted that participants using 

black-box testing methods during experiments often select test cases that are not representative of other 

testers, therefore experiment results could not be generalised unless large enough groups of testers and test 

cases were used. Thus, Reid sought to derive every test case that satisfied the three black-box methods 

under study. In this study, BVA was found to be the most effective method, followed by RT and EP. 

However, it was important to note that BVA required twice as many test cases as EP to achieve higher 

levels of effectiveness (13.6 BVA tests compared to 7.6 EP tests), while RT required a “prohibitive” 

number of test cases in order to be as effective as BVA (50,000 RT test cases compared to 13.6 BVA tests).  

The two university-based experiments discussed in this chapter involved a total of seventy-two students. 

This is comparable to subject numbers participating in other software engineering experiments. For 
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example, a software testing experiment that was initially run with thirty-six student participants was rerun 

by a different researcher with fifty-nine students and ninety-nine industry professionals who were paid 

standard consultancy rates (Arisholm & SjØberg 2004). This relatively high number of industry participants 

may have been due to the remuneration. In another testing experiment, twelve industry professionals 

participated (Hungerford, Henver & Collins 2004) and they did not appear to be remunerated. Thus, 

remuneration may be an effective approach of obtaining more industry participation in future experiments. 

On the other hand, securing funding to pay for remuneration can be very challenging; (Arisholm & SjØberg 

2004) is one of the only papers to report paying standard consultancy rates for participation.  

Carver et al. (2003) are of the opinion that running pilot experiments with students is effective 

preparation for industry-based experiments. Tichy (2000) supports this, stating that student experiments can 

be used to predict future trends in experiments that are rerun with industry professionals. Tichy (2000) also 

argued that graduate computer science students are only marginally different from industry professionals. 

Supporting this, Runeson (2003) reported the results of a study of the feasibility of using students as 

subjects in software engineering experiments, which compared the use of Humphrey’s Personal Software 

Process (PSP) by undergraduate students, graduate students and industry professionals, to determine which 

group produced better estimations of program size and development effort, lower defect densities (i.e. 

defects per program size), lower defect intensities (i.e. defects per unit of time) and higher productivity. 

Runeson (2003) found significant differences between graduate and undergraduate students, but only small 

differences between graduates and industry professionals, supporting the view that graduate students are 

similar to industry professionals in terms of their capabilities. Thus, one negative aspect that has been 

reported on the use of students as experiment subjects is that results may not be generalised to industry 

professionals (Carver et al. 2003, Runeson 2003).  

On the other hand, since the aim of the university experiments reported in this chapter were to assess the 

usability of black-box testing methods by novice testers, the use of undergraduate students was not seen as a 

disadvantage. If one finds that relatively inexperienced practitioners (students) can learn a method quickly, 

and the method produces equal or better results to existing approaches, and has other benefits such as 

auditability, then this is useful knowledge. Conversely, if there is no improvement, it cannot be concluded 

that professionals given ‘proper’ industrial training would not improve their testing practice. Also, these 

experiments were excellent preparation for an industry-based experiment that assessed the usability of the 

Atomic Rules approach by industry professionals, as they allowed the characteristics of test method 

usability to be explored and refined. They also facilitated an initial assessment of the threats to validity that 

need to be considered and controlled and have provided some indication of the response professional testers 

may experience when learning and using the Atomic Rules approach.   

5.5 Discussion  

Six hypotheses were defined for this experiment, corresponding to the six attributes of test method 

usability defined in Chapter 1: completeness (effectiveness) (H01/H11), efficiency (H02/H12), errors made 

(effectiveness – accuracy) (H03/H13), questions asked (learnability) (H04/H14), satisfaction (H05/H15) and 

understandability (H06/H16). The results for these are as follows.   
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Students who used the Atomic Rules approach during tutorials in 2004 produced significantly more 

complete EP equivalence classes and test cases than did those using Myers’ approach. Thus, the null 

hypothesis for completeness could be rejected in favour of the alternate hypothesis for this attribute (Table 

5-32). BVA results for completeness in 2004 were inconclusive (Table 5-32). On the other hand, students in 

Myers’ group in 2005 produced more complete EP equivalence classes and test cases and BVA boundary 

values; thus, the null hypothesis could not be rejected for completeness in 2005 (Table 5-32). This was 

likely caused by the students in 2005 being given longer and more complicated specifications during 

tutorials and (more generally) by the Atomic Rules approach requiring more test cases to be derived per 

specification field (see Section 5.3.2). Supporting this view is that significantly more students in the Atomic 

Rules group in both years ran out of time before completing tutorial tests (see Section 5.3.3.2). Despite this, 

in 2004 the Atomic Rules group still achieved significantly higher EP coverage than those using Myers’ 

approach (Table 5-32).  

Setting a potentially overly-complicated test in the 2005 tutorials may have been caused by the “second 

system effect” (Brooks 1975), in which system engineers, having developed small, elegant solutions the 

first time around, design overly complicated solutions the second time; it is only by the design of a third 

system that the engineer will develop an effective solution that is not under or over designed. As students 

did well with the Atomic Rules approach in the 2004 tutorials, it was considered reasonable to increase the 

length and complexity of the specifications used in 2005. A third experiment using a complex and a non-

complex specification in the one experiment could clarify whether specification complexity caused students 

in the Atomic Rules group to produce less complete test sets than Myers’ group in 2005.  

Nonetheless, in 2004 students in the Atomic Rules group produced more accurate answers during EP 

equivalence class design than Myers’ group, in that they made fewer mistakes (Table 5-34). Thus, the null 

hypothesis for completeness and accuracy for EP equivalence class design could be rejected in favour of the 

alternate hypothesis. The results for the completeness hypotheses of EP test cases and for BVA in 2004 and 

2005 were inconclusive (Table 5-34).  

For efficiency, students using the Atomic Rules approach were found to be more productive in both 

years (assuming a 94% confidence interval in 2004), in that they derived more equivalence classes per hour 

than those using Myers’ representation. Thus, the null hypothesis for efficiency of EP equivalence class 

derivation could be rejected in favour of the alternate hypothesis (Table 5-33). The results for accuracy of 

BVA derivation were inconclusive in both years (Table 5-33).   

Learnability in terms of quantity of questions asked could not be assessed, as students did not ask or 

record questions during tutorials. Thus, the results for this hypothesis were inconclusive.  

In assessing satisfaction, it was found that significantly more students in 2004 reported that they would 

prefer to use the Atomic Rules approach in future; thus the null hypothesis for this attribute in 2004 could 

be rejected in favour of the alternate hypothesis (Table 5-36). Supporting this, more students in 2005 chose 

to use the Atomic Rules approach in their class assignment and those that did achieved significantly higher 

assignment marks than those who used Myers’ approach. After the experiment, the data was checked to 
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determine whether ‘brighter’ students chose to use the Atomic Rules approach in their assignment, in case 

they knew they could achieve a higher grade with that approach. A comparison of approach used to overall 

mean mark in the subject found no significant difference, indicating that intelligence levels did not affect 

representation choice on the assignment. 

For understandability, in both years a significant difference was found in the student’s self-rated 

understanding of the two approaches, where the mean was higher for Atomic Rules. Thus, students in both 

years felt that they had gained a better understanding of the Atomic Rules representation by the end of the 

experiment. Therefore, the null hypothesis for usability in both years could be rejected in favour of the 

alternate hypothesis (Table 5-37).  

Student preference for lecturer did not appear to affect experiment results, as it would be fair to assume 

that the results of the two groups would have swapped for all hypotheses in 2005 if this was the case. 

An observation that was made during data analysis was that the structure of the Atomic Rules approach 

can stifle tester creativity, even for novice testers. Since the Atomic Rules approach is more systematic than 

Myers’ original definitions, it did not allow the students to derive test cases based on their own unique 

knowledge and experience. During data analysis, it became apparent that some testers in Myers’ group 

created test cases that were not derivable from Myers’ representation. As noted by Kaner et al. (1999), prior 

testing experience can be used to identify effective test cases through Error Guessing in similar testing 

scenarios, even if a tester cannot remember where they gained the domain knowledge. Systematic Method 

Tailoring was developed as an approach for guiding testers in the definition of new and reusable black-box 

test case design rules during prescriptive and non-prescriptive testing. However, this approach was not 

available when the first university experiment was run. Therefore, the industry-based experiment reported 

in the following chapter explores whether test case design rules used by industry professionals can be 

described as Atomic Rules.  

Table 5-32: Outcomes of hypothesis testing for Completeness (H01/H11). 

Hypothesis: 
Completeness  
H0x = Null 
H1x = Alternate 

Equivalence Partitioning Boundary Value Analysis 

2004 2005 2004 2005 

Equiv. 
Classes 

Test 
Cases 

Equiv. 
Classes 

Test 
Cases 

Boundary 
Values Test Cases 

Boundary 
Values Test Cases 

H01: The completeness of 
the black-box test set 
derived by novice testers 
is independent of the 
representation used.  

Reject Reject 
Fail to 
reject 

Fail to 
reject 

Inconclusive Inconclusive 
Fail to 
reject 

Inconclusive 

H11: Novice testers using 
the Atomic Rules approach 
derive a more complete 
test set compared to those 
using Myers’ 
representation. 

Accept Accept 
Fail to 
accept 

Fail to 
accept 

Inconclusive Inconclusive 
Fail to 
accept 

Inconclusive 
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Table 5-33: Outcomes of hypothesis testing for Efficiency (H02/H12). 

Hypothesis: Efficiency 
H0x = Null 
H1x = Alternate 

2004 2004 2005 2005 

Equiv. 
Classes 

Boundary 
Values 

Equiv. 
Classes 

Boundary 
Values 

H02: The efficiency of black-box test 
case derivation by novice testers is 
independent of the representation used.  

Reject Inconclusive 
Reject  

(at 94% 
confidence) 

Inconclusive 

H12: Novice testers using the Atomic 
Rules approach derive test cases more 
efficiently compared to those using 
Myers’ representation. 

Accept Inconclusive 
Accept  
(at 94% 

confidence) 
Inconclusive 

   

Table 5-34: Outcomes of hypothesis testing for Accuracy (H03/H13). 

Hypothesis: 
Accuracy  
H0x = Null 
H1x = Alternate 

2004 2005 2004 2005 

Equiv. 
Classes 

EP Test 
Cases 

Equiv. 
Classes 

EP Test 
Cases 

Boundary 
Values 

BVA Test 
Cases 

Boundary 
Values 

BVA Test 
Cases 

H03: The number of 
errors made by 
novice testers 
during black-box 
test case derivation 
is independent of 
the representation 
used.  

Reject Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive

H13: Novice testers 
using the Atomic 
Rules approach 
make fewer errors 
during test case 
derivation 
compared to those 
using Myers’ 
representation. 

Accept Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive

 

Table 5-35: Outcomes of hypothesis testing for Learnability (H04/H14). 

Hypothesis: Learnability  
H0x = Null 
H1x = Alternate Outcomes in 2004 and 2005 

H04: The number of questions asked by novice 
testers during black-box test case derivation is 
independent of the representation used.  

Inconclusive  
(no questions were asked by students) 

H14: Novice testers using the Atomic Rules 
approach ask fewer questions compared to 
those using Myers’ representation. 

Inconclusive  
(no questions were asked by students) 

 

Table 5-36: Outcomes of hypothesis testing for Satisfaction (H05/H15). 

Hypothesis: Satisfaction  
H0x = Null 
H1x = Alternate 2004 2005 

H05: The preference of novice 
testers towards the black-box 
testing methods is independent of 
the representation used.  

Reject Inconclusive 

H15: Novice testers prefer to use the 
Atomic Rules approach for black-
box test case derivation compared 
to the use of Myers’ representation. 

Accept Inconclusive 
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Table 5-37: Outcomes of hypothesis testing for Understandability (H06/H16). 

Hypothesis: Understandability  
H0x = Null 
H1x = Alternate 2004 2005 

H06: A tester’s understanding of black-box 
testing methods is independent of the 
representation used.  

Reject Reject 

H16: Novice testers rate the Atomic Rules 
approach to black-box test case derivation 
as easier to understand than Myers’ 
representation. 

Accept Accept 

 

5.6 Summary 

The aim of the two university experiments discussed in this chapter was to compare the usability of 

Myers’ original definition of EP and BVA to that of the Atomic Rules definition of the methods. While the 

results suggest that the Atomic Rules approach can improve the usability of EP and BVA, indicating that it 

could be a useful representation for teaching black-box testing methods to novice software testers, a number 

of inconclusive results indicate that further experimentation is required. Future research will ideally include 

repetition of these experiments, to determine whether the results reported here were by chance or whether 

they are indicative of how the Atomic Rules approach would be received by the wider software testing 

community.  

In the next chapter, the results of an industry-based experiment are presented, which compared the 

usability and failure-detection effectiveness of the Atomic Rules approach to that of the black-box testing 

approaches that are used by testers in the software testing industry.  
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Chapter 6 

Industrial Evaluation of the Atomic Rules Approach 

"The thirteenth deadly sin is to leave the users to find the errors in your compiler." 
P. J. Brown, 1979 

6.1 Overview 

In this chapter, the results of a two-day experiment examining the usability of the Atomic Rules 

representation of EP, BVA and ST are presented. The aim was to compare the usability and failure-

detection effectiveness of black-box testing methods normally used by testers in the software testing 

industry with the Atomic Rules representations of EP, BVA and ST. Eleven testers working for a 

Queensland government organisation participated in the experiment.  Their experience ranged from novice 

to expert. Although the experiment was carried out with practitioners from industry, due to the experiment 

design, it can be considered to be a controlled, classroom-based experiment.  

An overview of the experiment is as follows. On day 1 the participants were randomly assigned to two 

groups of five and six people each (Table 6-1). The participants were then given 3.5 hours to derive and 

execute black-box test cases using whichever approach to black-box testing they felt was appropriate, which 

in this chapter is referred to as the ‘Practitioner Normal Testing Practice’ (PNTP) approach to test case 

derivation or ‘PNTP testing.’ During this time each participant tested one of two programs: a Batch 

Processor (assigned to Group 1) and an Address Parser (assigned to Group 2). These programs were 

developed by undergraduate students from La Trobe University and contained a variety of faults, including 

some that were intentionally seeded by a professional tester not involved in the experiment.   

Once PNTP testing was complete, the participants were given a 2.5 hour presentation on the Atomic 

Rules representation of EP, BVA and ST. The groups were then crossed over and were given 3.5 hours to 

use the Atomic Rules approach to derive test cases for the ‘other’ program (i.e. the Address Parser was 

assigned to Group 1 and the Batch Processor to Group 2). This ensured that each participant tested a 

different program during each phase of testing, reducing the chances that what they learnt about the 

programs during PNTP testing would influence the results obtained during Atomic Rules testing. During 

this phase the testers were given lecture notes on the Atomic Rules approach and a two-page ‘Quick-

Reference Guide’ that listed all Atomic Rules from EP, BVA and ST (Appendix C).  
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Table 6-1: The experiment plan. 

Time Day 1 Day 2 

09.00 – 10.30 
Introduction  

Initial Questionnaire 
Presentation (lecture) on the Atomic Rules  

representation of EP, BVA and ST (continued) 

10.30 – 11.00 Morning tea Morning tea 

11.00 – 13.00 

Phase 1 - Group 1 

Black-box testing  
Approach: PNTP  

Program: Batch Processor 
Post-Testing Questionnaire 

Phase 1 - Group 2 

Black-box testing 
Approach: PNTP 

Program: Address Parser 
Post-Testing Questionnaire 

Phase 2  - Group 1 

Black-box testing 
Approach: Atomic Rules 

Program: Address Parser 
Post-Testing Questionnaire 

Phase 2  - Group 2 

Black-box testing 
Approach: Atomic Rules 

Program: Batch Processor
Post-Testing Questionnaire 

13.00 – 14.00 Lunch Lunch 

14.00 – 15.30 Phase 1 testing continues  Phase 1 testing continues Phase 2 testing continues Phase 2 testing continues 

15.30 – 16.00 Afternoon tea Afternoon tea 

16.00 – 17.00 
Presentation (lecture) on the Atomic Rules  

representation of EP, BVA and ST 
Wrap-up discussion 

Reflect & Review Questionnaire 

 

An Initial Questionnaire was used to determine the group demographic and initial understanding of 

black-box testing methods. Post-testing questionnaires were used after PNTP and Atomic Rules testing to 

examine opinions of the test methods used. A Reflect and Review Questionnaire was used at the end of the 

experiment to examine the tester’s final understanding of EP, BVA and ST and opinions of the test methods 

used. Other data collected included all test cases derived and failures detected.  

The relatively small sample size of eleven participants means that the results cannot be generalised 

across the entire software testing industry. In addition, something that was (unfortunately) not identified 

prior to day one of the experiment was that the majority of the testers in the group did not have recent 

experience in test design (see Section 6.3.1.4). Nevertheless, the results provide insight into the way in 

which the testers who participated in our experiment conduct black-box testing and how they used the 

Atomic Rules representations of EP, BVA and ST to design test cases.  

The remainder of this chapter is structured as follows. The experiment design is presented (Section 6.2), 

including hypotheses (Section 6.2.1), programs and specifications (Section 6.2.2), analysis approach 

(Section 6.2.4) and threats to validity (Section 6.2.5). Results are then presented (Section 6.3) and discussed 

(Section 6.4), following by a chapter summary (Section 6.5).  

6.2 Experiment Design 

The primary independent variable was the black-box testing approach used (i.e. PNTP and Atomic 

Rules). The other variable that was varied was the program tested (i.e. Address Parser or Batch Processor).  

6.2.1 Hypotheses 

Hypotheses were based on the following definition of test method usability (introduced in Chapter 1).  

Test Method Usability. The extent to which a test case design method can be understood, learnt 

and used by software testers to achieve specified test case design goals effectively, efficiently 

and with satisfaction, within the context of applying software testing methods.  
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From this, the following null (H0X) and scientific hypotheses (H1X) (Christensen 2004) were defined.  

Completeness (effectiveness): 

H01: The completeness of black-box test sets derived by industry-based testers is independent of 

the approach used.  

H11: Industry-based testers using the Atomic Rules approach derive more complete test sets in 

terms of EP, BVA and ST coverage compared to those using their own method for black-box test 

case design. 

Failure-Detection Effectiveness: 

H02: There is no difference between the failure-detection effectiveness of the Atomic Rules 

approach compared to black-box testing approaches used by industry-based testers.  

H12: Industry-based testers detect more failures using the Atomic Rules approach then when 

using their own approaches to black-box test case design. 

Efficiency (Productivity): 

H03: The efficiency of black-box test case derivation by industry-based testers is independent of 

the approach used.  

H13: Industry-based testers using the Atomic Rules approach derive test cases more efficiently 

compared to those using their own approach to test case design. 

Errors Made (effectiveness – accuracy): 

H04: The number of errors made by novice testers during black-box test case derivation is 

independent of the approach used.  

H14: Industry-based testers using the Atomic Rules approach make fewer errors during test case 

derivation compared to those using their own approaches to test case design. 

Understandability: 

H05: Learning the Atomic Rules approach has not affect on a tester’s understanding of black-box 

testing methods.  

H15: Testers improve their understanding of black-box testing methods by learning the Atomic 

Rules approach. 

Operability: 

H06: Testers using the Atomic Rules approach do not find it easy or difficult to use.  

H16: Testers using the Atomic Rules approach find it an easy to use. 

Satisfaction: 

H07: The preference of industry-based testers towards the use of black-box testing methods is 

independent of the representation used.  

H17: Industry-based testers prefer to use the Atomic Rules approach for black-box test case 

design compared to using their own approaches. 
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Two additional hypotheses were defined. The first examines whether tester motivation levels threaten 

experiment validity (see Section 6.2.5.1). The second examines whether test case design rules used during 

PNTP testing can be described as Atomic Rules.  

Motivation: 

H08: Testers feel more motivated when using a new technique simply because it is new.  

H18: Testers using the Atomic Rules approach do not find it more motivating to use simply 

because it is a new technique. 

Test Method Representation: 

H09: Test case design rules used by experienced testers in industry when they are not prescribed 

a particular test method cannot be described by any black-box test method representation.  

H19: Test case design rules used by experienced testers in industry when they are not prescribed 

a particular test method can be described as Atomic Rules. 

The validity of these hypotheses is explored in Section 6.3, together with interpretations.  The only 

attribute of test method usability that was not assessed during this experiment is learnability in terms of how 

long it takes a tester to become competent with a test method, since the experiment did not permit long-term 

investigation. Learnability was also not assessed from the perspective of the types of questions asked during 

the experiment, as the participants were encouraged to work autonomously.  

6.2.2 Programs and Specifications  

Locating programs for use during the experiment proved to be one of the most challenging aspects of 

the experiment design. Three sets of programs were considered:  

1. a program written by the participating organisation;  

2. six C programs used in testing experiments by Kamsties and Lott (1995); and  

3. mutated versions of C programs by Kamsties and Lott (1995), which were used in other (PhD) 

software testing experiments by Grindal (2007).  

A number of unanticipated problems relating to the use of these programs were encountered. Privacy 

regulations prevented programs that were developed by the participating organisation (under option 1 

above) from being installed at the training location. Furthermore, the programs mentioned under options 2 

and 3 above were developed in C under Unix, and the testers were only experienced in the use of Windows, 

not Unix. An extensive search failed to locate a Windows-based C compiler that would compile the 

programs successfully (at least a dozen compilers were tested). Two weeks before the scheduled start of the 

experiment, it was realised that none of the programs under consideration could be used. An alternative 

needed to be sought, but time was a major issue. The scheduling of the experiment meant that the 

participant’s work-load had been rescheduled and the training facilities had been paid for in full. 

Attempting to reschedule the experiment at this late stage may have caused the participant’s employer to 
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withdraw support, leading to its cancellation. It was therefore decided that the date of the experiment could 

not be moved. Instead, alternate programs had to be sought.  

In the end, two programs were located that could be compiled and executed under Windows. These were 

an Address Parser written in C++ by the author, and a Batch Processor written in Java by a student from the 

second university experiment discussed in Chapter 5. They were submitted as assignments under third year 

subjects at La Trobe University (CSE31STM Software Techniques and Metrics and CSE32STR Software 

Testing and Reliability). The primary requirement of the programs was to parse an input file and report any 

syntax errors. A secondary requirement was that they do so without failure (e.g. no endless loops, no 

unexpected terminations). All known failures in the programs were detected by applying all Atomic Rules 

from EP, BVA and ST (see Appendices D and E). These programs had also undergone black-box testing by 

their developers, using Myers’ definitions of EP and BVA. Specifications of the program’s input are 

provided in the subsections below, in a combination of Backus-Naur Form (BNF) and PL/I syntax. Table 6-

2 describes the BNF symbols used. 

Table 6-2: Definition of specification symbols. 

Symbol Actual Meaning 

::= Is defined as 

 Represents one space 

… Represents one or more spaces 

<ddd> Represents three digits 

[ a | b ] 
Select one of the options (either a or b) contained within the square 
brackets [ ] 

{<anything>} The content of the curly braces { } is optional (i.e. <anything> is optional) 

[ a | b ] MIN – MAX The number of optional entities should be between MIN and MAX inclusive 

 

6.2.2.1 The Address Parser 

The Address Parser reads street addresses in a specific format (Figure 6-1) from an input file. Any 

addresses not in the specified format are rejected and error messages are written to a log file. The program 

contains a variety of faults (see Appendix D) but will not ‘crash’ when given any input (e.g. no endless 

loops, no unexpected terminations). The most common type of fault evident is that it produces incorrect 

error messages for certain types of input errors. For example, for the invalid address 100 St Eltham 3095, 

which is missing the street name, the program would correctly detect the missing street name, but would 

incorrectly report that the suburb was invalid (Appendix D, Fault 8). Two additional faults were manually 

seeded into the program by an experienced tester not involved in the experiment, to ensure there were 

‘interesting’ faults for participants to find (see Appendix D, Faults 6 and 7).  

For simplicity, the ‘state’ name was not included in the Address Parser specification, as the domain of 

the application was limited to street addresses from the state of Victoria, Australia. 
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Figure 6-1: Input data specification of the Address Parser.  

Standard addresses  

<standard address> ::= <ddd>    <street>  … <suburb>  …  <postcode>. 

Example 

111 Main St Greensborough 3088. 

Flat, unit or RSD addresses  

<flat / unit / rsd address> ::=  
 [ UNIT | FLAT | RSD ]  { <ddd>   [ , | / ]   }  <ddd>  <street>  … <suburb>  …  <postcode>. 

Examples 

RSD 987 Main Street Greensborough 3088.  

UNIT 100 / 220 Main Street Greensborough 3088.  

Country address and care of addresses  

<country address / care of address> ::= [ C/- | C/o ]  … <street> …  <suburb>  …  <postcode>. 

Example 

C/- Main St North Greensborough 3088. 

Street Syntax 

<street> ::= <street_name>  … <street_type>  {…<street_direction>} 

<street_name> ::= [A – Z | a – z | - ]1 - 40  

<street_type> ::= [ Street | St | Road | Rd | Avenue | Ave | Court | Crt | Grove | Grv | Lane | Ln | Place | Plc ] 

<street_direction> ::= [ North | South | East | West ] 

 

Table 6-3: Valid suburbs-postcode pairs. 

Suburb Postcode  Suburb Postcode 
Altona 3018  Nutfield 3099 
Box Hill North 3129  Ormond 3162 
Coburg 3058  Osborne 3934 
Collingwood 3066  Panton Hill 3759 
Deer Park 3023  Phillip Island 3922 
Eltham 3095  Rosebud 3939 
Eltham North 3095  Rosebud South 3939 
Fawkner 3060  Rosebud West 3940 
Geelong West 3218  Seaford 3198 
Greensborough 3088  Sorrento 3943 
Healesville 3777  Torquay 3228 
Ivanhoe 3079  Upfield 3061 
Ivanhoe East 3079  Upwey 3158 
Jacana 3047  Vermont 3133 
Kangaroo Ground 3097  Vermont South 3133 
Kew 3101  Victoria Park 3067 
Lilydale 3140  Warrandyte 3113 
Lovely Banks 3221  Warrandyte South 3134 
Macleod 3085  Wattle Glen 3096 
Melbourne 3000  Yan Yean 3755 
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6.2.2.2 The Batch Processor  

The aim of the Batch Processor is to parse abstract representations of batches of sales records and 

calculate the total and average of values contained within each batch (Figure 6-2). Each batch starts and 

ends with an ‘sbatch’ (start batch) and ‘ebatch’ (end batch) tag. The last record of the file is ‘lbatch.’ This 

program was chosen from a set of forty similar programs. The version that was chosen contained a wide 

variety of defects, some that cause incorrect behaviour and others that caused the program to ‘crash’ (see 

Appendix 3). The specification for this program had a number of intentional ambiguities, and it was left to 

the implementer to resolve them. For example, it did not specify the maximum number of parts and part 

identifiers that could appear on a ‘recordline’ or the maximum number of recordlines.  

Figure 6-2: Input data specification of the Batch Processor. 

Input Specification 

 <input file>  ::= <batch>* <nl> lbatch 

 <batch>  ::= sbatch … <batchid> <nl> <recordline>* <nl> ebatch …<batchid> 

 <recordline>  ::= { <partid>  <value>  , }* <partid>  <value> 

 <batchid>  ::=<digit><digit><char><char><char> 

 <partid>  ::=<char><digit><digit><char> 

 <value> ::= [-99 – 98] 

 <digit> ::= [0 – 9] 

 <char> ::= [A – Z] 

 <nl>  ::= newline 

Output Specification 

The program must calculate and output the total and average of: 

a) the values of each individual partid within each batch, 

b) all values within each batch, 

c) the values of each individual partid over all batches, 

d) all values over all batches. 

Example Input 

sbatch 11AAA 

ebatch 11AAA 

sbatch 63ABC 

B22B -10 

C99E 20, A11A 40, A11A -30 

ebatch 63ABC 

lbatch 
 

6.2.3 Group Allocation  

The participants were divided into two comparison groups (Table 6-4). Each group was given a different 

program to test during the two phases of testing, ensuring that what they learnt about the programs during 

PNTP testing did not affect their results during Atomic Rules testing.  
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Table 6-4: Group allocation. 

Day Testing Approach  Group Participant Count Program Tested 

1 PNTP  
1 5 Address Parser 

2 6 Batch Processor 

2 Atomic Rules 
1 6 Address Parser 

2 5 Batch Processor 

 

6.2.4 Data Collection and Analysis Approach 

Data collected consisted of test cases designed by participants during PNTP and Atomic Rules testing 

and answers to Initial, Post-testing and Reflect and Review Questionnaires. Standard tests for statistical 

significance (e.g. t-tests for parametric data, chi-square tests for non-parametric data) were used wherever 

possible. One-tailed tests were used, as the null hypothesis was assumed (e.g. that was no difference 

between PNTP and the Atomic Rules approach). A confidence interval of 95% was used for significance 

testing (i.e. any result with a p-value greater than 5% was rejected). A statistician and psychological 

researcher were consulted in the selection of all tests for statistical significance that were used during 

hypothesis testing.  

6.2.5 Threats to Validity 

In this section threats to internal and external validity are explored (these are similar to threats explored 

in Chapter 5; refer to section 5.3.4 for detailed definitions).  

6.2.5.1 Internal Threats to Validity 

Maturation. It was hoped that holding the experiment in a training room (Skillgate in Brisbane) and 

providing food and drink would mitigate boredom, fatigue and hunger. As the experiment was carried out 

over two consecutive days, changes in knowledge levels were unlikely. Questionnaires were used to 

determine if participant motivation influenced experiment outcomes (see Section 6.3.10).  

Enthusiasm. To attempt mitigation of this threat (as with the student experiments), participants were not 

told that the Atomic Rules approach was new in the hope that this would allow them to focus on the work at 

hand, rather than considering how the new technique related to work conducted during PNTP testing. On 

the other hand, since the testers were learning a new approach to test case design, it was difficult to prevent 

enthusiasm from affecting their behaviour during that phase of the experiment. Therefore, data was 

collected on the level of motivation each tester felt before and after using PNTP and the Atomic Rules 

approach, enabling this to be built into the experiment design (see Section 6.3.10).  

Instrumentation. Standard measurement scales were used during data analysis and only one person 

carried out analysis to ensure that the same approaches were followed throughout the experiment.    

Regression. Selecting participants for inclusion in an experiment that have ‘extreme’ scores can cause 

them to perform better or worse on pre-tests than on post-tests (Creswell 2002). This threat could not be 
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controlled as the participants were chosen by the participating organisation, based on tester availability. An 

assessment of whether more experienced testers produced ‘better’ test cases was built into the experiment 

(see Sections 6.3.3.5 and 6.3.4.5).  

Selection. To mitigate this threat, participants were randomly allocated to groups and the affect of 

participant experience was built into the experiment (see Sections 6.3.3.5 and 6.3.4.5).   

Testing. This threat exists when participants are given the same test more than once and become familiar 

with the types of responses required. This was mitigated by assigning different programs to each participant 

during PNTP and Atomic Rules testing.  

Procedure. If participants do not follow the procedures of a prescribed techniques this may affect results 

(Vegas et al. 2003). This was incorporated into the experiment by examining whether participants followed 

the procedures of the Atomic Rules approach correctly (see Section 6.3.7.4).  

Reliability. Since the participants were only available for two days, the experiment could not be repeated 

to determine the reliability of the results. There was no way around this, so this threat could not be 

mitigated. Assumedly, repeating the experiment over time would give the participants more experience with 

the programs under test and with the Atomic Rules approach and that this would improve their results.   

Copying. This was mitigated by conducting the experiment under ‘exam’ conditions, by asking the 

participants not discuss the experiment or the faults they detected until after their work was complete. 

Population and Sample. As the sample of testers who participated in this experiment are not 

representative of all professional software testers, the results cannot be generalised across the entire 

population of professional testers. Nevertheless, they are considered to be indicative.  

A number of internal threats to validity were not applicable, as follows.   

History. This was not a threat as there was no time lapse between pre and post test measurements.  

Diffusion of Treatments, Compensatory Equalization, Compensatory Rivalry, Resentful Demoralization 

and Method and Object Learning. These relate to experiments involving control groups. As this experiment 

involved a small number of participants, control groups could not be used.  

6.2.5.2 External Threats to Validity 

Language. All participants spoke English fluently and all written experiment materials were presented in 

English. As the specifications were written in BNF it was possible that the participants would not be able to 

understand them. To mitigate this threat, examples input files were provided.  

Interaction of Setting and Treatment. Due to the small sample size, the results cannot be generalised 

across the entire population of professional testers. Thus, the results are considered to be indicative.  
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Programs and Techniques. If an experiment involves a small sample of programs or software testing 

methods, the results cannot be generalised to programs or methods (Vegas et al. 2003). In this experiment, 

data was collected for two programs that were implemented by third year university students and black-box 

test methods, EP, BVA and ST were used. Thus, broad generalisations have not been made across all 

specifications, programs or black-box testing methods.  

Sample Heterogeneity. Differences in the age, gender, education or occupation of participants can affect 

individual results (Anastasi & Urbina 2007). This was built into the experiment by examining whether prior 

testing experience had any affect on test case effectiveness (see 6.3.3.5 and 6.3.4.5).  

6.2.5.3 Construct Validity Threats 

Measures. To mitigate this threat, participants were not told how data was going to be analysed.  

6.3 Results 

The experiment results are presented below, followed by a detailed discussion in Section 6.4.  

6.3.1 Demographic 

On the Initial Questionnaire, the participants were asked about their prior testing education and 

experience, programming and specification experience, understanding of black-box testing methods and 

level of motivation for participating in the experiment.  

6.3.1.1 Industry Experience, Education and Training 

All participants worked for the same government organisation in Queensland, Australia and 91% had 

worked as software testers for government organisations in the past (Table 6-5).  

Table 6-5: Previous industries participants have tested software in (choose all that apply). 

Prior Position Count Percent 

Other – Government 10 91 

Banking, finance & insurance 1 9 

Education & training 0 0 

Hotel, tourism, retail & trading 0 0 

Manufacturing & engineering 0 0 

Research & development 0 0 

Software house & IT consultancy 0 0 

Telecommunications 0 0 

 

For their current role in testing, 46% were working as Testers and 46% as Test Leaders (Table 6-6).  
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Table 6-6: Participant’s current role in testing (choose one). 

Current Position  Count Percent 

Test Lead 5 46 

Tester 5 46 

Other1 1 9 

 

In terms of the roles that participants held in the past, 91% had worked as Testers and 55% as Test 

Leads (Table 6-7). One participant had previous worked as a software developer.  

Table 6-7: Prior roles held by the participants in testing (choose all that apply). 

Prior Position Count Percent 

Tester 10 91 

Test Lead 6 55 

Other  3 27 

Test Manager 0 0 

Test Specialist 0 0 

Senior Test Consultant 0 0 

Test Consultant 0 0 

Test Analyst 0 0 

Test Engineer 0 0 

 

While 91% of the group stated that the received on the job training in software testing, 27% had 

attended an industry-based training course called Certified Software Test Professional (CSTP)2, while one 

had received training in testing at TAFE (9%). No-one received training in software testing at university 

(Table 6-8), though this was not surprising as over half the group did not have postgraduate degrees and 

nobody had completed a ‘pure’ computing degree (Table 6-9).  

Table 6-8: Prior software testing training (choose all that apply). 

Training  Count Percent 

On the job training  10 91 

In an industry training course  3 27 

Other – Certified Software Test Professional (CSTP) 2 18 

As part of a degree at TAFE 1 9 

As part of a degree at university 0 0 

 

                                                           
1 To ensure individuals cannot be identified (as required by the La Trobe University human ethics committee), the title of this position 
cannot be named.   
2 CSTP is a nationally recognised training course taught by K. J. Ross & Associates. The author is a presenter of CSTP training 
courses, but did not teach the course to any participants in this experiment.  
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Table 6-9: University and TAFE degrees completed (choose all that apply). 

Degree Count Percent 

None 6 55 

Certificate IV Workplace Assessment & Training 2 18 

Bachelor of Business (Accounting) 1 9 

Diploma of Business 1 9 

Diploma Frontline Management 1 9 

 

The participants were asked how many years of software testing experience they had. Six (55%) 

reported less than 2 years of testing experience including one who was new to testing, while five (45%) had 

2 to 10 years of experience. Thus, there was a variety of levels of experience, ranging from novice to expert.   

6.3.1.2 Programs, Specifications and Test Methods 

The participants were asked about the types of applications they tested in the past (Table 6-10). Most 

had experience with internet-based, real time and windows-style applications (63% each), while much 

fewer had tested text-based applications (27%).  

Table 6-10: Types of applications tested in the past (choose all that apply). 

Application Type Count Percent 

Internet-based  7 64 

Real time 7 64 

Windows-based 7 64 

Other – Mainframe 5 46 

Text-based 3 27 

Unix-based  1 9 

Fault tolerant 1 9 

Other – CSV, XML 1 9 

Other – hardware  1 9 

 

Participants were asked which specification languages they used in the past (Table 6-11). Most reported 

testing from informal specifications (82%). Since the specifications used in the experiment were written in 

BNF (see Section 6.2.2) and the testers indicated that they did not have experience with this language, there 

was expected to be a ‘learning curve’ during PNTP testing. As expected, the participants did take around 30 

minutes to adjust. However, they were also given sample input files to reduce the learning curve.  
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Table 6-11: Familiarity with specifications languages (choose all that apply). 

Specification Type 
Familiar 
(Count) Percent 

Informal  9 82 

Semi formal 3 27 

Formal  0 0 

Formal – BNF 0 0 

Formal – Z 0 0 

Formal – Object Z 0 0 

 

6.3.1.3 Understanding of Black-Box Testing Methods  

On the Initial Questionnaire the participants were rated their understanding of the following black-box 

testing methods (Table 6-12): Boundary Value Analysis (BVA), Cause-Effect Graphing (CEG), Decision 

Tables (DT), Equivalence Partitioning (EP), Error Guessing (EG), Exploratory Testing (ET), Model-Based 

Testing (MBT), Orthogonal Array Testing (OAT), Random Testing (RT), Specification-Based Mutation 

Testing (SBMT), Syntax Testing (ST) and Worst Case Testing (WCT). This was achieved using a Likert 

scale of: 1 = never heard of the method, 2 = none, 3 = novice, 4 = intermediate, 5 = advanced and 6 = 

expert. Although data was only required for EP, BVA and ST, they were asked about nine other methods to 

obtain an overall picture of their knowledge of black-box test methods. In a separate question, participants 

were asked how often they used the methods (Table 6-13), using a Likert scale of: 1 = never, 2 = rarely, 3 = 

occasionally, 4 = often, 5 = very often and 6 = always. 

Few participants felt they had advanced knowledge of any black-box testing method and none felt they 

had expert knowledge. While 46% felt they had intermediate knowledge of EP and BVA, 54% had never 

heard of ST. This suggests that industry-based testers may not be experienced with prescriptive black-box 

testing methods. This is supported by a survey of software testing practices in Australian software 

development companies, which revealed that of the 65 organisations interviewed, 55% never used 

prescriptive black-box testing methods (Ng et al. 2004). Thus, while some testers in this experiment may 

have been inclined to use EP, BVA or ST during PNTP testing, they were not expected to do so in an 

‘expert’ manner.  

Interestingly, some participants reported having no experience with EG, ET, SBMT, OAT and ST 

(Table 6-12) but reported using them on occasion (Table 6-13). Since such inconsistencies were limited to 1 

to 2 participants, they were not considered to impact the validity of the data detrimentally.  
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Table 6-12: Experience with black-box testing methods (choose one rating for each method). 

Rating 

Black-Box Testing Methods 

B
V

A
 

C
E

G
 

D
T

 

E
P

 

E
G

 

E
T

 

M
B

T
 

O
A

T
 

R
T

 

S
B

M
T

 

S
T

 

W
C

T
 

Percentages (%) 

Never heard of method 18 27 27 18 18 9 36 90 46 82 54 46 

None 0 36 9 0 18 9 27 0 27 9 18 9 

Novice 9 0 18 9 27 27 9 0 9 0 9 18 

Intermediate 46 27 27 46 36 36 27 9 18 9 9 18 

Advanced 27 9 9 27 0 18 0 0 0 0 9 9 

Expert 0 0 0 0 0 0 0 0 0 0 0 0 

Missing 0 0 9 0 0 0 0 0 0 0 0 0 

 

Table 6-13: Frequency of using black-box testing methods (choose one rating for each method). 

Rating 

Black-Box Testing Methods 

B
V

A
 

C
E

G
 

D
T

 

E
P

 

E
G

 

E
T

 

M
B
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A

T
 

R
T

 

S
B

M
T

 

S
T

 

W
C

T
 

Percentages (%) 

Never 9 36 27 27 9 9 36 81 54 72 9 46 

Rarely 0 36 18 0 9 0 9 0 9 9 54 0 

Occasionally 9 0 18 27 27 27 9 9 0 0 18 27 

Often 54 27 27 36 27 46 27 9 27 18 18 27 

Very often 18 0 0 0 9 9 9 0 0 0 0 0 

Always 0 0 0 0 0 0 0 0 0 0 0 0 

Missing 9 0 9 9 18 9 9 0 9 0 0 0 

 

6.3.1.4 Frequency of Specification-Based Test Case Design  

Participants were asked how often they derive test cases from specifications (Table 6-14). 

Unfortunately, it was realised that the majority of the participants had not had any recent experience in test 

case design. This became apparent during the completion of the Initial Questionnaire, when the participants 

reached the question “On average, what percentage of test cases do you derive from program 

specifications?” When a number of testers verbally reported to the author that they had not had any recent 

experience with test case design, and one explained that the majority of the test cases they executed were 

designed by Business Analysts, this author asked the testers to report on their questionnaire whether they 

designed their own test cases. Although 81% reported deriving 80 to 100% of tests from specifications, to 

the surprise of the research team, 72% reported that the majority of the test cases they execute are designed 

by Business Analysts. While the participants had recent experience with critiquing and executing test cases, 

they did not have recent experience with test case design. Unfortunately this was not identified prior to the 

experiment. This could explain why the participants conducted Exploratory Testing during PNTP testing, as 

this approach does not require the application of prescriptive test design methods (see Section 6.3.2).  
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Table 6-14: Percentage of tests derived from specifications (choose one). 

Range  Count Percent 

80 to 100% 9 81 

20 to 39% 1 9 

None 1 9 

Less than 20% 0 0 

40 to 59% 0 0 

60 to 79% 0 0 

 

6.3.2 Analysing the Practitioner Normal Testing Practice  

The test cases derived during PNTP testing were analysed to identify the test case design approach used. 

This was carried out in two phases: first, by assessing the approach to test data and test case design the 

participants reported used (i.e. on the PNTP Post-Testing Questionnaire) and second, by analysing the 

approach they actually used.  

When asked to describe the approach to testing they used during the PNTP phase (Figure 6-3), 27% of 

the group described their approach as ‘ad hoc’ or ‘experience-based,’ while 64% described it as 

‘specification-based.’ Other popular responses were the use of valid (27%) and invalid (36%) test data 

values. Only 18% reported the use of boundary values and few reported testing program syntax (9%).   

Figure 6-3: Explanations of the PNTP testing approaches used on day 1. 
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None of the participants reported doing any test planning or test case design prior to test execution, apart 

from one participant who (quite surprisingly) used the ‘randbetween’ function in Microsoft Excel to 

implement a test data generation tool for testing the Batch Processor. Most participants verbally described 

starting the testing process by executing valid test cases and, as they began to understand how the programs 

worked, introducing small input errors to target specific types of faults, such as “boundary” faults or 
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“missing” (i.e. null) input errors. An analysis of the test cases they actually derived exemplified this, 

indicating that all participants conducted ad hoc Exploratory Testing during PNTP testing (even the 

participant who developed the automated testing tool followed it with some manual Exploratory Testing).  

This suggests that testers may choose to use Exploratory Testing when they are unfamiliar with a 

program or when they have limited time for testing. As discussed in Chapter 2, Exploratory Testing allows 

testers to become familiar with a program while simultaneously executing test cases against it (see Section 

2.2.5.2). It can be a very effective approach for defect detection that allows testers to become effective early 

in the testing process. Supporting this theory, on the Reflect and Review Questionnaire a number of 

participants reported that if they were to test the programs again, they would use more structured testing 

approaches, such as the use of Test Matrices, test planning and test design in advance of test execution, to 

ensure that “all areas of functionality were covered.” This suggests that after using Exploratory Testing to 

gain an initial understanding of the program and the nature of faults present, testers may opt to use more 

prescriptive test case design methods.  

6.3.3 Completeness (Effectiveness) (H01/H11) 

Since the Atomic Rules representation of EP, BVA and ST covers every published test case design rule 

from each method, it was considered to be a useful benchmark for measuring the completeness of test cases 

derived during PNTP and Atomic Rules testing. Completeness was assessed via test method coverage (see 

Section 6.3.3.1), individual Atomic Rule coverage (see Section 6.3.3.2), Atomic Rule class coverage (see 

Section 6.3.3.3) and specification coverage (see Section 6.3.3.4). The same data was also analysed to 

determine whether tester experience had any affect on test method coverage (see Section 6.3.3.5).   

6.3.3.1 Test Method Coverage  

The mean percentage of EP (Table 6-15), BVA (Table 6-16) and ST (Table 6-17) coverage achieved 

during PNTP and Atomic Rules testing was compared. A paired sample t-test was used to test for a 

significance difference.  

A significant difference was found in the BVA and ST test cases, where the mean was higher for 

Atomic Rules and Cohen’s effect size was strong. A significant difference was not found for EP, as the 

means were relatively even. This suggests that while the testers may have been skilled with EP prior to the 

experiment, learning Atomic Rules enabled them to increase their skill with BVA and ST test design.  

Table 6-15: Mean percentage of coverage of Atomic Rules from EP. 

N Approach Mean (%) Std Dev t-test Cohen’s Effect Size 

11 PNTP 13.31 3.62 
t(10) = -.226, p = .413 N/A 

11 Atomic Rules 13.89 8.62 
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Table 6-16: Mean percentage of coverage of Atomic Rules from BVA. 

N Approach Mean (%) Std Dev t-test Cohen’s Effect Size 

11 PNTP 3.02 1.73 
t(10) = -2.59, p = .01 Strong 

11 Atomic Rules 8.99 6.83 

 

Table 6-17: Mean percentage of coverage of Atomic Rules from ST. 

N Approach Mean (%) Std Dev t-test Cohen’s Effect Size 

11 PNTP 1.79 0.81 
t(10) = -2.50, p = .01 Strong 

11 Atomic Rules 9.29 10 

 

The relatively low percentages of coverage achieved by the testers (see column 3 of Table 6-15, Table 

6-16 and Table 6-17) was due to the large quantities of test data and test cases that were required to cover 

all specification fields with all applicable Atomic Rules from EP, BVA and ST (Table 6-18). Also, the ratio 

of tests derivable for the two programs was almost 1:2, with fewer tests being required to cover all fields of 

the Batch Processor (see Table 6-18, column 4).  

 Table 6-18: Number of test data values and test cases derivable by applying EP, BVA and ST  
to all specification fields. 

Test Method 

Number of Test Data Values and Test 
Cases Derivable Ratio 

Batch Processor Address Parser  

Equivalence 
Partitioning 

161 420 1:2.61 

Boundary Value 
Analysis 

109 231 1:2.11 

Syntax Testing 295 700 1:2.37 

Total 565 1,351 1:2.39 

 

6.3.3.2 Atomic Rule Coverage 

The percentage of Atomic Rules from EP (Figure 6-4), BVA (Figure 6-5) and ST (Figure 6-6) that were 

used at least once by any participant during PNTP and Atomic Rules testing were compared. As Figure 6-4 

illustrates, 56% of EP Atomic Rules were used by more participants during Atomic Rules testing than 

PNTP testing. Although Test Case Construction Rules EP14 to EP16 were used by more participants during 

PNTP testing, analysis of the tests derived during Atomic Rules testing found that 55% of the group did not 

have enough time to derive complete test cases (i.e. they used many DISRs, DSSRs and DIRMs but few 

TCCRs). Given more time, it is possible that the testers would have achieved higher levels of EP coverage 

during Atomic Rules testing.  
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Figure 6-4: Comparison of mean percentage of EP coverage (graphical view). 
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For BVA (Figure 6-5), all Atomic Rules other than BVA3 (Lower Boundary + Selection) were used at 

least once by more participants during Atomic Rules testing. This indicates that learning the Atomic Rules 

approach increased the group’s skill with achieving adequate boundary value coverage.  

Figure 6-5: Comparison of mean percentage of BVA coverage.  
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A similar result was found for ST (Figure 6-6), where all but two rules (ST8 and ST11) were used at 

least once by the same or greater numbers of participants during Atomic Rules testing. This indicates that 

learning the Atomic Rules approach also increased the group’s skill with ST. 

Figure 6-6: Comparison of mean percentage of ST coverage. 
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6.3.3.3 Classes of Atomic Rules Covered  

Atomic Rule usage was analysed from the perspective of the classes of test data that can be selected by 

certain types of rules (Figure 6-7). The following test data classes were analysed: 

1. valid values (covers EP3 and EP12); 

2. invalid values – outside EP boundaries (i.e. partitions above or below valid partitions) (covers EP1 

and EP2); 

3. invalid values – invalid datatypes (e.g. alphas, integers, non-alphanumeric) (covers EP4 to EP10); 

4. invalid values – missing fields (i.e. testing with null) (covers EP11 and BVA9); 

5. boundary values (on, just above and just below field boundaries) (covers BVA1 to BVA8); 

6. list value selection (i.e. selecting a valid value from a list) (covers EP12); 

7. syntax (i.e. testing input fields with valid and invalid syntax) (covers ST1 to ST8); and 

8. field addition and duplication (i.e. adding or repeating fields) (covers ST10 and ST11).  

These classes were analysed by examining the mean coverage achieved by the group, where rules within 

each class could be applied to many different input fields of each program. As Figure 6-7 illustrates, the 
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testers achieved higher mean coverage of all rule classes during Atomic Rules testing, with the exception of 

rules that select valid test data. Thus, their ability to derive more diverse classes of test data improved after 

learning Atomic Rules, suggesting that this approach is useful for broadening a tester’s knowledge of the 

classes of black-box test data that can be derived.  

Figure 6-7: Comparison of mean Atomic Rule coverage achieved per test data class. 
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6.3.3.4 Specification Coverage  

Completeness was also analysed by the mean coverage of input fields in the Address Parser (Table 6-19, 

Figure 6-8) and Batch Processor (Table 6-20, Figure 6-9). This analysis revealed that there were classes of 

input fields that were not well tested. Spaces and non-alphanumeric (i.e. special) characters were poorly 

covered during both PNTP and Atomic Rules testing. Also, participants did not detect the seeded fault in 

the Address Parser that allowed a forward slash or hyphen to be accepted in place of the period at the end of 

the address (see Section 6.3.4.7 for a further discussion). These results could suggest that the participants 

might not have been experienced with testing special character fields. On the other hand, since they were 

taught how to test non-alphanumeric fields with the Atomic Rules approach (e.g. many Atomic Rules from 

EP and ST apply to non-alphanumeric fields) and as they stated that they were experienced in recognising 

the need to test punctuation (see Section 6.3.4.3), it is possible that they either did not recognise the need to 

test these fields, they did not know how to test them or they did not have enough time to test them.  

Other fields in the Address Parser that were not well covered include street name length, street type and 

street direction during PNTP Testing and street contents during Atomic Rules testing.  
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With the exclusion of the space field in the Address Parser, the group achieved equal or higher levels of 

coverage of all input field types in both programs during Atomic Rules testing (Table 6-19 and Figure 6-8 

for Address Parser, Table 6-20 and Figure 6-9 for Batch Processor). The mean coverage during PNTP 

testing when it was applied to the Address Parser was 9.89%, compared to 47.54% by the application of the 

Atomic Rules approach (Table 6-19). Similarly, for the Batch Processor the mean coverage achieved during 

the PNTP testing phase was 10.84%, compared to 36.83% during Atomic Rules testing (Table 6-20). This 

suggests that testing teams as a whole will produce more complete test sets with the Atomic Rules approach 

than during Exploratory Testing (since most participants used this approach during PNTP testing, as 

discussed in Section 6.3.2). 

Table 6-19: Percentage of Atomic Rules applied by at least one participant during testing of the 
Address Parser (tabular view). 

Field PNTP (%) Atomic Rules (%) Difference (%) 

Address Type (UNIT FLAT RSD C/o C/-) 15.71 55.48 +39.76 

House / Unit Number (ddd) 18.14 52.23 +34.09 

Spaces (single or multiple) 5.25 5.24 -0.02 

Street Name (A-Z, A-z, -) 4.23 16.06 +11.82 

Street Name Length (1-40) 7.22 49.38 +42.17 

Street Type 9.21 69.74 +60.53 

Street Direction 7.94 62.54 +54.60 

Suburb 13.07 63.39 +50.32 

Postcode 12.35 85.59 +73.25 

Special Characters (. , /) 5.80 15.77 +9.97 

Mean 9.89 47.54 +37.65 
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Figure 6-8: Percentage of Atomic Rules applied by at least one participant during testing of the 
Address Parser (graphical view). 
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Table 6-20: Percentage of Atomic Rules applied by at least one participant during testing of the  
Batch Processor (tabular view). 

Field PNTP (%) Atomic Rules (%) Difference (%) 

Keyword (sbatch, ebatch, lbatch) 13.65 44.86 +31.20 

Batch Identifier 12.00 53.79 +41.79 

Part Identifier 10.72 50.56 +39.83 

Part Value (-99 - 98) 18.23 30.06 +11.82 

Spaces (single or multiple) 4.13 25.50 +21.37 

Special Characters (,) 6.27 16.24 +9.97 

Mean 10.84 36.83 +26.00 

 



Industrial Evaluation of the Atomic Rules Approach  Chapter 6 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 225 

Figure 6-9: Percentage of Atomic Rules applied by at least one participant during testing of the  
Batch Processor (graphical view). 
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6.3.3.5 The Effect of Experience on Test Method Coverage 

To determine whether prior testing experience had any affect on EP, BVA or ST coverage, the mean test 

method coverage achieved during each phase of the experiment was compared by two factors: years of 

testing experience and current role in testing.  

To assess the impact of years of testing experience, coverage was compared for participants who had 

less than 2 years of experience (6 participants) to those who had 2 to 10 years experience (5 participants). 

No significant difference was found in the mean EP or ST coverage achieved during PNTP testing (Table 6-

21). While a significant difference was found in the mean BVA coverage, it was under 2%, which was not 

considered conclusive (Table 6-21). This suggests that the number of years of testing experience does not 

affect a tester’s ability to cover the test case design rules of EP, BVA or ST during Exploratory Testing.  

Table 6-21: Coverage achieved during PNTP testing, by experience in years. 

Method N # Years Experience Mean (%) Std Dev t-test Cohen’s Effect Size 

EP 
6 Less than 2 years 13.78 2.73 

t(9) = .43, p = .34 N/A 
5 2 to 10 years 12.74 4.76 

BVA 
6 Less than 2 years 3.85 2.03 

t(9) = 1.96, p = .04 strong 
5 2 to 10 years 2.03 0.36 

ST 
6 Less than 2 years 1.76 0.93 

t(9) = -.11, p = .46 N/A 
5 2 to 10 years 1.82 0.76 
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In addition, there was no significant difference found in the mean EP, BVA and ST coverage during 

Atomic Rules testing (Table 6-22), suggesting that number of years of testing experience also does not 

affect a tester’s ability to use the Atomic Rules approach. On the other hand, since the mean EP coverage 

was just outside the 95% confidence interval, Cohen’s effect size was strong (Table 6-22) and the mean was 

higher for the Atomic Rules approach, it is possible that testers with more experience could find the Atomic 

Rules representation of EP easier to use than less experienced testers. However, as these EP results were not 

within the significance range, they cannot be considered to be conclusive.  

Table 6-22: Coverage achieved during Atomic Rules testing, by experience in years. 

Method N # Years Experience Mean (%) Std Dev t-test Cohen’s Effect Size 

EP 
6 Less than 2 years 10.08 6.72 

t(9) = -1.77, p = .06 strong 
5 2 to 10 years 18.47 9.02 

BVA 
6 Less than 2 years 7.51 4.54 

t(9) = -.77, p = .23 N/A 
5 2 to 10 years 10.77 9.14 

ST 
6 Less than 2 years 7.98 11.67 

t(9) = -.46, p = .32 N/A 
5 2 to 10 years 10.86 8.59 

 

The mean EP, BVA and ST coverage was also compared by current role in testing. There were five Test 

Leads and five Testers. No significant difference was found during PNTP testing (Table 6-23) or Atomic 

Rules (Table 6-24) testing, suggesting that a tester’s role does not affect their ability to derive test cases 

with either Exploratory Testing or the Atomic Rules approach. One participant, who was not working as a 

test lead or a tester, has been excluded from this comparison as this would have uniquely identified them, 

which was against rules agreed with the La Trobe University human ethics committee. 

Table 6-23: Comparison of coverage achieved during PNTP testing by current testing role. 

Method N Job Position Mean (%) Std Dev t-test Cohen’s Effect Size 

EP 
5 Test Lead 12.09 4.36 

t(8) = -.894, p = .19 N/A 
5 Tester 14.25 3.20 

BVA 
5 Test Lead 2.36 1.24 

t(8) = -1.67, p = .07 N/A 
5 Tester 4.03 1.85 

ST 
5 Test Lead 1.68 .80 

t(8) = -.83, p = .21 N/A 
5 Tester 2.10 .80 

 

Table 6-24: Comparison of coverage achieved during Atomic Rules testing by current testing role. 

Method N Job Position Mean (%) Std Dev t-test Cohen’s Effect Size 

EP 
5 Test Lead 12.09 4.36 

t(8) = .269, p = .39 N/A 
5 Tester 14.25 3.20 

BVA 
5 Test Lead 10.10 9.21 

t(8) = .80, p = .22 N/A 
5 Tester 6.57 3.46 

ST 
5 Test Lead 5.67 5.02 

t(8) = -1.33, p = .10 N/A 
5 Tester 14.06 13.09 
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6.3.4 Failure-Detection Effectiveness (H02/H12) 

An alternate approach to assessing the effectiveness of a test case design method is by the proportion of 

faults detectable by the method (Reid et al. 1999), as follows.  

Fault detection effectiveness   = 
number faults detected 

X 100 (6.1) 
total number of faults 

 

Since one fault can cause more than one failure and as this formula requires knowledge of the total 

number of faults within a program, which might only be known once the program has been operating in 

production for some time (Reid et al. 1999), this measure can be inaccurate when assessing black-box test 

method effectiveness. Since the Address Parser and Batch Processor were not developed for use in industry, 

the total number of faults cannot be determined. Thus, an alternate approach is to calculate failure-detection 

effectiveness for known program failures, as follows.  

Failure-detection effectiveness   = 
number failures detected 

X 100 (6.2) 
total number of failures 

 

To identify the total number of known failures in the Address Parser and Batch Processor, every Atomic 

Rule from EP, BVA and ST was applied to all applicable input fields by the author of this thesis. ‘One-to-

one’ test cases were derived by applying Atomic Rules EP14 and EP15, resulting in 1,351 test cases for the 

Address Parser and 565 for the Batch Processor; a grand total of 1,916 test cases (see Section 6.3.3.1) (in a 

one-to-one test case, each test data value is covered by exactly one test case (BS 7925-2)). The Address 

Parser required more than twice the number of tests as the Batch Processor because it had more input fields 

and each field contained more alternate values. Twenty-seven unique failures were identified in the Address 

Parser and twenty-four in the Batch Processor (see Appendices D and E). 

As observed by Dijkstra (and stated in the introduction), “Program testing can be used to show the 

presence of bugs, but never to show their absence!” (Dijkstra 1969). Accordingly, it may be possible that 

latent faults exist in the two programs that were not detected as part of this testing, and as such, are not 

considered in the total number of known failures. On the other hand, given the rigour of the Atomic Rules 

approach, the author is confident that these figures are reflective of the total number of failures in the two 

programs. Nonetheless, an interesting question for future research is whether the Atomic Rules approach is 

‘complete’ in the sense that it can detect the majority of input/output validation errors in any program.  

6.3.4.1 ‘Ultimate’ Failure-Detection Effectiveness  

Once the total number of known failures was identified, the ‘ultimate’ failure-detection effectiveness of 

EP, BVA and ST could be calculated (using equation 6.2), by analysing the percent of program failures that 

were detectable when every single test selection rule from all three methods is applied to every possible 

input field (Table 6-25) (this test design and execution was carried out by the author). Surprisingly, the 

Atomic Rules representation of EP was capable of detecting 93% of the known program failures in the 

Address Parser, but only 54% of failures in the Batch Processor. BVA was detecting 67% of failures in the 
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Address Parser and 58% in the Batch Processor. ST was equally effective against both programs, detecting 

67% of known failures in each program. In future work, it would be interesting to determine whether 

programs that utilise certain function libraries or have specific design styles (e.g. object oriented or 

functional) benefit from the application of a particular black-box testing method.  

Table 6-25: ‘Ultimate’ failure-detection effectiveness of EP, BVA and ST when the methods are 
applied completely to the Address Parser and Batch Processor.   

Program 
# Input 
Fields 

# Known 
Failures 

Test 
Method 

# Tests 
Derived 

Failures Detected Failure-detection 
effectiveness (Percent %) # % 

Address 
Parser 

42 27 

EP 420 25 93% 93% 

BVA 231 18 67% 67% 

ST 700 18 67% 67% 

Batch 
Processor 

20 24 

EP 161 13 54% 54% 

BVA 109 14 58% 58% 

ST 295 16 67% 67% 

  

All known failures were detected by applying all Atomic Rules from EP, BVA or ST, with the exception 

of one failure in the Batch Processor (Appendix E, Failure 24), which was detected by a participant who 

applied ST14 in a technically incorrect but effective way. ST14 selects a test data value containing all values 

from a list in the opposite order to which they are specified. For example, if it is applied to the 

UNIT/FLAT/RSD field of the Address Parser, it would select the invalid test data value RSDUNITFLAT. 

One participant applied this rule to the recordline field of the Batch Processor to reverse the order of the 

partid and value fields, resulting in invalid test data 50 A11A. The definition of ST in the British Computer 

Society’s Component Testing Standard includes a ST rule that substitutes one field for another (BS 7925:2). 

This rule that was accidentally left out of the set of Atomic Rules presented to the participants. A new 

Atomic Rule for this has been defined (see ST19 in Appendix B).  

6.3.4.2 Mean Failure-detection effectiveness 

Once all known failures were identified, the failure-detection effectiveness of tests derived by the 

participants could be compared for PNTP and Atomic Rules testing (Table 6-26). A significant difference 

was found, where the mean was higher for Atomic Rules testing (10% more failures were detected on 

average). This suggests that the Atomic Rules approach enables testers to detect more failures than 

Exploratory Testing (since that approach was used by the participants during the PNTP testing phase).  

Table 6-26: Comparison of the failure-detection effectiveness achieved by the participants. 

N Program 
Mean Failure-detection 

effectiveness (Percent %) 
Std 
Dev t-test 

Cohen’s 
Effect Size 

11 PNTP 25 10 
t(10) = -1.85, p < .05 moderate 

11 Atomic Rules 35 12 
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6.3.4.3 Affects of Application Domain Knowledge on Failure-detection effectiveness 

After the experiment was complete, the participants explained that they were more familiar with the 

logical concept of the Address Parser, as it was based on concepts they use in real life, and because they 

tested address-based inputs on a regular basis in their current jobs. They explained that address correctness 

was critically important to their organisation, since their customers not only relied on postal 

communication, they also often demanded high levels of accuracy in their addresses (e.g. in one case, a 

disgruntled customer wrote a letter to a state government minister to complain about the misplacement of a 

comma in their postal address). Conversely, the participants stated that the Batch Processor was much more 

‘abstract,’ as it was not based on concepts they were familiar with.  

Thus, to determine whether differences in the “application solution domain knowledge” (Reed 1990) in 

the programs under test affected the participant’s ability to detect failures in them, the mean percentage of 

failures detected with each testing approach was compared by the program tested (Table 6-27). A 

significant difference was found during the PNTP testing phase, where the mean was higher for the Address 

Parser. Conversely, a significant difference was not found during Atomic Rules testing.  

Table 6-27: Comparison of failure-detection effectiveness achieved against each program. 

Testing 
Approach N Program Tested 

Mean failure-detection 
effectiveness (Percent %) 

Std 
Dev t-test 

Cohen’s 
Effect Size 

PNTP 
5 Address Parser 34 4 

t(9) = 5.16, p  .001 Strong 
6 Batch Processor 18 6 

Atomic 
Rules 

6 Address Parser 30 8 
t(9) = -1.28, p = .11 N/A 

5 Batch Processor 40 15 

 

Likewise, when the mean percentage of failures detected in each program were compared by the testing 

approach used to detect the failures (Table 6-28), no significant difference was found for the Address 

Parser, whereas a significant difference was found for the Batch Processor, where the mean was higher 

during Atomic Rules testing and where Cohen’s effect size was strong.  

Table 6-28: Alternate comparison of failure-detection effectiveness achieved against each program. 

Program 
Tested N 

Testing 
Approach 

Mean failure-detection 
effectiveness (Percent %) 

Std 
Dev t-test 

Cohen’s 
Effect Size 

Address 
Parser 

5 PNTP 34 4 
t(9) = .41, p = 0.2 N/A 

6 Atomic Rules 30 6 

Batch 
Processor 

6 PNTP 18 8 
t(9) = 3.02, p < .05 Strong 

5 Atomic Rules 40 15 

 

These results suggest that in order to test a program effectively (i.e. to detect failures), testers either need 

application solution domain knowledge in the program (if they are conducting Exploratory Testing) or they 

need to use a prescriptive black-box testing method to ensure that their test case design is rigorous.  
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6.3.4.4 Individual Failure-detection effectiveness  

The failure-detection effectiveness achieved by each participant was also analysed (Table 6-29, Figure 

6-10, Figure 6-11 and Figure 6-12). Participants in Group 1, who tested the Address Parser using their 

PNTP testing approach and the Batch Processor using the Atomic Rules approach, detected roughly the 

same number of failures during both phases of testing (Figure 6-10). Conversely, testers in Group 2 who 

tested the Batch Processor during PNTP testing and the Address Parser during Atomic Rules testing 

dramatically increased their failure-detection effectiveness during Atomic Rules testing (Figure 6-11). This 

strengthens the theory that testers either need application solution domain knowledge in the program under 

test or a prescriptive testing method to be effective. Furthermore, testers with both can be even more 

effective.   

Table 6-29: Failure-detection effectiveness of each participant. 

Group # Participant # Approach 
Program 
Tested 

Failure-detection 
effectiveness  

Count Percent 

1 

1 
PNTP Address Parser 10 37 

Atomic Rules Batch Processor 6 25 

2 
PNTP Address Parser 9 33 

Atomic Rules Batch Processor 8 33 

3 
PNTP Address Parser 10 37 

Atomic Rules Batch Processor 5 21 

4 
PNTP Address Parser 10 37 

Atomic Rules Batch Processor 10 42 

5 
PNTP Address Parser 7 26 

Atomic Rules Batch Processor 7 29 

2 

6 
PNTP Batch Processor 2 8 

Atomic Rules Address Parser 8 30 

7 
PNTP Batch Processor 4 17 

Atomic Rules Address Parser 8 30 

8 
PNTP Batch Processor 4 17 

Atomic Rules Address Parser 18 67 

9 
PNTP Batch Processor 6 25 

Atomic Rules Address Parser 9 33 

10 
PNTP Batch Processor 5 21 

Atomic Rules Address Parser 13 48 

11 
PNTP Batch Processor 4 17 

Atomic Rules Address Parser 8 30 
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Figure 6-10: Failure-detection effectiveness achieved by participants in Group 1. 
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Figure 6-11: Failure-detection effectiveness achieved by participants in Group 2. 
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Figure 6-12: The failure-detection effectiveness achieved by each participant. 
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6.3.4.5 Affects of Experience on Failure-detection effectiveness  

To determine whether prior testing experience affected failure-detection effectiveness, these results 

where compared using two factors: number of years of testing experience and current role in testing.  

No significant difference was found when failure-detection effectiveness was compared by number of 

years of testing experience (Table 6-30). This suggests that the duration of time spent working in the 

software testing industry alone does not affect a tester’s ability to detect failures, whether they use 

Exploratory Testing or a prescriptive testing method.  

Table 6-30: Comparison of failure-detection effectiveness by tester experience in years. 

Approach N 
# Years 

Experience Mean (%) 
Std 
Dev t-test 

Cohen’s 
Effect Size 

PNTP 
6 Less than 2 years 22 10 

t(9) = -.97, p = .18 N/A 
5 2 to 10 years 28 10 

Atomic Rules 
6 Less than 2 years 35 8 

t(9) = .01, p = .49 N/A 
5 2 to 10 years 35 18 

 

On the other hand, a significant difference was found in the failure-detection effectiveness achieved 

during the PNTP testing phase, where the mean was higher for those who were currently working as Testers 

(Table 6-31). This suggests that a person’s role in testing has more impact on their failure-defection 

effectiveness than the length of time they have spent working in the software testing industry. This could be 



Industrial Evaluation of the Atomic Rules Approach  Chapter 6 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 233 

because Testers would likely have more recent experience in test writing, whereas Test Leads would have 

more experience in the strategising, planning and managing of testing. Furthermore, no significant 

difference was found during Atomic Rules testing, suggesting that learning the Atomic Rules approach 

could fill the knowledge gap for Test Leads who are not currently involved in test design, allowing them to 

become as effective at detecting program failures as the Testers in their team.  

Table 6-31: Comparison of failure-detection effectiveness by current role in testing. 

Approach N Job Position Mean (%) Std Dev t-test 
Cohen’s 

Effect Size 

PNTP 
5 Test Lead 0.19 .09 t(8) = -1.97, p < 

.05 
strong 

5 Tester 0.30 .09 

Atomic Rules 
5 Test Lead 0.41 .16 t(8) = 1.42, p = 

.10 
N/A 

5 Tester 0.30 .08 

 

6.3.4.6 Failure-Detection Effectiveness of Individual Atomic Rules 

To identify whether particular Atomic Rules had a better chance of detecting failures than others, the 

‘ultimate’ failures-detection effectiveness of Atomic Rules from EP (Table 6-32, Figure 6-13), BVA (Table 

6-33, Figure 6-14) and ST (Table 6-34, Figure 6-15) was examined. Only DSSRs, DISRs and DIMRs were 

included in this analysis, since TCCRs cannot be analysed in isolation, because they are reliant on the other 

three rule types.  

Atomic Rules from EP with the highest failure-detection effectiveness were EP1 (select partition below 

lower boundary), detecting 70% of Address Parser failures and EP11 (replace field with null), detecting 

48% of Address Parser failures (Table 6-32). Invalid datatypes selection rules EP4 to EP10 were 

moderately effective against the Address Parser, detecting 11% to 30% of failures. Conversely, invalid 

datatype selection rules EP4 to EP10 were less effective against the Batch Processor, detecting only 4% of 

failures. This indicates that the Address Parser suffered from more faults that were related to invalid 

datatypes not being rejected correctly by the program than the Batch Processor. 
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Table 6-32: Failure-detection effectiveness of Atomic Rules from Equivalence Partitioning  
(tabular view). 

Atomic Rule 

Failure-Detection Effectiveness (Percent %) 

Address Parser Batch Processor 

EP1 70 50 

EP2 30 13 

EP3 19 4 

EP4 19 4 

EP5 26 4 

EP6 26 4 

EP7 26 4 

EP8 11 4 

EP9 30 4 

EP10 15 4 

EP11 48 46 

EP12 30 4 

EP13 7 0 

 

Figure 6-13: Failure-detection effectiveness of Atomic Rules from Equivalence Partitioning 
(graphical view). 
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The most effective BVA test design rule was BVA9 (replace field with null), detecting 48% of Address 

Parser failures and 50% of Batch Processor failures (Table 6-33, Figure 6-14). This is followed by BVA1 

(select value below lower boundary), which detected 33% of Address Parser failures but only 8% of Batch 
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Processor failures. Other BVA rules were only mildly effective, detecting 4% and 22% of failures in the 

two programs, indicating that they did not suffer from many boundary-related faults.  

Table 6-33: Failure-detection effectiveness of Atomic Rules from Boundary Value Analysis  
(tabular view). 

Atomic Rule 

Failure-detection effectiveness (Percent %) 

Address Parser Batch Processor 

BVA1 33% 8% 

BVA2 4% 13% 

BVA3 22% 13% 

BVA4 11% 17% 

BVA5 7% 8% 

BVA6 22% 17% 

BVA7 4% 13% 

BVA8 7% 8% 

BVA9 48% 50% 

 

Figure 6-14: Failure-detection effectiveness of Atomic Rules from Boundary Value Analysis 
(graphical view). 
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The most effective ST rule was ST1 (remove last character of keyword), detecting 63% of Address 

Parser failures (Table 6-34, Figure 6-15). The next most effective rules against this program were ST3 (add 

extra character to keyword), detecting 37% of failures, ST6 (remove first character of keyword) detecting 

33% of failures and ST5 and ST2 (replace first and last characters of keywords) detecting 30% each. Given 

the effectiveness of these rules against the Address Parser, which consisted largely of keyword-based fields, 
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this suggests that Atomic Rules that add or remove characters from keywords are more effective for testing 

programs whose input consists of keywords of a very specific format.  

The most effective ST rule against the Batch Processor was also ST1, detecting 58% of failures, 

followed by ST11 (add a field) detecting 29% of failures, ST4 (remove first character of keyword) detecting 

25% of failures and ST10 (duplicate field) detecting 21% of failures. This was not surprising, since this 

program predominantly suffered from faults related to additional invalid input fields not being detected.  

The most ineffective ST rule was ST9 (null all input), detecting no failures. This is not surprising, since 

it derives only one test case and, consequently, one failure at most can be detected by that rule. ST7 and ST8 

(change case of alphabetical letters) were also ineffective, indicating that the programs handled these types 

of inputs well. Other ST rules that were ineffective against the Batch Processor were ST12, ST13 and ST14, 

which test list-based fields. This is also not surprising since this program consists of few list-based input 

fields, whereas the Address Parser processed many different list-based inputs. Accordingly, programs with 

list-based input fields would benefit from being tested with these Atomic Rules.  

Table 6-34: Failure-detection effectiveness of Atomic Rules from Syntax Testing (tabular view). 

Atomic Rule 

Failure-detection effectiveness (Percent %) 

Address Parser Batch Processor 

ST1 63 58 

ST2 30 13 

ST3 37 13 

ST4 26 25 

ST5 30 13 

ST6 33 13 

ST7 4 8 

ST8 4 0 

ST9 0 0 

ST10 30 21 

ST11 19 29 

ST12 26 8 

ST13 11 4 

ST14 22 4 
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Figure 6-15: Failure-detection effectiveness of Atomic Rules from Syntax Testing (graphical view). 
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6.3.4.7 Detection of Seeded Faults 

Two faults were intentionally seeded into the Address Parser by an independent professional tester who 

was not directly involved with the experiment, to ensure the program contained from some ‘interesting’ 

faults. The experiment’s subjects and the author were not aware of which faults had been seeded until after 

the experiment was complete. The seeded faults were as follows: 

 ‘Fault A’ caused the program to reject the valid suburb/postcode pair ‘Ivanhoe East 3079’ (see 

Appendix D, Fault 7); and 

 ‘Fault B’ allowed the program to accept a forward slash or hyphen in place of the period ‘.’ at 

the end of the address (see Appendix D, Failure 6) (these characters sit either side of the period 

in the ASCII table).  

Both faults were detectable with Atomic Rules from EP, BVA and ST, if the methods were applied 

‘completely’ (i.e. applying all Atomic Rules from each method to all applicable input fields).  

Interestingly, Fault A was detected by four participants during the PNTP testing phase and by two 

during Atomic Rules testing. Fault B was not detected by any participants during either phase of testing. If 

the participants had applied EP, BVA and ST ‘completely’ during Atomic Rules testing, they would have 
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detected both seeded faults. There are at least three reasons for why they did not apply the Atomic Rules 

approach in this way:  

1. they did not have enough time; 

2. they did not understand how to apply the rules in this way; or  

3. they purposely omitted applying the rules that would have detected the faults as they did not 

think they would have detected any faults.  

Although data collected during the experiment does not allow the experimenter to determine which 

option is true, it does show that these faults were detectable by the Atomic Rules approach.   

Seeded faults were not added to the Batch Processor, as both the author and the independent 

professional tester who carried out the fault seeding felt that that program already contained enough 

input/output validation errors that were detectable by EP, BVA and ST. 

6.3.5 Efficiency (H03/H13)  

Efficiency can be evaluated as tester ‘productivity’ in terms of the number of equivalence classes, 

boundary values and syntax testing test data values that are derived correctly by a tester over the total time 

taken (Section 6.3.5.1). The testers were also questioned as to whether they felt they had enough time to 

complete the testing that was assigned to them (Section 6.3.5.2).  

6.3.5.1 Productivity  

Productivity was assessed by comparing the total number of correct test data values derived by the 

testers during the 3.5 hours of each testing phase (Table 6-35). Although a t-test indicated a non-significant 

result, it was just outside the 95% confidence interval, Cohen’s effect size was moderate and the mean was 

higher during Atomic Rules testing. Therefore, it is plausible that testers could be more productive when 

using the Atomic Rules approach to derive black-box test data.  

Table 6-35: Mean productivity. 

N Approach 
Mean Number Test Data Values 

Derived per Hour (EP, BVA & ST) Std Dev t-test 
Cohen’s 

Effect Size 

11 PNTP 13.01 7.33 
t(10) = -1.66, p = .06 Moderate 

11 Atomic Rules 19.74 10.9 

 

6.3.5.2 Enough Time for Testing 

On the Post-Testing Questionnaire the participants were asked whether they had enough time to 

complete testing (Table 6-36), to which 45% replied ‘no’ for PNTP and Atomic Rules Testing. This is 

likely to have contributed towards the relatively low percentage of black-box test method coverage that was 

achieved during both phases of testing (Section 6.3.3.1).  
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Table 6-36: Opinions from participants as to whether they felt they had enough time for testing.  

Enough time 
for testing? 

PNTP Atomic Rules 

Count Percent Count Percent 

No 5 45 5 45 

Yes 4 36 4 36 

Undecided 2 18 1 9 

Missing 0 0 1 9 

 

Participants commented on their response to this question after PNTP (Table 6-37) and Atomic Rules 

testing (Table 6-38). Five participants (46%) reported that in future, they would like to use a matrix to track 

test cases executed against each field, such as Test Matrices (see Chapter 2, Section 2.2.6). A Test Matrix 

was used by the author during data analysis to determine which participants had applied each Atomic Rule 

to each individual input field. When teaching the Atomic Rules approach in future, a simple improvement 

could be to demonstrate how Test Matrices can be used to plan and track test coverage.  

Table 6-37: Participant feedback on the time allocated for the PNTP testing phase. 

Feedback: Do you feel you had enough time for testing? 

Base on limited knowledge - yes. 

But considering what I have stated above I would not have signed off on this product with the time 
constraints and ambiguity of the spec.    

As above - gave the testing scope a good cover. 

Needed time to plan. To set goals. Identify what needed to be tested, what could be tested together and 
what needed to be separated.   

Confident that testing was reasonably comprehensive. Discovered many defects.       

I was only able to write three negative tests. 

I would have preferred a bit more time to check the Data Analyst output to ensure all entries added up 
correctly. I probably should have done this earlier but I was focussing more batchid + recordline data + 
determining what accepted + rejected.  

I would say yes and no as with more tests comes more confidence. 

Having not previously been exposed to test writing I would have preferred more time to plan a more 
structured approach.  

I answered both yes and no. Reason, with the small scope of the application it was easy to thoroughly 
investigate some areas. However if in a real testing environment I would have preferred to establish a test 
matrix to ensure all areas of functionality were covered. 
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Table 6-38: Participant feedback on the time allocated for the Atomic Rules testing phase. 

Feedback: Do you feel you had enough time for testing? 

Day 2 [AR] approach somewhat needs investigation and analytical skills to produce a good test case and 
test writing.  

This program would take quite a while to get to the stage where I would be happy to sign off on it. 

I think I got a grasp on the above - you will be able to tell me if I did but it was very tiring and I was ready 
to stop.  

It took longer than yesterday. I spent a lot of time on the minute detail and feel I still could have missed 
issues. I felt some concepts were too abstract for me to pick up immediately. It took a while. 

Time seemed adequate - someone with more/better understanding may or may not agree.  

I think I nearly achieved full coverage, a few more hours would have helped.   

Sufficient time allowed. 

Again yes & no. Able to structure tests but did not able to write them. 

Need to become more familiar with it. 

Due to limited time I was unable to write test cases for flat, unit RSD, country & C/o addresses. However, I 
do feel this was more structured approach to yesterday’s “feeble” attempts!  

Much better than yesterday.   

 

6.3.6 Errors Made (Effectiveness – Accuracy) (H04/H14) 

The number of mistakes made by the testers during PNTP and Atomic Rules testing was analysed, to 

assess the ‘accuracy’ of their testing. There was no significant difference between the errors made during 

PNTP or Atomic Rules testing (Table 6-39), suggesting that there is no difference in the accuracy of test 

cases produced during Exploratory Testing or prescriptive testing.  

Table 6-39: Errors made during testing (effectiveness – accuracy) (H04/H14). 

N Approach Mean Rank 
Sum of 
Ranks Mann-Whitney U 

11 PNTP 1.91 103.5 
U  = 321.92, p = .07 

11 Atomic Rules 2.91 149.5 

 

The most common mistakes made during PNTP testing were missing white spaces in test cases (e.g. 100 

Main Rd Eltham 3095) (27%) and incorrect alphabetical case (e.g. ‘Flat’ instead of ‘FLAT’) (27%) (Table 

6-40). While these mistakes resulted in ‘interesting’ test cases, they also caused the testers to write incorrect 

expected results and to ultimately produce ‘false negatives’ during testing (i.e. testers raising defect reports 

for functions that contained no defects).   
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Table 6-40: Mistakes made during PNTP testing. 

Mistake Count Percent 

Missing space 3 27 

Incorrect case for alpha character 3 27 

Extra spaces 2 18 

Extra field added 2 18 

Spelling mistake 1 9 

Missing symbol / 1 9 

Missing keyword  1 9 

Missing full stop 1 9 

Incorrect boundary value selected 1 9 

 

The majority of mistakes made during Atomic Rules testing were due to misunderstandings Atomic 

Rule names (Table 6-41). For example, 73% misunderstood how to use EP ‘replacement’ rules EP4 to 

EP10. The aim of these rules is to replace valid input fields with invalid datatypes, such as applying EP4: 

Integer Replacement to the <street_type> field of the Address Parser, to select the invalid test case 100 

Main 1000 Greensborough 3088. A number of participants used EP4 to replace integer fields with other 

datatypes, such as replacing <postcode> with alpha characters, selecting the invalid test case 100 Main 

Road Greensborough ABCD. A similar mistake was made by 45% of the group who used ST9 to select null 

in one test case field, while the purpose of ST9 is to select null in all fields. Another mistake made by 36% 

of the group was using ST7 to convert alpha characters from lowercase to uppercase, when ST8 should be 

used for this purpose and visa versa.  

Nevertheless, each mistake resulted in a useful test case that was in the ‘spirit’ of black-box testing. 

Future research will include reducing the ambiguity of these Atomic Rules (Chapter 7). In addition, the 

misuse of one rule, ST14, resulted in the definition of a new Atomic Rule (see Section 6.3.10).  

Table 6-41: Mistakes made during Atomic Rules testing. 

Mistake Count Percent 

Misuse of EP replacement rule 8 73 

Used ST9 instead of EP11 5 45 

Applied TCCR at field level 4 36 

Used ST8 instead of ST7 & visa versa 4 36 

Used EP rule instead of ST rule 3 27 

Used wrong EP rule number 2 18 

Incorrect boundary value selected 2 18 

Used ST14 to reverse fields of test case 2 18 

Used BVA rule instead of EP rule 1 9 

Used BVA rule instead of ST rule 1 9 

Used EP12 to select invalid data 1 9 

Used EP7 and EP8 together 1 9 
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6.3.7 Understandability (H05/H15) 

As discussed in Chapter 1 (Section 1.2.1), three approaches to assessing the understandability of a test 

case design method are by evaluating whether a tester understands the conditions under which the method 

should be applied (Section 6.3.7.1), by examining their ability to apply the method correctly (measured by 

effectiveness, see Section 6.3.3) and by assessing their self-rated understanding of EP, BVA and ST 

(Section 6.3.7.2) and of the Atomic Rules approach (Section 6.3.7.3) and their ability to apply the four-step 

test case design process correctly (Section 6.3.7.4).  

6.3.7.1 Conditions for Test Method Application  

Other researchers have examined whether testers understand the conditions under which one test method 

should be used over another (e.g. see (Vegas et al. 2003)), as this can be indicative of their level of skill in 

testing. During Atomic Rules testing, the participants were specifically instructed to use EP, BVA and ST; 

therefore, they were not given the option of deciding which test methods were applicable.  

On the other hand, during the PNTP testing phase the participants could have chosen to use any black-

box testing method they felt was appropriate. Interestingly, they did not use any prescriptive testing 

methods for PNTP test case design. The reasons for this could include the following: 

a) they did not believe that prescriptive testing methods should be applied during PNTP testing; 

b) they did not recognise the need for applying any prescriptive testing methods; or  

c) they felt there was not enough time to use prescriptive test methods during that phase of testing. 

Although the participants were asked (on the Post-PNTP Testing Questionnaire) to describe the 

approach they took to PNTP testing (see Section 6.3.2), they were not asked why they did (or did not) use 

any prescriptive testing methods during that phase of testing. Therefore, a conclusion cannot be drawn as to 

whether they understood the conditions under which each black-box testing method should be applied.  

6.3.7.2 Understanding of Black-Box Testing Methods 

On the Reflect and Review Questionnaire, the participants were asked to rate their initial and final 

understanding of EP, BVA and ST using a Likert scale of: 1 = novice, 2 = intermediate, 3 = advanced, 4 = 

expert (Table 6-42 and Figure 6-16). Most felt they had increased their understanding of these methods by 

the end of the experiment. They also achieved higher mean coverage of BVA and ST during Atomic Rules 

testing (see Section 6.3.3). This suggests that the Atomic Rules approach is an effective representation for 

teaching black-box testing methods to testers in industry. 
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Table 6-42: Self-rated understanding black-box testing methods before and after the experiment  
(choose one rating for each method). 

Rating 

Understanding of Black-Box Testing Methods 

Initial Final 

EP BVA ST EP BVA ST 

Percentages (%) 

Novice 81 72 81 27 18 27 

Intermediate 18 18 18 46 36 46 

Advanced 0 9 0 27 46 27 

Expert 0 0 0 0 0 0 

 

Figure 6-16: Self-rated understanding of black-box testing methods before and after the experiment. 
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Marginal Homogeneity (Table 6-43) and Crosstabulation tests for EP (Table 6-44), BVA (Table 6-45) 

and ST (Table 6-46) indicated significant differences, where understanding ratings were higher for all test 

methods after learning the Atomic Rules approach. These results indicate that learning the Atomic Rules 

approach improves a tester’s understanding of black-box testing methods.  

Table 6-43: Comparison of initial and final understanding of EP, BA and ST. 

  Initial and Final Understanding 

BVA EP ST 

Distinct Values 3 3 3 

Off-Diagonal Cases 8 8 8 

Observed MH Statistic 10 10 10 

Significance p < .01 p < .01 p < .01 
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Table 6-44: Crosstabulation of initial and final understanding for Equivalence Partitioning. 

Count 
EP – Final Understanding 

Total Novice Intermediate Advanced 

EP – Initial 
Understanding 

Novice 3 5 1 9 

Intermediate 0 0 2 2 

Total 3 5 3 11 

 

Table 6-45: Crosstabulation of initial and final understanding for Boundary Value Analysis. 

Count 
BVA – Final Understanding 

Total Novice Intermediate Advanced 

BVA – Initial 
Understanding 

Novice 2 4 2 8 

Intermediate 0 0 2 2 

Advanced 0 0 1 1 

Total 2 4 5 11 

 

Table 6-46: Crosstabulation of initial and final understanding for Syntax Testing. 

Count 
ST – Final Understanding 

Total Novice Intermediate Advanced 

ST – Initial 
Understanding 

Novice 3 5 1 9 

Intermediate 0 0 2 2 

Total 3 5 3 11 

 

Interestingly, a comparison of the group’s self-rated understanding of these methods in the Initial 

Questionnaire (Table 6-47, col. 2 to 4) and the Reflect and Review Questionnaire (Table 6-47, col. 5 to 7) 

revealed that more participants felt they were initially at an ‘intermediate’ level of experience with EP and 

BVA before the experiment than at the end. This suggests some participants had ‘unconscious 

incompetence’ (also known as the ‘Dunning–Kruger effect’ (Kruger & Dunning 1999)), in that they ‘did 

not know what they did not know’ about the methods until after they learnt how to use them during the 

Atomic Rules testing phase.  
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Table 6-47: Comparison of self-rated understanding EP, BVA and ST between the Initial and the 
Reflect and Review Questionnaires (choose one rating for each method). 

Rating 

Initial Understanding of Black-Box Testing Methods 

Initial Questionnaire Reflect & Review Questionnaire 

EP BVA ST EP BVA ST 

Percentages (%) 

Never heard of method 18 18 54 0 0 0 

None 0 0 18 0 0 0 

Novice 9 9 9 81 72 81 

Intermediate 46 46 9 18 18 18 

Advanced 27 27 9 0 9 0 

Expert 0 0 0 0 0 0 

Missing 0 0 0 0 0 0 

 

6.3.7.3 Understanding of the Atomic Rules Approach 

On the Reflect and Review Questionnaire, the testers rated their understanding of the Atomic Rules 

approach, using a Likert scale of: 1 = excellent, 2 = very good, 3 = good, 4 = average, 5 = poor, 6 = very 

poor (Table 6-48). All participants reported having an average, good or very good understanding.  

Table 6-48: Participant’s self-rated understanding of the Atomic Rules approach (choose one). 

Rating Count Percent 

Average 6 55 

Good 4 36 

Very good 1 9 

Excellent 0 0 

Poor  0 0 

Very poor 0 0 

 

The participants were asked to comment on their answer (Table 6-49). Seven (64%) reported that having 

more experience with the Atomic Rules approach (e.g. by using it at work) would enable them to gain a 

better understanding of it. One participant stated that their previous job as a software developer had assisted 

them in understanding the terminology and structure of the approach. This is an insightful view, since the 

attributes Set Type, Original Datatype and Test Datatype that are used in the Atomic Rules schema are 

based on similar concepts in software development. Thus, this suggests that software development 

experience can assist with the understanding the Atomic Rules approach.   
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Table 6-49: Participant feedback on their understanding of the Atomic Rules approach. 

Feedback: Understanding of the Atomic Rules approach 

2 days in not enough for me to fully understand. 

As before I still need to get my head around some of the wording and meanings. If we used this wording at 
work then of course it would make better sense. 

Further training and practice will reinforce what I have learned. 

Having developed previously the terminology was familiar and the structure is easily followed. 

I feel I have gained a lot from this session. 

I need more time to explore this method. On the surface it looks like a great tool to use. 

I understand the concept and think it is very worthwhile but lack experience with testing. 

If you go through all 3 checklists for each filed you couldn't miss anything in testing - it may get out of hand 
though - number of tests - risk management may have to take over. 

Only learnt this approach today!! 

With more experience I expect that this rating would improve. 

Would need more time to become familiar with it. 

 

6.3.7.4 Understanding of the Four-Step Test Case Design Process 

Interestingly, only one participant applied the Atomic Rules approach in the order prescribed in the four-

step test case design process, as follows:  

1. Apply Data-Set Selection Rules to partition the input domain.  

2. Apply Data-Item Selection Rules to each partition to select individual test data values.  

3. Apply Data-Item Manipulation Rules to each test data value to select mutated test data values.  

4. Apply Test Case Construction Rules to combine test data values into test cases.  

After the experiment, it was realised that the Quick-Reference Guide used during Atomic Rules testing 

only listed rule numbers and names, not the rule application order prescribed above. This may have caused 

participants to disregard rule application order during testing. On the other hand, this may not be essential 

for experienced testers, as they may understand and apply the rules without recording the intermediate step 

of selecting equivalence classes before selecting and mutating individual test data values (e.g. this occurs 

when competent mathematicians skip intermediate steps when solving algebraic equations).   

Thus, while rule application order may be important when teaching the Atomic Rules approach to 

novice testers, it might not be required when teaching the approach to experienced testers in industry.  

6.3.8 Operability (H06/H16) 

Operability of the Atomic Rules approach was assessed by examining three factors: the ease of use of 

the approach (Section 6.3.8.1) and the advantages and disadvantage of using the approach, as reported by 

participants (Section 6.3.8.2), as well as by asking them whether it was likely they would use the approach 

in future (Section 6.3.8.3).  
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6.3.8.1 Ease of Use 

One the Reflect and Review Questionnaire, the participants were asked how easy the Atomic Rules 

approach was to use, using a Likert scale of: 1 = very easy to use, 2 = easy to use, 3 = difficult to use and 4 

= very difficult to use (Table 6-50). It was encouraging to see that 82% found it ‘easy to use’ or ‘very easy 

to use,’ suggesting that it is a practical representation for teaching black-box testing methods in industry. 

On the other hand, since the testers did not have access to any other test method representations to use as a 

basis for comparison, it is possible that their answer may differ if they had alternate representations to 

consider (e.g. Myers’ definition of EP and BVA).    

Table 6-50: Participant opinions on how easy the Atomic Rules approach is to use (choose one). 

Rating Count Percent 

Easy to use 8 73 

Difficult to use 2 18 

Very easy to use 1 9 

Very difficult to use 0 0 

 

6.3.8.2 Advantages and Disadvantages of Atomic Rules  

On the Reflect and Review Questionnaire, the participants were asked what they felt were the biggest 

advantages (Table 6-51) and disadvantages (Table 6-52) of the Atomic Rules approach. Almost half (46%) 

felt it provided them with useful guidance on achieving ‘good’ program coverage. Other responses include 

having universal test case design rules and terminology and having an effective black-box testing checklist.   

Table 6-51: Opinions on the biggest advantage of the Atomic Rules approach. 

Feedback: Advantages of the Atomic Rules approach  

A formal checklist to follow. 

As a checklist it would help you to discover if there were any rules that you may have omitted from your test 
approach. I found that this helped me in that way. 

Ease of use. 

Ensuring good coverage. 

Guidance & structure for coverage. 

If have the time - thorough coverage. 

It allows for a systematic approach which identifies core functionality. 

Not too sure. 

Scenarios are easy to adapt from the Atomic Rules. Quick Reference Guides. 

Thorough coverage after rules defined which need to be tested. 

Universal rules/terms. 

 

Disadvantages that were reported include that the application of the Atomic Rules approach is “time 

consuming” and that it requires “lots of prep work.” However, this is not surprising since prescriptive 

black-box testing does require more time spent in test case design, whereas “freestyle” Exploratory Testing 

(Copeland 2004) (which was performed during the PNTP testing phase) involves no preparatory steps. This 
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is one of the trade-offs between prescriptive and non-prescriptive testing. As one participant reported, 

“although initial setup is more time consuming, a better overall result is achieved.” 

Table 6-52: Opinions on the biggest disadvantage of the Atomic Rules approach. 

Feedback: Disadvantages of the Atomic Rules approach 

Don't really see any disadvantages. 

It is a long process. 

Lots of prep work. 

N/A 

Need to continually do it to become more familiar. 

None. Although initial setup is more time consuming, a better overall result is achieved. 

Not all tests have a rule that relates specifically. e.g. mismatched suburb/postcode. 

Not so easy to put into practice without testing experience. 

Time consuming to set up. 

To determine when you have gained adequate test coverage & not go overboard on possible test case 
scenarios. 

We use different language and that is going to take a long time to change our system. 

 

6.3.8.3 Use Atomic Rules in Future 

On the Reflect and Review Questionnaire, participants were asked whether it was likely they would use 

the Atomic Rules approach in future (Table 6-53). An equal number (45% each) felt it was either very 

likely/somewhat likely and neither likely/unlikely that they would use Atomic Rules in future.  

Table 6-53: Opinions on how likely it is they will use Atomic Rules in future (choose one).  

Response Count Percent 

Neither likely nor unlikely 5 45 

Very likely 3 27 

Somewhat likely 2 18 

Somewhat unlikely 1 9 

Very unlikely 0 0 

 

The participants were asked to explain their answers. Seven (64%) said they would use Atomic Rules in 

some capacity immediately or if the opportunity arose in future (Table 6-54). Of the participants who stated 

that they would not use the approach in future (27%), two said it depends on their job position and if it 

involves test case design.  
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Table 6-54: Feedback on how likely it is that the participants will use Atomic Rules in future. 

Feedback: How likely is it that you will use the Atomic Rules approach in future? 

Again it is possible that I may use this approach. However will be of benefit for my team of testers to learn 
this. 

As stated earlier this is now a part of the approach I will use. 

Depends on current position. 

I'll use it Monday as I think it's excellent. 

I am sure this information could be put to good use in [our organisation]. 

I will not be constructing test cases in the near future so again - not relevant. 

I would use this approach if I was engaged as a tester in the future. I would endorse this approach to 
testers. 

If I get to write tests - somewhat likely. In [our organisation] we rarely get to write and test ourselves. 

In [our organisation], we may occasionally use a matrix but most cases the tests are written in [a different 
department of our organisation]. 

Most of our test writing is done in [a different department of our organisation]. I have been fortunate in being 
able to write tests for the application. I will definitely take these rules back with me and keep them to check 
against the next time I write tests. 

 

The participants were also asked whether their participation in the experiment would impact on the way 

they perform black-box testing in future (Table 6-55). Almost two thirds (73%) answered “yes.”  

Table 6-55: Feedback on whether taking part in the experiment will impact how the participants 
perform black-box testing in future.  

Response Count Percent 

Yes 8 73 

No 1 9 

Undecided 1 9 

Missing 1 9 

 

They were then asked to explain their answer (Table 6-56). One felt the skills they gained during the 

experiment would enable them to do “better” testing, while another said that when they gave feedback to 

the test writers in their organisation (i.e. Business Analysts), they would include examples of how Atomic 

Rules could be applied to the applications under test.  

These results suggest that learning the Atomic Rules approach can have a direct and positive impact on 

the way organisations conduct black-box testing. 
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Table 6-56: Participant comments on whether taking part in the experiment will impact on how they 
carry out black-box testing in future. 

Feedback: Will taking part in this experiment impact on how you perform black-box testing in future? 

Become more aware of different programs. 

I have greater understanding. 

If there is one. 

It will allow me to write better tests with better coverage. 

Learnt a few interesting points that may change the way I execute tests in the future. 

Lets me see how others approach testing. 

Mostly we are prescribed as to how we test. BA's in [our organisation] write the tests and we follow the 
instructions. Feedback to them on their tests will now include examples of the Atomic Rules applied. 

New skills = better testing in future. 

Not really as I don't test very often anymore. However, will assist for ideas for my team. 

Only if I test. 

Will go into maybe things like symbols etc - more creative in my testing. 

 

6.3.9 Satisfaction (H07/H17) 

Satisfaction was assessed by assessing how satisfied they were with the effectiveness of the test methods 

they used during PNTP and Atomic Rules testing (Section 6.3.9.1) and their satisfaction towards 

participating in the experiment (Section 6.3.9.2).  

6.3.9.1 Satisfaction with the Testing Approaches  

Satisfaction was assessed by asking the group to rate the effectiveness of PNTP and the Atomic Rules 

approach, using a scale of: very effective, somewhat effective, somewhat ineffective or very ineffective 

(Table 6-57). The majority reported that the approaches were ‘somewhat’ effective. This indicates that 

testers in industry might not have a preference towards using their own ‘PNTP’ approach to testing over the 

Atomic Rules approach. As a Likert scale was not used for this question, significance testing could not be 

carried out. The results for this hypothesis are inconclusive. 

Table 6-57: Effectiveness of the two testing approaches. 

Rating PNTP (%) Atomic Rules (%) 

Somewhat effective 64 55 

Very Effective 9 27 

Somewhat ineffective 18 9 

Very ineffective 0 9 

Missing 9 0 

 

They were then asked to comment on these ratings (Table 6-58, Table 6-59). After the PNTP testing 

phase, many participants felt unsure of the coverage or effectiveness of their test cases (Table 6-58). 

Reasons that were reported include that the specification was ambiguous, their approach lacked test 

planning and they lacked knowledge in testing.   
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Table 6-58: Participant comments on the effectiveness of PNTP test case design. 

Feedback: How effective do you feel your approach to testing was? 

I am not sure of the effectiveness.    

As it ways not made clear in the spec what/who was the end user and what it was used for – may well 
have been able to cut tests or completely missed others.     

I was stretching to think of any other avenues to test in 'Addresses.'  

I am sure that I missed some aspects. Had I order and a plan I think the outcomes would have been 
better. I put too many issues in the one test - it would have been better to separate them.  

Ad hoc approach due to lack/level of knowledge of testing.   

I do not think that I achieved enough coverage with this approach.     

Being unsure of the product and being doubtful of abilities. Would hope that my approach was ok.     

Learnt new things like terms, private industry.    

I have not achieved adequate coverage & was not able to test several key functions of the program.   

In the first case initial testing was slow due to generating the template to create the sequences. Once 
complete, testing was increased to approximately 10 tests per hour due to easily being able to generate 
and modify new data sets.   

 

After Atomic Rules testing, some participants felt they achieved better coverage with Atomic Rules, 

while others found the vocabulary confusing (Table 6-59). For example, one participant stated that “Due to 

limited time I was unable to write test cases for flat, unit, RSD, country & C/o addresses. However, I do feel 

this was a more structured approach to yesterday's ‘feeble’ attempts!” 

Table 6-59: Participant comments on the effectiveness of Atomic Rules test case design. 

Feedback: How effective do you feel your approach to testing was? 

If you fully understand the concepts.    

The programme had numerous bugs and it would have taken a lot of structured testing and maybe would 
have been helped to have someone ad hoc as well.   

I felt I had more control over the coverage of my tests yesterday doing it my way.    

Terminology confusing. I got lost a few times with the terminology. I think this approach would work well 
when work-shopped with a team prior to test writing.   

My efforts at testing hampered by general lack of knowledge/experience in testing. 

It allowed me to achieve excellent coverage.  

I was quite comfortable with this approach.  

Still a little unsure of ability and effectiveness.  

May not be relevant to current position but gives me an idea of how BA's work.  

Due to limited time I was unable to write test cases for flat, unit, RSD, country & C/o addresses. However, 
I do feel this was a more structured approach to yesterday's "feeble" attempts!   

It thoroughly covered a wide range of scenarios and was easy to ensure all tests were completed and 
analysed for all fields.  

 

On the Reflect and Review Questionnaire, participants were also asked whether they felt learning the 

Atomic Rules approach enabled them to write more effective test cases, to which 55% agreed with this 

statement (Table 6-60).  
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Table 6-60: Opinions on whether Atomic Rules enables the design of more effective test cases.  

Response Count Percent 

Yes 6 55 

No 3 27 

Undecided 1 9 

Missing 1 9 

 

The testers were asked to explain their responses (Table 6-61). Most expressed positive views towards 

the Atomic Rules approach, suggesting that testers in industry would perceive the approach as effective for 

use in industry.  

Table 6-61: Feedback on whether Atomic Rules enables the design of more effective test cases. 

Feedback: Does the Atomic Rules approach enable the design of more effective test cases? 

Absolutely! I had no idea what I was doing yesterday & although I have probably drilled down into more 
detail than required today I feel the rules helped a great deal. 

I feel I am thorough with my old way of doing testing - cover all avenues. 

I only wrote one as there was not enough time. It would be good to trail it at work with a knowledge base I 
can use. 

I think so and the Atomic Rules approach has more structure. 

Much better coverage was achieved. 

Not all parts were relevant to current work/industry. 

Quite an easy to understand approach. 

The concept was well explained and the application of the concept would be very helpful. 

What it did was make an effective checklist from the list that I had already made by going through the 
spec. 

 

6.3.9.2 Satisfaction with Experiment Participation  

On the Reflect and Review Questionnaire, participants were asked what they liked (Table 6-62) and 

disliked (Table 6-63) the most about taking part in the experiment. While six testers (55%) said there was 

nothing specific they disliked, two said they doubted their own testing abilities after the experiment. This 

could be due to their abilities being analysed alongside that of their peers. In contrast, it was encouraging to 

see 64% reporting that the aspect they liked most was they enjoyment of learning a new testing approach 

(Table 6-62). While the survey sample is extremely small, we feel justified in remarking that testers in 

industry seem to enjoy learning new approaches to testing.  

Although subjective, this view is supported by the observations of the author during the teaching of 

software testing training courses to industry professionals, including K. J. Ross & Associates’ Certified 

Software Test Processional course. Having taught over fifteen industry-based software testing training 

courses over the past three years, the author has seen very few students who did not enjoy the experience in 

learning about black-box testing methods, even when students found that part of the course challenging. 
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Table 6-62: Participant feedback on what they liked about participation in the experiment. 

Feedback: What did you like the most about participating in this experiment? 

Being challenged by experiencing something different. 

Good group, great tutor, great food, break from work, gained new knowledge. 

It was interesting and job specific. 

Learning about testing. 

Learning more to reinforce my knowledge of testing methodologies. 

Learning new ways to test & test write cases. Friendly, helpful instructor. 

Learnt valuable concepts to testing concepts. e.g. Atomic Rules. 

Opened a new way to look at testing, i.e. formally having a checklist rather than an informal way. 

Preparation. 

The new perspective I gained on testing methodologies. 

Was very interesting. 

 

Table 6-63: Participant feedback on what they disliked about participation in the experiment. 

Feedback: What did you dislike the most about participating in this experiment? 

Feeling stupid! 

I was happy with our progress over the 2 days. No dislikes. 

No dislikes what so ever (got tired). 

Not relevant to current position. 

Nothing - enjoyed the experience. 

Nothing - it was beneficial. 

Nothing really - thanks Tafline. 

Nothing. 

Some concepts were a bit abstract for me. Took a while for the penny to drop. 

Sometime I am not able to follow the instruction. 

The unknown. Doubting of ones own ability. 

 

6.3.10  Tester Motivation (H08/H18) 

To determine whether ‘enthusiasm’ was a threat to experiment validity (see Section 6.2.5.1), on the 

Initial and Post-Testing Questionnaires the testers rated their motivation levels using a Likert scale of: 1 = 

not motivated at all, 2 = very unmotivated, 3 = somewhat unmotivated, 4 = somewhat motivated, 5 = very 

motivated and 6 = exceptionally motivated (Table 6-64, Figure 6-17).  

Although results indicate that motivation levels did change during the experiment, they followed a 

similar trend and the majority of the group felt “very motivated” throughout. Since the participants did not 

report feeling more motivated after using the Atomic Rules approach, enthusiasm did not appear to threaten 

validity. On the contrary, a t-test revealed a significant difference in their motivation levels in the Post-

Testing Questionnaires, where the mean was higher after the PNTP testing phase than after Atomic Rules 

testing (Table 6-65).  
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Table 6-64: Participant motivation levels during the experiment (choose one) (tabular view). 

Response 
Initial  
(%) 

After PNTP 
Testing (%) 

After Atomic Rules 
Testing (%) 

Very motivated 55 73 55 

Somewhat motivated 0 18 27 

Exceptionally motivated 18 9 0 

Very unmotivated 9 0 18 

Somewhat unmotivated 18 0 0 

Not motivated at all 0 0 0 

 

Figure 6-17: Participant motivation levels during the experiment (graphical view). 
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Table 6-65: Comparison of test motivation levels after PNTP and Atomic Rules testing. 

N Approach Mean (%) Std Dev t-test Cohen’s Effect Size 

11 PNTP 4.9 .53 
t(10) = 2.02, p < .05 moderate 

11 Atomic Rules 4.1 1.1 
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The testers may have felt less motivated after Atomic Rules testing because they felt lethargic after 

participating in a two-day experiment. On the other hand, they may have felt more motivated after PNTP 

testing because they enjoyed Exploratory Testing (used during PNTP testing, see Section 6.3.2) more than 

they enjoyed using prescriptive testing methods (used during Atomic Rules testing). 

This view is supported by Reid (2007), who investigated the job satisfaction of nine different roles of 

testing, including black-box test design, test execution and Exploratory Testing. Basing his research on 

Hackman and Oldham’s Job Characteristics Model (1980), Reid proposed an equation for calculating the 

Motivating Potential Score (MPS) for roles in testing, which was based on five attributes:  

1. skill variety (V; range of skills required); 

2. task identity (I; degree of completing a job); 

3. task significance (S, importance of the job); 

4. autonomy (A, level of control of own time); and 

5. feedback (F, degree of supervisory and results-based feedback on performance)  

From this, Reid developed the following equation (Reid 2007).   

 

 

Reid subjectively assigned ratings to this equation from 1 (low) and 7 (high) for nine roles in testing 

(Figure 6-18). Exploratory Testing achieved the highest MPS at just over 160, compared to only 60 for 

black-box test design, suggesting that testers feel greater satisfaction when they are conducting Exploratory 

Testing than when they are carrying out prescriptive black-box test case design and execution.  

Thus, given that Exploratory Testing was used during the PNTP testing phase of this experiment (see 

Section 6.3.2), Reid’s findings could explain why the testers in this experiment felt more motivated after the 

PNTP phase of testing (see Table 6-64 and Figure 6-17).  

MPS = 
(V + I + S) 

* A * F 
3 
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Figure 6-18: Motivating Potential Score (MPS) for software testing roles (Reid 2007). The highest 
rating role is Exploratory Testing, which was using during the PNTP phase of this experiment.  

 

6.3.10.1 Individual Feedback 

On the Initial Questionnaire and Post-Testing Questionnaires, the participants were asked to explain 

their level of motivation (Table 6-66, Table 6-67, Table 6-68). Only one participant provided negative 

feedback after PNTP testing, saying that the experience was “a bit tedious.” Two participants provided 

negative feedback after Atomic Rules testing, with one reporting that they felt “tired and brain fogged” and 

the other commenting that the date of the experiment affected their motivation, stating that “It's Friday 

afternoon – no more explanation needed.”  

Table 6-66: Participant comments on their motivation levels at the start of the experiment. 

Motivation Feedback 

Exceptionally motivated 
Something new to look at and hopefully will help me in understanding of system 
testing broad spectrums.  

Very motivated Am interested in finding out where this is going.  

Very motivated 
Something new and challenging. Supporting my job with new knowledge and 
informed on how the industry works outside of [our organisation].  

Exceptionally motivated Always interested to do/learn new things and help someone along the way.   

Very motivated 
The experiment will give me an insight into testing. This will assist in my role in 
assessing learning needs for [our department’s] staff. 

Very unmotivated I'm looking to learn as much as I can from this experiment.  

Very motivated 
I am always keen to learn more regarding testing methodologies in order to 
improve my testing skills.  

Somewhat motivated 
Am keen to learn new skills but unsure of the outcome and how I will go in all of 
this.  

Very motivated Sounds interesting, something different + may learn e.g. new terms etc. 

Somewhat motivated A little anxious due to the expectations & my limited testing knowledge.   

Very motivated 
As a new tester and previous developer any new knowledge in this area is of great 
benefit.  
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Table 6-67: Participant comments on their motivation levels after PNTP testing. 

Motivation Feedback 

Very motivated I like to know more if it can help me in my current job.  

Very motivated Want to have a go at Batch testing next to see what it is like.  

Very motivated This is different, not threatening, and keeps the mind on alert. 

Exceptionally motivated Great learning experience. Always happy to update my skills + knowledge.       

Very motivated 
Learning more about testing and seeing what skills/knowledge need to be learned, 
for reference in my function as [staff] coordinator 

Very motivated 
I have enjoyed the experience and I think it will be beneficial in relation to my work 
at [our organisation].      

Very motivated 
I find it interesting to see what I am able to achieve + the satisfaction I feel when I 
am able to detect defects.       

Somewhat motivated 
Am enjoying the experience. Somewhat doubting my abilities and knowledge. 
Think that this will build in time.     

Somewhat motivated Gets a bit tedious but that is probably across the board with system testing.  

Very motivated Am hoping I will be able to learn some basic concepts in approaching test writing.   

Very motivated Looking forward to phase 2 to see how I tackle the next one.     

 

Table 6-68: Participant comments on their motivation levels after Atomic Rules testing. 

Motivation Feedback 

Very motivated 
I enjoyed in participate the program and have a very understanding tutor to help 
with all the questions. Good presenter. 

Somewhat motivated It's Friday afternoon - no more explanation needed.      

Very motivated No one wants to be in a rut and all these new techniques to me I found interesting.  

Very motivated Am tired and brain fogged. Not a bad feeling though.      

Very motivated 
I was pleased to be able to provide data that help testing professionals in their 
roles.     

Very unmotivated It was interesting and challenging.  

Very motivated I am always eager to gain information that will improve my testing knowledge.  

Somewhat motivated End of day 2. Good experience.       

Somewhat motivated No comment provided 

Very unmotivated 
Would actually have liked to have spent another day here learning other 
approaches to test writing/construction.  

Very motivated 
Same as yesterday, however more so as I can see the benefits of the new 
approach.     

 

6.3.11 Test Method Representation (H09/H19) 

The possibility that the test case design rules utilised during the Exploratory Testing (carried out during 

the PNTP phase) could be described as Atomic Rules was investigated. If they could, this would indicate 

that Atomic Rules from EP, BVA and ST could support Exploratory Testing by providing testers with a 

checklist against which they can audit their test coverage.  

To start, the mean and total number of test data values derived during PNTP testing and Atomic Rules 

testing was compared (Table 6-69), to obtain an overall view of the number of times test case design rules 
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were applied during the experiment. An average of 46 and total of 501 test data values were derived by the 

testers during PNTP testing compared to an average of 69 and a total of 760 during Atomic Rules testing.  

Table 6-69: Number test data values derived during PNTP and Atomic Rules testing. 

N Approach 
Mean 

(count) 
Std 
Dev 

Total  
(Count) 

11 PNTP 46 26 501 

11 Atomic Rules 69 38 760 

 

Of the 501 test data values that were derived during the PNTP testing phase, only eight (1.6%) could not 

be derived by Atomic Rules from EP, BVA or ST. This suggests that the Atomic Rules approach could 

provide excellent support to practitioners in industry when they are carrying out Exploratory Testing, as it 

would provide them with a set of test case design rules on which they can base their ‘on-the-fly’ test design. 

Furthermore, it could be used by auditors to assess the completeness of black-box test sets that are designed 

during Exploratory Testing (e.g. see Chapter 3, Section 3.5) and could be used to describe the overall 

approach to testing that was in use. It also suggests that the Atomic Rules approach may be ‘complete’ in 

terms of its coverage of the types of black-box test case design rules that are used by practitioners.   

Of these, four could be described as Atomic Rules as they were prescriptive and could be applied to 

individual input fields, while the other four could not be described as Atomic Rules as they were non-

prescriptive and based on tester “application solution domain knowledge” (Reed 1990) (see below).  

The four that could be described as Atomic Rules are as follows.  

1. During the PNTP testing phase, two participants added characters to the middle of keywords.  

a) For the suburb Greensborough, insert an invalid character to create a test data value 

Greensboroiugh 

b) For the keyword RSD, add white spaces to create a test data value R S D.  

Although ST includes rules for removing and replacing characters from the start and end of 

keywords (see ST1, ST2, ST4 and ST5 in Appendix B), a new Atomic Rule ST17: Add Middle 

Character could be defined to add characters to the middle of keywords (see Appendix B).   

2. One participant removed characters from middle of a keyword, as follows. 

a) For the suburb Greensborough, select test data value Grnsborough.  

Although ST includes rules for adding characters to the start and end of keywords (see ST3 and 

ST6 in Appendix B), a new rule ST18: Remove Middle Character could be defined to remove 

characters from the middle of keywords (see Appendix B).   

3. One participant selected the second item from a list, as follows. 
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a) Select the second suburb Box Hill North from the list of suburbs (see Table 6-3). 

Although BVA includes Atomic Rules for selecting the second and second last values from 

range-based fields (see BVA2 and BVA5 in Appendix B), two new rules BVA12: Second List 

Item Selection and BVA13: Second Last List Item Selection could been defined to select the 

inside boundary values for list-based fields (Appendix B). 

4. Two participants misunderstood ST14: Select All List Alternatives in Reverse Order, resulting in 

a new Atomic Rule. ST14 is meant to be applied to list-based fields to select a test data value 

containing all elements from the field in the reverse order to which they were specified. For 

example, if ST14 was applied to <street_type>, it would select the invalid test data value “Place 

Ln Lane Grv Grove Crt Court Ave Avenue Rd Road St Street”. Two participants used this rule to 

reverse the order of fields in the test case, e.g. creating the invalid test.3088 Greensborough 

Street Main 100. Thus, a new Atomic Rule ST19: Reverse All Fields has been defined.  

On the other hand, two of the four test case design rules that could not be described as Atomic Rules 

were based on “application solution domain knowledge” (Reed 1990), as follows.  

5. Two participants tested the Address Parser by replacing the directions ‘North’ and ‘South’ with 

abbreviations ‘Nth’ and ‘Sth’, which were (correctly) rejected by the program They used 

“application solution domain knowledge” (Reed 1990) to select these values, which originated 

from their understanding of English language abbreviations. Since the number of abbreviations 

in any language is generally very large, it would be impractical to define a generic Atomic Rule 

to cover all possibilities. An automated test data selection tool would likely be required to 

support the prescriptive identification of such abbreviations. Further, an Exploratory Tester who 

is familiar with the application solution domain of the system under test is likely able to identify 

such test data more efficiently than through the use of a testing tool. Thus, this test case design 

rule should not, in the author’s opinion, be defined as an Atomic Rule.  

6. One participant tested the Address Parser suburb field by removing the word ‘West’ from the 

(valid) suburb ‘Geelong West’. Similarly, one participant tested suburbs from the state of 

Queensland, even though the program only accepted Victorian suburbs. These tests were 

identified through application solution domain knowledge, which originated from their 

understanding of valid Australian suburbs. It would be more efficient to hire a tester to generate 

such test data than defining and using a generic Atomic Rule for it.  

This evidence suggests that test case design rules that rely heavily on application solution domain 

knowledge might not be definable as Atomic Rules. Further investigation and experimentation of industrial 

approaches to testing is required to confirm or disprove this.  

The two remaining rules that could not be described as Atomic Rules were not within the scope of EP, 

BVA and ST, as follows.  
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7. Two participants tested the Address Parser with non-matching suburb/postcode pairs, while 

another tested the Batch Processor for matching ‘sbatch’ and ‘ebatch’ identifiers. As discussed 

in Chapter 3, one limitation of the Atomic Rules approach is that it does not support testing 

dependencies between input fields (see Section 3.8). Therefore, an Atomic Rule cannot be 

defined to cover this form of test case design rule.  

8. During PNTP testing, after running many invalid test cases, one participant re-ran their first 

valid test to “try and clear environment to make sure there are no environment issues as so many 

bugs have been occurring.” This was not necessary for the programs under test, as all output 

files were overwritten each time the program was re-executed. In research conducted by Peri-

Salas and Krishnan, if variables that define program behaviour are identified in the system 

specification, it is possible to define black-box test cases that exercise such constraints (Salas 

2007). If information about the behaviour of program memory could be formally described (e.g. 

the times at which it is cleared), then BVA rules could potentially be applied to systematically 

test such boundaries. Nonetheless, this is not currently covered by the Atomic Rules approach.   

6.4 Discussion   

6.4.1 Results of Hypothesis Testing  

Nine hypotheses were defined for this experiment, covering: completeness (effectiveness) (H01/H11), 

failure-detection effectiveness (H02/H12), efficiency (H03/H13), errors made (effectiveness - accuracy) 

(H04/H14), understandability (H05/H15), operability (H06/H16), satisfaction (H07/H17), tester motivation 

(H08/H18) and test method representation (H09/H19). The results for these are as follows.   

The participants produced significantly more complete test data values for BVA and ST during Atomic 

Rules testing. Thus, the null hypothesis for completeness could be rejected in favour of the alternate 

hypothesis for BVA and ST (Table 6-70). On the other hand, the results for EP completeness were 

inconclusive, which suggests that testers in this group may have already had the ability to carry out EP 

purely from their own individual knowledge and experience prior to participating in the experiment.  

Table 6-70: Outcomes of hypothesis testing for Completeness (H01/H11). 

Hypothesis: Completeness  
H01 = Null, H11 = Alternate 

Test Method Coverage 

EP BVA ST 

H01: The completeness of black-box test sets derived 
by industry-based testers is independent of the 
approach used.  

Fail to reject Reject Reject 

H11: Industry-based testers using the Atomic Rules 
approach derive more complete test sets in terms of 
EP, BVA and ST coverage compared to those using 
their own method for black-box test case design. 

Fail to 
accept 

Accept Accept 

 

It was interesting to find a significant difference in the mean failure-detection effectiveness achieved by 

the testers, where the mean was higher during Atomic Rules testing. Thus, the null hypothesis for 
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completeness could be rejected in favour of the alternate hypothesis (Table 6-71). Furthermore, with the 

exclusion of the space fields in the Address Parser, the group as a whole achieved the same or improved 

levels of specification field coverage (i.e. input domain coverage) during Atomic Rules testing (see Section 

6.3.3.4). These results suggest that learning the Atomic Rules enables industry-based testers to write more 

effective test cases both in terms of the failure-detection effectiveness of the test cases and in terms of the 

input domain coverage achieved by the testing group.  

Table 6-71: Outcomes of hypothesis testing for Failure-Detection Effectiveness (H02/H12). 

Hypothesis: Failure-Detection Effectiveness  
H02 = Null, H12 = Alternate 

Failure-Detection 
Effectiveness 

H02: There is no difference between the failure-detection 
effectiveness of the Atomic Rules approach compared to 
black-box testing approaches used by industry-based testers.  

Reject 

H12: Industry-based testers detect more failures using the 
Atomic Rules approach then when using their own 
approaches to black-box test case design. 

Accept 

 

At a confidence interval of 94%, the results for efficiency (productivity) indicated a significant 

difference between the number of EP equivalence classes and BVA and ST test data values that were 

derived by the testers, where the mean was higher during Atomic Rules testing. Thus, the null hypothesis 

for efficiency can be rejected in favour of the alternate hypothesis (Table 6-72). This suggests testers in 

industry are likely to be more productive when using the Atomic Rules approach.   

Table 6-72: Outcomes of hypothesis testing for Efficiency (Productivity) (H03/H13). 

Hypothesis: Efficiency   
H03 = Null, H13 = Alternate 

Efficiency3 

H03: The efficiency of black-box test case derivation by 
industry-based testers is independent of the approach used.  

Reject 

H13: Industry-based testers using the Atomic Rules approach 
derive test cases more efficiently compared to those using 
their own approach to test case design. 

Accept 

 

The results for the number of mistakes made during test case derivation were inconclusive, as no 

significant difference was found between the results for PNTP or Atomic Rules testing. Thus, the null and 

alternate hypothesis could not be accepted nor rejected for this attribute (Table 6-73).   

Table 6-73: Outcomes of hypothesis testing for Errors Made (Completeness – Accuracy) (H04/H14). 

Hypothesis: Errors Made   
H04 = Null, H14 = Alternate 

Errors Made 

H04: The number of errors made by novice testers during black-
box test case derivation is independent of the approach used.  

Inconclusive 

H14: Industry-based testers using the Atomic Rules approach 
make fewer errors during test case derivation compared to 
those using their own approaches to test case design 

Inconclusive 

 

                                                           
3 This result is based on a confidence interval of 94%.  
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The results for understandability indicated a significant difference in the level of understanding 

participants in EP, BVA and ST before and after learning the Atomic Rules approach, where the mean was 

higher after learning Atomic Rules. Thus, the null hypothesis could be rejected for this attribute in favour of 

the alternate hypothesis (Table 6-74). This indicates that the Atomic Rules approach is an effective 

representation for teaching black-box testing methods to testers in industry.   

Table 6-74: Outcomes of hypothesis testing for Understandability (H05/H15). 

Hypothesis: Understandability  
H05 = Null, H15 = Alternate 

Understandability 

EP BVA ST 

H05: Learning the Atomic Rules approach has not affect on a 
tester’s understanding of black-box testing methods.  

Reject Reject Reject 

H15: Testers improve their understanding of black-box testing 
methods by learning the Atomic Rules approach. 

Accept Accept Accept 

 

A similar result was found for operability, in which a significant difference was found in the 

participant’s opinions as to whether the Atomic Rules approach was easy or difficult to use, where the 

majority of the group found the new approach ‘easy to use’ or ‘very easy to use.’ Thus, the null hypothesis 

could be rejected for this attribute in favour of the alternate hypothesis (Table 6-76). This indicates that 

testers in industry would find the Atomic Rules approach easy to use.   

Table 6-75: Outcomes of hypothesis testing for Operability (H06/H16). 

Hypothesis: Operability   
H06 = Null, H16 = Alternate 

Operability  

H06: Testers using the Atomic Rules approach do not find 
it easy or difficult to use.  

Reject 

H16: Testers using the Atomic Rules approach find it an 
easy to use. 

Accept 

 

The results for satisfaction in terms of whether participants would have a preference towards using the 

Atomic Rules were inconclusive. Thus, the null and alternate hypothesis could not be accepted nor rejected 

for this attribute (Table 6-76).   

Table 6-76: Outcomes of hypothesis testing for Satisfaction (H07/H17). 

Hypothesis: Satisfaction    
H07 = Null, H17 = Alternate 

Satisfaction 

H07: The preference of industry-based testers towards the use of black-
box testing methods is independent of the representation used.  

Inconclusive 

H17: Industry-based testers prefer to use the Atomic Rules approach for 
black-box test case design compared to using their own approaches. 

Inconclusive 

 

Tester motivation was compared after PNTP testing and Atomic Rules testing to determine whether 

their motivation for learning a new testing approach affected their results, which was a threat to validity 

(see Section 6.2.5.1). A significant difference was found in the participant’s motivation after both phases of 

testing, where the mean was higher after the PNTP testing phase. Thus, the null hypothesis could be 
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rejected for this attribute in favour of the alternate hypothesis (Table 6-77). This suggests that testers in 

industry find Exploratory Testing more enjoyable than prescriptive testing, which supports research by Reid 

(Reid 2007) that indicated that testers get experience more enjoyment when performing Exploratory Testing 

than when using prescriptive black-box testing methods (see Section 6.3.10).  

Table 6-77: Outcomes of hypothesis testing for Motivation (H08/H18). 

Hypothesis: Motivation    
H08 = Null, H18 = Alternate 

Motivation 

H08: Testers feel more motivated when using a new technique 
simply because it is new.  

Reject 

H18: Testers using the Atomic Rules approach do not find it more 
motivating to use simply because it is a new technique. 

Accept 

 

For test method representation, a thorough analysis was conducted to determine whether the test case 

design rules utilised during PNTP testing could be described as Atomic Rules. All test data values derived 

during PNTP testing except eight (1.6%) could be derived by Atomic Rules from EP, BVA and ST. Of 

these, four lead to the definition of new Atomic Rules for BVA and ST. Only four test case design rules 

could not be described as Atomic Rules, due to the rules being non-prescriptive and based on the 

application solution domain knowledge of the testers (see Section 6.3.11).   Thus, the null hypothesis could 

be rejected for this attribute in favour of the alternate hypothesis (Table 6-78). This indicates that the 

Atomic Rules approach could be effective in supporting Exploratory Testing in industry, by allowing them 

to audit their own test coverage (e.g. using the Quick Reference Guide provided in Appendix C). It also 

suggests that the Atomic Rules approach may be ‘complete’ in terms of its coverage of black-box testing 

approaches that are used by practitioners in the software testing industry.   

Table 6-78: Outcomes of hypothesis testing for Test Method Representation (H09/H19). 

Hypothesis: Test Method Representation    
H09 = Null, H19 = Alternate 

Test Method 
Representation 

H09: Test case design rules used by experienced testers in industry 
cannot be described by any black-box test method representation.  

Reject 

H19: Test case design rules used by experienced testers in industry 
can be described as Atomic Rules. 

Accept  
(for some rules) 

 

6.4.2 Black-Box Testing in Industry  

As discussed in Chapter 2 (Section 2.5), a number of experiments have investigated the application of 

specific black-box testing methods by experienced testers in industry (e.g. see (Basili & Selby 1987, 

Laugherbach & Randall 1989, Vegas et al. 2003, Itkonen & Rautiainen 2005, Wood et al. 1997)). In these 

experiments, participants are usually asked to apply specific static or dynamic testing methods. One of the 

goals of this experiment was to examine how testers in industry perform testing when they are not required 

to use a specific test method. Interestingly, all participants used Exploratory Testing during the PNTP 

testing phase. Even the tester who started PNTP testing by developing and applying a random test case 

generator supplemented this with Exploratory Testing. On the other hand, by the end of the experiment 
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almost half the group stated that if they were to test the programs again, they would carry out prior test 

planning and design (see Section 6.3.2).  

As has been mentioned earlier, this suggests that when testers are unfamiliar with an application, they 

may initially choose to carry out Exploratory Testing to ‘shake-out’ the program, allowing them to gain an 

understanding of its functionality while they explore potential defects, after which they will opt for a 

prescriptive testing method that allows them to plan and track test coverage. The Atomic Rules approach is 

a natural candidate for achieving this, as a simple Test Matrix can be used to trace the application of Atomic 

Rules to program input and output fields (see Chapter 3, Sections 3.4 and 3.5).  

6.4.3 Effects of Domain Knowledge on Testing Effectiveness  

A number of publications of Exploratory Testing suggest that there is no system to the seemingly 

‘intuitive’ process that takes place during test design and execution. Kaner maintains that “in complex 

situations, your intuition will often point you toward a tactic that was successful (you found bugs with it) 

under similar circumstances. Sometimes you won’t be aware of this comparison. You might not even 

consciously remember the previous situations. This is the stuff of expertise” (Kaner 1988). As Agruss and 

Johnson (2000) state, “much of what experienced software testers do is highly intuitive, rather than strictly 

logical.” Nonetheless, Barber (2007) argues that “the more we know about what a system or application is 

supposed to do, the more intuitive we believe it is”.  

The Oxford English Dictionary (1970) defines intuition as “The immediate apprehension of an object by 

the mind without the intervention of any reasoning process.” Regardless of whether a tester is consciously 

aware of the process they follow during Exploratory Testing, there is still likely to be a pattern to the test 

case design rules they use. As Kaner et al. observe (2001), a tester’s skill with Exploratory Testing 

increases as they become familiar with the system under test, including its market, the risks associated with 

developing it and failures previously detected. The domain knowledge and experience that guides a tester 

during Exploratory Testing can be influenced by their understanding of prescriptive testing methods (Craig 

& Jaskiel 2002), testing heuristics (Watkins 2001), tests that previously detected faults (Watkins 2001), 

program implementation and design (Bertolino 2004, Watkins 2001), hardware (Mosley 1993), platforms 

(Bertolino 2004) and programmer assumptions (Myers 1979). 

Thus, it is likely that the ‘intuition’ a tester employs during Exploratory Testing is logical and 

procedural “application solution domain knowledge” (Reed 1990) they have gained over time. There may 

be information about the application solution domain of the system under test that gives experienced 

“pathological testers” (Reed 2007) clues on how to test it. This view is supported by the resulted discussed 

in Section 6.3.4.3, where the failure-detection effectiveness achieved when using PNTP testing against the 

Address Parser was higher than for the Batch Processor during PNTP testing, but this was not the case 

during Atomic Rules testing. This indicates that while a tester can require extensive domain knowledge to 

carry out effective Exploratory Testing, prescriptive testing methods like those represented by the Atomic 

Rules approach can fill the gap when domain knowledge is not present.  



Industrial Evaluation of the Atomic Rules Approach  Chapter 6 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 265 

In fact, many prescriptive black-box testing methods are based on domain knowledge of specific 

software fault classes. As Wild et al. attest (1992), faults are often caused by programmers 

misunderstanding the problem domain of the program under development. BVA is based on the 

(implementation level) domain knowledge that programmers often make ‘off-by-one’ errors, which can be 

classed as application solution domain knowledge. Error Guessing targets error-prone situations such as 

divide by zero errors and calculating the square root of a negative number (Mosley 1993), which are also 

forms of application solution domain knowledge.  

Thus, the knowledge an experienced tester draws upon during Exploratory Testing includes: 

 knowledge of prescriptive testing methods, such as EP, BVA and ST, as this supports in the 

selection of an optimised, high-yield test set; 

 knowledge of the program under test and of similar programs, including requirements, design, 

source code (structure and contents), previous test cases that were effective and previously detected 

defects, as this assists in the design of test cases that cover the requirements, specifications and 

likely defects in the system under test (which Reed referred to as “implementation domain 

knowledge” (Reed 1990)); and 

 general software development knowledge and experience, as this assists in the design of test cases 

that target certain types of program structures or program faults (e.g. buffer overflows) (which can 

also be considered as implementation domain knowledge (Reed 1990)). 

Thus, experienced testers may be capable of designing high-yield test sets that achieve high failure-

detection effectiveness without applying all Atomic Rules from all black-box testing methods to all input 

fields. There may also be many effective black-box test case design rules used by experienced testers that 

have not yet been published in software testing literature. If such rules could be defined as Atomic Rules 

(e.g. see Section 6.3.11), this domain knowledge could be shared with other testers.  

6.4.4 Limitations of the Experiment 

There are two main limitations to this experiment: sample size and participant experience. 

Due to the small number of testers who participated in the experiment (see Section 6.2.5.1), the results 

cannot be generalised across the entire population of professional testers. As such, they are considered to be 

indicative results (not conclusive), providing an incentive to both ourselves and other researchers to 

replicate the experiment (following the practice of other disciplines).  

The participants’ experience was a limitation, as some were novices who had not designed test cases 

before. Although they were working as Testers and Test Leads, at the time of the experiment 72% of the 

group were not responsible for test case design in their organisation, as this was typically the responsibility 

of Business Analysts (see Section 6.3.1.4). Although this may have reduced the effectiveness of the testing 

that was conducted during the experiment, the results obtained still provide insight into the likelihood that 

the Atomic Rules approach could one day be adopted in industry.  
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Thus, replication of this experiment with a broader sample size, demographic and set of test programs 

would determine whether or not these results apply to the software testing industry.  

One factor of usability that was not assessed in this experiment but that also warrants investigation is the 

level of confidence a tester feels when they are applying a black-box testing method, and whether this has 

any affect on the completeness or failure-detection effectiveness of their test cases.  

6.4.5 Teaching Atomic Rules in Future  

Based on the experiment results, the following four aspects of the teaching materials for the Atomic 

Rules approach will be improved.   

In future, Test Matrices will be demonstrated as an effective approach for planning and tracking test 

coverage. A number of participants reported that if they were to test the programs used in this experiment 

again, they would use a more structured approach to testing, such as using Test Matrices (see Section 

6.3.5.2). Test matrices also made data analysis in this experiment very efficient when determining which 

participants had applied each Atomic Rules to which program field. Thus, they would be a valuable tool to 

demonstrate when teaching the Atomic Rules approach.  

Data analysis indicated that special characters such as spaces and symbols were not well tested (see 

Section 6.3.3.4). In future, additional examples that demonstrate the application of Atomic Rules to special 

character fields will be provided in the teaching materials.  

Atomic Rules names will be revised to improve future training material. Although it was encouraging to 

find that the participants liked the structure and format of the Atomic Rules approach, particularly the Quick 

Reference Guide (Appendix C), the intended usage of a number of Atomic Rules were misunderstood by 

some participants during this experiment (see Section 6.3.6). This should be resolved by an improved 

naming scheme. 

During the experiment, only one participant applied the four-step test case design process in the 

prescribed order (see Section 6.3.7.4). Although the process was demonstrated during a lecture on the 

approach, this may have been caused by the Quick Reference Guide not mentioning rule application order. 

Since the participants understood how to select test cases without the use of this process, this did not have a 

detrimental effect on the quality of the resulting test cases. Nonetheless, in future training this process will 

be added to the Quick Reference Guide, as it will likely be useful for novice testers. The four-step test 

selection process is also required for automation of the Atomic Rules approach. 

6.5 Summary  

The aim of this experiment was to compare the usability and failure-detection effectiveness of the black-

box testing methods that are ‘typically’ used by testers in industry to that of the Atomic Rules 

representation of EP, BVA and ST. The experiment also looked at how experience and domain knowledge 

can affect black-box testing effectiveness.  
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During the PNTP testing phase, rather than doing any test planning or design prior to test execution, all 

participants conducted Exploratory Testing (see Section 6.3.2). Although one tester developed a random 

input generator in Microsoft Excel for testing the Batch Processor during this phase of testing, they 

supplemented this with manual Exploratory Testing. These results, combined with participant feedback 

gathered on questionnaires, suggests that testers in industry may initially choose to use Exploratory Testing 

when they are unfamiliar with the program under test, as this allows them to learn about the program and 

the nature of defects present, before adopting more prescriptive testing methods that facilitate better 

understanding and improvement of test coverage.  

Of the 501 test data values that were derived by the participants during PNTP testing, only eight (1.6%) 

could not be derived by existing Atomic Rules from EP, BVA and ST (see Section 6.3.1.1). Thus, the 

Atomic Rules approach could be an excellent facilitator of ‘on-the-fly’ test case design during Exploratory 

Testing (e.g. by using the Quick Reference Guide in Appendix C). This also suggests that the Atomic Rules 

approach may be ‘complete’ in terms of its coverage of the black-box test case design rules that are used by 

practitioners in industry. Therefore, practitioners could use Atomic Rules to describe the approach to black-

box testing they follow during Exploratory Testing. It also indicates that the Atomic Rules approach could 

be useful to auditors and test managers to assess the completeness of the black-box test sets that are 

designed by testers during Exploratory Testing (if test cases are recorded) and prescriptive black-box testing 

(e.g. checking that a tester’s described coverage matches actual coverage). Furthermore, test managers 

could use Atomic Rules to assess whether testers understand each black-box testing method, to identify 

weak areas in a tester’s knowledge that require improvement.  

It was also interesting to discover that of the eight test data values that were derived during PNTP 

testing that were not derivable by existing Atomic Rules, four gave rise to the definition of new Atomic 

Rules (see Section 6.3.1.1). Since this is the aim of creation-based Systematic Method Tailoring and is 

supported by that approach (see Chapter 3, Section 3.2.10), this result suggests that SMT could be useful for 

capturing new test case design rules in industry.  

The experiment results also indicate that Exploratory Testing can be an effective approach for defect 

detection (see Section 6.3.4.2), particularly when a tester has application solution domain knowledge in the 

program under test (see Section 6.3.4.3). This was evidenced by the fact that the participants, who had 

domain knowledge in the Address Parser but not in the Batch Processor, designed significantly more 

(failure-detection) effective test cases during PNTP testing of the Address Parser than of the Batch 

Processor. Conversely, the testers did just as well against both programs during Atomic Rules testing. This 

suggests that to detect significant numbers of program failures, testers either need application solution 

domain knowledge in the program (if they are conducting Exploratory Testing) or they need to use a 

prescriptive black-box testing method. This also raises the question of whether there is information about 

the application domain of the program under test that gives experienced ‘pathological’ testers clues on how 

to test it effectively (see Section 6.4.3), which would be an interesting topic for future research. 

A comparison of the number of known program failures that were detected in general during PNTP and 

Atomic Rules testing indicated that significantly more failures can be detected by using the Atomic Rules 
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approach. Specifically, the testers in this experiment were able to detect more failures and achieve greater 

levels of BVA and ST coverage when they used the Atomic Rules approach. Thus, despite its potential 

complexity, this indicates that the Atomic Rules representation of EP, BVA and ST is more effective than, 

or at least comparable to, Exploratory Testing.  

Interestingly, the number of years the participant’s had worked as testers in industry and their current 

role in testing did not have any affect the level of EP, BVA and ST coverage they achieved during PNTP or 

Atomic Rules testing (see Section 6.3.3.5). This may have been due to the participants not having recent 

experience in test design (see Section 6.3.1.4). The length of their testing experience also did not affect their 

failure-detection effectiveness during either phase of testing (see Section 6.3.4.5). However, their role did 

affect the number of failures they detected during the PNTP testing phase, with Testers detecting more 

failures than Test Leads (see Section 6.3.4.5). This may have been due to the Testers having more recent 

familiarity with test case design and execution than the Test Leads (who would be likely to have more 

recent experience in test planning, strategies and management). Conversely, no significant difference was 

found in the failure-detection effectiveness achieved by Testers and Test Leads during Atomic Rules 

testing, suggesting that learning the Atomic Rules approach can fill the knowledge gap for Test Leads who 

are not currently involved in test design or execution. 

It was also interesting to find that Atomic Rules from EP were capable of detecting 93% of the known 

failures in the Address Parser if the method was applied ‘completely’ (i.e. every Atomic Rule being applied 

to every applicable field), compared to only 54% of failures in the Batch Processor (see Section 6.3.4.1). 

BVA was capable of detecting 67% of Address Parser failures and 58% of Batch Processor failures. ST was 

equally effective against both programs, detecting 67% of known failures in each one. An interesting area 

for future research is to examine why some testing methods are more effective at detecting certain types of 

program failures and whether programming styles and program architecture have any influence on this.  

Another interesting finding is that there were certain classes of input fields that were not well tested 

during both phases of testing, including non-alphanumeric characters and white spaces. Since the testers 

said they understood the importance of testing punctuation (see Section 6.3.4.3) and as they were taught 

how to test such fields during a presentation on the Atomic Rules approach, it is possible that they either did 

not recognise the requirement to test these fields, they did not know how to test them or they did not have 

enough time to test them. Further research is required to determine why this was the case and whether this 

is a common problem in industry.   
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Chapter 7 

Conclusions and Future Work  

"When you have eliminated all which is impossible, then whatever remains, however improbable, 
must be the truth." 

Sherlock Holmes, by Sir Arthur Conan Doyle, The Adventure of the Blanched Solider, 1926. 

7.1 Conclusions  

The aim of this thesis was to improve the usability and failure-detection effectiveness of prescriptive 

and non-prescriptive approaches to black-box testing. This included identifying and resolving the following 

seven problems with existing definitions of black-box testing methods:   

1. definition by exclusion;  

2. multiple versions; 

3. method overlap; 

4. notational and terminological differences;  

5. reliance on domain knowledge;  

6. difficult to automate; and 

7. difficult to audit.  

Items 1 to 4 above are inherent problems with existing definitions of black-box testing methods. They 

are, as we and others have shown demonstrable weaknesses that are due to the manner in which the 

methods were defined prior to this work. 

Item 5 arises since the methods currently rely on the existence of ‘perfect’ requirements that leave no 

gaps to be filled through the acquisition of domain knowledge. In one sense, that the test methods should be 

‘application domain knowledge agnostic’ seems not unreasonable. On the other hand, the work reported 

here suggests that the effectiveness of black-box testing can be improved if prescriptive black-box testing 

methods are supported by the capture and evaluation of domain knowledge. 

Items 6 and 7 are ‘derivative’ problems, in that they are a direct result of a lack of precision in existing 

descriptions of black-box testing methods and are therefore related to the problems with test method 

descriptions that are covered under items 1 to 4 above. In the authors view they are important, as they 

represent important uses that testing professionals may have for black-box testing methods that cannot 

easily be met by existing method definitions. 
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The Atomic Rules approach, Goal/Question/Answer/Specify/Verify and Systematic Method Tailoring 

were proposed as solutions to these problems. As such, they represent the main contribution of this thesis to 

the field of software testing. Additional contributions include the definition of test method usability and 

metrics for evaluating usability. A prototype testing tool called the Atomic Rules Testing Tool was also 

presented, to demonstrate that the Atomic Rules approach makes black-box testing methods more precise 

and easier to automate.  

The Atomic Rules approach provides precise definitions of eleven different black-box testing methods, 

including Equivalence Partitioning, Boundary Value Analysis, Syntax Testing and combinatorial methods 

Each Choice, Base Choice, Orthogonal Array Testing, Heuristic Pair-Wise, All Combinations, 

Specification-Based Mutation Testing and the combined approaches Base Choice/Orthogonal Array Testing 

and Base Choice/Heuristic Pair-Wise Testing (see Appendix B). Individual Atomic Rules from EP, BVA 

and ST were also shown to aid test data selection for State Transition Testing, Use Case Testing and the 

Category Partition Method. The Atomic Rules approach, GQASV and SMT were evaluated through two 

university experiments, an industrial experiment and a proof-of-concept assessment.  

The seven problems with black-box testing methods that are listed above were resolved as follows. 

Definition by exclusion was resolved by defining explicit datatypes (e.g. integer, real, alpha) that allow 

the ‘universe of discourse’ for program inputs to be explicitly defined. This allowed prescriptive Atomic 

Rules to be defined for EP that select invalid equivalence classes by datatype (see EP4 to EP10 in 

Appendix B). This also partially resolved reliance on domain knowledge, by ensuring that each Atomic 

Rule was defined to a level of detail that facilitates the design of effective and predictable black-box test 

sets, regardless of each tester’s domain knowledge and experience.  

Reliance on domain knowledge was further resolved by SMT and GQASV. SMT allows experienced 

testers to define new Atomic Rules during non-prescriptive (e.g. Exploratory) testing, allowing new test 

case design rules to be shared with other testers and for them to be reused (e.g. during Regression Testing). 

GQASV guides testers in the creation of precise program input field specifications (when such 

specifications are not readily available) and in recording domain knowledge that is used during the process, 

allowing that knowledge to be shared and reused. GQASV enables more effective application of the Atomic 

Rules approach by identifying the minimum information that is required to apply Atomic Rules to each 

input field under test.  

Notational and terminological differences between black-box testing methods were resolved through 

the uniform notation of the Atomic Rules characterisation schema and four-step black-box test case design 

process.    

Multiple versions of each black-box testing method were resolved by defining one set of Atomic Rules 

that cover the various versions of each method, creating a single repository of Atomic Rules. Method 

overlap could then be resolved by locating and eliminating redundant rules that appear in more than one 

method, or more than once within a method. 
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Difficulties with auditing the ‘completeness’ of black-box testing were resolved through the granularity 

of the Atomic Rules approach, by enabling simplified analysis of the set of Atomic Rules that were (or were 

not) applied to a program. The Atomic Rules approach could be used by auditors or test managers to assess 

the completeness of black-box test sets that are designed during Exploratory Testing (if test cases are 

recorded) or prescriptive black-box testing (i.e. checking that described coverage matches actual coverage) 

(see further discussion under Section 7.3).  

Difficulties with automation were also resolved through the precise definitions provided by the Atomic 

Rules approach. This eventually resulted in the development of the Atomic Rules Testing Tool (see Chapter 

4). ARTT currently supports automatic generation of equivalence classes and test data values for EP, BVA 

and ST from specifications that are input by the user. It also supports domain knowledge capture through 

GQASV and the creation of new Atomic Rules through creation-based SMT.  

7.2 Interesting Results of the University Experiments 

Two university experiments were conducted to determine whether the Atomic Rules approach improves 

the usability of black-box testing methods for novice testers. This compared Myers’ original definition of 

EP and BVA (Myers 1979) to the corresponding Atomic Rules. Usability was assessed in terms of 

completeness, accuracy, efficiency, learnability, understandability and satisfaction. Although there were 

limitations to the experiment, including some inconclusive results, it still provided evidence that Atomic 

Rules could be an effective approach for teaching black-box testing methods to novice testers.  

For example, in the first university experiment, the Atomic Rules representation of EP and BVA 

allowed novice testers to write more complete and accurate black-box test sets with higher levels of 

productivity, compared to those who used Myers’ representation. More students in that year also preferred 

learning the Atomic Rules approach and felt they gained a better understanding of it than Myers’ 

representation. Students in the second experiment who chose to use the Atomic Rules approach in their 

class assignment achieved significantly higher grades (86% on average) than who used Myers’ 

representation (68% on average) (i.e. the difference between a ‘C’ and an ‘A’ grade).  

During data analysis it became evident that the Atomic Rules approach can stifle tester creativity. Since 

the Atomic Rules approach is more prescriptive than Myers’ definition, it did not allow the students to 

derive test cases based on their own domain knowledge and experience. Some of the participants in Myers’ 

group created test cases that were not derivable from Myers’ representation. Although Systematic Method 

Tailoring was developed as an approach for guiding testers in the definition of new Atomic Rules, it was 

not taught to the testers in these experiments, as it had not been invented when the first experiment was run. 

However, this was a feature of the industrial experiments (see Section 7.3).  

The limitations of these experiments mean that the results cannot be generalised to all novice software 

testers. To determine whether the Atomic Rules approach improves the usability of black-box testing 

methods for all novice testers, these experiments would need to be rerun with more novice testers, ideally 

from both academia and industry and with industry-developed software.  
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7.3 Interesting Results of the Industry Experiment 

In the industrial experiment, the usability and failure-detection effectiveness of the black-box testing 

methods that are ‘typically’ used by professional software testers (called the Practitioner Normal Testing 

Practice or ‘PNTP’) were compared to that of the Atomic Rules representations of EP, BVA and ST. 

Usability was evaluated in terms of completeness, efficiency (i.e. productivity), errors made (i.e. accuracy), 

understandability, operability, satisfaction and motivation. The experiment also looked at whether the test 

case design rules that are typically used by practitioners can be described as Atomic Rules.  

The main limitations of this study were that the sample size was relatively small and the programs that 

were used in the experiment were not developed in industry. In addition, while all participants in the 

experiment were currently working as Test Leads, Testers or (Tester) Learning and Development Managers, 

none had recent experience in test design. Furthermore, test case design took place in less than a day, 

whereas test case design in industry can often take weeks or months (depending on the requirements and 

scale of the program being tested). While the results of the experiment cannot be generalised across the 

entire software testing industry, they do provide useful insight into how the testers in this group carry out 

black-box testing and evidence that the test cases industry practitioners design can described by and audited 

by the Atomic Rules approach.  

Patterns in the derived test cases derived by the testers indicated that they conducted Exploratory 

Testing during the PNTP testing phase. During this phase the participants did not do any test planning or 

test design prior to test execution. This result, coupled with feedback from the participants, suggests that 

testers in industry may chose to use Exploratory Testing when they are unfamiliar with a program, as this 

allows them to learn about the program and the nature of defects present, before using prescriptive testing 

methods, which then facilitate understanding and improvement of test coverage.  

It was encouraging to find that during PNTP test case generation, out of 501 (Exploratory) test data 

values that were derived, only eight (1.6%) could not be derived by Atomic Rules from EP, BVA and ST 

(see Chapter 6, section 6.3.11). Thus, the Atomic Rules approach facilitated auditing of black-box test set 

completeness in 98.4% of cases. This also suggests that the Atomic Rules approach could in fact be 

‘complete’ in terms of its coverage of the types of test case design rules that are used by practitioners in 

industry (although this can only be confirmed through further experimentation).  

The industry experiment also indicated that significantly more program failures could be detectable on 

average through using the Atomic Rules approach than through Exploratory Testing. They also indicated 

that it was capable of producing significantly more complete BVA and ST test sets. Thus, despite its 

potential complexity, when used by testers in industry the Atomic Rules approach could be more effective 

than, or at least comparable to, Exploratory Testing.  

On the other hand, the results suggested that Exploratory Testing could be made more effective by using 

testers who have domain knowledge in the program under test. During the PNTP (i.e. Exploratory) testing 

phase, participants who had domain knowledge in the program under test detected significantly more 
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failures than those who were unfamiliar with the domain. On the other hand, when participants without 

domain knowledge used the Atomic Rules approach, they were able to detect just as many failures as those 

using Exploratory Testing with domain knowledge. This suggests that to detect significant numbers of 

failures, testers either need program domain knowledge (during Exploratory Testing) or the use of a 

prescriptive black-box testing method. A recommendation these results offer industry is that while 

Exploratory Testing can be a useful approach for detecting program failures when domain knowledge is 

present, prescriptive black-box testing methods could allow more program failures to be detected and could 

fill the knowledge gap for testers without domain knowledge. An interesting area for future research is 

whether there is information about the domain of a program that gives experienced ‘pathological’ testers 

clues on how to test it effectively.  

However, the existence of the Atomic Rules approach allows the tests produced by pathological testers, 

or, for that matter, by exploratory testers, to be analysed. In principal, this may allow the test selection 

methods that are being used to be exposed and shared, with the possibility that totally new prescriptive 

black-box testing methods may be described and used. 

Interesting, the number of years that the participants had worked as testers in industry, and their current 

role in testing, did not affect their coverage of Atomic Rules from EP, BVA or ST during PNTP or Atomic 

Rules testing. The length of their experience also did not affect their failure-detection effectiveness. On the 

other hand, their current role in testing did affect the number of failures they detected during PNTP testing, 

with Testers detecting more than Test Leads. This may be due to Testers having more recent experience 

with test design and execution. No significant difference was found in the failure-detection effectiveness 

achieved by Testers and Test Leads during Atomic Rules testing, suggesting that the Atomic Rules 

approach could fill the knowledge gap for Test Leads who do not have recent experience with black-box 

testing. 

It was very encouraging to find that Atomic Rules from EP were capable of detecting 93% of the known 

failures in the Address Parser, compared to 54% in the Batch Processor. BVA and ST were capable of 

detecting between 67% of failures in the Address Parser and 58% to 67% in the Batch Processor. An 

interesting topic for future research would be why some Atomic Rules are more effective at detecting 

program failures than others and what effect program design has on this. The ideal outcome will be a 

mapping of program design characteristics to Atomic Rules that are most effective.  

From the test cases derived by the participants on this experiment, five new Atomic Rules could be 

defined through SMT. They were BVA12 and BVA13 (select the inside boundary values of lists), ST14 

(select list values in reverse), ST17 (add middle character to keywords) and ST19 (reverse all fields) (see 

Appendix B). New Atomic Rules were also defined during the proof-of-concept evaluation of SMT. This 

suggests that SMT could be useful for capturing new test case design rules in industry. It would be ideal to 

conduct further experiments with industry practitioners, to assess whether the test cases they derive during 

Exploratory Testing can be described by existing Atomic Rules or whether they give rise to the definition of 

new Atomic Rules through SMT. In addition, it would be useful to know whether new Atomic Rules 

provides explicit ‘skill-based’ improvements to existing black-box testing methods. This could also include 



Conclusions and Future Work  Chapter 7 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 274 

an evaluation of whether practitioners can understand how to use SMT to define their own Atomic Rules, 

and whether they can audit the completeness of their own black-box test sets.  

Future work could assess tester confidence levels when they are using prescriptive or non-prescriptive 

testing methods, to determine whether their confidence affects the completeness and/or failure-detection 

effectiveness of their resulting test cases. Another aspect to consider is whether the acquisition of domain 

knowledge allows testers to feel more confident during test design, and whether this in turn allows them to 

write more effective test cases or to do so in a more productive manner.  

It would be interesting to examine whether the Atomic Rules approach and GQASV do provide a good 

substitute for domain knowledge in industry. For example, experimentation could be used to determine 

whether experienced testers find GQASV to be a useful approach for specifying program input and output 

fields and how much domain knowledge is required to produce ‘adequate’ specifications. It would also be 

useful to discover the most useful sources of domain knowledge (e.g. past experience in testing similar 

systems, programming experience, textbooks, websites; see Chapter 2, Section 2.6.2 and Chapter 3, Section 

3.10.1) that enable testers to write the most effective test cases. Furthermore, after domain knowledge is 

collected by experienced testers using GQASV, it would be interesting to know whether novice testers (or 

those who are unfamiliar with the domain) could reuse that knowledge to design ‘complete’ test sets with 

the Atomic Rules approach. ARTT could provide support for this kind of investigation.  

An additional area for experimentation could be to examine whether the Atomic Rules approach makes 

it easier for test managers to audit the completeness of the black-box test sets that are produced by testers in 

their teams, in order to identify when test sets are ‘complete.’  

7.3.1 Additional Uses of the Atomic Rules Approach in Industry  

Since the Atomic Rules approach provides a single definition of each black-box testing method, it could 

be used by both national and international standardisation bodies to publish precise definitions of each 

black-box testing method. Having one standard, prescriptive definition of these methods would make it 

easier for organisations to demonstrate compliance to such standards and would make it easier for auditors 

to carry out accurate compliance assessments against testing standards. For example, the British Standard 

BS-EN 50128 ‘highly recommends’ the use of EP and BVA for testing certain classes of safety critical 

systems (BS 50128:2001). Since that standard refers to Myers’ definition of these methods, which suffers 

from considerable ambiguities, it is likely that both the black-box testing approach taken by organisations 

claiming compliance against the standard, and the compliance assessment approach that is subsequently 

taken by auditors, could miss certain crucially important test cases. Regulation of black-box testing may 

become more important in industry, as more rigorous testing standards are developed (such as the new 

ISO/IEC 29119 Software Testing standard1).  

                                                           
1 As the author is a co-editor of the new ISO/IEC 29119 Software Testing standard, and is responsible for the development of part 4 
(Testing Techniques), which will include definitions of black-box testing methods, it is her intention to introduce the concept of more 
auditable black-box testing methods descriptions into that standard.  
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Software testing certification boards like the International Software Testing Qualifications Board 

(ISTQB) and local software testing course providers (e.g. K. J. Ross & Associates) could use the Atomic 

Rules definition of these methods to improve their training and certification materials. Test managers could 

use the Atomic Rules approach to assess whether the testers in their organisation understand how to use 

each black-box testing method and to identify weak areas in their knowledge of the methods. 

7.4 Future Improvements to the Atomic Rules Approach  

A number of improvements are already planned for the Atomic Rules approach, including the following.  

 The names of EP Atomic Rules that were misunderstood during the industry experiment will be 

enhanced, ideally through consultation with testers in industry. 

 When the Atomic Rules approach is taught to testers in future, Test Matrices will be demonstrated 

as a useful approach for planning and tracking test coverage.  

 Additional worked examples will be provided in teaching materials, to demonstrate the application 

of Atomic Rules to special character fields, as this was a problem area during all experiments.  

 The Quick Reference Guide will be enhanced to include the four-step test case design process, as 

this was not followed by testers during the industrial experiment.  

 Future investigation will be carried out to determine whether Atomic Rules can be defined to test 

input field dependencies, as this is a known limitation of the Atomic Rules approach.  

7.5 Future Improvements to the Atomic Rules Testing Tool 

A variety of improvements to the Atomic Rules Testing Tool were proposed in Chapter 4. These are 

summarised as follows.  

 Automatic generation of program source code for input data validation in various languages, as this 

reduces the need for black-box testing by ensuring that programs only accept valid inputs. 

 Implementation of Test Case Construction Rules from EP, BVA and ST, as this will enable 

automatic generation of complete black-box test cases. 

 Enhancement of the Specification Editor to enable automatic import of BNF specifications, as this 

will enable more efficient specification creation.  

 Enhancement of the Specification Editor to provide feedback on input field definitions for new 

specifications, based on the names of previously defined input fields, and automatic advice on the 

use of domain knowledge that was previously defined for existing specifications.  

 Automatic production of abstract syntax trees for specifications, as this will provide users with a 

visual representation of the hierarchy in each specification they create. 

 Enhancement of Atomic Rules from BVA to generate test cases for fields that repeat.  
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 Removal of redundant test data generated by ARTT, as this will result in more efficient testing.   

 Automatic generation of test data values for testing output field partitions. 

 Automatic derivation of unrestricted specifications for the CPM in the Test Specification 

Language, via the automatic combination of test data values that are generated through EP, BVA 

and ST, as well as documentation of expected results of specific combinations of test data values.  

 Integration with unit testing tools like JUnit, as well as code coverage analysis tools like JCover.  

It would also be beneficial to carry out experiments with ARTT with professional testers, to determine 

whether this tool could be useful to practitioners in industry and to determine whether it improves the 

efficiency of test case derivation in reality. Comparisons of ARTT to other testing case generation tools 

such as CaseMaker (see Chapter 2, Section 2.7.3) would also determine whether automation of the Atomic 

Rules approach does result in more complete and effective test sets than that which is currently supported 

by other black-box test case generation tools in industry.   

7.6 Future Experimentation with GQASV and SMT 

As GQASV and SMT only underwent a preliminary evaluation, future experimentation must be carried 

out before the techniques are used by the software testing industry, to determine whether the potential 

benefits of these approaches can be realised by professional testers. For GQASV, an experiment could be 

conducted to determine whether more precise input/output field definitions can be produced by professional 

testers that are using GQASV, as compared to the approaches they would normally use, in order to 

understand and properly define program input/output domains, and to determine whether the domain 

knowledge that is captured during the process is useful to testers in current and future projects. For SMT, a 

separate experiment could be carried out to identify whether new and useful Atomic Rules can be defined 

by professional testers through using the SMT process.    

7.7 Final Word 

In the words of Dikstra (1969), “Program testing can be used to show the presence of bugs, but never to 

show their absence!” We hope that the contributions made by this thesis provide software testers 

everywhere with an even better ability to detect the types of program faults that would otherwise prevent 

the users of their software from experiencing a ‘bug-free’ existence every time they interact with a program.  
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Chapter 8 

Appendices  

"The last project generated a ton of paper and it was still a disaster, so this project will have to 
generate two tons." 

DeMarco and Lister, “Peopleware”, 1999 

Appendix A. Demonstration of the Category Partition Method 

In the following, the Category Partition Method (CPM) (see Chapter 2, Section 2.2.8) is applied to a 

specification of a ‘find’ command (Figure 8-1), which was originally published by Ostrand and Balcer 

(1988). This specification defines one function that can be used to locate instances of a particular string 

within a file.  

Figure 8-1: Natural language specification of a ‘find’ command (Ostrand & Balcer 1988). 

Command:  

 find 

Syntax: 

 find <pattern> <file> 

Function:  

The find command is used to locate one or more instances of a given pattern in a text file. All liens 
in the file that contain the pattern are written to standard output. A line containing the pattern in 
written only once, regardless of the number of times the pattern occurs in it.  

The pattern is any sequence of characters whose length does not exceed the maximum length of a 
line in the file. To include a blank in the pattern, the entire pattern must be enclosed in quotes (“). 
To include a quotation mark in the pattern, two quotes in a row (“”) must be used.  

Examples: 

 find john myfile 

  displays lines in the file myfile which contain john john 

 find “john smith” myfile 

  displays lines in the file myfile which contain john smith 

 find “john”” smith” myfile 

  displays lines in the file myfile which contain john” smith 

 

The CPM consists of six steps, as follows.  

In step one, the specification is decomposed into individual functional units that can each be tested 

separately. Since this specification contains one functional unit, this step is already complete.  
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In step two, input fields called ‘categories’ and equivalence classes called ‘choices’ for each category 

are defined1. The specification mentions two input fields, <pattern> and <file>. The characteristics of 

<pattern>, which are explicitly defined in the specification, are as follows: 

1. length of <pattern> must not exceed maximum line length, assumed to be 80 characters; 

2. if <pattern> contains a white space it must be enclosed in quotes; and 

3. if <pattern> contains an embedded quote it must be replaced with two quotes in a row. 

Other characteristics of <pattern> that were not described in the specification, but that an experienced 

tester may wish to consider, are whether: 

4. quoted patterns always have to include blank characters; 

5. several successive quotes are permitted in a pattern. 

The <file> field can be tested as an ‘environmental variable’ file contents or as an ‘input parameter’ file 

name. As an environmental variable, the following characteristics can be defined for file contents: 

6. the number of occurrences of <pattern> in the file; 

7. the number of occurrences of <pattern> on a line that contains it (called the ‘target’ line); 

8. the maximum length of the file; 

9. the file type (e.g. text, binary, executable); 

10. whether <pattern> overlaps itself in a line of the file; and 

11. whether <pattern> extends over more than one line. 

If <file> is considered to be an input parameter file name, the following choices (which were not 

identified by (Ostrand & Balcer 1988)) could be identified through the application of EP and BVA: 

12. whether any specific ASCII characters are not allowed in the file name, such as / \ : * ? “ < > | 

as these are restricted characters in many operating systems; and 

13. the maximum length of the file name (i.e. 80 characters or greater than 80 characters). 

In step three, ‘constraints’ can be added to each choice, which dictate how a choice in one category can 

restrict choices in another. This reduces the number of test frames that are generated in step four and 

prevents ‘contradictory test frames’ (i.e. impossible combinations of choices) from being created, such as 

combining an empty pattern with a pattern that is quoted (e.g. see Figure 8-2). Constraints are defined by 

annotating contradictory choices with a ‘property’ statement, and by adding ‘selector expressions’ that limit 

whether a particular choice can be included in a test case, based on the values of other choices. A property 

statement is expressed as [property A, B, …], where A, B, … are property names, while selector expressions 

are expressed as [if A] or [if A and B]. For example, if a test contains a pattern which is empty (i.e. 

[property Empty]) then the pattern cannot be quoted (i.e. [if NonEmpty]). To limit the scope of their 

                                                           
1 The Goal/Question/Answer/Specify/Verify approach could be used at step 2, when defining the contents of each input field. 
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example, in step 3 Ostrand and Balcer only included choices and categories that were mentioned in the 

original specification (i.e. pattern size (choice 1), quoting (2), embedded white spaces (3), embedded quotes 

(4 and 5) and file name (6 to 11)). Thus, choices 12 and 13 are not covered in the example below. 

Figure 8-2:  Example of a contradictory test frame (Ostrand & Balcer 1988). 

Pattern size: empty 

Quoting: pattern is quoted 

Embedded blanks: several embedded white spaces 

Embedded quotes: no embedded quotes 

File name: good file name 

Number of occurrences of pattern in file: none 

Pattern occurrences on the target line: one  

 

In step four, categories, choices and constraints are documented in a ‘restricted test specification’ that is 

expressed in the Test Specification Language (TSL) (Figure 8-3). Step 3 can be skipped, resulting in an 

‘unrestricted test specification’ (see Figure 8-4), which does not prevent contradictory test frames.   

Figure 8-3: Restricted test specification for the find command, expressed in the  
Test Specification Language (Ostrand & Balcer 1988). 

Parameters: 

 Pattern size: 

  empty [property Empty] 

  single character [property NonEmpty] 

  many characters [property NonEmpty] 

  longer than any line in the file [property NonEmpty] 

 Quoting: 

  pattern is quoted [property Quoted] 

  pattern is not quoted [if NonEmpty] 

  pattern is improperly quoted [if NonEmpty] 

 Embedded white spaces: 

  no embedded white spaces [if NonEmpty] 

  one embedded white space [if NonEmpty and Quoted] 

  several embedded white spaces [if NonEmpty and Quoted] 

 Embedded quotes: 

  no embedded quotes [if NonEmpty] 

  one embedded quote [if NonEmpty] 

  several embedded quotes [if NonEmpty] 

 File name: 

  good file name 

  no file with this name 

  omitted 

Environments: 

 Number of occurrences of pattern in the file: 

  none [if NonEmpty] 

  exactly one [if NonEmpty] [property Match] 

  more than one [if NonEmpty] [property Match] 

 Pattern occurrences on target line: 

 # assumes line contains the pattern 

  one [if Match] 

  more than one [if Match] 
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Figure 8-4: Unrestricted test specification for the ‘find’ command, expressed in the  
Test Specification Language (# denotes comments) (Ostrand & Balcer 1988). 

Parameters: 

 Pattern size: 

  empty 

  single character 

  many characters 

  longer than any line in the file 

 Quoting: 

  pattern is quoted 

  pattern is not quoted 

  pattern is improperly quoted 

 Embedded white spaces: 

  no embedded white spaces 

  one embedded white space 

  several embedded white spaces 

 Embedded quotes: 

  no embedded quotes 

  one embedded quote 

  several embedded quotes 

 File name: 

  good file name 

  no file with this name 

  omitted 

Environments: 

 Number of occurrences of pattern in the file: 

  none 

  exactly one 

  more than one 

 Pattern occurrences on target line: 

 # assumes line contains the pattern 

  one 

  more than one 

 

In step four, an initial set of ‘test frames’ are designed by taking the Cartesian product of choices in the 

test specification, excluding those that cannot be combined due to constraints that were placed on them in 

step three. The restricted specification depicted in Figure 8-3 results in 678 test frames, which Ostrand and 

Balcer considered too high for the (relatively simple) find command (Ostrand & Balcer 1988).  

Thus, in step five, the restricted specification can be further refined by adding two additional tags: 

[error] and [single] (see Figure 8-5). The [error] tag reduces the number of redundant test frames by 

identifying choices that result in invalid test cases, ensuring that only one test frame is derived for each such 

choice (this is synonymous with the one-to-one test case design approaches for EP and BVA that are 

defined in (BS 7925-2)). For example, Ostrand and Balcer recognised that the choice “no file with this 

name” would result in an invalid test frame that the program should reject, regardless of any other valid or 

invalid choices; thus, it could be tagged with [error] so that it was not tested in combination with other 

choices. In addition, [single] can be used to mark choices that do not have to be combined with other 

choices, which can be used to reduce the number of tests executed against certain choices that are of a lower 

risk of affecting program correctness.  
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Applying the [error] tag to the restricted specification for the find command reduces the number of 

frames to 125, while tagging three choices with [single] reduces this to 40 frames (Figure 8-5). 

Figure 8-5: Refined version of the restricted test specification for the ‘find’ command, expressed in 
the Test Specification Language (Ostrand & Balcer 1988). 

Parameters: 

 Pattern size: 

  empty [property Empty] 

  single character [property NonEmpty] 

  many characters [property NonEmpty] 

  longer than any line in the file [property NonEmpty] 

 Quoting: 

  pattern is quoted [property Quoted] 

  pattern is not quoted [if NonEmpty] 

  pattern is improperly quoted [error] 

 Embedded white spaces: 

  no embedded white spaces [if NonEmpty] 

  one embedded white space [if NonEmpty and Quoted] 

  several embedded white spaces [if NonEmpty and Quoted] 

 Embedded quotes: 

  no embedded quotes [if NonEmpty] 

  one embedded quote [if NonEmpty] 

  several embedded quotes [if NonEmpty] [single] 

 File name: 

  good file name 

  no file with this name [error] 

  omitted [error] 

Environments: 

 Number of occurrences of pattern in the file: 

  none [if NonEmpty] [single] 

  exactly one [if NonEmpty] [property Match] 

  more than one [if NonEmpty] [property Match] 

 Pattern occurrences on target line: 

 # assumes line contains the pattern 

  one [if Match] 

  more than one [if Match] [single] 

 

In step six, a final set of test frames are generated by again taking the Cartesian product of the choices 

that are defined in the test specification, excluding those that cannot be combined due to constraints that 

were placed on them in steps three and five. Each test frame is then populated with test data, resulting in 

one test case. The test cases can be annotated with additional information, such as a test case identification 

number, a key listing the choices covered from each category, any commands that are required as 

preconditions to set up the test, the test data that will be used during test execution and the expected result 

of the test (Figure 8-6).  
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Figure 8-6: Example test case generated from the restricted specification for the find command 
(Ostrand & Balcer 1988). 

Test Frame: 

 Test Case 28: (Key = 3.1.3.2.1.2.1) 

  Pattern size: many characters 

  Quoting: pattern is quoted 

  Embedded blanks: several embedded white spaces 

  Embedded quotes: one embedded quote 

  File name: good file name 

  Number of occurrences of pattern in file: exactly one 

  Pattern occurrences on the target line: one 

Command to set up the test: 

 copy /testing/sources/case_28 testfile 

find command to perform the test: 

 find “has “” one quote” testfile 

Instructions for checking the test: 

 The following lien should be displayed: 

  This line has “ one quote on it 
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Appendix B. Atomic Rules for Black-Box Testing  

This section contain Atomic Rules for Equivalence Partitioning (Table 8-1 to Table 8-4), Boundary 

Value Analysis (Table 8-6 to Table 8-9), Syntax Testing (Table 8-10 to Table 8-14) and combinatorial 

testing methods All Combinations, Each Choice, Base Choice, Orthogonal Array Testing and Specification-

Based Mutation Testing, including Single-Substitution Mutation, Multiple-Substitution Mutation, All-

Permutations Mutation and All-Combinations Mutation (Table 8-16 to Table 8-25).  

B.1 Equivalence Partitioning  

The following tables contain Atomic Rules that have been defined for Equivalence Partitioning.  

Table 8-1: Atomic Rules for Equivalence Partitioning. 

Attribute Values Values Values Values 

Test Method Equivalence Partitioning  Equivalence Partitioning  Equivalence Partitioning  Equivalence Partitioning  

Number EP1 EP2 EP3 EP4 

Identifier LLBS GUBS LUBS IR 

Name 
Less Than Lower 
Boundary Selection 

Greater Than Upper 
Boundary Selection 

Lower to Upper 
Boundary Selection 

Integer Replacement 

Description 

Select an equivalence 
class containing values 
below the lower 
boundary of a field 

Select an equivalence 
class containing values 
above the upper 
boundary of a field 

Select an equivalence 
class containing values 
between the boundaries 
of a field (including the 
on-boundary values)   

Select an equivalence 
class containing every 
integer value (other than 
those in the valid set, if 
applicable) 

Source (Myers 1979) (Myers 1979) (Myers 1979) N/A  

Rule Type DSSR DSSR DSSR DSSR 

Set Type Range Range Range List or Range 

Valid or Invalid Invalid Invalid Valid Invalid 

Original Datatype 
Integer, Real, Alpha, 
Non-Alphanumeric  

Integer, Real, Alpha, 
Non-Alphanumeric  

Integer, Real, Alpha, 
Non-Alphanumeric  

All 

Test Datatype  Same as original Same as original Same as original Integer 

Test Data Length Same as original Same as original Same as original Max 

# Fields Populated 1 1 1 1 

# Tests Derived 0 0 0 0 
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Table 8-2: Atomic Rules for Equivalence Partitioning (continued). 

Attribute Values Values Values Values 

Test Method Equivalence Partitioning  Equivalence Partitioning  Equivalence Partitioning  Equivalence Partitioning  

Number EP5 EP6 EP7 EP8 

Identifier  RNR SAR MAR MANR 

Name 
Real Number 
Replacement 

Single Alpha 
Replacement 

Multiple Alpha 
Replacement 

Multiple Alphanumeric 
Replacement 

Description 

Select an equivalence 
class containing every 
real value (other than 
those in the valid set, if 
applicable) 

Select an equivalence 
class containing every 
single alpha value (other 
than those in the valid 
set, if applicable) 

Select an equivalence 
class containing multiple 
alpha values (other than 
those in the valid set, if 
applicable) 

Select an equivalence 
class containing multiple 
alphanumeric values 
(other than those in the 
valid set, if applicable) 

Source (BS 7925-2) (BS 7925-2) (BS 7925-2) N/A 

Rule Type DSSR DSSR DSSR DSSR 

Set Type List or Range List or Range List or Range List or Range 

Valid or Invalid Invalid Invalid Invalid Invalid 

Original Datatype All All All All 

Test Datatype  Real Single Alpha Multiple Alpha Multiple Alphanumeric 

Test Data Length Max 1 Max Max  

# Fields Populated 1 1 1 1 

# Tests Derived 0 0 0 0 

 

Table 8-3: Atomic Rules for Equivalence Partitioning (continued). 

Attribute Values Values Values Values 

Test Method Equivalence Partitioning  Equivalence Partitioning  Equivalence Partitioning  Equivalence Partitioning  

Number EP9 EP10 EP11 EP12 

Identifier SNAR MNAR NIR VLS 

Name 
Single Non-
Alphanumeric 
Replacement  

Multiple Non-
Alphanumeric 
Replacement  

Null Item Replacement Valid List Selection 

Description 

Select an equivalence 
class containing a single 
non-alphanumeric value 
(other than those in the 
valid set, if applicable) 

Select an equivalence 
class containing multiple 
non-alphanumeric values 
(other than those in the 
valid set, if applicable) 

Select an equivalence 
class containing a Null 
value 

Select an equivalence 
class containing all 
values in the specified 
list 

Source N/A N/A N/A (Myers 1979) 

Rule Type DSSR DSSR DSSR DSSR 

Set Type List or Range List or Range List or Range List or Range 

Valid or Invalid Invalid Invalid Invalid Valid 

Original Datatype All All All All 

Test Datatype  
Single Non-
Alphanumeric 

Multiple Non-
Alphanumeric 

Null Same as original 

Test Data Length 1 Max 0 Max 

# Fields Populated 1 1 1 1 

# Tests Derived 0 0 0 0 
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Table 8-4: Atomic Rules for Equivalence Partitioning (continued). 

Attribute Values Values Values Values 

Test Method Equivalence Partitioning  Equivalence Partitioning  Equivalence Partitioning  Equivalence Partitioning  

Number EP13 EP14 EP15 EP16 

Identifier RDVS VTCCMin ITCCMax ITCCMin 

Name 
Random Data Value 
Selector 

Valid Test Case 
Constructor – Minimised  

Invalid Test Case 
Constructor – Maximised  

Invalid Test Case 
Constructor – Minimised 

Description 

Selects a random value 
from an equivalence 
class 

Construct the minimum 
number of tests required 
to cover all valid values 
from all valid equivalence 
classes 

Construct one test for 
each invalid test data 
value (i.e. one field is 
assigned an invalid value 
selected from an invalid 
equivalence class while 
all others are assigned 
nominal values) 

Construct the minimum 
number of test cases 
reuiqred to cover all 
invalid values (i.e. all 
fields in each test are 
assigned invalid values) 

Source N/A (Myers 1979) (Myers 1979) (Myers 1979) 

Rule Type DISR TCCR TCCR TCCR 

Set Type List or Range List or Range List or Range List or Range 

Valid or Invalid 
Depends on whether the 
class is valid or invalid 

Valid Invalid Invalid 

Original Datatype All All All All 

Test Datatype  Same as original Same as original Same as original Same as original 

Test Data Length Max Max Max Max 

# Fields Populated 1 
n, where n is the number 
of input fields 

n, where n is the number 
of input fields 

n, where n is the number 
of input fields 

# Tests Derived 0 
1 to m, where m = # valid 
classes selected 

m, where m = # invalid 
classes selected 

m, where m = # invalid 
classes selected 

 

Table 8-5: Atomic Rules for Equivalence Partitioning (continued). 

Attribute Values Values 

Test Method Equivalence Partitioning  Equivalence Partitioning  

Number EP17 EP18 

Identifier NOM VTCCMax 

Name Nominal Data Value Selector 
Valid Test Case Constructor - 
Maximised 

Description 

Selects the nominal (i.e. mid-
point) value from an equivalence 
class 

Construct one test for each valid 
test data value (i.e. one field is 
assigned a valid value selected 
from a valid equivalence class 
while all others are assigned 
nominal values) 

Source N/A (Myers 1979) 

Rule Type DISR TCCR 

Set Type List or Range List or Range 

Valid or Invalid 
Depends on whether the class is 
valid or invalid 

Valid 

Original Datatype All All 

Test Datatype  Same as original Same as original 

Test Data Length Max Max 

# Fields Populated 1 
n, where n is the number of 
input fields 

# Tests Derived 0 
1 to m, where m = # valid 
classes selected 
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B.2 Boundary Value Analysis 

The following tables contain definitions of Atomic Rules for Boundary Value Analysis.  

Table 8-6: Atomic Rules for Boundary Value Analysis. 

Attribute Values Values Values Values 

Test Method Boundary Value Analysis  Boundary Value Analysis  Boundary Value Analysis Boundary Value Analysis  

Number BVA1 BVA2 BVA3 BVA4 

Identifier LBM LB LBP UBM 

Name 
Lower Boundary –  
Selection 

Lower Boundary 
Selection 

Lower Boundary +  
Selection 

Upper Boundary –  
Selection 

Description 
Select value just below 
the lower boundary of an 
equivalence class 

Select a value on the 
lower boundary of an 
equivalence class 

Select a value just above 
the lower boundary of an 
equivalence class 

Select a value just below 
the upper boundary of an 
equivalence class 

Source (BS 7925-2) (Myers 1979) (Myers 1979) (Myers 1979) 

Rule Type DISR DISR DISR DISR 

Set Type Range Range Range Range 

Valid or Invalid 
Depends on partition 
validity  

Depends on partition 
validity  

Depends on partition 
validity  

Depends on partition 
validity  

Original Datatype 
Integer, Real, Single 
Alpha, Single Non-
Alphanumeric  

Integer, Real, Single 
Alpha, Single Non-
Alphanumeric  

Integer, Real, Single 
Alpha, Single Non-
Alphanumeric  

Integer, Real, Single 
Alpha, Single Non-
Alphanumeric  

Test Datatype  Same as original Same as original Same as original Same as original 

Test Data Length Same as original Same as original Same as original Same as original 

# Fields Populated 1 1 1 1 

# Tests Derived 0 0 0 0 

 

Table 8-7: Atomic Rules for Boundary Value Analysis (continued). 

Attribute Values Values Values Values 

Test Method Boundary Value Analysis  Boundary Value Analysis  Boundary Value Analysis Boundary Value Analysis  

Number BVA5 BVA6 BVA7 BVA8 

Identifier UB UBP FLIS LLIS 

Name 
Upper Boundary 
Selection 

Upper Boundary +  
Selection 

First List Item Selection Last List Item Selection 

Description 
Select a value on the 
upper boundary of an 
equivalence class 

Select a value just above 
the upper boundary of an 
equivalence class 

Select the first item in a 
list 

Select the last item in a 
list 

Source (Myers 1979) (BS 7925-2) (Myers 1979) (Myers 1979) 

Rule Type DISR DISR DISR DISR 

Set Type Range Range List List 

Valid or Invalid 
Depends on partition 
validity  

Depends on partition 
validity  

Valid Valid 

Original Datatype 
Integer, Real, Single 
Alpha, Single Non-
Alphanumeric  

Integer, Real, Single 
Alpha, Single Non-
Alphanumeric  

All All 

Test Datatype  Same as original Same as original Same as original Same as original 

Test Data Length Same as original Same as original Same as original Same as original 

# Fields Populated 1 1 1 1 

# Tests Derived 0 0 0 0 
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Table 8-8: Atomic Rules for Boundary Value Analysis (continued). 

Attribute Values Values Values Values 

Test Method Boundary Value Analysis Boundary Value Analysis Boundary Value Analysis  Boundary Value Analysis 

Number BVA9 BVA10 BVA11 BVA12 

Identifier MIR AFLLM1 ALLM1 SLIS 

Name 
Missing Item 
Replacement 

Attempt First List Item –  
Selection  

Attempt Last List Item + 
Selection  

Second List Item 
Selection  

Description Replace a field with null 
Attempt to select a list 
item before the first item 
in a list  

Attempt to select a list 
item after the last item in 
a list  

Selects the second item 
in a list 

Source (Myers 1979)  N/A N/A N/A 

Rule Type DISR DISR DISR DISR 

Set Type List or Range List List List 

Valid or Invalid Invalid Invalid Invalid Valid 

Original Datatype All All All All 

Test Datatype  Null Same as original Same as original Same as original 

Test Data Length 0 Same as original Same as original Same as original 

# Fields Populated 1 1 1 1 

# Tests Derived 0 0 0 0 

 

Table 8-9: Atomic Rules for Boundary Value Analysis (continued). 

Attribute Values 

Test Method Boundary Value Analysis  

Number BVA13 

Identifier LLIS 

Name 
Second Last List Item 
Selection  

Description 
Selects the second last 
item in a list 

Source N/A 

Rule Type DISR 

Set Type List 

Valid or Invalid Valid  

Original Datatype All 

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated 1 

# Tests Derived 0 
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B.3 Syntax Testing  

The following tables contain definitions of Atomic Rules for Syntax Testing.  

Table 8-10: Atomic Rules for Syntax Testing. 

Attribute Values Values Values Values 

Test Method Syntax Testing  Syntax Testing  Syntax Testing  Syntax Testing  

Number ST1 ST2 ST3 ST4 

Identifier  RMLC RPLC AECE RMFC 

Name Remove last character Replace last character  
Add extra character to 
end of field 

Remove first character 

Description 
Remove the last 
character of an input 
string 

Replace the last 
character of a string with 
an invalid value 

Add an extra character to 
the end of a string 

Remove the first 
character of a string 

Source 
(Beizer 1990, Marick 
1995) 

(Marick 1995) 
(Beizer 1995, Marick 
1995) 

N/A 

Rule Type DISR DISR DISR DISR 

Set Type List or Range List or Range List or Range List or Range 

Valid or Invalid Invalid Invalid Invalid Invalid 

Original Datatype All All All All 

Test Datatype  Same as original Same as original Same as original Same as original 

Test Data Length 
m - 1, where m is the 
original field length 

Same as original 
m + 1, where m is the 
original field length 

m - 1, where m is the 
original field length 

# Fields Populated 1 1 1 1 

# Tests Derived 0 0 0 0 

 

Table 8-11: Atomic Rules for Syntax Testing (continued). 

Attribute Values Values Values Values 

Test Method Syntax Testing  Syntax Testing  Syntax Testing  Syntax Testing  

Number ST5 ST6 ST7 ST8 

Identifier  RPFC AECS ULL LUL 

Name Replace first character  
Add extra character to 
start of field 

Uppercase a lowercase 
letter 

Lowercase an uppercase 
letter 

Description 
Replace the first 
character of a string with 
an invalid value 

Add an extra character to 
the start of a string  

Change the case of a 
uppercase letter to 
lowercase 

Change the case of a 
lowercase letter to 
uppercase 

Source N/A N/A (Marick 1995) (Marick 1995) 

Rule Type DISR DISR DISR DISR 

Set Type List or Range List or Range List or Range List or Range 

Valid or Invalid Invalid Invalid Invalid Invalid 

Original Datatype All All Alpha Alpha 

Test Datatype  Same as original Same as original Same as original Same as original 

Test Data Length Same as original 
m + 1, where m is the 
original field length 

Same as original Same as original 

# Fields Populated 1 1 1 1 

# Tests Derived 0 0 0 0 
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Table 8-12: Atomic Rules for Syntax Testing (continued). 

Attribute Values Values Values Values 

Test Method Syntax Testing  Syntax Testing  Syntax Testing  Syntax Testing  

Number ST9 ST10 ST11 ST12 

Identifier  NAI DF AAF SELA 

Name Null all input Duplicate Field Add a field 
Select Each List 
Alternative 

Description 

Construct a test case 
that is empty 

Construct a test case 
that has one field 
duplicated (all other 
fields are assigned their 
nominal value) 

Construct a test case 
that contains a new field 
(contents of new field 
must be defined, 
possibly using GQAS)  

For a specification with a 
list, create test cases 
where each alternative in 
each list is selected once 
(all other fields are 
assigned nominal values) 

Source (Beizer 1990) (BS 7925-2, Beizer 1995) 
(BS 7925-2, Beizer 
1995) 

(Marick 1995) 

Rule Type TCCR TCCR TCCR TCCR 

Set Type List or Range All All All 

Valid or Invalid Invalid Invalid Invalid Valid 

Original Datatype All All All All 

Test Datatype  Null Same as original Same as original Same as original 

Test Data Length 0 Same as original Same as original Same as original 

# Fields Populated 
n, where n is the number 
of specification fields  

n, where n is the number 
of specification fields  

n, where n is the number 
of specification fields  

n, where n is the number 
of specification fields  

# Tests Derived 1 1 1 
p, where p is the number 
of alternatives  

 
Table 8-13: Atomic Rules for Syntax Testing (continued). 

Attribute Values Values Values Values 

Test Method Syntax Testing  Syntax Testing  Syntax Testing  Syntax Testing  

Number ST13 ST14 ST15 ST16 

Identifier  SALA SALAR RR SC 

Name 
Select All List 
Alternatives  

Select All List 
Alternatives in Reverse 
Order 

Reference Replacement Syntax Cover 

Description 

Select every alternative 
from a list in the one test  

Select every alternative 
from a list in the reverse 
order in the one test 

For non-terminal fields 
that references other 
terminals, create a test 
case in which the non-
terminal references itself 

Construct a set of test 
cases which link-cover 
the syntax graph of the 
specification under test 

Source (Marick 1995) (Marick 1995) (Marick 1995) 
(Beizer 1995, Hetzel 
1988) 

Rule Type DISR DISR TCCR TCCR 

Set Type All All All All 

Valid or Invalid Invalid Invalid Invalid Valid 

Original Datatype All All All All 

Test Datatype  Same as original Same as original Same as original Same as original 

Test Data Length Same as original Same as original Same as original Same as original 

# Fields Populated 1 1 
n, where n is the number 
of specification fields  

n, where n is the number 
of specification fields 

# Tests Derived 0 0 
q, where q is the number 
of references to other 
non-terminals  

r, where r is the number 
of basis paths 
(Pressman 1992) 
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Table 8-14: Atomic Rules for Syntax Testing (continued). 

Attribute Values Values Values 

Test Method Syntax Testing  Syntax Testing  Syntax Testing  

Number ST17 ST18 ST19 

Identifier  AMC RMC RF 

Name Add Middle Character 
Remove Middle 
Character 

Reverse All Fields 

Description 
Adds a character to the 
middle of a test data 
value 

Removes a character 
from the middle of a test 
data value 

Constructs a test case in 
which all input fields are 
reversed  

Source N/A N/A N/A 

Rule Type DIMR DIMR TCCR 

Set Type List or Range List or Range List or Range 

Valid or Invalid Invalid Invalid  
Depends on whether rule 
is applied to valid or 
invalid values  

Original Datatype All All All 

Test Datatype  Any Any Same as original 

Test Data Length 
m - 1, where m is the 
original field length 

m + 1, where m is the 
original field length 

Same as original  

# Fields Populated 1 1 1 

# Tests Derived 0 0 1 

 

B.4 State Transition Testing 

The following Data-Set Selection Rule was defined for supporting State Transition Testing (see Chapter 

3, Section 3.6.1).  

Table 8-15: An Atomic Rule for State Transition Testing.  

Attribute Values 

Test Method State Transition Testing   

Number STT1 

Identifier  ILS 

Name Invalid List Selection 

Description 
Selects an equivalence class containing the set of all 
input values for a state transition diagram that are 
valid at all other states other than the current state 

Source N/A 

Rule Type DSSR 

Set Type List or Range 

Valid or Invalid Invalid 

Original Datatype All 

Test Datatype  Same as original 

Test Data Length Max 

# Fields Populated 1 

# Tests Derived 0 
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B.5 Combinatorial Testing Methods 

The following tables contain definitions of Atomic Rules for various combinatorial testing methods.  

Table 8-16: An Atomic Rule for the combinatorial testing method All Combinations. 

Attribute Definition 

Test Method Combinatorial Testing 

Number CT1 

Identifier  AC 

Name All Combinations  

Description 
Construct every possible combination of test data values, which may be selected by the Data-Item 
Selection Rules and Data-Item Manipulation Rules of other black-box testing methods. 

Source (Grindal, Lindström, Offutt & Andler 2004) 

Rule Type TCCR 

Set Type List or Range  

Valid or Invalid Depends on whether rule is applied to valid or invalid values  

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived Approximately 

N

i iV
1

test cases, where N is the number of parameters in the input string and where 

each parameter has Vi values.   

 

Table 8-17: An Atomic Rule for the combinatorial testing method Each Choice. 

Attribute Definition 

Test Method Combinatorial Testing 

Number CT2 

Identifier  EC 

Name Each Choice 

Description 
Construct a test of test cases by including test data values for each input field in at least one test case. 
The test data values may be selected by the Data-Item Selection Rules and Data-Item Manipulation 
Rules of other black-box testing methods. 

Source (Ammann & Offutt 1994) 

Rule Type TCCR 

Set Type List or Range 

Valid or Invalid Depends on whether rule is applied to valid or invalid values  

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived i
N
i VMax 1  test cases, where N is the number of parameters in the input string and where each 

parameter has Vi values.   
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Table 8-18: An Atomic Rule for the combinatorial testing method Base Choice. 

Attribute Definition 

Test Method Combinatorial Testing 

Number CT3 

Identifier  BC 

Name Base Choice 

Description 

Select a ‘base’ test case in which each input field is assigned one test data value. Construct new test 
cases by varying the test data values of each field of the base test case one at a time. The values for 
the base test case and the varying values may be selected by the Data-Item Selection Rules and Data-
Item Manipulation Rules of other black-box testing methods. 

Source (Ammann & Offutt 1994) 

Rule Type TCCR 

Set Type List or Range 

Valid or Invalid Depends on whether rule is applied to valid or invalid values 

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived At least 



N

i
iV

1

)1(1  test cases, where N is the number of parameters in the input string and 

where each parameter has Vi values.   

 

Table 8-19: An Atomic Rule for the combinatorial testing method Orthogonal Array Testing (also 
known as Pair-Wise Testing). 

Attribute Definition 

Test Method Combinatorial Testing 

Number CT4 

Identifier  OA 

Name Orthogonal Array Testing  

Description 
Construct an orthogonal array of test data values, which may be selected by the Data-Item Selection 
Rules and Data-Item Manipulation Rules of other black-box testing methods. 

Source (Mandl 1985) 

Rule Type TCCR 

Set Type List or Range 

Valid or Invalid Depends on whether rule is applied to valid or invalid values 

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived Approximately 
2

iV  test cases, where j
N
ji VMaxV 1  where N is the number of parameters in the 

input string and where each parameter has Vi values.   
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Table 8-20: Atomic Rules for the combined combinatorial testing method Base Choice + Orthogonal 
Array Testing. 

Attribute Definition 

Test Method Combinatorial Testing 

Number CT5 

Identifier  BC+OAT 

Name Combined Strategy: Base Choice + Orthogonal Array Testing 

Description 
Apply the base-choice rule first to select a set of base-choice test cases and then create an orthogonal 
array of the values that were selected for each field of each test case.  

Source (Grindal, Lindström, Offutt & Andler 2004) 

Rule Type TCCR 

Set Type List or Range 

Valid or Invalid Depends on whether rule is applied to valid or invalid values  

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived 
Approximately 

2
iV  test cases, where j

N
ji VMaxV 1  where N is the number of parameters in the 

input string and where each parameter has Vi values that were selected using the base-choice 
approach.   

 

Table 8-21: Atomic Rules for the combined combinatorial testing method Base Choice + Heuristic 
Pair-Wise Testing. 

Attribute Definition 

Test Method Combinatorial Testing 

Number CT6 

Identifier  BC+HPW 

Name Combined Strategy: Base Choice + Heuristic Pair-Wise 

Description 
Apply the base-choice TCCR CT3 to select a set of base-choice test cases and then use the ‘heuristic 
pair-wise’ algorithm to them to create a new set of test cases from them. 

Source (Grindal, Lindström, Offutt & Andler 2004) 

Rule Type TCCR  

Set Type List or Range 

Valid or Invalid Depends on whether rule is applied to valid or invalid values  

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived 
Approximately 

2
iV  test cases, where j

N
ji VMaxV 1  where N is the number of parameters in the 

input string and where each parameter has Vi values that were selected using the base-choice 
approach.   
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Table 8-22: An Atomic Rule for the combinatorial testing method Specification-Based Mutation 
Testing. 

Attribute Definition 

Test Method Specification-Based Mutation Testing 

Number SBMT1 

Identifier  SSM 

Name Single-Substitution Mutation  

Description 

Construct a base test case by selecting one a valid test data value for each input field. Then, construct 
a series of mutant test cases by substituting one field for another field, one substitution per test case. 
Repeat this process until every field has been substituted for every other field. The test data values in 
the base test case can be selected by the Data-Item Selection Rules and Data-Item Manipulation Rules 
of other black-box testing methods. 

Source (Murnane & Reed 2001)  

Rule Type TCCR  

Set Type List or Range  

Valid or Invalid Depends on whether rule is applied to valid or invalid values  

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameter in the input string 

# Tests Derived )1( nn  test cases, where n is the number of parameters in the input string. 

 

Table 8-23: An Atomic Rule for the combinatorial testing method Specification-Based Mutation 
Testing. 

Attribute Definition 

Test Method Specification-Based Mutation Testing  

Number SBMT2 

Identifier  MSM 

Name Multiple-Substitution Mutation  

Description 

Construct a base test case by selecting one a valid test data value for each input field. Then, construct 
a series of mutant test cases by substituting one field for another n other field, with n substitutions per 
test case, where n is the number of fields in the test case. Repeat this field until every pair of fields has 
been substituted for every other pair of fields. The test data values in the base test case can be 
selected by the Data-Item Selection Rules and Data-Item Manipulation Rules of other black-box testing 
methods. 

Source (Murnane & Reed 2001)  

Rule Type TCCR  

Set Type List or Range  

Valid or Invalid Depends on whether rule is applied to valid or invalid values  

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived )( mnO  test cases, where n is the number of parameters in the input string and m is the number of 

parameters substituted per mutant. 
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Table 8-24: An Atomic Rule for the combinatorial method Specification-Based Mutation Testing. 

Attribute Definition 

Test Method Specification-Based Mutation Testing  

Number SBMT3 

Identifier  APM 

Name All-Permutations Mutation  

Description 
Construct a base test case by selecting one a valid test data value for each input field. Then, construct 
all permutations of the base test case. The test data values in the base test case can be selected by the 
Data-Item Selection Rules and Data-Item Manipulation Rules of other black-box testing methods. 

Source (Murnane & Reed 2001)  

Rule Type TCCR  

Set Type List or Range  

Valid or Invalid Depends on whether rule is applied to valid or invalid values  

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived 
)!(
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where n is the number of parameters in the entire input string, and r is the number of parameters that 
are included in each test case. n = r iff all parameters are included in each test case.  

 

Table 8-25: An Atomic Rule for the combinatorial testing method Specification-Based Mutation 
Testing. 

Attribute Definition 

Test Method Specification-Based Mutation Testing 

Number SBMT4 

Identifier  ACM 

Name All-Combinations Mutation  

Description 
Construct a base test case by selecting one a valid test data value for each input field. Then, construct 
all combinations of the base test case. The test data values in the base test case can be selected by 
the Data-Item Selection Rules and Data-Item Manipulation Rules of other black-box testing methods. 

Source (Murnane & Reed 2001)  

Rule Type TCCR  

Set Type List or Range  

Valid or Invalid Depends on whether rule is applied to valid or invalid values  

Original Datatype All  

Test Datatype  Same as original 

Test Data Length Same as original 

# Fields Populated n, where n is the number of parameters in the input string 

# Tests Derived !)!(

!
),(

rrn

n
rnC


  

where n is the number of parameters in the entire input string, and r is the number of parameters that 
are included in each test case. n = r iff all parameters are included in each test case.  
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Appendix C. Atomic Rules’ Quick Reference Guide  

The ‘Quick Reference Guide’ that lists Atomic Rules from EP, BVA and ST, which was presented to 

participants of the industrial experiment, are shown below (Table 8-26, Table 8-27 and Table 8-28). Five 

Atomic Rules from ST are not included, as these additional Atomic Rules were added to this method after 

the experiment was complete.  

Table 8-26: Atomic Rules for Equivalence Partitioning. 

# Rule ID Rule Name Rule Type 
Valid or 
Invalid 

EP1 LLBS Less Than Lower Boundary Selection DSSR Invalid 

EP2 GUBS Greater Than Upper Boundary Selection DSSR Invalid 

EP3 LUBS Lower to Upper Boundary Selection DSSR Valid 

EP4 IR Integer Replacement DSSR Invalid 

EP5 RNR Real Number Replacement DSSR Invalid 

EP6 SAR Single Alpha Replacement DSSR Invalid 

EP7 MAR Multiple Alpha Replacement DSSR Invalid 

EP8 MANR Multiple Alphanumeric Replacement DSSR Invalid 

EP9 SNAR Single Non-Alphanumeric Replacement DSSR Invalid 

EP10 MNAR Multiple Non-Alphanumeric Replacement DSSR Invalid 

EP11 NIR Null Item Replacement DISR Invalid 

EP12 VLIS Valid List Item Selection DISR Valid 

EP13 RDVS Random Data Value Selector DISR Depends 

EP14 VTCC Valid Test Case Constructor TCCR Valid 

EP15 ITCMax Invalid Test Case Constructor – Maximised TCCR Invalid 

EP16 ITCMin Invalid Test Case Constructor – Minimised TCCR Invalid 

 

Table 8-27: Atomic Rules for Boundary Value Analysis. 

# Rule ID Rule Name Rule Type 
Valid or 
Invalid 

BVA1 LBM Lower Boundary – Selection DISR Invalid 

BVA2 LB  Lower Boundary Selection DISR Valid 

BVA3 LBP Lower Boundary + Selection DISR Valid 

BVA4 UBM Upper Boundary – Selection DISR Valid 

BVA5 UB Upper Boundary Selection DISR Valid 

BVA6 UBP Upper Boundary + Selection DISR Invalid 

BVA7 FLIS  First List Item Selection DISR Valid 

BVA8 LLIS Last List Item Selection DISR Valid 

BVA9 MIR  Missing Item Replacement TCCR Invalid 
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Table 8-28: Atomic Rules for Syntax Testing. 

# Rule ID Rule Name Rule Type 
Valid or 
Invalid 

ST1 RMLC Remove last character DIMR Invalid 

ST2 RPLC  Replace last character DIMR Invalid 

ST3 AECE Add extra character to end DIMR Valid 

ST4 RMFC  Remove first character DIMR Invalid 

ST5 RPFC Replace first character DIMR Invalid 

ST6 AECS Add extra character to start DIMR Invalid 

ST7 ULL  Uppercase a lowercase letter DIMR Invalid 

ST8 LUL  Lowercase an uppercase letter DIMR Invalid 

ST9 NAI Null all input TCCR Depends 

ST10 DF Duplicate field TCCR Invalid 

ST11 AAF Add a field TCCR Invalid 

ST12 SELA  Select each list alternative TCCR Valid 

ST13 SALA Select all list alternatives TCCR Invalid 

ST14 SALAR Select all list alternatives in reverse order TCCR Invalid 
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Appendix D. Known Failures in the Address Parser  

The table below lists all known failures in the Address Parser program, which was used in the industrial 

experiment. This includes a description of the failure, an example input that is capable of detecting a failure, 

and a mapping to the Atomic Rules that can be used to detecting the failure.   

Table 8-29: Known defects in the Address Parser program. 

# Failure Description Example Input Example Output 

Atomic Rules 
Capable of 

Detecting the 
Failure 

1 Address with missing 
unit/flat/rsd identifier and 
missing space before unit 
number is accepted as correct  

100 / 200 Main Road 
Eltham 3095. 

Following address appears in 
Addresses-Correct.txt: 
100 / 200 Main Rd Eltham 3095 

BVA9 or EP11 
with EP16 

2 Missing unit/flat/rsd at start of 
address and missing separator 
(/ or ,), or invalid symbol in 
place of street name or street 
type, or replacing street name 
with symbol results, all result in 
error messages of street not 
found, invalid suburb and no 
full stop at end of address  

100 200 Main Road 
Eltham 3095. 
100 # Road Eltham 
3095. 
100 Main # Eltham 
3095. 

Following errors reported to error log: 
Error... Street not found. 
Error... There was no full stop at the 
end of the address.  
Error... Invalid suburb entered. 

EP1, EP2, EP4, 
EP5, EP6, EP7, 
EP8, EP9, 
EP10, EP11,  
BVA1, BVA6, 
BVA9, ST1, 
ST2, ST3, ST4, 
ST5, ST6, 
ST10, ST11, 
ST13, ST14 

3 Correct RSD addresses that 
include a unit and house 
number are output to correct 
address file without the RSD 
tag 

RSD 100 / 100 Main 
Street Eltham 3095. 

Following address appears in 
Addresses-Correct.txt: 
100 / 100 Main St Eltham 3095. 

EP12, ST12 

4 Missing unit or house number 
results in error message of 
incorrect spaces after house 
number  

UNIT 100 /  Main Road 
Eltham 3095. 

Following errors reported to error log: 
Error... Incorrect spaces after unit or 
flat symbol. 
Error... Number has too few digits. 
Must have 3. 
Error... Incorrect spaces after house 
or unit number. 

EP1, EP11, 
BVA9 

5 Multiple spaces or invalid data 
after C/- or C/o results in error 
message of illegal spaces 
before address  

C/-Main Road Eltham 
3095. 
C/o1 Main Road 
Greensborough 3088. 
C/oa Main Road 
Greensborough 3088. 
C/o  Main Road 
Greensborough 3088. 

Following error reported to error log: 
Error... Illegal spaces before address. 

EP1, EP2, 
EP11, BVA3, 
BVA9, ST3, 
ST6, ST10 

6 Forward slash and hyphen are 
accepted in place of full stop at 
end of address, which sit just 
above and below full stop in 
ASCII (this is a seeded fault) 

100 Main Street Eltham 
3095/ 

Following addresses appears in 
Addresses-Correct.txt: 
100 Main St Eltham 3095. 
100 Main St Eltham 3095. 

EP9 or BVA1 
and BVA6 

7 Valid postcode Ivanhoe East is 
rejected (this is a seeded fault). 
Error message is also 
incorrectly reported when 
multiple spaces are entered 
after suburb, or missing 
postcode, or missing postcode 
and extra spaces between 
suburb and postcode. 

100 Main Road Ivanhoe 
East 3079. 
100 Main Road Eltham    
3095. 
100 Main Road Eltham . 

Following error reported to error log: 
Error... Postcode does not match 
suburb. 

EP2, EP3, EP4, 
EP5, EP6, EP7, 
EP11, EP12, 
EP13, BVA3, 
BVA9, ST10, 
ST12 

 

 

8 Address with missing street 
name or street type is accepted 
as valid, correct address output 
file is missing street name and 
type, and no error is reported 

100 Road Eltham 3095. 
UNIT 100 / 100 Main  
Greensborough 3088. 

Following address appears in 
Addresses-Correct.txt: 
100 Eltham 3095. 
UNIT 100 / 100 Main  Greensborough 
3088. 

EP1, EP11, 
BVA1, BVA4, 
BVA9 
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# Failure Description Example Input Example Output 

Atomic Rules 
Capable of 

Detecting the 
Failure 

Continued from previous page… 

9 Accepts greater than 40 
characters in street name 

100 
aaaaaaaaaabbbbbbbbb
bccccccccccddddddddd
de St Eltham 3095. 

Following address appears in 
Addresses-Correct.txt: 
100 
Aaaaaaaaaabbbbbbbbbbccccccccccd
ddddddddde St Eltham 3095. 

EP2, BVA6 

10 The street Road St is rejected 
as invalid, while other variants 
such as Court Street are 
accepted. This error is also 
detected by multiple spaces 
after street and missing street 
name. 

Rejected: 
100 Road St Eltham 
3095. 
Accepted: 
100 Court St Eltham 
3095. 
Also detected by: 
100 Main Road     
Eltham 3095. 
100 Main Eltham 3095.  

Following error reported to errror log: 
Error... Invalid suburb entered. 

EP1, EP2, EP3, 
EP5, EP6, EP7, 
EP11, EP12, 
BVA1, BVA2, 
BVA3, BVA5, 
BVA7, BVA8, 
BVA9, ST1, 
ST2, ST3, ST4, 
ST5, ST6, 
ST10, ST12, 
ST14 

11 A large number of spaces 
between street name and 
street type results in an error 
message of street not found 

C/o Main   Road 
Greensborough 3088. 

Following error reported to error log: 
Error... Street not found. 

EP1, EP2, 
EP11, BVA1, 
BVA3, BVA9 
ST1, ST2, ST3, 
ST4, ST5, ST6, 
ST10, ST12, 
ST14 

12 Inserting extra spaces between 
suburb and postcode results in 
error message of spaces 
required after suburb 

UNIT 100 / 100 Main 
Road Greensborough   
3088. 

Following errors reported to error log: 
Error... Space required after suburb. 

EP3, EP12, 
ST2, ST3, ST5, 
ST6, ST11, 
ST13, ST14 

13 Program is not case sensitive - 
it does not report errors for 
lowercase at start of street 
name, street type or suburb, or 
lowercase unit, flat, rsd, c/o or 
c/  

100 main Road Eltham 
3095. 
100 Main rd Eltham 
3095. 

Following address appears in 
Addresses-Correct.txt: 
100 Main Rd Eltham 3095. 
100 Main Rd Eltham 3095. 

EP3, EP12, 
EP13, ST3, 
ST4, ST7, ST8, 
ST10, ST12 

14 Address strings of 99 
characters or more are not 
processed by the program and 
prevent all other addresses 
from being processed. 

100 
aaaaaaaaaabbbbbbbbb
bccccccccccddddddddd
deeeeeeeeeehhhhhhhh
hhiiiiiiiiiijj St 
Greensborough 3088. 

All output files are empty, including 
the error log 

EP2, BVA4, 
BVA5, BVA6, 
BVA8, ST13, 
ST14 

15 Street types are abbreviated in 
the correct address output file, 
regardless of which form they 
were input in  

100 Main Road Eltham 
3095. 
100 Main Rd Eltham 
3095. 

Following address appears in 
Addresses-Correct.txt: 
100 Main Rd Eltham 3095. 
100 Main Rd Eltham 3095. 

EP12, ST12 

16 Replacing the unit number with 
a symbol results in extra error 
messages of incorrect flat/unit 
symbol and incorrect spaces 
after house or unit number 

UNIT [ / 200 Main Road 
Greensborough 3088. 

Following errors reported to error log: 
Error... Number has too few digits. 
Must have 3. 
Error... Incorrect flat/unit symbol. 
Error... Number has too few digits. 
Must have 3. 
Error... Incorrect spaces after house 
or unit number. 

EP9, BVA1 

17 Replacing space after UNIT or 
C/o identifier, removing space 
after unit number or C/o, 
inserting extra spaces between 
the UNIT identifier and the unit 
number, or adding an invalid 
character after the UNIT tag, all 
result in addresses being 
accepted as correct 

UNITa100 / 200 Main 
Road Greensborough 
3088. 
UNIT 100/ 200 Main Road 
Greensborough 3088. 
C/oMain Road 
Greensborough 3088. 
UNIT   100 / 200 Main 
Road Greensborough 
3088. 
UNIT1 100 / 200 Main 
Road Greensborough 
3088. 

Following addresses appear in 
Addresses-Correct.txt: 
UNITa100 / 200 Main Road 
Greensborough 3088. 
UNIT 100/ 200 Main Road 
Greensborough 3088. 
C/o Ain Road Greensborough 3088. 
UNIT 100 / 200 Main Road 
Greensborough 3088. 
UNIT 100 / 200 Main Road 
Greensborough 3088. 

EP1, EP6, EP7, 
EP9, EP11, 
EP12, BVA1, 
BVA3, BVA6, 
BVA9, ST1, 
ST2 , ST3, 
ST4, ST5, ST6 



Appendices  Chapter 8 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 300 

# Failure Description Example Input Example Output 

Atomic Rules 
Capable of 

Detecting the 
Failure 

Continued from previous page… 

18 Invalid symbol in place of 
postcode results in error 
message of missing full stop 
being reported 

100 Main Road Eltham 
%. 

Following error reported to error log: 
Error... There was no full stop at the 
end of the address.  

EP1, EP4, EP5, 
EP6, EP7, EP8, 
EP9, EP10, 
EP11, BVA9, 
ST2, ST10 

19 Missing space after 
UNIT/FLAT/RSD tag results in 
error message of number 
having too few digits 

UNIT100 / 200 Main 
Road Greensborough 
3088. 

Following error reported to error log: 
Error... Number has too few digits. 
Must have 3. 

EP1, EP5, EP9, 
EP11, BVA1, 
BVA4, BVA9, 
ST1, ST4 

20 Replacing house number with 
a Real results in error 
messages incorrectly reporting 
there were incorrect spaces 
after the house number, space 
required after suburb, street 
not being found and invalid 
suburb being entered 

100.11 Main Road 
Eltham 3095. 

Following errors reported to error log: 
Error... Incorrect spaces after house 
or unit number. 
Error... Space required after suburb. 
Error... Street not found. 
Error... Invalid suburb entered. 

EP2, EP5 

21 Missing or invalid unit or house 
number results in error 
message of incorrect spaces 
after house number 

a Main Road Eltham 
3095. 
UNIT 100 / a Main Road 
Greensborough 3088. 

Following errors reported to error log: 
Error... Number has too few digits. 
Must have 3. 
Error... Incorrect spaces after house 
or unit number. 

EP6, EP7, ST2, 
ST1, ST2, ST3, 
ST4, ST5, ST6, 
ST11, ST14 

22 Invalid characters in house 
number correctly results in 
error message of invalid house 
number, but also that spaces 
after house number and suburb 
are incorrect, street was not 
found, invalid suburb and 
missing full stop 

a12C Main Road 
Greensborough 3088. 
[ Main Road 
Greensborough 3088. 
RSD A99 Main Grove 
Yan Yean 3755. 

Following errors reported to error log: 
Error... Number has too few digits. 
Must have 3. 
Error... Incorrect spaces after house 
or unit number. 
Error... Space required after suburb. 
Error... Street not found. 
Error... There was no full stop at the 
end of the address.  
Error... Invalid suburb entered. 

EP3, EP4, EP5, 
EP6, EP7, EP8, 
EP9, EP10, 
EP12, BVA1, 
BVA3, BVA6, 
ST1, ST2, ST3, 
ST5, ST6, 
ST11 

23 Missing house number results 
in two messages reporting that 
there were illegal spaces 
before the address 

 Main Road 
Greensborough 3088. 

Following errors reported to error log: 
Error... Illegal spaces before address. 
Error... Illegal spaces before address. 
Error... Number has too few digits. 
Must have 3. 
Error... Incorrect spaces after house 
or unit number. 

EP11, BVA9 

24 Inserting an integer between 
the street type and suburb 
results in error message of 
missing full stop and invalid 
suburb 

100 Main Road 5555 
Greensborough 3088. 

Following errors reported to error log: 
Error... There was no full stop at the 
end of the address.  
Error... Invalid suburb entered. 

EP4, EP9, 
EP10, ST5, 
ST6 

25 Removing the UNIT/FLAT/RSD 
identifier results in error 
message of illegal spaces 
before address 

 100 / 200 Main Road 
Greensborough 3088. 

Following errors reported to error log: 
Error... Illegal spaces before address. 
Error... Illegal spaces before address. 

EP1, EP11, 
BVA9 

26 Program does not detect data 
after the full stop field. 

100 Main Street Eltham 
3095.VIC 

Following address appears in 
Addresses-Correct.txt: 
100 Main Street Eltham 3095. 

ST3, ST10, 
ST11 

27 Street type Place is not 
accepted as correct and error 
message also reports invalid 
suburb. 

100 Main Place Eltham 
3095. 

Error... Street not found. 
Error... Invalid suburb entered. 

ST12 
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Appendix E. Known Failures in the Batch Processor  

The table below lists all known failures detectable in the Batch Processor program, which was used in 

the industrial experiment. This includes a description of the failure, an example input that is capable of 

detecting a failure, and a mapping to the Atomic Rules that can be used to detecting the failure.   

Table 8-30: Known defects in the Batch Processor program. 

# Failure Description Example Input Example Output 

Atomic Rules 
Capable of 

Detecting the 
Failure 

1 Averages across all batches 
are rounded, resulting in 
invalid results (averages 
were stored as integers, not 
Reals/doubles) 

sbatch 11AAA 
A11A 30, AA11A 31 
ebatch 11AAA 
lbatch 

Average computed as 60 EP2, EP3, EP12,   
BVA2, BVA3, 
BVA4, BVA5, 
BVA6, BVA7, 
BVA8 

2 Did not diagnose non-
matching sbatch and ebatch 
id’s 

sbatch 11AAA 
A11A 30 
ebatch 11BBB 
lbatch 

No error recorded in error log EP1, EP11, BVA2 
BVA4, BVA5, 
BVA6, BVA7, 
BVA8, BVA9, ST12 

3 Missing character from 
lbatch tag correctly 
diagnosed, but with extra 
error message of invalid 
batchid being reported 

sbatch 11AAA 
A11A 50 
ebatch 11AAA 
lbatc 

Line # 4: BatchIDCheck 
FAILED(format should be 
<d><d><l><l><l>) 
Line # 5: incorrect end of file, 
no lbatch detected 

ST1, ST4 

4 Did not diagnose data after 
sbatch, ebatch, lbatch or 
after a recordline 

sbatch 11AAA 11AAA 
A11A 30 30 
ebatch 11AAA 11AAA  
lbatch 
abcde 

No error recorded in error log ST11 

5 Did not diagnose missing 
sbatch id 

sbatch  
A11A 30 
ebatch 11AAA 
lbatch 

No error recorded in error log EP11, BVA9 

6 Did not diagnose missing or 
additional partid 

sbatch 11AAA 
 30 
ebatch 11AAA 
lbatch 
 
sbatch 11AAA 
A11A A11A 50 
ebatch 11AAA 
lbatch 

No error recorded in error log EP11, BVA9, ST11 

7 Did not diagnose missing 
ebatch tag 

sbatch 11AAA 
A11A 30 
 11AAA 
lbatch 

No error recorded in error log EP1, EP11, BVA9 

8 Did not diagnose missing 
ebatch id 

sbatch 11AAA 
A11A 30 
ebatch  
lbatch 

No error recorded in error log EP11, BVA9 

9 Did not diagnose spaces 
before sbatch 

     sbatch 11AAA 
A11A 30 
ebatch 11AAA 
lbatch 

No error recorded in error log ST11 

10 Did not diagnose spaces 
before ebatch 

sbatch 11AAA 
A11A 30 
     ebatch 11AAA 
lbatch 

No error recorded in error log ST11 

11 Did not diagnose spaces 
before lbatch 

sbatch 11AAA 
A11A 30 
ebatch 11AAA 
     lbatch 

No error recorded in error log ST11 
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# Failure Description Example Input Example Output 

Atomic Rules 
Capable of 

Detecting the 
Failure 

Continued from previous page…  

12 Did not diagnose extra 
spaces between partid and 
value 

sbatch 11AAA 
A11A     30 
ebatch 11AAA 
lbatch 

No error recorded in error log EP1, EP2, EP11, 
BVA3, BVA6, 
BVA9 

13 Missing input file is not 
reported as an error to the 
error log  

No input.txt file exists in 
folder  

No error recorded in error log EP11, BVA9 

14 Program crashes with a 
"divide by zero" error when 
the input file does not 
contain at least one batch 
with one valid recordline. 
This includes a batch with a 
missing or uppercase 
sbatch tag, missing or 
invalid values (e.g. alpha 
instead of integer or values  
< -99 or > 98), missing 
spaces between sbatch tag 
and id, missing spaces or 
invalid characters between 
partid and value, and on 
empty file 

 11AAA 
A11A 30 
ebatch 11AAA 
lbatch 
 
SBATCH 11AAA 
A11A 30 
ebatch 11AAA 
lbatch 
 
sbatch 11AAA 
A11A=30 
ebatch 11AAA 
lbatch 

Program crashed EP1, EP2, EP4, 
EP5, EP6, EP7, 
EP8, EP9, EP10, 
EP11, BVA1, 
BVA2, BVA3, 
BVA4, BVA6, 
BVA7, BVA9, ST1, 
ST2, ST3, ST4, 
ST5, ST6, ST7, 
ST10, ST11, ST12, 
ST13, ST14 

15 Misdiagnoses missing 
letters from partid and 
missing letters in sbatch and 
ebatch id's 

sbatch 11 
A11A 30 
ebatch 11AAA 
lbatch 
 
sbatch 11AAA 
A11A 30 
ebatch 11 
lbatch 
 
sbatch 11AAA 
11A 30 
ebatch 11 
lbatch 

Line # 2: Incorrect Data Type 
for Value Entered, please 
ensure it is an integer 

EP1, EP11, BVA9, 
ST1, ST4, ST5, 
ST10 

16 Did not diagnose missing 
space or extra space after 
comma on a recordline 

sbatch 11AAA 
A11A 30,B22B 25 
ebatch 11AAA 
lbatch 

No error recorded in error log BVA1, BVA4, 
BVA9, ST1, ST4 

17 Missing digit in sbatch id or 
value of -100 (when at least 
one recordline is valid) is 
reported as an invalid partid 

sbatch 1AAA 
A11A 50 
B11B -100 
ebatch 11AAA 
lbatch 

Line # 1: PartIDCheck 
FAILED(format should be 
<l><d><d><l>) 

ST1, ST2, ST3, 
ST6, ST10, ST11 

18 Misdiagnoses invalid partid 
as an invalid sbatch or 
ebatch identifier 

sbatch 11AAA 
1111A 50 
ebatch 11AAA 
lbatch 
 
sbatch 11AAA 
?A11A 50 
ebatch 11AAA 
lbatch 

Line # 2: BatchIDCheck 
FAILED(format should be 
<d><d><l><l><l>) 

ST1, ST2, ST3, 
ST4, ST5, ST6, 
ST10 

19 Did not diagnose invalid 
sbatch or ebatch id, and 
output calculations are 
incorrect 

sbatch 11AAA 
A11A 30 
ebatch 11 
lbatch 
 
sbatch 11 
A11A 30 
ebatch 11AAA 
lbatch 

No error recorded in error log 
and output calculations are 
incorrect 

EP1, EP11, BVA9 
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# Failure Description Example Input Example Output 

Atomic Rules 
Capable of 

Detecting the 
Failure 

Continued from previous page…  

20 Did not diagnose missing 
comma between two parts 

sbatch 11AAA 
A11A 30 B22B 25 
ebatch 11AAA 
lbatch 

No error recorded in error log EP1, EP11, BVA9, 
ST1, ST4 

21 Did not diagnose extra 
comma between two parts 

sbatch 11AAA 
A11A 30,, B22B 25 
ebatch 11AAA 
lbatch 

No error recorded in error log ST10 

22 Program does not diagnose 
uppercase S in sbatch tag 
when there is at leats one 
other valid batch in the file 

Sbatch 11AAA 
A11A 30, B22B 25 
ebatch 11AAA 
lbatch 

No error recorded in error log ST7 

23 Program does not diagnose 
partid and value in the 
reverse order 

sbatch 11AAA 
50 A11A 
ebatch 11AAA 
lbatch 

No error recorded in error log Incorrect use of 
ST14, could be 
detected using 
SBMT substitution 
rule 

24 Does not diagnose missing 
value when there are more 
than two recordlines in a file 

sbatch 11AAA 
A11A 50 
B11B  
ebatch 11AAA 
lbatch 

No error recorded in error log EP11, BVA9 
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Appendix F. Functional Specification of the Atomic Rules Testing Tool 

F.1 Overview 

This section provides a detailed, low-level functional specification for the Atomic Rules Testing Tool. It 

starts by providing an overview of the ‘screens’ (i.e. GUI components) of ARTT (Section F.2) and 

illustrating the process of creating Atomic Rules, creating specifications and generating test data (Section 

F.3). This is followed by a detailed explanation of the functionality of each GUI screen (Section F.4), 

pseudo code that explains how ARTT generates test data (Section F.6) and a definition of the datatypes that 

are covered by ARTT (Section F.5).  

F.2 High-Level Screen Design and Navigation  

As outlined in Chapter 4, ARTT functionality is divided into two main areas: administrator and user 

functionality. The screens that are available in the system are as follows (Figure 8-7).   

 Main Menu. This screen allows the user to navigate either to user functions or administrator 

functions (see Section F.4.1).   

 Atomic Rules Editor. This screen allows administrators to create, edit and delete Atomic Rules 

(see Section F.4.2).   

 Author Selector. This screen is accessed from the Atomic Rules editor. It allows administrators 

to select the sources (i.e. authors of textbooks, standards and papers on software testing) that 

have published existing Atomic Rules (see Section F.4.3).  

 Character Viewer. This screen allows administrators to view the individual characters that are 

included in each datatype (e.g. Integer, Real, Alpha), which are used within the Atomic Rules 

Editor to specify the Original Datatype and Test Datatype of each Atomic Rule, and within the 

Specification Editor to specify the datatype of each input field under test (see Section F.4.4).  

 Specification Viewer. This screen allows users to view all specifications that have been created, 

and to initiate creation, editing and deletion of specifications (see Section F.4.5).  

 Specification Editor. This screen allows users to define the input fields of each specification, 

assign domain knowledge to the specification, attach files to the specification and view a BNF 

representation of the specification that is automatically generated by ARTT (see Section F.4.6).  

 Atomic Rules Selector. This screen allows users to apply a chosen set of Atomic Rules from 

EP, BVA and ST to a specification to automatically generate black-box test data (see Section 

F.4.7).  
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Figure 8-7: Screens and navigation within the Atomic Rules Testing Tool (from Chapter 4). 

 

F.3 Activity Diagrams 

The two activity diagrams below illustrate how a user (Figure 8-8) and an administrator (Figure 8-9) can 

interact with ARTT2. Nodes in these diagrams that are prefixed with a ‘U’ represent actions that can be 

carried out by a user or an administrator, while notes prefixed with ‘S’ represent system actions. The two 

scenarios that are represented in Figure 8-8 and Figure 8-9 are as follows.  

(a) The user starts the system (from U1).  

(b) The user chooses to navigate to user area of functionality within the system (from U2.1). 

a. The user creates a new specification (from U3.1). 

b. The user edits an existing specification (from U3.2). 

c. The user deletes an existing specification (from U3.4). 

d. The user applies a set of Atomic Rules to a specification to generate black-box test 

data (from U3.3). 

(c) The administrator chooses to navigate to administrator functionality (from U2.2). 

a. The administrator creates a new Atomic Rule (from U9.1). 

b. The administrator edits an existing Atomic Rule (from U9.2). 

c. The administrator deletes an existing Atomic Rule (from U9.2). 

d. The administrator views the character set covered by a particular datatype (from 

U9.4). 

                                                           
2 Flow of event diagrams are useful diagramming can be used in use case testing (CSTP Module 2 2007).  
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Figure 8-8: Activity diagram depicting a user interacting with ARTT. 

U1
User starts system by double clicking ARTT icon

S2
Specification Viewer is displayed

U2.1
User chooses User Functions

S1
System starts, Main Menu is displayed

U2.2
User chooses Administration Functions

U3.2
User selects a specification 

and clicks Edit

U3.1
User clicks New

U3.4
User selects a 

specification and 
clicks Delete

S10
System asks for 

confirmation of delete

U8.1
User confirms 

delete

U8.2
User cancels 

delete

S11
Specification is 

deleted

Return to S2

Return to S2

S3
Specification Editor displayed

New 
specification 

created

Existing 
specification 

opened

U4.1
User enters 

required details 
and clicks OK

U4.2
User clicks 

Cancel

Return to S2
S4

System saves 
specification to 

database

Return to S2

U4.4
User clicks 

Atomic Rules

S6
Atomic Rules 

Selector screen is 
displayed

U3.3
User selects a 

specification Select/
Apply Atomic Rules

U4.3
User clicks 

View Datatype 
Character Sets

S5
Character 
Viewer is 
Displayed

U5
User clicks Close

Return to S3 
or S12

Go to S12

U6
User selects Atomic Rules

S8
System generates tests 
and outputs them to file 

Return to S7

U7.2
User clicks Apply/OK

S7
Atomic Rules are selected 

U7.1
User clicks Generate Test Cases

S9
System saves Atomic 

Rules selection 

Return to S7

U7.3
User clicks Close

Return to S2 
or S3
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Figure 8-9: Activity diagram depicting an administrator (‘Admin’) interacting with ARTT. 

S12
Atomic Rules Editor is displayed

From U2.2

U9.1
Admin clicks 

New

U9.2
Admin clicks 

Edit

U9.3
Admin clicks 

Delete

U9.4
Admin clicks View 

Datatype 
Character Sets

U10
Admin clicks 

OK

U9.5
Admin clicks 

Close

Go to S5

S13
Form field are cleared 

and enabled

S15
Form populated 
with details of 
selected rule

U11
Admin clicks 

Cancel

S14
Changes are 

saved

Return to S12

Return to S1 
or S3

S16
System asks for 
confirmation of 

delete

U12.1
Admin confirms 

delete

U12.2
Admin cancels 

delete

S17
Atomic Rule is 

deleted

Return to S12

Return to S12

Return to S1 
or S3

 

F.4 Graphical User Interface Screens and their Associated Functionality  

The functionality of each screen within ARTT is described in the following subsections (Section F.4.1 

to F.4.7). Each is described using a tabular format, containing the following information: 

 Purpose: a brief statement that explains what the screen aims to achieve; 

 Screen Capture: a screen capture that illustrates the screen’s GUI; and 

 Fields: a detailed description of each field within each screen, including the field’s type. As 

some fields are more complex than others, some are described in more detail.  
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F.4.1 The Main Menu 

The Main Menu (Table 8-31) allows users and administrators to navigate to the user functions area of 

the tool, which enable the creation of specifications and the generation of test cases, or to the administration 

functions area, which enable the creation, editing or deletion of Atomic Rules. 

Table 8-31: The Main Menu. 

Main Menu 

Purpose: this is the first screen that is displayed when the system starts. It allows the user to navigate to: 

 the user screens of the system, such as to create specifications or to generate test cases, or 

 to the administration screens of the system, such as to create, edit or delete Atomic Rules.  

User Interface  

 

 
 

Field Field Type Functionality  

Administration 
Login 

Radio Button Selecting this option and clicking OK opens the Atomic Rules Editor (Table 
8-32). 

User Login Radio Button Selecting this option and clicking OK opens the Specification Viewer (Table 
8-36).  

OK Button Opens the Atomic Rules Editor or Specification Viewer, depending on which 
option is selected.  

Exit Button Closes the Main Menu and exits the system.  
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F.4.2 The Atomic Rules Editor 

The Atomic Rules Editor (Table 8-32) allows administrators to create, edit and delete Atomic Rules. 

Table 8-32: The Atomic Rules Editor. 

Atomic Rules Editor 

Purpose:  This screen is accessed from the Main Menu (Table 8-31). It allows users to view, create, edit and 
delete Atomic Rules. Most fields on this screen correspond directly with attributes of the Atomic Rules schema 
(see Chapter 3, Section 3.2.2). On this screen a user can: 

 View a rule by single left clicking one in the Atomic Rules list at the top of the screen 

 Create a new rule by clicking New, completing all form fields and clicking OK 

 Edit a rule by selecting one clicking Edit, making the changes and clicking OK 

 Delete a rule by selecting one and clicking Delete 

User Interface  

 

 
 

Field Field Type Functionality  

Atomic Rules Record List Lists all Atomic Rules defined in the system. Clicking on a rule populates all 
fields with data for that rule.  

New Button Initiates creation of a new Atomic Rule by clearing all form fields.  

Edit Button Initiates editing of the currently selected Atomic Rule.  
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Field Field Type Functionality  

Continued from previous page… 

Delete Button Initiates deletion of the currently selected rule. 

Test Method Combo Box  Lists black-box methods Atomic Rules are currently defined for. Options are:  

 Equivalence Partitioning 

 Boundary Value Analysis 

 Syntax Testing 

Rule Number Text Box Corresponds to the Number attribute of the Atomic Rules schema.  

Identifier Text Box Corresponds to the Identifier attribute of the Atomic Rules schema.  

Name Text Box Corresponds to the Name attribute of the Atomic Rules schema.  

Description  Text Box Corresponds to the Description attribute of the Atomic Rules schema.  

Source (…) Text Box & 
Button  

Corresponds to the References attribute of the Atomic Rules schema. Clicking 
the “…” button (right of the field) opens the Author Selector (Table 8-34), 
enabling the user to identify the authors that have published the current rule.  

Rule Type Combo Box Corresponds to the Rule Type attribute of the Atomic Rules schema.  
Options are:  

 Data Set Selection Rule (DSSR) 

 Data Item Selection Rule (DISR) 

 Data Item Manipulation Rule (DIMR) 

 Test Case Construction Rule (TCCR) 

Rule Class Combo Box Describes the overall functionality of the current rule. Options are:  

 Selection – rule selects data (e.g. EP1) 

 Insertion – rule inserts values into a partition or test data value (e.g. ST3) 

 Deletion – rule removes values from a partition or test data value (e.g. ST1) 

 Replacement – rule replaces a field with an invalid partition (e.g. EP4) 

 Combinatorial – rule constructs test cases (e.g. EP16)  

Field Set 
Type 

Combo Box Corresponds to Set Type attribute of the Atomic Rules schema. Options are:  

 List 

 Range 

 List and Range 

 Neither (e.g. non-terminal fields do not have a set type)  

Start Position  
& 

End Position  

Combo Box  Describe the first and last positions from which a rule selects test data. Six 
classes of start and end positions can appear, as follows (see Table 8-33): 

 Datatype start and end positions relate to the boundaries of the datatype of 
the field under test, resulting in the selection an equivalence class. For 
example, a DSSR could use these to selected a partition from the lower to 
upper boundaries of the integer datatype [-32768 – 32767]  

 Field start and end positions can be used by a DSSR to select a partition of 
value from a range-based field. For example, they could be used to select 
values between the lower to upper boundary of an age field, selecting the 
partition [0 - 150]. They can also be used by a DISR to select one test data 
value from a partition, such as selecting the value 150 from the partition [0 - 
150].  

 First and Last Field Value can be used by a DSSR to select a partition of 
values from a list field. For example, they could be applied to a colour field to 
select the partition [Red | Blue | Green]. They can also be used by a DISR to 
select one test data value from a list, such as selecting Red from this 
partition.  

 Nominal can be used by a DSSR, DISR or DIMR to select the mid-point 
value of a field, partition or test data value.  

 Random can be used by a DSSR, DISR or DIMR to select a randomly 
chosen value from a field, partition or test data value. 

 First and Last Character can be used by a DIRM to alter a test data value, 
such as selecting “R” from the colour “Red” or selecting “reen” from “Green.”  

Therefore, the values that appear in the Start and End Position fields depend on 
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the value of Rule Type, as follows.  
If Rule Type = DSSR then rule selects a partition. Start and End Positions are:  

 Datatype Lower Boundary – (e.g. ASCII A – 1 = @) 

 Datatype Lower Boundary  (e.g. ASCII A = A) 

 Datatype Lower Boundary +  (e.g. ASCII A + 1 = B) 

 Datatype Upper Boundary –  (e.g. ASCII Z – 1 = Y) 

 Datatype Upper Boundary (e.g. ASCII Z = Z) 

 Datatype Upper Boundary + (e.g. ASCII Z + 1 = [ ) 

 Field Lower Boundary – (just below lower boundary of a range) 

 Field Lower Boundary  (on the lower boundary of a range) 

 Field Lower Boundary +  (just above the lower boundary of a range) 

 Field Upper Boundary – (just below the upper boundary of a range) 

 Field Upper Boundary (on the upper boundary of a range)  

 Field Upper Boundary + (just above the upper boundary of a range) 

 First Field Value (first value in a list) 

 Second Field Value  (second value in a list) 

 Second Last Field Value  (second-last value in a list) 

 Last Field Value (last value in a list) 

 Nominal Value  (middle value of a range or list)  

 Random Value  (random value from a range or list) 
If Rule Type = DISR then rule selects a test data value, so End Position will be 
disabled. Start Positions are: 

 Field Lower Boundary – 

 Field Lower Boundary  

 Field Lower Boundary +  

 Field Upper Boundary – 

 Field Upper Boundary 

 Field Upper Boundary + 

 First Field Value 

 Last Field Value 

 Nominal Value 

 Random Value 

 Not Applicable 
If Rule Type = DIMR then the rule mutates test data values. Start and End 
Positions are: 

 Nominal Value 

 Random Value 

 First Character – –  (e.g. add two chars to start of a data value) 

 First Character –  (e.g. add one char to start of a data value)  

 First Character  (e.g. mutate first character of a data value)  

 First Character +  (e.g. mutate second character of a data value)  

 First Character ++  (e.g. mutate third character of a data value)   

 Last Character – –  (e.g. mutate third last character of a data value) 

 Last Character – (e.g. mutate second last character of a data value) 

 Last Character  (e.g. mutate last character of a data value) 

 Last Character + (e.g. add one char to end of a data value) 

 Last Character ++ (e.g. add two chars to end of a data value) 

 Not Applicable  (does not select a particular character or value) 
If Rule Type = TCCR then these fields will be empty, because TCCRs do not 
select test data, they create test cases, so this field is disabled.  

Correctness Combo Box Corresponds to the Valid or Invalid attribute of the Atomic Rules schema. 
Options are: Valid, Invalid, Valid or Invalid, Depends on field.  
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Field Field Type Functionality  

Continued from previous page… 

# Fields 
Populated 

Text Box Corresponds to the # Fields Populated attribute of the Atomic Rules schema.  

Test Data 
Length 

Text Box Corresponds to the Test Data Length attribute of the Atomic Rules schema.  

# Tests 
Derived  

Text Box Corresponds to the # Tests Derived attribute of the Atomic Rules schema.  

Original 
Datatype 

&  
Test Datatype 

Record List Defines the Original Datatype of fields that rules can be applied to, and the Test 
Datatype selected by the rule, which correspond to attributes of the same name 
in the Atomic Rules schema. For example, BVA1: lower boundary - 1 and BVA6: 
upper boundary + 1 can only be applied to range-based datatypes such as 
Integer (see Table 8-35); they cannot be applied to list-based datatypes like 
Alphanumeric as there is no way to choose an outside boundary value. The 
datatypes defined in ARTT extend the base set defined for EP, BVA and ST 
(see Chapter 3, Section 3.2.2). The datatypes defined are:  

 Integer (all integers from -32768 to 32767) 

 Integer+ (all positive integers from 0 to 32767) 

 Integer- (all negative integers from -32768 to -1) 

 Boolean (i.e. 1 and 0) 

 Numeric  (i.e. ASCII 48 to ASCII 57) 

 Real (all Reals from -32768.00 to 32767.00) 

 Real+ (all positive Reals from 0.00 to 32767.00) 

 Real- (all negative Reals from -32768.00 to -1.00) 

 Alpha (all alphabetical characters from A-Z and a-z) 

 Lowercase Alpha  (all lowercase alphas from ASCII 97 to ASCII 122) 

 Uppercase Alpha  (all uppercase alphas from ASCII 65 to ASCII 90) 

 Alphanumeric (Alpha  Numeric) 

 Control Character  (all control characters from ASCII 1 to ASCII 31) 

 Symbol (Set 1)  (all special characters from ASCII 32 to ASCII 47) 

 Symbol (Set 2) (all special characters from ASCII 58 to ASCII 64) 

 Symbol (Set 3) (all special characters from ASCII 91 to ASCII 96) 

 Symbol (Set 4) (all special characters from ASCII 123 to ASCII 127) 

 Symbol (Symbol 1  Symbol 2  Symbol 3  Symbol 4) 

 Null (empty) (ASCII 0) 

 Non-Alphanumeric (Symbol 1  Symbol 2  Symbol 3  Symbol 4) 

 ASCII (all characters in the ASCII table)  

 Same as original  (applies to Test Datatype only)  

Rule 
Application 

Order  

Record List Specifies the order in which rules can be applied, based on the four-step test 
selection process (see Chapter 3, Section 3.2.1). For example, a DIMR can only 
be applied after a DISR, while a DISR can only be applied after a DSSR.  

View 
Datatype 
Character 

Sets 

Button Opens the Character Viewer (Table 8-35).  

OK Button Saves all changes that have been made.  

Cancel/Close Button Closes the screen and returns the user to the previous screen. If this is clicked 
during edit or new, it will cancel the action before closing the screen.   
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Table 8-33: Definition of the Rule Types and Rule Classes that dictate the start and end position sets 
that are possible for each Atomic Rule.  

Rule Type Rule Class 

Type & Class 
Combination 

Possible? Start / End Positions Example 

Data Set 
Selection 
Rule 
(DSSR) 

Selection  Yes List-based fields: 

 first value 

 last value 

 random value 

 nominal value 

Selects a partition from a list. 
E.g. for field <colour> ::= [Red | 
Green | Blue] this could select a 
valid partition from the first to 
last value, by applying EP12: 
valid list selection, which would 
select [Red | Green | Blue]. 

Range-based fields: 

 min- 

 min 

 min+ 

 max- 

 max 

 max+ 

 nominal 

 random 

Selects a partition of test data 
from a range of values. For the 
valid field <age> ::= [0 – 150] 
this could select a valid partition 
from min to max, such as 
applying EP3: lower to upper 
boundary selection, selecting 
the partition [0 – 150]. 

Insertion  No – rule class does not apply to DSSRs. While it would be possible to insert 
invalid values into a valid partition, this is already covered by EP “replacement” 
rules EP4 to EP10.  

Deletion  No – rule class does not apply to DSSRs. While it would be possible to delete 
data values from a valid partition, this is already covered by rules like EP11: null 
item replacement.  

Replacement Yes List-based fields: 

 first value 

 last value 

Replaces a field entirely with an 
invalid data partition, such as 
applying EP4: integer 
replacement, to entirely replace 
any field with the integer range  
[-32768 – 32767]. 

Range-based fields: 

 min 

 max 

Combinatorial No – the combinatorial rule class only applies to TCCRs.  

Data Item 
Selection 
Rule (DISR) 

Selection  Yes – All DISRs 
are selection 
rules. Most have 
the same start 
and end position, 
e.g. BVA1: lower 
boundary 
selection. Some 
select more than 
1 test data item, 
such as ST13: 
select all list 
alternatives, 
which selects 
every item from a 
list as one test 
data item 

List-based fields: 

 first field value 

 last field value 

 random value 

 nominal value 

Selects one value from a 
partition, such as by applying 
EP13: data value selector to 
select a random value from field 
<colour> ::= [Red | Green | 
Blue] to select the colour Red.  

Range-based fields: 

 min- 

 min 

 min+ 

 max- 

 max 

 max+ 

 nominal 

 random 

Selects one value from a 
partitio, such as by applying 
EP13: data value selector to 
selecting the nominal value 
from field <age> ::= [0 – 150] to 
select the number 75.  

Insertion  No – this rule class does not apply to DISRs 

Deletion  No – this rule class does not apply to DISRs 

Replacement No – this rule class does not apply to DISRs 

Combinatorial No – the combinatorial rule class only applies to TCCRs.  
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Rule Type Rule Class 

Type & Class 
Combination 

Possible? Start / End Positions Example 

Continued from previous page… 

Data Item 
Manipulation 
Rule (DIMR) 

Selection  Yes - selects 
characters 
between the 
specified start 
and end positions 

Character position: 

 First Character – –  

 First Character –  

 First Character  

 First Character + 

 First Character ++  

 Last Character – –  

 Last Character – 

 Last Character  

 Last Character + 

 Last Character ++ 

 Nominal Value 

 Random Value 

Selects one or more characters 
from a data value, such as 
applying a rule to select the first 
character of the data item Red, 
resulting in the mutated test 
data value R. Atomic Rules that 
perform this type of function are 
not defined in existing literature. 
Thus, a new rule could be 
defined for this combination of 
Rule Type and Rule Class 
through the Atomic Rules 
Editor.   

Insertion  Yes - inserts 
randomly chosen 
characters 
between the 
specified start 
and end positions 

Adds one or more characters to 
a data item, such as by 
applying ST3: add extra 
character to end to data value 
Red to select the mutated value 
RedA.  

Deletion  Yes - deletes 
characters 
between the 
specified start 
and end positions 

Deletes one or more characters 
from a data item, such as by 
applying ST1: remove last 
character to data item Red to 
select the mutated value Re.   

Replacement Yes - replaces 
characters 
between the start 
and end positions 
with randomly 
chosen 
characters 

Replaces one or more 
characters from a data value, 
such as applying ST2: replace 
last character to the data item 
Red, resulting in the mutated 
test data value “1ed”.  

Combinatorial No – the combinatorial rule class only applies to TCCRs.  

Test Case 
Construction 
Rule 
(TCCR) 

Selection  No – does not apply to TCCRs. 

Insertion  No – does not apply to TCCRs. 

Deletion  No – does not apply to TCCRs. 

Replacement No – does not apply to TCCRs. 

Combinatorial Yes There are no specific 
start or end positions 
for TCCRs.  

NA 
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F.4.3 The Author Selector 

The Author Selector screen (Table 8-34) allows administrators to assign particular authors to each 

Atomic Rule, allowing the reference source of existing Atomic Rule to be recorded.  

Table 8-34: The Author Selector.  

Author Selector 

Purpose: This screen is loaded when the user clicks the ‘…’ button the Atomic Rules Editor (Table 8-32). It 
allows users to select authors that have published each Atomic Rule that is defined through the Atomic 
Rules Editor.  

User Interface  

 

 
 

Field Field Type Functionality  

Authors  Record List This lists all authors defined in the system.  

Toggle 
Selection 

Button Selects () or unselects () the currently selected author. 

Close Button Save the author selection, closes the screen and returns to the Atomic Rules 
Editor.  
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F.4.4 The Character Viewer  

The Character Viewer (Table 8-32) allows administrators and users to view the contents of datatype sets 

that have been defined within the tool. The datatypes currently defined in ARTT were, with the exclusion of 

integers and Reals, chosen by dividing the ASCII table into sets of equivalent data, chosen to automate 

Atomic Rules representations of EP, BVA and ST.  

For example, the tool differentiates between Lowercase Alphas and Uppercase Alphas, as this allows 

Syntax Testing rules ST7 and ST8 to be implemented, which swap the case of alphabetical fields to select 

invalid test data. In addition, ARTT divides the ASCII table into contiguous sets for integers, alphabetical 

characters and non-alphanumeric (i.e. special) characters, enabling outside boundary values to be selected 

for certain datatypes. For example, the At “@” symbol sits just below “A” in the ASCII table, allowing @ 

to be selected as an invalid outside boundary value for uppercase alpha fields.   

Depending on the implementation language used to develop ARTT, there are other datatype sets that 

could have been implemented that are based on the “development environment domain” (Reed 1990) that 

could have been used to define datatype sets. Since ARTT is currently a prototype, future implementations 

may include definition of other datatype sets.  

Table 8-35: The Character Viewer.  

Character Viewer 

Purpose: This screen can be accessed either from the Atomic Rules Editor (Table 8-32) or the 
Specification Editor (Table 8-37). It allows users to view all characters that are defined within a particular a 
datatype.  

User Interface  
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Field Field Type Functionality  

Continued from previous page… 

Datatypes Record List Displays all datatypes defined in the system. These extend the datatypes 
defined for EP, BVA and ST (see Chapter 3, Section 3.2.2) by 
decomposing the ASCII table further than that which is required for these 
methods (see Appendix F for complete list of characters and datatypes). 
Clicking a datatype populates the Characters within Datatype list with 
characters from that datatype. The columns of the table are:  
 ID: a unique identifier that is assigned to each datatype  
 Name: a unique name given to each datatype 
 Set Type: identifies whether the datatype is a range (e.g. integers or 

ASCII characters) or a list (e.g. the complete Symbol set) 
 Base Datatype: identifies whether the datatype is defined in its own 

right (e.g. integer) or is composed of other datatypes (e.g. Alpha, see 
below) 

 Composed of: identifies the other datatype each datatype is composed 
of (e.g. Alpha = Lowercase Alpha  Uppercase Alpha) 

Characters 
within 

Datatype 

Record List Lists characters within the selected datatype and shows characters outside 
datatype boundaries (e.g. ` is just below the lower boundary of Lowercase 
Alpha in ASCII).  
The columns of this table are: 
 Character ID: unique identifier for each character (ASCII characters are 

assigned their decimal identifier) 
 Name: character name (e.g. smallest integer named “Integer – Lower 

Boundary”) 
 Description: character description (e.g. smallest integer has the 

description “Integer – Smallest”) 
 Character: the actual character value 
 Start/End Position: used by Atomic Rules during test data generation 

(see Start & End Position in Table 8-32). 

Output to 
File 

Button Outputs all datatypes and characters to a comma separated file (csv), 
allowing the user to view them all at the same time.  

Close Button Closes the screen and returns the user to the previous screen.  
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F.4.5 The Specification Viewer  

The Specification Viewer (Table 8-36) allows users to view all specifications that have been created 

previously in the tool and also to create new specifications and edit and delete existing specifications.  

Table 8-36: The Specification Viewer.  

Specification Viewer 

Purpose: This screen is accessed from the Main Menu (Table 8-31). It allows users to: 

 Create a new specification by clicking New (opens the Specification Editor) 

 View and edit existing specifications by selecting one and clicking Edit (opens the Specification Editor) 

 Delete a specification by selecting one and clicking Delete 

 Generate test data/cases by selecting a specification and clicking Select/Apply Atomic Rules (opens 
the Atomic Rules Selector screen) 

User Interface  

 

 
 

Field Field Type Functionality  

Created 
Specifications 

Record List Lists all existing specifications that exist in the system.  

New Button Opens the Specification Editor (Table 8-37) with all fields cleared, 
ready for the creation of a new specification.   

Edit Button Opens the Specification Editor (Table 8-37) will all fields 
populated with values corresponding to the selected specification.  

Delete Button Initiates deletion of the currently selected specification.  

Select / Apply 
Atomic Rules 

Button Opens the Atomic Rules Selector (Table 8-43) for currently 
selected specification, allowing the user to generate test data and 
test cases.  

Close 

 

Button Closes the screen and returns the user to the Main Menu (Table 
8-31).  
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F.4.6 The Specification Editor 

The Specification Editor consists of four main tabs: Fields, Domain Knowledge, Specification Files and 

Backus-Naur Form Specifications. The functionality of these tabs is as follows.  

 Fields: this tab allows the user to define the characteristics of input fields, which will 

eventually be used for test data generation. Since there are two Field Types in the Atomic 

Rules schema (i.e. Lists and Ranges), this screen allows the creation of both list-based (Section 

F.4.6.1) and range-based (Section F.4.6.2) fields. The number shown to the right of the tab 

name (see Table 8-37) is a count of the number of input fields that have been created for the 

current specification.  

 Domain Knowledge: this tab allows the user record domain knowledge against the current 

specification that is captured through the use of GQASV. The number shown to the right of the 

tab name (see Table 8-37) is a count of the number of domain knowledge records that have 

been defined for the specific input field that is currently being selected for the current 

specification. 

 Specification Files: this screen allows users to attach program specification documents to the 

current specification. The number shown to the right of the tab name (see Table 8-37) is a 

count of the number of specification files that have been linked to the current specification. 

 Backus-Naur Form Specification: this tab allows users to view the BNF representation of 

input fields in the current specification. The BNF is automatically produced by ARTT.  

Each of these tabs is explained in detail in the subsections below.  
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F.4.6.1 The Specification Editor “Fields” Tab for List-Based Input Fields 

The GUI and functionality of the Fields tab of the Specification Editor, when list-based fields are being 

created or edited, is explained below (Table 8-37).   

Table 8-37: The Specification Editor ‘Fields’ tab for a list-based field.  

Specification Editor “Fields” tab (List Values frame displayed) 

Purpose: This screen is accessed from the Specification Viewer (Table 8-36). This screen has four tabs, as 
follows: 

 Fields – allows users to view, create, edit and delete fields for a specification  

 Domain Knowledge – allows users to store domain knowledge for fields on the Fields tab (Table 8-39) 

 Specification Files – allows users to attach Rich Text Document versions of their specification (Table 8-41) 

 Backus-Naur Form Specification – generates a Backus-Naur Form representation of the specification, 
based on the fields defined on the Fields tab (Table 8-42) 

This screen capture shows the List Values frame for defining a list-based field (see Table 8-38 for an example 
of the Range Values frame for defining range-based fields).  The tab name includes the number of fields 
defined in the current specification (e.g. the tab name is “Fields (8)” in the screen capture below). 

User Interface  
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Field Field Type Functionality  

Specification 
ID 

Text Box Unique number that is assigned by the system to identify each specification.  

Name Text Box Name of the specification assigned by the user.  

Fields 
(Record List) 

Record List Contains fields created against the current specification. Clicking on a field 
loads data related to that field on the Fields and Domain Knowledge tabs.  

New Button Initiates the creation of a new field by clearing all fields on the form.  

Edit Button Initiates editing of the currently selected field.  

Delete Button Initiates deletion of the currently selected field.  

Field Name Text Box Name of the field.  

Set Type Combo Box The Set Type of the field. Options are:  

 List  e.g. <street_type> ::= [St | Street | Road | Road…] 

 Range e.g. <age> ::= [0 – 150] 

 AND e.g. <name> ::= <first_name> & <surname> 

 OR e.g. <number> ::= [1 – 500] | [600 – 1000] 

 Non-terminal  e.g. <street> ::= <street_name> <street_type> 

If Set Type = List, the List Values frame is shown (see screen capture 
above).  

If Set Type = Range, the Range Values frame is displayed (see Table 8-38).  

Do values 
repeat? 

Combo Box Identifies whether the values in the field repeat, e.g. <house_number> ::= [0-
9]1-4 is composed of integers from 0 to 9 that repeat 1 to 4 times. Options are 
Yes and No. 

If Do value Repeat? = Yes then fields Min and Max are enabled.  

Min Text Box Stores the minimum number of repetitions for fields that repeat.  

Max Text Box Stores the maximum number of repetitions for fields that repeat.  

Is field 
mandatory? 

Combo Box Records whether a field is a mandatory or optional. Options are Yes and No.  

If Is field mandatory = No then Atomic Rules that select Null (e.g. EP11: null 
item replacement) produce valid test data.   

Field Parents Record List Lists fields that are parents of the current field, e.g. <street> ::= 
<street_name> <street_type>, so <street> is a parent of <street_name> and 
<street_type>. 

Parent? Combo Box  Identifies if a field is a parent of the current field. Options are: Yes and No  

Seq No Text Box If several fields are parented by one field, each child field has a sequence 
number identifying where it sits in the field order, e.g. for the field <street> ::= 
<street_name> <street_type>, <street_name> comes first with sequence 
number 1 and <steet_type> comes second with sequence number 2.  

Update Button Saves the values of the Parent? and Seq No to the Field Parents list.  

List Values Record List Displays all list values for the currently selected field.   

Value Text Box Allows the user to add one list value to the current field.  

OR Datatype Text Box Instead of choosing a Value, a user can add Datatypes to a list. Options are:  

 Numeric 

 Integer 

 Real 

 Lowercase Alpha 

 Uppercase Alpha 

 Control Characters 

 Symbol Set 1 

 Symbol Set 2 

 Symbol Set 3 

 Symbol Set 4 

Add Button Adds the Value and/or Datatype chosen by the user to the List Values list.  
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Field Field Type Functionality  

Continued from previous page… 

Update Button Updates the value selected in the List Values list with the values defined in 
the Value and Datatype fields.  

Delete Button Deletes the currently selected list value.  

Atomic Rules Button Opens the Atomic Rules Selector (Table 8-43) to generate test data/cases.  

View Datatype 
Character Sets 

Button Opens the Character Viewer (Table 8-35).  

Apply Button Saves all changes to the database.  

Cancel/Close Button Cancels all changes, closes the form and returns the user to the 
Specification Viewer (Table 8-36).  
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F.4.6.2 The Specification Editor “Fields” Tab for Range-Based Input Fields 

The GUI and functionality of the Fields tab of the Specification Editor, when range-based fields are 

being created or edited, is explained below (Table 8-38).   

Table 8-38: The Specification Editor ‘Fields’ tab for a range-based field. 

Specification Editor “Fields” tab (Range Values frame displayed) 

Purpose: This screen is accessed from the Specification Viewer (Table 8-36). The purpose of this tab is the 
same as the screen sown in Table 8-37. However, this screen capture shows the Range Values frame for 
defining range-based fields.  

User Interface  

 

 
 

Field Field Type Functionality  

Range Values  Record List Displays boundary values for the currently selected field. When a 
record is selected in the Range Values list, Lower Boundary, Upper 
Boundary and Or Datatype are automatically populated.  

Lower Boundary Text Box Allows the user to enter a lower boundary for the current field. 

Upper Boundary Text Box Allows the user to enter an upper boundary for the current field.  
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Field Field Type Functionality  

Continued from previous page… 

OR Datatype Combo Box If the user does not enter anything in the Lower and Upper Boundary 
fields they can add a Datatype to the list instead. Options are:  

 Numeric 

 Integer 

 Real 

 Lowercase Alpha 

 Uppercase Alpha 

 Control Characters 

 Symbol Set 1 

 Symbol Set 2 

 Symbol Set 3 

 Symbol Set 4 

These correspond to the “base” datatypes defined in Appendix F.  

Add Button Adds the Value and/or Datatype chosen by the user to the Range 
Values list.  

Update Button Updates the value selected in the Range Values list with the values 
defined in the Lower/Upper Boundary and Datatype fields.  

Delete Button Deletes the currently selected range.  
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F.4.6.3 The Specification Editor “Domain Knowledge” Tab  

The Domain Knowledge tab of the Specification Editor allows users to record domain knowledge 

captured through GQASV. The GUI and functionality of this tab is explained below (Table 8-39).   

Table 8-39: The Specification Editor ‘Domain Knowledge’ tab. 

Specification Editor “Domain Knowledge” tab 

Purpose: This screen is accessed from the Specification Viewer (Table 8-36). The purpose of this tab is to 
allow users to record domain knowledge against each specification field. This allows users to store domain 
knowledge they collect through Goal/Question/Answer/Specify (see Chapter 3, Section 3.10) that has not 
already been recorded on the Fields tab. When the user clicks on a field in the Fields tab, the Domain 
Knowledge tab is automatically populated with data relating to that field. The tab name includes the number 
of domain knowledge records defined for the current field (e.g. the tab name is “Domain Knowledge (2)” in 
the screen capture below). 

User Interface  
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Field Field Type Functionality  

Continued from previous page… 

Domain Knowledge Records Record List Lists all domain knowledge records defined for the 
currently selected field.  

What does it relate to? Combo Box Allows the user to identify the GQASV question the 
domain knowledge relates to. Options are: 

 What is the field's datatype? 

 What is the field's set type? 

 For Set Type = Range: what are min and max 
values? 

 For Set Type = List: what are min and max valid 
data lengths? 

 Is the field mandatory? 

 Does the field repeat? 

 If field repeats, what are min and max repetitions? 

 Other (please specify) 

Other Text Box If the user selects “Other (please specify)” from What 
does it relate to?, this field allowing them to describe 
their answer.  

Name Text Box A name for the domain knowledge that is being stored.  

Description Text Box A description of the domain knowledge that is being 
stored.  

Source Combo Box The source of the domain knowledge. Options are:  

 Personal Knowledge 

 Personal Experience 

 Book 

 Textbook 

 Standard 

 Conference Paper 

 Journal Paper 

 White Paper 

 Magazine 

 Newspaper Article 

 Technical Report 

 Web Site 

 Domain Expert 

 Source Code 

 Publication Other (please specify) 

 Other (please specify) 

The field names in the Source Details frame 
automatically changes depending on which value is 
chosen from this field (see Table 8-40).  
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The names of fields on the Domain Knowledge tab are dynamic, as they depend on the value chosen in 

the Source field (see last row of Table 8-39). The sources currently supported in ARTT include resources 

such as personal knowledge, domain knowledge and personal experience, but also textbooks, standards and 

journal papers (see Table 8-40). The list of sources supported by ARTT may be expanded in future to 

include other sources like user documentation, help desk instructions, inspection reports, meeting notes or 

story cards.   

Table 8-40: Field names for the Domain Knowledge tab of the Atomic Rules Testing Tool. 

Source 
Type Field 1  Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 

Personal 
Knowledge 

Source 
Name: 

Learnt 
Years: 

Location: Details:           

Personal 
Experience 

Source 
Name: 

Experience 
Years: 

Location: Details:           

Book Author(s): Title: Series Title: Publisher: Edition: Pages: Date:     

Textbook Author(s): Title: Series Title: Publisher: Edition: Pages: Date:     

Standard Author(s): Title: Standard 
No. 

Publisher: Version 
No: 

Pages: Date:     

Conference 
Paper 

Author(s): Title: Proceedings 
Name: 

Publisher: Volume: Pages: Date:     

Journal 
Paper 

Author(s): Title: Journal 
Name: 

Publisher: Volume / 
Issue: 

Pages: Date:     

White 
Paper 

Author(s): Title: White Paper 
No: 

Publisher: Version 
No: 

Pages: Date:     

Magazine Author(s): Title: Magazine 
Name: 

Publisher: Volume / 
Issue 

Pages: Date:     

Newspaper 
Article 

Author(s): Title: Newspaper 
Name: 

Publisher: Edition: Pages: Date:     

Technical 
Report 

Author(s): Title: Report No: Publisher: Version 
No: 

Pages: Date:     

Web Site Author(s): Title: URL: Date Last 
Updated: 

Date Last 
Accessed: 

    Verification 
Check: 

Verification 
Details: 

Domain 
Expert 

Name: Experience 
Years: 

Title: Discussion 
Date: 

Email 
Address: 

Contact 
Phone 
No: 

      

Source 
Code 

Programmer 
Name: 

Company 
Name: 

Program 
Name: 

Function 
Name: 

Function 
Details: 

Date Last 
Updated: 

Date Last 
Accessed: 

    

Publication 
Other 
(please 
specify) 

Author(s): Title: Description: Publisher: Version / 
Edition: 

Pages: Date:     

Other 
(please 
specify) 

Desc. 1: Desc. 2: Desc.3: Desc.4: Desc.5: Desc.6: Desc.7:     
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Figure 8-10: Example of the Source Details fields populating from the database. 

 

 

Fields names in the 
Source Details frame are 
loaded from the database 
(Table 8-40), based on the 
value chosen in the 
Source field 
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F.4.6.4 The Specification Editor “Specification Files” Tab  

The Specification Files tab of the Specification Editor allows users to attach soft copies of specification 

documents to the currently open specification (Table 8-41).   

Table 8-41: The Specification Editor ‘Specification Files’ tab. 

Specification Editor “Specification Files” tab 

Purpose:  This screen is accessed from the Specification Viewer (Table 8-36). The purpose of this tab is to 
allow the user to link and view specifications in rich text format (RTF) to the specification that is currently open.  

User Interface  

 

 

Field Field Type Functionality  

Previously Opened 
Files 

Record List Lists all specification documents that have been linked to the current 
specification.  

Contents Rich Text 
Box 

Displays a specification document.  

Load Specification 
Contents / Clear 

Specification Contents 

Button When a specification is not loaded, this button is named “Load 
Specification Contents.” Clicking it loads a specification into the 
Contents field. When a specification is open, this button is named 
“Clear Specification Contents.” Clicking it closes the specification and 
clears the Contents field.   
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F.4.6.5 The Specification Editor “Backus-Naur Form” Tab  

The Backus-Naur Form tab of the Specification Editor allows users to view an automatically produced 

BNF representation of the specification that is currently open (Table 8-42).   

Table 8-42: The Specification Editor ‘Backus-Naur Form Specification’ tab. 

Specification Editor “Backus-Naur Form Specification” tab 

Purpose: This screen is accessed from the Specification Viewer (Table 8-36). The purpose of this tab is to 
display automatically generated BNF for the current specification and to allow users to output this to file.  

User Interface  

 

 
 

 
 

Field Field Type Functionality  

Specification’s Backus-Naur Form (BNF)  Text Box Allows user to view the current specification in 
BNF.  

Output BNF to File Button Allows the user to output the BNF to a text file.   
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F.4.7 The Atomic Rules Selector  

The Atomic Rules Selector is allows users to apply Atomic Rules from EP, BVA and ST to the currently 

open specification, in order to generate black-box test data (Table 8-43).   

Table 8-43: The Atomic Rules Selector. 

Atomic Rules Selector  

Purpose: This screen can be accessed either from the Specification Viewer (Table 8-36) or the 
Specification Editor (Table 8-37). It allows users to apply Atomic Rules to a specification to 
automatically generate test data that can be output to an Excel Spreadsheet or a flat text file.  

User Interface  

 

 
 

Output Files 
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Continued from previous page… 

 

Field Field Type Functionality  

Output Options Menu This specifies the format in which the test data/cases are 
output. Options are:  

 Microsoft Excel Spreadsheet 

 Text file  

The default setting for this field is that both options are selected.  

Specification ID Text Box The current specification’s identifier.  

Name Text Box The current specification’s name.   

Fields Record List Lists all fields defined for the current specification. When a field 
is selected, the Atomic Rules shows which Atomic Rules have 
been applied to that field.  

Atomic Rules Record List Lists all Atomic Rules defined in the system and shows which 
can be applied (Applicable?) and have been applied 
(Selected?) to the current field. 

Select Rules for 
Test Method  

Combo Box Allows the user to apply all Atomic Rules from a particular 
black-box method to the current field. Options are:  

 Boundary Value Analysis 

 Equivalence Partitioning 

 Syntax Testing 

Select All Button Selects all Atomic Rules that can be applied to the current field.  

Clear Selection Button Clears the selection of all Atomic Rules for the current field.  

Toggle Selected Button Toggles the selection of the currently selected Atomic Rule for 
the currently field (i.e. changes a tick to a cross and visa versa).  

Generate Test 
Cases 

Button Automatically generates a set of test data/cases for the current 
specification by applying all selected Atomic Rules to each field. 
Test cases are output to file automatically according to the file 
types chosen in the Output Options field.  

Apply/OK Button Each time a user makes changes to the Atomic Rules applied 
to a particular field, they must click Apply/OK to save those 
changes to the database. They must also do this before 
generating test cases.  

Close Button Closes the screen and returns the user to the calling screen 
(either the Specification Editor or the Specification Viewer).  

 



Appendices  Chapter 8 

The Atomic Rules Approach for Describing Black-Box Testing Methods and its Evaluation Page 333 

F.5 Pseudo Code for Test Data Generation  

The following figures contain pseudo code for the selection of list-based and range-based equivalence 

classes. This process is based on the ‘start position’ and ‘end position’ of the specific Data-Set Selection 

Rule that is being applied to the field under test (see Chapter 4, Section 4.3).  

Figure 8-11: Pseudo code for selecting an equivalence class from a list-based field.   

 
IF the field under test is a List THEN 
 
    'Assign the start positions of the partition  

    IF the chosen start position = first field value THEN 
        Partition start position = 1 
    ELSE IF the chosen start position = nominal value THEN 
        Partition start position = number of values in the list / 2 
    ELSE IF the chosen start position = random value THEN 
        Partition start position = select a random number  
    END IF 
 
    'Assign the end positions of the partition -> must be greater than start position  
    IF the chosen end position = last field value THEN 
        Partition end position = count of values in list  
    ELSE IF the chosen end position = nominal value THEN 
        Partition end position = count of values in list / 2  
    ELSE IF the chosen end position = random value THEN 
        Partition end position = select a random value from the list  
    END IF 
 
    'Build the partition  
    Count = 0 
    FOR each value in the List 
        IF Count is between the Start and End Positions THEN 
            Add the value to the partition  
        END IF 
        Count = Count + 1 
    NEXT value 
 
END IF 
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Figure 8-12: Pseudo code for selecting a partition from a range-based field 

 
IF the field under is a Range THEN 
 
    'Assign start position of the partition  

    IF the chosen start position = datatype lower boundary minus THEN 
        Partition lower boundary = value just below lower boundary of field’s datatype  
    ELSE IF the chosen start position = datatype lower boundary THEN 
        Partition lower boundary = value on lower boundary of field’s datatype  
    ELSE IF the chosen start position = datatype lower boundary plus THEN 
        Partition lower boundary =  value just above lower boundary of field’s datatype 
    ELSE IF the chosen start position = datatype upper boundary minus THEN 
        Partition lower boundary =  value just above lower boundary of field’s datatype 
    ELSE IF the chosen start position = datatype upper boundary THEN 
        Partition lower boundary = value on upper boundary of field’s datatype 
    ELSE IF the chosen start position = datatype upper boundary plus THEN 
        Partition lower boundary = value just above upper boundary of field’s datatype 
    ELSE IF the chosen start position = field lower boundary minus THEN 
        Partition lower boundary = value just below lower boundary of field 
    ELSE IF the chosen start position = field lower boundary OR first field value Then 
        Partition lower boundary = value on lower boundary of field 
    ELSE IF the chosen start position = field lower boundary plus THEN 
        Partition lower boundary = value just above lower boundary of field 
    ELSE IF the chosen start position = field upper boundary minus THEN 
        Partition lower boundary = value just below upper boundary of field  
    ELSE IF the chosen start position = field upper boundary OR last field value THEN 
        Partition lower boundary = value on upper boundary of field 
    ELSE IF the chosen start position = upper boundary plus THEN 
        Partition lower boundary = value just above upper boundary of field 
    ELSE IF the chosen start position = nominal value Then 
        Partition lower boundary = upper boundary – lower boundary / 2 
    ELSE IF the chosen start position = random value Then 
        Partition lower boundary = random value between lower and upper boundaries  
    END IF  
 
    'Assign end position of the partition  
    IF the chosen end position = datatype lower boundary minus THEN 
        Partition lower boundary = value just below lower boundary of field’s datatype  
    ELSE IF the chosen end position = datatype lower boundary THEN 
        Partition lower boundary = value on lower boundary of field’s datatype  
    ELSE IF the chosen end position = datatype lower boundary plus THEN 
        Partition lower boundary =  value just above lower boundary of field’s datatype 
    ELSE IF the chosen end position = datatype upper boundary minus THEN 
        Partition lower boundary =  value just above lower boundary of field’s datatype 
    ELSE IF the chosen end position = datatype upper boundary THEN 
        Partition lower boundary = value on upper boundary of field’s datatype 
    ELSE IF the chosen end position = datatype upper boundary plus THEN 
        Partition lower boundary = value just above upper boundary of field’s datatype 
    ELSE IF the chosen end position = field lower boundary minus THEN 
        Partition lower boundary = value just below lower boundary of field 
    ELSE IF the chosen end position = field lower boundary OR first field value Then 
        Partition lower boundary = value on lower boundary of field 
    ELSE IF the chosen end position = field lower boundary plus THEN 
        Partition lower boundary = value just above lower boundary of field 
    ELSE IF the chosen end position = field upper boundary minus THEN 
        Partition lower boundary = value just below upper boundary of field  
    ELSE IF the chosen end position = field upper boundary OR last field value THEN 
        Partition lower boundary = value on upper boundary of field 
    ELSE IF the chosen end position = upper boundary plus THEN 
        Partition lower boundary = value just above upper boundary of field 
    ELSE IF the chosen end position = nominal value THEN 
        Partition lower boundary = upper boundary – lower boundary / 2 
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    'Continued from previous page… 

    ELSE IF the chosen end position = random value THEN 
        Partition lower boundary = random value between lower and upper boundaries  
    END IF 
 
    'Select the partition  

    Partition = partition lower boundary to partition upper boundary  
 
END IF 
 

 

F.6 Datatypes Defined in the Atomic Rules Testing Tool 

The following tables identify all datatypes and characters that are defined in the Atomic Rules Testing 

Tool (ARTT), which can be viewed through the Character Viewer screen (see Section F.4.4). These 

datatypes and characters are predominantly based on characters that appear in the ASCII table (see 

Appendix G).  

Table 8-44: Datatypes defined in the Atomic Rules Testing Tool. 

Datatype Name Set Type Base Datatype? Composed Of 

Boolean List Yes {Boolean} 

Numeric List and Range Yes {Numeric} 

Integer List and Range Yes {Integer} 

Real List and Range Yes {Real} 

Lowercase Alpha List and Range Yes {Lowercase Alpha} 

Uppercase Alpha List and Range Yes {Uppercase Alpha} 

Alpha List No 
{Lowercase Alpha} U {Uppercase Alpha} 
-(Lowercase Alpha LB- & UB+& 
Uppercase Alpha LB- & UB+) 

Alphanumeric List No 
{Numeric} U {Alpha} - (Numeric LB- & 
UB+& Alpha LB- & AlphaUB+) 

Control Character List and Range Yes {Control Character} 

Symbol (Set 1) List and Range Yes {Symbol (Set 1)} 

Symbol (Set 2) List and Range Yes {Symbol (Set 2)} 

Symbol (Set 3) List and Range Yes {Symbol (Set 3)} 

Symbol (Set 4) List and Range Yes {Symbol (Set 4)} 

Symbol List No 
{Symbol (Set 1)} U {Symbol (Set 2)} U 
{Symbol (Set 3)} U {Symbol (Set 4)} 

Null (empty) List and Range Yes {Null (empty)} 

Non-Alphanumeric List No 

{Symbol (Set 1)} U {Symbol (Set 2)} U 
{Symbol (Set 3)} U {Symbol (Set 4) U 
{Control Character}} - (Symbol (Sets 1 to 
4) LB- & UB+& Control Character LB- & 
UB+) 
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Table 8-45: Characters within each datatype that are defined in the Atomic Rules Testing Tool. 

Datatype Name Character ID Name Description Character Start/End Position 

Boolean 48 0  Zero 0 First Field Value 

Boolean 49 1  One 1 Last Field Value 

Numeric 47 /  Forward Slash / Datatype Lower Boundary - 

Numeric 48 0  Zero 0 Datatype Lower Boundary 

Numeric 49 1  One 1 Datatype Lower Boundary + 

Numeric 50 2  Two 2 Non Descript Position 

Numeric 51 3  Three 3 Non Descript Position 

Numeric 52 4  Four 4 Nominal Value 

Numeric 53 5  Five 5 Non Descript Position 

Numeric 54 6  Six 6 Non Descript Position 

Numeric 55 7  Seven 7 Non Descript Position 

Numeric 56 8  Eight 8 Datatype Upper Boundary - 

Numeric 57 9  Nine 9 Datatype Upper Boundary 

Numeric 58 :  Colon : Datatype Upper Boundary + 

Integer 1048574 
Integer - Lower 
Boundary 

Integer - Smallest -32768 Datatype Lower Boundary 

Integer 1048575 
Integer - Upper 
Boundary 

Integer - Largest 32768 Datatype Upper Boundary 

Real 1048572 
Real - Lower 
Boundary 

Real - Smallest -32767 Datatype Lower Boundary 

Real 1048573 
Real - Upper 
Boundary 

Real - Largest 32767 Datatype Upper Boundary 

Lowercase Alpha 96 `  Single Left Quote ` Datatype Lower Boundary - 

Lowercase Alpha 97 a  a  a Datatype Lower Boundary 

Lowercase Alpha 98 b  b  b Datatype Lower Boundary + 

Lowercase Alpha 99 c  c  c Non Descript Position 

Lowercase Alpha 100 d  d  d Non Descript Position 

Lowercase Alpha 101 e  e  e Non Descript Position 

Lowercase Alpha 102 f  f  f Non Descript Position 

Lowercase Alpha 103 g  g  g Non Descript Position 

Lowercase Alpha 104 h  h  h Non Descript Position 

Lowercase Alpha 105 i  i  i Non Descript Position 

Lowercase Alpha 106 j  j  j Non Descript Position 

Lowercase Alpha 107 k  k  k Non Descript Position 

Lowercase Alpha 108 l  l  l Non Descript Position 

Lowercase Alpha 109 m  m  m Nominal Value 

Lowercase Alpha 110 n  n  n Non Descript Position 

Lowercase Alpha 111 o  o  o Non Descript Position 

Lowercase Alpha 112 p  p  p Non Descript Position 

Lowercase Alpha 113 q  q  q Non Descript Position 

Lowercase Alpha 114 r  r  r Non Descript Position 

Lowercase Alpha 115 s  s  s Non Descript Position 

Lowercase Alpha 116 t  t  t Non Descript Position 

Lowercase Alpha 117 u  u  u Non Descript Position 

Lowercase Alpha 118 v  v  v Non Descript Position 

Lowercase Alpha 119 w  w  w Non Descript Position 

Lowercase Alpha 120 x  x  x Non Descript Position 

Lowercase Alpha 121 y  y  y Datatype Upper Boundary - 

Lowercase Alpha 122 z  z  z Datatype Upper Boundary 

Lowercase Alpha 123 {  Open Curly Brace { Datatype Upper Boundary + 

Uppercase Alpha 64 @  At @ Datatype Lower Boundary - 

Uppercase Alpha 65 A  A  A Datatype Lower Boundary 
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Datatype Name Character ID Name Description Character Start/End Position 

Continued from previous page…  

Uppercase Alpha 66 B  B  B Datatype Lower Boundary + 

Uppercase Alpha 67 C  C  C Non Descript Position 

Uppercase Alpha 68 D  D  D Non Descript Position 

Uppercase Alpha 69 E  E  E Non Descript Position 

Uppercase Alpha 70 F  F  F Non Descript Position 

Uppercase Alpha 71 G  G  G Non Descript Position 

Uppercase Alpha 72 H  H  H Non Descript Position 

Uppercase Alpha 73 I  I  I Non Descript Position 

Uppercase Alpha 74 J  J  J Non Descript Position 

Uppercase Alpha 75 K  K  K Non Descript Position 

Uppercase Alpha 76 L  L  L Non Descript Position 

Uppercase Alpha 77 M  M  M Nominal Value 

Uppercase Alpha 78 N  N  N Non Descript Position 

Uppercase Alpha 79 O  O  O Non Descript Position 

Uppercase Alpha 80 P  P  P Non Descript Position 

Uppercase Alpha 81 Q  Q  Q Non Descript Position 

Uppercase Alpha 82 R  R  R Non Descript Position 

Uppercase Alpha 83 S  S  S Non Descript Position 

Uppercase Alpha 84 T  T  T Non Descript Position 

Uppercase Alpha 85 U  U  U Non Descript Position 

Uppercase Alpha 86 V  V  V Non Descript Position 

Uppercase Alpha 87 W  W  W Non Descript Position 

Uppercase Alpha 88 X  X  X Non Descript Position 

Uppercase Alpha 89 Y  Y  Y Datatype Upper Boundary - 

Uppercase Alpha 90 Z  Z  Z Datatype Upper Boundary 

Uppercase Alpha 91 [  Open Square Brace [ Datatype Upper Boundary + 

Alpha 65 A  A  A First Field Value 

Alpha 66 B  B  B Non Descript Position 

Alpha 67 C  C  C Non Descript Position 

Alpha 68 D  D  D Non Descript Position 

Alpha 69 E  E  E Non Descript Position 

Alpha 70 F  F  F Non Descript Position 

Alpha 71 G  G  G Non Descript Position 

Alpha 72 H  H  H Non Descript Position 

Alpha 73 I  I  I Non Descript Position 

Alpha 74 J  J  J Non Descript Position 

Alpha 75 K  K  K Non Descript Position 

Alpha 76 L  L  L Non Descript Position 

Alpha 77 M  M  M Non Descript Position 

Alpha 78 N  N  N Non Descript Position 

Alpha 79 O  O  O Non Descript Position 

Alpha 80 P  P  P Non Descript Position 

Alpha 81 Q  Q  Q Non Descript Position 

Alpha 82 R  R  R Non Descript Position 

Alpha 83 S  S  S Non Descript Position 

Alpha 84 T  T  T Non Descript Position 

Alpha 85 U  U  U Non Descript Position 

Alpha 86 V  V  V Non Descript Position 

Alpha 87 W  W  W Non Descript Position 

Alpha 88 X  X  X Non Descript Position 
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Datatype Name Character ID Name Description Character Start/End Position 

Continued from previous page…  

Alpha 89 Y  Y  Y Non Descript Position 

Alpha 90 Z  Z  Z Non Descript Position 

Alpha 97 a  a  a Nominal Value 

Alpha 98 b  b  b Non Descript Position 

Alpha 99 c  c  c Non Descript Position 

Alpha 100 d  d  d Non Descript Position 

Alpha 101 e  e  e Non Descript Position 

Alpha 102 f  f  f Non Descript Position 

Alpha 103 g  g  g Non Descript Position 

Alpha 104 h  h  h Non Descript Position 

Alpha 105 i  i  i Non Descript Position 

Alpha 106 j  j  j Non Descript Position 

Alpha 107 k  k  k Non Descript Position 

Alpha 108 l  l  l Non Descript Position 

Alpha 109 m  m  m Non Descript Position 

Alpha 110 n  n  n Non Descript Position 

Alpha 111 o  o  o Non Descript Position 

Alpha 112 p  p  p Non Descript Position 

Alpha 113 q  q  q Non Descript Position 

Alpha 114 r  r  r Non Descript Position 

Alpha 115 s  s  s Non Descript Position 

Alpha 116 t  t  t Non Descript Position 

Alpha 117 u  u  u Non Descript Position 

Alpha 118 v  v  v Non Descript Position 

Alpha 119 w  w  w Non Descript Position 

Alpha 120 x  x  x Non Descript Position 

Alpha 121 y  y  y Non Descript Position 

Alpha 122 z  z  z Last Field Value 

Alphanumeric 48 0  Zero 0 First Field Value 

Alphanumeric 49 1  One 1 Non Descript Position 

Alphanumeric 50 2  Two 2 Non Descript Position 

Alphanumeric 51 3  Three 3 Non Descript Position 

Alphanumeric 52 4  Four 4 Non Descript Position 

Alphanumeric 53 5  Five 5 Non Descript Position 

Alphanumeric 54 6  Six 6 Non Descript Position 

Alphanumeric 55 7  Seven 7 Non Descript Position 

Alphanumeric 56 8  Eight 8 Non Descript Position 

Alphanumeric 57 9  Nine 9 Non Descript Position 

Alphanumeric 65 A  A  A Non Descript Position 

Alphanumeric 66 B  B  B Non Descript Position 

Alphanumeric 67 C  C  C Non Descript Position 

Alphanumeric 68 D  D  D Non Descript Position 

Alphanumeric 69 E  E  E Non Descript Position 

Alphanumeric 70 F  F  F Non Descript Position 

Alphanumeric 71 G  G  G Non Descript Position 

Alphanumeric 72 H  H  H Non Descript Position 

Alphanumeric 73 I  I  I Non Descript Position 

Alphanumeric 74 J  J  J Non Descript Position 

Alphanumeric 75 K  K  K Non Descript Position 

Alphanumeric 76 L  L  L Non Descript Position 
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Datatype Name Character ID Name Description Character Start/End Position 

Continued from previous page…  

Alphanumeric 77 M  M  M Non Descript Position 

Alphanumeric 78 N  N  N Non Descript Position 

Alphanumeric 79 O  O  O Non Descript Position 

Alphanumeric 80 P  P  P Non Descript Position 

Alphanumeric 81 Q  Q  Q Non Descript Position 

Alphanumeric 82 R  R  R Non Descript Position 

Alphanumeric 83 S  S  S Non Descript Position 

Alphanumeric 84 T  T  T Non Descript Position 

Alphanumeric 85 U  U  U Nominal Value 

Alphanumeric 86 V  V  V Non Descript Position 

Alphanumeric 87 W  W  W Non Descript Position 

Alphanumeric 88 X  X  X Non Descript Position 

Alphanumeric 89 Y  Y  Y Non Descript Position 

Alphanumeric 90 Z  Z  Z Non Descript Position 

Alphanumeric 97 a  a  a Non Descript Position 

Alphanumeric 98 b  b  b Non Descript Position 

Alphanumeric 99 c  c  c Non Descript Position 

Alphanumeric 100 d  d  d Non Descript Position 

Alphanumeric 101 e  e  e Non Descript Position 

Alphanumeric 102 f  f  f Non Descript Position 

Alphanumeric 103 g  g  g Non Descript Position 

Alphanumeric 104 h  h  h Non Descript Position 

Alphanumeric 105 i  i  i Non Descript Position 

Alphanumeric 106 j  j  j Non Descript Position 

Alphanumeric 107 k  k  k Non Descript Position 

Alphanumeric 108 l  l  l Non Descript Position 

Alphanumeric 109 m  m  m Non Descript Position 

Alphanumeric 110 n  n  n Non Descript Position 

Alphanumeric 111 o  o  o Non Descript Position 

Alphanumeric 112 p  p  p Non Descript Position 

Alphanumeric 113 q  q  q Non Descript Position 

Alphanumeric 114 r  r  r Non Descript Position 

Alphanumeric 115 s  s  s Non Descript Position 

Alphanumeric 116 t  t  t Non Descript Position 

Alphanumeric 117 u  u  u Non Descript Position 

Alphanumeric 118 v  v  v Non Descript Position 

Alphanumeric 119 w  w  w Non Descript Position 

Alphanumeric 120 x  x  x Non Descript Position 

Alphanumeric 121 y  y  y Non Descript Position 

Alphanumeric 122 z  z  z Last Field Value 

Control Character 0 NUL Null ctrl-@ Datatype Lower Boundary 

Control Character 1 SOH Start of Heading ctrl-A Datatype Lower Boundary + 

Control Character 2 STX Start of Text ctrl-B Non Descript Position 

Control Character 3 ETX End of Text ctrl-C Non Descript Position 

Control Character 4 EOT End of Xmit ctrl-D Non Descript Position 

Control Character 5 ENQ Enquiry ctrl-E Non Descript Position 

Control Character 6 ACK Acknowledge ctrl-F Non Descript Position 

Control Character 7 BEL Bell ctrl-G Non Descript Position 

Control Character 8 BS Backspace ctrl-H Non Descript Position 

Control Character 9 HT Horizontal Tab ctrl-I Non Descript Position 
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Datatype Name Character ID Name Description Character Start/End Position 

Continued from previous page…  

Control Character 10 LF Line Feed ctrl-J Non Descript Position 

Control Character 11 VT Vertical Tab ctrl-K Non Descript Position 

Control Character 12 FF Form Feed ctrl-L Non Descript Position 

Control Character 13 CR Carriage Feed ctrl-M Non Descript Position 

Control Character 14 SO Shift Out ctrl-N Non Descript Position 

Control Character 15 SI Shift In ctrl-O Non Descript Position 

Control Character 16 DLE Data Line Escape ctrl-P Nominal Value 

Control Character 17 DC1 Device Control 1 ctrl-Q Non Descript Position 

Control Character 18 DC2 Device Control 2 ctrl-R Non Descript Position 

Control Character 19 DC3 Device Control 3 ctrl-S Non Descript Position 

Control Character 20 DC4 Device Control 4 ctrl-T Non Descript Position 

Control Character 21 NAK Neg Acknowledge ctrl-U Non Descript Position 

Control Character 22 SYN Synchronous Idel ctrl-V Non Descript Position 

Control Character 23 ETB End of Xmit Block  ctrl-W Non Descript Position 

Control Character 24 CAN Cancel ctrl-X Non Descript Position 

Control Character 25 EM End of Medium ctrl-Y Non Descript Position 

Control Character 26 SUB Substitute ctrl-Z Non Descript Position 

Control Character 27 ESC Escape ctrl-[ Non Descript Position 

Control Character 28 FS File Separator ctrl-\ Non Descript Position 

Control Character 29 GS Group Separator ctrl-] Non Descript Position 

Control Character 30 RS Record Separator ctrl-^ Datatype Upper Boundary - 

Control Character 31 US Unit Separator ctrl-_ Datatype Upper Boundary 

Control Character 32 Space Space   Datatype Upper Boundary + 

Symbol (Set 1) 31 US Unit Separator ctrl-_ Datatype Lower Boundary - 

Symbol (Set 1) 32 Space Space   Datatype Lower Boundary 

Symbol (Set 1) 33 !  Exclamation Mark ! Datatype Lower Boundary + 

Symbol (Set 1) 34 '' Double Quote '' Non Descript Position 

Symbol (Set 1) 35 #  Hash # Non Descript Position 

Symbol (Set 1) 36 $  Dollar $ Non Descript Position 

Symbol (Set 1) 37 %  Percent % Non Descript Position 

Symbol (Set 1) 38 &  Ampersand & Non Descript Position 

Symbol (Set 1) 39 '  Single Right Quote ' Nominal Value 

Symbol (Set 1) 40 (  Open Round Brace ( Non Descript Position 

Symbol (Set 1) 41 )  Close Round Brace ) Non Descript Position 

Symbol (Set 1) 42 *  Kleene Star * Non Descript Position 

Symbol (Set 1) 43 +  Addition Sign + Non Descript Position 

Symbol (Set 1) 44 , Comma , Non Descript Position 

Symbol (Set 1) 45 -  Hyphen - Non Descript Position 

Symbol (Set 1) 46 .  Period . Datatype Upper Boundary - 

Symbol (Set 1) 47 /  Forward Slash / Datatype Upper Boundary 

Symbol (Set 1) 48 0  Zero 0 Datatype Upper Boundary + 

Symbol (Set 2) 57 9  Nine 9 Datatype Lower Boundary - 

Symbol (Set 2) 58 :  Colon : Datatype Lower Boundary 

Symbol (Set 2) 59 ;  Semi-Colon ; Datatype Lower Boundary + 

Symbol (Set 2) 60 <  Backwards Arrow < Non Descript Position 

Symbol (Set 2) 61 =  Equal Sign = Nominal Value 

Symbol (Set 2) 62 >  Forwards Arrow > Non Descript Position 

Symbol (Set 2) 63 ?  Question Mark ? Datatype Upper Boundary - 

Symbol (Set 2) 64 @  At @ Datatype Upper Boundary 

Symbol (Set 2) 65 A  A  A Datatype Upper Boundary + 
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Symbol (Set 3) 90 Z  Z  Z Datatype Lower Boundary - 

Symbol (Set 3) 91 [  Open Square Brace [ Datatype Lower Boundary 

Symbol (Set 3) 92 \  Backwards Slash \ Datatype Lower Boundary + 

Symbol (Set 3) 93 ]  Close Square Brace ] Nominal Value 

Symbol (Set 3) 94 ^  Hat ^ Non Descript Position 

Symbol (Set 3) 95 _  Underscore _ Datatype Upper Boundary - 

Symbol (Set 3) 96 `  Single Left Quote ` Datatype Upper Boundary 

Symbol (Set 3) 97 a  a  a Datatype Upper Boundary + 

Symbol (Set 4) 122 z  z  z Datatype Lower Boundary - 

Symbol (Set 4) 123 {  Open Curly Brace { Datatype Lower Boundary 

Symbol (Set 4) 124 |  Bar | Datatype Lower Boundary + 

Symbol (Set 4) 125 }  Close Curly Brace } Nominal Value 

Symbol (Set 4) 126 ~  Tilde ~ Datatype Upper Boundary - 

Symbol (Set 4) 127 DEL  Delete DEL Datatype Upper Boundary 

Symbol 32 Space Space   First Field Value 

Symbol 33 !  Exclamation Mark ! Non Descript Position 

Symbol 34 '' Double Quote '' Non Descript Position 

Symbol 35 #  Hash # Non Descript Position 

Symbol 36 $  Dollar $ Non Descript Position 

Symbol 37 %  Percent % Non Descript Position 

Symbol 38 &  Ampersand & Non Descript Position 

Symbol 39 '  Single Right Quote ' Non Descript Position 

Symbol 40 (  Open Round Brace ( Non Descript Position 

Symbol 41 )  Close Round Brace ) Non Descript Position 

Symbol 42 *  Kleene Star * Non Descript Position 

Symbol 43 +  Addition Sign + Non Descript Position 

Symbol 44 , Comma , Non Descript Position 

Symbol 45 -  Hyphen - Non Descript Position 

Symbol 46 .  Period . Non Descript Position 

Symbol 47 /  Forward Slash / Non Descript Position 

Symbol 58 :  Colon : Nominal Value 

Symbol 59 ;  Semi-Colon ; Non Descript Position 

Symbol 60 <  Backwards Arrow < Non Descript Position 

Symbol 61 =  Equal Sign = Non Descript Position 

Symbol 62 >  Forwards Arrow > Non Descript Position 

Symbol 63 ?  Question Mark ? Non Descript Position 

Symbol 64 @  At @ Non Descript Position 

Symbol 91 [  Open Square Brace [ Non Descript Position 

Symbol 92 \  Backwards Slash \ Non Descript Position 

Symbol 93 ]  Close Square Brace ] Non Descript Position 

Symbol 94 ^  Hat ^ Non Descript Position 

Symbol 95 _  Underscore _ Non Descript Position 

Symbol 96 `  Single Left Quote ` Non Descript Position 

Symbol 123 {  Open Curly Brace { Non Descript Position 

Symbol 124 |  Bar | Non Descript Position 

Symbol 125 }  Close Curly Brace } Non Descript Position 

Symbol 126 ~  Tilde ~ Non Descript Position 

Symbol 127 DEL  Delete DEL Last Field Value 

Null (empty) 100000 Null Null - empty set  Non Descript Position 

Non-Alphanumeric 0 NUL Null ctrl-@ First Field Value 
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Non-Alphanumeric 1 SOH Start of Heading ctrl-A Non Descript Position 

Non-Alphanumeric 2 STX Start of Text ctrl-B Non Descript Position 

Non-Alphanumeric 3 ETX End of Text ctrl-C Non Descript Position 

Non-Alphanumeric 4 EOT End of Xmit ctrl-D Non Descript Position 

Non-Alphanumeric 5 ENQ Enquiry ctrl-E Non Descript Position 

Non-Alphanumeric 6 ACK Acknowledge ctrl-F Non Descript Position 

Non-Alphanumeric 7 BEL Bell ctrl-G Non Descript Position 

Non-Alphanumeric 8 BS Backspace ctrl-H Non Descript Position 

Non-Alphanumeric 9 HT Horizontal Tab ctrl-I Non Descript Position 

Non-Alphanumeric 10 LF Line Feed ctrl-J Non Descript Position 

Non-Alphanumeric 11 VT Vertical Tab ctrl-K Non Descript Position 

Non-Alphanumeric 12 FF Form Feed ctrl-L Non Descript Position 

Non-Alphanumeric 13 CR Carriage Feed ctrl-M Non Descript Position 

Non-Alphanumeric 14 SO Shift Out ctrl-N Non Descript Position 

Non-Alphanumeric 15 SI Shift In ctrl-O Non Descript Position 

Non-Alphanumeric 16 DLE Data Line Escape ctrl-P Non Descript Position 

Non-Alphanumeric 17 DC1 Device Control 1 ctrl-Q Non Descript Position 

Non-Alphanumeric 18 DC2 Device Control 2 ctrl-R Non Descript Position 

Non-Alphanumeric 19 DC3 Device Control 3 ctrl-S Non Descript Position 

Non-Alphanumeric 20 DC4 Device Control 4 ctrl-T Non Descript Position 

Non-Alphanumeric 21 NAK Neg Acknowledge ctrl-U Non Descript Position 

Non-Alphanumeric 22 SYN Synchronous Idel ctrl-V Non Descript Position 

Non-Alphanumeric 23 ETB End of Xmit Block  ctrl-W Non Descript Position 

Non-Alphanumeric 24 CAN Cancel ctrl-X Non Descript Position 

Non-Alphanumeric 25 EM End of Medium ctrl-Y Non Descript Position 

Non-Alphanumeric 26 SUB Substitute ctrl-Z Non Descript Position 

Non-Alphanumeric 27 ESC Escape ctrl-[ Non Descript Position 

Non-Alphanumeric 28 FS File Separator ctrl-\ Non Descript Position 

Non-Alphanumeric 29 GS Group Separator ctrl-] Non Descript Position 

Non-Alphanumeric 30 RS Record Separator ctrl-^ Non Descript Position 

Non-Alphanumeric 31 US Unit Separator ctrl-_ Non Descript Position 

Non-Alphanumeric 32 Space Space   Nominal Value 

Non-Alphanumeric 33 !  Exclamation Mark ! Non Descript Position 

Non-Alphanumeric 34 '' Double Quote '' Non Descript Position 

Non-Alphanumeric 35 #  Hash # Non Descript Position 

Non-Alphanumeric 36 $  Dollar $ Non Descript Position 

Non-Alphanumeric 37 %  Percent % Non Descript Position 

Non-Alphanumeric 38 &  Ampersand & Non Descript Position 

Non-Alphanumeric 39 '  Single Right Quote ' Non Descript Position 

Non-Alphanumeric 40 (  Open Round Brace ( Non Descript Position 

Non-Alphanumeric 41 )  Close Round Brace ) Non Descript Position 

Non-Alphanumeric 42 *  Kleene Star * Non Descript Position 

Non-Alphanumeric 43 +  Addition Sign + Non Descript Position 

Non-Alphanumeric 44 , Comma , Non Descript Position 

Non-Alphanumeric 45 -  Hyphen - Non Descript Position 

Non-Alphanumeric 46 .  Period . Non Descript Position 

Non-Alphanumeric 47 /  Forward Slash / Non Descript Position 

Non-Alphanumeric 58 :  Colon : Non Descript Position 

Non-Alphanumeric 59 ;  Semi-Colon ; Non Descript Position 

Non-Alphanumeric 60 <  Backwards Arrow < Non Descript Position 
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Non-Alphanumeric 61 =  Equal Sign = Non Descript Position 

Non-Alphanumeric 62 >  Forwards Arrow > Non Descript Position 

Non-Alphanumeric 63 ?  Question Mark ? Non Descript Position 

Non-Alphanumeric 64 @  At @ Non Descript Position 

Non-Alphanumeric 91 [  Open Square Brace [ Non Descript Position 

Non-Alphanumeric 92 \  Backwards Slash \ Non Descript Position 

Non-Alphanumeric 93 ]  Close Square Brace ] Non Descript Position 

Non-Alphanumeric 94 ^  Hat ^ Non Descript Position 

Non-Alphanumeric 95 _  Underscore _ Non Descript Position 

Non-Alphanumeric 96 `  Single Left Quote ` Non Descript Position 

Non-Alphanumeric 123 {  Open Curly Brace { Non Descript Position 

Non-Alphanumeric 124 |  Bar | Non Descript Position 

Non-Alphanumeric 125 }  Close Curly Brace } Non Descript Position 

Non-Alphanumeric 126 ~  Tilde ~ Non Descript Position 

Non-Alphanumeric 127 DEL  Delete DEL Last Field Value 

ASCII 0 NUL Null ctrl-@ First Character 

ASCII 1 SOH Start of Heading ctrl-A First Character + 

ASCII 2 STX Start of Text ctrl-B First Character ++ 

ASCII 3 ETX End of Text ctrl-C Non Descript Position 

ASCII 4 EOT End of Xmit ctrl-D Non Descript Position 

ASCII 5 ENQ Enquiry ctrl-E Non Descript Position 

ASCII 6 ACK Acknowledge ctrl-F Non Descript Position 

ASCII 7 BEL Bell ctrl-G Non Descript Position 

ASCII 8 BS Backspace ctrl-H Non Descript Position 

ASCII 9 HT Horizontal Tab ctrl-I Non Descript Position 

ASCII 10 LF Line Feed ctrl-J Non Descript Position 

ASCII 11 VT Vertical Tab ctrl-K Non Descript Position 

ASCII 12 FF Form Feed ctrl-L Non Descript Position 

ASCII 13 CR Carriage Feed ctrl-M Non Descript Position 

ASCII 14 SO Shift Out ctrl-N Non Descript Position 

ASCII 15 SI Shift In ctrl-O Non Descript Position 

ASCII 16 DLE Data Line Escape ctrl-P Non Descript Position 

ASCII 17 DC1 Device Control 1 ctrl-Q Non Descript Position 

ASCII 18 DC2 Device Control 2 ctrl-R Non Descript Position 

ASCII 19 DC3 Device Control 3 ctrl-S Non Descript Position 

ASCII 20 DC4 Device Control 4 ctrl-T Non Descript Position 

ASCII 21 NAK Neg Acknowledge ctrl-U Non Descript Position 

ASCII 22 SYN Synchronous Idel ctrl-V Non Descript Position 

ASCII 23 ETB End of Xmit Block  ctrl-W Non Descript Position 

ASCII 24 CAN Cancel ctrl-X Non Descript Position 

ASCII 25 EM End of Medium ctrl-Y Non Descript Position 

ASCII 26 SUB Substitute ctrl-Z Non Descript Position 

ASCII 27 ESC Escape ctrl-[ Non Descript Position 

ASCII 28 FS File Separator ctrl-\ Non Descript Position 

ASCII 29 GS Group Separator ctrl-] Non Descript Position 

ASCII 30 RS Record Separator ctrl-^ Non Descript Position 

ASCII 31 US Unit Separator ctrl-_ Non Descript Position 

ASCII 32 Space Space   Non Descript Position 

ASCII 33 !  Exclamation Mark ! Non Descript Position 

ASCII 34 '' Double Quote '' Non Descript Position 
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ASCII 35 #  Hash # Non Descript Position 

ASCII 36 $  Dollar $ Non Descript Position 

ASCII 37 %  Percent % Non Descript Position 

ASCII 38 &  Ampersand & Non Descript Position 

ASCII 39 '  Single Right Quote ' Non Descript Position 

ASCII 40 (  Open Round Brace ( Non Descript Position 

ASCII 41 )  Close Round Brace ) Non Descript Position 

ASCII 42 *  Kleene Star * Non Descript Position 

ASCII 43 +  Addition Sign + Non Descript Position 

ASCII 44 , Comma , Non Descript Position 

ASCII 45 -  Hyphen - Non Descript Position 

ASCII 46 .  Period . Non Descript Position 

ASCII 47 /  Forward Slash / Non Descript Position 

ASCII 48 0  Zero 0 Non Descript Position 

ASCII 49 1  One 1 Non Descript Position 

ASCII 50 2  Two 2 Non Descript Position 

ASCII 51 3  Three 3 Non Descript Position 

ASCII 52 4  Four 4 Non Descript Position 

ASCII 53 5  Five 5 Non Descript Position 

ASCII 54 6  Six 6 Non Descript Position 

ASCII 55 7  Seven 7 Non Descript Position 

ASCII 56 8  Eight 8 Non Descript Position 

ASCII 57 9  Nine 9 Non Descript Position 

ASCII 58 :  Colon : Non Descript Position 

ASCII 59 ;  Semi-Colon ; Nominal Value 

ASCII 60 <  Backwards Arrow < Non Descript Position 

ASCII 61 =  Equal Sign = Non Descript Position 

ASCII 62 >  Forwards Arrow > Non Descript Position 

ASCII 63 ?  Question Mark ? Non Descript Position 

ASCII 64 @  At @ Non Descript Position 

ASCII 65 A  A  A Non Descript Position 

ASCII 66 B  B  B Non Descript Position 

ASCII 67 C  C  C Non Descript Position 

ASCII 68 D  D  D Non Descript Position 

ASCII 69 E  E  E Non Descript Position 

ASCII 70 F  F  F Non Descript Position 

ASCII 71 G  G  G Non Descript Position 

ASCII 72 H  H  H Non Descript Position 

ASCII 73 I  I  I Non Descript Position 

ASCII 74 J  J  J Non Descript Position 

ASCII 75 K  K  K Non Descript Position 

ASCII 76 L  L  L Non Descript Position 

ASCII 77 M  M  M Non Descript Position 

ASCII 78 N  N  N Non Descript Position 

ASCII 79 O  O  O Non Descript Position 

ASCII 80 P  P  P Non Descript Position 

ASCII 81 Q  Q  Q Non Descript Position 

ASCII 82 R  R  R Non Descript Position 

ASCII 83 S  S  S Non Descript Position 

ASCII 84 T  T  T Non Descript Position 
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ASCII 85 U  U  U Non Descript Position 

ASCII 86 V  V  V Non Descript Position 

ASCII 87 W  W  W Non Descript Position 

ASCII 88 X  X  X Non Descript Position 

ASCII 89 Y  Y  Y Non Descript Position 

ASCII 90 Z  Z  Z Non Descript Position 

ASCII 91 [  Open Square Brace [ Non Descript Position 

ASCII 92 \  Backwards Slash \ Non Descript Position 

ASCII 93 ]  Close Square Brace ] Non Descript Position 

ASCII 94 ^  Hat ^ Non Descript Position 

ASCII 95 _  Underscore _ Non Descript Position 

ASCII 96 `  Single Left Quote ` Non Descript Position 

ASCII 97 a  a  a Non Descript Position 

ASCII 98 b  b  b Non Descript Position 

ASCII 99 c  c  c Non Descript Position 

ASCII 100 d  d  d Non Descript Position 

ASCII 101 e  e  e Non Descript Position 

ASCII 102 f  f  f Non Descript Position 

ASCII 103 g  g  g Non Descript Position 

ASCII 104 h  h  h Non Descript Position 

ASCII 105 i  i  i Non Descript Position 

ASCII 106 j  j  j Non Descript Position 

ASCII 107 k  k  k Non Descript Position 

ASCII 108 l  l  l Non Descript Position 

ASCII 109 m  m  m Non Descript Position 

ASCII 110 n  n  n Non Descript Position 

ASCII 111 o  o  o Non Descript Position 

ASCII 112 p  p  p Non Descript Position 

ASCII 113 q  q  q Non Descript Position 

ASCII 114 r  r  r Non Descript Position 

ASCII 115 s  s  s Non Descript Position 

ASCII 116 t  t  t Non Descript Position 

ASCII 117 u  u  u Non Descript Position 

ASCII 118 v  v  v Non Descript Position 

ASCII 119 w  w  w Non Descript Position 

ASCII 120 x  x  x Non Descript Position 

ASCII 121 y  y  y Non Descript Position 

ASCII 122 z  z  z Non Descript Position 

ASCII 123 {  Open Curly Brace { Non Descript Position 

ASCII 124 |  Bar | Non Descript Position 

ASCII 125 }  Close Curly Brace } Last Character -- 

ASCII 126 ~  Tilde ~ Last Character - 

ASCII 127 DEL  Delete DEL Last Character 
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Appendix G. ASCII Table 

The table below provides the character codes for each of the 128 characters of the ASCII table.  

Table 8-46: The ASCII table. 

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char 

0 00 Null 32 20 Space 64 40 @ 96 60 ` 

1 01 Start of heading 33 21 ! 65 41 A 97 61 a 

2 02 Start of text 34 22 “ 66 42 B 98 62 b 

3 03 End of text 35 23 # 67 43 C 99 63 c 

4 04 End of transmit 36 24 $ 68 44 D 100 64 d 

5 05 Enquiry  37 25 % 69 45 E 101 65 e 

6 06 Acknowledge 38 26 & 70 46 F 102 66 f 

7 07 Audible bell  39 27 ‘ 71 47 G 103 67 g 

8 08 Backspace 40 28 ( 72 48 H 104 68 h 

9 09 Horizontal tab 41 29 ) 73 49 I 105 69 i 

10 0A Line feed 42 2A * 74 4A J 106 6A j 

11 0B Vertical tab 43 2B + 75 4B K 107 6B k 

12 0C Form feed 44 2C ´ 76 4C L 108 6C l 

13 0D Carriage return  45 2D - 77 4D M 109 6D m 

14 0E Shift out 46 2E . 78 4E N 110 6E n 

15 0F Shift in 47 2F / 79 4F O 11 6F o 

16 10 Data link escape 48 30 0 80 50 P 112 70 p 

17 11 Decide control 1 49 31 1 81 51 Q 113 71 q 

18 12 Decide control 2 50 32 2 82 52 R 114 72 r 

19 13 Decide control 3 51 33 3 83 53 S 115 73 s 

20 14 Decide control 4 52 34 4 84 54 T 116 74 t 

21 15 Neg. acknowledge 53 35 5 85 55 U 117 75 u 

22 16 Synchronous idle 54 36 6 86 56 V 118 76 v 

23 17 End trans. block 55 37 7 87 57 W 119 77 w 

24 18 Cancel  56 38 8 88 58 X 120 78 x 

25 19 End of medium 57 39 9 89 59 Y 121 79 y 

26 1A Substitution  58 3A : 90 5A Z 122 7A z 

27 1B Escape 59 3B ; 91 5B [ 123 7B { 

28 1C File separator 60 3C < 92 5C \ 124 7C | 

29 1D Group separator 61 3D = 93 5D ] 125 7D } 

30 1E Record separator 62 3E > 94 5E ^ 126 7E ~ 

31 1F Unit separator  63 3F ? 95 5F _ 127 7F   

 

Appendix H. Publications 

The following papers were published at various national and international conferences, as part of the 

research and development that was carried out for this thesis. Although all papers have multiple authors, the 

content of those that contain definitions of the Atomic Rules approach, GQASV and SMT was solely 

produced by the author of this thesis.  



On the Effectiveness of Mutation Analysis as a Black Box Testing Technique 

Tafline Murnane 
TATE Associates 
Carlton Victoria 

Australia 
tmurnane@tate.com.au 

Abstract 

The technique of mutation testing, in which the 
eflectiveness of tests is determined by creating variants of 
a program in which statements are mutated, is well 
known. Whilst of considerable theoretical interest the 
technique requires costly tools and is computationally 
expensive. Very large numbers of ‘mutants’ can be 
generated for even simple programs. 

More recently it has been proposed that the concept 
be applied to specijkation based (black box) testing. The 
proposal is to generate test cases by systematically 
replacing data-items relevant to a particular part of a 
specijkation with a data-item relevant to another. If the 
specification is considered as generating a language that 
describes the set of valid inputs then the mutation process 
is intended to generate syntactically valid and invalid 
statements. Irrespective of their ‘correctness’ in terms of 
the specijkation, these can then be used to test a 
program in the usual (black box) manner. 

For this approach to have practical value it must 
produce test cases that would not be generated by other 
popular black box test generation approaches. This 
paper reports a case study involving the application of 
mutation based black box testing to two programs of 
diflerent types. Test cases were also generated using 
equivalence class testing and boundary value testing 
approaches. The test cases from each method were 
examined to judge the overlap and to assess the value of 
the additional cases generated. It was found that less 
than 20% of the mutation test cases for a data-vetting 
program were generated by the other two methods, as 
against 75% for a statistical analysis program. l%is 
paper analyses these results and suggests classes of 
specifcations for which mutation based test-case 
generation may be efective. 

1 Introduction 

Testing software after it is completed remains an 
important aspect of software quality assurance despite the 
recent emphasis on the use of formal methods and 
‘defect-free’ software development processes. As has 
been widely stated, testing does not prove the absence of 
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errors. However, for some classes of programs it is 
possible in principle to define a ‘safe’ operational 
envelope based upon the set of test cases that it processes 
successfidly [l]. Further, clients will frequently write 
contracts with acceptance testing clauses with the 
objective of verifying that the software does indeed 
perform as specified with the intention of taking legal 
action if it does not. Pre-delivery testing by developers 
can also provide critical data on the overall effectiveness 
of the development cycle by identifying residual fault 
rates. 

Over time, a number of specification based (black 
box or prescriptive) test generation procedures have 
become popular and have been the subject of numerous 
studies as to their effectiveness. Broadly speaking, these 
provide a set of rules of varying detail and clarity that can 
be applied to a specification to generate test cases. 

Traditional mutation analysis is a testing technique 
that was not originally intended for use with specification 
based testing. In traditional mutation analysis, a single 
fault is introduced into the program source code to create 
a new program version called a ‘mutant.’ Tests are 
created and are processed by the original and mutant 
programs with the goal of causing each mutant to fail (i.e. 
to produce output that differs from the non-mutant 
program). The effectiveness of the program test set is 
evaluated in terms of the number of mutants detected. 

Budd and Gopal [2] found it was possible to apply 
the concept of mutation analysis to specification based 
testing. Rather than creating mutants from the program 
source code they are created by mutating the program 
specification. 

In our proposal for mutation analysis, language 
elements (terminal elements) of the specification are used 
as mutation substitution elements. Each terminal element 
is systematically substituted for every other terminal 
element. A single element substitution produces one 
mutant specification. A mutation test set is then 
developed fiom the mutated specifications. 

The goals of this research are: 
1. to determine whether or not the mutant tests are 

able to detect errors in programs and if so, is 
there a class of specifications that would benefit 
fiom this type of testing and, 
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2. whether this type of testing generates classes of 
tests that are not produced by other popular 
forms of black box testing and, 

3. whether this type of testing produces small 
numbers of program-critical tests. 

In the case study reported [3], the effectiveness of 
specification based mutation analysis was compared to 
boundary value analysis and equivalence class testing. In 
what follows, we summarise the case study and its results 
and make suggestions of the classes of programs for 
which this approach to testing would be effective. 

2 Traditional Testing Techniques 

2.1 Black Box Testing 

The term ‘black box’ testing is used to describe tests 
that are derived primarily from a program’s specification. 
In principle, the internal program source code is not 
considered. Test data derived from the specification is 
used to systematically test the input and output behaviour 
of the program. [4]. The goal is to generate a test set that 
l l l y  exercises the program’s functional requirements. 
Types of testing in this category include equivalence class 
testing, boundary value analysis, cause-effect graphing, 
error guessing, model checking and random testing. 

2.2 Equivalence Class Testing 

Equivalence class testing is based upon the 
assumption that a program’s input and output domains 
can be partitioned into a finite number of (valid and 
invalid) classes such that all cases in a single partition 
exercise the same functionality or exhibit the same 
behavior. Test cases are designed to test the input or 
output domain partitions. Only one test case from each 
partition is required, which reduces the number of test 
cases necessary to achieve functional coverage [4]. The 
success of this approach depends upon the tester being 
able to identify partitions of the input and output spaces 
for which, in reality, cause distinct sequences of program 
source code to be executed [l]. 

Jorgensen [5] identified one problem with 
equivalence partitioning. Often a specification does not 
define the output for an invalid equivalence class. Tucker 
[6] also noted that problems occur when the test data 
chosen for an equivalence class does not represent that 
partition in terms of the behaviour of the program 
function that is being tested. 

Hamlet and Taylor [7] state that ‘‘Partition testing can 
be no better than the information that defines its sub- 
domains.” If one input in an invalid equivalence class 
causes a failure in the program then all other inputs in that 
class must also cause a failure. If this is not the case then 
the equivalence class is not a good representative of that 
part of the program and thus the identification of 
additional partitions may be required. Due to the nature of 
this approach such problems may not be identified. 

2.3 Boundary Value Analysis 

Boundary value analysis is performed by creating 
tests that exercise the edges of the input and output 
classes identified in the specification. Test cases can be 
derived fiom the ‘boundaries’ of equivalence classes. 
Choices of boundary values include above, below and on 
the boundary of the class. 

One disadvantage with boundary value analysis is 
that it is not as systematic as other prescriptive testing 
techniques. This is due to the fact that it requires the 
tester to identify the most extreme values inputs can take. 
Jorgensen noted that it is this type of abstract thinking 
that may allow a tester to improve the quality of the test 
sets used [5]. 

2.4 White Box Testing 

White box testing involves the examination and 
testing of the program’s internal composition, Test data is 
derived from examining the internal logic, branches and 
paths of the source code [4]. The goal is either to reach 
some coverage goal by testing and executing as many 
paths, branches and statements or other source 
characteristics as possible [8], or to ensure that certain 
expressions, decisions, branches, paths or source- 
attributes are exercised in particular a manner [9]. The 
number of source-attributes and coverage measures is 
language dependent and quite large (see for example Wu 
et a1 [lo]). 

White box and black box testing are complimentary 
and when used together can help to check whether a 
program conforms to its specification 161 (see for example 
Ofi t t  and Liu [ 1 lll). 

Rapps and Weyuker [12] noted that as the input 
domain of a program is generally very large, exhaustive 
testing is often impractical. Even for a small program 
containing a limited number of loops and branches, 
executing every statement is usually infeasible. They 
furthermore stated that ensuring all paths have been 
traversed does not guarantee that all errors in the code 
will have been detected, pointing for example to the 
problems in detecting ‘def-use’ errors. This view is 
supported by Weiser et a1 [9]. 

2.5 Traditional (Code-Based) Mutation Analysis 

The main objective of traditional (code based) 
mutation analysis is to determine the effectiveness of a 
particular test suite. Faults are systematically introduced 
into the program’s source code creating ‘flawed clones’ 
of the program called mutants. Each mutant has one 
language element in a single statement of the original 
program changed. The element substitution is based on a 
set of operators called ‘mutation operators’ [lo]. 

A test case is designed for each mutant to try to detect 
the ‘seeded’ error. If the output from the mutated and 
non-mutated program under this test differs, then the test 

O a t t  and Liu did state that functional testing had several advantages 
over structural testing. 
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has been successful in locating the mutant code and is 
assumed to be capable of locating similar errors. The 
mutant is ‘killed’ and is not executed again against other 
test cases [13]. Conversely, if the behaviors of the two 
programs are the same then the error was not detected and 
the test is discarded. New tests are then designed to try to 
detect the mutant code. In a complete mutation test all 
possible mutants of a particular program are produced 
and tested. 

The mutation process may generate changes that 
leave the mutant functionally equivalent to the original 
program. This type of mutant should not be killed by any 
given test case which ‘passes’ testing the original 
program. The locating of these ‘equivalent mutants’ is 
usually done by hand. 

The mutation score is the ratio of the number of 
killed mutants to the number of non-equivalent mutants 
and is the measure of the adequacy of the test set. Of€utt 
and Lee stated that a test set is ‘mutation-adequate’ if the 
mutation score is 100% [14]. Generally, mutation scores 
of 90% are dficult to reach and scores over 95% are 
extremely difficult to achieve [ll]. The ultimate goal of 
mutation analysis is to locate test cases which kill all non- 
equivalent mutants. Test sets which achieve this are 
referred to as “adequate relative to mutation” [13]. 

3 Specification Based Mutation Analysis 

Specification based mutation analysis was first 
suggested by Budd and Gopal in 1984 [2]. Their 
approach involved mutating formal specifications whose 
language was defined using predicate calculus. Input test 
cases were generated by changing operators and 
predicates of the specification. More recent studies 
include the use of model checkers to automatically 
generate specification mutation test sets using several 
different types of mutation operators (see for example 
Black et a1 [16] [17] [18]). 

In our case, we treat the specification as a language in 
which terminal sets can be mutated [3]. A specification 
can be characterised as a set of language elements which 
together describe the input and output behavior of a 
program, in much the same way as the syntax and 
semantics of the programming language determine valid 
forms of a program. Each data-item in the specification 
can be considered as a language or ‘terminal’ element. 
Collections of terminal elements are referred to as 
terminal sets. Production rules define how the terminal 
elements can be combined. 

Substituting one terminal element for another creates 
one mutant specification. This process is repeated until 
every terminal element has been substituted for every 
other terminal element. Since each mutant contains one 
substituted element it can be referred to as a ‘single- 
defect’ mutant. ‘Double-defect’ mutants can be devised 
by substituting two terminal elements at a time. 
‘Production rule mutants’ could also be created by 
mutating the production rules used to generate the input 
cases. 

The ‘mutation operator’ substitutes one terminal 
element for another. A simple example is as follows. The 

terminal set <terminallxtermina12Xtermaina13> could 
create the mutant <termina12xtermina12xtermaina13> by 
substituting the second terminal element for the first. 

One test case is created from each mutant. Mutant 
test cases are classified as either a ‘syntactically valid’ or 
‘syntactically invalid’ input. A syntactically valid input 
would make a program behave in a way that would be 
expected from a non-mutant input. In an input of this 
type, the terminal element that was substituted is 
‘syntactically equivalent’ to the terminal element it 
replaced. 

The syntactically invalid class of inputs can be 
decomposed into ‘correct’ and ‘incorrect’. A syntactically 
invalid correct input is one that the program should and 
does recognise as containing a syntactic error. A 
syntactically invalid incorrect input is one that the 
program should recognise as containing a syntactic error 
but does not. This type of input may have located an 
inadequacy or fault in the program. 

Creating a set of double-defect mutants could result 
in a more rigorous test set, as could production rule 
mutation. However the number test cases generated could 
be extremely large. Further, the consequences of the first 
mutation may directly interfere and complicate the 
implications of the second mutation, clouding the result of 
the test. 

For some specifications, mutation analysis may 
produce a test set that appears to resemble a test set 
produced by random testing. The difference is that 
mutation analysis produces systematic test sets and is not 
dependent on randomisation by the tester. 

One characteristic that is a requirement of this type of 
mutation analysis is that the specifications are written in a 
manner that facilitates the mutation process. It is apparent 
that some formal or semi-formal method is required 
where each terminal element is clearly defined. In the 
case study reported, the use of a semi-formal notation 
satisfied that requirement. 

A shortcoming of mutation analysis is the cost 
involved in generating and executing test cases and 
examining the results. It is proposed that this testing 
technique would benefit greatly from automatic test case 
generation. 

4 Previous Studies on Specification Based 
Mutation Analysis 

Budd and Gopal’s [2] approach to specification based 
mutation analysis involves producing specifications in 
predicate calculus based upon the predicate structure of 
the program under consideration. Their notation is chosen 
so that the input-output relationships are clear. In 
principle, the specification is mutated so that the new 
version contains an expression which if true, constitutes 
an illegal input. The expression should dBer from its 
correct counterpart in that only one element is altered. 
Special steps are taken to deal with quantifiers, and 
relational operators may be mutated. An input test case is 
then produced which meets the mutated specification (i.e. 
makes it true). 
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Fabbri, Maldonado, Sugeta and Masiero [15] 
examined the use of mutation analysis to validate 
specifications presented as state charts, defining an 
appropriate mutation operator set to be taken as a fault 
model. A tool, ProtedST,  was implemented to support 
the validation of finite state machine models. The goals of 
their research were to investigate ways of selecting useful 
test sets and how to ensure that a specification and its 
program had been thoroughly tested. 

Black, Ammann and Majurski [16] experimented 
with using a (low-level language) model checker called 
‘Symbolic Model Version’ or S M V  to automatically 
generate complete specification based mutation test sets. 
“Complete” test sets include inputs and expected results. 
They used two types of mutation operators, creating both 
valid and invalid test sets. The model checker was used to 
produce counterexamples for each mutation operator, 
where each counterexample was a mutant of the original 
specification. They noted that their mutation operators 
were only useful for specifications that were described as 
finite models (within the context of a model checker). 
Branch coverage analysis was used to examine the 
usefulness of the test cases generated, finding that the 
tests were “quite good, but not perfect.” The reported 
advantages of using a model checker for specification 
based mutation analysis was that the test case generation 
was completely automatic, as was the detection of 
equivalent mutants. 

Ammann and Black [17] found that in order to make 
mutation analysis with a model checker possible they had 
to decompose specifications to lower language levels. 
They investigated a way of reducing larger state machines 
to sub-machines enabling these to be processed by model 
checkers. This reduction process was referred to as “finite 
focus.” Since model checkers can handle finite state 
machines of no more than a few thousand states, the 
specification must allow decomposition. Thus the 
reduction of the specification’s state machine allowed 
very large s o h a r e  systems to have test cases generated 
automatically. They proved that finite focus was a sound 
reduction technique, producing smaller state machines 
that were valid and creating a smaller mutation adequate 
test set. 

Black, O b  and Yesha [18] examined a method 
involving the use of the S M V  model checker to 
automatically generate complete mutation test sets ftom 
formal specifications using a predefined set of mutation 
operators. In order to perform the mutation testing, the 
specification had to be in a form that was readable by 
SMV. They focussed on redefining and comparing 
different types of operators and then reducing the number 

of mutation operators required for good test coverage. 
They presented classes of operators that provided 
Merent levels of coverage (up to 100’Yo) and numbers of 
mutants created. 

Black et al and Budd et al describe complex 
specification mutation schemes involving conditional 
logic which will inevitably be reflected in the processing 
programs. We consider that in many cases the practical 
advantages can be realised by merely permuting the input 
specification. Therefore our method of mutation analysis 
differs fiom these techniques in the following ways. 

1. Only one mutation operator is required making 
the process far more simple and practical. 

2. If the terminal elements are defined then the 
specification does not have to be changed to fit 
some predefined format. 
The more complex the input specification the 
better the result of testing, for no increase in the 
complexity of the method. 

3. 

5 The Case Studies and their Interpretation 

The case study involved the comparison of boundary 
value analysis and equivalence partitioning to 
specification based mutation analysis [3]. The objective 
of this comparison was to examine the size and nature of 
the ‘overlap’ between the mutation analysis test set and 
the boundary value and equivalence class test sets. Two 
semi-formal specifications were used in this approach. 
Their syntax used a combination of COBOL or PLA 
syntax and Backus-Naur Form notation. Both were 
programming assignments fiom Software Engineering 
subjects of La Trobe University (see [19] and [20]). 

5.1 The Address Parser Specification 

The first specification defmes the input for an address 
parser (data-vetting) program. The input to this program 
is an address comprised of specific elements, shown in 
Figure 1, The aim of the program is to parse an address 
and if it is of a ‘correct’ format, write it to a file. If not the 
program is to report which elements of the address are 
incorrect. The symbols used in the specification are 
explained in Table 1, while the results of testing are 
outlined in Table 2. The complete specification included 
the requirement of directional indicators, for example the 
address 150 Main Road North Eltham 3095. In the 
interests of limiting the test set, this variant was not 
covered. 
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A standard address: 
[{ UNIT }] Add& { , / } AdddA <street> A... <suburb> A... <postcode>. 

FLAT 

Number of Tests Created 
Mutation Analysis Equivalence Class Testing Boundary Value Analysis 

A special flat/unit address: 
[ { UNIT >] Add& <streeth. . . <suburb>/\. . . <postcode>. 

FLAT 
RSD 

%of Overlap with 
Mutation Analysis 

A country or care-of address: 
[{ c/- 13 A... <stree P A . . .  <suburbBA ... <postcode>. 

c /o  

Figure 1 Input elements of the address parser specification. 

Table 1 Definition of specification notation. All other symbols are characters 

Table 2 The results of testinu the address Darser Drouram. 

Total I Passed I Failed I Total 1 Passed I Failed I Total I Passed I Failed I ECT 1 BVA 
290 1 10 I 280 I 29 I 10 1 19 I 89 I 31 I 58 1 14.5 I 17.9 

A requirement of the address parser program was that 
if an invalid address was entered then the program has to 
be capable of recognising the ‘incorrect’ element(s) and 
output an appropriate message. This ability is illustrated 
by test cases one to three of Table 3, which shows sample 
data and the test methods capable of generating the test 
cases. The standard address is used as an example in this 
sample. 

Conversely, the output generated by mutation test 
cases four and five highlight a program fault which was 
not found by boundary value or equivalence class testing. 
The fault is that the program produced an output message 
that did not correctly state which element of the address 
was incorrect. This illustrates that due to the extreme 
nature of some of the mutation tests generated, program 
faults were detected which were not found by 
conventional black box testing approaches. 
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d e  3 Sample test data and results of testing the address parser program. 
Test Case Program Output Could be Method of Generation 

d Generated 
by 

UNIT 3095 Main Number has too manv digits. MA Substitute vostcode for unit number. 
Road Eltham 3095. I 

, Y  

ECT I Invalid class of unit number. 
BVA Upper boundary of unit number. 

UNIT 99 Main Number has too few digits. BVA Lower boundary of unit number. 
Road Eltham 3095. ECT Invalid class of unit number. 
UNIT Test Main Number has too few digits. ECT Invalid class of unit number. 
Road Eltham 3095. 
UNIT C/o Main Number has too few digits. MA “Care-of’ address identifier 
Road Eltham 3095. Space required after suburb. 

Street not found. 
Invalid suburb. 

substituted into the unit number. 

I Full stop not found. 
UNIT 100 Clo I Space required after suburb. I MA I “Care-of’ address identifier 
Eltham 3095. Street not found. 

Full stop not found. 
Invalid suburb. 

substituted into the street name. 

5.2 The Statistical Analysis Specification letter identifier. The elements of this specification are 
listed in Figure 2. The overall results of testing this 
specification are shown in Table 4. Sample test data and 
results are shown in Table 5. 

The second specification defines the input of a 
statistical analysis program which computes the standard 
deviation and average of values that are tagged by a one- 

Batches of these letters and values are bracketed with the following records. 
sbatch.. .<batchnoxeor> 
and 
ebatch.. .<batchnoxeor> 

The last record in any collection of batches is: 
lbatch.. .<eor>Jlbatch.. .<eof> 

The records in each batch are of the following form: 
<recor&: :=<lpart><rpartxeor> 
<lpart>::=<null>lA.. . 
<rp&: :=<letter>r\ccvalue>l<~&A<letter>A<value> 
<letter>::= any letter chosen from the set [B-L, S-W, Z] 
<value>::= any valid, non-floating point decimal value in the range [-99,991 

1 
Figure 2 Input elements of the statistical analysis specification. 
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Table 5 Sample test data and results of testing the statistical analysis 
nrouram. 

# TestCase Program Behaviour Could be Method of Generation 
* Generated 

by 
I 1 I sbatch20 I Programacceptstheinput as I MA I Substitute sbatch number for ebatch I 

I sbatch sbatch 
1 G-99 
ebatch 20 
sbatch ebatch 
G -99 
ebatch 20 

Valid. number. 
ECT 
BVA 

Valid class of rpart number. 
Upper boundary of rpart number. 
sbatch tag substituted into the sbatch 
number. 

Program outputs error message MT 
stating that there was no sbatch 
number found. 
Program outputs error message MT ebatch tag substituted into sbatch 
stating that there was no sbatch 
number and the rpart and ebatch 
tae: was not found. 

number. 

5.3 An Examination of the Results 

In the specification for the address parser, few 
terminal elements were syntactically equivalent. 
Consequently, ftom the mutation test set produced the 
program found only a small number of addresses that 
were syntactically valid. For example the house number 
could be substituted for the unidflat number without an 
error being raised, as both were three digits long. 
However if the house or unidflat numbers were swapped 
with a text sentence such as the street name the program 
found a syntactic error in the input. The element that was 
the most interchangeable was the ‘space.’ One-space 
markers could be swapped for any one-or-more space 
markers without errors being detected in the input. The 
reverse was not equivalent, however the space marker 
could also be replaced for elements such as all of the 
optional address elements. 

It was found that there was 17.93% equivalence 
between the mutation analysis and the boundary value 
analysis test sets, and 14.48% between the mutation 
analysis and the equivalence class test sets. 

For the statistical program there was an extensive 
overlap between the mutation analysis test set and the 
boundary value and equivalence class test sets. For 
example, all three testing methods located errors in inputs 
involving a missing sbatch or ebatch tag and in inputs 
containjng a letter or value outside of the specified range. 
Another type of test that produced equivalencies was the 
replacement of an element with the <null> element. When 
replacing with the <null> element, the three test sets 
produced equivalent results in most situations. Therefore 
there was a large overlap in the tests ftom the three 
methodologies. 

A 75.96% equivalence was found between the 
mutation analysis test set and the boundary value and 
equivalence class test sets. 

The testing process showed that although the 
programs were returning error messages when invalid 
inputs were entered, in many cases they were not 
correctly stating which section of the input contained the 
error. For the statistical program this inadequacy was 
located by all three testing methodologies. However, for 
the address parser program most mutation test cases were 
able to detect these types of errors, whereas the majority 
of the boundary value and equivalence class tests did not. 

6 Mutation Testing.Amenable Specifications 

In the results reported in the previous section, the 
address parser specification produced a mutation test set 
in which there was a modest overlap with the boundary 
value analysis and equivalence class test sets (less than 
20%), while the statistical program’s specification 
produced a substantial overlap in the test sets (75%), 

A closer examination of the two specifications 
suggests that some specifications will be more amenable 
to mutation based testing than others. While this issue is 
the subject of future work, we can make some informal 
comments that will be of practical guidance to 
practitioners. Consider a simple specification of the 
following form. 

where each of the <sepi> = {sil,. . .,sa) 

and each of the terminalj> = {tj,, ... ,tjm) 

In general, the nature of the si. E <sepi> and the Gk E 

<terminalj> will be such that it would be unlikely that 
substituting some arbitrary f jkE <terminals> for <sep3> 
would produce a test case that would have been generated 
by either equivalence class testing or boundary value 
analysis. However, we also need to consider the case of 
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substituting <terminat> for <terminall>, which 
would be a valid mutation operation. 

Constructing an equivalence class test requires that 
there be some basis for dividing the terminal sets (or 
combinations of them) to construct equivalence partitions. 
We then choose one element fiom the partition as a test 
case. If for some reason the intersection of the terminal 
sets is non-null then we may have constructed a mutation 
test by default. However if the terminal sets are distinct 
then by definition, a valid equivalence class test cannot 
choose an element fkom another terminal set. Whether or 
not invalid equivalence class tests will generate cross- 
terminal set substitutions depends upon how the terminal 
set is extended to include illegal values. 

In the case of boundary value tests, we point out that 
if the sets are discrete and finite then the concept of 
boundaries may have no practical meaning. If they are in 
some sense continuous or are in a sequence, then 
boundary values may be considered to exist. Alternatively 
the boundary values may be stated explicitly. A typical 
specification for such a terminal might be (without loss of 
generality) as follows. 

<terminali> ::= (R&N:ubi 5 R 5 Ibi} 

where ub and lb are upper and lower boundaries 
respectively. 

In this case, if there are multiple terminal sets with 
this definition and their intersection is non-null, then both 
mutation analysis and boundary value and equivalence 
class testing can generate test cases that will be identical. 

7 Conclusions and Future Work 

While specification based mutation analysis can 
provide a tester with valuable information about the 
correctness of program behaviour, it is clear that it would 
not benefit all types of specifications. Future work will 
include an examination of the feasibility of identifj4ng 
specifications that will benefit from mutation analysis and 
the development of mutation operators. Empirical 
experimentation will determine whether there is a 
statistical overlap between specification based mutation 
analysis and other popular forms of black box testing. An 
additional goal is to investigate whether specification 
based mutation analysis is effective at producing 
program-critical tests. 

It is also clear that given an appropriate set of 
(formal) production rules that specify a program’s input, a 
test case generator can be constructed using standard 
compiler writing techniques. It would then be possible, 
given appropriate mutation operators, to generate mutant 
test cases automatically. The simple substitution operator 
used in the test cases would be straightforward. 

Finally, the authors recognise that the approach taken 
here has properties similar to random test case generation 
and might generally be regarded as a particular case of 
this approach. 
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Abstract

This paper presents the findings of, to the best of 
our knowledge, the first survey on software testing 
practices carried out in Australian ICT industry.  A 
total of 65 organizations from various major capital 
cities in Australia participated in the survey, which 
was conducted between 2002 and 2003.   

The survey focused on five major aspects of 
software testing, namely testing methodologies and 
techniques, automated testing tools, software testing 
metrics, testing standards, and software testing 
training and education.  Based on the survey results, 
current practices in software testing are reported, as 
well as some observations and recommendations for 
the future of software testing in Australia for industry 
and academia.   

Keywords: Software engineering, software testing, 
survey

1. Introduction 

Swinburne University of Technology, in 
conjunction with La Trobe University and sponsored 
by the Australian Computer Society conducted a 
survey on software testing in Australia between 2002 
and 2003.  Similar surveys are being run in several 
other Southeast Asian countries.  Software 
development organizations from different industry 
sectors (government, pubic and private), domestic and 
foreign owned, in-house groups and software 
companies across various industries were invited to 
participate in the survey.   

There were a number of reasons for conducting this 
survey:-

Firstly, anecdotal evidence from software 
developers suggests that testing is becoming an 
increasing percentage of the development budget.   

Secondly, the authors’ view is that software quality 
will become an increasingly important factor in 
software marketing.  As this evolves, testing strategies 
will (in our view) become progressively more 
important.  A carefully constructed survey has the 
potential of identifying the best practices, which can 
then be disseminated.   

Thirdly, the survey may provide indications of 
future research directions.

Fourthly, the comparison with parallel surveys in 
the region will assist all national industries to both 
improve software quality and identify optimum testing 
strategies.

Finally, the results will provide guidance for those 
training software developers and software engineers. 

The observations reported in this paper were based 
on 65 respondents successfully completing the 
questionnaire.  Interestingly, the results from analyzing 
these 65 responses follow almost the same trends 
obtained from an earlier analysis performed three 
months ago using the first 41 responses.  Despite the 
relatively small sample population in the survey, the 
consistency of the data obtained heightened our 
confidence to report the observations in this paper.   

The remainder of this paper is structured as follows.  
Section 2 explains the methods that were used to plan 
and conduct the survey, including the method of 
selecting a research sample, the variables that the 
survey aimed to measure, the approaches used to invite 
subjects, and the methods of collecting data from 
respondents.  Section 3 reports and discusses the 
results of the survey, including organization 
information of the respondents.  Section 4 analyses and 
summarizes the survey findings, and discusses the 
implications of the survey on the software testing 
industry, as well as its implications on training and 
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education of software testing personnel, both in the 
workplace and at universities.  Section 5 concludes the 
paper and suggests future work.   

2. Survey Methodology 

2.1 Survey Objectives 

Two of the five objectives listed in the introduction 
were used as the design objectives for this survey, 
since the others are considered as outcomes that flow 
from these.  The primary objective was to determine 
the types of testing techniques, tools, metrics and 
standards that organizations in Australia use when 
carrying out software testing activities (this of course 
embraces several of the listed objectives).  The purpose 
of this was to provide a concise picture of the current 
industry best practices.   

The second objective was to determine whether 
existing training courses in software testing taught in 
the workplace or in similar study at tertiary institutes 
adequately cover the types of testing methodologies 
and skills that industry requires.  If these requirements 
were not met, the industry may benefit from the survey 
recommendations to address any deficiency observed 
and ultimately improve the existing training 
opportunities available to practitioners as well as 
novice testers.   

Based on these two objectives, a number of 
hypotheses were employed to design the questionnaire 
and shape the direction of the survey.

2.2 Survey Description 

The survey targeted senior employees involved with 
testing in software development organizations.  
Requests were addressed to software testing or project 
mangers as the personnel most likely to understand 
their testing environments and experiences within their 
organization.   

Five major areas of software testing related 
activities were investigated by the survey.  In addition, 
an introductory section was also included to assess the 
organization size and structure, and where relevant, 
history of the organization and its overall procedures 
with respect to software development and testing.  
Using the conjectures in our hypotheses as means of 
constructing specific questions, the questionnaire was 
arranged into the following six sections.  The 
information sought can be summarized as follows.   

Section A - Organization Information 
This section captured the type and size of the 

organization, including specifics such as the current 

number of general employees and IT professionals, the 
number of applications developed and tested over the 
past three years, the allocated and actual budget for 
testing among the other various software development 
activities, as well as questions relating to whether the 
organization wrote specifications and whether changes 
to specifications were controlled and tracked.   

Section B - Software Testing Methodologies and 

Techniques
The extent to which software testing methodologies 

and general testing techniques are used in the industry 
and the current practices of those organizations 
adopting structured methodologies and techniques in 
software testing were investigated in this section.   

Section C - Automated Software Testing Tools 
Questions relating to the extent to which automated 

testing tools are used in industry, including commercial 
and in-house developed tools, were placed in this
section revealed.  The level of satisfaction with such 
tools was assessed by querying the respondents’ belief 
that the quality of developed software was being 
improved by the use of such tools.   

Section D - Software Testing Metrics 
This section explored the extent to which software 

testing metrics are used by industry, and if and how 
those metrics are improving the quality of software 
under development.   

Section E - Software Testing Standards 
The usage of standards for software testing in 

industry, including published standards such as ISO, 
CMM and their quality accreditation, as well as in-
house developed standards was assessed in this 
section.  Questions were posed to determine whether 
the use of standards was considered to improve the 
software development processes of the organization.   

Section F - Software Testing Training and 

Education
This section determined the extent to which 

organizations provide training in software testing for 
their employees.  Also examined was the 
organization’s view on the factors that attract software 
testing staff to attend training courses as well as the 
benefits for testing staff that accrue.  The usage of 
various sources of training courses (such as 
universities or TAFE colleges, external commercial 
training courses, in-house training and self-study) were 
also queried.

2.3 Survey Method 
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A questionnaire comprised of both closed and open-
type questions was used.  Survey interviews were 
conducted face to face, over the telephone, via 
facsimile or email attachment.  To allow for more 
flexible arrangements, some respondents were invited 
to complete the online questionnaire at our survey web 
site2.  In all cases, printed or verbal explanatory notes 
were provided to respondents to ensure consistent 
interpretation of the terminologies and questions in the 
questionnaire.  In general, respondents took no longer 
than thirty minutes to complete the questionnaire.  
Confidentiality and privacy were assured to all 
individuals returning the questionnaire and the 
organization that they represented.   

2.4 Sample Selection 

Our survey targeted the population at the 
organizational level (or alternatively at departmental 
level if there was more than one department in an 
organization responsible for software development).  A 
draft questionnaire of the survey was trialed against a 
small group of five organizations, and a number of 
adjustments were made based on the experiences and 
feedback we gathered from the pilot run.  As a result, 
we aimed at targeting four different types of 
participants in this survey.  The first preference was 
test managers, the second was a member of the test 
team, thirdly a software project manager, and finally a 
general organizational or departmental manager.  This 
allowed us to deal with situations where there was no 
specific individual responsible for testing in the 
organization.   

Five approaches to our target audiences were made 
over a twelve month period to identify a suitable 
sample for the survey.  Resources used were:- an 
article which appeared in the May 2002 issue of 
Australian Computer Society (ACS) magazine,
Information Age, reaching around 14,000 Australian IT 
professionals [10]; a one-page insert in the 
February/March 2003 issue of Information Age; a list 
of 350 companies constructed from Australia’s 
national telephone directories; a list of software test-
likely organizations from classified post 
advertisements appeared in a newspaper3; and a flyer 
to request for participation enclosed in the June 2003 
issue of the Software magazine published by Software 
Engineering Australia (SEA) with circulation of over 
6,000 copies distributed to its members nationally.   

2
 URL of the software testing survey web site is 

http://acssesurvey.it.swin.edu.au
3 This task is simplified by the fact the largest circulation newspapers 
run extensive IT supplements on Tuesdays of each week.

As a result, a total of 65 individuals or companies 
participated in the survey.  This is a relatively low 
response rate, given the large number of organizations 
that were invited to participate in the survey, and the 
large estimated size of the population.   

During the pilot study of the survey, a “focus 
groups” sampling method was used, in which we 
personally invited companies that survey members had 
connections with to participate.   

This survey sample was then built in three stages.  
In the first round, non-probabilistic sampling called 
“convenience sampling” [4] was employed, where the 
participants were selected because they were easy to 
access or because we believed they had a good chance 
of representing the population.  In the mail out stage, 
“cluster based sampling” [4] was adopted, in which the 
target population was filtered using an indicator that 
was deemed likely to classify them as not being a 
software test-likely organization.  Companies which 
had shop fronts and software/hardware sales 
companies were considered unlikely to be software 
development organizations and hence were unlikely to 
be performing any software testing.  Nevertheless, the 
response rates in all data-collection stages of the 
project were far below our expected target of 100 
responses or more, although based on our 
conversations with other researchers, this reflects the 
experience of others in Australia attempting to gather 
similar information in different disciplines.   

The relevance of the sample was, however, 
considered to be extremely important, in that over 70% 
of respondents had managerial or team leadership roles 
in their organization and we are satisfied that the 
results from the sample are likely to be “indicative”, 
although may not be absolutely conclusive.  In 
particular, the results show the attributes of those 
responding organizations, regardless of whether they 
perform software testing in an ad hoc or a systematic 
manner.   

Discussions among university colleagues have 
suggested that the low response rate may indicate that 
a large number of software development groups do not 
use any vigorous testing methods.  It is also possible 
that the Australian software developers, similar to their 
New Zealand counterparts [3], are “survey averse”, 
and that the cost of attaining representative samples is 
beyond the scope of our current project budget.  
Nevertheless, we intend to investigate the reasons why 
practitioners were reluctant to participate in the survey 
as part of our follow-up activities of the project.   

3. Survey Results 

3.1 Organization Information 
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Of the 65 organizations responded to our survey, 
more than two-thirds (67.7%) belong to the local 
private commercial sector.  In addition to these, 15.4% 
were from overseas-based private commercial 
organizations, 10.8% were from government, and 6.2% 
were public non-commercial organizations (Table I). 

Table I - Respondents by sector 
Sector Type Response % 

Government 
Public non-commercial organization 
Local private commercial organization 
Overseas-based private commercial 
organization 
Joint venture between public and private 
sectors

7
4

44
10

0

10.8 
  6.2 
67.7 
15.4 

0

Total 65 100.0 

The majority industry type of the respondent 
organizations was software house and IT consultancies 
(49.2%).  Other industries included finance and 
insurance, manufacturing and engineering, research 
and development, and telecommunications (Table II).   

Table II - Respondents by industry 
Industry Type Response % 

Banking, finance & insurance 
Education & training 
Hotel, tourism, retail & trading 
Manufacturing & engineering 
Research & development 
Software house & IT consultancy 
Telecommunications 
Other

7
1
2
4
3

32
3

13

10.8 
  1.5 
  3.1 
  6.2 
  4.6 
49.2 
  4.6 
20.0 

Total 65 100.0 

The 65 organizations ranged from large in size with 
over 500 employees (24.6% of organizations) to very 
small sizes of less than 20 (also 24.6%).  Most of these 
had substantial experience in software development: 
13 organizations claimed to have 6 to 10 years of 
relevant software testing experience, 19 organizations 
with 11 to 19 years, and 22 organizations have more 
than 20 years of experience.  Again, although the 
survey sample size was not ideal, we believe that these 
65 organizations of such diversities do provide us a 
valid set of sample data and allow us to reflect the 
current software testing practices in the country.   

As our main interests are in software testing, our 
questions mainly focused on software testing issues, 
including budget allocation.  We found that only 3 out 
of 65 organizations allocated 40% or more of the total 
development budget to software testing in the initial 
software development plan, while 49 organizations had 
allocated less than 40% of the budget to testing.  
Among these 49 organizations, most of them (16 each) 
allocated between 10 to 19% or between 20 to 29% of 
the initial budget to testing alone.  Nine organizations 
allocated between 30 to 39%, and amazingly there 

were 8 organizations which allocated less than 10% of 
the total development budget to software testing during 
the planning phase.  Despite these facts, only 11 
organizations (16.9%) reported that they met their 
testing budget estimates.  Twenty-seven organizations 
(41.5%) spent 1.5 times of the estimated cost in testing 
and 10 organizations (15.4%) even reported a ratio of 
actual to estimated testing cost of 2 or above.  Even 
more surprisingly, there were 3 organizations (4.6%) 
which managed to complete testing activities using 
only half of their initial allocated testing budget.

3.2 External Consultants, Testing 

Responsibility and Organizational Issues 

We were surprised to find that, in the past 3 years, 
24 organizations (36.9%) hired external testers to assist 
the organization to implement software testing 
methods or tools.  Of these, 50% outsourced less than 
20% of the testing budget to external testers, and 
29.2% outsourced between 20 to 39%.  In terms of 
satisfaction level, 75% were either satisfied or highly 
satisfied with the service from external testers and 
another 16.7% were neutral.  Only 1 organization 
(4.2%) was dissatisfied and one other was highly 
dissatisfied.  These figures clearly indicate that current 
external software testing companies are providing a 
very high standard of services to their clients in 
Australia.   

The majority of respondents (70.8%) were found to 
appoint a person who is solely responsible for 
managing software testing activities in their 
organization, showing that testing is becoming a more 
independent process in industry.   

User acceptance testing and regression testing were 
extremely common for all software applications 
developed, the results being 31 (47.7%) and 45 
organizations (69.2%) respectively.  Of the 45 
organizations performing regression testing, 24 of 
them (53.3%) repeated regression testing for every 
new version of the application whilst 13 organizations 
(28.9%) conducted regression testing again after every 
change in the application.

Another interesting finding was that 50 out of 65 
organizations (76.9%) followed formal processes or 
procedures for approving changes in requirements and 
specifications during the software development 
lifecycle.  There were also 50 out of 65 organizations 
that formally documented requirement and 
specification changes during system development.  In 
other words, the remaining 15 organizations (23%) did 
not formally document these changes at all.  A closer 
scrutiny of the raw survey data indicated that there was 
no significant correlation between the 50 organizations 
in which formal processes were followed to approve 
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requirement changes and those 50 organizations in 
which requirement changes were formally documented 
during system development.  This observation reveals 
the existence of some degrees of inconsistencies and 
weaknesses within the software development practices 
in industry. 

3.3 Software Testing Methodologies and 

Techniques

This section investigated the extent of adoption of 
software testing methodologies and techniques in 
organizations to improve the quality of their software 
products.  Forty-two out of 65 organizations (64.6%) 
claimed the use of at least one structured software 
testing methodology in the past 3 years.  While it is 
encouraging to see that almost two-thirds of the 
respondents employ some structured testing 
methodologies, the fact that slightly more than one-
third of the organizations are still doing ad-hoc testing 
was quite remarkable.  In fact, we imagine that the 
actual figures for ad-hoc testing may be even 
underestimated, as many such organizations may be 
reluctant or may not have been interested in 
responding to our survey.   

The three most popular methodologies included test 
case selection, static analysis and dynamic analysis.  In 
terms of selecting test cases, black-box testing 
(particularly boundary value analysis and random 
testing) were more common than white-box testing (29 
responses for black-box versus 16 for white-box).  
Eighteen respondents adopted data flow analysis 
techniques.  Only 3 organizations reported the use of 
mutation analysis and none reportedly use symbolic 
analysis.  Although the unpopularity of such 
techniques may not be conclusive due to the small 
sample size in the survey, it is evident that these 
techniques are rarely used in the industry despite large 
volume of research work has recently been done in 
these areas [1, 2, 6, 7].  Comparing static analysis and 
dynamic analysis, we observed that document and code 
inspection attracted a slightly higher response rate than 
code walkthroughs (29 versus 22).  In both cases, 
manual processes were still more commonly engaged 
than automated ones (.  The use of automated tools in 
software testing will be further discussed in later 
sections.   

Of the 42 organizations using some form of 
structured testing methodology in the past three years, 
27 (64.3%) carried out structured testing for more than 
80% of their projects, and 21 organizations (50%) have 
been adopting structured testing methodologies for 
over 5 years.  While 10 respondents (23.8%) were 
unsure if the cost-effectiveness has been improved by 
the use of methodologies, 28 (66.7%) expressed their 

affirmative responses, in contrast to only 4 respondents 
(9.5%) who expressed their disappointment in adopting 
testing methodologies.  It would be interesting to 
further investigate the reasons why there exists such a 
large percentage of respondents who were unsure 
about the effects of utilizing systematic testing 
approaches.

Major testing activities performed by respondents 
(in order of popularity) were designing test cases (55 
organizations), documenting test results (54 
organizations), re-using the same test cases after 
changes were made to the software (also 54 
organizations), defining test objectives (48 
organizations) and re-designing test cases based on the 
analysis of previous test results (41 organizations).  We 
observed that although some organizations did not 
claim to use structured testing methodologies, they did 
perform basic testing activities such as designing test 
cases and documenting test results on a regular basis.   

Among the 56 organizations (86.2%) that used 
standard test plan templates, 18 of them (32.1%) 
always updated the test plan whenever there was a 
change in requirements and specifications.  While 22 
(39.3%) and 12 (21.4%) organizations respectively 
quite often and occasionally updated their test plans, 
surprisingly, 4 organizations (7.1%) never update their 
test plans, even when requirements and specifications 
changes occur.  This survey result suggests that some 
organizations still may not be practicing the proper 
procedures of continuously updating test plans even 
though this process is generally regarded as essential to 
guarantee the validity and efficiency of test plans.

There were 59 out of 65 organizations (90.8%) 
reporting that formal tests were performed to ensure 
the developed software meets its requirements and 
specifications, suggesting that user acceptance testing 
is widely used in industry.  Twenty-five organizations 
(38.5%) reported that over 80% of their test cases 
generated in the past 3 years were derived from 
specifications, with 17 organizations (26.2%) reporting 
between 60 and 79%.  Regarding the percentage of 
software faults detected in the past 3 years, 22 
organizations (33.8%) found that between 40 to 59 % 
of such faults were related to specification defects, 
followed by 16 (24.6%) and 15 organizations (23.1%) 
falling within the range of 20 to 39% and 0 to 19% 
respectively.

As expected, “big bang” was the most popular 
integration testing approach (used by 33 organizations) 
probably due to its simplicity.  This was followed by 
bottom-up and top-down approaches, which were used 
by 27 and 23 organizations respectively.   

Pre-defined criteria were used by 48 respondents 
(73.8%) to stop testing of a software system.  Face to 
face interviews revealed that several organizations still 
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adopt the common practice of ceasing testing once 
resources are exhausted, irrespective of possible 
number of faults that may remain in the software.  
Another common trend was to cease testing as soon as 
all “critical” or “show-stopper” faults had been 
detected and removed, despite the fact that those 
methods used to determine whether all such faults had 
been removed were, in most cases, neither formal nor 
methodological in nature.   

Being software testing researchers, we were 
particularly interested in practitioner’s views on the 
barriers to adopting testing methodologies in their 
workplace.  The responses from the survey were 
summarized in Table III. 

Table III - Barriers to adoption of testing 

methodology 
Barrier Respon

se
Rank

Do not think there is any barrier 

Lack of expertise 
Lack of support tools 
Costly to use 
Difficult to use 
Time-consuming to use 
Do not think it is useful or cost effective 
Do not know of any testing methodology 
Other

20

28
18
14
3

20
5
7

14

2

1

2

As indicated in Table III, 43.1% reported that a lack 
of expertise as the dominant factor preventing or 
disadvantaging organizations from using software 
testing methodologies.  About 30% of respondents did 
not believe there was any barrier to using 
methodologies in their organizations.  On the other 
hand, the same number of respondents regarded testing 
methodologies as being time-consuming when used.   

The largest problem reported with using testing 
methodologies was a lack of expertise, with almost 
half of the respondents encountered.  In our opinion, 
there are two likely causes of this.  Firstly, this could 
indicate that software testing professionals are not 
sufficiently trained in testing methodologies either at 
the university or industry level.  The second cause may 
be that there is a genuine shortage of software testing 
professionals with such knowledge in industry.  In 
either case, it is obvious that training opportunities of 
software testers are essential to improve the quality and 
reliability of the software products developed in the 
country.   

3.4 Automated Software Testing Tools 

There was substantial usage of automated software 
testing tools amongst the respondents.  In the past 3 
years, 44 organizations (67.7%) have automated some 
of their testing activities.  Out of these 44 

organizations, 30 (68.2%) acquired the tools by 
purchasing existing commercial products, while only 6 
(13.6%) developed their own tools.  Quite 
unexpectedly, we found that only 1 organization 
(2.3%) out-sourced development of their testing tools.   

Among these 44 organizations, automated testing 
tools for test execution (35 organizations or 79.5%), 
regression testing (33 organizations or 75%), and test 
results analysis and reporting (27 organizations or 
61%) ranked the top three positions for automated 
testing activities.  Other activities such as generating 
test cases/scripts and test planning/management also 
attracted more than one-third of the respondents (20 
and 17 organizations respectively).  A large proportion 
of respondents (36 organizations or 81.8%) in fact 
employed multiple automated techniques in software 
testing.   

Although it is widely believed that software quality 
will be improved by the use of automated testing, only 
30 of the 44 respondents (68.2%) using testing tools 
agreed with this belief.  Ten organizations (22.7%) 
were unsure, and 4 organizations (9.1%) gave a 
negative response to this question.   

About half (32) of the 65 respondents reported that 
cost was a major barrier to using automated tools for 
software testing in their organizations.  There were 26 
and 16 respondents respectively regarding time and 
difficulties as factors which prevented them from using 
testing tools in their organizations.  The actual 
response figures were presented in Table IV.   

Table IV - Barriers to adoption of testing tools 
Barrier Response Rank 

Do not think there is any barrier 

Costly to use 
Difficult to use 
Time-consuming to use 
Do not think it is useful 
Do not think it is cost-effective 
No information resource available 
Do not know of any software testing tool 
Other

9

32
16
26
4
9
1
4
28

1
3
2

3.5 Software Testing Metrics 

Out of the 65 survey respondents, only 38 (58.5%) 
used measurable test objectives.  Not surprisingly, the 
most popular metric reported was defect count (used 
by 31 organizations), probably due to its simplicity.   

It is encouraging to see that 19 (50%) of the 38 
organizations using metrics applied them to more than 
80% of the software applications developed in the past 
3 years.  However, only 21 organizations (55.3%) 
agreed that the quality of the developed software 
applications was improved by the use of the metrics.  
Thirteen organizations (34.2%) were unsure, and 4 
organizations (10.5%) even disagreed about the 
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positive effect of metrics on software quality.  This 
counter-intuitive result certainly deserves further 
investigation as follow-up activities of the project.   

As shown in Table V, about 30% of the participants 
(20 organizations) reported no barrier or disadvantage 
in the use of metrics.  On the other hand, there was 
about a quarter of respondents (17 organizations) who 
found the use of metrics to be too time-consuming.   

Table V - Barriers to adoption of testing metrics 
Barrier Response Ranking 

Do not think there is any barrier 
Costly to use 
Difficult to use 
Time-consuming to use 
Do not think it is useful 
Do not think it is cost-effective 
No information resource available 
Do not know of any software testing 
metrics 
Other

20
4
4

17
5
2
6
3

22

1

2

3.6 Software Testing Standards 

Software testing standards were being adopted by 
47 out of 65 respondents (72.3%).  In-house developed 
standards were employed by 29 organizations, while 
18 organizations used a combination of published and 
in-house standards for software testing.  Nevertheless, 
there were only 3 organizations relying solely on 
published standards, indicating that those standards 
known to software developers were possibly quite 
deficient.  On the whole, 39 (83%) of the 47 
organizations agreed that such standards did improve 
the software development processes used in their 
organization, none disagreed, and 7 were unsure 
(14.9%)4.

Of the 65 organizations responded to the survey, 22 
(33.8%) were quality accredited for their software 
development processes.  Interestingly, out of these 22 
accredited organizations, only 15 (68.2%) believed that 
their software development processes were being 
improved by acquiring the accreditation, while 4 
(18.2%) did not think so and another 3 (13.6%) were 
not sure.

Table VI summarizes the respondents’ views on the 
barriers to adopting software testing standards in their 
organizations.  The majority of them (28 
organizations) thought that there was no barrier.  There 
were also significant numbers of responses indicating 
that time (15 organizations) and cost (13 organizations) 
are the other two main deterrents to the use of testing 
standards.

4 One survey participant had mistakenly left this response blank, thus 
the total percentage in this category does not add up to 100.

Table VI - Barriers to adoption of standards 
Barrier Response Rank 

Do not think there is any barrier 
Costly to use 
Difficult to use 
Time-consuming to use 
Do not think it is useful 
Do not think it is cost-effective 
No information resource available 
Do not know of any software testing 
standards
Other

28
13
4
15
6
5
3
4

18

1
3

2

3.7 Software Testing Training and Education 

It was very encouraging to see that 47 (72.3%) out 
of the 65 responding organizations provided some 
opportunities for their software testing staff to receive 
training in software testing.  Commercial external 
training courses were the most popular (reported by 37 
organizations), followed by internal courses (25 
organizations) and self-study (22 organizations).  In 
terms of frequency of training, 28 (59.6%) out of the 
47 organizations provided training to staff only on a 
needs basis.  It is to our disappointment to report that 
only 7 organizations (14.9%) offered regular training 
to their software testing employees.   

Table VII - Barriers to provide training to software 

testing staff 
Barrier Response Rank 

Do not think there is any barrier 

Cost
Time 
Course 
Other

18

31
22
14
10

3

1
2

In terms of barriers to providing training, cost is still 
considered to be the most significant factor (31 
organizations), followed by availability of time (22 
organizations).  It is indeed disappointing to see that 
there are only 18 (27.7%) out of 65 organizations that 
did not believe there was any barrier to provide 
training to software testing staff (Table VII).

3.8 Test Organization - Teams, Independent 

Testers and Training 

Out of the 65 organizations, 44 of them (67.7%) had 
an independent testing team.  Among these 44, 26 
organizations (59.1%) had over 80% of independent 
testers in the software testing team (i.e. testing 
personnel that do not participate in any software design 
or implementation activities).  Furthermore, only 10 
organizations (22.7%) had over 80% of their testing 
team members completing formal training in software 
testing, and 7 organizations (15.9%) had 60 to 79%.  
However, there were also 15 organizations (34.1%) 
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with less than 20% of their testers being formally 
trained.  As mentioned earlier, this finding reveals the 
inadequacy of formal training of many testing staff, 
and suggests that there may be an urgent need to 
provide more opportunities for formal training in 
software testing.

From the collected data, 27 participants (61.4%) 
reported that less than 20% of their testing team 
members received training in software testing through 
university studies. There were 9 organizations (20.5%) 
reported to have over 80% of their testing team 
members trained by in-service training courses, whilst 
in 7 organizations (15.9%) this was between 60 to 
79%.  However, as many as 19 organizations (43.2%) 
had less than 20% of their testers receiving formal 
training by attending in-service training courses.  This 
high percentage may indicate that there is a possible 
divergence between the courses provided by 
commercial providers and the actual needs of the 
industry.  In addition, when asked for their required 
minimum qualification for software testers, more than 
one-third of organizations specifically required 
candidates with some previous testing knowledge and 
experiences, indicating that there is a very high 
demand to offer more education and training 
opportunities to the novice software testers.

4. Analysis and Summary of Survey 

Findings

As stated by Kitchenham and Pfleeger in [4], if a 
sample is not representative of the population then one 
cannot make definite generalizations of the population.  
Therefore, due to the smaller than expected survey 
sample we were unable to prove or disprove our 
hypotheses.  Nevertheless, the survey provides some 
very valuable insights to the current software testing 
practices in Australia.  This section gives a broader 
analysis of our survey findings.   

4.1 Major Barriers and Disadvantages 

The most evident barrier to using software testing 
methodologies and techniques was found to be a lack 
of expertise among the practitioners, with almost half 
of the respondents giving the same answer.  This 
finding suggests that there could be a vast number of 
software testing staff who are not been appropriately 
trained in the use of formal testing methodologies or 
techniques.  This may signify a deficiency in the 
training of software testing professionals to meet the 
actual demand of the industry, or deficiencies in the 
techniques themselves.   

Cost was ranked first in the list of barriers to the use 
of automated testing tools (Table IV) and also in the 

list of barriers to provide training to software testing 
staff (Table VII) in organizations.  In fact, cost was 
also ranked highly as a barrier to using testing metrics 
and standards in organizations.  This could possibly be 
due to impact of the IT economy downturn in recent 
years, resulting in a much more competitive 
environment in the current IT industry.   

Time is another critical impediment in the view of 
respondents.  A high proportion regarded using 
automated tools (Table IV), metrics (Table V) and 
standards (Table VI) in their organizations as time 
consuming.   

Difficulty of use was ranked (by about one quarter 
of respondents) as the third barrier to adopting 
automated testing tools (Table IV).  There could be 
three reasons for this.  Firstly, organizations may not 
be familiar enough with automated tools in general, so 
when they intend to purchase a tool they have no way 
of assessing the type of tool they require or how to 
judge the ease of use of the tools.  Conversely, it could 
be that tool vendors do not provide sufficient on-the-
job training when selling their tools to organizations.  
Thirdly, the tools themselves may be difficult to adopt.  
The same factor was ranked fifth in the metrics section 
(Table V).

4.2 Organization Sectors Adopting Structured 

Testing Methodology 

It is our initial feeling that Government and public 
non-commercial organizations, being public-funded, 
are very likely to adopt structured testing methodology.  
To our surprise, we found that while there are about 
70% of private organizations (both local and overseas) 
adopting some form of structured testing methodology, 
Government and public organizations reported a 
significantly lower percentage.  Although this 
observation is only indicative due to the small sample 
size, it does reveal there is substantial room for 
improvement in software testing practices within 
government and public organizations.   

4.3 Popularity of the Test Case Derivation 

Methods

Section 3.3 shows that in general, test case 
derivation is reasonably widely used amongst the 
respondents.  Our conjecture would be that this is a 
manual process that connects to some extent with 
design practices, and which may support 
demonstrations to users more readily than automated 
test case generation.  It is also possible that existing 
undergraduate computer science and software 
engineering programs embed this in their programming 
and/or testing subjects.  The survey results also reveal 
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that deriving test cases from specifications (i.e. using 
black-box strategies) was likely to be more popular 
than deriving test cases from program codes (white-
box strategies) in industry.   

4.4 Testing Budgets 

As reported in Section 3.1, about three-quarters of 
organizations allocated less than 40% of their 
development budget to software testing activities and 
only about one-fifth of the organizations could adhere 
to or spend less than their allocated testing budget.  
This could be a strong indication that software 
development organizations are not allocating realistic 
budgets to testing, or that their methods of estimating 
testing costs are non-realistic.  We encourage 
organizations to establish databases of both estimated 
and actual testing costs in various kinds of software 
development projects, thus providing real life data for 
more accurate estimation of testing costs in future 
projects.  It could be interesting to further study the 
principal strategies adopted by organizations in 
allocating budget to testing in the planning phase of the 
projects.   

4.5 External Testers 

As an overall analysis, there was a substantial level 
of satisfaction among organizations that hired external 
testers to assist them in software testing activities.  We 
predicted that in future years, hiring external testers 
may become even more popular.  This certainly 
indicates an increasing need of professional testers in 
Australia.  At the same time, certification of software 
testers may become progressively more important, in 
order to guarantee the standard of service offered by 
external testers.

4.6 Stopping Rules and Metrics 

One major point of concern with the survey 
responses was the methods of deciding when to stop 
testing (Section 3.3).  While there is a number of 
practitioners still using such rules, stopping when 
resources run out is not regarded as a reasonable metric 
[9].  However, defining and using stopping rules is 
never simple or easy.  Without the use of statistical 
models such as fault seeding or confidence bounds as 
discussed by Pfleeger [8] or reliability models derived 
by Musa and Ackerman [5], it could be potentially 
risky and even disastrous to the quality of the software 
by using non-statistical criteria.   

As a matter of interest, 35 out of the 42 
organizations (83.3%) using structured testing 
methodologies also used stop-testing criteria, and 33 

out of the 42 respondents (78.6%) using structured 
testing methodologies also used testing metrics.  This 
could indicate that the majority of organizations in 
industry that use structured methodologies also use 
metrics or stop-testing criteria.  This phenomenon is 
further reinforced by the observation that 30 out of 
these 42 organizations (71.4%) employ both stop-
testing criterions as well as metrics.  It is also 
interesting to observe that out of the 22 organizations 
which do not use any structured testing methodology, 9 
of them (40.9%) neither use software testing metrics 
nor stop-testing criterions at all.  It seems fair to say 
there still exists a significant fraction of practitioners 
performing ad-hoc testing activities in Australia.   

4.7 Automated Tools 

As reported in Section 3.4, the most popular type of 
tools used is to support test execution (35 out of 44 
organizations), followed by regression testing (33 
organizations), with result analysis and reporting tools 
(27 organizations) being the third.  This result is not 
surprising to us as these activities are very labour 
intensive and as such there are plenty of well-
established tools in the market to handle these tasks.   

Another interesting point to report is that out of the 
42 organizations that use structured testing 
methodologies, 34 (80.9%) also used automated tools, 
while 10 out of 23 (43.5%) did not use any testing 
methodology but did use testing tools.  These results 
show that there exists a large demand of automated 
tools in the software testing industry.  Provided that 
these tools are of high quality and the tool vendors 
provide sufficient training to the users, organizations 
are eager to adopt automated tools to facilitate their 
testing activities.   

4.8 Standards 

As reported in Section 3.6, very few organizations 
reportedly used published standards.  Most 
organizations that use standards either develop their 
own from scratch or modify published standards to suit 
their needs.  This insinuates that there may be a 
deficiency in the existing published software testing 
standards to suit the environment of Australian’s 
organizations, and suggests that relevant professional 
bodies in Australia, such as ACS or SEA, should 
consider forming a special interest group to establish a 
set of software testing guidelines specifically for 
practitioners in Australia, and then transform these 
guidelines into standards when they are further 
improved and generally accepted by the majority of 
practitioners in Australia.   
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4.9 Training and Education 

Our results indicate that training courses offered by 
universities or TAFE colleges contribute only 10.7% 
of the total training opportunities for organizations to 
train their testing staff.  This may be due to the lack of 
practical skills delivered to tertiary students in 
traditional software testing courses, or the lack of short 
courses in software testing at university.  We anticipate 
that in the future, more practical research in software 
testing will be carried out in universities.  Perhaps 
these research results could be incorporated into 
university courses to provide more modern and useful 
skills to students and meet the rising demands of 
industry.   

5. Conclusions and Future Work 

In this paper, we presented and analyzed the 
findings of our preliminary software testing survey 
conducted in several major capital cities in Australia 
between 2002 and 2003.  Although the sample size 
was smaller than ideal, we are confident that our 
findings reveal some trends of the current industry 
practices in software testing.   

As a second stage of the survey, we plan to increase 
the sample population to facilitate a more vigorous 
statistical analysis of the obtained data.  We would also 
like to compare the data from the Australian industry 
to that obtained from other Southeast Asian countries 
in order to assess the competitiveness of Australia 
among its neighbours in the Asia-Pacific region.   

Since the reliability of the survey sample has not 
been firmly established, all organizations involved in 
the mail out that did not respond to our call for 
participation will be contacted again to ascertain their 
reason for not participating. This may give a better 
indication as to the reliability of the survey sample, as 
well as whether or not our generalizations are valid.   

As we remarked earlier, there is anecdotal evidence 
in Australia at least, that substantial resources are 
being committed to testing by some developers.  At the 
same time, users continue to grapple with faulty 
software (at a time when extremely high quality 
infrastructure systems, e.g. EFTPOS, exist).   

The need for surveys of this type is clear. 
Establishing the optimum relationship between testing 
and software quality; that is ensuring that testing 
strategies are in place which yield the highest quality 
software, is increasingly important as software begins 
to intrude more and more into people’s daily lives.  We 
are convinced that this survey, despite its limitations, 
will assist in this process.   
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Abstract
Ideally, all black-box testing methods should be 

interpreted in the same way by different testers. In 
reality however, inconsistencies and ambiguities in 
original method descriptions may lead to differing 
interpretations and varying test set quality. In this paper, 
we decompose these methods into Atomic Rules for 
selecting test data and constructing test cases. We 
validate the rules via a worked example and discuss a 
pilot experiment to determine whether Atomic Rules are 
simpler to learn and use. Our approach also enables 
method tailoring and may simplify method comparison. 

1. Introduction 

Some practitioners may argue that skilled black-box 
testers should be able to derive high-yield test sets purely 
from knowledge and experience, and that test selection 
methods like Equivalence Partitioning (EP) should only 
be used to supplement heuristic knowledge [21]. Our 
view is that prescriptive black-box methods are essential 
in software engineering, and that an artificial division 
exists between novices and experts due to at least three 
consistency problems in these methods: definition by 
exclusion, multiple versions and notational differences.

Some methods do not clearly define how to select 
invalid test data. For example, an invalid EP equivalence 
class “has something else” [17] is often defined, 
containing all inputs other than those that are specified 
as valid. Ideally, a member from every class of data 
would be selected, but a novice may only be aware of a 
subset of these classes. Thus, definition by exclusion
assumes familiarity with the ‘universe of discourse’ with 
respect to program inputs. As a result, different testers 
may produce vastly dissimilar test sets and, 
consequently, statements relating to program correctness 
and the nature of faults detected may be meaningless. 

In addition, multiple versions of each method exist. 
For example, one Boundary Value Analysis (BVA) 
approach selects test data on, inside and outside field 
boundaries [4], while others do not include inside [5, 9, 
10, 14, 17] and outside [8, 14] boundaries. Presently, no 
textbook, standard or paper describes every method or 
version. Thus, testers may not know how their chosen 
approach compares to others, even within an approach. 

Method learning is complicated by notational 
differences, as a new notation must be understood for 
each new method learnt. For example, EP and BVA are 
often described as partitioning approaches in which the 
input domain is subdivided [17]. Syntax Testing1 (ST) is 
not described in this way, despite the fact that partitions 
are implicitly created on each input parameter. Also, 
boundary values are selected by at least two versions of 
ST [2, 12], and both EP and BVA select values that lie 
outside the boundaries of numerical fields [17]. 
Although it may seem as if ST is highly dissimilar to EP 
and BVA, these overlaps suggest that these methods 
could be described in the same way. In fact, every 
method consists of rules for selecting test cases and can 
be described by the same three-step process. 

1. Select valid and invalid data sets called partitions 
for each input and/or output parameter2.

2. Select at least one individual data value from each 
partition chosen in (1). 

3. Select various combinations of the data values 
chosen in (2) to construct test cases. 

We believe that the consistency problems discussed 
here can be solved by decomposing these methods into 
Atomic Rules that are able to produce consistent test sets 
regardless of individual knowledge or experience. The 
methods we have investigated include those that can be 
applied to specifications that give the data definitions of 
program input/output parameters. A characterisation 
schema for our Atomic Rules is discussed in Section 2. 
As proof of concept, in Section 3 we decompose EP and 
BVA and show that the resulting Atomic Rules can be 
combined to describe the original methods. In Section 4 
we use a worked example3 to demonstrate that test cases 
derived from a representative specification by the 
original EP and BVA approaches can also be produced 
by Atomic Rules. Section 5 discusses the preliminary 
results of a pilot experiment which analysed method 
learnability and usability. Section 6 presents a tailored 
approach to black-box testing. 

1 Syntax testing is also known as ‘input validation testing’ and 
‘grammar-based testing.’ 
2 In essence, our work suggests that all black-box test case selection 
methods are in fact based on the equivalence partitioning concept.
3 Worked examples were used as proof of concept by Rugg, McGeorge 
and Maiden [20]. 
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2. The Atomic Rule Schema 

A characterisation schema for Atomic Rules was 
created (see Table 1). Such schemas have been used to 
standardize other software engineering “technologies” to 
facilitate the selection of appropriate techniques with 
respect to specific problem domains (see [3, 11, 18, 19, 
20, 22]). We applied this approach to black-box methods 
described in thirteen different places [1, 2, 4, 5, 6, 7, 8, 9, 
10, 12, 14, 16, 17] to determine their common 
characteristics. Four attributes (Table 1: column 1) are 
not self-explanatory and thus require discussion: rule 
type, original datatype, test datatype and set type. 

The rule type attribute differentiates between where
rules are used in the three-step test case selection 
process, as follows. 

1. Select valid and invalid partitions for each input 
and/or output parameter by applying a Data-Set 
Selection Rule (DSSR) to each parameter. 

2. Select at least one individual data value from each 
partition chosen in (1) by applying a Data-Item 
Selection Rule (DISR) to each partition. 

3. Select various combinations of the data values 
chosen in (2) by applying a Test Case 
Construction Rule (TCCR) to create test cases. 

Original datatype describes the data domain to which 
a rule can be applied, while test datatype describes the 
data domain that may be selected as test data. For 
example, some ST rules only apply to delimiter fields, 
while others select data of a different datatype from a 
field’s original. Both attributes make use of six datatypes 
necessary for EP and BVA rules (see Appendix 2 for our 
definitions of integer, real, alpha, alphanumeric, non-
alphanumeric and null). Rules derived from other 
methods may use other datatypes (such as those defined 
in [13] and [23]).  

Finally, set type differentiates between data defined as 
lists and ranges. For example, some EP rules only apply 
to ranges of numerical data, while others only apply to 
data stored in lists [17]. Lists can be expressed as L ::=
[v1 | v2 | … | vn] where n is the number of v values in the 
list, and ranges as {R : lb  R  ub} or R ::= [lb – ub]
which denotes a range of values from lower boundary lb
to upper boundary ub. These terms were adapted from 
similar concepts discussed in [8:p79, 10, 14, 17]. 

3. Decomposition and Recomposition 

Twenty-two Atomic Rules (see Appendix 2) were 
derived from EP and BVA by analysing various versions 
of these methods with respect to the Atomic Rules 
schema. To avoid definition by exclusion, all invalid 
equivalence classes were selected from within the six 
datatypes defined in the previous section (for example, 
see EP4…EP8). EP rules are positioned within the three-
step test case selection process as follows.  

Table 1: The Atomic Rules schema.  
Attribute Type Definition 

Test Method enum Method from which the rule was derived. 
Number string A unique identifier given to each rule. 
Name string A name given to each rule. 
Description string Describes what the rule does. 

Source enum Reference(s) from which rule was derived. 
NA denotes rules defined in this paper. 

Rule Type enum Possible values: DSSR, DISR, TCCR (see 
discussion in Section 2). 

Set Type enum Specifies the set type to which each rule 
applies. Options are List and Range. 

Valid or 
Invalid enum Defines whether the rule selects Valid or 

Invalid test data. 

Original 
Datatype 

data 
type

Defines the datatypes to which each rule 
can be applied: integer, real, alpha, 
alphanumeric, non-alphanumeric, null, or 
“All” if all datatypes apply. 

Test
Datatype 

data 
type

Defines the datatype of selected test data: 
integer, real, alpha, alphanumeric, non-
alphanumeric, null, “All” if all datatypes 
apply, or “Same as original” if it is the 
same as Original Datatype. 

Test Data 
Length integer

Specifies the maximum length of selected 
test data. If original datatype and test 
datatype are the same, then “Same as 
original” will appear. 

# Fields 
Populated string Number of input/output parameters for 

which the rule selects test data. 

# Tests 
Derived string 

Counts the number of test cases derived. 
DSSRs and DISRs do not select tests so 
they are 0. TCCRs hold an equation to 
calculate this, based on the number of 
parameters in the test case.

Equivalence Partitioning

1. Select equivalence classes: 
a) if set type range then apply rules EP1…EP9, 
b) if set type list then apply rules EP4…EP10. 

2. Select one data value from each equivalence class 
selected in (1) by applying EP11 to each class. 

3. Select test cases that are: 
a) valid: by applying EP12 to valid data values 

chosen in (2), 
b) invalid: by applying EP13 to invalid data values 

chosen in (2). 

We use several EP rules within the equivalent BVA 
definition because there is an overlap between EP and 
BVA. Consequently, EP rules which select equivalence 
classes need to be applied before BVA rules (e.g. see 
[17]). EP rules which construct test cases are also used. 

Boundary Value Analysis
1. Select valid equivalence classes: 

a) if set type range then apply rule EP3, 
b) if set type list then apply rule EP10.  

2. Select boundary values for: 
a) each class chosen in (1a) by applying 

BVA1…BVA6 and BVA9 to each class, 
b) each class chosen in (1b) by applying 

BVA7…BVA9 to each class. 
3. Select test cases that are: 

a) valid: by applying EP12 to valid data values 
chosen in (2), 

b) invalid: by applying EP13 to invalid data values 
chosen in (2). 
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4. Validation

To validate our approach we need to show 
correspondence between the proposed Atomic Rules and 
the relevant black-box methods (specifically Myers’ EP 
and BVA [17]). For a complete demonstration, it would 
be necessary to generate test cases for specifications 
covering every possible type of input. However, it is 
unnecessary to include all datatypes because data is 
either defined as ranges or lists, thus it is adequate to 
include at least one example of both. The following 
specification, written in standard BNF (see Figure 1) 
fulfils this requirement, having both data lists (street, 
suburb and postcode) and a data range (house_number). 

<address> ::= <house_number><street><suburb><postcode> 
<house_number> ::= [1 – 9999] 
<street> ::= [Annensen Court | Aaran Close | …| Zoo Court] 
<suburb> ::= [Abbotsford | Aberfeldie | … |Yooralla |Yuroke] 
<postcode> ::= [0800 | 0801 | 0810 | … |7325 | 7330 | 7331 

| 7466 | 7467 | 7468 | 7469 | 7470] 
Figure 1: A simple address validation specification [16]. 

We first generate equivalence classes for this 
specification, as our BVA process requires that a number 
of EP Atomic Rules already be applied. To show 
correspondence, we compare classes derived by Myers’ 
approach to those selected by EP Atomic Rules (see 
Table 2). The third column contains three sub-columns: 
the first describes the corresponding Myers’ equivalence 
class number (by which the column is ordered), the 
second is the identification number of the Atomic Rule 
that derived the equivalence class, and the third is the 
actual equivalence class chosen by the Atomic Rule. 

By visual inspection, every equivalence class selected 
by Myers’ approach is matched by at least one class 
derived by a corresponding Atomic Rule. 

Table 2: Equivalence classes selected by Myers’ approach 
and the corresponding Atomic Rules. 

Parameter 
Myers’ 

Equivalence Classes 

Corresponding 
Atomic Rule 

Equivalence Classes 
house_
number

1) number 1 to 9999 
2) number < 1 
3) number > 9999 
4) has digits 
5) has something else 

1 & 4) EP3: 1 to 9999 
2 & 4) EP1: < 1 
3 & 4) EP2: > 9999 
5) EP5: real  
5) EP6: alpha 
5) EP7: alphanumeric 
5) EP8: non-alphanumeric 
5) EP9: missing value 

street 6) pick street from list  
7) has letters 
8) has something else 

6 & 7) EP10: pick from list 
8) EP4: integer 
8) EP5: real 
8) EP7: alphanumeric 
8) EP8: non-alphanumeric 
8) EP9: missing value 

suburb 9) pick suburb from list 
10) has letters 
11) has something else 

9 & 10) EP10: pick from list  
11) EP4: integer 
11) EP5: real 
11) EP7: alphanumeric 
11) EP8: non-alphanumeric 
11) EP9: missing value 

postcode  12) pick postcode from list  
13) has digits  
14) has something else 

12 & 13) EP10: pick from list
14) EP5: real 
14) EP5: alpha 
14) EP7: alphanumeric 
14) EP8: non-alphanumeric 
14) EP9: missing value 

Next, we compare the boundaries derived by Myers’ 
BVA to those selected by Atomic Rules, both using valid 
equivalence classes (see Table 3). The third column 
contains three sub-columns: the identification number of 
the matching Myers’ boundary, the number of the 
Atomic Rule that derived the corresponding boundary, 
and the actual boundary chosen by the Atomic Rule. 

Table 3: Boundaries selected by Myers’ approach and by 
the corresponding Atomic Rules. 

Parameter 
(Equivalence 

Class) Myers’ Boundaries 

Corresponding 
Atomic Rule 
Boundaries 

house_
number
(1 to 9999) 

1) below lower 
boundary 
2) on lower boundary 
3) on upper boundary 
4) above upper 
boundary 

1) BVA1: lower boundary - 14

2) BVA2:on lower boundary 
3) BVA5: upper boundary 
4) BVA6: upper boundary + 1

street  
(pick street 
from list) 

5) select first street 
6) select last street 

5) BVA7: select first list item 
6) BVA8: select last list item  

suburb
(pick suburb 
from list) 

7) select fist suburb  
8) select last suburb 

7) BVA7: select first list item  
8) BVA8: select last list item  

postcode 
(pick
postcode 
from list) 

9) select first postcode  
10) select last 
postcode  

9) BVA7: select first list item 
in list 
10) BVA8: select last item in 
list

Additional boundaries could have been selected by 
Atomic Rules. For example, the BVA9: Missing Item rule
also applies to the street field. However, these are not 
included in Table 3 because complete coverage of 
Myers’ boundaries has been achieved. 

In both cases, our rules have achieved complete 
coverage of the equivalence classes and boundary values 
selected by Myers’ approach. Having presented a basic 
validation of the Atomic Rules approach, the following 
section discusses the results of a preliminary evaluation. 

5. Preliminary Evaluation 

To determine whether novice testers find Atomic 
Rules easier to learn and use than original approaches, a 
pilot experiment was conducted. Thirty-three university 
students enrolled in a third-year software testing course 
were exposed to two different representations of EP and 
BVA: Myers’ approach and the corresponding Atomic 
Rules. The students were divided into two groups, based 
on which approach they learnt first; one group learnt 
Myers’ representation first while the second group learnt 
the corresponding Atomic Rules first5. A questionnaire 
surveyed students on their experience of the approaches. 
We now discuss a summary of our preliminary findings6.

Students rated their initial and final understanding of 
EP and BVA (Table 4: columns 2-5) using a Likert scale 
of: 1 = Very Poor, 2 = Poor, 3 = Average, 4 = Good, 5 = 
Very Good, 6 = Excellent. This table shows that all 
students increased their understanding of EP and BVA.  

4 For rules that increment or decrement upper or lower boundaries by 1, 
this unity is equivalent to the minimum positive value that can be 
described by whichever number representation scheme is appropriate. 
5 The two approaches were taught by different lecturers, thus we plan 
to re-run the experiment this year (2005) with the lecturers swapped. 
6 See [15] for more information on the experiment design.  
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Students also rated their understanding of Myers’ 
approach and Atomic Rules (Table 4: cols 6-7) using the 
same scale. Overall, 57% rated their understanding of 
Myers’ approach as below-average, whereas 100% rated 
their understanding of Atomic Rules as Good or above. 
A t-test showed a significant increase in their self-rated 
understanding of Atomic Rules compared to Myers’ 
approach; t(30) =  -7.65, p < .01. Thus, students were 
able to gain a better understanding of Atomic Rules. 

Table 4: Student survey results. 
Understanding of Black-Box 

Testing Methods 
Understanding of 

Approaches 
Initial Final

EP BVA EP BVA Myers 
Atomic
Rules 

Rating Percentages
Very Poor 3 9 0 0 6 0

Poor 15 18 0 0 15 0
Average 36 45 0 3 36 0

Good 15 18 12 21 15 12
Very Good 24 9 58 55 18 70

Excellent 6 0 30 21 3 18
Frequencies Values 

Mean 3.61 3.00 5.18 4.94 3.35 5.03
St. Deviation 1.27 1.06 0.64 0.75 1.25 0.56

Students also indicated which method they learnt first 
and which they would choose to use in future (Table 5). 
Due to variation in enrolments and timetables, more 
students learnt Myers’ approach first. A t-test examined 
group differences in student’s self-rated understanding of 
Myers’ representation (Table 4: col 6) across the order in 
which the approach was learnt (Table 5: col 2), showing 
a significantly greater understanding if Myers’s approach 
was learnt before Atomic Rules; t(29) = 2.67, p = .01. 
Conversely, a t-test that examined group differences in 
understanding of Atomic Rules (Table 4: col 7) across 
approach learnt first (Table 5: col 2) indicated that the 
order in which students learnt Atomic Rules did not have 
a significant effect on their understanding of the 
approach; t(31) = -0.77, p = .45. This suggests that 
Atomic Rules are simpler for novices to learn. 

Table 5: Approach students leant first versus the approach 
they indicated they would use in future.  

Approach Leant First (%) Use in Future (%) 
Myers 61 9

Atomic Rules 39 91

A chi-square test showed that a significantly higher 
number of students indicated that they prefer to use 
Atomic Rules in future; 2(1, N=33) = 22.09, p < .001.  

6. Atomic Rules Tailoring  

The decomposition of black-box methods into Atomic 
Rules enables custom combinations of these rules to be 
selected for a specific purpose or within particular 
constraints (i.e. tailoring [20]). For a simple example, 
consider a specification in which all data is of the set 
type list (see Figure 2). 

<country> ::= [Afghanistan | … |Yemen | … | Zimbabwe]  
<telephone_ code> ::= [1 | 7 | 20 | 30 | 31 | … | 88213 | 88216] 

Figure 2: A specification for international telephone codes. 

With this constraint, only those rules with attribute set
type list are applicable. By inspection (see Appendix 2) 
these include EP4…EP13 and BVA7…BVA9. 

7. Conclusion

In this paper we developed a representation for black-
box testing methods which addressed three consistency 
problems: notational differences, definition by exclusion, 
and multiple versions. First, by decomposing the original 
methods using a characterisation schema, we created a 
uniform notation called Atomic Rules. Second, by using 
explicit datatypes within the schema, we avoid definition 
by exclusion. Finally, it was unnecessary to populate the 
schema with all versions of every method to demonstrate 
correspondence with our Atomic Rules. Instead, through 
a representative worked example using Myers’ original 
definition, we showed that the process of decomposing 
several versions of equivalence partitioning and 
boundary value analysis was invertible. 

We did not attempt to solve the multiple versions 
problem here. However, we are presently engaged in 
four things: decomposing all black-box methods and 
versions into Atomic Rules, determining the optimal 
order of rule application, exploring the feasibility of 
unifying all methods into a super-method, and 
comparing the fault-detection ability of the super-method 
to that of the original methods. In so doing, we expect all 
redundant overlaps between methods and versions to be 
eliminated. For example, EP and BVA both include rules 
that select test data from inside and outside field 
boundaries. Such redundancy is evident in BVA1: Lower 
Boundary - 1 Selection and EP1: < Lower Boundary 
Selection. If both EP and BVA were used in testing, it 
may be unnecessary to use both rules. Also, while the 
results of the pilot experiment that assessed the 
learnability and usability of Atomic Rules by novice 
testers were encouraging, we plan to repeat this 
experiment to eliminate irrelevant environmental 
features, such as student preference for lecturer.

We believe that a complete representation of black-
box methods as Atomic Rule is essential for facilitating 
test process tailoring. We have demonstrated that the 
rules described in this paper can be used for at least one 
tailoring example. Ultimately, we would like testers to 
be able to select the rules that apply to their specific 
problem domain in a consistent and repeatable way.  
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Appendix 1 – Datatypes/Datatype Schema 

This appendix contains the datatype schema (Table 6) 
and six datatypes (Table 7) defined for use with EP and 
BVA (note that the structure of the two tables only 
differs to conserve space). Future research may extend 
these datatypes for use in other testing methods.  

Table 6: The datatype schema. 
Attribute Type Definition 
Name string A unique name for each data type. 

Set Type enum Describes the set type of the datatype. 
Options are List and Range. 

Size string 
Max length of datatype in bytes. Length can 
depend on implementation using the datatype 
[13], for which “Max buffer length” will appear.  

Example string A simple example.  

Table 7: Datatypes defined using the datatype schema. 
Name Set Type Size Example

Integer List & 
Range

Max buffer 
length

List: [-30, 4, 16, -1, 25] 
Range: [-16 – 33]  

Real List & 
Range

Max buffer 
length

List: [10.4, -100.5, 3.2] 
Range: [-12.1 – 54.23] 

Alpha List & 
Range 1 byte List: [e, a, n, B, c, H, I] 

Range: [e - g]

Alphanumeric  List Max buffer 
length List: [4z3A, A83, b44]  

Non-
Alphanumeric  

List & 
Range 1 byte List: [“, (, %, *, “, +, &] 

Range: [“ - +] 
Null (empty) List 0 bytes List: [] 

Appendix 2 – Atomic Rules for Equivalence 
Partitioning and Boundary Value Analysis 

Table 8 contains the Atomic Rules that were defined 
for EP and BVA using the schema in Table 1.  

Table 8: Atomic Rules for Equivalence Partitioning (EP) and Boundary Value Analysis (BVA). 
Attribute Values Values Values Values Values

Test Method EP EP EP EP EP
Number EP1 EP2 EP3 EP4 EP5

Name < Lower Boundary 
Selection

> Upper Boundary 
Selection

Lower to Upper 
Boundary Selection Integer Replacement Real Replacement 

Description 
Select an equivalence 
class containing values 
below lower boundary 

Select an equivalence 
class containing values 
above upper boundary  

Select an equivalence 
class containing values 
between boundaries 

Select an equivalence 
class containing every 
integer value  

Select an equivalence 
class containing every 
real value 

Source [17] & [4] [17] & [4] [17] & 4] [ NA  [4]
Rule Type DSSR DSSR DSSR DSSR DSSR
Set Type Range Range Range List or Range List or Range
Valid or Invalid Invalid Invalid Valid Invalid Invalid

Original Datatype Integer, Real, Alpha, 
Non-Alphanumeric  

Integer, Real, Alpha, 
Non-Alphanumeric 

Integer, Real, Alpha, 
Non-Alphanumeric 

Real, Alpha, 
Alphanumeric, Non-
Alphanumeric 

Integer, Alpha, 
Alphanumeric, Non-
Alphanumeric 

Test Datatype  Same as original Same as original Same as original Integer Real
Test Data Length Same as original Same as original Same as original Max length of datatype Max length of datatype 
# Fields Populated 1 1 1 1 1
# Tests Derived 0 0 0 0 0

Attribute Values Values Values Values Values
Test Method EP EP EP EP EP
Number EP6 EP7 EP8 EP9 EP10

Name Alpha Replacement Alphanumeric 
Replacement 

Non-Alphanumeric 
Replacement  

Missing Value 
Replacement Valid List Selection 

Description 
Select an equivalence 
class containing every 
alpha value 

Select an equivalence 
class containing every 
alphanumeric value 

Select an equivalence 
class containing non-
alphanumeric values 

Select an equivalence 
class containing a 
NULL value 

Select an equivalence 
class containing all 
values in specified list 

Source [4] NA NA NA [17] 
Rule Type DSSR DSSR DSSR DSSR DSSR
Set Type List or Range List or Range List or Range List or Range List or Range 
Valid or Invalid Invalid Invalid Invalid Invalid Valid

Original Datatype 
Integer, Real, 
Alphanumeric, Non-
Alphanumeric 

Integer, Real, Alpha, 
Non-Alphanumeric

Integer, Real, Alpha, 
Alphanumeric All All

Test Datatype  Alpha Alphanumeric Non-Alphanumeric Null Same as original 
Test Data Length 1 Max length of datatype 1 0 Max length of datatype 
# Fields Populated 1 1 1 1 1
# Tests Derived 0 0 0 0 0

Attribute Values Values Values Values Values
Test Method EP EP EP BVA BVA
Number EP11 EP12 EP13 BVA1 BVA2

Name Data Value Selector Valid Test Case 
Constructor 

Invalid Test Case 
Constructor 

Lower Boundary - 1 
Selection

Lower Boundary 
Selection

Description 
Randomly selects one 
data value from an 
equivalence class 

Construct minimum # 
of tests required to 
cover all valid classes  

Construct one test per 
invalid class (one field 
invalid, all others valid) 

Select value at lower 
boundary - 1 

Select value at lower 
boundary 

Source NA [17] [17] [4] [4]
Rule Type DISR TCCR TCCR DISR DISR 
Set Type List or Range List or Range List or Range Range Range
Valid or Invalid Depends on the class Valid Invalid Invalid Valid

Original Datatype All All All Integer, Real, Alpha, 
Non-Alphanumeric  

Integer, Real, Alpha, 
Non-Alphanumeric 

Test Datatype  Same as original Same as original Same as original Same as original Same as original 
Test Data Length Max length of datatype Max length of datatype Max length of datatype Same as original Same as original 
# Fields Populated 1 n, the number of fields n, the number of fields 1 1

# Tests Derived 0 1 to m, where m = # 
valid classes selected 

m, where m = # invalid 
classes selected 0 0
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Attribute Values Values Values Values Values
Test Method BVA BVA BVA BVA BVA
Number BVA3 BVA4 BVA5 BVA6 BVA7

Name Lower Boundary + 1 
Selection

Upper Boundary - 1 
Selection

Upper Boundary 
Selection

Upper Boundary + 1 
Selection

First List Item 
Selection

Description Select value at lower 
boundary + 1 

Select value at upper 
boundary - 1 

Select value at upper 
boundary 

Select value at upper 
boundary + 1 Select first item of a list 

Source [4] [4] [4] [4] [17]
Rule Type DISR DISR DISR DISR DISR 
Set Type Range Range Range Range List
Valid or Invalid Valid Valid Valid Invalid Valid

Original Datatype Integer, Real, Alpha, 
Non-Alphanumeric 

Integer, Real, Alpha, 
Non-Alphanumeric 

Integer, Real, Alpha, 
Non-Alphanumeric 

Integer, Real, Alpha, 
Non-Alphanumeric All

Test Datatype  Same as original Same as original Same as original Same as original Same as original 
Test Data Length Same as original Same as original Same as original Same as original Same as original 
# Fields Populated 1 1 1 1 1
# Tests Derived 0 0 0 0 0

Attribute Values Values
Test Method BVA BVA
Number BVA8 BVA9

Name Last List Item 
Selection

Missing Item 
Replacement 

Description Select last item of a list Replace field with null 
Source [17] [17]
Rule Type DISR DISR 
Set Type List List or Range 
Valid or Invalid Valid Invalid 
Original Datatype All All
Test Datatype  Same as original Null
Test Data Length Same as original 0
# Fields Populated 1 1
# Tests Derived 0 0
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Abstract 
Currently, black-box testing methods are effective yet 

incomplete. Consequently, test engineers may find it 
necessary to perform ad hoc customisation for each 
application under test. In this paper, we present 
procedures for customising black-box methods that 
model such “error guessing” in a reproducible and 
reusable way. As a preliminary evaluation, we customise 
a generalised representation of black-box methods and 
compare the effectiveness of the resulting test cases with 
those derived by two existing methods. Our procedures 
facilitate the development of both domain-specific and 
novel experimental black-box methods. 

1. Introduction 

The proper usage of black-box testing methods 
assumes two conditions hold: input and output fields are 
completely specified, and the methods themselves are 
complete. In reality, it appears that neither condition 
holds the majority of the time.  

With respect to field completeness, a 2003/2004 
survey of software testing practices amongst Australian 
software development organisations found that of sixty-
five organisations interviewed, over half reported that 
20-59% of their detected program defects were related to 
specification defects [27]. For a specific example of field 
incompleteness, consider the following real-life scenario. 
An engineer working on a requirements specification for 
financial software discovered that the program under 
development needed to validate credit card numbers. The 
engineer assumed that all members of the development 
team were familiar with valid credit card number 
formats, and thus omitted specifying their input data 
format explicitly. The result is a tester being unable to 
derive an effective black-box test set and unable to 
verify that the software meets the client’s requirements. 

Field definitions can be difficult to extract from 
specifications, partly because their data and behaviour 
can be specified in multiple places. For example, often 
different parts of a specification discuss processing, data 
inputs and error checking [1]. Consequently, there exists 
a need for a requirement elicitation procedure that 
ensures that program input/output data is completely 
specified, enabling effective black-box testing. Thus, the 
first aim of this paper is to provide an initial version of 
such a procedure. 

On the other hand, the existence of ad hoc test 
methods such as Error Guessing1 question method 
completeness [23]. As Jorgensen states, “special values 
testing is probably the most widely practiced form of 
functional testing. It also is the most intuitive and the 
least uniform… There are no guidelines, other than to 
use ‘best engineering judgement’. As a result, special 
value testing is very dependant on the abilities of the 
tester… Even though special value testing is highly 
subjective, it often results in a set of test cases which is 
more effective in revealing faults than the test sets 
generated by the other methods… testimony to the craft 
of software testing” [16]. However, while it may be 
more effective, its application cannot be guaranteed, 
since it is currently “ill-defined” [1], though some 
believe these approaches are systematic and amenable to 
abstraction [11]. For example, Test Catalogues collect 
special values in repositories [17, 22].  

There are two ways black-box methods could be 
made more complete: by creating a generalised method 
and by creating procedures whereby any method could 
be systematically customised for a particular application
domain. We have already created a generalised method 
[24], a process which was difficult as “testing literature 
is mired in confusing (and sometimes inconsistent) 
terminology, probably because testing technology has 
evolved over decades via scores of writers” [16]. Thus, 
its adoption is uncertain as it requires learning more 
terminology, and as no generalised method could make 
the claim of universality. An example of varying 
terminology can be seen in the various names given to 
data sets created by dividing the input and output domain 
into classes of homogenous data whose mapping 
involves executing identical deterministic processes [24]. 
In Category Partition Testing (CPT) these sets are called 
“choices” [28]; in Equivalence Partitioning (EP) they are 
called “equivalence classes” [26]; in Syntax Testing (ST) 
[10] they are implicitly created.  

Thus, the second aim of this paper is to provide an 
initial set of procedures for Systematic Method Tailoring 
(SMT). They are generalisable because they are 
uncoupled from, and thus can be used with, any black-
box testing method.  

The organisation of this paper is as follows. In 
Section 2 we present our requirement elicitation 

                                               
1 Error Guessing is also referred to as ‘Special Values Testing’ [16]. 
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procedure that ensures that input and output data is 
completely specified. In Section 3 we discuss our 
generalised representation called ‘Atomic Rules’ and 
show how it can be used with GQAS to generate test 
data. In Section 4 we present three procedures for 
tailoring black-box methods which, in theory, model 
Error Guessing. In Section 5 we conduct a preliminary 
evaluation of our requirement elicitation procedure and 
of the effectiveness of test cases derived by the Atomic 
Rules representation of two black-box methods to those 
derived by a tailored method. In Section 6 we conclude 
and discuss future research.

2. Goal/Question/Answer/Specify 

As black-box test sets are derived by applying black-
box methods to program specifications, they require 
detailed specifications that describe the application 
domain of each program under test in terms of its input 
and output fields. We propose a simple yet readily 
applied requirement elicitation procedure called 
Goal/Question/Answer/Specify (GQAS) which identifies 
information that is required to be captured in order to 
enable effective black-box testing. This procedure can be 
used during requirements elicitation or by testers prior to 
testing. Together, GQAS and our three tailoring 
approaches (see Section 4) are based on the 
Goal/Question/Metric (GQM) paradigm [3, 4, 5, 6].  

GQAS collects what we consider to be the minimum 
information required to conduct black-box testing. That 
is, the datatype, set type and size in terms of minimum 
and maximum lengths of input/output data, whether the 
field is mandatory or repeats, and (ideally) the valid data 
set the program should accept and the invalid data set it 
should reject. While the last two items are essential for 
deriving valid and invalid test cases, generic tests can be 
constructed using only the first three. Also, if the data set 
is defined, then the datatype, set type and size can be 
deduced and can act as an error checking mechanism.  

Each application of this technique results in one 
GQAS instance (i.e. one for each field being specified).  

GQAS consists of the following four steps:  
1. As a goal, state that a particular field is going to be specified 

for the purpose of conducting black-box testing.  
2. Consider the following questions:

a. What is the field’s datatype? [Integer | Real | Alpha | 
Alphanumeric | Non-Alphanumeric]+2

b. What is the field’s set type? [Range | List] 
c. For Ranges, what are the minimum and maximum 

values; for Lists, what is the minimum and maximum 
length of valid data?  

d. What valid data set should the program accept and 
what invalid data should it reject?  

e. Is the field mandatory? [Yes | No] 
f. Does the field repeat? [Yes | No]; if Yes, what are the 

minimum and maximum number of repetitions? 
3. Seek and record answers to these questions by searching 

for domain knowledge in textbooks, standards, papers, or 

                                               
2 These datatypes were defined to enable EP and BVA to be described 
using Atomic Rules [24]. This can be extended by adding or combining 
datatypes; e.g. Alpha could divide into Single and Multiple Alpha.  

websites3, or by speaking to domain experts (e.g. clients or 
experienced testers). Each answer may state how it was 
obtained, as this may be useful for testing, development or 
maintenance of the program being specified and for future 
developments in the same domain.  

4. Specify the field using a formal notation (e.g. Backus-Naur 
Form), including valid and invalid data sets, if available.  

Subsequently, a set of test data selection rules that 
suit the newly defined field can be selected using a 
tailoring approach (Section 4). This step is analogous to 
the metrics selection step in GQM. However, one of the 
main differences between GQM and GQAS is that 
question definition is part of the GQM process, whereas 
GQAS has fixed questions as the same information is 
required when specifying any input or output field. 

Although GQM and a number of other goal-oriented 
requirement engineering approaches have been used for 
requirement elicitation (e.g. see [9, 12, 19, 20, 32]), to 
the best of our knowledge, this is the first recorded use 
of GQM in the analysis of specification completeness 
and in the collection of domain knowledge, specifically 
in support of black-box testing activities.  

3. The Atomic Rules Approach 

The Atomic Rules approach [24] decomposes black-
box testing methods into autonomous fragments for:- 
partitioning the program input and output domains 
(Data-Set Selection Rules); selecting test data from each 
partition (Data-Item Selection Rules); and constructing 
test cases (Test Case Construction Rules). A 
characterisation schema describes each rule’s attributes, 
giving them a standardised representation (see Appendix 
1). The following three-step process encapsulates black-
box test case derivation procedures: 

1. Select valid and invalid partitions for each input and/or 
output field by applying a Data-Set Selection Rule
(DSSR) to each field. 

2. Select at least one individual data value from each 
partition chosen in (1) by applying a Data-Item Selection 
Rule (DISR) to each partition. 

3. Select various combinations of the data values chosen in 
(2) by applying a Test Case Construction Rule (TCCR) to 
create test cases. 

When used in conjunction with a set of Atomic Rules 
of a specific method, these procedures can be used to 
construct black-box test cases in the usual way. For 
example, Myers’ original definitions of EP and 
Boundary Value Analysis (BVA) have been 
reconstructed with Atomic Rules and have been shown 
to derive test cases that are equivalent to those derivable 
by the original methods [24]. 

Our generalised representation of black-box methods 
was produced by conducting a thorough study of the 
fundamental fragments of EP, BVA, ST and several 
combinatorial methods, including Orthogonal Array 
Testing [21], Specification-Based Mutation Testing [25] 
and those discussed by Grindal et al. [14] (see [24] for 
EP and BVA rules and Appendix 1 for ST rules).  

                                               
3 The correctness of domain knowledge obtained from web sites should 
be verified by domain experts before it is relied upon as being accurate.  
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GQAS can easily be applied to this generalised 
representation as several attributes of the Atomic Rules 
schema match questions asked in GQAS. Once a GQAS 
instance has been defined, an Atomic Rule set can be 
selected through the use of one of our three tailoring 
procedures, which are discussed in the following section.  

4. Systematic Method Tailoring  

In this section we present our three Systematic 
Method Tailoring (SMT) procedures:  

1. Selection-based tailoring  
2. Creation-based tailoring 
3. Creation-based tailoring via selection, using: 

a. All combinations 
b. Paired combinations 
c. Selective combinations 

Although each is discussed separately, in practice, a 
combination of all three approaches may be used.  

4.1 Selection-Based Tailoring 

In selection-based tailoring, new black-box methods 
are defined by matching the set type (i.e. range or list) of 
rules in the generalised representation against the set 
type of valid data for each field under test. It is a bottom-
up approach that is based on existing black-box methods. 
For example, Myers provides different guidelines for 
deriving test data for each set type [26].  

Thus, a new method mn could be defined by selecting 
i to j rules from k to l methods {mn = select(ri, …, rj) : ri,
…, ri+p ∈ mk, …, rj-q, …, rj ∈ ml, mk ≠ ml}, where each 
method contains a subset of rules that can be applied to a 
specification using the three-step process in Section 3.  

For example, rules that could be selected to test 
<age> ::= [0 – 150] include BVA1: lower boundary – 1 
selection and BVA6: upper boundary + 1 selection.
However, these could not be applied to <colour> ::= 
{brown | blue | green}, as it is impossible to predict what 
comes before or after the lower and upper boundaries. 

4.2 Creation-Based Tailoring 

In creation-based tailoring, new Atomic Rules that 
have not been defined in existing methods are generated. 
This is useful when testers suspect that a specific input 
may be effective for testing a particular field, and is 
similar to Error Guessing [26]. However, as each rule is 
defined using the Atomic Rules schema, it is available 
for future reuse.  

Thus, a new rule ri+1 that is not in the set of existing 
rules R could be defined, {ri+1 : r i+1 ∉ R}. For example: 

a. Variations of ST rules [22], e.g. ri+1: first 
character selection, which selects the first 
character of an input value (see Table 1).  

b. Rules that select specific input values, e.g. ri+2:
select 0, to test for divide by zero errors.  

c. Rules to select sets of input values, e.g. ri+3:
select all ASCII symbols.

d. Rules that select Unicode characters [2], e.g. 
ri+4: Unicode U+00FC (ü) replacement, which 
could be effective in testing programs with 
international character support.  

e. Rules for testing programs with Graphical User 
Interfaces, e.g. ri+5: maximum character 
selection, which could add characters to a text 
field until no more characters will fit. This 
could be useful for testing for buffer overflows.  

Each rule is defined by creating a new instance of the 
Atomic Rules schema (see Table 1). 

4.3 Creation-Based Tailoring via Selection  

In creation-based tailoring via selection, existing 
rules are combined to create new rules. There are three 
types of tailoring within this class: all combinations, 
paired combinations and selective combinations. In each 
of these procedures, new rules are defined by creating 
new instances of the Atomic Rules schema.   

In all combinations, a set of all rules {r1, …, rn} are 
combined, {rn = <r1, …, r1>, …, <rn, …, rn>  : ∀ r ∈ R}.
However, this causes a state-space explosion of nn

combinations, where n is the number of rules in the 
generalised representation. Thus, this may be only useful 
for experimentally locating combinations not found 
through other tailoring procedures.  

In paired combinations, each rule is paired with every 
other rule, where each pairing creates a new rule {rn+1 = 
ri ∪ rj, ∀ r ∈ R}. Some examples are: 

a. rn+1: uppercase first item = BVA7: first list item 
selection ∪ ST7: uppercase a lowercase letter.

b. rn+2: smallest integer replacement = EP4: 
integer replacement ∪ BVA2: lower boundary 
selection.

c. rn+3: alphabetic letter Z or z replacement = 
EP6: alpha replacement ∪ BVA5: upper 
boundary selection.

In selective combinations, rule amalgamation is based 
on the “gut feel” of the tester that certain combinations 
may cause program failure. Again, this is similar to Error 
Guessing. For example, if a tester suspects that a 
program does not place an upper limit on the number of 
digits that can be input into a numerical field, a new rule 
rn+4: largest integer/real replacement = EP4: integer 
replacement ∪ EP5: real replacement ∪ ri+5: maximum 
character selection could be defined.  

Some combinations create rules that already exist, for 
example, EP7: alphanumeric replacement = EP4: 
integer replacement ∪ EP6: alpha replacement. Also, 
some rules are contradictory, for example, EP6: alpha 
replacement cannot be combined with EP10: valid list 
item selection as the first rule selects invalid data while 
the second selects valid data. This is similar to the 
identification of contradictory test frames in CPT [28]. 
While a complete listing of contradictory combinations 
is outside the scope of this paper, a list is currently under 
development. 

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06) 
1530-0803/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: LA TROBE UNIVERSITY. Downloaded on August 8, 2009 at 03:02 from IEEE Xplore.  Restrictions apply. 



Table 1: Definition of a new Atomic Rule ri+1.
Attribute Values Explanation 

Test Method Syntax Testing Definition of a new ST rule 
Number ri+1 A unique identifier  

Name First Character 
Selection Name reflects rule functionality 

Description 
Select the first 
character of an 
input string 

Brief description of what the rule 
does 

Source NA New rule, so no existing reference 
Rule Type DISR Selects one test data value 

Set Type List or Range Can be applied to data defined  in 
a list or a range 

Valid or 
Invalid Invalid Selects data that the program 

should recognise as faulty 

Original 
Datatype 

Multiple: Integer, 
Real, Alpha, 
Alphanumeric, 
Non Alphanumeric 

For the resulting test data to be 
considered invalid, this rule can 
only be applied to datatypes of 
greater than one character  

Test 
Datatype  Same as original Does not change the datatype of 

the original field 
Test Data 
Length 1 Selects one character per 

application, thus length is 1 
# Fields 
Populated 1 Selects test data for one field per 

application 
# Tests 
Derived 0 This is a DISR, thus it does not 

construct test cases 

5. Preliminary Evaluation 

As a preliminary proof of concept, we apply GQAS 
and SMT to an internet-based Foreign Exchange 
Calculator [34] (Figure 1). To assess their effectiveness, 
we compare the results of applying a set of EP and BVA 
Atomic Rules to those selected by a new method derived 
by SMT. However, as we do not have access to the 
program specification, we can apply GQAS to obtain 
possible definitions. To limit the scope of the example, 
only the Foreign Currency field will be tested. Settings 
for fields “I wish to,” “Select the foreign currency” and 
“Select the currency type” are shown in Figure 1.  
1. Goal: to specify the Foreign Currency field of the Foreign 

Exchange Calculator in order to enable black-box testing.  
2. Questions:

a. What is the field’s datatype? 
b. What is the field’s set type?  
c. Ranges: minimum and maximum values; Lists: what is 

the minimum and maximum length of valid data?  
d. What valid data set should the program accept, and 

what invalid data should it reject?  
e. Is the field mandatory?  
f. Does the field repeat? Minimum/maximum repetitions? 

3. Answers:
a. Datatype: based on experience with international 

money transfers, acceptable datatypes are Integer and 
Real (i.e. non floating-point numbers).  

b. Set type: based on experience with banking systems, it 
is reasonable to assume that the interval of allowable 
values is continuous, thus set type is Range.  

c. Minimum/maximum range values: various searches 
were used to discover this and we discuss them here 
to give the reader an understanding of the process 
followed. First, a search of the St George website with 
“international transfer” located “Foreign Exchange 
Services” [35], which included a telephone number. 
When called, the operator reported that there were no 
minimum or maximum limits placed on exchanges. 
However, through programming domain knowledge, 
we know unlimited input lengths can cause buffer 
overflow and conversion exceptions. Thus, the next 
search determined the financial worth of the richest 
person on Earth (i.e. Bill Gates), which may be a 
sensible value to use. According the Forbes this is 

US$46.5 billion [18]. However, if the top twenty-five 
billionaires saved their money with the same bank, 
their total financial worth could be more sensible. 
According to Forbes, this is US$496.8 billion [18]. 
Taking this even further, we may consider the GDP of 
the largest economy in the world, the USA, US$10.8 
trillion [33]. These answers provide application domain 
data that is potentially sensible for defining this field. 
However, the maximum variable size of the 
programming language used, and combined 
implementation and runtime domain issues, could be 
considered. The application was written in JavaScript 
(discovered by viewing the source code), which is 
capable of representing numbers in the range4

±1.7976931348623157x10308 [13]. For this application, 
this limit would be the maximum output value when 
converting to a particular currency or when an input is 
represented internally. Thus, this figure needs to be 
divided by the largest possible exchange rate, which 
are available real-time on the Reserve Bank of 
Australia website [31]. Plausible values are 0.1 to 
1000. Thus, sensible minimum and maximum range 
values could be ±1.7976931348623157x10305.

d. Valid data set: as described in step c.  
e. Is the field mandatory? Yes. 
f. Does the field repeat? No. 

4. Specify:<foreign_currency> ::=  
[-1.7976931348623157x10305–1.7976931348623157x10305]

Atomic Rules from EP and BVA can now be applied 
to generate test data (Table 2), followed by the definition 
of test cases by a tailored method (Table 3). Although 
the input field permits more numbers to be added, for 
test case 15 (Table 3), an arbitrarily large number chosen 
to represent the maximum possible digits is 120,000.  

Although floating point representations are used 
throughout this discussion, when providing input to the 
program, an integer or fixed point decimal value 
containing 309 digits to the left of the decimal point was 
used. Thus, the inputs specified by test cases 8 to 13 
contain 309 digits, the first section of which is the 17 
digit mantissa of the resultant value. For example, in the 
case of test case 9, the number input to the program is 
17976931348623157 followed by 297 “9”’s.  

In fact, there are two sets of values that could have 
been used, depending upon whether we were testing 
implementation domain/run-time issues (i.e. variable 
storage limits) or application domain issues (i.e. sensible 
values for maximum amounts) [30]. While it could be 
more sensible to derive test cases based on the latter, for 
the purposes of this example, we have focused on 
implementation domain issues. 

As Table 2 and Table 3 show, the tailored method 
detects a suspected fault with test case 14 (see Figure 5) 
that is not detected by EP or BVA. Further examination 
revealed that inputting the string “<> followed by any 
other symbols and clicking Calculate causes the symbols 
to be printed to the right of the input field.   

Both EP and the tailored method detect that the 
program does not limit input data lengths (Table 2, tests 
1 and 2; Table 3, test 15), causing a suspected buffer 
overflow (Figure 3). Note that the resulting screen does 
not specify what was wrong with the input. BVA did not 
detect this as the exchange rate used was overestimated.  
                                               
4 For the purposes of this discussion, we only consider exponents > 0. 
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Table 2: Equivalence Partitioning and Boundary Value 
Analysis test cases for the Foreign Currency field. 

# Rule Test Data Result 

1 EP1: < lower 
boundary selection 

-1.797693134 
8623157x10350

Suspected buffer 
overflow (Figure 3) 

2 EP2: > upper 
boundary selection 

+1.797693134 
8623157x10350

Suspected buffer 
overflow (Figure 3) 

3
EP3: lower to 
upper boundary 
selection 

50000 Correct result 
output (Figure 2) 

4 EP6: alpha 
replacement g

Input rejected, 
validation message 
shown (Figure 4) 

5 EP7: alphanumeric 
replacement g55f

Input rejected, 
validation message 
shown (Figure 4) 

6
EP8: non-
alphanumeric 
replacement 

*
Input rejected, 
validation message 
shown (Figure 4) 

7
EP9/BVA9: 
missing value 
replacement 

Input rejected, 
validation message 
shown (Figure 4) 

8
BVA1: lower 
boundary – 1 
selection 

-1.79769313486 
23158x10305 - 1 

Correct result 
output (Figure 2)  

9 BVA2: lower 
boundary selection 

-1.79769313486 
23158x10305

Correct result 
output (Figure 2) 

10
BVA3: lower 
boundary + 1 
selection  

-1.79769313486 
23158x10305 + 1 

Correct result 
output (Figure 2) 

11
BVA4: upper 
boundary – 1 
selection 

1.797693134862 
3158x10305 - 1 

Correct result 
output (Figure 2) 

12 BVA5: upper 
boundary selection 

1.797693134862 
3158x10305

Correct result 
output (Figure 2) 

13
BVA6: upper 
boundary + 1 
selection 

1.797693134862 
3158x10305 + 1 

Correct result 
output (Figure 2)  

Table 3: Test cases of a tailored black-box method derived 
using SMT for the Foreign Currency field (each of these 

rules were defined in Section 4).  
# Rule Test Data Result 

14 ri+3: select all  
ASCII symbols 

!@#$%^&*
()_+{}|:”<>
?[]\;’,./~` 

Input rejected, validation 
message shown (Figure 4). 
Symbols output to the right 
of the Foreign Currency 
Field (Figure 5) 

15
rn+4 largest 
integer/real 
replacement 

120000
9’s 

Suspected buffer overflow 
(Figure 3) 

16
ri+4: Unicode 
U+00FC (ü) 
replacement 

ü Input rejected, validation 
message shown (Figure 4) 

Figure 1: Screen capture of the St George Bank’s online 
Foreign Exchange Calculator [34]. 

Figure 2: Result of executing the program with valid values. 

Figure 3: Result of executing the program with very large 
input, causing a suspected buffer overflow fault. 

Figure 4: Validation message displayed when the program 
is executed against an invalid datatype. 

Figure 5: Symbols output to the right of the Foreign 
Currency field when test case 14 of Table 3 is applied. 
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6. Conclusions and Future Research 

In this paper we presented two procedures: the first 
(Goal/Question/Answer/Specify, GQAS) allows testers 
to ensure fields are completely specified; the second 
(Systematic Method Tailoring, SMT) facilitates 
customisation of black-box methods when they are 
incomplete. GQAS is a necessary precondition for 
successful application of SMT, as without complete field 
specification, it is impossible to generate effective test 
sets for verifying program correctness. SMT has three 
components: selection of appropriate black-box testing 
method fragments, creation of new fragments when 
existing fragments are incomplete; and creation of new 
fragments as a result of synthesising existing fragments.  

We evaluated these procedures by applying them to 
an internet-based application. First, we articulated a 
complete field specification using GQAS. Then, we 
applied SMT, EP and BVA to one field, and compared 
the results in terms of their error detection effectiveness. 
We showed that SMT identified a suspected fault that EP 
and BVA could not detect, improving the effectiveness 
of the black-box testing conducted. 

We developed these procedures because black-box 
testing (and its teaching) should improve if it is more 
systematic, its results are more reproducible, and if it is 
less dependent on tester knowledge and experience (i.e. 
on Error Guessing). These procedures also facilitate the 
capturing of ad hoc test data selection rules used by 
experienced testers; these rules could be shared in the 
software engineering community and incorporated into 
software engineering education curricula. 

Thus, we believe these procedures can be applied in 
both industry and academia. In industry, our procedures 
can be used to develop domain-specific customised test 
suites that better satisfy the testing requirements of each 
application under test. Our GQAS procedure could 
facilitate the integration of test engineers into the 
requirements elicitation process, which could assist 
iterative software development. These procedures also 
present academia with an opportunity to explore 
combinations of existing test data selection rules and 
derivations of new rules and new black-box methods, 
using a common framework and terminology. 

The development of our procedures potentially raises 
the profile of formal black-box methods, and allows the 
‘craft’ of software testing to be articulated. Software 
testers are provided with a language for describing the 
ways in which they generate ad hoc tests, assisting in 
communication within testing teams and potentially 
assisting in the transfer of knowledge and experience 
from senior to junior testers. 

In future research, we will formally evaluate (via the 
use of industry surveys and experiments) whether the 
procedures presented here capture the implicit processes 
followed by testers when conducting Error Guessing. In 
addition, we will determine whether there are patterns to 
the types of Atomic Rules that cannot be combined, and 
will investigate whether there is a mathematical limit to 
the number of rules that can be created, such that a 
universal black-box method, while perhaps not practical, 
is theoretically possible. Finally, in larger-scale industry-
based experiments, we will compare the effectiveness, 
usability and drawbacks of tailored black-box methods 
to traditional methods and will determine whether 
improvements can be seen in using GQAS as a 
requirements elicitation technique. 
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8. Appendix 1 

Tables 4 to 7 contain Atomic Rules for Syntax Testing 
(ST). A number of these overlap with Equivalence 
Partitioning and Boundary Value Analysis rules [24], as 
the methods are similar. For example, EP4–EP8 cover 
rules defined in [10, 7], BVA1–BVA6 cover definitions in 
[8, 22] and EP9 and BVA9 in [7, 10, 15, 22]. Thus, only 
rules unique to ST are included. Note that Source = NA
denotes new rules not covered by existing methods.  
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Table 4: Atomic Rules for Syntax Testing. 
Attribute Values Values Values Values Values 

Test Method ST ST ST ST ST
Number ST1 ST2 ST3 ST4 ST5

Name Remove last character Replace last character  Add extra character to 
end of field Remove first character Replace first character  

Description 
Remove the last 
character of an input 
string 

Replace the last 
character of a string 
with an invalid value 

Add an extra character 
to the end of a string 

Remove the first 
character of a string 

Replace the first 
character of a string 
with an invalid value 

Source [8, 22] [22] [7, 22] NA NA 
Rule Type DISR DISR DISR DISR DISR 
Set Type List or Range List or Range List or Range List or Range List or Range 
Valid or Invalid Invalid Invalid Invalid Invalid Invalid 
Original Datatype All All All All All 
Test Datatype  Same as original Same as original Same as original Same as original Same as original 

Test Data Length m - 1, where m is the 
original field length Same as original m + 1, where m is the 

original field length 
m - 1, where m is the 
original field length Same as original 

# Fields Populated 1 1 1 1 1 
# Tests Derived 0 0 0 0 0 

Table 5: Atomic Rules for Syntax Testing (continued). 
Attribute Values Values Values Values Values 

Test Method ST ST ST ST ST
Number ST6 ST7 ST8 ST9 ST10

Name Add extra character to 
start of field 

Uppercase a 
lowercase letter 

Lowercase an 
uppercase letter Null all input Duplicate Field 

Description Add an extra character 
to the start of a string  

Change the case of a 
uppercase letter to 
lowercase 

Change the case of a 
lowercase letter to 
uppercase 

Construct a test case 
that is empty 

Construct a test case 
that has one field 
duplicated (all other 
fields are assigned 
their nominal value) 

Source NA [22] [22] [8] [10, 7] 
Rule Type DISR DISR DISR TCCR TCCR 
Set Type List or Range List or Range List or Range List or Range All 
Valid or Invalid Invalid Invalid Invalid Invalid Invalid 
Original Datatype All Alpha Alpha All All 
Test Datatype  Same as original Same as original Same as original Null Same as original 

Test Data Length m + 1, where m is the 
original field length Same as original Same as original 0 Same as original 

# Fields Populated 1 1 1 
n, where n is the 
number of fields in the 
specification 

n, where n is the 
number of fields in the 
specification 

# Tests Derived 0 0 0 1 1 

Table 6: Atomic Rules for Syntax Testing (continued). 
Attribute Values Values Values Values Values 

Test Method ST ST ST ST ST
Number ST11 ST12 ST13 ST14 ST15

Name Add Additional Field Select Each List 
Alternative 

Select All List 
Alternatives  

Select All List 
Alternatives in 
Reverse Order 

Reference 
Replacement 

Description 

Construct a test case 
that contains a new 
field (contents of new 
field must be defined, 
possibly using GQAS)  

For a specification that 
includes a list, create 
a set of test cases in 
which each alternative 
in the list is selected 
once (all other fields 
are assigned their 
nominal value) 

Select every 
alternative from a list 
in the one test  

Select every 
alternative from a list 
in the reverse order in 
the one test 

For a non-terminal 
fields that references 
another terminal, 
create a test case in 
which the non-terminal 
references itself 

Source [10, 7] [22] [22] [22] [22] 
Rule Type TCCR TCCR DISR DISR TCCR 
Set Type All All All All All 
Valid or Invalid Invalid Valid Invalid Invalid Invalid 
Original Datatype All All All All All 
Test Datatype  Same as original Same as original Same as original Same as original Same as original 
Test Data Length Same as original Same as original Same as original Same as original Same as original 

# Fields Populated 
n, where n is the 
number of fields in the 
specification 

n, where n is the 
number of fields in the 
specification 

1 1 
n, where n is the 
number of fields in the 
specification 

# Tests Derived 1 p, where p is the 
number of alternatives  0 0 

q, where q is the 
number of references 
to other non-terminals 
in the specification 
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Table 7: Atomic Rules for Syntax Testing (continued). 
Attribute Values 

Test Method ST
Number ST16
Name Syntax Cover 

Description Construct a set of test cases which link-cover 
the syntax graph of the specification under test 

Source [7, 15] 
Rule Type TCCR 
Set Type All 
Valid or Invalid Valid 
Original Datatype All 
Test Datatype  Same as original 
Test Data Length Same as original 
# Fields Populated n, where n is the number of specification fields 
# Tests Derived r, where r is the number of basis paths [29] 
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Abstract  

Currently, Equivalence Partitioning and Boundary 
Value Analysis are taught at La Trobe University using 
Myers’ original representation of these black-box testing 
methods. We previously proposed an alternative 
representation called Atomic Rules. In this paper we 
present the statistical results of two similar experiments 
that examine which of these approaches enable students 
to write more complete and correct black-box test sets 
and which approach students prefer to use. We compare 
the results of these experiments and discuss how the 
results could change the teaching of black-box testing 
methods at La Trobe University and in industry.  

1. Introduction 

In this paper we present the results of two similar 
experiments in which two groups of novice software 
testers were exposed to two different representations of 
Equivalence Partitioning (EP) and Boundary Value 
Analysis (BVA): Myers’ original definition [19] and the 
corresponding Atomic Rules representation [17]. The 
aim was to determine which representation enabled the 
testers to write more complete and correct black-box test 
sets. The testers who participated in the experiment were 
third and fourth year students enrolled in a software 
testing subject at La Trobe University. Thirty-two 
students participated in 2004 and forty in 2005.  

Each group was given a two-hour lecture on one of 
the representations (Figure 1). During a subsequent 
tutorial, students were tested on their comprehension of 
EP and BVA by deriving black-box test cases from a 
fictional specification. To ensure every student had equal 
opportunity to learn the two representations, the groups 
were subsequently swapped and the process repeated. An 
Initial Questionnaire was used in the first lecture to 
collect data on student’s current understanding of black-
box testing methods and on their previous programming 
and testing experience. A Reflect and Review 
Questionnaire was used in the final lecture to collect data 
on student’s initial and final understanding of EP and 
BVA and on their preferred method representation.  

 

                                                
 1 Ms. Murnane is also currently working as a Software Test Consultant 
for K. J. Ross & Associates in Melbourne, Australia.   

 
 

Figure 1: The experiment process. 
 
While the aims of the two experiments and materials 

presented during lectures were the same for both years, 
three changes were made in 2005 that were significant 
enough for it to be considered to be a different 
experiment. As each group’s lecture took place at the 
same time in different locations, two lecturers were 
required. In 2004, the first author of this paper taught 
Atomic Rules while the second taught Myers. Then, to 
eliminate the extraneous variable of student preference 
for lecturer, the lecturers were swapped in 2005. Also, 
the 2004 results suggested that students could handle 
more challenging specifications during tutorials. Thus, 
longer and more complex specifications were used in 
2005. Lastly, to ensure students had enough time to 
complete their work, tutorials were increased from one 
hour in 2004 to two hours in 2005. To avoid conflict 
with other university classes or commitments (a factor 
which could impact student performance [6]), all work 
for this part of the experiment was completed in class. 

These experiments are part of a larger project which 
explores the learnability, usability and effectiveness of 
black-box testing methods. In this paper we investigate 
representation learnability, which we define to be the 
ease at which a novice can gain knowledge of a 
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particular concept, and usability, which we define to be 
the level of satisfaction a tester feels when using a 
particular representation. The larger project will involve 
an industry-based case study in which we will compare 
the effectiveness of Atomic Rules and Systematic 
Method Tailoring (which enables new Atomic Rules and 
new black-box methods to be defined [18]) to the black-
box methods used by professional testers. We will also 
determine whether industry testers use ad hoc or 
exploratory test case selection rules that are not covered 
by existing black-box methods, and if so, will determine 
whether they can be described as Atomic Rules.  

The remainder of this paper is structured as follows. 
We present a brief overview of Atomic Rules in Section 
2. We discuss our experiment design in Section 3, 
including hypotheses, group allocation, threats to 
validity and the specifications used during tutorials. A 
preliminary analysis of the 2004 Reflect and Review 
questionnaire was published in [17]; in Section 4 we 
present the full experiment results, including data 
collected on other questionnaires and during tutorials. 
These results are discussed in Section 5. Finally, we 
present out conclusions and future work in Section 6.  

2. Overview of the Atomic Rules Approach 

The Atomic Rules approach decomposes black-box 
testing methods into individual elements for partitioning 
a program’s input and output domains, selecting test data 
from each partition, optionally mutating the selected data 
values, and constructing test cases [17]. The aim of 
developing this generalised representation was to make 
black-box methods easier to learn and use by describing 
them more precisely. It resolves a number of consistency 
problems inherent in the original methods, including 
ambiguity issues that could cause testers using the same 
methods to produce vastly dissimilar test sets, and the 
problem of numerous versions of each method existing 
in the literature [17]. A characterisation schema was 
developed to give the methods a standard representation 
(Table 1) and the following four-step procedure2 was 
produced to standardise and describe the black-box test 
case selection process: 

1. Select valid and invalid partitions for each input and/or 
output field by applying a Data-Set Selection Rule 
(DSSR) to each field. 

2. Select at least one individual data value from each 
partition chosen step in 1 by applying a Data-Item 
Selection Rule (DISR) to each partition. 

3. Mutate the data values selected in step 2 by applying a 
Data-Item Manipulation Rule (DIMR) to each data value.  

4. Select various combinations of the data values chosen in 
steps 2 and 3 by applying a Test Case Construction Rule 
(TCCR) to create test cases. 

When applied with the Atomic Rules from a 
particular black-box method or a variety of methods, this 
four-step test case selection procedure can be used to 
construct black-box test cases in the usual way [17].  
                                                
2 Although step 3 was defined after the initial publication of the Atomic 
Rules approach [17] and after the experiment, it is included here for 
completeness.  

For example, consider the field <age> ::= [0 – 150]. 
An EP DSSR that selects all values between the lower 
and upper boundaries of range-related fields (Table 1) 
could be applied, selecting the valid equivalence class [0 
– 150]. A BVA DISR that selects the upper boundary 
value of an equivalence class could be applied to this 
class, selecting the valid data value 150. A Syntax 
Testing DIMR that adds an extra character (e.g. the letter 
a) to the start of a data value could be applied, selecting 
the invalid data value a150. If this was included in an 
input string with another field such as Surname ::= [A-Z, 
a-z, -]1-100, an EP TCCR that selects a test case 
containing one invalid value per test could be applied, 
which could result in the invalid test case Smith a150.  

 
Table 1: Example of an Atomic Rule [15]. 

Attribute Values 
Test Method Equivalence Partitioning 
Number EP3 
Name Lower to Upper Boundary Selection 

Description 
Select an equivalence class containing all 
values that lie between the lower and upper 
boundaries of a field 

Source [19]  
Rule Type DSSR 
Set Type Range 
Valid or Invalid Valid 
Original Datatype Integer, Real, Alpha, Non-Alphanumeric  
Test Datatype  Same as original 
Test Data Length Same as original 
# Fields Populated 1 
# Tests Derived 0 

3. Experiment Design 

The primary independent variable used in these 
experiments was the first black-box testing method 
representation learnt. The approach to manipulating the 
independent variable was the type technique [13] 
whereby the type of variable presented is varied over 
two separate treatments. In the following, we describe 
the experiment hypotheses, group allocation and threats 
to validity that relate to this experiment.  

3.1 Hypotheses 

To compare the learnability and usability of the two 
representations, we measured the completeness (H11) and 
correctness (H13) of the black-box test sets derived, the 
efficiency of derivation (H12), the questions asked during 
derivation (H14) and the level of satisfaction the students 
experienced while deriving test cases (H15). Thus, the 
following hypotheses were defined. 

 
Completeness: 

H01: The completeness of the black-box test set derived by 
novice testers is independent of the approach used.  
H11: Novice testers using Atomic Rules derive a more 
complete test set compared to those using Myers’ approach. 
 

Efficiency: 
H02: The efficiency of black-box test case derivation by 
novice testers is independent of the approach used.  
H12: Novice testers using Atomic Rules derive test cases 
more efficiently compared to those using Myers’ approach. 
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Errors made (Correctness): 
H03: The number of errors made by novice testers during 
black-box test case derivation is independent of the 
approach used.  
H13: Novice testers using Atomic Rules make fewer errors 
during test case derivation compared to those using Myers’ 
approach. 
 

Questions asked: 
H04: The number of questions asked by novice testers during 
black-box test case derivation is independent of the 
approach used.  
H14: Novice testers using Atomic Rules ask fewer questions 
compared to those using Myers’ approach. 
 

User satisfaction: 
H05: There is no difference between the usability of Atomic 
Rules or Myers’ approach when used by novice testers in 
the derivation of black-box test cases.  
H15: Novice testers find Atomic Rules simpler to use than 
Myers’ approach when deriving black-box test cases. 
 
These hypotheses are similar to several that were used 

in an experiment that compared how effective novice 
testers were in selecting appropriate software testing 
methods when using descriptions of the methods from a 
characterisation schema versus novices who used 
textbook descriptions of the methods [23]. 

3.2 Group Allocation 

The participants in our experiments were divided into 
two comparison groups [13]. To provide repetition, each 
group was divided into two subgroups, with each 
deriving test cases from a different specification (Table 
2). A discussion of how group allocation affects validity 
is given in Section 3.4.   

 
Table 2: Number of participants per group and subgroup. 

Year Group Myers Atomic Rules 
Subgroup 1 13 8 
Subgroup 2 5 6 2004 

Total 18 14 
Subgroup 1 10 8 
Subgroup 2 10 12 2005 

Total 20 20 

3.3 Input Data Specifications  

The main requirement that was placed on the 
specifications that were used during tutorials was that 
they had to include at least one numerical range, one list 
of values and a number of different datatypes; e.g. 
alphas, numbers and symbols. This allowed students to 
derive tests for a ‘base’ set of set types and datatypes. 

One of the 2004 specifications was for a fictional 
Personal Details Recording System (Figure 2), while one 
of the 2005 specifications was for a Patient Record 
System (Figure 3). Both were written in a semi-formal 
notation and contained input fields defined using a 
combination of Backus-Naur Form and natural language.  

There were two primary differences between these 
specifications: length and complexity. In 2004, the top 
level non-terminal node contained five fields (including 
two spaces) whereas the corresponding node in 2005 
contained fourteen fields. Thus, the 2005 specifications 

were substantially longer. Also, the 2005 specifications 
contained a recursive field definition, which made test 
case derivation more challenging (e.g. <level_digits> 
field). To compensate for this change, the tutorials were 
extended from one hour in 2004 to two hours in 2005.   

 
Specification:  

<personal_details> ::= <id_number> <s> <surname> <s> <gender> 

<id_number> ::= [100 – 999] 

<surname> ::= 1 to 100 characters from the sets alpha and non-
 alphanumeric (i.e. letters and/or symbols) 

<gender> ::= {Male | Female} 

<s> ::= one to  seven single spaces 

Example Record: 

555       Smith     Male 
Figure 2: Specification 1 – Personal Details System. 

 
Specification:  
<patient_record> ::= 
<name>ˆ…“<ailment>”ˆ…<floor_no>,ˆ…<building>,ˆ…<patient_no> 

<name> ::= 1 to 100 characters from sets alpha and non-alphanumeric 
 (i.e. letters and symbols) 

<ailment> ::= 1 to 150 characters from sets alpha and non- 
 alphanumeric (i.e. letters and symbols) 

<floor_no> ::= <level_no> ˆ Floor 

<level_no> := <level_digits><level_postfix> 

<building> ::= {Fredrick Building | John-Scott Memorial Ward | Mary 
 House | Norman Building | … | Zane Square Building | 
 Zoo Ward} 

<patient_no> ::= <d><d><d><d> 

<d> ::= [0 – 9] 

<level_digits> ::= <d> | <level_digits> <d> 

<level_postfix> ::= {nd  | rd | st | th} 

ˆ ::= one space 

ˆ… ::= one or more spaces 

Example Record: 
Joe Hamish Bloggs “Viral pneumonia, ear infection, and lower 
abdomen pain” 5th Floor, John-Scott Memorial Ward, 1234 

Figure 3: Specification 2 – Patient Record System. 

3.4 Threats to Validity 

In this section we explore threats to internal and 
external validity [13] that apply to our experiments.  

Internal Threats to Validity 

History. Experiment outcomes can be biased by time 
lapses between the application of the treatment variable 
and measurement of the dependent variable or between 
pre-test and post-test measurements [8] or if discussions 
take place between groups during that time [9]. This 
posed a minimal threat as treatment took place during a 
lecture that was between two hours and three days prior 
to measurement. To combat this threat, participants were 
asked not to discuss the experiment with each other until 
after the final lecture. As there was no assignment or 
exam during the experiment, we did not expect students 
to have a great need to hold discussions during that time. 

Maturation. Changes or differences in a participant’s 
internal condition (e.g. age, hunger, fatigue, boredom) 
[8], knowledge level [9], lecturer preference, or 
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enthusiasm [23] can bias results. For example, students 
who are excited about being involved in an experiment 
on a new technique may work harder on that technique. 
To ensure this did not bias results, Myers’ representation 
was referred to as Model 1 and Atomic Rules as Model 2 
and students were not told which was new until after the 
final lecture. Also, students were informed that there 
would be a gift for every member of the class at the end 
of the experiment whether they chose to participate or 
not, which we hoped would compensate them for any 
disruption they may have experienced during the 
experiment3. To combat boredom, students were 
reminded that the work they completed during tutorials 
would prepare them for their assignments and exam and 
also for future work in industry. As tutorial attendance 
was not compulsory, bored students could choose not to 
attend class but were informed that the subject was an 
important part of their courses. As the experiments were 
run over six separate classes, it was hoped that fatigue 
and hunger did not affect results. Selecting students from 
the same year levels should have negated the knowledge 
threat [9]. To mitigate the potential lecturer preference 
bias threat, the lecturers were swapped in 2005.  

Instrumentation. This threat relates to research 
observers becoming accustomed to experiment materials 
or increasing their experience in measuring data [9]. To 
ensure the same standards were followed throughout 
analysis, standard measurement scales and analysis 
processes were followed. Also, to standardise analysis, 
one person was responsible for all data analysis.    

Selection. Random group allocation can be used to 
mitigate the threat that the groups will be biased; e.g. if 
one group has a higher mean intelligence level than the 
other [9]. Conversely, if participants allocate themselves 
to groups, then the sample within each group is 
voluntary, not random, allocation [4]. While random 
allocation was achieved in 2005 by drawing participant 
names out of a hat, it was not achieved in 2004 due to a 
timetabling problem, which resulted in students 
allocating themselves to groups according to their 
chosen tutorial day/time. However, an analysis of the 
average grade in each group for that subject revealed that 
there was no significant difference between the two 
groups (see Section 4). Thus, this threat should not have 
biased experiment results. 

Testing. Bias can occur if participants are given the 
same test more than once and they become familiar with 
the types of responses required [9]. Although our 
participants derived test cases for the two representations 
over two weeks, we have not included the results of the 
second week in our analysis as it would not measure 
their understanding of the representation learnt. Rather, 
it would test how well they adjusted to learning a second 
representation. We may analyse this statistic in future, as 
it may be useful as a preliminary assessment of whether 
industry testers would adjust to using Atomic Rules after 
having used different approaches as part of their jobs.  
                                                
3 A gift of chocolate, which was allowed by the university’s ethics 
committee, was given to all students as our way of thanking them. 

Reliability. This relates to the consistency of results 
being obtained from the same person with the same or 
equivalent tests on different occasions, allowing an error 
of measurement to be calculated [1]. The simplest 
approach is to repeat the experiment on two separate 
occasions, where the error of measurement is a reliability 
coefficient which is the correlation between the two 
scores for each individual [1]. Since our experiments 
took place during university semesters, there was not 
enough time to repeat the same test twice. However, 
within each group, the same test was repeated across two 
subgroups. This allowed us to test experiment reliability. 

Population and sample. Validity can be affected if the 
sample is not representative of the entire population [10]. 
Convenience sampling was the method of recruitment in 
our experiments, where participants were selected as 
they were easily accessible [10]. We recognize that our 
samples are not representative of all novice testers, 
specifications or black-box methods; e.g. approaches 
such as Syntax Testing were not covered. Thus, our 
results are considered to be indicative, not conclusive. 

Threats to internal validity which were not applicable 
to our experiments included diffusion of treatments, 
compensatory equalization, compensatory rivalry and 
resentful demoralization, as these only applicable when 
using control groups [9]. We could not use control 
groups in our experiments, as students in those groups 
would have been disadvantaged in their assignment and 
exam as a result of not learning the two representations.  

Also, in experiments involving students, participants 
sometimes work on tasks at home; thus copying is a 
threat [23]. However, in our case, all tasks for the main 
body of the experiment were completed in class and 
every second student was given a different specification 
during tutorials so they could not copy from each other. 

In addition, a bias can exist if participants do not 
follow the processes and procedures of the techniques 
prescribed [23]. We asked students to show all workings 
while deriving test cases as we were interested in 
discovering when they did not follow the method 
procedures, as this may identify method ambiguity. 

External Threats to Validity 

Language. Participants may be disadvantaged if 
experiment materials are not written in their native 
language [23]. Some international students were 
involved in our experiments and all materials were 
written in English. However, since the students were 
enrolled at an English-speaking university, it was 
expected that they would be able to understand the 
language used, and if not, that they would ask a question. 

Interaction of setting and treatment. This relates to 
the ability to generalise experiment findings across other 
environmental settings [9], which in our case is 
determining whether our results are applicable to 
industry professionals. This threat is not applicable in 
our experiment as industry testers can be considered to 
be expert software testers, while our experiment was 
aimed at novices.  
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Interaction of history and treatment. This threat 
relates to the ability to generalise research outcomes to 
the past and future; e.g. if a classroom experiment runs 
during the main semester, the outcomes may be different 
than if it were conducted over the summer break, due to 
different types of students being enrolled at that time [9]. 
One way of resolving this threat is to replicate the 
experiment at a different time of year. Our experiments 
were run during the same semester over two years and 
we do not anticipate having the resources to repeat the 
experiments over summer as very few third and fourth 
year subjects run during that time at La Trobe University 
and there have never been any official student requests 
to do so in this software testing subject. 

4. Results 

In this section we present data on the demographic of 
students involved in the experiments, followed by results 
for each of the five hypotheses. These results are then 
discussed in Section 5. Note that one-tailed tests were 
used in all significance tests.  

Demographic 

In the initial questionnaire, students were asked about 
their prior software testing and industry experience. 
Twenty-six out of thirty-two students completed this 
questionnaire in 2004 (81.25%), while thirty-seven out 
of forty completed it in 2005 (92.5%).  

Many students reported having prior experience with 
software testing during university lectures and/or 
university assignments (Table 3). However, while 19.2% 
in 2004 and 13.5% in 2005 reported having no prior 
experience with software testing methods, 73.1% in 
2004 and only 48.6% in 2005 stated that they received 
such experience through university lectures.  

 
Table 3: Prior software testing experience. 

Software Testing Experience 
2004 

(n = 26) 
2005 

(n = 37) 
None 19.2% 13.5% 
University Lectures 73.1% 48.6% 
University Assignments 61.5% 62.2% 
As a Tutor 0% 0% 
Other 11.5% 16.2% 

 
We also found that 84.6% of the 2004 group had prior 

experience with black-box testing methods, compared to 
only 54.1% in 2005 (Table 4). These statistics suggests 
that there may have been a decrease in the amount of 
software testing training that was given to students in the 
2005 group in the earlier years of their degrees.    

 
Table 4: Prior experience with black-box testing methods. 

Ever used any black-box 
testing methods? 

2004 
(n = 26) 

2005  
(n = 37) 

Yes 84.6% 54.1% 
No 15.4% 45.9% 

 
Participants rated their level of experience with the 

following black-box methods: Boundary Value Analysis 
(BVA), Cause-Effect Graphing (CEG), Decision Tables 

(DT), Equivalence Partitioning (EP), Orthogonal Array 
Testing (OAT), Random Testing (RT), Specification-
Based Mutation Testing (SBMT), State-Transition 
Diagram Testing (STT), Syntax Testing (ST) and Worst 
Case Testing (WCT). Although statistics were only 
required for EP and BVA, we enquired about nine other 
methods to obtain an overall picture of the class’s 
current black-box testing experience. Students rated their 
understanding using a Likert scale of: 1 = none, 2 = 
basic, 3 = intermediate, 4 = advanced and 5 = expert 
(Tables 5 and 6). With the exception of BVA and RT in 
2004, the majority of students reported having limited 
amounts of experience with black-box testing methods.  

 
Table 5: Participants initial understanding of black-box 

testing methods in 2004 (n = 26). 
Black-Box Testing Methods 

B
VA

 

C
EG

 

D
T 

EP
 

EG
 

O
A

T 

R
T 

SB
M

T 

ST
T 

ST
 

W
C

T 

Rating Percentages (%) 
None 19 96 54 65 73 100 46 96 73 54 65 
Basic 15 0 8 4 8 0 15 0 8 8 15 

Intermediate 31 4 27 8 12 0 31 4 12 23 12 
Advanced 23 0 8 23 4 0 4 0 8 15 8 

Expert 12 0 4 0 4 0 4 0 0 0 0 

 
Table 6: Participants initial understanding of black-box 

testing methods in 2005 (n = 37). 
Black-Box Testing Methods 

B
VA

 

C
EG

 

D
T 

EP
 

EG
 

O
A

T 

R
T 

SB
M

T 

ST
T 

ST
 

W
C

T 

Rating Percentages (%) 
None 65 95 76 84 81 97 73 97 87 78 90 
Basic 16 0 5 5 8 0 19 0 8 14 5 

Intermediate 16 5 16 11 11 3 8 3 5 8 5 
Advanced 3 0 3 0 0 0 0 0 0 0 0 

Expert 0 0 0 0 0 0 0 0 0 0 0 
 
Interestingly, very few students reported having any 

prior experience working in industry (Table 8).  
 

Table 7: Prior industry experience. 

Position in Industry 
2004 

(n = 26) 
2005 

(n = 37) 
Project Manager 3.8% 0% 
Technical Team Leader 3.8% 0% 
Business Analyst 0% 0% 
Programmer 3.8% 2.7% 
Analyst 3.8% 2.7% 
Test Team Leader 3.8% 0% 
Test Team Member 0% 2.7% 
Other 0% 5.4% 

 
A comparison of the mean overall grade of each 

group in the subject showed that there was no significant 
difference between the groups in 2004 or 2005 (Table 7).  

 
Table 8: Comparison of overall grades for each group. 

Year N Approach Mean 
Std 
Dev t-test 

18 Myers 66.17 20.88 
2004 14 Atomic 

Rules 73.29 14.56 t(38) = .428, p = .336 

20 Myers 68.1 19.49 
2005 20 Atomic 

Rules 65.8 14.1 
t(30) = -1.08, p = .143 
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Completeness (H01/H11) 

To assess completeness we compared the percentage 
of EP equivalence classes, BVA boundary values and EP 
and BVA test cases derived correctly by each group.  

In 2004, a t-test showed a significant difference 
between the groups for EP equivalence class and test 
case derivation, where the mean was higher for the 
Atomic Rules group (Tables 9, 10). According to 
Cohen’s Effect Size [16], these relationships were 
strong. The 2004 BVA results were inconclusive (Tables 
11, 12). Conversely, the mean EP class (Tables 9, 10) 
and BVA boundary value (Table 11) coverage was 
higher for Myers’ group in 2005 and Cohen’s Effect Size 
showed moderate to strong relationships. The results for 
BVA test cases in 2005 were inconclusive (Table 12).  

Interestingly, the mean EP and BVA coverage 
achieved by Myers’ group in 2004 and 2005 was 
relatively the same in both years (Tables 9 to 12).  

 
Table 9: Percentage of coverage of EP equivalence classes. 

Year N Approach Mean 
Std 
Dev t-test 

Cohen’s 
Effect 
Size 

18 Myers 49.76 16.95 
2004 14 Atomic 

Rules 78.86 26.10 

t(30) =  
-3.82, 

p = .0003 

1.35 
strong 

20 Myers 48.61 16.13 
2005 20 Atomic 

Rules 26.54 12.65 

t(38) = 
4.815,  

p < .001 

1.53 
strong 

 
Table 10: Percentage of coverage of EP test cases. 

Year N Approach Mean 
Std 
Dev t-test 

Cohen’s 
Effect 
Size 

18 Myers 36.23 23.29 
2004 14 Atomic 

Rules 78.86 26.10 

t(30) = -
4.87, 

p = .0002 

1.73 
strong 

20 Myers 38.94 20.92 
2005 20 Atomic 

Rules 23.65 15.11 

t(38) = 
2.649,  

p = .006 

0.85 
moderate 

 
Table 11: Percentage of coverage of BVA boundary values. 

Year N Approach Mean 
Std 
Dev t-test 

Cohen’s 
Effect 
Size 

18 Myers 18.88 19.98 
2004 14 Atomic 

Rules 23.81 26.82 

t(30) = 
.58, 

p = .28 
NA 

20 Myers 26.00 19.51 
2005 20 Atomic 

Rules 11.52 12.80 

t(38) = 
2.776,  

p = .004 

.90 
moderate 

 
Table 12: Percentage of coverage of BVA test cases. 

Year N Approach Mean 
Std 
Dev t-test 

Cohen’s 
Effect 
Size 

18 Myers 14.88 18.83 
2004 14 Atomic 

Rules 18.81 26.22 

t(40) =  
-.39,  

p = .35 
NA 

20 Myers 10.22 16.92 
2005 20 Atomic 

Rules 9.56 12.63 

t(38) = 
.141,  

p = .445 
NA 

 
In addition to data collected during tutorials, students 

in 2005 were asked to derive black-box test cases in their 
class assignment using one of the representations (Table 
13). We found that significantly more students chose to 
use the Atomic Rules approach in that year.  

 

Table 13: Representation used in the assignment (n = 38).  

Year Approach 
Used in 

Assignment Chi-Square 
Myers 27.5% 2005 

Atomic Rules 67.5% 
χ2(1, N = 38) = 6.737, 

p  = .009 
 
In addition, the average assignment mark in 2005 for 

students who used the Atomic Rules representation in 
their assignment was significantly higher (Table 14).   

 
Table 14: Average mark achieved in the assignment (n = 38).  

Year Approach Mean Mark t-test 
Myers 67.91 2005 

Atomic Rules 85.52 
t(36) = -1.93, p = .03 

Efficiency (H02/H12) 

We calculated the speed at which students completed 
test case derivation by counting the number of students 
who ran out of time before finishing test case derivation 
during tutorials. We found significantly more students in 
the Atomic Rules group ran out of time before 
completing their work in both 2004 and 2005 (Table 15).  

 
Table 15: Number of participants who ran out of time. 

Year Approach N 

Out of 
Time 

(Count) 

Out of 
Time 

(Percent) 
Test of Two 
Proportions 

Myers 18 5 27.77% 
2004 Atomic 

Rules 14 10 71.43% 

δ = -.4366, 
z = -2.45, 
p = .007 

Myers 20 7 35% 
2005 Atomic 

Rules 20 19 95% 

δ = -.6, 
z = -3.98, 
p < .001 

Correctness (H03/H13) 

To assess correctness, we counted the number of 
errors that students made during tutorials. We found that 
significantly fewer errors were made by students in the 
Atomic Rules group during EP equivalence class 
derivation in 2004 (Table 16). A similar result was seen 
in BVA boundary value definition in 2004, although the 
result was just outside the 95% confidence interval 
(Table 18). However, no significant difference was 
found between the groups during BVA or EP test case 
derivation in 2004 (Tables 17, 19) or during EP and 
BVA derivation in 2005 (Tables 16 to 19).  

 
Table 16: Errors made in EP equivalence class derivation. 

Year N Approach 
Mean 
Rank 

Sum of 
Ranks Mann-Whitney U 

18 Myers 20.81 374.50 
2004 14 Atomic 

Rules 10.96 153.50 
U  = 48.5,  
p = .001 

20 Myers 21.65 433 
2005 20 Atomic 

Rules 19.35 387 
U  = 177,  
p = .274 

 
Table 17: Errors made in EP test case derivation. 

Year N Approach 
Mean 
Rank 

Sum of 
Ranks Mann-Whitney U 

18 Myers 15.56 280 
2004 14 Atomic 

Rules 17.71 248 
U  = 109,  
p = .245 

20 Myers 21.55 431 
2005 20 Atomic 

Rules 19.45 389 
U  = 179,  
p = .292 
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Table 18: Errors made in BVA boundary value derivation. 

Year N Approach 
Mean 
Rank 

Sum of 
Ranks Mann-Whitney U 

18 Myers 18.5 333 
2004 14 Atomic 

Rules 13.93 195 
U  = 90,  

p = .0675 

20 Myers 22.15 443 
2005 20 Atomic 

Rules 18.85 377 
U  = 167,  
p = .192 

 
Table 19: Errors made in BVA test case derivation. 

Year N Approach 
Mean 
Rank 

Sum of 
Ranks Mann-Whitney U 

18 Myers 17 306 
2004 14 Atomic 

Rules 15.86 222 
U  = 117,  
p = .349 

20 Myers 20.70 414 
2005 20 Atomic 

Rules 20.30 406 
U  = 196,  
p = .463 

Questions Asked (H04/H14) 

Participants were asked to document the questions 
they asked during tutorials. However, we found that only 
three students in 2004 and no students in 2005 recorded 
questions. Possible reasons could be that students: 

1. were reluctant to ask questions,  
2. did not have enough time to record questions, or 
3. had a sound understanding of the methods taught.  
Although we hope the third option was the case, we 

do not have enough data to clarify this. In future 
experiments we could ask students on a questionnaire 
whether they recorded any questions, and if not, why.  

User Satisfaction (H05/H15) 

To assess user satisfaction, students completed a 
Reflect and Review Questionnaire. Thirty-two students 
completed this questionnaire in 2004 (100% of the class) 
and twenty-eight in 2005 (70% of the class).  

In 2004, students were asked which model they would 
prefer to use in future and this was compared to the 
model they learn first (Table 20) [17]. A chi-square test 
indicated that significantly more students would prefer to 
use the Atomic Rules approach in future.  

 
Table 20: Approach students leant first versus approach 

they indicated they would use in future (n = 32).  

Year Approach 
Leant 
First  

Use in 
Future Chi-Square 

Myers 61% 9% 
2004 Atomic 

Rules 39% 91% 
χ2(1, N = 32) = 21.16, 

p  < .001 

 

In 2005 we posed a slightly different question. 
Students were asked to rate the likelihood that they 
would use the models in future (Table 21) using a Likert 
scale of: 1 = very unlikely, 2 = somewhat unlikely, 3 = 
neither likely nor unlikely, 4 = somewhat likely, 5 = very 
likely. However, the mean response was relatively even 
for both groups and no significant difference was found.  

 

Table 21: Likelihood of using approaches in future (n = 28). 
Model use in 
future (mean) 

Year Approach 

Model 
Learn t 

First Myers 
Atomic 
Rules t-test 

Myers 46.43% 3.46 3.47 t(26) = -.01, 
p = .307 2005 Atomic 

Rules 53.57% 3.23 3.73 t(26) = -1.12, 
p = .445 

Students also rated their understanding of the two 
representations using a Likert scale of: 1 = very poor, 2 = 
poor, 3 = average, 4 = good, 5 = very good, 6 = 
excellent. In both years, students reported that their 
understanding of EP and BVA had improved by the end 
of the experiment (Tables 22 and 23, columns 2-5).  

In 2004, 57% of students rated their understanding of 
Myers’ representation as below-average, whereas 100% 
rated their understanding of Atomic Rules as good or 
above (Table 22, cols 2-5). A significant difference was 
found in their self-rated understanding of the Atomic 
Rules approach as compared to Myers’ approach, where 
the mean was higher for Atomic Rules; t(30) =  -7.65, p 
< .01. Thus, students reported that they were able to gain 
a better understanding of Atomic Rules [17]. 

 
Table 22: Self-rated understanding in 2004 (n = 32) [17]. 

Understanding of Black-Box 
Testing Methods 

Understanding of 
Approaches 

Initial Final 
EP BVA EP BVA Myers 

Atomic 
Rules 

Rating Percentages (%) 
Very Poor 3 9 0 0 6 0 

Poor 15 18 0 0 15 0 
Average 36 45 0 3 36 0 

Good 15 18 12 21 15 12 
Very Good 24 9 58 55 18 70 

Excellent 6 0 30 21 3 18 
Frequency Values 

Mean 3.61 3.00 5.18 4.94 3.35 5.03 
Std Dev 1.27 1.06 0.64 0.75 1.25 0.56 
Missing 0 0 0 0 1 0 

 
In addition, 82% of students in 2005 rated their 

understanding of Atomic Rules as Good to Excellent, 
compared to only 54% for Myers’s representation (Table 
23, cols 2-5). Furthermore, a significant difference was 
found in the student’s self-rated understanding of the two 
representations, where the mean was again higher for 
Atomic Rules; t(26) =  -3.22, p = .03. Thus, the students 
in 2005 also reported that they were able to gain a better 
understanding of the Atomic Rules representation.  

 
Table 23: Self-rated understanding in 2005 (n = 28). 

Understanding of Black-Box 
Testing Methods 

Understanding of 
Approaches 

Initial Final 
EP BVA EP BVA Myers 

Atomic 
Rules 

Rating Percentages (%) 
Very Poor 32 21 4 4 4 4 

Poor 21 18 0 0 21 0 
Average 29 29 7 11 21 11 

Good 7 21 36 25 29 46 
Very Good 11 7 50 46 25 29 

Excellent 0 4 4 14 0 7 
Frequency Values 

Mean 2.43 2.86 4.39 4.54 3.50 4.22 
Std Dev 1.32 1.38 .96 1.11 1.20 1.01 
Missing 0 0 0 0 0 1 

4.1 Related Research  

In this section we discuss a number of case studies 
that assess testing methods taught at university. We also 
explore a number of other empirical studies that compare 
the effectiveness of black-box methods to other testing 
methods and reflect on the approaches they use to assess 
test method effectiveness, as well as the number of 
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participants used in those studies. We then examine the 
continuing debate in the literature as to whether students 
should be used in software engineering experimentation.  

Roper et al. suggest that one way to progress towards 
firmer concepts of test method effectiveness is to 
develop tighter definitions of the methods themselves so 
that the experimental derivation of test data becomes 
predictable and repeatable [21]. This was of our main 
objectives in developing the Atomic Rules approach and 
one of our primary motivations in assessing the 
learnability and usability of traditional black-box 
methods. In our experiments we examined learnability in 
terms of the ease at which novice testers gained 
knowledge of particular concepts and usability in terms 
of the satisfaction the novice testers felt when using the 
representations. This included assessment of the level of 
completeness and correctness of derived test cases. Chen 
and Poon used similar measures when reviewing forty-
eight student projects for the types of classifications that 
students missed as well as they numbers and types of 
mistakes they made when using the black-box 
Classification Tree Method (CTM) [7]. In another case 
study on CTM that was run 104 students and rerun with 
fifty-eight students, participants were asked to test 
programs that they had developed themselves using 
whatever test methods they felt were appropriate [25]. 
Their programs were graded by an automated test suite 
in terms the number of test cases that resulted in correct 
program output4. Then, the students were taught CTM 
and were asked to retest their programs using that 
method, to critically evaluate CTM, compare it to the 
test methods they previously used and to rate their future 
preference of test methods. With the exception of the 
critical evaluation, these measures are similar to those 
that were used in our experiment and to those we plan to 
use in our industry case study.  

Other studies use metrics such as fault-detection 
effectiveness to assess test method effectiveness. Basili 
and Selby conducted an experiment involving a total of 
forty-two students (twenty-nine juniors, thirteen 
intermediates) and thirty-two industry professionals, in 
which they compared the fault detection effectiveness, 
fault detection rate and classes of faults detected by three 
testing techniques: black-box testing (EP and BVA), 
white-box testing (100% statement coverage) and code 
reading (by stepwise abstraction) [3]. They found that 
the industry professionals were able to detect the most 
faults with code reading and did so at a faster rate. They 
were also able to detect more faults with black-box 
methods than white-box methods; however, these did not 
differ in fault detection rate. In one university group the 
same numbers of faults were detected with code reading 
and black-box methods and both detected more faults 
than white-box methods. The rate at which students 
detected faults did not differ for any technique.    

Kamsties and Lott repeated this experiment with fifty 
students and found that while the defect detection 
                                                

4 Hoffman et al. also used automated testing tools to grade 
student’s work [11].  

effectiveness of the two dynamic approaches (white-box 
and black-box) were comparable to that of the static 
approach (code reading), participants detected more 
faults using black-box methods [15]. This experiment 
was also repeated by Wood et al. with forty-seven 
student participants [24]. They found that participants 
detected similar numbers of faults for all three 
techniques; however, their effectiveness depended on the 
nature of the program under test and the program faults.  

In a different experiment that compared the 
probability that test cases derived by EP, BVA and RT 
would be capable of detecting specific program faults, 
only one person was involved in test case derivation 
[20]. Reed noted that participants using black-box 
methods during experiments often select test cases that 
are not representative of other testers, therefore 
experiments could not be generalised unless large 
enough groups of testers and test cases were used. Thus, 
Reed sought to derive every test case that satisfied the 
black-box methods under study.  

In our industry case study we plan to use some of the 
more commonly used metrics for assessing test method 
effectiveness, such as comparing the number of defects 
detected by experienced software testers when using the 
Atomic Rules approach to the number that are detected 
when testers use their own systematic and exploratory 
black-box methods. We also plan to compare the results 
of our university experiments to that of the industry case 
study, to determine whether experienced software testers 
are able to derive complete test sets using Atomic Rules.  

Our university experiments involved a total of 
seventy-two students and we hope to obtain participation 
from at least thirty industry professionals. These figures 
are comparable with subject numbers from other studies, 
both inside and outside the domain of software testing. 
For example, in one study outside the domain of testing, 
an experiment was run with thirty-six students was rerun 
by a different researcher with fifty-nine students and 
ninety-nine industry professionals who were paid 
standard consultancy rates [2]. Remuneration could 
account for this relatively high number of industry 
participants. For example, in another experiment outside 
testing, only twelve industry professionals participated 
[12] and they did not appear to be remunerated. Thus, 
remuneration may be an effective approach of obtaining 
more industry participation in our future case study.  

Carver et al. state that running pilot experiments with 
students is effective preparation for industry-based 
experiments [6]. In addition, Tichy stated that student 
experiments could be used to predict future trends in 
experiments that are rerun with industry professionals 
[22]. Tichy also stated that graduate computer science 
students are only marginally different from industry 
professionals [22]. In addition, Carver et al. discuss a 
study in which a significant difference was found 
between graduate and undergraduate students, but only 
small differences were found between graduates and 
industry professionals [6]. Thus, one negative aspect that 
has been reported on the use of students as experimental 
subjects is that experiment results may not be able to be 
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generalised to industry professionals [6]. However, our 
university experiments have been excellent preparation 
for our industry case study, as they have facilitated an 
initial assessment of the learnability and usability of 
Atomic Rules and have identified threats to validity that 
need to be considered and controlled. Also, we consider 
our results to be suggestive of what the general 
population of professional testers might experience when 
learning and using the Atomic Rules approach, and this 
will be properly verified through the industry case study.   

5. Discussion 

Students in the Atomic Rules group in 2004 were able 
to produce significantly more complete and correct EP 
equivalence classes and test cases, although the BVA 
results were inconclusive. On the other hand, students in 
Myers’ group in 2005 produced more complete EP 
equivalence classes and test cases and BVA boundary 
values. However, we believe this was due to the 2005 
students being given a longer and more complicated 
specification during tutorials. As test cases generally 
take longer to hand-write using the Atomic Rules 
approach, significantly more students in the Atomic 
Rules group in both 2004 and 2005 did not have enough 
time to complete the tutorial tests. Despite this, in 2004 
the Atomic Rules group still achieved much higher mean 
coverage levels than those using Myers’ approach. 

The setting of a potentially overly-complicated test in 
the 2005 tutorials could have been caused by the second 
system effect, which is where system engineers, having 
developed small, elegant solutions the first time around, 
have a tendency to design overly complicated solutions 
the second time [5]. It is only by the design of a third 
system that the engineer will develop an effective 
solution that is not under or over designed [5]. As 
students did well with the Atomic Rules approach in the 
2004 tutorials, we felt it was reasonable to increase the 
length and complexity of the specifications used in 2005. 
A third experiment using a complex and a non-complex 
specification in the one experiment could clarify whether 
specification complexity caused students in the Atomic 
Rules group to produce less complete test sets than 
Myers’ group in 2005.  

Nonetheless, students in the Atomic Rules group 
produced more correct answers than Myers’ group in 
both years, in that they made fewer mistakes during test 
case derivation. In addition, significantly more students 
in 2004 reported that they would prefer to use the 
Atomic Rules approach in future. Also, more students in 
2005 used Atomic Rules in their assignment and 
achieved higher assignment marks than those that used 
Myers’ representation. Furthermore, in both years a 
significant difference was found in student’s self-rated 
understanding of the two approaches, where the mean 
was higher for the Atomic Rules representation. Thus, 
students in both years felt that they had gained a better 
understanding of the Atomic Rules representation by the 
end of the experiment.  

These results suggest that Atomic Rules could be a 
more effective representation to teach to novice software 
testers at university. However, the collection of more 
data would allow us to draw more solid conclusions. It is 
hoped that the industry-based case study we are currently 
planning will provide us with such data.  

One observation that was made during the experiment 
was that the structure of the Atomic Rules approach can 
stifle tester creativity, even for novice testers. As Atomic 
Rules is much more systematic than Myers’ original 
definitions, it did not allow the students to derive test 
cases based on their own knowledge and experience. 
During data analysis, it became apparent that some 
testers in Myers’ group created test cases that were not 
derivable from Myers’ representation. As noted by 
Kaner et al., prior testing experience can be used to 
identify effective test cases through error guessing in 
similar testing scenarios, even if a tester cannot 
remember where they gained the domain knowledge 
[15]. We developed an approach called Systematic 
Method Tailoring which allows testers to systematically 
define new test case selection rules and new black-box 
testing methods based on their own knowledge and 
experience, allowing these to be retained for future 
reuse. In our industry case study, we will determine 
whether the ad hoc test case selection rules that are used 
by industry testers can be captured as Atomic Rules.  

We do not believe that student preference for lecturer 
had an affect on the experiment results, as it would be 
fair to assume that the results of the two groups would 
have swapped in 2005 if this was the case.  

6. Conclusions and Future Work 

In this paper we presented the results of two similar 
classroom experiments that compared the learnability 
and usability of two representations of Equivalence 
Partitioning and Boundary Value Analysis: Myers’ 
original definitions and the corresponding Atomic Rules 
representation. The aim was to compare the learnability 
and usability of these two representations. The 
experiments were run with two groups of novice testers 
over two years at La Trobe University. While our results 
cannot be generalised across the entire population of 
novice testers, program specifications or black-box 
testing methods, they do suggest that the Atomic Rules 
representation makes black-box testing methods easier to 
learn and use in some situations and that students feel 
that they are able to gain a better understanding of 
Atomic Rules than Myers’ representation. They also 
suggest that this topic warrants further investigation.  

We feel that these experiments have been excellent 
preparation for an industry-based case study that we are 
currently planning for 2007, in which we will compare 
the fault detection effectiveness of the Atomic Rules 
approach to the effectiveness of the systematic and 
exploratory black-box testing methods that are used by 
experienced software testers in industry. In addition, in 
our university experiments we found that the Atomic 
Rules approach can stifle tester creativity. However, in 
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previous research we proposed Systematic Method 
Tailoring as an approach for defining new Atomic Rules 
and new black-box testing methods [16]. Thus, in the 
industry-based case study we will also determine 
whether professional testers use any test case selection 
rules that are not covered by traditional black-box 
methods, and if so, we will determine whether they can 
be described via Systematic Method Tailoring as Atomic 
Rules. This verification process will also allow us to 
further assess whether Atomic Rules and Systematic 
Method Tailoring are effective representations to teach 
to novice and professional testers in both academia and 
industry. We will also seek to compare the findings of 
our university experiments to our industry-based case 
study, to analyse the differences in the test sets that are 
derived by experienced and inexperienced testers, such 
as differences in the completeness and quality of the test 
sets and the speed at which they are derived.  

During our industry case study we will also evaluate 
the effectiveness of an automated testing tool that we are 
developing, which implements Atomic Rules and 
Systematic Method Tailoring. This tool automatically 
generates a set of black-box test cases for specifications 
input either through a graphical user interface or via an 
upload facility for specifications expressed in Backus-
Naur Form. This tool could increase the efficiency of the 
Atomic Rules approach and make black-box test case 
selection more efficient and precise.  
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