

Understanding Software Engineering:

From Analogies With Other Disciplines To
Philosophical Foundations.

Submitted by

Jason Baragry B.Sc(Hons).

A thesis submitted in total fulfilment

of the requirements for the degree of

Doctor of Philosophy.

Department of Computer Science & Computer Engineering.

School of Engineering.

Faculty of Science, Technology & Engineering.

La Trobe University.

Bundoora, Victoria. 3083.

Australia.

July 2000

Understanding Software Engineering i

Table Of Contents
SUMMARY... VI

STATEMENT OF AUTHORSHIP ...VII

ACKNOWLEDGEMENTS ...VIII

1. INTRODUCTION ...2

2. IS SOFTWARE DEVELOPMENT ANALOGOUS TO TRADITIONAL ENGINEERING? A

COMPARISON OF DESIGNS FOR AUTOMOTIVE CRUISE CONTROL... 15

2.1 INTRODUCTION...15
2.2 THE CRUISE CONTROL REQUIREMENTS..16
2.3 THE SOFTWARE DESIGNS..19

2.3.1 Object-Oriented Design... 21
2.3.2 State Based Design... 22
2.3.3 Process Control Feedback Loops... 24
2.3.4 Real Time Structured Analysis and Design.. 25
2.3.5 Concurrent Object-Oriented Design.. 26

2.4 THE HARDWARE DESIGNS ..27
2.4.1 Basic Control System Analysis and Design.. 28
2.4.2 Mechanical Cruise Control Systems.. 34
2.4.3 Microprocessor Based Control... 35
2.4.4 Considering the External Inputs in More Detail ... 37
2.4.5 Adaptive Speed Control.. 39
2.4.6 A Fuzzy Approach to Autonomous Intelligent Cruise Control .. 42

2.5 THE SOFTWARE DESIGN APPROACH...44
2.5.1 Differences Between Designs That Used Different Methodologies.. 44
2.5.2 Differences Between Designs That Used The Same Methodology... 47
2.5.3 Discussion .. 56

2.6 THE HARDWARE DESIGN APPROACH..57
2.6.1 The Evolutionary Nature of the Designs... 57
2.6.2 The Reuse of Existing Designs and Components... 60
2.6.3 The Mathematical Modelling of System Requirements and Component Behaviour...................... 62
2.6.4 The Use of Standard Techniques During the Design Process... 65
2.6.5 The Amount of Assumed Design and Component Knowledge... 68
2.6.6 Summary ... 68

2.7 COMPARISON OF DESIGN APPROACHES..69
2.8 CONCLUSION...76

Understanding Software Engineering ii

3. A HISTORY OF THE ARTEFACT ENGINEERING VIEW OF SOFTWARE

DEVELOPMENT.. 80

3.1 INTRODUCTION...80
3.2 IN THE BEGINNING: THE NATO CONFERENCES...82

3.2.1 The 1968 NATO Conference ... 86
3.2.2 Analysing the Analogies Used During the 1968 NATO Conference..102
3.2.3 The 1969 NATO Conference ...110

3.3 THE EVOLUTION OF THE ARTEFACT ENGINEERING VIEW ...114
3.4 CONCLUSION...138

4. AN EXAMPLE OF UNDERS TANDING BASED ON THE ARTEFACT ENGINEERING

VIEW – SOFTWARE ARCHITECTURE...147

4.1 INTRODUCTION...147
4.2 HYPEREDIT : A CASE STUDY IN SOFTWARE ARCHITECTURE..149

4.2.1 The Global HyperCase Architecture...150
4.2.2 The HyperEdit System..151

4.2.2.1 Original System Concept..152
4.2.2.2 Initial HyperEdit Implementation...154
4.2.2.3 Architectures used during System Maintenance...160

4.2.3 Maintenance That Affected the System Architecture ..163
4.2.3.1 Changing the System Communication Mechanism..163
4.2.3.2 The Addition of a Remote Manipulation Interface...165
4.2.3.3 Extraction of the Hypertext M echanism...168

4.2.4 Factors That Influenced Architecture Decisions...170
4.2.4.1 Changing Requirements..171
4.2.4.2 Knowledge of Architecture Alternatives ..173
4.2.4.3 Influence of the Implementation Medium on Architecture Decisions175

4.2.5 Discussion ..178
4.2.5.1 Deciding On the Initial Architecture ..178
4.2.5.2 What Constitutes the Software Architecture?...183

4.3 SOFTWARE ARCHITECTURE THEORY: AN EXAMPLE OF UNDERST ANDING BASED ON THE

ARTEFACT ENGINEERING VIEW...185
4.3.1 The Origins of Software Architecture Understanding..185
4.3.2 Traditional Notions of Architecture...193
4.3.3 Issues That Undermine the Existing Understanding of Software Architecture............................196
4.3.4 Examining the Fundamental Nature of Software Systems to Understand the Representations

Used to Depict Them ..201
4.3.5 Discussion ..206

5. UNCOVERING A FOUNDATION FOR SOFTWARE ENGINEERING.....................................208

5.1 INTRODUCTION...208

Understanding Software Engineering iii

5.2 THE CONCEPTUAL CONSTRUCT ...209
5.3 ENGINEERING THE CONCEPTUAL CONSTRUCT ..218
5.4 IS THE ASSUMPTION VALID? A SUMMARY OF THE RELEVANT RESEARCH IN PHILOSOPHY AND

PSYCHOLOGY ..220
5.4.1 Western Philosophy: Metaphysics and Epistemology..223

5.4.1.1 The Definition of Concepts in Classical Greek Thought..223
5.4.1.2 How We Have Knowledge Of Concepts: Rationalism, Empiricism, and the Kantian Revolution

 226
5.4.1.3 Pragmatism, Analytic Philosophy, and Logical Positivism..232
5.4.1.4 Human Understanding and Conceptual Relativism..235
5.4.1.5 Definition and Meaning..239
5.4.1.6 Using Theories to Understand Phenomena: The Philosophy of Science243
5.4.1.7 Consistency and Coherence in Theory Creation ..251

5.4.2 The Psychology of Cognition ..253
5.4.2.1 The Classical Theory of Categories ..254
5.4.2.2 The Prototype Theory of Concept Identification..256
5.4.2.3 The Role of Theories in the Understanding of Concepts...257
5.4.2.4 Human Understanding and Conceptual Relativism..259

5.5 UNDERST ANDING THE FOUNDATIONS OF SOFTWARE ENGINEERING...261
5.6 CONCLUSION...275

6. EVALUATING SOFTWARE ENGINEERING RESEARCH..278

6.1 INTRODUCTION...278
6.2 THE PROGRESSION OF RESEARCH-BASED DISCIPLINES...280
6.3 NEW GUIDING ASSUMPTIONS FOR SOFTWARE ENGINEERING: THE MODEL BUILDING VIEW.....289

6.3.1 Applying the Model Building View to Specific Aspects of Software Development......................290
6.3.1.1 The Influence of Programming Language Paradigms ..290
6.3.1.2 The Philosophy of the Software System...292
6.3.1.3 Paradigms of Software Design Methodologies ..295
6.3.1.4 The Influence on the Model Building View of the Development Process as a Whole296

6.3.2 Improving Software Engineering Research using the Model Building View................................299
6.3.2.1 The Research of Peter Naur..299
6.3.2.2 The Research of Bruce Blum..302

6.4 CONCLUSION: EVALUATING SOFTWARE ENGINEERING RESEARCH...308

7. CONCLUSION ..313

8. BIBLIOGRAPHY ...329

Understanding Software Engineering iv

List of Figures
FIGURE 2-1: BOOCH REQUIREMENTS...17
FIGURE 2-2: MAN-MACHINE INTERFACE ..18
FIGURE 2-3: BOOCH DFD ..22
FIGURE 2-4: BOOCH OBJECT MODEL ...22
FIGURE 2-5: TOP-LEVEL ACTIVITY CHART ...23
FIGURE 2-6: CONTROL SPEED ACTIVITY CHART ..23
FIGURE 2-7: CONTROL SPEED STATE CHART ..23
FIGURE 2-8: GENERIC FEEDBACK MODEL...24
FIGURE 2-9: SPECIFIC FEEDBACK MODEL...24
FIGURE 2-10: FEEDBACK STD ..24
FIGURE 2-11: GLOBAL ARCHITECTURE ...24
FIGURE 2-12: WARD/MELLOR CTD...25
FIGURE 2-13: WARD/MELLOR STD ...25
FIGURE 2-14: ACTOR STRUCTURE..26
FIGURE 2-15: TOP-LEVEL ROOMCHART ..26
FIGURE 2-16: MANUAL CONTROL ROOMCHART ..26
FIGURE 2-17: AUTOMATIC CONTROL ROOMCHART ..27
FIGURE 2-18: TOP-LEVEL MESSAGE CHART...27
FIGURE 2-19: TIME-VARYING INPUT SIGNAL...29
FIGURE 2-20: SINE-WAVE SIGNAL ..29
FIGURE 2-21: CONTROL SYSTEM TRANSFER FUNCTIONS...30
FIGURE 2-22: SYSTEM RESPONSE ...31
FIGURE 2-23: ROOT-LOCUS ANALYSIS..32
FIGURE 2-24: BODE PLOT ANALYSIS...32
FIGURE 2-25: INTEGRAL COMPENSATION..33
FIGURE 2-26: MECHANICAL FLYWEIGHT GOVERNOR SPEED CONTROL UNIT ..34
FIGURE 2-27: NAKAMURA BLOCK DIAGRAM...35
FIGURE 2-28: SYSTEM TRANSFER FUNCTIONS...36
FIGURE 2-29: FEEDBACK BLOCK DIAGRAM..37
FIGURE 2-30: BLOCK DIAGRAM OF TRANSFER FUNCTIONS...38
FIGURE 2-31: VEHICLE MODELLING..40
FIGURE 2-32: TRANSFER FUNCTIONS OF ADAPTIVE MODEL..41
FIGURE 2-33: AICC BLOCK DIAGRAM..42
FIGURE 2-34: FUZZY CONTROLLER..43
FIGURE 2-35: YIN & TANIK OBJECT MODEL..47
FIGURE 2-36: YIN & TANIK ARCHITECTURE ..47
FIGURE 2-37: BIRCHENOUGH JSD ENTITIES...48
FIGURE 2-38: GOMAA JSD ENTITIES ...48
FIGURE 2-39: APPELBE OBJECT MODEL..49
FIGURE 2-40: GOMAA OBJECT MODEL..49
FIGURE 2-41: WASSERMAN HIGH-LEVEL ARCHITECTURE...49
FIGURE 2-42: ATLEE & GANNON CTL MODEL..53
FIGURE 2-43: HIGGINS GENERIC FEEDBACK...53
FIGURE 2-44: HIGGINS SPECIFIC FEEDBACK...53
FIGURE 2-45: HIGGIN'S COMPLEX FEEDBACK MODEL..54
FIGURE 2-46: WARD & KESKAR'S BH DFD...55
FIGURE 2-47: WARD & KESKAR'S BH STD..55
FIGURE 2-49: GOMAA STD..55
FIGURE 2-48: GOMAA DFD ...55
FIGURE 2-50: GENERIC FEEDBACK MODEL..58
FIGURE 2-51: ADAPTIVE CONTROL ..59
FIGURE 2-52: AICC PID SYSTEM ..59
FIGURE 2-53: THROTTLE CONTROL..59
FIGURE 2-54: ST GERMANN MODEL..60
FIGURE 2-55: GENERIC CRUISE CONTROL ..61

Understanding Software Engineering v

FIGURE 2-56: ST GERMANN COMPONENTS...63
FIGURE 2-57: VEHICLE FOLLOWING MODEL ..64
FIGURE 2-58: HUMAN DRIVER MODEL..64
FIGURE 2-59: CONTROL SYSTEM DESIGN..67
FIGURE 2-60: ECU IMPLEMENTATION...68
FIGURE 3-1: PITCH, ROLL & YAW... 103
FIGURE 4-1: ORIGINAL HYPERCASE CONCEPTUAL ARCHITECTURE .. 150
FIGURE 4-2: HYPERCASE IMPLEMENTED ARCHITECTURE ... 151
FIGURE 4-3: HYPEREDIT CONCEPTUAL ARCHITECTURE.. 153
FIGURE 4-4: HYPEREDIT OBJECT EDITOR AND ENTITY RELATIONSHIP EDITOR.. 155
FIGURE 4-5: HYPEREDIT LAYERED ARCHITECTURE... 156
FIGURE 4-6: HYPEREDIT DISTRIBUTED COMMUNICATIONS ARCHITECTURE ... 156
FIGURE 4-7: EVENT-BASED OPERATING ARCHITECTURE .. 161
FIGURE 4-8: REDESIGNED EVENT-BASED OPERATION... 166
FIGURE 4-9: ARCHITECTURE DIAGRAMS AND PHYSICAL REPRESENTATION OF THE SYDNEY OPERA

HOUSE ... 197
FIGURE 4-10: ARCHITECTURE DIAGRAM AND PHYSICAL IMPLEMENTATION OF HYPEREDIT SYSTEM........... 198
FIGURE 5-1: W ITHDRAW MONEY USE-CASE ... 212
FIGURE 5-2: USE-CASE MODEL DIAGRAM... 212
FIGURE 5-4: ANALYSIS OF PAY INVOICE .. 213
FIGURE 5-3: ANALYSIS OF THE WITHDRAW USE-CASE ... 213
FIGURE 5-5: INVOICE STATECHART ... 214
FIGURE 5-6: DESIGN DEPLOYMENT MODEL... 215
FIGURE 5-7: RELATIONSHIP BETWEEN MODELS... 215
FIGURE 5-8: DEVELOPMENT OF MODELS... 216
FIGURE 6-1: MODELS-OF-REALITY SPACE.. 305

List of Tables
TABLE 2-1: CRUISE CONTROL ‘OBJECTS’ ...50
TABLE 5-1: CRUISE CONTROL ‘OBJECTS’ (FROM CHAPTER 2).. 265
TABLE 5-2: GENERIC AND SPECIFIC CRUISE CONTROL CONCEPTS.. 266
TABLE 5-3: CONTRASTING ANATOMICAL MODELS.. 267
TABLE 5-4: COMPARISON OF THE ANALYSIS MODEL AND THE DESIGN MODEL (FROM (JACOBSON,

BOOCH ET AL. 1998) P. 219).. 273
TABLE 5-5: COMPARISON OF THE ANALYSIS MODEL AND DESIGN MODEL BASED ON THE

PHILOSOPHICAL AND PSYCHOLOGICAL FOUNDATIONS... 273

Understanding Software Engineering vi

Summary
Since its origin, software engineering research has sought to improve the practice of
software development based on analogies with traditional engineering disciplines. Those
disciplines are perceived to have more rigorous, predictable, and mature development
methods and similar techniques would be beneficial for software developers. The
underlying assumption is that the systems built by the respective disciplines are similar
enough for the transfer of ideas to be possible. That is, software engineers have an
artefact engineering view of software development.

However, a detailed comparison of the way software developers and traditional engineers
address an identical problem shows that significant differences exist between the
respective design approaches. Traditional engineers design and build corporeal artefacts
to solve real-world problems. In contrast, software developers solve real-world problems
by implementing models of reality that explain and automate a perceived process.

These differences help explain many research issues that are currently the source of
debate, for example, the area of software architecture. A case study of a large-scale
system highlights the issues involved and a chronological review of the theory shows
existing theory is based on specious analogies with traditional notions of architecture that
fail to consider significant differences between software development and other
engineering disciplines.

A foundation for the understanding of software systems is then proposed based on an
examination of research performed in other disciplines that are concerned with model
building. They include metaphysics and epistemology, the history and philosophy of
science, and the psychology of cognition. The conclusion is that models of reality cannot
be understood using the same principles as other built artefacts and that software
engineers must consider the role of subjective interpretation in human understanding.

Finally, an examination of how research-based disciplines progress shows that the
understanding of the phenomena under investigation is significantly influenced by
guiding assumptions that can change over time. The conjecture of this thesis is that the
artefact engineering view has been the established guiding assumption in software
engineering research. However, a better understanding of the underlying principles of
software systems leads to an improved approach to software engineering – the model
building view. That different way of understanding is exemplified by conjecturing
alternate explanations for software reuse, architecture, and design patterns. The objective
for software engineering research now becomes how to engineer those explanatory
models of reality.

Understanding Software Engineering vii

Statement of Authorship

Except where reference is made in the text of the thesis,

this thesis contains no material published elsewhere or

extracted in whole or in part from a thesis by which I have

qualified for or been awarded another degree or diploma.

No other person’s work has been used without due

acknowledgment in the main text of the thesis.

This thesis has not been submitted for the award of any

degree or diploma in any other tertiary institution.

7th July 2000

Understanding Software Engineering viii

Acknowledgements
The ideas presented in this thesis have taken a long time to coalesce and get down on

paper and I’d like to thank the many people who have helped me, both academically and

personally, during that time. My supervisor, Karl Reed, has been the primary interlocutor

for discussing my ideas and though our debates have sometimes been passionate, my

understanding of the issues has benefited significantly from them. I have acknowledged

his input as ‘personal communications’ where appropriate, but I also thank him for his

endless anecdotes of bygone eras that helped to clarify some issues.

I’d also like to thank him from supporting me when I changed research topic from the one

originally suggested. As I moved from the specific software engineering topic of

Graphical Component Based Software Engineering to an examination of philosophical

foundations of the discipline as a whole, he repeatedly warned me of the inherent dangers

of dealing with such a topic in a Ph.D. thesis. Nevertheless, he continued to let me follow

my own path and provided the necessary feedback and guidance as required. Now that I

can sit back at the end of this process I have a better idea of what he was talking about

and realise how much easier it would have been had I stayed on the original topic. That

seems to be all the more relevant at a time when higher education in this country appears

to be making it harder and harder to explore these more open-ended research issues. To

make a contribution by addressing some focused problem is of course worthy, but, for

me, to have made a foray into the fundamental problems of a discipline, and feel one may

have added to its understanding, is an experience of an entirely different kind.

Finally, I’d like to thank him for taking an interest and offering support during the

personal issues that cropped up during the last few years.

I’d also like to thank the other members of the Amdahl Australian Intelligent Tools

(AAITP) program of which this research formed a part. In particular David Cleary, whom

I shared an office with for a few years, provided many useful discussions on my ideas as

they were emerging. Jacob Cyubulski also provided useful comments and Fred Brkich,

who listened to what I was doing and suggested I read some Aristotle and Feyerabend,

thereby adding an extra couple of years to my work but making it all the more

worthwhile. I’d also like to thank the AAITP project for its financial support and the

many individuals who made the program possible.

Understanding Software Engineering ix

The academic and administrative staff and my fellow postgraduate students in the

Department of Computer Science and Computer Engineering provided plenty of help

over the years and the department provided teaching opportunities when my AAITP

funding ran out. I’d also like to thank the Research and Graduate Studies people of La

Trobe University for not throwing me out when they could have. Thanks to John Fox and

Geoff Cumming, from the departments of Philosophy and Psychology respectively, for

helping me with my understanding of those relevant issues and to those friends who

looked over sections of my thesis and helped with my often loose interpretation of the

English language.

Finally, thanks to my family and friends who have stuck by me over the years and offered

their support when required, especially over the last few months when it seemed I had

vanished without trace. Also thanks to my housemates who have had to put up with my

research all over the house and to those friends who helped me keep an appropriate

balance between work and play.

Understanding Software Engineering 1

If we knew what it was we were doing,

it wouldn’t be called research,

would it?

– Albert Einstein.

Introduction

Understanding Software Engineering 2

1. Introduction
Since its emergence 30 years ago as a distinct research discipline, “Software

Engineering” has developed many tools and techniques designed to help the software

development community improve the way it builds systems. In that time, debate has

contained many conflicting theories, ideas, conjectures, proposals, and analogies,

concerning the nature of software development and how it can be improved. A central

tenet of software engineering research is that the process of software development can

benefit by learning from the development techniques of traditional engineering

disciplines. That gained currency in the first software engineering conference in 1968 and

it is still evident in the most recent research publications. See for example, the latest

Annals of Software Engineering issue – Comparative Studies of Engineering Approaches

for Software Engineering (Patel, Wang et al. 2000). For the entire duration of our young

discipline, analogies with traditional engineering disciplines have served as the

inspiration, evidence, and justification for many of our research ideas. They have

pervaded our thought both explicitly and implicitly. Yet despite the massive investment in

software engineering research, many fundamental goals have eluded us. For instance,

software component reuse has not yet been achieved to the same extent as in other

engineering disciplines; object-oriented development has failed to meet its initial claims;

researchers still cannot agree on a definition of software architecture; and, finally,

software developers still do not enjoy the benefits of rigorous mathematical analysis that

other engineering disciplines do. Software engineering research has proposed many

solutions in those particular areas, however, none of them have been universally accepted.

Moreover, until very recently, there has been little, if any, effort made to understand the

philosophical basis of those issues or to assess whether our expectations are reasonable.

The assumption has been that solutions are possible because analogous approaches are

presumed to exist in other engineering disciplines and all that is required is more

research.

This thesis contributes to that debate by developing an understanding of software

engineering based on philosophical and psychological foundations which can be used to

analyse the contradictions between the practice and evolution of software development

and the theoretical expectations of software engineering. The premise of this thesis is that

Introduction

Understanding Software Engineering 3

software engineering theories have been dominated by the guiding assumption that

software system development can be understood as being analogous to the development

of traditionally engineered artefacts and systems. That is, software engineers have an

artefact engineering view of software development. While that assumption has enabled

software engineering research to make a significant contribution to development

practices, a thorough analysis reveals it leads to numerous anomalies. By examining the

differences between software systems and traditionally engineered artefacts, a better

understanding of the fundamental nature of software systems has been achieved and that

can be used to improve software engineering research. The aim of the thesis is to

convince software engineering researchers of the potential benefits of moving from an

artefact engineering view of software development to a model building view.

The quote by Einstein that begins this thesis captures both how the ideas within were

discovered and how the resulting conclusions should be interpreted. Because the content

of the thesis is philosophical in nature, it is necessary to explain how it came about. When

my Ph.D. research began, I had just completed an undergraduate degree comprising

training in both computer science and electronic engineering. My initial research topic

was to develop a graphical approach to what is now referred to as component-based

software engineering. The project was part of the Amdahl Intelligent Tools Programme

(AAITP), a collaborative research effort between Amdahl Australia and La Trobe

University (see (Cybulski and Reed 1992)). Within the project group, my supervisor and

project Director, Karl Reed, and I, were definitely of the view that software development

could be understood as analogous to traditional engineering development. In contrast,

other project members, specifically the deputy director, Jacob Cybulski, and another

Ph.D. student, David Cleary, were of the opinion that software development was

significantly unique that the analogies could not be easily applied. That led to some lively

debates between the group members and allowed a close examination of the issues. As

my research progressed, I examined contemporary theories in software reuse, design

methods, graphical representations, visual languages, software architecture, and research

in traditional engineering design. It was the analysis of theories in software architecture

that initiated the change in research direction – specifically, reading Mary Shaw’s 1994

technical report, Making Choices: A Comparison of Styles for Software Architecture

(Shaw 1994) (later published as (Shaw 1995c)). In that report, Shaw compared and

Introduction

Understanding Software Engineering 4

analysed eleven different software designs for automotive cruise control systems. While

discussing many issues about that report with Reed, he suggested that an interesting

exercise would be to compare the software designs with published engineering designs of

automotive cruise control systems. Even if it failed to provide a definitive answer to the

“should software development be like traditional engineering?” debate, it was something

that had never been done before and would be a worthwhile research contribution.

Already ‘knowing’ that software development was like engineering development, I

suggested the comparison would be pointless and that perhaps he didn’t know what he

was talking about. Nevertheless, I eventually went ahead with it. The result was a

comprehensive study of twenty two software design examples and fourteen traditional

engineering examples of the cruise control problem, which culminated in a series of

questions that would lead to a profound change in my understanding of software systems

and software development. Those questions led me from the specific software

engineering topic of graphical component-based design to a more encompassing theory of

the philosophical understanding of the discipline as a whole.

The thesis begins with that comparison of software designs and engineering designs for

automotive cruise control systems. A selection of designs from each discipline is

presented in detail to exemplify the approaches used and to capture the design rationale.

The descriptions include the design steps taken, the models used, the representations

depicted, and the analysis and design techniques utilised. Because so much published and

informal conjecture exists concerning the relationship between the disciplines, a

significant amount of detail is included to counter any preconceived biases. That detail

includes a brief introduction to control theory to explain the engineering designs. From

the analyses, a generic design approach for each discipline is developed which accounts

for the similarities and differences noted between the respective disciplines. Those

generic design approaches are summarised as follows. When the software developers

approached the problem they each began with a pre-selected design formalism, either a

particular design method or software architecture style, which served as the basis for

performing the system analysis. That analysis resulted in an initial representation of the

system, that is, a conceptual model or system architecture. As the designs proceeded, the

components of the initial representation were refined and the model was augmented with

additional models of the system until all aspects of the required functionality, behaviour,

Introduction

Understanding Software Engineering 5

and structure were depicted. From that point, the system designs could be analysed for

various design, implementation, and testing properties.

The traditional engineering examples also exhibited a common approach to the design

process. The engineers all began with a similar feedback control architecture, which is a

well-known structural arrangement in that discipline, and which consisted of generic

engineering components that are also well-known to the practitioners of the discipline.

The required behaviour of each of the components in that architecture was then specified

using mathematical models. The design process proceeded by using a combination of

mathematical and experimental techniques to solve the unknown parameters of those

mathematical models of the generic component behaviour. Finally, system testing ensured

the implemented system performed as predicted by the models.

The generic approaches of the two disciplines were then compared. The most striking

aspect of the comparison was the immense difference between the design approaches of

the respective disciplines – especially for someone whose pedagogic training had led to a

predisposition to thinking about software engineering in terms of analogies with

traditional engineering. A staunch advocate of the artefact engineering view of software

development would argue, “Of course they are different! The purpose of software

engineering research is to make software development more like the engineering

development approach”. However, it has been almost 25 years since the goal of

engineering software had been set and the software design examples were still doing

something completely different to ‘engineering’.

Rather than blindly accept that argument I tried to determine why they were so different.

Perhaps the reason why the design approaches were so different was due to fundamental

differences between what was being built? Perhaps those differences, which have never

been systematically examined, invalidate the artefact engineering view of software

development? Therefore, subsequent research was performed to investigate and identify

significant differences between engineering and software components; investigate how

those components evolved; and determine how designers think about them during the

development process. For example, traditional engineers can only construct their systems

using the building blocks of their discipline. Those building blocks are aggregations of

functionality determined by the underlying physical properties upon which the discipline

is founded. As the design proceeds, both the problem requirements and the components of

Introduction

Understanding Software Engineering 6

the proposed solution space are modelled, mathematically, to allow the comparison and

evaluation of common properties. That allows the designer to predict the ability of the

proposed solution to satisfy the given requirements.

Conversely, software developers work with an implementation medium that enables them

to implement almost any concept. The initial system representation depicts the concepts

and relationships in the designer’s perception of how the solution should work. That

model can take any form and the concepts within the model can come from many

different views of the problem domain and many levels of generality of those views. The

components and relationships in that model are then decomposed, refined, and finally

implemented in code. The remainder of the cruise control comparison explores those

ideas and develops the following conjecture to explain the differences between the

respective disciplines.

The Model Building Conjecture: Traditional engineers design corporeal

artefacts to solve some real-world problem. In contrast, software developers

solve a problem by implementing a model of some real-world phenomena.

More precisely, traditional engineers utilise the properties of physical components and

materials to build corporeal artefacts that solve real-world problems, mathematically

modelling the underlying functional properties of the materials and components of their

discipline during the design process. In contrast, software developers solve real-world

problems by developing and then implementing models of reality that explain and

automate a perceived process. That model must be conceived by the developer and

implemented using the constructs provided by the software language(s) being utilised and

the virtual machine(s) used to execute the resulting implementation.

From that study, my research agenda changed significantly. I could not continue to

develop ideas based on an artefact engineering view of software development when that

view could be completely inappropriate. Based on questions posed at the conclusion to

the cruise control study, the goal became an explo ration of the fundamental nature of

what software developers build and that resulted in a model building view of software

development. Those questions include:

• Why can engineering components be modelled mathematically and can that be

achieved in software?

Introduction

Understanding Software Engineering 7

• What does it mean to build explanatory theories of reality?

• Can those model building issues explain areas of contention in contemporary

software engineering research?

• And if the design approaches are so different, why have analogies with other

disciplines persisted in being used as the inspiration and justification of research

ideas for so long?

Those questions form the basis of the rest of the thesis and the last question serves as the

starting point for the third chapter. It presents an examination of the history of

engineering analogies in software engineering research and an analysis of their validity.

That history begins with the NATO conferences on software engineering from the late

1960s (NATO 1976a; NATO 1976b). Although the idea that software development could

be understood as analogous to traditional engineering development may have occurred to

practitioners before that time, the NATO conferences saw the first formal expression of

that goal and it serves as a useful starting point for analysis. The published transcripts and

selected reports from those conferences provide an invaluable historical record from

which the understanding of software development that researchers and practitioners had

at that time can be explored. While the transcripts are no substitute for actually being

there, they capture significantly more debate than is provided in present-day conference

proceedings. Indeed, substantial quotations have been included so that the precise flavour

of the arguments and debates is clear.

The label ‘software engineering’ was suggested by the NATO science committee as a

starting point for generating ideas for improving the software development process. The

perception was that traditional engineering development could provide useful insights for

software development researchers. The 1968 conference report details many comments,

insights, analogies, and conjectures that were used for and against the appropriateness of

‘software engineering’ and they are presented in detail in the chapter. Importantly, they

show there was no clear consensus concerning the appropriateness of the engineering

metaphor. However, by the 1969 conference a significant change in emphasis was evident

in the transcripts and reports. The belief that software development could be understood

as analogous to engineering development appears to have been accepted despite the

recognition of many anomalies generated by the assumption. Subsequent debate turned to

Introduction

Understanding Software Engineering 8

the application of those analogies to the specifics of software development. Although the

artefact engineering view of software development had not been substantiated by detailed

analysis, it became the dominant view of software engineering research.

The investigation then examines the way in which this view was perceived in subsequent

years. A selection of publications are presented and analysed. They range from McIlroy’s

Mass Produced Software Components paper from the 1968 NATO conference through to

contemporary publications on component-based software engineering. The examination

attempts to determine the understanding of software engineering researchers by

presenting the arguments and analogies they use and analysing them in detail to

determine their validity. What becomes clear is that software engineering researchers did

not have a thorough understanding of the fundamental nature of software or software

development, nor did they have a thorough understanding of the engineering approaches

they were using as the source of software engineering ideas. This is not meant as a

criticism of those researchers, indeed much of their research has led to significant

progress in the discipline. However, with the benefit of hindsight, numerous anomalies

become evident that require explanation.

One anomaly that repeatedly appeared, yet was never satisfactorily explained, concerned

the underlying principles of software systems. Analogies had highlighted the importance

of the underlying principles of engineering disciplines for developing the science required

to support the mathematical treatment of engineering design. However, the nature of

analogous principles in software development never became clear. Researchers concluded

that to become an engineering discipline software engineering research needed to identify

those principles and to develop an appropriate ‘software science’. However, they did not

question whether their identification would invalidate the goal of software engineering –

that assumption was firmly entrenched. Research had to ensure that a ‘software science’

was achieved somehow. Formal methods are a good example. Software engineering

researchers have developed formal methods to apply rigorous mathematical techniques to

software development. Moreover, arguments have used the following syllogism to justify

those methods in software engineering: Engineers use mathematical techniques. Formal

methods allow the mathematical treatment of software development. Therefore, the use of

formal methods can lead to software engineering. However, the study shows the role of

Introduction

Understanding Software Engineering 9

mathematics in the design approaches of the respective disciplines is quite different, and

therefore, the reasoning is false.

The analysis of the engineering analogies used by researchers and the elicitation of their

understanding of software engineering highlighted many issues for further investigation.

Specifically, a number of additional anomalies were identified that may be causing

misunderstanding between the theory and practice of software engineering. Therefore,

before examining the underlying principles of software systems, the impact of those

anomalies were examined in the specific context of software architecture research. That

served as the basis for the fourth chapter.

The chapter on software architecture begins with a case study of the design,

implementation, and maintenance of one of the applications developed as part of the

AAITP project. That system, HyperEdit, is a graphical editor generator system that can be

used to graphically create the diagram editors used to construct software diagrams. Its

development occurred over a number of years with different designers and maintainers,

and provided practical evidence of how designers use architecture principles in the

development process. The goal of the chapter is to identify the large-scale structures

identified during the development and maintenance processes, identify the issues that

affected the decision making process at the architecture level of design, and to compare

those with existing theory.

The case study identified many different factors that influenced the architecture decision

making process of the project group that are not adequately accounted for in conventional

software architecture theory. They included the influence of changing requirements on the

architecture, how knowledge of available architectures and their practical consequences

affected decisions, and how architectures were developed to take advantage of pre-

existing knowledge of structures in the implementation environment. Those issues are

discussed in detail, however significant analysis is reserved for a discussion of the

different large-scale system representations identified during the design and maintenance

process and how they relate to existing theory.

Many different large-scale representations of the HyperEdit system were identified.

Conventional theory claims those different representations are analogous to the different

architecture views that exist in the development of traditionally built artefacts. In those

disciplines the different views provide graphical subsets of the complex, underlying

Introduction

Understanding Software Engineering 10

implementation detail. However, analysis of the identified software architectures shows

they are not all subsets of the same underlying implementation detail. A review of the

history of ideas in software architecture research shows our understanding of architecture

views are based on comparisons with traditionally built artefacts. In those disciplines,

systems exhibit an immutable architecture, set early in the design process, which is

visibly recognisable in the physically implemented form. However, differences that exist

between software systems and traditionally built artefacts serve to undermine the idea that

the two notions of ‘architecture’ are sufficiently analogous for concepts from one to be

automatically applicable in the other. Those differences concern the notion of system

form and the fact that to realise the required software system a computer must execute its

implementation. The conclusion is that the different large-scale software representations

are not analogous to the different architecture views of built artefacts. Rather, their

explanation is somehow related to the unique, fundamental nature of software systems.

To determine how they should be understood it is necessary to identify and explore the

underlying principles of software systems. That is the topic of the fifth chapter of the

thesis.

The underlying principles of software systems are related, somehow, to concepts, models,

abstractions, theories, and how they are used by the human mind to understand reality and

solve problems. Those issues have been explored by other disciplines for many years and

their theories serve as a starting point for uncovering the foundations of software

engineering. Philosophy, especially in the fields of epistemology and metaphysics, has a

long history of identifying the concepts that constitute reality and how they are

represented in knowledge. Additionally, psychologists, especially in the fields of

conceptual development and cognition, have devised experiments and theories to explain

how concepts are used to capture reality, how they are devised, and how they evolve.

Finally, theories in the history and philosophy of science explain how models and theories

are used to explain the world, how those theories can be verified, and how they evolve

over time.

Unfortunately, these disciplines do not offer ready-made explanations of the underlying

principles of software engineering. Nevertheless, different theories from these fields have

been cited in software engineering research as justification for proposed ideas. To ensure

this treatise does not simply adopt one of the many different philosophical and

Introduction

Understanding Software Engineering 11

psychological positions to support a presupposed understanding of software engineering,

it presents, in detail, the major theories from those disciplines that are related to the

underlying principles of software systems. An attempt to compress two thousand years of

thought into a handful of pages is, perhaps, over ambitious. However, without this

material, the basis for the conclusions is unlikely to be clear. In addition, this is the path

that was trodden to reach the final point, and the reader is entitled to see the chain of

reasoning that occurred.

The conclusion of that presentation is the identification of two main phases of thinking

about the underlying issues. The classical way of understanding concepts and theories

dates back to the philosophies of Plato and Aristotle and begins with the assumption that

people can be considered as separate from their environment and that all things can be

classified in terms of essential attributes. That assumption results in a belief that all

people observe the same objective reality and our concepts are derived by inferring

abstractions from that reality. As people operate in the world, they associa te objects with

known concepts by identifying the essential attributes. Furthermore, because reality is

objective, theories used to explain phenomena capture the natural order of the world.

However, as progress occurred in both philosophy and psychology, a different way of

thinking about the issues emerged. Many philosophical arguments and psychological

experiments highlighted anomalies in the classical way of understanding. Subsequent

research showed that people’s conception of reality cannot be considered as separate from

some objective reality. As people interact with the world, they automatically and

subconsciously apply their accrued concepts and theories to the observed phenomena in

order to understand it. Consequently, people’s explanatory theories do not capture the

natural order of the world. Rather, they are subjective to the person using them and

different theories cannot be evaluated as being better or worse depictions of reality. Each

can only be evaluated in terms of the usefulness it provides a person in their attempt to

understand and operate in the world. An additional contradiction to the classical way of

understanding concerns the definition of concepts. Experiments and dialectic debate have

shown that people do not classify phenomena into different classes of concepts based on

the existence of essential attributes. Instead, concepts are defined in terms of the roles the

play within people’s explanatory theories of the world. Although those conclusions

contradict the classical way of understanding, researchers note that the classical way of

Introduction

Understanding Software Engineering 12

understanding still pervades the philosophical assumptions of people who have not

studied the relevant philosophical and psychological research. That is also evident in the

justification of the artefact engineering view of software development.

The chapter continues by applying those philosophical foundations to our understanding

of the software development process. It does not provide a comprehensive explanation in

terms of those foundations – that would require another thesis. The aim is to show the

applicability of those foundations to our understanding to software engineering and to

advocate its use as the basis for future research. The conclusion is that software

engineering researchers should explicitly consider the potential benefits of moving from

an artefact engineering view of software development to a model building view.

Finally, the thesis argues that these foundations can be used to improve software

engineering research by providing a basis with which to evaluate and justify research

ideas. However, to develop that ability, researchers must become aware of how research

in general is evaluated and justified. The history and philosophy of science has devised

many theories to explain the role of research in the progress of a discipline. While

philosophers hold different opinions about many of the issues, some consensus has

emerged. As a discipline performs research, guiding assumptions dictate how researchers

understand the phenomena under investigation, even though those researchers might not

be explicitly aware of them. Those guiding assumptions change as a discipline evolves,

and radically new ways of understanding the same phenomena occur. That new way of

understanding is difficult to evaluate at first but is soon used to explain problems and

anomalies with existing theories and provides the potential for significant progress in the

discipline. The contention of this thesis is that an artefact engineering view of software

development has provided the dominant set of guiding assumptions for software

engineering research. However, an alternative model building view offers the potential to

explain existing problems and anomalies and can provide new insights for improvement.

Unfortunately, changes in guiding assumptions do not occur smoothly. Proponents of the

existing way of understanding may refuse to see the benefits of an alternative approach,

despite the anomalies present in the original. Moreover, it is not always easy to compare

two sets of guiding assumptions. Some researchers have already presented research based

on a model building view of software engineering, although their theories are rarely cited

Introduction

Understanding Software Engineering 13

in mainstream research. Aspects of their work are presented – specifically the theories of

Peter Naur and Bruce Blum.

This thesis does not claim that the artefact engineering view should be completely

replaced by a model building view. Not enough research has been performed to illustrate

the benefits of this new way of understanding to convince the mainstream research

community of the benefits of such a complete change. However, the goal has been to

provide enough detail to make the issues explicit for other researchers and to convince

them that it is worthy of more detailed investigation. Moreover, research based on an

alternate way of understanding should not be dismissed simply because it is different. To

facilitate research based on this different way of understanding, the concluding chapter

includes a number of conjectures about how the model building view of understanding

can provide explanatory theories for software reuse, patterns, and architecture.

This thesis has been the result of the author’s research into a number of areas. It has been

an adventure, a journey into parts unknown, and into regions I never expected to visit

when my task began. My view is that the reader will have a better understanding of the

results if the journey is laid out, and they can experience it in part for themselves,

travelling with me, as it were.

The thesis examines the way in which software engineering researchers understand the

phenomena they investigate and the history of that “understanding”. As a consequence,

many of the ideas presented are philosophical in nature. These ideas are rarely discussed

explicitly in the research literature and, in practice, debating such issues can be very

difficult. Moreover, a succinct linear presentation is difficult to achieve. The decision to

present the issues in roughly the same order as my own progression through them results

in a spiral- like presentation in which some of the discussion may appear to be repetitious.

However, what we have is merely the recurrence of themes that are presented in

successively greater detail as the narrative develops. It is hoped therefore, that the style of

presentation will assist in the clarification of what are, after all, complex and contentious

issues.

Before entering the thesis, let me remind the reader of Einstein’s comment on the nature

of research and plant a seed to help interpret what is to be encountered. The audience of

this work is software engineering researchers, and the reason we do research is because

we do not know exactly what it is we are doing. What is required is a continual

Introduction

Understanding Software Engineering 14

questioning of our guiding assumptions, especially the implicit ones that may not be

immediate obvious, and a commitment to remain open-minded to radically different ways

of understanding the same phenomena we may have been studying for a very long time.

Cruise Control Comparison

Understanding Software Engineering 15

2. Is Software Development Analogous to Traditional
Engineering? A Comparison Of Designs for
Automotive Cruise Control

2.1 Introduction
The idea that the discipline of software development could become an engineering

discipline received its first formal expression at the NATO Conference on Software

Engineering in 1968 (NATO 1976a). The motivation was that software development was

perceived to be unstructured and unpredictable while engineering was perceived to be

disciplined, predictable, and well structured. Over the years, this goal has been questioned

by some, while others, committed to the goal, have argued that we still have a long way to

go. Part of the problem is that the exact relationship between software development and

traditional engineering disciplines is not fully understood. This study seeks to clarify the

issue by comparing the design approaches of software developers and traditional

engineers when confronted with the same problem – automotive cruise control. The

detailed study of multiple, published design examples from both disciplines shows that

while analogies between the disciplines appear to be valid, there exists significant

differences between the design approaches taken by the respective disciplines. Traditional

engineers build corporeal artefacts to solve real-world problems, mathematically

modelling the materials and components of the discipline during the design process. In

contrast, software developers solve real-world problems by implementing models of

reality that explain a perceived process. This difference between the fundamental natures

of the systems developed by the respective disciplines is caused by differences between

the implementation mediums used by them.

The study consists of a number of stages. After analysing the cruise control requirements

from both disciplines to ensure the study is comparing designs of a similar problem, a

selection of specific design examples from both disciplines is presented. The design

examples detail the steps taken by each designer by stating the models developed, the

techniques utilised, and by reproducing significant design diagrams. To present a

comparison free of any preconceived biases towards similarities between the disciplines,

a considerable amount of detail is included. In addition, because some readers may be

unfamiliar with the design concepts and techniques used in the engineering examples,

Cruise Control Comparison

Understanding Software Engineering 16

they are preceded by a brief discussion of control system theory and design techniques

that are relevant to the cruise control problem.

Generic design approaches are then developed for each discipline and they are compared

to identify the similarities and differences between the disciplines. That comparison

results in the model-building conjecture to explain the differences between the design

approaches. That conjecture is then analysed to determine why the differences and

similarities exist.

The conclusion recommends further avenues of research that have been made apparent by

the results of the comparison. Finally, a number of comments are made about the

discipline of software engineering as a whole.

An initial comparison of the cruise control designs was published previously (Baragry

1996). This chapter provides considerably expanded detail in terms of the presented

designs, the analysis and comparison of those designs, and the implications for software

engineering research than in the paper in which the study was first reported1.

2.2 The Cruise Control Requirements
A cruise control system is a device for keeping an automobile at a constant speed over

varying terrain. Although those requirements are relatively simple, it is necessary to detail

their expression by both disciplines to ensure the problem is an appropriate one for a

comparison of design approaches. While the scope of this study does not include the

formulation of requirements, it does makes several observations that relate to the

differences that exist.

The software designs all contained a basic set of cruise control requirements.

• The cruise control system can only operate when the engine is running.

• When the driver activates the system the vehicle speed should remain at the

current value until the system is interrupted or is de-activated.

• Pressing the brake pedal suspends the system operation until the driver resumes

cruising.

1 This study has been submitted for publication in IEEE Transactions on Software Engineering.

Cruise Control Comparison

Understanding Software Engineering 17

• When the driver resumes operation, the system should bring the vehicle speed to

the previously set value.

The specific requirements of individual examples differed slightly with some specifing a

small amount of additional functionality. The following requirements, specified by Booch

(Booch 1986) as a collection of system inputs and outputs, formed the basis of many of

the examples.

• System on/off: If on, denotes that

the cruise control system should

maintain the speed of the car.

• Engine on/off: If on, denotes that

the car engine is turned on; the

cruise-control system is only

active if the engine is on.

• Pulses from the wheel: A pulse is sent for every revolution of the wheel.

• Accelerator: Indication of how far the accelerator has been pressed.

• Brake: On when the brake is pressed; the cruise-control system temporarily

reverts to manual control if the brake is pressed.

• Increase/Decrease speed: Increase or decrease the maintained speed; only

applicable if the cruise-control system is on.

• Resume: Resume the last maintained speed; only applicable if the cruise control

system is on.

• Clock: Timing pulse every millisecond.

• Throttle: Digital value for the engine throttle setting.

Some of the software designs based their system requirements on those presented in a

published example by Brackett (Brackett 1987). That paper could not be located in the

literature, however the details are evident in the work of others – e.g., (Smith and Gerhart

1988). Brackett’s core requirements were the same as those presented by Booch with

additional functionality specified to provide auxiliary monitoring functions such as

monitoring the average speed, fuel economy, and maintenance requirements of the

vehicle.

Figure 2-1: Booch Requirements.

Cruise Control Comparison

Understanding Software Engineering 18

The hardware design examples also had a common set of core requirements for the cruise

control system that were the same as those presented for the software designs. They

included the ability to engage/disengage the system, the ability to set the current speed as

the cruising speed, the ability to temporarily disengage the system when the brake pedal

is pressed, and the ability to resume the last recorded cruising speed (see (Shaout and

Jarrah 1997)). However, in contrast to the software examples, the requirements were

often stated in an ‘engineering language’. For example Rutland’s design requirements

were stated as:

“The primary objectives of an automatic vehicle control system is to maintain

a constant vehic le speed and acceptable ride comfort, for the set of all

possible load forces. A particular load force, possible or fictitious, is said to

be tolerable if it keeps the speed, and comfort levels, within predetermined

margins. … The only input [external to the control system] to be considered is

a load force due to the changing gradient of the road profile and the varying

wind speed. The important outputs are the error from the required speed and

the outputs relating to a comfortable ride.” (Rutland 1992)

While the core requirements of the engineering examples remained the same, additional

functional and performance requirements were introduced as cruise control technology

evolved. Functionally, these included the ability to slightly increase or decrease the set

cruising speed, which is similar to the software design requirements. However, from a

performance perspective, those additional requirements included “smooth and minimal

throttle movement”, “universality: the same control module must meet the performance

requirements for different vehicle lines

without recalibration”, and “simplicity:

design concepts and diagrams should be

understandable to automotive engineers

with basic control [theory] background.”

(Liubakka, Rhode et al. 1994). Figure 2-2

depicts Muller’s representation of the

requirements for the ‘man-machine

interface’ (Muller and Nocker 1994).

More recently, the desire to alleviate congestion on urban highways has led to the

development of autonomous intelligent cruise control systems (AICC). These are

Figure 2-2: Man-Machine Interface.

Cruise Control Comparison

Understanding Software Engineering 19

designed to provide automatic vehicle following where “the throttle and brake are

controlled by the computer, and only steering is under manual control. The sensor on

board of the vehicle senses relative distance and velocity of the immediate vehicle in

front, and the computer control system sends the appropriate commands to the throttle

and brake” (Ioannou and Chen 1993). The requirements of AICC systems encompass

those of traditional cruise control systems and provide valid examples for the design

comparison.

Traditional cruise control systems have been commercially available since the late 1950s

and AICC systems have recently been introduced in commercial vehicles by, for example,

Mercedes Benz (Shaout and Jarrah 1997).

Despite slight variations in the requirements, both between and within the respective

disciplines, it can be seen that a common, core set of requirements exists for all design

examples. The variations that exist do not undermine the ability to develop a useful

comparison of the design approaches and any design reasoning that is influenced by those

variations is detailed in the comparison.

2.3 The Software Designs
The problem of automotive cruise control has been used numerous times as a design

example in software engineering research literature – both for detailing and comparing

the use of proposed design methods or techniques. Twenty-two examples were located for

use in this study, though that list is not exhaustive. In addition, Shaw used many of the

designs in a comparison of software architecture styles (Shaw 1994; Shaw 1995c).

Indeed, part of the impetus for this study came from reading that comparison.

This study uses the examples to generate a generic software design approach that is

subsequently compared with the design approach of traditional engineering development.

The software designs are loosely categorised in terms of the methods or techniques they

are used to exemplify.

• Object-Oriented (OO) Design: Booch (Booch 1986) used the cruise control

problem to present his initial approach to object-oriented design. Birchenough and

Cameron (Birchenough and Cameron 1989) used it to exemplify the application of

Jackson System Development (JSD) to software design. Yin and Tanik (Yin and

Tanik 1991) used it in their exploration of reusability in Ada. Wasserman et al

Cruise Control Comparison

Understanding Software Engineering 20

(Wasserman, Pircher et al. 1989) presented an OO extension to structured analysis

and design using cruise control to highlight their architectural design method.

Gomaa (Gomaa 1989; Gomaa 1993) used cruise control to analyse different real-

time system design methods. His study examined a Booch approach and a JSD

approach to OO design. He also analysed the Naval Research Laboratory software

cost reduction method (NRL/SCR) using the same problem and used it to present

his ADARTS approach, which extends DARTS for Ada systems by using an

information-hiding structuring step. Finally, Appelbe and Abowd (Appelbe and

Abowd 1995) respond to Shaw’s comparison of her process control model of

cruise control with Booch’s OO design by presenting an updated version based on

a more recent approach to OO design by Booch.

• State or Control Based Design: Smith and Gerhart (Smith and Gerhart 1988)

illustrated the application of a functional decomposition approach to the Statemate

interactive development environment (Harel et al 1990). While the approach

employed functional decomposition, the emphasis on state-based design allows it

to grouped in this category. Atlee and Gannon (Atlee and Gannon 1993)

investigated the safety of a cruise control design by model-checking an event-

based representation of the problem.

• Process Control Feedback Loops: Shaw (Shaw 1995b) represented the cruise

control problem as a process control architecture using the design technique of

feedback control from traditional engineering disciplines. Higgins (Higgins 1987)

used a similar approach to his feedback control model resulting, however, in a

different representation. Jones (Jones 1994) produced a distinctive design

example, again using feedback control, by claiming to design a system from a

traditional engineer’s mindset rather than a software developer’s one.

• Real Time Structured Analysis and Design (RTSAD): Ward and Keskar (Ward

and Keskar 1987) used the problem as an example to compare the Ward/Mellor

and Boeing/Hatley real-time extensions to DeMarco structured analysis and

design. Gomaa (Gomaa 1993) presented an example of an RTSAD cruise control

system and compared it with his design approach for real-time systems (DARTS).

It extends RTSAD by partitioning the design into concurrent tasks. Booch (Booch

1986) also produced a design based on traditional structured analysis and design

Cruise Control Comparison

Understanding Software Engineering 21

to compare with his OO design. However, it does not include any real-time

analysis.

• Concurrent Object-Oriented Design: Four published examples depicted the cruise

control problem when decomposed and implemented using concurrent, object-

oriented system methodologies. Saksena et al (Saksena, Freedman et al. 1997)

presented the ROOM method (real- time object-oriented modelling). Gomaa

(Gomaa 1993) presented the CODARTS method (concurrent design approach for

real-time systems). Awad et al (Awad, Kuusela et al. 1996) presented the Octopus

method. Lastly, Caromel (Caromel 1993) presented his own approach to

concurrent, OO design.

Those publications provide examples of cruise control design produced using different

design methodologies, using different styles of the same design methodology, and by

different designers using the exact same design method. A single example from each

category is chosen to illustrate the way in which software developers actually perform

‘design’. The descriptions contain a brief account of the general approach and concentrate

on the concepts elicited by the designers to model the problem and solution. Those

concepts are most apparent in their graphical representation of the designs. The

similarities and differences between the various software approaches are then highlighted

and a generic design strategy is identified. Finally, it is worth noting that none of the

software designs describes a commercially available system.

2.3.1 Object-Oriented Design

Booch (Booch 1986) used the design of a cruise control system to illustrate the

differences between object-oriented and traditional functional decomposition

development techniques. Initially, both techniques require the identification or creation of

a model of the problem space. Booch developed a data flow diagram (DFD) from the

requirements (figure 2-3) that acts as a starting point for both designs. The object-oriented

design is created by extracting the objects of the system from the DFD and depicting the

dependencies between them (figure 2-4). Booch provides very simple guidelines for how

objects were extracted from the DFD,

“Typically, the objects we identify in this step derived from the nouns we use

in describing the problem space.” (Booch 1986)

Cruise Control Comparison

Understanding Software Engineering 22

However, this is a very early example of OO design. More recent analysis techniques,

including Booch’s own (Booch 1991), provide more detailed rules and guidelines for

identifying objects in the problem space.

The implementation of the design proceeds by identifying the attributes of each object,

the methods performed and suffered by it, establishing their visibility with respect to each

other, establishing their interfaces, and finally, realising them in code.

Booch notes that due to the autonomous nature of objects it is not possible to identify a

central thread of control from the object diagram. While it was not explicitly developed in

Booch’s example, complex object diagrams need to be complemented with a

representation that denotes the dynamic interaction between them. State transition

diagrams are often used in OO design methods, including Booch's more recent technique,

to achieve that purpose.

2.3.2 State Based Design

Smith and Gerhart (Smith and Gerhart 1988) used the problem to analyse the

effectiveness of the Statemate development environment (Harel et al 1990). Statemate

uses activity charts to represent the functional properties of the system and statecharts to

represent the controlling mechanism between those activity charts. A further

representation, module charts, depict how those state and activity charts are realised in

implemented components. Different design methodologies can be utilised with Statemate

depending on the order and emphasis used when creating the respective charts. In their

Figure 2-3: Booch DFD Figure 2-4: Booch Object Model

Cruise Control Comparison

Understanding Software Engineering 23

example, Smith and Gerhart used a functional decomposition method, based on

Brackett’s formulation of the problem statement, and compared their results to a

traditional, structured-analysis and design approach to the same problem.

The design begins by modelling the requirements as three separate types of activities to

be monitored by the system:

1. Standard driving events (e.g.: braking

and acceleration).

2. Cruise control actions (e.g.: activate,

inactivate, etc).

3. Monitor features (e.g.: speed calculation,

etc).

These lead directly to the top-level activity

chart (figure 2-5). The controlling statechart

is then developed for the top- level activity

chart. The design continues by recursively

developing activity charts and the

corresponding controlling statecharts for the

activities in the highest- level activity chart.

Figures 2-6 & 2-7 show the activity chart and

statechart for the ‘Control Speed’ activity from

figure 2-5.

Figure 2-5: Top-Level Activity Chart

Figure 2-6: Control Speed Activity Chart

Figure 2-7: Control Speed State
Chart

Cruise Control Comparison

Understanding Software Engineering 24

2.3.3 Process Control Feedback Loops

Traditionally, software design approaches have begun by eliciting the important

functions, objects, states, or events from the system requirements or problem domain. In

contrast, Shaw (Shaw 1995b) began by recognising the cruise control problem as a

specialisation of the generic control problem. Consequently, the high level requirements

could be satisfied using the process control feedback model, which is a well-known

approach to design in conventional engineering disciplines (e.g., (Stefani, Clement J.

Savant et al. 1994)). By comparing the current output with a predetermined reference

point, the generic feedback model modifies its operation to maintain a stable output to a

system when the environment or the system input may be unstable.

Starting with the generic feedback system architecture (figure 2-8), Shaw matched the

entities of the cruise control requirements with the concepts of the generic feedback

model – e.g., ‘set speed’ to ‘set point’, ‘throttle setting’ to ‘manipulated variable’, and

‘current speed’ to ‘controlled variable’ (figure 2-9). Shaw then used a state transition

technique to represent the system’s activation and control (figure 2-10) and an event table

technique to represent how the set point is determined. Those three sub-architectures were

combined to realise the global system architecture (figure 2-11), which contains all the

functional and behavioural information necessary to proceed with the implementation.

Figure 2-8: Generic Feedback Model Figure 2-9: Specific Feedback Model

Figure 2-11: Global Architecture Figure 2-10: Feedback STD

Cruise Control Comparison

Understanding Software Engineering 25

2.3.4 Real Time Structured Analysis and Design

Ward and Keskar (Ward and Keskar 1987) compared two methods used for real time

system development – Ward/Mellor and Boeing/Hatley. Both approaches are extensions

of DeMarco Structured Analysis. This section details the Ward/Mellor approach with

aspects of the Boeing/Hatley approach used for comparison in a later section.

Their requirements for the cruise control system are similar to those of Booch and that

description highlights the core functions that were subsequently used to derive the initial

data-flow diagram.

“Increase speed at a uniform rate by gradually opening the throttle; capture

and store the instantaneous speed for subsequent use as the desired speed;

compare the instantaneous speed with the desired speed and adjust the throttle

to minimize the deviation.” (Ward and Keskar 1987)

Because the traditional structured analysis notations fail to capture time-dependant

behaviour, the Ward/Mellor approach provides extensions to the basic DFD. A

transformation schema extends the basic DFD with events and control processes. The

control transformation diagram (figure 2-12) contains the information of the original DFD

in conjunction with the control and event information (dotted lines). It depicts how the

control process ‘Control Speed’ receives events from internal and external interfaces and

how they enable, disable, or trigger the basic functions. A state transition diagram (figure

2-13) complements the control transformation diagram by describing its logical operation.

Slight modifications to these two diagrams were performed by the designers to correct an

anomaly in the logic discovered during analysis.

Figure 2-13: Ward/Mellor STD Figure 2-12: Ward/Mellor CTD

Cruise Control Comparison

Understanding Software Engineering 26

2.3.5 Concurrent Object-Oriented Design

Saksena et al (Saksena, Freedman et al. 1997)

presented their experience in applying real-time

scheduling theory to embedded control system

designs. The particular design example is

developed using his ROOM (real-time object-

oriented modelling) methodology, though the

authors note their guidelines could be applied to

other methodologies such as UML (unified

modeling language). The representation of the

problem using the ROOM methodology provides the information required for this study.

The first step in the methodology was the identification of ‘actors’, which are

encapsulated concurrent objects that communicate via point-to-point links. For the cruise

control example, the actors encapsulate the input/output hardware interfaces and the

cruise control logic (figure 2-14).

The designers then specified the

behaviour of the actors using

ROOMcharts, a formalism based on

statecharts. The high- level ROOMchart

consists of a ManualControl state and

an AutomaticControl state with the

appropriate transitions between them

(figure 2-15). Those states were then

decomposed using refinement

ROOMcharts (figure 2-16 & 2-17).

The real-time behaviour of the design

was analysed by specifying the timing

constraints of the identified

transactions and representing them

using message charts. Figure 2-18

depicts the initial message chart for the

control loop transaction.

Figure 2-14: Actor Structure

Figure 2-16: Manual Control ROOMchart

Figure 2-15: Top-Level ROOMchart

Cruise Control Comparison

Understanding Software Engineering 27

The final step in the design was to map the actors onto the operating system abstractions

that support concurrent functions. The two typical abstractions are operating system

processes and separate threads of control within a single process. For models with high

inter-actor communication, the designers recommend using individual threads for

realising the actors.

2.4 The Hardware Designs
Engineers have investigated the problem of automotive cruise control since the 1950s.

Fourteen examples of, or directly relating to, cruise control design were gathered from the

engineering design literature (Takasaki and Fenton 1977; Nakamura, Ochiai et al. 1983;

Koning 1984; Ellinger 1985; Oda, Takeuchi et al. 1991; Rutland 1991; Tsujii, Takeuchi et

al. 1991; Rutland 1992; Ioannou, Xu et al. 1993; Ioannou and Chen 1993; Lee, Kim et al.

1993; Germann and Isermann 1994; Liubakka, Rhode et al. 1994; Muller and Nocker

1994; Shaout and Jarrah 1997). In addition, Shaout (Shaout and Jarrah 1997) provides a

historical review of cruise control technology and Liubakka (Liubakka, Rhode et al.

1994) discusses different design strategies before the presentation of his own design.

More examples are available, especially in the relatively new area of autonomous

intelligent cruise control. However, for the purposes of this study, these examples provide

a broad spectrum of design strategies that are detailed in an attempt to develop a generic

engineering design approach.

The individual designs could not be categorised into distinct design methodologies as

easily as the software design examples. Rather than being used to exemplify different

design methodologies, the hardware examples used more advanced design strategies in an

attempt to provide an improved solution to the problem. In that sense they are more

Figure 2-17: Automatic Control ROOMchart Figure 2-18: Top-Level Message Chart

Cruise Control Comparison

Understanding Software Engineering 28

evolutionary in their development than the software designs. To gain an understanding of

the evolutionary nature of the solutions and to provide data for developing a generic

engineering approach to system design this section presents the processes used to design

five of the examples. Those examples range from the earliest mechanical feedback

implementations, to the introduction of microprocessor controlled solutions, to adaptive

design strategies, and finally, to fuzzy logic and autonomous intelligent cruise control

systems. The remaining examples are used in later sections to highlight issues that impact

upon the comparison of software and traditiona l engineering design approaches. Unlike

the software examples, at least four of the designs are actual cruise control products.

To provide an effective comparison of software and traditional engineering design

approaches it is necessary to present sufficient detail of what engineers do to elicit how

they approached the design process and, subsequently, why that approach was required.

Because some software engineering researchers may be unfamiliar with the engineering

techniques and terminology used the design examples are preceded by a brief introduction

to control system design theory and analysis techniques.

2.4.1 Basic Control System Analysis and Design

Traditional engineering disciplines have a long history of design and implementation of

control systems. This introduction serves to clarify what is happening in the cruise control

design examples and, in the later comparison, why it happened that way. In control

theory, the manipulation of electronic signals is represented in terms of system transfer

functions and system designs must be linear and stable for both efficient design and

satisfactory functioning. Those core concepts, plus the fundamental concepts of feedback

control systems such as proportional feedback, PID control etc, are described. In

addition, standard analysis techniques such as Bode, Nyquist, root-locus, etc. and some of

the more specific design techniques used by the individual example are also described.

The reader is referred to the following references from which the summary has been

developed: (Gray and Meyer 1984; Smith 1984; D'Azzo and Houpis 1988; Horowitz and

Hill 1989; Sedra and Smith 1991; Stefani, Clement J. Savant et al. 1994).

The functionality of an electronic circuit is nearly always described in terms of how the

applied input, usually a voltage, is transformed into some corresponding output, which

again is usually a voltage. Engineers speak of the transfer function, which is the ratio of

the output signal to the applied input. For example, an audio amplifier might produce an

Cruise Control Comparison

Understanding Software Engineering 29

output voltage that is 100 times as large as the input voltage. In this case, the transfer

function is simply a constant of 100.

Those signals are a time varying quantity that can be

represented by a graph such as the one shown in figure

2-19. Using the technique of Fourier analysis, the

waveforms can be represented as a sum of sine waves of

different amplitudes and frequencies. That allows circuit

analysis and design to be performed in terms of

mathematical representations of sine wave input signals, which greatly simplifies the

process (figure 2-20).

The system is linear when the system transfer function does not vary with respect to the

amplitude of the input signal. The output signal is just an amplified replication of the

input signal. The size of that amplification or gain may vary with respect to the frequency

of the input signal. For example, the gain of the system may remain constant only over a

particular frequency range or bandwidth. However, it remains a linear system. The ability

to keep a system linear is important because linear systems are considerably easier to

design than nonlinear ones due to the complicated mathematics required to represent

nonlinear systems. In practice, most systems are nonlinear, although in most cases the

nonlinearity is small enough to be neglected or the limits of operation are small enough to

allow a linear approximation to be made. Due to the nature of the physical components

and the materials that constitute electronic components, the characteristics of an

amplifying system remain linear only over a limited range of input and output voltages.

Once the input or output signal exceeds that boundary, the transfer function cannot be

used to predict the output signal from the applied input signal.

Using these foundation concepts, system design and analysis can be performed in terms

of block diagrams of transfer functions. For control systems like the cruise control

example, the system must provide the correct output for a varying input signal and

Figure 2-19: Time-varying
input signal

Figure 2-20: Sine-wave signal

V denotes the peak amplitude in volts and ω denotes the angular

frequency in radians per second (ω = 2πƒ and ƒ = 1/T Hz).

tVt aa ωυ sin)(=

Cruise Control Comparison

Understanding Software Engineering 30

operating environment. However, environmental conditions and variations in the physical

components can make that impossible. For example, the gain of active components, such

as transistors that amplify the input signal, can vary due to voltage supply variations,

temperature changes, or device ageing. The technique of system feedback can eliminate

the effects of those variations on the transfer function by providing the following

characteristics:

4. Increased accuracy: the closed loop system may be used to drive the difference

between the actual and desired response to zero.

5. Reduced sensitivity to changes in components.

6. Reduced effects of external disturbances.

7. Increased speed of response and bandwidth.

For the purposes of control systems, the basic feedback block diagram is represented in

figure 2-21, where G represents the transfer function of the system and H is the transfer

function of the feedback path. Using simple block diagram algebra:

G = V2/V1, H = VF/V2, and V1 = Vs + VF.

V2 = GV1 = G(Vs + VF) = G(Vs + HV2) = GVs + GHV2.

The global transfer function, GF, then becomes:

GF = V2/ Vs = G/(1-GH)

This has many consequences for system design.

• If the quantity GH is positive, as it approaches unity the global system gain

becomes infinite. The system produces an output with no input. This is an

unstable system.

Figure 2-21: Control System Transfer Functions

Cruise Control Comparison

Understanding Software Engineering 31

• If GH is negative, but the magnitude of the gain is large, then GF ≅ -G/(GH) = -

1/H. The system transfer function becomes solely dependent on the gain of the

feedback network. This is called negative feedback.

Because the global feedback system transfer function (GF) is independent of the original,

system transfer function (G), it becomes immune to variations in the gain of the original

system and other external disturbances. The system output is directly proportional to the

system input and because the feedback path consists of passive components, which do not

have variable gain, it remains immune to the previously mentioned variations. Although

negative feedback systems do suffer from low gain, the improvement in system

performance and stability far outweighs this drawback. Moreover, gain can easily be

obtained with an amplification stage after the feedback network.

For the cruise control problem, the feedback system

needs to accurately track the desired speed. This

requires a system with a large gain to respond quickly to

fluctuations in the actual speed of the vehicle. With a

large gain however, the system may become unstable.

Stability can be restored with additional compensatory

components, however these add to the cost and reduced

reliability of the system. Figure 2-22 depicts the ability

of a system to track a desired value. When the gain of

the system is high, the system quickly reaches the

desired value but oscillates around that value before

tracking accurately. With lower system gain, the response time of the system to reach the

desired value is much larger, however it then tracks the value more accurately. The

problem for the designer of control systems is to provide the necessary accuracy and

speed of response with adequate stability and reliability at a minimum cost.

There are various methods of analysis for determining the stability of feedback control

systems. Traditional methods rely on root-locus and steady-state frequency response

analysis. If these analyses show the basic system does not meet the desired specifications

it can be improved using compensators. Modern control theory provides analysis

techniques and methods to ensure stability using state-variable feedback, sensitivity

functions, parameter optimisation, and other mathematically intensive techniques. Often a

designer will have to use multiple methods to solve the problem. The techniques

Figure 2-22: System Response

Cruise Control Comparison

Understanding Software Engineering 32

mentioned in the cruise control design examples to be detailed are briefly discussed to

assist understanding.

A designer can calculate if the design meets its specification by determining the time

response of the controlled variable. Laplace transforms simplify the calculation of time

response transfer functions by allowing the solution to differential equations to be

performed using simpler algebraic operations in conjunction with a table of transforms.

The Laplace transform of the function, f(t), is designated F(s), where the parameter ‘s’ is

a complex quantity. Because the transfer functions of feedback system components are a

function of time, they can be represented as GF(s) = G(s)/(1-G(s)H(s)). The previous

discussion noted that the system will be unstable when the denominator of that transfer

function becomes zero. Therefore, to determine if a negative feedback system will be

unstable, the designer needs to solve the

characteristic equation 1 + G(s)H(s) = 0.

The root-locus method provides a graphical

representation that is used to determine the

system stability. It plots, on the complex

plane, the roots of the characteristic

equation for a closed loop system as a

function of gain. It provides an easy way of

determining if the system will be stable.

Figure 2-23 depicts the relationship

between the root-locus and the system

response. If the roots of the equation lie on

the left-hand side of the s plane (imaginary

axis), the system is stable. If the roots are on the right

hand side the system is unstable and the output will

grow exponentially. If the roots lie on the axis of s

plane, the system remains in constant oscillation.

The other method for determining the system stability is

by analysing the frequency response of the system. Two

types of graphical plot of the frequency response are

used – Bode and Nyquist diagrams. The Bode plot

(figure 2-24) graphs the magnitude of the gain and

Figure 2-23: Root-Locus Analysis

Figure 2-24: Bode Plot Analysis

Cruise Control Comparison

Understanding Software Engineering 33

phase of the system (amplification in decibels) versus the frequency of the input signal.

The gain is plotted in decibels, the phase in degrees, while the frequency is plotted on a

logarithmic scale. The Bode representation allows the designer to view the system’s

response to various variable values and determine their appropriateness. Stability can be

determined by examining where the magnitude plot crosses the 0-dB line. If at this

frequency the phase angle is less (in magnitude) than 180°, the amplifier is stable. The

Nyquist diagram plots the frequency response of the system in the imaginary plane using

polar coordinates. This provides the designer with a different representation of the system

response. The advantage of the Nyquist representation is that the designer can

immediately recognise if the system is unstable using the Nyquist criterion – if the

Nyquist plot encircles the point (-1, 0) the system is unstable.

If initial analysis shows the design will result in an unstable system, the introduction of

additional components can be used to reshape the root- locus. This is system

compensation. The types of compensation used in the cruise control examples are

proportional plus integral control and proportional plus integral plus derivative control.

The frequency response of a system can be considered in terms of how it responds to a

sudden step input (its transient response) and how it responds to a constant sinusoidal

input (its steady-state response). The transient response details how quickly the system

reaches the desired value and the steady-state response details how well it tracks the value

once it has reached it. If the transient response

is satisfactory but the steady-state error is too

large, the system can be improved by operating

on the actuating signal to produce one that is

proportional to both the magnitude and the

integral of this signal. The proportional plus integral controller (PI) is depicted in figure

2-25. This compensation changes the root locus to improve the steady state error without

appreciably affecting the response time. Proportional plus derivative compensation (PD

control) improves the transient response by moving the root- locus farther to the left of the

imaginary axis. This is achieved by operating on the actuating signal to produce one that

is proportional to both the magnitude and the derivative (rate of change) of the signal.

Finally, the PI and PD controllers can be combined in a single controller to produce a

proportional plus integral plus derivative controller (PID).

Figure 2-25: Integral Compensation

Cruise Control Comparison

Understanding Software Engineering 34

Advances in mathematical representation techniques, such as representing control

systems in terms of state variables, has led to modern control theory methods. Techniques

such as parameter optimisation and recursive least squares analysis, provide the designer

with improved means of analysing the stability of control systems allowing the problem

of optimal control to be addressed. The specifics of those techniques are mathematically

intensive and are not required to understand their usage in the cruise control design

examples.

2.4.2 Mechanical Cruise Control Systems

Ellinger (Ellinger 1985) and Koning (Koning 1984) provide implementation descriptions

of the original analogue or mechanical cruise control systems that were used before the

introduction of more advanced microprocessor based systems. Written for automobile

mechanics and electronic hobbyists respectively, they do no t discuss the design of the

system explicitly, however they include sufficient detail to infer the design rationale.

Ellinger’s description begins by detailing the basic feedback loop architecture. The driver

engages the system at the desired speed, a sensor is used to determine the current speed,

and a controller is used to reduce the difference between the current and desired speeds.

The controller unit achieves that function by connecting to a power servo actuator unit

that directly affects the throttle.

Details of the speed sensor, controller unit, and

power servo actuator components required to

implement the design were then discussed. The

discussion details different types of speed sensors

that could be used (flyweight governor or rotating

magnet) and the locations in the vehicle where they

could be positioned (speedometer cable or

driveshaft). The internal operation of the speed

controller unit and its connection to the power servo

unit to manipulate the throttle provides a description

of how the properties of mechanical components

were used to implement the feedback network (figure

2-26).

Figure 2-26: Mechanical
Flyweight Governor Speed

Control Unit

Cruise Control Comparison

Understanding Software Engineering 35

“Centrifugal flyweights mechanically move a shaft against a spring. ... When

the speed control is engaged a solenoid will clamp an armature against this

shaft. ... When speed is slowed about 1/4 mph below the set speed, the plate

closes the air port. This increases the vacuum in the controller housing. The

housing is connected to the power servo so that the vacuum is increased in the

power servo ... Increased vacuum in the power servo begins to open the

throttle. When the speed increases about 1/4 mph above the set speed, the

plate will move to close the vacuum port. Air comes into the housing through

the air port to lower the vacuum. This gradually reduces the throttle opening

to slow the automobile. The speed controller moves the control plate back and

forth to adjust the vacuum so that it will hold the set speed within +/- 2 mph.

... Only enough vacuum is supplied by the speed controller [to the power

servo] to position the throttle correctly. Air and vacuum are balanced while

the automobile is running at the set speed". (Ellinger 1985)

2.4.3 Microprocessor Based Control

With the increase in availability and decrease in price of microchips, automotive

companies began to centre their cruise control designs on the microprocessor (Shaout and

Jarrah 1997). Nakumura, Ochiai, & Tanigawa (Nakamura, Ochiai et al. 1983) utilised a

microprocessor in their design and claimed significant improvements over conventional

analogue designs. In addition to the basic cruise control requirements they were able to

realise increased functionality, such as system preset, transmission control, and fail-safe

functions – functionality that existing analogue designs could rarely obtain. Moreover, the

microprocessor-based design was able to rectify deficiencies identified in the analogue

designs. Those deficiencies include compensating the feedback system for improved

stability, coping with degrading factors such as vehicle characteristics, and handling

nonlinearity due accelerator link hysteresis.

Nakamura began with a

standard feedback control

arrangement (figure 2-27) with

the controller implemented in

an electronic controller unit

(ECU). The ECU has the ability

Figure 2-27: Nakamura Block Diagram

Cruise Control Comparison

Understanding Software Engineering 36

to manipulate the automatic transmission unit in addition to the actuator-controlled

throttle. To improve on previously developed cruise control designs, Nakamura identified

issues in the physical environment that may degrade system performance. He observed

that “the cruise control system is a nonlinear control system in which the accelerator link

has the hysteresis characteristics” (Nakamura, Ochiai et al. 1983). Hysteresis refers to “a

retardation of the effect when forces acting upon a body are changed (as if from viscosity

or internal friction)” (Miriam-Webster Dictionary 1997). In the context of the cruise

control system this refers the force required to manipulate the throttle. The actuator is

required to exert a force on the accelerator to keep the vehicle at a constant speed, for

example during an incline in the road. However, because of the nature of the physical

link, the force required to keep the car at a constant speed once the road has become level

again may be different than it was previously. This does not change the generic feedback

architecture devised to meet the solution, however the functionality of the components

which comprise the architecture need to be devised with respect to those characteristics.

Nakamura also noted that the driving speed of the vehicle periodically fluctuated while

the vehicle was under control of the cruise-control system and this variable needs to be

considered in the design of the feedback components.

“Since the speed signal is transferred via the speedometer cable, if angular

velocity fluctuation caused by cable torsional resonance exceeds the ECU

linear calculation limit, constant speed control becomes impossible.”

(Nakamura, Ochiai et al. 1983)

The design proceeds by analysing the

requirements of the system using an

event-based approach. The results of the

analysis were represented using a simple

flowchart. Using the results of the

requirements analysis and the previously

identified system issues, the components

of the generic feedback system (figure 2-

27) were replaced by trans fer functions

(figure 2-28) to mathematically express

the elements to be controlled. The ECU,

actuator, throttle-valve connection, and
Figure 2-28: System Transfer Functions

Cruise Control Comparison

Understanding Software Engineering 37

vehicle characteristics were each modelled as transfer functions. That included using

standard transfer functions for generic components such as the well-known Butterworth

filter that was employed in the ECU design.

The design process ensued by solving the transfer function equations to ensure the

implemented system remained stable. Utilising the root- locus analysis technique, with

parameter optimisation, graphical and mathematical tools were used to determine the

appropriate values for the parameters of the transfer functions needed to meet the

requirements. The system was then tested experimentally to ensure the design met the

required objectives. The designers also note, “in the general running test, we enjoyed

satisfactory driving without any problem.” (Nakamura, Ochiai et al. 1983).

2.4.4 Considering the External Inputs in More Detail

The design by Rutland (Rutland 1992) begins by suggesting that previously published

cruise control designs do not fully consider the effects of the external environment when

determining what disturbances should be considered in the analysis of the feedback

system. For example, wind velocity and angle of the road could affect the rate of

acceleration required to bring the vehicle to the desired speed. Moreover, he suggests it is

not possible to design the system to consider those disturbances using the traditional

stability analysis techniques such as Bode and Nyquist. Utilising a more recent design

analysis technique called ‘matching’ (Zakian 1991), which employs a set theoretic

approach and results in quantitative design criteria in terms of the inputs, he proposes to

design a better cruise control system.

Rutland notes that the principle of feedback control is required to satisfy the design

criteria and explains that “an electrical feedback implementation incorporating a

microcontroller” is the most appropriate generic system architecture to begin with.

Moreover, he decides to

utilise the same system

configuration as Nakamura

(figure 2-29) because it

minimised cost and

complexity. The process of

implementing the generic

architecture begins with the
Figure 2-29: Feedback Block Diagram

Cruise Control Comparison

Understanding Software Engineering 38

selection of a pneumatic type actuator component, because it “gives the best compromise

between the conflicting criteria of performance, cost, and reliability” (Rutland 1992). The

pneumatic actuator connects to the throttle using a bead chain rather than a cable. This

type of connection eliminated the problem of link hysteresis that was faced in the

Nakamura design. An inexpensive speed sensor, connected to the speedometer cable for

reliability, was selected as being suitable for the design.

The block diagram of the system (figure 2-29) was modelled as a collection of

appropriate transfer functions that could be solved to satisfy the required functionality. To

develop the transfer functions, Rutland draws on the work of a number of published

researches. They included Takaskai and Fenton’s (Takasaki and Fenton 1977) published

models of vehicle longitudinal dynamics, the previously discussed design of Nakamura’s,

and a number of other published designs. The resulting mathematical model (figure 2-30)

is more detailed than Nakamura’s

and includes variables to

represent external inputs such as

the angle of the road to the

horizontal (θ) and the wind

velocity (vw). They are in

addition to the variables required

for the driving forces, velocities,

and throttle settings.

In addition to the more detailed models, Rutland’s and Nakamura’s designs use

significantly different techniques to solve the transfer functions. The traditional

techniques for solving transfer functions were considered inadequate for representing the

full set of external factors. Rutland recognised that if the design requirements were

conceptualised differently, Zakian’s matching technique (Zakian 1991), which uses

numerical methods on sets of values, could be utilised to resolve the conflicting design

criteria. The primary objectives of the cruise control problem were then restated as:

“To maintain a constant vehicle speed and acceptable ride comfort, for the set

of all possible load force. A particular load force ... is said to be tolerable if it

keeps the speed and ride comfort levels, within predetermined margins. …

Using this definition, an essential objective of control system design is to

Figure 2-30: Block Diagram of Transfer Functions

Cruise Control Comparison

Understanding Software Engineering 39

ensure the set of all possible load forces is a subset of the set of tolerable

ones.” (Rutland 1992)

The design then became a matter of adjusting the two sets to obtain a good match.

The major difficulty with the technique, and the source of a great deal of Rutland’s design

work (Rutland 1991), was the conceptualisation of the sets of possible and tolerable

inputs so they could be compared. For example, the effect of the wind velocity can be

modelled as having a persistent component and a superimposed transient component that

produces the familiar gusts. The solution proceeds by utilising known mathematical

analysis techniques to solve the equations. They were the method of inequalities to

formulate the problem as a set of inequalities and the moving boundaries numerical

search algorithm, for its simplicity and robustness, to solve those inequalities.

2.4.5 Adaptive Speed Control

The motivation for the design by Liubakka (Liubakka, Rhode et al. 1994) came from the

manufacturer’s point of view that a design for mass production differs substantially from

an academic study of competing theories. The cruise control system should consist of a

single control module that provides acceptable performance over a wide range of vehicle

lines. Moreover, it should do so without need for recalibration. The complexity of speed

control design strategies had increased to meet more stringent customer expectations,

however for “commonly used proportional feedback controllers, no single controller gain

is adequate for all vehicles and all operating conditions. Such simple controllers no longer

have the level of performance expected by customers.” (Liubakka, Rhode et al. 1994).

For example, to accelerate to a desired speed, “low power cars will generally need higher

[system] gains than high power cars. This suggests a need for adaptation to vehicle

parameters.” (Liubakka, Rhode et al. 1994). For an individual car, the best performance

on flat roads is achieved with slow response to input fluctuations, while rolling hill terrain

requires a faster response. In control design terms, slow system response requires high

gain in the integral compensator, while faster response requires a lower integral

compensation gain. “This suggests the need for adaptation to disturbances.” (Liubakka,

Rhode et al. 1994)

The designer reviews the history of cruise control design strategies and concludes that a

well-tuned proportional integral (PI) controller achieves the best performance. The

Cruise Control Comparison

Understanding Software Engineering 40

difficulty with the PI controller, however, is how to keep it well tuned when the system

and operating conditions vary so greatly. The controller gain is dependent on:

• Vehicle parameters (engine, transmission, weight, load, etc).

• Vehicle speed.

• Torque disturbances (road slope, wind, etc.).

Figure 2-31 (from (Germann and

Isermann 1994)) depicts how those

conditions affect the vehicle model.

Because the vehicle parameters are not

constant and torque disturbances are not

measurable, it is not possible to

automatically set the system gain.

Considerable testing and calibration

work is required to ascertain the

system gain of a PI controller for one

type of vehicle. If the controller is then applied to a different model in the company’s

range of vehicles, or to different variations of the original vehicles, such as a larger

engine capacity or automatic transmission, the controller gain must be retuned. The goal

for Liubakka was to design a “an adaptive controller that outperforms its fixed gain

competitors, yet retains their simplicity and robustness.” (Liubakka, Rhode et al. 1994)

Starting with the dynamics that are relevant to the design problem, a block diagram of the

system transfer functions was developed (figure 2-32). A note is made that individual

blocks contain different parameters and, possibly, a slightly different structure to

represent the variations among different vehicle lines. Additionally, a separate input is

made to the vehicle dynamics module to represent the road disturbance input such as a

constant slope road or rolling hills.

The distinguishing feature of this example is the design of the adaptive control algorithm

used to optimise the parameters of the system for the particular operating conditions. The

algorithm is based on an approach to feedback analysis that minimises the sensitivity of

the output response to parameter variation. Liubakka notes that the sensitivity analysis

method was original proposed in engineering literature in the 1960s, however it was

Figure 2-31: Vehicle Modelling

Cruise Control Comparison

Understanding Software Engineering 41

abandoned because it led to instability when used in systems that required fast adaptation.

The designers re-evaluated the strategy based on analysis work from the late 1980s that

proved the sensitivity-based approach could result in stable system design if it matched a

‘pseudo-gradient condition’.

 “From the known bounds on vehicle parameters and torque disturbances, we

evaluate, in the frequency domain, a ‘phase-uncertainty envelope’. Then we

design a sensitivity filter to guarantee that the pseudo-gradient condition is

satisfied at all points encompassed by the envelope.” (Liubakka, Rhode et al.

1994)

Beginning with a well-tuned, fixed-gain PID controller designed for a reference vehicle, a

sensitivity filter was developed to adaptively tune the system within the bounds of an

uncertainty envelope around that model. The PID controller for the reference vehicle was

tuned to satisfy the conflicting requirements of providing a small speed error to accurately

track the desired speed, and of minimising the amount of throttle motion to provide

acceptable driver comfort. This was achieved by including the throttle position in the

transfer function of the integral section of the controller. Adaptive control was attained by

passing the speed error to the sensitivity filter, which produces a sensitivity function

based on partial derivatives of the signal with respect to the proportional gain and the

Figure 2-32: Transfer Functions of Adaptive Model

Cruise Control Comparison

Understanding Software Engineering 42

integral gain. Those partial derivatives are passed onto the gradient filter to develop the

optimal proportional and integral gains using a gradient optimisation technique.

The final testing and implementation of the system required subjective analysis based on

experience with tuning standard PI controllers to determine the free parameters of the

system.

2.4.6 A Fuzzy Approach to Autonomous Intelligent Cruise Control

Autonomous intelligent cruise control (AICC) systems are the subject of considerable

attention in the control system community. Engineers at Mercedes-Benz, for example,

have designed an AICC system that maintains speed and distance from preceding vehicles

(Muller and Nocker 1994). The system operates as a traditional cruise control system by

keeping the vehicle at the desired set speed as long as no preceding vehicle is detected. If

a preceding vehicle is detected, the AICC switches automatically to distance control,

driving with the same speed as the preceding vehicle at an ‘optimal distance’. If the

preceding vehicle accelerates over the pre-selected maximum or leaves the lane, the

system reverts to the original speed control. Finally, to handle emergencies, the driver can

override the system at any time by braking or accelerating.

The general cruise control feedback structure is

augmented with deceleration control and a

distance sensor (figure 2-33). Accurate distance

sensing is notoriously difficult due to sharp road

curvature, driver intentions, oncoming traffic,

weather conditions, and particular driving

situations. Those disturbances can never be

eliminated and they are difficult to model

accurately and implement in traditional PID control schemes (see Shaout’s review of

cruise control technology (Shaout and Jarrah 1997)). Moreover, PID controllers fail to

adequately handle steep ascents and descents because of their poor transmission shifting

strategies. Experiments by the designers with PID control resulted in an unsatisfactory,

jerky ride. To provide a more intelligent type of cruise control design, which would more

accurately mimic driver behaviour, the designers chose to utilise a fuzzy logic control

unit.

Figure 2-33: AICC Block Diagram

Cruise Control Comparison

Understanding Software Engineering 43

In general, a fuzzy control unit accepts two inputs: the difference between the desired and

current speeds, and the vehicle acceleration. Different categories of input value

combination are then given a membership value. From that table of values a mapping of

the output is generated from if- then control rules. For this particular design, AICC

controller inputs were required for the distance error from the ‘optimal distance’, which

was based solely on the speed of the vehicle, and the speed relative to the preceding

vehicle. These were used to determine the acceleration or deceleration correction output.

Experiments with this type of controller resulted in

good speed tracking, however it was criticised for its

inflexibility by human testers. Drivers wanted the

‘optimal distance’ to also depend on weather

conditions (rain, ice, etc) and driver behaviour (sporty,

neutral, comfortable, etc). The fuzzy distance

controller was subsequently revised (figure 2-34) to

contain two fuzzy blocks. The first is used to

determine the ‘optimal (safe) distance’. That stage

uses sensors for the outside temperature, wiper action,

and friction of the wheels to determine the weather

conditions. The driver behaviour can be set using a potentiometer. The second stage uses

the output from the first stage and the measured distance between the vehicles to

determine the acceleration output. It extends the original distance controller by utilising

the speed, distance, and steering angle to determine if the vehicle is in a curve and

changes the required acceleration accordingly. Furthermore, the output is influenced by

the driver’s behaviour, which is determined by measuring the brake and accelerator

actions.

The final implementation consisted of four fuzzy controllers with approximately two

hundred rules. Experimentation and test-drives showed the system satisfied the design

objectives and achieved near-human behaviour.

Figure 2-34: Fuzzy Controller

Cruise Control Comparison

Understanding Software Engineering 44

2.5 The Software Design Approach

2.5.1 Differences Between Designs That Used Different Methodologies

All of the software-based cruise control design examples began by utilising a particular

design methodology to develop a conceptual view of the problem. The terms ‘conceptual

view’, ‘architectural style’, ‘domain model’, and ‘initial level of abstraction’ are all, to

some degree, synonyms. They represent the act of depicting a view of the world, system

context, or domain model, using a collection of separately identifiable concepts and

relationships. Beginning with that view of the problem, the software designs proceeded

through many stages until the concepts contained within the initial model were

implemented. The gross structure of those initial models varied based on the chosen

design formalism, architecture style, or design methodology. Significant variations also

exist between designs that utilised the same design formalism or style. This section details

those differences to develop a generic approach to software development that will be

compared with a corresponding generic approach to traditional engineering.

The designer’s initial model of the problem, based on the chosen formalism, highlights

certain aspects of the problem at the expense of others.

• State Based Modelling: Models the dynamics of the system, the modes in which it

will operate, and the conditions that cause transitions between those states.

• Functional Modelling: Identifies the major functional components required and

extends the model by incorporating the control signals that highlight the sequence

of operation of that functionality.

• Feedback Control Modelling: Models the problem as a generic control system and

instantiates the constituent concepts with specific concepts from the problem

domain.

• Object-Oriented Modelling: Allows the direct modelling of concepts identified in

the developer’s perception of the problem domain. Different OO analysis

methods, for example JSD, provide different guidelines for identifying boundaries

around the entities (objects) that should be treated as first-class objects.

• Real-time and Concurrent Modelling: Used in extension to one of the preceding

styles, they provide concepts to explicitly considered timing constraints. They also

Cruise Control Comparison

Understanding Software Engineering 45

allow the representation of concepts that can be executed in parallel by the

computer.

These models only highlight a subset of the system properties required in a software

implementation. To provide a complete view of the system design, the initial models were

complemented with other design representations that emphasised the aspects not depicted

in the initial model or abstraction.

All designs must contain formalisms to represent the desired functionality and behaviour

of the proposed system, and a means of representing the structure of how that

functionality and behaviour will be implemented in software (Harel 1992). The software

designs exemplify that observation.

• The state-based designs began with the behaviour and then developed the

functionality and structure.

• The object-oriented notation encapsulates the functionality and structure in a

single concept, the object, and then augments the design with a representation of

the control flow. This is usually done with a state transition diagram.

• The traditional structured analysis and design examples represent the functionality

and behaviour with data and control flow notations. A structure chart notation

represents the system structure.

• Finally, the feedback control representation models the functionality of the design

using a generic pattern that includes its own internal means of control. An

additional behavioural notation is then required to depict how the feedback system

is controlled within a global context. The structure representation depends on how

the concepts in the feedback model will be implemented in the chosen

programming language, for example object-oriented or procedural.

Both Shaw (Shaw 1995c) and Gomaa (Gomaa 1993) performed an analysis of the

primary design formalisms provided by the different methodologies, using cruise control

as an example. Shaw, concentrating on properties of the architectures derived using those

methodologies, reviewed designs from each of the categories mentioned. The designs

reviewed by Shaw were (Booch 1986; Higgins 1987; Ward and Keskar 1987; Smith and

Gerhart 1988; Birchenough and Cameron 1989; Yin and Tanik 1991; Atlee and Gannon

1993; Shaw 1995b) and an NRL/SCR design by Kirby that could not be located in the

Cruise Control Comparison

Understanding Software Engineering 46

research literature. Shaw also notes the existence of some of the other designs used in this

study though they were not used in her own. Shaw’s analysis evaluated the software

architectures using the following criteria:

• Locality and separation of concerns.

• Perspicuity of the design.

• Analysability and checkability.

• Abstraction power.

• Safety.

• Integration with the vehicle.

Gomaa, rather than review a set of existing cruise control designs, analysed the ability of

existing methodologies to represent real- time systems by developing his own cruise

control designs. The methodologies used where RTSAD, DARTS, JSD, NRL/SCR, and

OO. The analysis evaluated the methodologies in terms of the following real-time system

issues:

• Provision of concepts for representing concurrent tasks.

• Realisation of information hiding/object structuring to support modifiability and

reusability.

• The definition of control aspects of the system using state machines.

• The handling of timing constraints for real-time issues.

Both of these research efforts provide useful insights for software development. However,

for the purposes of this study, only portions of Shaw’s analysis are relevant. Those

portions are summarised now and a critical examination presented in the comparison of

software and hardware design approaches.

Shaw’s discussion begins by noting the substantial differences that exist between the

software designs, attributing them to variations among individual designers and the way

each architecture led the designer to view the world. Each designer chose a particular

architecture style and modelled the solution based on that style. Additional

representations were then used to provide complementary views of the system. Those

views were decomposed and combined to create the system, though not all of those

Cruise Control Comparison

Understanding Software Engineering 47

models could persist until runtime. Shaw notes that most models provide associated

techniques to ensure the correctness of the aspects of design they are intended to

highlight. However, when multiple views were used to provide decompositions from one

representation to another or when concepts from one model were added to another model,

confusion could arise. When considering perspicuity of the design, each of the examples

could be defended as matching some view of reality. However, Shaw claims that styles

such as object-oriented and process control are more explicit in the ir modelling of the

‘real world’ than, for example, functional decomposition. The particular modelling styles

allow the designer to decompose the problem into parts that localise decisions. In

addition, they facilitate the ability to identify and implement components that can be

reused in similar applications. Finally, Shaw suggests a guiding factor in choosing a

particular style is the degree to which it allows the identification of entities that are most

important to the client.

2.5.2 Differences Between Designs That Used The Same Methodology

In addition to differences between designs caused by the use of different methodologies,

significant differences also exist between designs that used the same methodology or

architecture style. That was most evident in the collection of object-oriented designs,

though it also exist in the other design methodologies.

Booch’s object-orientated analysis (figure 2-4) was a result of ‘objectifying’ the inputs

and internal states of the data flow diagram (figure 2-3) that was used to conceptualise the

original requirements. Yin and Tanik (Yin and Tanik 1991) used the same data-flow

Figure 2-35: Yin & Tanik Object Model Figure 2-36: Yin & Tanik Architecture

Cruise Control Comparison

Understanding Software Engineering 48

diagram as Booch to represent the system requirements. However, from the same

representation they created a different object model by identifying objects to represent the

external elements and a single object for the entire cruise control system that

encompasses all other elements (figure 2-35). The generated system architecture

discriminates between active and passive objects and incorporates system operations

(figure 2-36).

The central tenet of the JSD method is similar to that of object-oriented design, “the key

to software quality lies in the structuring of the solution to a problem in such a way as to

reflect the problem itself” (Birchenough and

Cameron 1989). However, in JSD objects are

referred to as ‘entities’ and their methods are called

‘actions’. The JSD approach to analysis emphasises

the identification of actions before entities, with

objects becoming entities only if they suffer time-

ordered or state-changing actions. The analysis by

Birchenough and Cameron results in an ‘object-

model’ that consists of three objects: ‘driver’,

Figure 2-37: Birchenough JSD Entities

Figure 2-38: Gomaa JSD Entities

Cruise Control Comparison

Understanding Software Engineering 49

‘wheels’, and ‘accelerator’. Figure 2-37 depicts the JSD entities and their actions, with

time orderings, in structure chart notation. In contrast, Gomaa uses the same JSD

methodology and identifies ‘cruise control’, ‘calibration’, and (drive) ‘shaft’ as the

highest level entities. Figure 2-38 shows Gomaa’s ‘cruise control’ and ‘shaft’ structure

diagrams. In effect, Gomaa models the operations of Birchenough’s ‘driver’ entity within

his ‘cruise control’ entity. Gomaa also identifies a ‘buttons’ entity, however that entity

represents the monitoring functions of the Brackett requirements, which Birchenough did

not consider.

Appelbe and Abowd (Appelbe and Abowd 1995) note that Booch’s design was presented

from one of the earliest articles on object-oriented design and provide a new design based

on Booch’s more recent OO design guidelines (Booch 1991). Those guidelines require

candidate objects meet the criteria of having state, behaviour, and identity. When applied,

Figure 2-39: Appelbe Object Model Figure 2-40: Gomaa Object Model

Figure 2-41: Wasserman High-Level Architecture

Cruise Control Comparison

Understanding Software Engineering 50

the guidelines result in an object model of the system that is depicted in figure 2-39.

Curiously, Gomaa uses the same set of Booch guidelines to develop his object-oriented

design (Gomaa 1993) and develops a completely different object-model to Appelbe and

Abowd. His design is shown in figure 2-40.

Wasserman’s approach to design (Wasserman, Pircher et al. 1989) extends traditional

structured analysis with additional notations, one of them being the object- like notion of

information clusters that encapsulate data and functionality in a single structure. That

approach results in a hierarchical collection of diagrams depicting the information

clusters, operations, control & data flow, and asynchronous processes in the design. The

high level system, depicted in Wasserman’s OOSD notation, is shown in figure 2-41.

The object-oriented designs result in vastly different collections of objects. Table 2-1

depicts the collections of objects identified by the different designers.

Design Example Objects Identified.

Booch Driver, Brake, Engine, Clock, Wheel, Current speed, Desired

speed, Throttle, Accelerator. (9)

Yin & Tanik Driver, Brake, Engine, Clock, Wheel, Cruise control system,

Throttle, Accelerator. (8)

Birchenough Driver, Wheels, Accelerator. (3)

Gomaa (JSD) Cruise control, Calibration, Drive shaft. (3)

Wasserman Cruise controller, Engine monitor, Cruise monitor, Brake

pedal monitor, Engine events, Cruise events, Brake events,

Speed, Throttle actuator, Drive shaft sensor. (10)

Appelbe & Abowd Driver, Brake, Engine, Clock, Wheel, Cruise controller,

Throttle. (7)

Gomaa (Booch OO) Brake, Engine, Cruise control input, Cruise control, Desired

speed, Throttle, Current speed, Distance, Calibration input,

Calibration constant, Shaft, Shaft Count. (12)

Table 2-1: Cruise Control ‘Objects’

Cruise Control Comparison

Understanding Software Engineering 51

The different object-oriented or object-like methodologies all attempt to achieve the same

purpose – the identification of the important objects in the designer’s perception of the

problem.

“With an object orientated approach … we instead structure our system

around the objects that exist in our model of reality. By extracting the objects

from the data flow diagram … immediately we can see that the object

orientated decomposition closely matches our model of reality.” (Booch

1986)2

Similar claims can be found in almost any reference on object-orientated development.

Those claims are often used as justification for the belief that object-oriented techniques

promote reusability of implemented concepts – a claim based on the assumption that

people identify similar objects in their models of reality. However, the enormous

differences between the collections of objects used by the designers to model a problem

as small and well-defined as the cruise control system clearly highlights the differences in

the way similarly trained people can view the same reality. This observation alone calls

into question the ‘reusability’ claims which pervade object-oriented design reasoning3.

The differences between design examples created using the same design methodology or

architecture style were not limited to the object-oriented designs. The design of Smith and

Gerhart depicts a state-based approach to development that begins by identifying the

control events that exist in the problem (figures 2-5, 2-6, & 2-7). Their design identifies

standard driving events, cruise control actions, and monitor features (e.g. speed

calculation) as the important activities. In contrast, Atlee and Gannon also produced a

state-based design (Atlee and Gannon 1993). They utilised Brackett’s formulation of the

cruise control problem to demonstrate their state-based model checking technique for

verifying the requirements of event-driven systems. They recognise that a state machine

representation of a system can serve as a temporal logic model, which can be tested for

safety by presenting the properties as temporal formulae. The result of the process is a

state-based representation of the system, expressed in computational tree logic (CTL),

2 More recent design guidelines provide rules of increased complexity for identifying those objects,
however their purpose is still the same.

3 This point is discussed in more detail in chapter 5.

Cruise Control Comparison

Understanding Software Engineering 52

Figure 2-42: Atlee & Gannon CTL Model

Cruise Control Comparison

Understanding Software Engineering 53

which is detailed enough to serve as a system architecture. That model does not provide

enough design rationale to analyse the design process to completion, however there is

sufficient information to show how the state-based or event-driven approach to design

drives the initial architecture and how that architecture sets the path for the subsequent

design

The initial step in the design process is the partitioning of the system into four possible

modes: off, inactive, cruise, and override (on but not in control). A transition table

represents those modes and the events that cause transitions between them. A number of

operations and transformation algorithms were performed on the requirements to

determine the validity of the requirements or initial system conception and, finally, the

system was represented as a CTL model (figure 2-42). The Atlee and Gannon design

stops at that point, however to complete the design of the system the functionality

required to generate the identified events and to implement the functionality in each state

would need to be addressed.

The different process control based designs also exhibited significant variations. Shaw’s

design begins with the abstraction of a ‘classic feedback loop’ and proceeds to match the

concepts of the problem domain to the concepts of the generic feedback architecture.

Higgins uses a similar approach (Higgins 1987) but develops a different system

representation. His design begins with a more complex representation of the generic

feedback pattern that contains a secondary feedback loop (figure 2-43). The process then

matches the problem domain concepts to the feedback pattern concepts to depict the

system representation (figure 2-44). Higgins then considers the rest of the system

operations as feedback concepts and derives another, more complex feedback

arrangement (figure 2-45).

Figure 2-44: Higgins Specific Feedback Figure 2-43: Higgins Generic Feedback

Cruise Control Comparison

Understanding Software Engineering 54

Shaw and Higgins use the same design approach, beginning with a specific conceptual

model (feedback control) rather than a particular methodology. This is in fact a design

pattern strategy. In this approach, a generic arrangement is recognised as a suitable means

of solving the problem and the pattern is instantiated by realising the generic pattern

components with specific concepts from the problem domain (Gamma, Helm et al. 1994).

The relationship between design patterns and software architecture styles is not well

defined with researchers debating whether or not they are the same. A special issue of

IEEE Software (Mellor and Johnson 1997) provides many papers discussing the issues.

Jones (Jones 1994) also begins his design by recognising the need to employ the generic

feedback architecture of traditional engineering design. Trained as an electronic engineer,

his design differs from both Shaw’s and Higgin’s because of his more detailed knowledge

of feedback control systems. His design also matches the concepts of the cruise control

domain to those of the generic control architecture. However, his pattern-matching

process goes to a deeper level of detail to consider feedback concepts such as ‘sampling

frequency’, ‘system gain’, and ‘system stability’. Interestingly, his design process is not

different to the approach of Shaw and Higgins, however it goes to a greater level of detail.

The oldest of the design methodologies used in the examples, structured analysis and

design, also shows variations when used to model the cruise control problem. The

Ward/Mellor SADT design of Ward and Keskar (figures 2-12 & 2-13) can be compared

Figure 2-45: Higgin's Complex Feedback Model

Cruise Control Comparison

Understanding Software Engineering 55

with their Boeing/Hatley

representation and with the

functional decomposition examples

of Booch and the SADT design of

Gomaa. Ward and Keskar’s

examination of the Boeing/Hatley

technique begins with a data flow

diagram (figure 2-46) and a

representation to depict the control

flow (figure 2-47).

Booch uses a functional

decomposition design to

evaluate his object-

oriented approach. The

data flow diagram was

given in figure 2-4 and is

quite similar to that

developed by Ward and

Keskar.

Gomaa, using RTSAD to

evaluate real-time

modeling techniques,

develops a detailed,

hierarchical, structured

Figure 2-49: Gomaa STD

Figure 2-48: Gomaa DFD

Figure 2-46: Ward & Keskar's BH DFD Figure 2-47: Ward & Keskar's BH STD

Cruise Control Comparison

Understanding Software Engineering 56

design using the Ward/Mellor notation. Beginning with the system context diagram, the

design is partitioned into the ‘Perform Cruise Control’ and ‘Perform Automobile

Monitoring’ functions, where the later is used for the monitoring functions of the Brackett

requirements. The data flow diagram and state-transition diagram for high- level cruise

control functions are shown in figures (2-48 & 2-49). The data flow diagrams are refined

to successive levels to complete the design of the system before the structure charts are

created.

2.5.3 Discussion

A generic approach for the software design examples was identified. That approach

begins by identifying some means of representing the problem ‘on paper’. Modelling the

problem using a known design methodology or using a known architectural style achieves

the same purpose. It represents the designer’s mental conception of the problem in terms

of entities and relationships that can be eventually implemented in a computer program.

Those methodologies constrain the types of entities that can be chosen for the initial

model. Design methods such as object-oriented or state-based constrain the entities and

the relationships to those that can be represented in the chosen formalism. Styles of

software architecture similarly limit the entities that exist at the highest level of

abstraction to entity and relationship types of well-known large-scale system

arrangements such as ‘pipe and filter’ or ‘process control feedback loops’. Although the

developer is constrained by the choice of formalism used to represent the problem, the

presented examples show that there can be many variations within a particular style of

development – even for such a small problem as automotive cruise control.

The reasons why those differences occurred, both between particular design styles or

methodological formalisms, and within those formalisms, are examined later during the

comparison with the generic hardware approach to design.

Before presenting that generic hardware approach however, there is one more observation

that influences any attempt to make analogies between the two disciplines. That

observation concerns the notion of feedback. Only the designs of Shaw, Higgins, and

Jones identify themselves as being feedback or process control systems. Indeed, Shaw

stresses the explicitness of her process control approach using Booch’s object-oriented

design as a counter example. However, the definition of a feedback control system is

simply the implementation of a “path or loop from the output back to the controller. Some

Cruise Control Comparison

Understanding Software Engineering 57

or all of the outputs are measured and used by the controller … [It] may then compare a

desired plant output with the actual output and act to reduce the difference between the

two.” (Stefani, Clement J. Savant et al. 1994). All of the software design examples,

regardless of the methodology used to model the system, use the current speed to affect

the system control, thereby making them feedback systems. The three ‘feedback’ based

designs make the concepts of the generic feedback loop explicit during their design

process. However, those same concepts are also evident in the other examples. They are

not stated explicitly, but they are still evident.

This observation highlights questions concerning the discipline’s understanding of what a

system representation actually is. Those questions are examined in detail during the later

comparison.

2.6 The Hardware Design Approach
All of the engineering designs exhibited a similar pattern. Beginning with a set of system

specifications, a feedback control architecture consisting of well-known generic

components was created. The designer then created models, usually mathematical transfer

functions, of the specific functionality required of those generic components.

Combinations of analytic and experimental techniques were used to solve the unknown

parameters of those transfer functions and to implement the functionality of the system.

Finally, experimental testing of the system fine-tuned the variables and ensured it

complied with the original performance specifications. Each of the steps in this generic

process is discussed, detailing the variations that exist. The discussion of feedback control

architecture, design reuse, component reuse, standard analysis techniques, use of

mathematical models, and differences between the logical and implementation views of a

system are used to develop an in-depth understanding of the engineering development

process. That understanding is subsequently used to compare the traditional engineering

approach with the software development process.

2.6.1 The Evolutionary Nature of the Designs

Starting with the establishment of the specification of the system, the first observation

concerns the evolutionary nature of the system designs. The problem of cruise control has

stayed essentially the same since the first cruise control systems in the 1950s. Even the

most recent variants, autonomous intelligent cruise control systems, are merely extensions

Cruise Control Comparison

Understanding Software Engineering 58

of the original principle – maintaining the constant speed of a vehicle even over varying

terrain. The need for new designs did not change through the development of new

requirements. Rather, the requirements were considered in more detail by demanding

improvements over previous solutions. Those improvements were considered from the

customer’s point of view not the designer’s. The examples did not suggest a new way of

designing or analysing the system simply because it was easier than a previously used

technique. It was done to produce a system that performed better for the customer or was

cheaper to manufacture for the producer. For instance, Nakamura developed a

microprocessor based design to provide functionality that traditional mechanical designs

could not and Liubakka produced a design that worked better across a range of vehicles.

Traditional methods of control were originally adequate, however as customer

expectations changed, and better design techniques were applied, improved, rather than

new, design solutions were possible. The designs, presented in chronological order,

demonstrate that evolutionary nature.

From the system specifications, the

problem was immediately recognised as a

control problem – an area of engineering

design with a long history of theory and

experimentation. That research has led to a

number of system configurations for

dealing with control problems, most notably feedback control (figure 2-50). All of the

engineering designs, regardless of the major area of concern, the complexity of their

controlling mechanism, or the nature of the components used (mechanical or

microprocessor based) utilised the principle of feedback control in their system. The

choice of feedback control as the global system configuration appears to be such an

obvious choice that only one paper provided any design rationale for the decision:

“Feedback control is needed to achieve the desired design criteria in the

presence of disturbances, and uncertainty in the plant model [a production car

with a carburetted internal combustion engine and manual transmission] and

parameters. ... The modern trend seems to be to implement digitally with

microcompomputers ... For the reasons above, an electrical feedback

implementation incorporating a microcontroller was chosen. The very simple

Figure 2-50: Generic Feedback Model

Cruise Control Comparison

Understanding Software Engineering 59

control system configuration ... was picked to minimize cost and complexity.”

(Rutland 1992)

The individual feedback configuration was depicted for each of the presented examples,

however the use of feedback in the remaining cruise control examples provides additional

evidence of design reasoning in the engineering disciplines. For instance, an alternative

approach to the adaptive controller of Liubakka was presented by Oda et al (Oda,

Takeuchi et al. 1991; Tsujii, Takeuchi et al. 1991). Their design used a feedback network

within the global feedback structure to self- tune the system to changes in the vehicle

operating model (figure 2-51).

Similarly, in contrast to the fuzzy system approach of

Muller, Ioannou (Ioannou, Xu et al. 1993) used a

conventional PID controller arrangement to produce

an AICC system (figure 2-52). Moreover, he used

feedback control systems to model human driving

behaviour and then used those models to compare

and evaluate his PID based design.

Three other designers used the

feedback system configuration

slightly differently to those

previously presented. Takasaki

(Takasaki and Fenton 1977)

developed mathematical models

of longitudinal vehicle dynamics

that were used by other designers

to develop their cruise control transfer functions.

The derivation of those models involves the use of

feedback models to identify particular parameter

values. Furthermore, the design of Lee (Lee, Kim

et al. 1993) concentrated on just one aspect of the

design – controlling the movement of the throttle

in a pneumatic cruise control system. Traditional

techniques used a ‘bang-bang’ method of control,
Figure 2-53: Throttle Control

Figure 2-51: Adaptive Control

Figure 2-52: AICC PID System

Cruise Control Comparison

Understanding Software Engineering 60

where the control direction is switched after the

error crosses a desired value. Lee develops a

‘sliding mode’ control by modelling the system

using the anticipatory band in the phase plane. This

allowed the system to begin switching the control

direction before the error reached the desired value,

thereby allowing a smoother and more accurate

tracking of the required throttle opening. The resulting system (figure 2-53) uses a

feedback network to control the throttle within the global feedback network of the overall

cruise control system. Finally, St. Germann and Isermann discuss model-based methods

for controlling all longitudinal vehicle dynamics. Obtaining the required functionality is a

more general design problem than the cruise control system and requires the ability to

bring the vehicle from any operating point to any other. The result was a feedback system

incorporating a linear controller and a fuzzy velocity controller (figure 2-54).

2.6.2 The Reuse of Existing Designs and Components

In all of the engineering designs the development of the system architecture entailed

considerable design and component reuse. In fact, the use of feedback control is itself a

form of design reasoning reuse of the kind that software engineering researchers have

sought to bring to software development. It is standard practice for engineers to publish

their designs and utilise the designs of others. For instance, Rutland used the initial

system architecture of Nakamura’s design and developed his model of transfer functions

by utilising the work of three other published designs. Liubakka reviewed the published

history of cruise control examples and identified PID control as the most robust design

strategy with the best tracking performance. He then improved on previous PID designs

by using an adaptive control technique to overcome the deficiency with PID controllers –

their vehicle dependant system gain.

The hardware cruise control examples provide many examples of component reuse. That

reuse involves both specific components, such as Nakamura’s use of the Butterworth

filter, and generic components such as ‘actuators’, ‘speed sensors’ and ‘controllers’.

“The actual acceleration of the vehicle can be determined using numerical

differentiation. There is a wide range of nonlinear controllers that can be

Figure 2-54: St Germann Model

Cruise Control Comparison

Understanding Software Engineering 61

chosen as suitable candidates for this application.” (Germann and Isermann

1994).

“A pneumatic type actuator was selected as it gives the best compromise

between the conflicting criteria of performance, cost, and reliability.”

(Rutland 1992).

The ability to reuse previous system structures, especially for routine design problems, is

enhanced by their capacity to communicate designs graphically. Diagrammatic

representations serve as a visual communication medium that allows engineers to convey

their ideas, not only to others, but also to reflect on their own work. The ability of

engineers to convey their designs and ideas in a uniform, well-understood manner across

the entire discipline has helped their profession to evolve by successfully building on the

ideas of others. The graphical communication medium has provided the infrastructure for

that evolution. Training in technical drawing is required in virtually every engineering

school in the world. Disciplines have their own standards for graphical representation (for

example: (The Institution of Engineers 1973)) and all engineers need to understand the

fundamental principles, the grammar, of their graphical language. In fact, someone

lacking that understanding is considered professionally illiterate (Giesecke, Mitchell et al.

1974).

Shaout’s summary of cruise control technology

(Shaout and Jarrah 1997) shows clearly the level

of design reuse, generic component reuse, and

specific component reuse that is achieved in the

engineering designs. He states that present day

cruise control systems are all feedback systems

consisting of four generic elements: a vehicle

speed sensor, a user interface, an electronic

control module, and a throttle actuator (figure 2-

55). Shaout discusses and provides additional detail for each of these generic components.

However, the specifics of the components are superfluous. For engineers, knowledge of

the generic system architecture and functionality of the generic components is enough to

understand the design.

Figure 2-55: Generic Cruise Control

Cruise Control Comparison

Understanding Software Engineering 62

To summarise, the architectures of the cruise control examples exhibit four types of reuse.

(1) Design reuse of feedback architectures; (2) reuse of components of functionality that

need to be specified though further decomposition; (3) reuse of generic components that

need further specification through parameter identification; and (4) reuse of specific

components that need no additional design detail.

2.6.3 The Mathematical Modelling of System Requirements and Component
Behaviour

Using the architecture of the system, the engineering designs represented the constituent

components, both generic and specific, using mathematical models. Those mathematical

models describe the required behaviour of the components, based on the specifications,

which must be met to successfully implement the system.

“In order to analyze a dynamic system, an accurate mathematical model that

describes the system completely must be determined. The derivation of this

model can be based upon the fact that the dynamic system can be completely

described by known differential equations or by experimental test data. Thus

the ability to analyze the system and determine its performance depends on

how well the characteristics can be expressed mathematically.” ((D'Azzo and

Houpis 1988) pp. 21).

The engineering design examples highlight different methods of modelling the cruise

control problem as the performance requirements changed and as new analysis techniques

became available. Those variations include modelling system and component properties,

modelling vehicle motion as a whole, modelling environmental factors, and representing

models of human driving behaviour.

The first microprocessor based design, by Nakamura, provides sections explaining how

the individual components of his system architecture were modelled (figure 2-28). Those

models are frequency dependent, time varying transfer functions incorporating the

elements to be controlled. Unknown parameters represent the values that need to be

determined through analysis and experimentation to provide the specifics of the

functionality – functionality that must meet the performance and stability requirements. In

addition to the core control-problem specification, Nakamura’s model of transfer

functions incorporated aspects to represent externa l disturbances that must be tolerated –

a model of the accelerator- link hysteresis. Unlike the models produced by software

Cruise Control Comparison

Understanding Software Engineering 63

designers, that engineering model does not represent the designer’s perception of the

functionality that an engineering component should perform. It is a model of the physical

properties of an actual accelerator link. Similarly, the other component transfer functions

are not models of the functionality that generic components should perform. They are

models of the relevant behavioural properties of physical materials, which have been

determined through experimental testing, and which engineering components can be

made to match. The physical components exhibit properties that designers utilise as

functionality4.

Rutland utilised the same architecture as Nakamura, yet represented the components of

the system using a different collection of transfer functions (figure 2-30). By realising one

of the generic components in the architecture with a different physical component he

eliminated the need for considering accelerator- link hysteresis, thereby removing the

requirement to represent it in the system transfer function. However, because he

recognized the need to consider additional environmental factors in the performance

specification, his mathematical model had to extend Nakamura’s model to incorporate

them. The parameters of the model represent system variables such as angle of the road to

the horizontal, wind velocity, load force, driving force at the wheels, throttle angle

command, and the measured velocity. Interestingly, the final mathematical model

involves another example of design or design reasoning reuse by incorporating the

mathematical models of others.

“A linear perturbation model was considered adequate, since the design is

restricted to speed regulation at some constant value. According to Takasaki

and Fenton, under small signal conditions a vehicle’s

longitudinal dynamics are quite velocity dependent, but

for speeds greater than 77 km h-1, a second order fixed

parameter model can be employed to represent the

dynamics between the throttle angle command and the

velocity of the vehicle’s wheels.” (Rutland 1992).

Rutland reused the mathematical model of Takasaki and

Fenton as the foundation of his own improved model because

4 This is discussed in more detail in the next chapter.

Figure 2-56: St Germann
Components

Cruise Control Comparison

Understanding Software Engineering 64

it had been published as a separate, self-contained piece of research (Takasaki and Fenton

1977). Engineers recognise the need for models of systems and the environment to

develop applications to exist within them. Similarly, St. Germann’s design to control the

complete longitudinal dynamics of a vehicle began with the rigorous development of a

mathematical model for the global system. Because the model was described by large,

non- linear differential equations, which are to complex to be implemented in hardware

and operate in real time, the model was divided into sections each with its own separate

model. The powertrain, which includes the intake manifold, engine, and hydrodynamic

coupling; and the gearbox, driveshaft, tyres, and the motion of the vehicle, each had to be

modeled. Those models were augmented with models of the brake and a damping system

to represent air drag and rolling resistance (figure 2-56).

Finally, Ioannou evaluated his PID-based AICC system by modelling a platoon of

vehicles in motion (figure 2-57) and by comparing his design with different mathematical

models of human driving behaviour. Figure 2-58 (Ioannou and Chen 1993) shows the

block diagram of the generic human driver model. Ioannou utilises three different models

of human driving behaviour (a linear follow-the- leader-model, a linear optimal control

model, and a look-ahead model) to derive the transfer functions of the block diagram. He

concludes:

“A human driver controller can

be replaced with a more

sophisticated one that is based on

a more realistic model of vehicle

dynamics and driven by a

computer and physical sensors.

Computer control will eliminate

human reaction time, be more

accurate, and be capable of

achieving much better

performance. Better

performance will translate into

smoother traffic flows,

improved flowrate, less

Figure 2-58: Human Driver Model

Figure 2-57: Vehicle Following Model

Cruise Control Comparison

Understanding Software Engineering 65

pollution, and safer driving.” (Ioannou and Chen 1993)

These examples highlight the importance of the designer’s ability to produce

mathematical models of real world artefacts during the design process. The engineer can

formulate the problem in terms of mathematical functionality – functionality that is

known to be achievable using the components of the discipline. Solutions can then be

found through iteration, analysis, and experimentation to produce an implementation that

exhibits the required performance attributes. Performing the design in terms of

mathematical properties results in context or domain independent development.

“Throughout the various phases of linear analysis … mathematical models are

used. Once a physical system has been described by a set of mathematical

equations, they are manipulated to achieve an appropriate mathematical

format. When this has been done, the subsequent method of analysis is

independent of the nature of the physical system; i.e., it does not matter

whether the system is electrical, mechanical, etc … [or] whether the

controlled variable has the physical form of position, speed, temperature,

pressure, etc…. This technique helps the designer to spot similarities from

previous experience.” ((D'Azzo and Houpis 1988) pp. 16&191).

The designer models particular properties of the problem space and selected generic

components of the solution space. As the development proceeds, a collection of artefacts

that exhibit the required component properties are combined into a complete system. That

system then demonstrates the required properties of the global performance

specifications. The engineer can model many properties of the system and environment

and part of the skill of engineering design is to determine which properties are important

to consider and to what level of detail those properties should be modelled.

2.6.4 The Use of Standard Techniques During the Design Process

Standard techniques were used to solve the mathematical models of the cruise control

designs to ensure they met the performance requirements and remained stable during

operation. The performance of physical systems, networks and devices can be described

using appropriate differential equations. However, the classical solution to those

differential equations is mathematically intensive and tedious. Moreover, if the design

does not meet the specifications, it is not easy to determine from the solution of those

differential equations just what physical parameters in the system should be changed to

Cruise Control Comparison

Understanding Software Engineering 66

improve the response. To facilitate the solution of differential equations and to analyse

and improve the system performance, standard techniques are used to manipulate the

equations, analyse the system for stability, and represent the performance characteristics

in a more useful format.

The cruise control designs provide a broad range of examples that highlight the use of

standard analysis techniques in the traditional engineering approach to design.

Throughout the design examples, those techniques were used to validate solutions,

compare alternatives, and prove the proposed solutions met the specified requirements.

Nakamura graphs the characteristics of the individual components comprising his cruise

control design to ensure each one met its prescribed specification. Global system stability

was then checked using traditional Bode and Nyquist methods and the parameters of the

system were optimised based on those representations. Rutland recognised that the Bode

and Nyquist representations could not account for system equations based on a model that

incorporated variables to represent complex external disturbances. He subsequently used

a different analysis method, matching, which solved the equations using a set theoretic

approach. Oda et al (Oda, Takeuchi et al. 1991; Tsujii, Takeuchi et al. 1991) designed a

self-tuning cruise control system that could be used to operate over a range of vehicle

models and operating conditions. The system automatically adjusted the feedback gain

continuously in terms of changes in a vehicle model. That vehicle model was estimated

using the recursive least squares method to derive the model parameters. It worked by

placing the estimated model in parallel with the vehicle and using the square of the

deviation between the vehicle output and the estimated one to reduce the estimated

parameters. That technique was used because it was the most basic known algorithm,

requiring the least calculations. It also assured safety and reflected the accumulated

design experience in the cruise control field.

In addition to using standard analysis techniques to check the performance and stability

characteristics of the design, Liubakka uses standard techniques to improve the

performance of the generic control system. Noting that proportional feedback control has

conflicting requirements of fast response time and constant error tracking, the

proportional controller needs to be augmented with integral and derivative compensation.

Those techniques are recognised in the control system domain as standard methods for

adjusting the system response to reduce the compromise required between the conflicting

performance criteria.

Cruise Control Comparison

Understanding Software Engineering 67

Engineers realise that although many standard techniques exist,

“… no single method is to be used to the exclusion of the others. Depending

on the known factors and the simplicity or complexity of the control-system

problem, a designer may use one method exclusively or in combination. With

experience in the design of feedback control systems comes the ability to use

the advantages of each method to a greater extent.” ((D'Azzo and Houpis

1988) p. 16).

Indeed the choice of which technique to use is a notoriously difficult problem. Cruise

control is seen as a benchmark problem for control system researchers to evaluate

techniques. Mehra, in an introduction to a ‘real- life, control design problem session’ at

the 1995 Conference on Decision & Control, made the following remarks:

“The field of control theory is conspicuous by its lack of meaningful

benchmark problems. This has led to confusion in the field regarding the

relative performance of different design approaches [figure 2-59]. … Various

permutations and combinations of different paradigms lead to a bewildering

plethora of control design approaches. The most difficult question for an

application engineer is to decide which approach or paradigm to use for his

specific application and the control field offers very little guidance to the

practitioner in this area.” (Mehra and Baheti 1995).

Figure 2-59: Control System Design

Cruise Control Comparison

Understanding Software Engineering 68

2.6.5 The Amount of Assumed Design and Component Knowledge

The final observation to make about the engineering development process concerns what

was missing from the engineering design examples – the implementation detail. Only the

publications by Ellinger and Koning provided any detail of the system implementation

and that was because they were explaining the implementation rather than detailing the

design. Nakamura provides a picture of the implementation of his logical ECU design

(figure 2-60) and the component name of the microprocessor used to implement it.

However, his design provides no additional description of the implementation detail.

There is an identifiable division between the

design and implementation phases of

engineering development. The representation of

the system at the end of the design process

requires no further design decisions to be made

before it can be implemented – even by

somebody other than the original designer (Reed,

1994 in Reed 2000). Moreover, the designers are

able to assume the readers of their designs have knowledge of other aspects of the system

or generic engineering components so that system analysis can proceed without providing

details of those aspects. The members of the engineering profession can assume their

peers possess a particular level of knowledge of design, generic functionality, specific

components, and analysis techniques to allow information not explicit in the published

design to be inferred.

2.6.6 Summary

Summarising the process, the designer begins by developing a system architecture. The

architecture is based on a generic feedback control system incorporating a number of

generic and specific components from the discipline. The designer analyses the

requirements and represents them as mathematical transfer functions. Those transfer

functions are based on the ability to represent, mathematically, properties or functionality

of generic control systems – an ability that is part of traditional engineering education.

The process of design subsequently becomes the process of determining the specific

functional properties of the generic components, which when synthesised, combine to

emulate the properties of the global transfer function. The models used to represent the

Figure 2-60: ECU Implementation

Cruise Control Comparison

Understanding Software Engineering 69

generic components contain many unknown variables that are determined using standard

analytical techniques and experimentation and provide validation of the design.

2.7 Comparison of Design Approaches
The most striking observation that comes from the presentation of the specific design

examples and the generation of the generic approaches is just how different the process of

design is in the respective disciplines. The software designs all exhibit a similar pattern.

The initial solution was presented in a particular modelling formalism. The designer then

proceeds to implement the concepts and relationships that constitute that model using

auxiliary models to capture the properties not present in the primary representation. The

engineering designs also exhibit a common pattern. The engineer developed an initial

representation of the solution that consists of generic functionality known to the

discipline. Moreover, those components are organised in a generic structural arrangement

that is also well known in the discipline. The components of the architecture were

modelled mathematically to depict precisely the required functionality of the proposed

design. Those representations were then refined using further modelling and analysis

tools to detail, identify, and validate the components required to implement that specific

functionality.

There are many aspects of the engineering design approach that are appealing for

software developers and it is easy to see why considerable research effort has been spent

in search of an engineering approach to software design. The engineering designs

incorporate substantial amounts of design and component reuse. They use rigorous

mathematical techniques to provide quantitative analysis of their designs. There is

evidence of a knowledge base of engineering design expertise that can be assumed of

their fellow practitioners and relied upon to facilitate the understanding of design

rationale. Finally, the engineering designs are able to achieve context independent

development. The successful application of these aspects of design would produce

significant benefits for the discipline of software development.

The terms ‘component’, ‘design’, ‘system’, ‘architecture’, ‘feedback’, ‘modelling’,

‘implementation’, and ‘reuse’5 are all evident in both disciplines and their existence

5 Interestingly, a mechanical engineer who works in automotive design reviewed this chapter for me. He
had difficulty understanding the notion ‘reuse’ in software engineering. The use of existing

Cruise Control Comparison

Understanding Software Engineering 70

makes analogies between the disciplines sound plausible. Consider the following

syllogism as an example,

Traditional engineering disciplines design systems incorporating considerable

design and component reuse by utilising quantitative, mathematical analysis

techniques. The discipline of software engineering designs systems and

recognises the potential for considerable design and component reuse.

Therefore, software engineering can improve its development process by

incorporating quantitative, mathematical analysis techniques.

Subscription to these types of syllogisms is fraught with danger. Important differences

exist between the disciplines and they need to be considered before any conclusions can

be made based on perceived analogies. Moreover, before determining if software

development can or should be like traditional engineering development, the reasons why

those differences exist between the disciplines must be examined.

One essential difference between the engineering and software development designs

concerns the utilisation of modelling techniques in the design process. By viewing the

design processes from the point of view of how they utilise models and what properties

they represent, it is possible to see how the disciplines differ.

Summarising the definitions of (Cybernetica ; Tjalve, Andreasen et al. 1979), a model is

an object, process, device, scheme, or procedure that shares crucial properties of an

original, modelled object or process but is easier to manipulate or understand because it

highlights the properties of interest, whilst omitting the remainder. These models consist

of a type (mathematical, causal, dynamic, stochastic, etc), the properties tha t it highlights

(function, structure, dynamics, etc), and its use (simulation, verification, investigation,

etc). However, a model may also contain properties not found in the original object, for

instance, the physical form of a functional model may be different to that of the original

object. When modelling it is important to be conscious of the differences so that the most

appropriate model for the situation is chosen. During systems analysis, the model usually

aspires to represent the real world or the relation between some observed phenomena in

the real world and those important properties should be specifically highlighted in the

model.

components was such a natural thing for engineers that he couldn’t imagine us having such problems
with it.

Cruise Control Comparison

Understanding Software Engineering 71

The models used in the engineering design examples are mathematical representations of

the functionality of their discipline. The unknown parameters of those models represent

the system variables of the problem domain but the mathematical relations themselves

represent achievable functionality of the engineering components. The designer knows

that engineering components can be used to exhibit the functionality of particular

mathematical relationships. The goal is to represent the problem in a similar mathematical

relationship and solve the parameters of those equations. For example, Rutland’s control

system architecture was refined with a collection of transfer functions. Those transfer

functions represent mathematical manipulations of input signals that can be implemented

using known engineering components. The parameters of the transfer functions represent

the domain concepts of velocity, wind speed, throttle angle, and angle of the road to the

horizontal, etc. However, once those domain concepts are represented as parameters of

mathematical relationships, the design process becomes a matter of developing

functionality to solve the mathematical problem. The design becomes independent of the

problem domain.

The reason engineers work in this fashion is because they can only build using the

artefacts provided by their discipline. The evolution of those engineering building blocks

began as simple functional manipulations of the underlying properties of the discipline.

For the electronics domain of the microprocessor-based cruise control designs, those

underlying properties are electronic signals and the concepts of voltage, current,

resistance, inductance, and capacitance. The intricate operations of modern electronic

components are merely complex aggregations of a small number of functional operations

that can be applied to this small set of properties. Furthermore, because the interactions

between these small number of underlying concepts can be represented by mathematical

relationships, the complex aggregations can also be represented mathematically. This is

evident in the structure of the design textbooks used by engineers. For example, D’Azzo’s

text, Linear Control System Analysis and Design (D'Azzo and Houpis 1988), begins with

a presentation of the mathematics of simple electronic circuits. It details how simple

configurations of resistors, capacitors, inductors, voltage sources and current sources are

modeled using mathematical relationships.

“In order to analyse a dynamic system, an accurate mathematical model that

describes the system completely must be determined.” (D'Azzo and Houpis

1988)

Cruise Control Comparison

Understanding Software Engineering 72

The level of detail of D’Azzo’s mathematical analysis of physical systems is extensive

and provides many ways of using mathematics to represent systems, system properties,

and techniques to simplify their analysis. With this mathematical foundation the text

proceeds to the theory of linear control systems. The mathematical understanding of

complex control systems is presented in terms of the mathematical foundations that were

developed for the simple systems. Indeed, all of the engineering design texts used in this

study began with sections concerned with mathematical modelling of basic electronic

circuits before they proceeded to more complex design theory. Furthermore, the basis of

engineering education courses is also the development of mathematical representations

for the simplest components and systems of the discipline.

In contrast to the engineering designs, the software developers used different design

methodologies, software architectures, or patterns for development as a means of

developing an initial view of the problem. The software engineer does not produce

models of existing designs or components. The first step of the software development

process is the creation of a model of reality, specifically, the reality confined by the

bounds of the problem to be solved.

Software developers are not constrained by their implementation medium. They work

with a medium that allows them to implement almost any concept, so long as it can be

sufficiently well defined. This is in contrast with traditional engineers who can only

implement using the components of the particular engineering discipline and whose

functionality is constrained to the possible aggregations of underlying properties of that

discipline. For the software developer, there are many ways of modelling aspects of

reality and there are many levels of generality for those models. Moreover, because of the

flexibility of the software implementation medium, almost any of those models can be

successfully implemented. The purpose of design methods, software architecture styles,

and design patterns is to assist in the creation of the initial model of the problem by

constraining the designer to developing one that is relatively easy to implement in our

implementation medium.

A speculative hypothesis may be that it is possible to view the actions of software

developers as similarly modelling the problem to match the properties of the

implementation medium. The difference between the disciplines is that the properties of

the respective implementation mediums are different. The software designs model the

problem using functional and behavioural viewpoints and the implementation structure of

Cruise Control Comparison

Understanding Software Engineering 73

those viewpoints. The implementation medium of the software developer is the

programming language. It could be speculated that design methods assist the problem

solving process by providing functional and behavioural representations because they

match the information flow constructs of programming languages: sequence, iteration,

and selection. Furthermore, the structural properties of the implementation depend on the

concept structures of the programming language, such as procedures, rules, and objects,

and the execution constructs of the operating environment, such as threads, processes, and

distributed systems. This hypothesis however, requires further investigation.

In summary, the difference between the respective disciplines is due to the fundamental

nature of the implementation mediums they build with and, subsequently, the

fundamental nature of the systems they construct. Engineers design physical artefacts.

Software developers implement models of reality. Traditional engineers use modelling

techniques to represent the properties of a possible implementation, based on known,

generic functionality. Software developers use modelling techniques to develop models of

reality that can be implemented in computer programs. This conjecture explains the

differences observed during the case study. Those differences include the purpose of the

published designs, the differences between the initial models and the differences between

designs that utilised similar modelling formalisms. These are now briefly described.

The intended purpose of the design publications in the respective disciplines was also

different. The software designs were used to illustrate a particular design methodology or

style of software architecture. Conversely, the intention of the engineering publications

was to present a solution to the cruise control problem. The authors of the majority of the

engineering designs came from automotive engineering companies, not academia.

Furthermore, in Shaout’s review of cruise control technology, the majority of the

references came from patent applications. In the software design examples, the use of the

cruise control problem was secondary to the explanation of the design methodology. The

exception was the design of Jones (Jones 1994). That design is interesting because it is a

software design performed by an electronic engineer. It begins with an attack on the

software approach to cruise control design and illustrates the difference in emphasis

between the designs of the respective disciplines.

“I attended a software conference where one of the speakers gave a

presentation prescribing a commonly accepted software development method

… by designing an automotive cruise control. The design was terrible but he

Cruise Control Comparison

Understanding Software Engineering 74

was proud of it! … His academic expertise was an excellent example of how

software development often puts the emphasis in the wrong place, ignoring

the real problems that result in catastrophic failure.

The speaker who provoked my wrath obviously knew a lot about computer

science, but very little about physical science, system engineering, testing,

economics, safety, and closed-loop servo systems. He approached the cruise

control design as if it were a software design problem. His design method

stressed how functions should be grouped with other functions in tasks or

packages based on temporal sequence or information-hiding criteria. He drew

a context diagram. He drew a state-transition diagram, and then drew several

levels of data-flow diagrams. He created a task-structure diagram. Then he

drew a system architecture diagram. He partitioned the architecture into task

and package structures. By the time he was finished, he had an impressive

looking but totally impractical design consisting of seven tasks, a message

queue, and four asynchronous interrupts. …

The problem is viewed as one of information processing or program

structuring instead of system engineering. ” (Jones 1994)

This difference in approaches stems from a fundamental difference between the

disciplines. The task of the engineer is to utilise materials, components, and systems of

the discipline to solve real-world problems. Their research attempts to develop improved

methods of modelling their problems so they can be solved using functional properties of

those materials, components, and systems. Alternatively, the task of the software

developer is to implement models of reality to automate some perceived process.

Software development research is concerned with improved ways of modelling reality for

more effective implementation, maintenance, and reuse. Methodologies are generic

problem-solving processes that facilitate the implementation of theories that are devised

to explain ‘real-world’ processes. The difference is exemplified in the implementation of

the controller mechanisms of the respective cruise control systems. Ellinger describes the

mechanical flyweight governor speed control unit (figure 2-26) as follows:

The act of setting the desired speed causes the activation of an

electromagnetic solenoid. The activated solenoid causes an armature to block

off an air flow port. The restriction of the air flow causes vacuum to increase

Cruise Control Comparison

Understanding Software Engineering 75

in the controller housing. The increased vacuum in the controller housing

results in increased vacuum in a power servo unit. The increase in vacuum in

the power servo unit causes the throttle to open further.

This description of the controller unit’s operation shows how the properties of the

discipline (electromagnetic force, mechanical motion, air vacuum) are utilised by the

designer to achieve the desired result. In contrast, the following pseudo-code fragment

could represent the logic for a software based controller unit:

If (system_activated)

 Error = Desired_Speed – Current_Speed;

 If (Error > 0)

 Increase_Speed(Error);

The conjecture that engineers build artefacts while software developers build models of

reality also explains the observation made concerning the labelling of some software

systems as feedback control systems. All of the engineering designs used a similar

generic feedback architecture. The designs differed in terms of (1) the types of

components used to realise the generic functionality; (2) the issues considered when

modelling the system mathematically; and (3) the mathematical formalism used to model

the problem. In contrast, the software designs differed in the primary formalism used to

develop the initial model and in the specifics of that initial model when the chosen

formalism was applied. All of the software designs were feedback systems because they

all used the current speed to manipulate the system control. The difference was in the

types of concepts used to represent the problem (the design formalism) and the specificity

of the concepts identified within that formalism. For example, in an object-oriented

formalism, the designer is free to choose which objects constitute the designer’s

perception of the problem. The designer can choose between the specifics of the problem

domain, as Booch did, or a mental model of a more general representation of the problem,

for example Shaw’s feedback control system. They are all feedback loops, they are just at

different levels of generality.

No software design is more perspicuous than the others are. Shaw’s claims that object-

oriented and process control feedback loops provide a closer match of reality than

functional decomposition is ill- founded. They appear more perspicuous when the

understanding of software systems begins from the assumption that software systems are

Cruise Control Comparison

Understanding Software Engineering 76

analogous to traditionally engineered corporeal systems. However, by understanding

software systems as implemented models of reality, all of the software designs implement

the generic notion of a feedback system, they simply use different collections of mental

concepts to do it. As a final observation, the model-building conjecture shows that the

generally accepted notion that object-orientation is beneficial because it allows

developers to implement their models of reality is also ill- founded. The discussion of

philosophical foundations in Chapter 5 explains these comments in greater detail.

2.8 Conclusion
Can analogies with traditional engineering disciplines be used to improve the process of

software development? The answer is neither yes nor no. This study has shown that the

question is too simplistic. The study presented what developers do when they design. It

then developed a generic approach to how the design proceeds. Fina lly, it presented why

the respective disciplines designed using that approach, explaining the observed

differences. Compared with traditional engineers, who build physical artefacts, software

developers implement models of reality – explanatory theories of real-world processes.

Software developers would like to ‘engineer’ their ‘systems’ using an analogous approach

to traditional engineering development. They would like to use the same how approach to

design. However, this detailed study shows that significant differences between what the

respective disciplines design makes it extremely difficult to make valid analogies,

regardless of how plausible they may sound.

It may be possible to improve the software development process by examining how

traditional engineers work. However, any attempt to do so must consider the differences

that exist. What we build is nothing like traditionally engineered systems. They are

models of reality, theories of how concepts and relationships should interact to solve a

problem. The concepts that comprise our systems are limited only by our imaginations.

Engineers do not model reality in the same way. They are constrained to developing

systems using the components of their discipline. Those materials and components are

aggregations of a small set of possible manipulations to a handful of domain- level

concepts.

This study has based a conjecture about the fundamental differences between traditional

engineering and software development on a relatively small case study – the automotive

cruise control system. The design of linear control systems is a small discipline within the

Cruise Control Comparison

Understanding Software Engineering 77

global sphere of engineering design and it would be foolish to base such an all-

encompassing conjecture on the design approach of one engineering discipline. However,

the conjecture is not based on the difference between the design approaches, it is based on

the reasons why those approaches were used. Those reasons are applicable to all fields of

engineering. Some engineering disciplines, such as civil engineering or chemical

engineering, are more materials-based than the component-based nature of the control

system domain (Reed, 1996 in Reed 2000). However, the design techniques they rely on

are still based on mathematical models of the properties of the underlying materials of

their discipline. For example, see Currie (Currie and Sharpe 1990) for mathematical

models of civil engineering materials and their structural arrangements. Software

development implements models of reality in computer programs. Traditional engineers

utilise properties of physical materials and their structural arrangement to suit a desired

purpose.

To use traditional engineering disciplines as a source of ideas for improving the software

development process we must consider the disciplines in term of what they design and

build as well as how they design and build. Software developers want the ability to use

rigorous mathematical techniques to analyse quantified design criteria. Furthermore, they

want to achieve the same high- levels of design and component reuse, if possible, through

context- independent development. Are these issues achievable given the fundamental

nature of the systems built by software developers? This study highlights new research

questions that need to be examined before that question can be answered. They are:

• Why can engineering components be modelled mathematically, and can a

similar approach be achieved in the software implementation medium?

• What does it mean to build explanatory theories of reality?

• What affects our ability to create models and how can that be utilised to

improve the software development process?

• If the initial model, or software architecture, sets the path for subsequent

development, what model-building issues affect its creation? Can it be

influenced by qualitative design criteria, such as design-for-modifiability or

design-for-performance, or is it a subconscious process that cannot be

manipulated?

Cruise Control Comparison

Understanding Software Engineering 78

• Are there areas of contention in software engineering research that can be

solved by examining the philosophical foundations those theories are based

on?

• If the design approaches of the respective disciplines are so different, why

have analogies between them been used as the source and validation for

software engineering research ideas?

These questions can be answered using research from other disciplines. An understanding

of the evolution of traditional engineering disciplines and their systems/components can

be used to determine if software components can be devised to allow the same design

approach. The history and philosophy of science can be used to develop an understanding

of the process required to create and validate models of reality. Metaphysics and

epistemology provide theories for explaining why people have different perceptions of

reality. Finally, theories about conceptual development in the discipline of psychology

can be used to understand how we devise the concepts that comprise those

models/theories.

Finally, a study of traditional engineering may allow researchers to improve the way in

which software developers approach the design process. However to validate any attempt

to use analogies with traditional engineering, software development must develop an

improved understanding of the fundamental nature of the systems that it builds. Indeed, it

needs an improved understanding of the philosophical underpinnings of the discipline as a

whole. Research in the philosophy of science not only provides illumination concerning

the nature of the systems we build but also how the discipline of software engineering is

progressing. Different philosophy of science theories explain how scientific disciplines

evolve through phases of progress as the discipline changes its philosophical

understanding of the systems it attempts to understand 6. For example, Kuhn explains

scientific progress through a series of evolutions and revolutions (Kuhn 1962). Though

Kuhn’s explanation is not the only one, researchers in the philosophy of science agree

that progressive scientific theories are relative, to varying extents, on the underlying

guiding assumptions of the discipline. The discipline of software engineering has

progressed to its current state based on an implicit understanding that software

6 see Chapter Six for more information.

Cruise Control Comparison

Understanding Software Engineering 79

development is analogous to traditional engineering development. This study has shown

that assumption is inadequate. To improve the progress of software engineering it is time

to develop a better understanding of our discipline.

A History of the Artefact Engineering View

Understanding Software Engineering 80

3. A History of the Artefact Engineering View of
Software Development

3.1 Introduction
The cruise control comparison identified many significant differences between the design

approaches of software development and traditional engineering disciplines. It then

conjectured the reason for those differences was due to fundamental differences between

the types of systems built and the implementation mediums used to build them. It

concluded by highlighting many questions to be answered to evaluate that conjecture.

One of those was, if the design approaches of the respective disciplines are so different,

why have analogies between them been consistently used as the source and justification

for software engineering research ideas? To answer that question this chapter presents and

analyses a history of the artefact engineering view of software development. That analysis

examines the arguments used by software engineering researchers to determine their

understanding of both disciplines.

Wegner notes that as early 1950 software developers recognised the importance of

subroutine libraries for capturing and reusing subprograms in software development

(Wegner 1984). In the early 1960s, Fred Brooks and Jerry Weinberg discussed the

appropriateness of the term ‘architecture’ for describing structural design issues in

computer systems. Brooks had been working in the area of computer architecture (Brooks

1962) and was worried about the appropriateness of the analogy. However, as their

discussion progressed it seemed to hold (Coplien 1999b). At that time their discussion

considered computer systems as both hardware and software, in contrast to the more

software-centric analogies used in recent times (Weinberg 2000). In addition, their

concept of software architecture included the interface with the computer operator as well

as the large-scale system structure (Weinberg 2000). That aspect is also evident in

Brooks’ later comments on the integrity of the system architecture.

“By architecture of a system, I mean the complete and detailed specification

of the user interface.” (Brooks 1975)

Coplien notes therefore, that as early as 1965 the discipline of software development was

already enough on its feet to consider the influence of design theories in other artefact

construction disciplines (Coplien 1999a). Nevertheless, it was the NATO conferences on

A History of the Artefact Engineering View

Understanding Software Engineering 81

software engineering in the late 1960s that provides the first formal expression and debate

of software engineering ideas. The transcripts of those debates provide the starting point

for the history and analysis presented. The analogies and insights used by those

conference participants are analysed to determine the validity of the analogies used and to

identify the participants understanding of the fundamental nature of both software

systems and hardware systems. A selection of the research presented between that time

and the present, which promotes the view of software development as an artefact

engineering discipline, is then presented and evaluated in the same way.

The conclusion, and answer to the originally posed question, is that the label ‘software

engineering’ was proposed as a starting point for discussion at the 1968 NATO

conference. Its suggestion was intended to provoke ideas for improving software

development. However, despite numerous unresolved questions concerning the

applicability of that metaphor, its implied way of understanding software development

was tacitly accepted. The series editor of the NATO conference noted,

“This book points the way to the future of software. It examines our

shortcomings in software practice and technique and suggests alternatives that

could overcome many of the problems. But most important, it lays out, by

implication, the frame of mind that we take to produce dependable software.”

(NATO 1976a)

That frame of mind is the artefact engineering view of software development.

As the discipline of software engineering progressed, its proponents rarely questioned the

artefact engineering view although numerous anomalies appeared when using that view to

develop research ideas concerning a discipline of software engineering. The most

persistent anomaly, which has never been satisfactorily explained, concerns the

underlying principles of software systems. The assumption made by the relevant

researchers is that the underlying principles would eventually be discovered or artificial

intelligence techniques would be developed to overcome the anomalies identified.

From the analysis presented it is clear that researchers promoting the artefact engineering

view of software development did not have a thorough understanding of software

development, traditional engineering, or the relationship between them. That is not a

criticism of those researchers. It is simply a recognition of the growing body of

knowledge concerning the relevant issues that can now be applied with the benefit of

A History of the Artefact Engineering View

Understanding Software Engineering 82

hindsight. Moreover, fundamentally important decisions concerning the understanding of

a discipline are made in similar ways in most professional disciplines7. However, to

develop a better understanding of software development and its relationship with

traditional engineering, a thorough understanding of the underlying principles of both

disciplines, and their relationship, is required.

3.2 In the Beginning: The NATO Conferences
The NATO conferences on software engineering originated in 1967 when a study group

on computer science, set up by the NATO science committee, recommended holding a

working conference on software engineering that would focus on the problems of

software. Specifically it would address issues pertaining to the design, implementation,

and maintenance of software.

“The Science Committee conferences are deliberately designed and structured

to focus expert attention on what is not known rather than on what is known.

The participants are carefully selected to bring together a variety of

complementary viewpoints. Through intensive group discussion, they seek to

reach agreement on conclusions and recommendations for future research that

will be of value to the scientific community.” (In the Preface. All quotes from

the 1968 and 1969 conferences are taken from (NATO 1976a; NATO 1976b))

The background of the first conference and the working papers generated by it give the

first indication of the software development community’s attempt to understand the

fundamental nature of the discipline. The first is the choice of the term ‘software

engineering’ itself.

“[It was] deliberately chosen as being provocative, in implying the need for

software manufacture to be used on the types of theoretical foundations and

practical disciplines, that are traditional in the established branches of

engineering.” ((NATO 1976a) p. 5)

At that stage in the discipline’s evolution, many large software systems had been

developed, for example the OS/360 project, and many lessons learned. The community’s

perception was that the rapidly increasing importance of software systems in many

7 This is discussed in detail in chapter six.

A History of the Artefact Engineering View

Understanding Software Engineering 83

activities of society, and the increasing size and complexity of those systems, required

significant improvement in the way those systems were produced.

The difficulty in establishing the philosophical assumptions of the NATO conference

participants, and present day software engineering researchers, is that these philosophical

issues are very rarely discussed explicitly. Therefore, in the absence of unambiguous

statements, the only means of capturing their fundamental conception of software and its

development is to extract it from the ideas that were presented. In the NATO conference

reports, two types of comments can be used to gain an indication of the variety of

conceptions that researchers had of software and software systems. They are analogies

and insightful observations. In the 1968 conference alone, analogies were made between

software development and aircraft design, civil engineering, mathematics, logic,

automobile design, frame stressing, and even musical education. For those analogies to be

perceived as valid, certain assumptions about the nature of software and engineering

systems and their development must be made. For example, the following extract, taken

from McIlroy’s often quoted Mass Produced Software Components paper, is indicative of

many analogies used in software engineering research – both then and now.

“McIlroy: We undoubtedly produce software by backward techniques. We

undoubtedly get the short end of the stick in confrontations with hardware

people because they are industrialists and we are often the crofters. Software

production today appears in the scale of industrialization somewhere below

the more backward construction industries.” ((NATO 1976b) p. 89)

McIlroy’s decision to make an analogy between the production of software systems and

those systems produced by ‘hardware people’ was based on the desire to have a software

development process that exhibits the same tractability that traditional engineering

development appears to have. However, for the comparison to be valid, the nature of

software must contain characteristics that make it possible for systems to be constructed

in a similar fashion to hardware systems. That is, the respective materials, components

and their means of interaction, must be analogous. The question that needs to be asked is:

Is that in fact the case?

It is interesting to note that the conference report also contains the first analogies between

software design and the design theories of Christopher Alexander, whose theories of

A History of the Artefact Engineering View

Understanding Software Engineering 84

design in building architecture are quite popular in present day software engineering

research.

During the course of the conference the participants made many philosophically

insightful observations about the nature of a particular topic of discussion. That may have

been about a specific design method or a comment made by the editors about the state of

the current discussion. Those insightful comments were often followed by vigorous

discussion of a more theoretical nature rather than the usual pragmatic issues. For

example, Fraser made the following comment:

“Fraser: One of the problems that is central to the software production process

is to identify the nature of progress and to find some way of measuring it.

Only one thing seems clear right now. It is that program construction is not

always a simple progression in which each act of assembly represents a

distinct forward step and that the final product can be described simply as the

sum of many sub-assemblies.” ((NATO 1976a) p. 7)

That comment provides an indication that the nature of software and software systems is

not something which is easy to grasp. While it may be assumed that engineering systems

can be designed and implemented in terms of pre-existing components, this insight shows

that those concepts cannot easily be transferred to software systems. Something uniquely

fundamental about the nature of software systems, which is not quite explicitly

understood, is brought closer to the surface of our understanding by these comments.

Many of the discussions associated with those insights resulted in confusion between the

participants. As the discussion delved into more philosophical issues there was a lack of

common understanding between the participants concerning the exact meaning of words.

Confusion also arose concerning how those theoretical concepts were applicable to

specific aspects of software development. For instance, the discussion concerning the

logical completeness of software systems resulted in a discussion of what the participants

meant by the term logical completeness. After much discussion the following comments

were made:

“Genuys: I think I would just prefer another term because this one has a

certain logical flavor, and I'm not certain that...

A History of the Artefact Engineering View

Understanding Software Engineering 85

Perlis: (Interrupting) The word ‘logical’ has a meaning outside the realm of

logic, just as the word ‘complete’ does. I refuse to abrogate to the specialist in

mathematics the word ‘completeness’ and in logic, the word ‘logical’.

Bauer: The concept seems to be clear by now. It has been defined several

times by examples of what it is not.” (op. cit p. 26)

The concept of ‘logical completeness’ was identified as an important design criterion and

discussion ensued to determine how to apply that concept to the actual practice of system

design. However, the discussion eventually veered away from that goal and centred on

the semantics of the words ‘logical’ and ‘completeness’. Whilst that diversion into

semantics was necessary, the debate failed to return to the original goal, that of

determining how to apply ‘logical completeness’, in any of its possible meanings, to

specific design situations. The best that was achieved were generic statements such as

“ensuring that a system was capable of performing a ‘basic’ set of operations”.

Those debates, and the insightful observations about pragmatic issues, highlighted the

need for a better theoretical understanding of the discipline. However, as the discussion

worked towards important answers the issue would often be abandoned due to the

difficulties inherent in debating such esoteric concepts. That abandonment of the

theoretical debates gives the impression of placing the philosophical foundations of

software engineering into the ‘too hard basket’.

Attempting to discover what others believe are the philosophical underpinnings of the

discipline is a difficult task, though one that must be addressed. Interpreting the views of

others is naturally fraught with danger due to the ambiguity of natural language and the

problem of access to the actual people concerned. In addition, there is the potential for the

community-wide understanding of terms such as ‘design method’, ‘high- level language’,

and ‘module’, to change over time as the discipline evolves and matures. Moreover, using

those terms and theories as the basis for extracting people’s philosophical views is subject

to the prejudices and philosophical biases of the researcher. The only means of

minimising the risk of misinterpretation is by identifying those potential sources of error

and maintaining a vigilant watch to ensure their effects do not taint the conclusions

reached. That effort was consciously made, however to what level of success is hard to

gauge.

A History of the Artefact Engineering View

Understanding Software Engineering 86

The nature of the source material also provides a potential source of error. The conference

proceedings provide edited transcripts of the conference discussions as well as copies of

the invited addresses and, unfortunately, only a few of the working papers in full. The

editors decided to structure the proceedings following the “normal sequence of steps in

the development of a software product, from project start, through design, production or

development, to distribution and maintenance” (op. cit p. 3). Those steps were augmented

with sections about ‘Software Engineering and Society’, ‘The Nature of Software

Engineering’, ‘Education’, and ‘Software Pricing’. The editors used transcripts of the

discussions, which were recorded by stenographers and captured on magnetic tape, to

place content into that structure. The printed comments are also interspersed with

excerpts from all of the working papers where they were relevant. While the editors

attempted to retain the “spirit and liveliness” of the conference by retaining the original

wording and context as much as possible, any attempt to ext ract the philosophical

assumptions of the participants must also consider the editors influence on the source

material. Despite these inherent difficulties, the analogies and insights provided useful

material for showing how the philosophical assumptions of the delegates at the NATO

conferences shaped the origins of software engineering understanding.

The insights and analogies are presented in the order depicted in the proceedings, using

additional comment to put them in context. They are then examined to determine what

assumptions they make about the fundamental nature of software and software systems

and later in the chapter they are analysed in detail using additional information from the

engineering disciplines that they purport to identify similarities between. That analysis

questions the validity of those analogies and consequently begins to question the

assumptions made about the fundamental nature of software systems.

3.2.1 The 1968 NATO Conference

The first section of the proceedings, Software Engineering and Society, collates

discussions concerning the growing importance of software systems and the more general

problems faced by the research community. The first excerpt, by Graham, is part of a

discussion about the nature of progress in software development and the inability to

successfully predict and measure it.

“Graham: Today we tend to go on for years, with tremendous investments to

find that the system, which was not well understood to start with, does not

A History of the Artefact Engineering View

Understanding Software Engineering 87

work as anticipated. We build systems like the Wright brothers built airplanes

– build the whole thing, push it off the cliff, let it crash, and start over again.”

(op. cit p. 7).

The analogy with the Wright brothers highlights a belief that is evident in the editorial

comments included in that section.

“There was general agreement that ‘software engineering’ is in a very

rudimentary stage of development as compared with the established branches

of engineering.” (op. cit p. 7)

That belief assumes we can consider software development to be an engineering

discipline and that the early phases of those engineering disciplines were rudimentary in

an analogous manner to the early stages of software engineering. Gillette explicitly

expresses this belief in the ensuing comment. He suggests that, like the aircraft industry,

as the software development discipline evolves it will become better at specifying its

systems and estimating its development schedules.

“Gillette: We are in many ways in an analogous position to the aircraft

industry, which also has problems producing systems on schedule and to

specification. We perhaps have more examples of bad large systems than

good, but we are a young industry and are learning how to do better.” (op. cit

p. 7).

The validity of the analogies concerning the early stages of the disciplines is analysed

later in this chapter. However, in the same discussion Fraser provides the comment,

which was used as an example earlier, that suggests the nature of the software systems

may not be similar enough to those other disciplines for the analogies to be well- founded.

He notes that the nature of software systems cannot be described “simply as the sum of

many sub-assemblies”, however, no further discussion is presented that debates the

differences between software designs and, in these cases, aircraft designs.

Later comments continue to highlight specific aspects about the nature of software

systems that may not be present in traditionally engineered systems. Kinslow makes the

first while discussing management issues in software development.

“Kinslow: There are two classes of systems designers. The first, if given five

problems will solve them one at a time. The second will come back and

announce that these aren’t the real problems, and will eventually propose a

A History of the Artefact Engineering View

Understanding Software Engineering 88

solution to the single problem which underlies the original five.” (op. cit p.

13).

Why do these different types of designers exist? Believers in the engineering discipline of

software development, including Kinslow himself, describe the first type of the designer

as the “system-type” who employs what is considered to be an ‘engineering-mindset’ to

the problem solving process. However, the analysis of cruise control systems presented in

Chapter 2 suggests the nature of the systems built by software developers and traditional

engineers are fundamentally different. Therefore, an alternative reason why these

different types of developers exist may be based on the fundamental nature of software

systems rather than the ‘system-type’ and ‘engineering-mindset’ labels. Furthermore, the

role of training in the respective disciplines may also exert a powerful influence (Reed,

1993 in Reed 2000). Unfortunately, because no thorough comparison of the fundamental

natures of software and traditionally engineered systems exists in the research literature,

arguments for particular hypotheses are difficult to justify and objectively compare.

Kinslow’s remark is followed in the proceedings by an excerpt from the working paper by

Berghuis. That excerpt identifies a significant difference between software systems and

those produced by other ‘system-engineering’ disciplines.

“Berghuis: Independent software packages don’t exist; they run on an

equipment (hardware), they need procedures by which to be operated and that

indicates that we have to define what a system, project, phase of a project,

releases, versions, etc., mean. Also we have to consider the organisation from

the point of view of developing systems and in fact we are faced with the

differences between functional and project organisation. We are also faced

with the difficulties of system-engineering.” ((NATO 1976a) p. 13).

That comment highlights the principle of ‘system execution’ – a principle that does not

exist in any other engineering discipline. Software systems are the only ‘engineered’

systems that do not realise the original design requirements until the statements of the

implemented system are executed by a machine8. Unfortunately, no further discussion of

this important insight by Berghuis is evident in the proceedings. Moreover, the full text of

his working paper was not included.

8 This issue is discussed in more detail in Chapter 4.

A History of the Artefact Engineering View

Understanding Software Engineering 89

A similar distinction between software systems and engineered systems is highlighted

later in the proceedings. The editors collated a number of discussion points related to the

distinction between design and production (implementation) of software systems.

Significantly, the editor’s note that the “appropriateness of the distinction between design

and production was contested by several participants” (op. cit. p. 18), however the

distinction was retained in the conference report to expedite the publication of the report.

The discussion begins with an excerpt from the working paper of Naur that attempted to

clarify the distinction.

“Naur: … The distinction between design and production is essentially a

practical one, imposed by the need for a division of labour. In fact, there is no

essential difference between design and production, since even the production

will include decisions which will influence the performance of the software

systems, and thus properly belong in the design phase. For the distinction to

be useful, the design work is charged with the specific responsibility that it is

pursued to a level of detail where the decisions remaining to be made during

production are known to be insignificant to the performance of the system.”

(op. cit p. 18)

Naur’s comments highlight the implied analogy with traditionally engineered systems –

the need for a division of labour between design and implementation. No further

comment is made by Naur regarding why a division of labour should occur in an

analogous manner to other engineering disciplines. It is assumed that because the division

is useful for software project management reasons, the nature of software systems should

allow such a distinction to be possible even though it is recognised that the distinction is

more arbitrary than in other disciplines. Unfortunately, the full working paper from which

the extract is taken, The Profiles of Software Designers and Producers, is not published in

the report. Other participants however, did highlight aspects of software system

production that question the ability to implement the distinction, even if management

forces require it. First, Dijkstra notes the difficulty in implementing the distinction

because the correctness of the program cannot be guaranteed until the structure of the

system is implemented. Therefore, any artificially enforced distinction between design

and implementation will merely hinder the ability to “do a decent job” (op. cit p. 18).

Furthermore, Kinslow identifies the iterative process required to develop systems as

A History of the Artefact Engineering View

Understanding Software Engineering 90

another reason why the distinction is difficult, if not impossible, to successfully

implement.

“Kinslow: … If you are writing a large production project, trying to build a

big system, you have a deadline to write the specifications and for someone

else to write the code. Unless you have been through this before you

unconsciously skip over some specifications, saying to yourself: I will fill that

in later. You know you are going to iterate, so you don’t do a complete job the

first time. Unfortunately, what happens is that 200 people start writing code.

Now you start through the second iteration, with a better understanding of the

problem, and it is too late. That is why there is a version 0, version 1, …

version N. If you are building a big system and you are writing specifications,

you don’t have the chance to iterate, the iteration is cut short by an arbitrary

deadline. This is a fact that must be changed.” (op. cit p. 18)

Kinslow notes that iteration is required because designers need to develop a correct

understanding of the problem and this cannot be achieved until the design process has

been traversed on more than one occasion. It may be possible to argue that this iteration is

an iteration of the design phase and comes before implementation (Reed, 1993 in Reed

2000). However, the previous point discussed that the distinction between the design and

implementation phases of software development is not as clear as it is in traditional

system development. A separate part of Naur’s comment exemplifies this insight in the

software development process. Although the term ‘flowchart’ may be outdated, it can be

successfully replaced with any current design method and still be relevant.

“[Naur] In my terms design consists of:

Flowchart until you think you understand the problem.

Write code until you realise that you don’t.

Go back and re-do the flowchart.

Write some more code and iterate to what you feel is the correct solution.”

((NATO 1976a) p. 18)

Unfortunately, no debate is generated to determine why this iteration process is required

in the software development process yet the distinction between design and

implementation can be maintained in engineering disciplines. Presumably, it is because

A History of the Artefact Engineering View

Understanding Software Engineering 91

these issues would be resolved as the ‘software engineering’ discipline matured9.

Interestingly, Ross concludes the discussion in the conference report with the most

explicit comment about the difference between software and other engineered systems.

Again though, it appears not to have lead to any subsequent discussion that may have

uncovered the significant differences between software and other engineered systems.

“Ross: The most deadly thing in software is the concept, which almost

universally seems to be followed, that you are going to specify what you are

going to do, and then do it. And that is where most of our troubles come from.

The projects that are called successful have met their specifications. But those

specifications were based upon the designers’ ignorance before they were

started.” (op. cit. p. 19).

The observation by Ross about the importance of the ‘concept’ is similar to the one made

later by Brooks concerning the importance of conceptual integrity in the design process

(see Aristocracy, Democracy, and System Design in (Brooks 1975)).

The topic of the proceedings then changed to the mindset required by a software

developer and this provided the next analogy with traditionally engineered systems. The

editors quote another excerpt from the previously discussed working paper by Naur. This

provides an analogy with the large and complex systems designed by architects and civil

engineers and, in turn, provided the first reference to the design theories of Christopher

Alexander in software engineering research.

“Naur: … software designers are in a similar position to architects and civil

engineers, particularly those concerned with the design of large heterogeneous

constructions, such as towns and industrial plants. It therefore seems natural

that we should turn to these subjects for ideas about how to attack the design

problem. As one single example of such a source of ideas I would like to

mention, Christopher Alexander: Notes on the Synthesis of Form.” ((NATO

1976a) p. 20)

It appears obvious to Naur that software developers should look at the design methods of

other engineers, in this case civil engineers and architects. Those disciplines have

developed techniques to design and build large, complex, heterogeneous systems.

9 Chapter 5 discusses these issues in detail from a philosophical perspective.

A History of the Artefact Engineering View

Understanding Software Engineering 92

Software designers also design and build large, complex, heterogeneous systems.

Therefore, we should look at those disciplines for guidance. For the analogy to be valid, it

is assumed that the meanings of ‘large’, ‘complex’, ‘heterogeneous’, and ‘system’ must

be similar enough for the techniques to be applicable, with appropriate modifications,

across domains. That assumption is analysed in more detail later in this chapter to

determine its validity. However, as an initial thought, consider the remarks of Alexander

from of the source suggested by Naur.

“The ultimate object of design is form … Every design problem begins with

an effort to achieve fitness between two entities: the forces in question and its

context. The form is the solution to the problem, the context defines the

problem. … The rightness of the form depends ... on the degree to which it

fits the rest of the ensemble.” (Chapter 2: Goodness of Fit in (Alexander

1964)).

Many of the theories of Alexander are based on the notion of ‘form’ and the relationship

between it and the human beings who interact with those built forms. Without thoroughly

considering the differences between the built form of corporeal artefacts and the nature of

software structures, it is impossible to successfully determine the appropriateness of

Alexander’s theories to software engineering design. Yet research literature in software

engineering shows researchers continue to apply them based on perceived similarities

with little regard to a thorough examination of the differences.

The participants then, as well as researchers now, were prepared to draw analogies

between software development and established engineering disciplines without fully

considering the differences between them. However, subsequent observations suggest the

participants were admittedly not fully aware of the exact nature of software systems.

Perlis, Bauer, and Kolence highlight this in an exchange on the relationship between

software design and mathematics.

“Perlis: Software systems are mathematical in nature. A mathematical

background is not necessary for a designer, but can only add to the elegance

of the design.

Bauer: What we need is not classical mathematics, but mathematics. Systems

should be built in levels and modules, which form a mathematical structure.

A History of the Artefact Engineering View

Understanding Software Engineering 93

Kolence: At the abstract level a concise mathematical notation is required by

which to express the essential structures and relationships irrespective of the

particular software product being implemented.” ((NATO 1976a) pp. 21-22).

These comments identify the importance of system structure and the precision and order

of mathematical expression, however the participants could not quite identify the exact

relationship between the two. What was missing was a precise understanding of exactly

what a software system is and the process required to design one. The ensuing comment

by Smith on the nature of design criteria typifies that, though his comments may no

longer be agreed with.

“Smith: There is a tendency that designers use fuzzy terms, like ‘elegant’ or

‘powerful’ or ‘flexible’. Designers do not describe how the design works, or

the way it may be used, or the way it should operate. What is lacking is

discipline, which is caused by people falling back on fuzzy concepts, instead

of the razors of Occam, which they can really use to make design decisions.

Also designers don’t seem to realize what mental processes they go through

when they design. Later they can neither explain, nor justify, nor even

rationalize, the processes they used to build a particular system. I think that a

few of Occam’s razors floating around can lead to great simplifications in

building software…” (op. cit p. 22).

The conference report then turns to the area of design strategies and techniques. Once

again, Naur presents an analogy with traditionally engineered systems, this time with the

automotive industry, to explain the importance of what is now known as software

architecture. His comment concerns the importance of partitioning the major subsystems

of a design to minimise their dependencies and to allow the correct ordering of their

detailed design and implementation.

“Naur: In the design of automobiles, the knowledge that you can design the

motor more or less independently of the wheels is an important insight, an

important part of an automobile designer’s trade. In our field, if there are a

few specific things to be produced, such as compilers, assemblers, monitors,

and a few more, then it would be very important to decide what are their parts

and what is the proper sequence of deciding on their parts. That is really the

essential thing, what should you decide first.” (op. cit p. 26)

A History of the Artefact Engineering View

Understanding Software Engineering 94

Naur continues by quoting the design ideas of Christopher Alexander and suggests they

are promising starting points for specific software design strategies. However, the

suggestion Naur is making is that because designers partition the subsystems of

automobiles in a particular way, there exist minimal dependencies between the identified

subsystems. If software developers could partition their systems in an analogous way,

they could achieve similar benefits that are “an important part of the automobile

designer’s trade”. For the analogy to be valid, the necessary implication is that

automobile designers have a choice in the large-scale partitioning of the automobile

‘system’ that is similar to the choice available to software designers. Using knowledge

gained from interviews with automobile engineers, the validity of that assumption is

analysed later in this chapter. Importantly, that analysis uncovers aspects of engineering

design that have no direct analogue in software development. Furthermore, it suggests

comments such as “you can design the motor more or less independently of the wheels”

appears to be true, however many dependencies do actually exist that are not usually

considered by software engineering researchers.

The discussion of design strategies moved onto debates about the importance and

influence of ‘top-down’ and ‘bottom-up’ approaches. The core of the debate was captured

in an excerpt from a working paper by Gill and was then analysed by the other

participants including Fraser’s analogy with frame stressing.

“Gill: The obvious danger in either approach is that certain features will be

propagated through the layers and will finally cause trouble by proving

undesirable and difficult to remove, when they should have been eliminated in

the middle layers. … In practice neither approach is ever adopted completely;

design proceeds from top and bottom, to meet somewhere in between, though

the height of the meeting point varies with circumstance.” (op. cit p. 28)

“Fraser: In designs I have been involved with, and which have not involved

too many people, I have not been able to identify whether these have been

‘top-down’ or ‘bottom-up’. They seem to be more like frame stressing, where

one is trying to stress a structure with welded joints. You fix all the joints but

one, and see what happens to the one, then fix that joint and free another and

see what happens with that. It’s a sort of iterative process which follows an

arbitrary pattern through the structure. Perhaps this only holds for small

A History of the Artefact Engineering View

Understanding Software Engineering 95

designs, with few people and with good communication. About large designs,

I don’t know.” (op. cit pp. 28-29)

These comments, and the others in the report, highlight interesting aspects of the software

development process that are uncovered when considering the nature of ‘top-down’ and

‘bottom-up’ development. The questions that are not answered however, are: What is it

about software systems and the process required to develop them that results in a mixture

of top-down and bottom-up design? Moreover, what is it about the nature of software

systems that result in one design decision constraining the alternatives for the remaining

decisions?

Finally, Dijkstra uses an analogy with musical education to address the discussion of

educating students about software design strategies.

“Dijkstra: If I look for someone with a position analogous to the way in which

I experience my own position, I can think of the teacher of composition at a

school of music. When you have got a class of 30 pupils at a school of music,

you cannot turn the crank and produce 30 gifted composers after one year.

The best thing you can do it to make them, well, say, sensitive to the pleasing

aspects of harmony. What I can do as a teacher is to try to make them

sensitive to, well, say, useful aspects of structure as a thinking aid, and the

rest they have to do themselves.” (op. cit pp. 29-30)

Like all analogies used in software engineering research, Dijkstra’s general comment on

the harmony of system structure appears reasonable. Music has a substantial amount of

theory that details which notes and chords can be played together to produce sounds that

are pleasing to the ear. Similarly, music theory notes many combinations that should not

be played together. Moreover, there exist patterns of notes and their combination that

specify certain styles of music. All of these can be taught to students in pedagogic

education. On closer examination however, the precise application of Dijkstra’s analogy

to software is considerably more difficult. What exactly are the harmonious structures of

software composition? Contemporary research in the area of software architecture styles

and design patterns are concerned with the structure of software systems. However, work

in those areas is also based on analogies with other disciplines – specifically, theories of

architecture and the theories of Christopher Alexander. No research in those areas

however, details why the analogies are valid. All of their theories are justified based on

A History of the Artefact Engineering View

Understanding Software Engineering 96

perceived similarities with those other disciplines rather than by examining the

fundamental nature of software. Furthermore, they fail to systematically consider the

differences between software systems and those other disciplines.

Later sections of the conference report deal with management aspects of the development

process. As the discussion moved into the area of software quality and how it could be

tracked and measured, McIlroy drew an analogy between software documents and

engineering drawings.

“McIlroy: I think we should consider patterning our management methods

after those used in the preparation of engineering drawings. A drawing in a

large organization is usually signed by the draftsman, and then after that by a

draughting supervisor when he agrees that it looks nice. In programming

efforts you usually do not see that second signature – nor even the first, for

that matter. Clarity and style seem to count for nothing – the only thing that

counts is whether the program works when put in place…” (op. cit p. 57)

Without questioning McIlroy’s desire to be able to track and evaluate the quality of

software designs, the analogy highlights the question of why it is possible to evaluate

engineering designs as they proceed yet it is difficult to do the same for software systems.

One fundamental difference is implied in the comment by Smith that precedes McIlroy’s

comment in the conference report.

“Smith: … All documents associated with software are classified as

engineering drawings. They begin with planning specification, go through

functional specifications, implementation specifications, etc., etc. This

activity is represent by a PERT-chart with many nodes. If you look down a

PERT-chart you discover that all the nodes on it up until the last one produce

nothing but paper. It is unfortunately true that in my organisation people

confuse the menu with the meal.” (op. cit pp. 57-58)

The topic of discussion moved back to education and the concepts that software

developers should be trained in. That debate uncovered aspects of the fundamental nature

of software systems and how they are different to traditionally engineered systems.

However, it soon moved into a discussion of semantics and terminology and the

examination of the differences between the disciplines was not completed. The debate

appeared to flow on from the previous comment by Ross who notes the difficulty in

A History of the Artefact Engineering View

Understanding Software Engineering 97

dealing with the ‘concept’ of software. Indeed the title of that section in the conference

report is Concepts and the editors note the importance of the discussion and the difficulty

faced by the participants when discussing it.

“Editors: The above title [Concepts] has been chosen, perhaps somewhat

arbitrarily, for a report on a discussion about the basic techniques or ways of

thinking, that software engineers should be trained in.

It is perhaps indicative of the present state of software production, that this

topic was one of the most difficult to report on.” (op. cit p. 62)

Ross begins the discussion by detailing his understanding of the nature of software

development. It specifies his conception of the ‘plex’ concept, how that concept relates to

emerging thoughts about software components, and how software development can be

performed by systematically composing large scale systems out of smaller components.

His presentation is important for researchers interested in historical debates about

software component-based design. Additionally, his explanation of the ‘plex’ concept

highlights aspects about the specific nature of software systems.

“Ross: … A ‘plex’ has three parts: Data, Structure, and Algorithm (i.e.

behaviour). You need all three aspects if you are going to have a complete

model of something – it is not sufficient to just talk about data structures,

though this is often what people do. … The key thing about the ‘plex’ concept

is that you are trying to capture the totality of meaning, or understanding, of

some problem of concern. We want to do this in some way that will map into

different mechanical forms … using different software implementations.” (op.

cit p. 62)

Ross explains his concepts using the example of implementing a banking system. His

comments use terminology such as ‘semantic packages’ and ‘idealized plex’ that are

precursors to the terminology used today in object-oriented design theory such as

‘business processes’, ‘use-cases’, and ‘analysis objects’. A point that would have

highlighted important differences between software systems and other engineered

systems concerns the difference between the ‘plex’ and the ‘idealized plex’. Ross states

that the ‘idealized plex’ is “one in which the mechanical representation has been thrown

away”. This is equivalent to the difference between analysis level objects and

design/implementation level objects in contemporary object-oriented design theories. The

A History of the Artefact Engineering View

Understanding Software Engineering 98

difference between those objects has never been satisfactorily explained and still causes

problems in present day software development (Kaindl 1999)10. However, before the

participants could debate those differences the discussion changed to the problem of

terminology.

“van der Poel: You are using, without definition, many terms which I just

don’t understand.” ((NATO 1976a) p. 63)

Perlis replied by defining the terms used by Ross (plex, data, structure, function,

algorithm, and component) in terms of LISP – “they are all just functions.” From that

point, the discussion moves into different interpretations of Ross’s comments.

The debate highlights the fact that software development researchers could identify

differences between software and traditionally engineered systems. Those differences

provide a glimpse into the fundamental nature of software but it is extremely difficult to

discuss them because researchers lack a common universe of discourse or collection of

cohesive concepts with which to label and discuss the issues. The universe of discourse

that is currently used comes from other engineering domains yet the terms borrowed from

those disciplines fail to precisely capture the meanings of the concepts used in software

development.

Towards the end of the conference report, the discussion turned to the, now famous, term

– ‘software crisis’.

“Editors: Quite early in the conference statements were made by several

members about the tendency for there to be a gap, sometimes a rather large

gap, between what was hoped for from a complex system, and what was

typically achieved.” (op. cit p. 77)

The subsequent discussion by the participants was preceded by comments by Buxton who

attempted to put the debate about ‘software crisis’ into an objective context.

“Buxton: In a conference of this kind, when those present are technically

competent. One has a tendency to speed up communication by failing to state

the obvious. Of course 99 percent of computer systems work tolerably

10 This is discussed in more detail in chapter 5.

A History of the Artefact Engineering View

Understanding Software Engineering 99

satisfactorily; that is the obvious. … The matter that concerns us is the

sensitive edge, which is socially desperately significant.” (op. cit p. 77)

The subsequent debate, which concerned the degree to which there was a problem, was

captured by the comments of Kolence and Ross.

“Kolence: I do not like the use of the word ‘crisis’. It is a very emotional

word. The basic problem is that certain classes of systems are placing

demands on us which are beyond our capabilities and our theories and

methods of design and production at this time. … There are many areas where

there is no such thing as a crisis … It is large systems that are encountering

great difficulties.

Ross: It makes no difference if my legs, arms, brain, and digestive tract are in

fine working condition if I am at the moment suffering from a heart attack. I

am still very much in a crisis.” (op. cit p. 78)

These comments highlight an issue that has never been solved. What exactly is the

‘software crisis’? Buxton noted that it was concerned with the “sensitive edge” of

development but what is that edge? Kolence implied that development approaches, at that

time, worked appropriately enough. It was the theories concerning large-scale

construction issues that needed to be addressed. Alternatively, Ross implied that while 99

percent of development was performed successfully using existing theories, perhaps the

problems faced at the “sensitive edge” were indicative of a fundamental

misunderstanding in the research community.

The participants did attempt to identify the causes of the ‘crisis’, beginning with Kinslow

who drew an analogy with bridge design.

“Kinslow: … I have never seen an engineer build a bridge of unprecedented

span, with brand new materials, for a kind of traffic never seen before – but

that’s exactly what happened on OS/360 and TSS/360.” (op. cit p. 79)

For Kinslow’s analogy to be valid, it must be assumed that terms such as ‘unprecedented

requirements’ and what it means to meet them must be somewhat similar across the

disciplines. A bridge designed to span a particular distance and to carry a particular load

needs to ensure that the weight-bearing capacity of the materials used in a particular

structural arrangement will be sufficient. That must be determined in conjunction with the

effects of environmental conditions such as potential weather situations and the

A History of the Artefact Engineering View

Understanding Software Engineering 100

supporting characteristics of the ground on which the bridge will be built. The validity of

that comparison is analysed later in this chapter. However, a comment made in the

working paper by Gill was included in the current debate by the editors and highlights the

difficulty faced when making these analogies and using them to develop better theories

about software design.

“Gill: Software is as vital as hardware, and in many cases much more

complex, but it is much less well understood. It is a new branch of

engineering, in which research, development, and production are not clearly

distinguished, and its vital role is often overlooked.” (op. cit p. 80)

One of differences between software and other engineered systems, which may be a result

of those differences and which has often been made, was then stated by Kinslow.

Unfortunately, no useful explanation has been accepted by the development community

to explain why this situation exists.

“Kinslow: Personally, after 18 years in the business I would like just once,

just once, to be able to do the same thing again. Just once to try an

evolutionary step instead of a confounded revolutionary one.” (op. cit p. 80)

Ross then made a comment that, with the benefit of 30 years of hindsight, seems quite

prophetic. A software development community that is in search for solutions but that has

an insufficient understanding of its problems and why they exist is vulnerable to people

who claim to have ‘the’ solution. Perhaps he envisaged the future of proposed solutions

and the inevitable marketing hype that led to their fanatical support.

“Ross: My main worry is in fact that somebody in a position of power will

recognize this crisis – it is a crisis right now, and has been for some years, and

it’s good that we are getting around to recognizing the fact – and believe

someone who claims to have a breakthrough, an easy solution. The problem

will take a lot of hard work to solve. There is no worse word than

‘breakthrough’ in discussing possible solutions.” (op. cit p. 81)

The final topic discussed concerns the overriding belief that software development is a

branch of engineering. The editors note that the majority of the comments reproduced

here were made during the discussion on software engineering education that occurred

towards the end of the conference.

A History of the Artefact Engineering View

Understanding Software Engineering 101

“David: May I add another question: What does software engineering and

computing engineering have in common with engineering education as it is

defined in the United States today, or in Western Europe?” (op. cit p. 82)

David goes on to answer his own question in a subsequent statement which the other

participants discussed.

“David: … Certainly Richard Hamming has stated that the essence of

computing today is an engineering viewpoint. It certainly is not mathematics

in the classical sense. In order to find colleagues who have a philosophy

which may contribute to our own enterprises, engineering is a much more

fruitful area than would be one of the sciences or mathematics, at least in my

opinion. ...

Software engineering and computer engineering have an extremely important

and nice aspect to them, namely that people want to work on things that meet

other people’s needs. They are not interested in working on abstractions

entirely, they want to have an impact on the world. This is the real strength of

computing today, and it is the essence of engineering.

Ross: I agree very strongly that our field is in the engineering domain, for the

reason that our main purpose is to do something for somebody…

Randell: I am worried about the term ‘software engineering’. I would prefer a

name indicating a wider scope, for instance ‘data systems engineering’.

Dijkstra: We, in the Netherlands, have the title Mathematical Engineer.

Software engineering seems to be the activity of the Mathematical

Engineering par excellence. This seems to fit perfectly. On the one hand, we

have all the aspects of an engineering activity, in that you are making

something and want to see that it really works. On the other hand, our tools

are basically mathematical in nature.” (op. cit p. 82)

The final comment goes to McIlroy, who despite his own use of analogies with

engineering disciplines (McIlroy 1968), notes that software development is different to

those disciplines and researchers must keep this in mind.

“McIlroy: ... I am concerned about the connection between software

engineering and the real world. There is a difference between writing

A History of the Artefact Engineering View

Understanding Software Engineering 102

programs and designing bridges. A program may be written with the sole

purpose to help write better programs, and many of us here have spent our life

writing programs from the pure software attitude. More than any other

engineering field, software engineering in universities must consciously strive

to give its students contact beyond its boundaries.” ((NATO 1976a) p. 83)

3.2.2 Analysing the Analogies Used During the 1968 NATO Conference

Analysis of the 1968 NATO conference report shows that during the course of the

conference a number of analogies were made between software development and other

engineering disciplines. The implication is that particular characteristics of the nature of

software systems and other engineered systems must be equivalent for the analogies to be

valid. However, a number of observations were also made by the participants that suggest

their understanding of software systems was too insufficient for them to determine the

equivalence of those characteristics. Moreover, many observations were made that

provided a glimpse of the fundamental nature of software systems, suggesting it is quite

different to that of engineering disciplines. With those observations, and with a more

detailed understanding of other engineering disciplines, those analogies are now

examined. Before the presentation however, it is important to make the following note.

The analyses of the comprehension exhibited by those researchers and the ensuing

analyses of the analogies made by them is not intended as a criticism of the integrity of

their research. The purpose of the analyses is to obtain a better understanding for the

future. Indeed their comments and opinions are understandable for researchers in a

discipline that was still a fledgling at the time11.

The analysis of the analogies begins with the two comments made about aircraft design.

Graham commented that we build systems like the Wright brothers built aeroplanes –

“build the whole thing, push it off the cliff, let it crash, and start over again.” (op. cit p. 7).

Gillette then noted that the problem of building software systems to specification and

schedule was analogous to the aircraft industry that had similar problems. Examining why

the Wright brothers built their aircraft that way, and examining how aircraft are now

designed, highlights issues that provide an insight into the nature of software systems.

Graham’s analogy implies that the Wright brothers’ design was tested mainly through

11 These issues are discussed in more detail in chapter six.

A History of the Artefact Engineering View

Understanding Software Engineering 103

trial and error because they did not precisely understand the principles involved. The

Henry Ford museum provides a general-purpose introduction to the Wright brothers (The

Wright Brothers 1995) and shows that assumption is too simplistic. The Wright brothers

were repairing and designing bicycles when they became interested in flight and decided

to design and build a flying machine. Wilbur contacted the Smithsonian Institute in 1899

and began to research the known theories of aeronautics. Presumably, this would have

included the theories of Bernoulli who, in the early eighteenth century, formulated the

principle relating the velocity and pressure of the flow of fluid/air (e.g., (Giancoli 1988)

pp. 311-312). Techniques in glider design at that time were based on the principle of wing

shape so that the velocity of the air flow above the wing would be greater than the

velocity of the air flow below it. Bernoulli’s principle shows that this results in lower air

pressure above the wing, resulting in the wing lifting. While other factors such as

turbulence also play a significant part, the Wright brothers used this research to identify

the important principles that needed to be addressed to design the aircraft. They were:

wings to provide lift, a power source for propulsion, and a system of control. The control

problem was addressed by realising that the system needed to

be controlled in its three degrees of movement: pitch, yaw,

and roll (figure 3-1). Wilbur devised a method of controlling

the position of the wings during flight so they could be

manipulated to change the direction of the plane. A prototype

test kite was then built to verify the technique. To test the

wings the brothers built a number of gliders, which they tested

at Kittyhawk. After a number of designs were tested, the

brothers used a wind tunnel to refine the shape of their wing

designs and achieve the lift required. Once the control and

wing designs were successfully achieved, the engine and

propeller of the propulsion system were built and the system

as a whole was used to achieve their first flight.

The design strategy of the Wright brothers was much more

sophisticated than simply ‘make it look like a bird, push it off a cliff, and see what

happens’. It is clear they understood the basic principles of aircraft design before they

began. The shape of the wings and airflow across them are the determining factors in the

generation of the lift required for keeping a flying machine off the ground. Moreover, the

Figure 3-1: Pitch, Roll
& Yaw

A History of the Artefact Engineering View

Understanding Software Engineering 104

direction of those wings with respect to the wind controls the direction of that lift. They

realised that the physical characteristics of the form of the wings, their size, shape, mass,

and direction, are crucial design issues. At that time many mathematical techniques and

equations existed to predict those properties. However, they were simply not detailed

enough to model the designs to a level of detail required by the Wright brothers. They

knew the basic principles of aeronautical design. However, because the precise nature of

those principles and the precise physical characteristics of the implementations that

exploited them were not known, working prototypes had to be employed to develop the

design. Again, this is not a criticism of Graham’s analogy. Nevertheless, a deeper analysis

of that analogy can be used to develop a more profound understanding of engineering

design, and, as a consequence, software design.

The Wright brothers could design systems that approximately worked as anticipated.

What they could not do was determine the precision of those designs without testing

them. That principle is evident in the contemporary process of aircraft design.

Mathematical models now exist that define the principles of aeronautical theory and the

properties and form of physical materials. That has allowed aircraft designers to design

and build successful systems with far less reliance on working prototypes. For example,

the Boeing 777 aircraft was the first jetliner to be 100% designed using 3-dimensional

solid modelling technology. The result was the elimination of the requirement for a full-

scale design model to test the assembly of the design (Boeing 1998).

“The 777 is the first Boeing airliner 100% designed using 3-D solid modelling

technology. The software used is CATIA (computer-aided, three dimensional

interactive application) [and ELFINI (Finite Element Analysis System)]

developed by Dassault Systems of France.... The 777 division used more than

2,200 CATIA workstations networked to an eight-mainframe computing

cluster, this being the largest single CAD project anywhere, requiring 3 Tera-

Bytes … of data to store the information. In addition to being a 3-D design

tool, CATIA is also used as a digital pre-assembly tool. In the past, Boeing

built a full-scale non-flying mockup of the complete aircraft to check fit for

interference problems at a cost of 2.25 million dollars. Since the various

systems were designed independently, it was necessary to make sure that a

bolt did not occupy the same physical space as a hydraulic line, or that an

electrical conduit did not run across the middle of a ventilation duct. The

A History of the Artefact Engineering View

Understanding Software Engineering 105

mockup was also used to check accessibility of all the parts for maintenance

work. With a 3-D database that everyone uses simultaneously, the

interference problems are eliminated, and the access question is answered by

maneuvering a digital ‘mechanic’ in 3-D space.” (Schokralla 1998)

The ability to design to specification and schedule has been significantly improved

through the use of CAD technology. It has provided the capability to model the

characteristics of proposed designs at a level of detail necessary for the design to be

validated against the specifications, thereby eliminating the traditional requirement of

developing full-scale, functional prototypes. These models consist of mathematical

representations of the relevant characteristics of the designed system’s physical form.

Moreover, they are evaluated using mathematical representations of the principles and

theories that relate those characteristics in aeronautical research.

The analogies made between aircraft design and software development describe

similarities between the leve l of system understanding, the ability to predict the working

properties of the design, and the ability to design to specification and schedule. Those

analogies appear useful on the surface. However, closer inspection reveals those attributes

of engineering design are based on the ability to model and predict the properties of the

physical building materials from which the system is constructed. Moreover, they are

validated in conjunction with mathematical representations of the theoretical principles of

the discipline. It is not clear what analogous physical properties and theoretical principles

exist in the discipline of software development. This is highlighted in Kinslow’s

comparison that claimed bridge designers do not build systems of unprecedented span

with unknown materials for a kind of traffic not seen before. The ability to support a

particular load is determined by the properties of the physical materials and structural

patterns in which those materials are arranged. For instance, concrete has different load

bearing characteristics than timber and arch bridge arrangements have different load

bearing characteristics than suspension bridge arrangements. In addition, those

characteristics must be considered within the context of environmental conditions such as

potential weather situations and the supporting characteristics of the ground on which the

bridge will be built. Again, the properties of the materials that are used by the discipline

to achieve the requirements appear to have no direct analogue in software development.12

12 Analogies with building design are analysed in greater detail later in this chapter.

A History of the Artefact Engineering View

Understanding Software Engineering 106

Naur used an analogy with automobile design to highlight the importance of large-scale

system partitioning. A statement such as “you can design the motor more or less

independently of the wheels” is essentially true. The implication derived from that

analogy was that software engineers could also enjoy significant development gains

through early system partitioning. For that analogy to be valid, the factors that determine

how a system can be partitioned must also be analogous. However, many dependencies

exist between automobile subassemblies and an analysis of those reveals import insights

concerning the nature of software development and engineering design. While little

design work is performed on the wheels as such, they are cons idered as part of the rolling

chassis, which requires a great deal of design work. It is interesting to examine the

reasons for the general ‘architecture’ of the automobile and the nature of the

dependencies between the subsystems. Is it actually designed to facilitate the separation

of concerns between subsystems, as suggested in the original analogy, or do other factors

exist?

The following description of automobile design is based on a discussion with the Senior

Project Engineer in the Vehicle Performance Group, Holden Ltd (formerly General

Motors Holden Australia) (Beltrami 1998). That discussion covered many issues raised

by the analogy, including:

• The relationship, including dependencies, between wheel design and engine

design.

• The conceptual architecture of the automobile. Identification of the major

subsystems, how the architecture evolved in that manner, and why it has failed to

change from the same basic ‘shape’.

• The relationship between the engine and chassis subsystems and the design

reasoning behind the chosen arrangement between those subsystems.

The only property of the ‘wheel design’ that affects the engine design is its physical size.

Because the wheel size is a determining factor in the ground clearance of the vehicle, it

affects the design of the spatial topology of the engine. Engine design is constrained by

many factors, one of which is that it must occupy set physical dimensions. Another

example of the effect of wheel size on engine design is, to some extent, on cars with

automatic transmission. Wheel size affects engine revs at particular speeds and that is a

determining factor in the design of automatic transmissions. Moreover, the fuel economy

A History of the Artefact Engineering View

Understanding Software Engineering 107

of vehicles, which is often an important criterion of the customer, is affected by engine

revs at cruising speeds, and that is affected by wheel size. For those reasons, wheel size is

often one of the first design decisions made when designing, or making major

modifications to the design of a vehicle.

The conceptual architecture of the automobile at Holden Ltd consists of a number of

major subsystems:

• Powertrain (engine, transmission, differential, gearbox, etc).

• Chassis (suspension, brakes, wheels, floorpan, etc).

• Body (the shell. ie., panel work, bumpers).

• Electrical.

• Trim.

• Materials.

Each of these major subsystems has its own design group within the company (along with

a design group to develop the safety aspects). Naur was correct in detailing the absence of

major dependencies between wheel and engine design, however examining the design

decisions related to the dependencies between the engine and the chassis as a whole

provides a more interesting example. Does this new analogy continue to support Naur’s

implication that the generic architecture of the vehicle has developed to allow

independent design of the chassis and engine?

A vehicle engine needs to generate enough power to pull a total weight of approximately

2300 kilos. That includes the weight of the engine itself, the rest of the vehicle,

passengers, and luggage. That power is delivered via the drivetrain to rotate the wheels.

The movement of those physical components generates inertial forces that significantly

affect the handling of the vehicle as the forces from the engine are transferred to the

chassis at the engine mounting points. The engine and chassis are joined by physical

necessity but they are kept as separate as possible to reduce the effect of these inertial

loads. As the engine revs, the torque produced causes the physical engine to rotate. If it

was rigidly connected to the chassis the entire chassis would move causing severe

handling problems for the driver. That is evident in relatively old, high-powered cars that

connect the engine to the chassis using solid rubber mounts. More recent vehicles use

hydraulic mounts that minimise the torque effects. Because the effects of the engine

A History of the Artefact Engineering View

Understanding Software Engineering 108

forces on the chassis handling are so significant, the designer must make a choice. In the

first option, the chassis and engine could be implemented as a single subsystem using a

counter-balancing flyweight to minimise the engine forces on vehicle handling. That

would provide advantages in other areas such as system simplicity and rigidity but would

result in significantly extra weight and engine size. Alternatively, the engine and chassis

could be designed as separate subsystems. That would minimise the dependencies

between the two but would require the design of relatively complex mounting

arrangements. In automobile design everything affects everything else. New subsystems

must be ‘tuned’ to work as desired and to not affect other subsystems. For instance, even

the position of the indicator stalk affects the design of the driver airbag system. The

dependencies between subsystems are enormous. However, because the system’s design

has evolved over a long period of time, experience has reduced the effects of those

dependencies. Changing to a completely different automobile configuration would require

replacing all those years that have been used to minimise the effects of those

dependencies. Moreover, all the investment put into design, production, and service of the

existing technology would need to be reproduced.

Theories in software architecture, and the original comments by Naur, suggest large-scale

software systems can be partitioned to make use of design teams and to minimise

dependencies between systems. In automobile design however, the design teams are

created to work on the subsystems of an architecture that has evolved over a long period.

The egg and chicken are around the other way. The design of systems in traditional

engineering disciplines requires the manipulation of physical materials and the

combination of components constructed from those materials. The materials and

components interact and exhibit mechanical properties that engineers use to provide the

desired functionality. In addition, undesired properties may exist and their effects on the

desired functionality need to be minimised. The important distinction is that engineers

cannot necessarily ‘produce’ the exact functionality they desire using physical

components. Rather they combine physical components in a system that produces

properties that implement the desired functionality. That is not the case in software

development.

The difficulty in expressing the characteristics of the systems that software developers

construct is exhibited in the analogies used to express the ‘types’ of systems that are built

and, consequently, how the general approach to design is described. For instance, Naur

A History of the Artefact Engineering View

Understanding Software Engineering 109

drew an analogy between the “large, heterogeneous constructions” of software and those

of civil engineering and architecture. Naur’s analogy continued by recommending

Christopher Alexander’s theories in Notes on the Synthesis of Form (Alexander 1964) as

a useful source. Alexander characterises the understanding of a ‘large’ and

‘heterogeneous’ system in the following passages.

“Today more and more design problems are reaching insoluble levels of

complexity. ... To match the growing complexity of problems, there is a

growing body of information and specialist experience. This information is

hard to handle; it is widespread, diffuse, unorganized. ... As a result, although

ideally a form should reflect all the known facts relevant to the design, ... the

technical difficulties of grasping all the information needed for the

construction of such a form are out of hand – and well beyond the fingers of a

single individual.” (op. cit p. 3)

“The reason that iron filing placed on a magnetic field exhibit a pattern ... is

the field they are in is not homogeneous. If the world were totally regular and

homogeneous, there would be no forces, and no forms.” (op. cit p. 15)

According to Alexander, all design problems must achieve some ‘fitness’ between the

form and its context. The context of the problem provides a set of conflicting constraints

and the designer must satisfy them. For example, “The iron filings constitute a form, the

magnetic field a context.” (op. cit p. 20)

These design theories appear applicable to the problems faced by software developers

who also face the challenge of constructing complex systems with a large and conflicting

set of contextual constraints. However, are the design theories of Alexander applicable

because the situations faced by the respective disciplines are truly similar? Although

software development and traditional engineering disciplines utilise similar terms to label

aspects of their design processes, further analysis reveals that the fundamental nature of

those aspects are considerably different. Alexander states, “The ultimate object of design

is form” (op. cit p. 15). However, it is not clear that Alexander’s theories, whilst being

extremely interesting in their own right, are directly applicable to software development.

Obviously design patterns, which are based on Alexander’s theories, have provided

significant benefits for software developers. However, differences between the respective

disciplines suggest the reason why they are useful may be different to the reason they are

A History of the Artefact Engineering View

Understanding Software Engineering 110

beneficial in Alexander’s architecture research13. For instance, the concept of physical

‘form’, which provides the foundation for Alexander’s theories, has no direct analogue in

software systems.

Many analogies were used during the 1968 NATO conference to develop ideas about how

software developers should go about the process of designing and implementing software

systems. However, the insights provided by the conference participants concerning the

nature of software systems and the subsequent analysis of the original analogies shows

the fundamental nature of what the respective disciplines build is significantly different.

Therefore, although the analogies appear valid and much of the terminology is used

across disciplines, significant questions arise concerning the appropriateness of applying

the term ‘engineering’ to software development. The original motivation for doing so was

obviously well intentioned.

“The need for software manufacture to be used on the types of theoretical

foundations and practical disciplines, that are traditional in the established

branches of engineering.” (NATO 1976a)

However, the observations made by the participants, and the subsequent analysis of the

analogies made, shows the application of the analogies do not fully consider the nature of

software systems. At the end of the 1968 conference, many questions existed concerning

the applicability, rather than the original intent, of the term ‘software engineering’.

3.2.3 The 1969 NATO Conference

The most striking aspect of reading the 1969 conference report is the significant change in

attitude of the participants. Like the 1968 report, the 1969 report provides a transcript of

many of the debates that occurred as well as the publication of a selection of the working

papers presented. However, while the structure of the proceedings is similar, the content

is markedly different. In fact, the editors of the reports take great care to detail the

difference in the introduction.

“The intent of the organizers of the Rome [1969] conference was that it

should be devoted to a more detailed study of the technical problems, rather

than including also the managerial problems which figured so largely at

13 This is discussed in chapter seven.

A History of the Artefact Engineering View

Understanding Software Engineering 111

Garmisch [1968]. However, once again, a deliberate and successful attempt

was made to attract an equally wide range of participants. The resulting

conference bore little resemblance to its predecessor. The sense of urgency in

the face of common problems was not so apparent as at Garmisch. Instead, a

lack of communication between different sections of the participants became,

in the editors’ opinions at least, a dominant feature.” (NATO 1976b) p. 145)

The structure of the conference report is similar to the 1968 report. The debates are

grouped into discussions concerning software specification, software quality, software

flexibility/portability, large system case studies, and software engineering education. Like

the 1968 report, the debates contain many insightful observations that highlight aspects of

the nature of software systems and the differences between them and traditionally

engineered systems. For example,

“Schwartz: In my experience on large systems, we have pictured the systems

as a flow of data. On these projects we have people whose sole job is to

develop and to change and re-do table specifications. Wherever possible we

try to have programming languages which divorce the data definition from the

actual procedures…

Randell: I am reluctant to draw a definite line between the concepts of

program and data. One of the nice things about SIMULA is that the concept

of process definition in some sense includes, as special cases, procedure and

data structure definitions.” (op. cit p. 155)

This exchange highlights important observations concerning the interrelationships that

exist between program and data. Moreover, many similar observations are evident in the

transcript. What was noticeably absent, however, was any discussion concerning the

nature of software development and its relationship with engineering disciplines. The

section of the 1968 report that dealt with software engineering education concentrated on

why software developers should look to those other engineering disciplines. Moreover,

the previous analysis and description shows that many issues remained unsolved that

undermined the assumption that the disciplines are analogous. The same section in the

1969 report however, appears to assume that the analogy is valid and the question had

changed from what software engineering has to do with traditional engineering, to what

software engineering has to do with computer science. Indeed, at the risk of inferring too

A History of the Artefact Engineering View

Understanding Software Engineering 112

much from the transcript provided, the assumption that software development is an

engineering discipline appears to pervade the majority of the discussions. At the end of

the conference reports the reader is left with the impression that the discipline of software

development entered the 1968 conference with the proposal that it would like to become

an engineering discipline and needed to examine the relevant issues to see if the goal was

appropriate. It then left the 1969 conference with the belief that it is an engineering

discipline and that only the technical issues about how to successfully engineer software

systems remained to be solved. In the introduction to the 1969 report, the editors make

the following note about the previous year’s conference.

“The Garmisch conference was notable for the range of interests and

experience represented amongst its participants. In fact the complete

spectrum, from the inhabitants of ivory-towered academe to people who were

right in the firing- line, being involved in the direction of really large-scale

software projects, was well covered. The vast majority of these participants

found commonality in a widespread belief as to the extent and seriousness of

the problems facing the area of human endeavor which has, perhaps

somewhat prematurely, been called ‘software engineering’.” (op. cit p. 145)

Although many of the participants still believed the label ‘software engineering’ had been

accepted prematurely, the issue was not questioned in the 1969 conference transcript.

Interestingly, the editors note that the most dominant feature of the conference was the

communication gap that appeared between the participants during the conference.

“Eventually the seriousness of this communication gap, and the realization

that it was but a reflection of the situation in the real world, caused the gap

itself to become a major topic of discussion. Just as the realization of the full

magnitude of the software crisis was the main outcome of the meeting at

Garmisch, it seems to the editors that the realization of the significance and

extent of the communication gap is the most important outcome of the Rome

conference.” (op. cit p. 145)

The final discussion of the conference, which is presented first in the transcript, dealt with

the need to “talk about, rather than just suffer from, the effects of the communication

gap.” (op. cit p. 147). Strachey begins by examining the differences between theory and

practice.

A History of the Artefact Engineering View

Understanding Software Engineering 113

“Strachey: … This sort of debating point is not helpful. The truth of the

matter is that we tend to look with doubt and suspicion at the other side;

whichever side of that particular barrier we are. On one side we say ‘Well,

there’s nothing we can get out of computing science: look at the rubbish that

they are talking’. Or we stand on the other side and look at the very large

programs and we say ‘Goodness me; what rotten techniques they use and

look: they all fail.’

One of the most interesting things that has been shown at this conference is

that these projects don’t all fail. It has been shown that some of the them have

been quite astonishingly successful.” (op. cit p. 147)

The discussion then turns to how the theories of researchers could be demonstrated and

verified so practitioners could adopt them with increased confidence. The discussion of

pilot projects led to an increased distinction between theoreticians and practitioners that

results in the following remarks by Dijkstra and Randell.

“Dijkstra: I would like to comment on the distinction that has been made

between practical and theoretical people. I must stress that I feel this

distinction to be obsolete, worn out, and fruitless. It is no good, if you want to

do anything reasonable, to think you can work with such simple notions. Its

inadequacy, amongst other things, is shown by the fact that I absolutely refuse

to regard myself as either impractical or not theoretical.

…

What is actually happening, I am afraid, is that we all tell each other and

ourselves that software engineering techniques should be improved

considerably, because there is a crisis. But there are a few boundary

conditions which apparently have to be satisfied. I will list them for you:

We may not change our thinking habits.

We may not change our programming tools.

We may not change our hardware.

We may not change our tasks.

We may not change the organisational set-up in which the work has to be

done.

A History of the Artefact Engineering View

Understanding Software Engineering 114

Now under these five immutable boundary conditions, we have to try to

improve matters. This is utterly ridiculous. Thank you. (Applause).

Randell: … ‘There’s none so blind as them that won’t see.’ … If you have

people who are completely stuck in their own ways, whether these are ways

of running large projects without regard for possible new techniques, or

whether these are ways of concentrating all research into areas of ever smaller

relevance or importance, almost no technique that I know of is going to get

these two types of people to communicate. … You have to have good will.

You have to have means for people to find out that what the others talk is

occasionally sense. This conference may occasionally have done a little bit of

that. I wish it had done a lot more. It has indicated what a terrible gulf we so

stupidly have made for ourselves. (op. cit pp. 151-152)

The philosophical gulf between theoreticians and practitioners of software development

appeared suddenly between the 1968 and 1969 conferences. Interestingly its occurrence

coincides with what the editors noted as the premature acceptance of the label ‘software

engineering’.

3.3 The Evolution of the Artefact Engineering View
From the presentation and analysis of that initial understanding of software engineering,

an examination is now presented of how that artefact engineering view of software

development has evolved.

McIlroy’s invited talk at the 1968 NATO conference was one of the first attempts to

directly describe software components in terms of engineering terminology. His Mass

Produced Software Components (McIlroy 1968) is considered a seminal paper on

software reuse (Krueger 1992) and is based on direct analogies with traditional

engineering disciplines.

“Software components (routines), to be widely applicable to different

machines and users, should be available in families arranged according to

precision, robustness, generality, and time-space performance. Existing

sources of components – manufacturers, software houses, users’ groups, and

algorithms collections – lack the breadth of interest or coherence of purpose

to assemble more than one or two members of such families, yet software

A History of the Artefact Engineering View

Understanding Software Engineering 115

production in the large would be enormously helped by the availability of

spectra of high quality routines, quite as mechanical design is abetted by the

existence of families of structural shapes, screws or resistors.” (McIlroy 1968)

McIlroy claims that the existence of a few similar terms between the disciplines provides

some validity to the analogy. However, he also notes that not all terms could be directly

applied between them.

“The idea of subassemblies carries over directly and is well exploited. The

idea of interchangeable parts corresponds roughly to our term ‘modularity’,

and is fitfully respected. Yet this fragile analogy is belied when we seek for

analogues of other tangible symbols of mass production.” (McIlroy 1968)

The basis of McIlroy’s conviction seems to be that software components could be

understood like engineering components. For example, when talking about the use of

table mechanisms in compiler writing, he says, “I claim we have done enough of this to

start taking such things of the shelf.” His subsequent claims about developing a sub-

industry of components with varying degrees of precision, robustness, time-space

performance, and generality were justified using a detailed example of the “lowly sine

function”. That is reinforced with briefer descriptions concerning how the claims can also

be applied to the application areas of numerical approximation routines, input-output

conversion, two and three dimensional geometry, text processing, and storage

management.

It is impossible to argue with McIlroy’s desire to improve the efficiency of software

development by utilising mass produced software components. Especially when the

practice is perceived to be such a fundamental part of traditional engineering design.

“What I have just asked for is simply industrialism, with programming terms

substituted for some of the more mechanically oriented terms appropriate to

mass production. I think there are considerable areas of software ready, if not

overdue, for this approach.” (McIlroy 1968)

However, McIlroy fails to address a number of issues. His claim that software catalogues

could consist of components classified by “precision, robustness, time-space

performance, size limits, and binding time of parameters” appears possible for the small

number of application areas he discussed. The sine function and other application

domains all consist of concepts that are either extremely well defined a priori (e.g.,

A History of the Artefact Engineering View

Understanding Software Engineering 116

mathematics) or the relevant concepts have been suitably codified by practitioners over

time (e.g., input-output functions and compiler writing). Indeed, at that time, there were a

number of very successful families of components that were widely reused (Reed, 1995 in

Reed 2000). It is not clear how McIlroy’s ideas, no matter how well intentioned, apply to

other problem domains in which the relevant components cannot be so easily defined and

parameterised for classification. That was borne out in the subsequent discussion by the

conference participants. Perlis began by noting the following.

“Perlis … Specialists in every part of software have a curious vision of the

world: All parts of software but his are simple and easily parameterized; his is

totally variable.” (McIlroy 1968)

D’Agageyeff suggests why this might be the case.

“d’Agapeyeff: … It is extremely difficult to construct this software [file

handling systems] in a way that is efficient, reliable, and convenient for all

systems and where the nature of the package does not impose itself on the

user. The reason is that you cannot atomize it. Where work has been

successful it tends to be concerned with packages that have some structure. …

But why do we need to take atoms down off the shelf? What you want is a

description which you can understand, because the time it takes to code it into

your own system is really very small. In that way you can insert your own

nuances. The first step in your direction should be better descriptions.”

(McIlroy 1968)

Those comments allude to the importance of identifying the differences between software

components and engineering components. Kolence brought that point back to the nature

of design.

“Kolence: We are concerned with a mass design problem. In talking about the

implementation of software components, the whole concept of how one

designs software is often ignored. Yet this is the key thing.” (McIlroy 1968)

The comments by the conference participants show the initial ideas presented in

McIlroy’s call for software industrialisation are worthy of further investigation. However,

issues concerning the differences between the nature of software design and engineering

design must also be considered. Unfortunately, those concerns were not investigated

A History of the Artefact Engineering View

Understanding Software Engineering 117

further. Other participants in the debate continued to assume the analogies were valid and

that the applicability of the ideas to software development are obvious.

“Naur: What I like about this is the stress on basic building principles, and on

the fact that big systems are made from smaller components. … A

comparison with our hardware colleagues is relevant. Why are they so much

more successful than we are? I believe that one strong reason is that there is a

well established field of electronic engineering, that the young people start

learning about Ohm’s Law at the age of fourteen of thereabouts, and that

resistors and the like are known components with characteristics which have

been expounded at length at the early level of education. The component

principles of our systems must be sorted out in such a form that they can be

put into elementary education.” (McIlroy 1968)

The belief that the “comparison with our hardware colleagues is relevant” was based on

the justification of a small number of perceived similarities with those disciplines. The

important questions concerning the differences however, were not addressed:

What are the component principles of our systems? and

How are they different to traditional engineering disciplines?

The discussion of the previous section shows that between the 1968 and 1969 NATO

conferences these questions appeared to have been either accepted without question,

forgotten, or temporarily replaced by more pressing, short-term, technical problems.

Unfortunately, analysis of the evolution of component ideas in software engineering

shows these fundamentally important questions have rarely come back to the fore.

The 1970s saw great advances in software engineering theory. Brooks’ essays on

software engineering, based on his large-scale system building experience, appeared in

The Mythical Man-Month (Brooks 1975). The introduction of the ‘information-hiding’

concept by Parnas appeared in On the Criteria to be Used in Decomposing Systems into

Modules (Parnas 1972). And the emphasis on large-scale system design issues by

DeRemer appeared in Programming-in-the-Large Versus Programming-in-the-Small

(DeRemer and Kron 1976). All of these are considered canons of the discipline. During

that time the belief that ‘engineering’ could continue to be used as a valid metaphor for

software development remained. Moreover, the questions elicited from McIlroy’s call for

the industrialisation of software engineering were still not addressed.

A History of the Artefact Engineering View

Understanding Software Engineering 118

Fifteen years after the NATO conferences, Wegner published his lengthy discourse,

Capital-Intensive Software Technology (Wegner 1984). He begins with the assumption

that software development could be treated analogously to traditional engineering

development and then extends the engineering metaphor to the understanding of

development resources and products as capital goods.

“Striking similarities between industrial and software technology have led to

considerable borrowing of the terminology of industrial technology for

corresponding concepts of software technology.

…

Any reusable resource may be thought of as a capital good whose

development cost may be recovered over its set of uses. Thus, it seems

reasonable to identify the notion of capital goods with that of reusable

resources and the notion of capital with that of reusability.

…

Capital formation in software technology is dependent on the implementation

of concepts and models rather than on the construction of physical machines.

Our generalized notion of capital includes both conceptual and physical

capital formation because we see reusability as a key denominator.” (Wegner

1984)

Wegner examines the capital- intensive aspects of software development, both in terms of

the existing state of the art and from his predictions about the future. His treatise is

divided into four parts:

1. Software Components: reusability of components, interfaces, function, data, and

process abstractions, distributed and concurrent processes, and object-oriented

concepts.

2. Programming in the Large: paradigms of software technology, paradigms of

development life cycles, and reusable concepts and models.

3. Knowledge Engineering: people-oriented knowledge engineering, knowledge-support

environments, and computer authoring technology.

4. Accomplishments and Deficiencies of Ada: a case study of Ada as a capital- intensive

technology, and an analysis of the question of whether it is a product or a process.

A History of the Artefact Engineering View

Understanding Software Engineering 119

The first two sections identify important issues that concern the applicability of the

artefact engineering view. Wegner identifies the following types of software components:

• Function abstractions: Specified by its input-output relation. Its operation is

dependent solely on the data parameters. The function implementation is hidden

from the user.

• Data abstractions: Able to store an internal state and functionality that determine

the precise operation of the component. Both data and function specifics are

hidden from the user. These correspond with contemporary notions of non-

threaded objects.

• Process abstractions: Similar to data abstractions but have an independently

executing thread of control. These abstractions may operate conc urrently and may

be distributed across machines.

Wegner’s analysis examines aspects of those components that makes them difficult to

treat as capital- intensive resources in the traditional sense. The nature of component

interfaces were investigated, identifying aspects of syntactic, compile-time issues and

semantic, run-time issues that make the realisation of ‘plug-and-socket’ models of

program construction from existing components difficult. For process models, the

analysis highlights concurrency control issues and global data sharing as aspects that

differ from conventional notions of component interaction.

Rather than examining why those differences exist and how they affect the validity of the

artefact engineering view, Wegner’s discussion implies they will be solved by dealing

with issues in development process models. Specifically, the future application of

knowledge engineering techniques to the software development process to help the

software developer in the construction of those systems. His analysis of issues concerning

abstraction, specialisation, pattern recognition, and reusable models, are very useful and

predict some current issues in software architecture and design patterns. However, while

the discussion does identify specific differences between the capital- intensive goods of

software technology and those of traditional engineering, it does not examine them in

enough detail to identify the underlying principles of software technology, nor does it

determine if they invalidate the artefact engineering view of software development.

Wegner’s conclusion states that those differences will be accounted for in the future

application of expert-system approaches to the software development domain. However,

A History of the Artefact Engineering View

Understanding Software Engineering 120

the benefit of 15 years of hindsight shows that has not occurred, despite considerable

research. It may be that Wegner’s principles were correct and that more research is

needed. However, other comments in his paper suggest the differences might be more

fundamental and the metaphor itself needs to be examined in more detailed. His analysis

of reusability made the following statement.

“At the present time, reuse of a component in successive versions of an

evolving program appears to be a more important source of increased

productivity than reuse of code in different applications. Components are

rarely portable between applications, and even if they are, the incremental

benefit of using a component in two applications is only a factor of two. But

the number of versions of a systems over its lifetime can number in the

hundreds or even the thousands.” (Wegner 1984)

Wegner’s examination of the differences between software and traditional capital-

intensive components fails to explore this issue even though the ability to easily reuse

components across systems is fundamental to traditional engineering. Subsequent

research in reuse technology has examined those issues in more detail but has also failed

to provide a software component marketplace that rivals traditional engineering

components. Moreover, a precise examination of the differences between what an

application is in the respective disciplines has also never been made. Once again, it may

be that more research is required. However, Wegner later makes an insight about the

understanding of software components that questions the metaphor for understanding.

When discussing the importance of knowledge engineering in the software development

process, he states,

“Euclid’s Elements, a magnificent piece of knowledge engineering, provided

a basis for managing geometrical knowledge.” (Wegner 1984).

The implication of the subsequent discussion was that the future application of knowledge

engineering would identify a similar foundation for software engineering knowledge.

Research has shown that Euclid’s foundations are not the solid basis of geometrical

knowledge that Wegner asserts. It is only one, though the most popular and ‘default’ one,

of many axiomatic foundations of geometry. If Wegner’s analogy is valid, how does the

A History of the Artefact Engineering View

Understanding Software Engineering 121

issue of conceptual relativism affect the ability of the software engineering research

community to identify its founding principles? 14

At approximately that time, Spector and Gifford contributed to the research debate by

publishing A Computer Science Perspective on Bridge Design (Spector and Gifford

1986). They interviewed a partner in a consulting engineering firm that specialised in

bridge design and believed the results provided experience and insights that could be of

use for computer systems designers – both software and hardware. Their questions

covered topics from the design process, project management and organisation, tool use,

reliability and failures.

Spector and Gifford draw analogies between bridge design and software development

based on some obvious similarities.

“Structural engineers decompose a bridge into a hierarchy of subcomponents,

all of which are ultimately constructed from relatively simply objects like

beams and plates. Programs … for example, are also hierarchically

decomposed, but the primitives are instructions… Dynamically, the bridge-

design process is arranged so that separate groups can address separate

aspects of the design. A bridge-designer’s concerns for functionality,

reliability, serviceability, and even aesthetics are familiar to computer systems

designers.” (Spector and Gifford 1986)

They also note some general differences.

“The most noticeable difference is that the bridge-design process is much

more structured than computer systems design. Similar design

decompositions and project organizations are used for each bridge. Standard

specifications … further constrain designs, by mandating standardized

requirements and constraints on materials.” (Spector and Gifford 1986)

Specific differences were also detailed and classified in terms of attention to reliability,

the use of tools, standardised bridge requirements, standardised material specifications,

formal design documents, and separations of design from implementation.

14 Chapter five discusses these issues in further detail.

A History of the Artefact Engineering View

Understanding Software Engineering 122

The authors conclude that this mature engineering discipline might provide a “glimpse of

the future of computer system design”.

“As computer science matures, there may be more standardized specifications

and designs. When the design space for certain application areas becomes

more constrained, it may be possible to produce clearer specifications earlier

in the design phase. Reliability guarantees may assume increasing

importance, and the use of tools may become more prevalent.” (Spector and

Gifford 1986)

Spector and Gifford’s analysis finishes with caveats that suggest the differences between

the disciplines may make specific predictions about the future of software engineering

difficult. However, questions and answers provided in the interview can be used to

highlight additional glimpses of the component principles of engineering disciplines and

help determine whether they are applicable to software systems.

On the surface, the design processes appear similar. The interviewee identified bridge-

design as consisting of preliminary design, main design, and construction phases. The

preliminary design phase is directly analogous to the initial architecture design stages of

software development. The preliminary design stage “describes the various alternative

structures that were considered, estimates the costs of each alternative, and usually

recommends one of the designs” (Spector and Gifford 1986). The main design stage

appears similar to other parts of the analysis and design phases of software development.

“The main design phase involves a complete structural design, making

drawings, and writing specifications that describe the tests that materials must

pass before they can be used, their quantities, and some of the construction

techniques. In effect, the bridge is completely specified during the main

design phase.” (Spector and Gifford 1986)

However, detailed descriptions of how the main design phase of bridge-design is

performed highlights principles of engineering component s that simply do not exist in

software components. The first step in the design process is to establish the design

criteria, or detailed specifications, that the bridge must meet. Those criteria are specified

in terms of specific stresses and loadings that the structure must cope with. Those criteria

are context independent in the sense that they are applicable to all bridges. Indeed, the

A History of the Artefact Engineering View

Understanding Software Engineering 123

American Association of State Highway and Transport Officials (AASHTO) publishes an

annually revised design specification document that all bridges must meet.

“[It] prescribes load capacities for vehicular traffic in terms of weight,

number, and frequency. It gives design loads for wind and outlines procedures

for obtaining seismic loads. It sets allowable stresses for steel, concrete, and

other materials, and details design rules for such components as stiffeners,

columns, etc. It indicates what tests are necessary for various materials before

they can be approved for use. Most of the individual specifications are

component specifications, although some specifications are given on a system

basis.” (Spector and Gifford 1986)

This provides the starting point for the design specification, however additional criteria

must also be established.

“For example, creep is the deformation over time of a material under constant

stress. The formula for creep is not universal, so we specify the formula that

we’ll use for a particular project. Another factor of increasing importance

with larger bridges is natural phenomena: If a bridge is in an area where

hurricanes can occur, or where there is considerable seismic activity, we have

to establish appropriate design loadings to account for these phenomena. The

goal is to establish acceptable bounds in terms of the relevant probability of

risk and the cost and importance of the project.” (Spector and Gifford 1986).

A mathematical model of the design, which was accepted in the preliminary design phase,

is then created. It specifies “where joints, pins, and other connections are to be placed –

we would consider, for instance, how the bridge should be connected to the piers. We try

to get a general outline of the various components of the bridge” (Spector and Gifford

1986). That mathematical model is then evaluated against the detailed specifications,

which are also represented in mathematical notation, to ensure the design will meet the

requirements.

“There’s the dead load of the structure itself, as well as the live load of the

vehicles on the bridge. We have to determine how many situations to account

for. Do we combine the live load with a full hurricane wind? The answer is

‘no’ because there wouldn’t be vehicles on the bridge during a hurricane. …

We also have various safety factors for each combination. … This level of

A History of the Artefact Engineering View

Understanding Software Engineering 124

analysis gives us the forces acting on all the components.” (Spector and

Gifford 1986)

This process is remarkably similar to the process identified in the analysis of engineering

designs for the cruise control systems discussed in the previous chapter. Engineering

disciplines can identify the fundamental principles of their disciple and represent them in

the context-free language of mathematics. Moreover, they have also developed techniques

for representing the properties of their components and systems/structures using similar

notations. Those designs can be evaluated with respect to the requirements, and

predictions about the success of the design can be made. That has provided a significant

improvement in the design of traditional engineering systems.

“I have to admire the courage of those pioneer engineers, trying to build long

flexible bridges without the benefit of much analysis or knowledge of the

dynamic effects of the wind … We’ve since learned how to actually calculate

most of the stresses and deflections from all types of loads… Up until the

1950’s we were using slide rules and desk calculators to help determine the

forces on components. On reasonably large, indeterminate structures, we used

approximation techniques to reduce the number of simultaneous equations

that needed solving. That would leave us with a maximum of 25 simultaneous

equations that needed solving… With the advent of computers, we returned to

classical analysis techniques with matrix methods. This allowed us to

routinely solve hundreds of simultaneous equations. I think the aeronautical

industry really led the way in this area… Today we’re also using finite-

element methods, which allow us to combine linear components with plate

elements, and even to compute stresses in solids. With these methods, we’re

able to calculate the response of just about any type of structure to any

conceivable load, static or dynamic.” (Spector and Gifford 1986)

Obviously, spectacular engineering failures have occurred – see for example (Petroski

1994). Spector and Gifford broached this subject in their interview. If specifications and

designs can both be modelled and evaluated formally using mathematical techniques, why

do failures occur? They report that failures generally occur when engineers extrapolate

beyond their knowledge or models. Engineers still must decide what needs to modelled

and to what level of precision. They also need to determine safety factors to account for

variability in loads and materials, which can never been modelled exactly, as well as

A History of the Artefact Engineering View

Understanding Software Engineering 125

errors that may occur due material fatigue. Significant failures have also occurred due to

errors introduced during the connection of the components.

The ability to mathematically model the fundamental component principles of their

discipline allows traditional engineers to analyse and verify their designs before

construction. That point was also made by Smith and Dallen who published a comparison

of software engineering design and VLSI design, also in the mid 1980s (Smith and Dallen

1984). Interestingly, that publication compared the two disciplines from the VLSI

perspective rather than the other research reported here which describes the software

engineer’s perspective on the processes of other engineers. Their report begins by

drawing analogies between the disciplines.

“There are good reasons for drawing analogies between the VLSI and

software design processes. All design methodologies, irrespective of the

discipline, embody the same developmental stages. A conceptual model is

transformed into a physical reality by gradually refining the implementation

details. The design is tested and evaluated to verify that it meets the design

objectives or requirements.” (Smith and Dallen 1984)

The comparison describes the design process of the two disciplines and maps them onto a

common framework for analysis. One of the main conclusions of their analysis is that

both disciplines face similar problems in the area of design verification and analysis.

“Key to the timely evaluation of a design is in early measurement against

design objectives. While issues of design quality are recognized as important,

no real place has been found for insuring design quality in the design process.

If real progress is to be made in VLSI and software engineering, both function

AND quality will have to be coped with early in the design process. This

dictates the need for a better balance in the use of proofs, analysis, and

simulation in support of both software and VLSI design.” (Smith and Dallen

1984)

By the beginning of the 1990s, software engineering research was providing more

detailed discussions about what was required of software development in order to become

an engineering discipline. Those publications and debates detail many useful goals and

ideals, however none of them address the fundamental questions that arose at the end of

A History of the Artefact Engineering View

Understanding Software Engineering 126

the NATO conferences twenty years earlier – What are the underlying principles of

software components and systems and how are they different to traditional engineering

disciplines?

IEEE Software published a special issue in 1990 on The Challenge of Software

Development. The guest editors, Lewis and Oman, note that the understanding of

software components was the driving force for the evolution of the discipline. Yet, while

other aspects of computing had made rapid advancements, software development

methodology was still “little more than a black-art” (Lewis and Omen 1990). The journal

gathered 15 academic and industry people to discuss the problem and they identified two

broad themes:

• There is an untapped potential for productivity gains through the reuse of standard

software components.

• There is a trend toward greater reliance on tools like rapid application-

development and design tools.

As part of that journal issue, a number of papers were published that highlight current

thinking in the area. Two of those captured the understanding of software components

and how a software engineering discipline could evolve. In Prospects for an Engineering

Discipline of Software (Shaw 1990), Shaw examines the issues to be addressed for

software development to become an engineering discipline. Summarising many different

definitions of the term ‘engineering’, Shaw abstracts out the following common

principles.

“Creating cost-effective solutions … to practical problems … by applying

scientific knowledge … building things … in the service of mankind.” (Shaw

1990)

The development of that scientific knowledge was examined by discussing the evolution

of engineering disciplines – in particular civil engineering and chemical engineering.

Shaw notes that as those fields evolved from simple crafts to professiona l disciplines two

important processes took place. The disciplines developed the ability to capture and pass

on the rationale of routine designs and they helped develop and utilise a supporting

science that could explain and predict the fundamental properties of proposed designs.

A History of the Artefact Engineering View

Understanding Software Engineering 127

Based on that analysis, Shaw proposed two tasks to assist the evolution of software

development towards and engineering discipline. They were:

• pick an appropriate mix of short-term, pragmatic, possibly purely empirical

contributions that help to stabilise commercial practice and

• invest in long term efforts to develop and make available basic scientific

contributions. (Shaw 1990)

The endeavour to identify, collate, and disseminate designs and their rationale from

known implementations proceeded rapidly from approximately that time. Shaw herself

had been previously working on software systems abstractions (Shaw 1984) and at about

the same time as the Prospects … paper, she also published one of the first specific papers

on software architecture. That paper attempts to identify and classify well-known large-

scale system structures (Shaw 1989). Since then, software architecture research has

produced many useful theories and case studies to capture and disseminate large-scale

design rationale. Similarly, research in design patterns has also sought to capture and

disseminate useful rationale from existing designs. However, the second point made by

Shaw has received far less attention from the research community. Shaw noted that

computer science has developed some good models and theories to contribute to the

supporting science of software engineering. Algorithms and data structures, programming

language semantics and type systems, and compiler design theories have all been used to

improve the design practices of the discipline. However, no contribution to the ‘scientific

foundations’ of software systems has allowed the same systematic design process to be

applied to all software systems as, for example, the way Newtonian mechanics provided a

foundation for mechanical and civil engineering.

The other interesting paper in that IEEE Software issue was Planning the Software

Industrial Revolution by Cox (Cox 1990). Published 20 years after the NATO

conferences, its thesis is similar to McIlroy’s original call for mass produced software

components. Cox suggested that software engineering research had been predominately

concerned with improving development processes and needed to change to a product-

centric paradigm.

“The familiar process-centric paradigm of software engineering, where

progress is measured by advancement of the software-development process,

... The paradigm that may launch the Information Age is the same one that

A History of the Artefact Engineering View

Understanding Software Engineering 128

launched the Manufacturing Age 200 years ago. It is a product-centric

paradigm in which progress is measured by the accretion of standard,

interchangeable, reusable, components and only secondarily by advancing the

processes used to build them.” (Cox 1990).

While much of the motivation was the same as McIlroy’s, Cox notes that the emergence

of object-oriented technology could now provide a basis to allow people to reason about

software components in a similar manner to how they reason about tangible components

in other disciplines.

“In the broadest sense, ‘object-orientated’ refers to an objective, not a

technology for achieving it. It means wielding all the tools we can muster,

from well-proven antiques like Cobol to missing ones like specification

languages, to enable our consumers by letting them reason about our products

via the commonsense skills we all use to understand tangible objects.” (Cox

1990)

Cox identifies a number of differences between software components and traditional

engineering components: complexity, nonconformity and mutability, intangibility

(invisibility), single-threadedness, and ease of duplication. He argues that the issue of

intangibility could be overcome with object-oriented technology. He deals with the other

issues in subsequent publications (Cox 1991; Cox 1992).

Cox’s arguments did not examine, however, how components are understood in the

respective disciplines. He argues that software reuse could overcome the issue of

intangibility. However, his arguments do not examine how the design processes of other

disciplines are able to reason in terms of the underlying component principles and utilise

existing components to meet design objectives which are stated in terms of those

principles. The question of the underlying principles of software component principles

was still not addressed.

The introductory paper by Lewis and Oman in that IEEE Software issue provided a

summary of software engineering evolution. Their conclusion was that the challenge for

the 1990’s was to develop a sufficient understanding of the development process to

automate it as much as possible. This would provide the evolutionary path for software

engineering research in the 1990s.

A History of the Artefact Engineering View

Understanding Software Engineering 129

“1990 and beyond: This era will see the application of expert-system

techniques to software engineering. The combination of software-engineering

workstations, expert systems, and automated techniques for development will

find widespread use in the software industry.” (Lewis and Omen 1990)

That prediction is similar to the one made by Wegner many years earlier (Wegner 1984).

Lowry, in Software Engineering in the Twenty-First Century (Lowry 1992), examines in

detail the impact of knowledge-based approaches on software engineering. He

summarises attempts to apply AI techniques to software engineering at the beginning of

the 1990s and makes predictions about the future. His proposal is ‘transformational

programming’ where prototyping, validation, and modifications are done at the

specification level and automatic program synthesis translates specifications into

efficient-code. One of the central features of transformational programming is software

architecture.

“To support software developers, software architectures will include the

functional roles of major software components and their interrelationships

stated in an application-oriented language; a domain theory that provides

precise semantics for use in automated reasoning; libraries of prototype

components with executable specifications; program synthesis capability to

produce optimized code for components after a prototype system has been

validated; a constraint system for reasoning about the consistency of a

developing software system; and design records that link requirements to

design decisions.” (Lowry 1992)

According to Lowry, that revolution in software engineering would result in “a broad

consensus that knowledge-based methods will lead to fundamentally new roles in the

software-engineering life cycle and a revised view of software as human knowledge that

is encapsulated and represented in machine manipulable form” (Lowry 1992).

That picture of the future of software engineering is quite attractive. Moreover, Lowry

goes into extensive detail about how it would be achieved and the benefits it would

produce. However, two important assumptions about the nature of software components

were made by Lowry that were never examined. First, there was an assumption that those

domain- level ‘knowledge components’ could be thought of and manipulated in a similar

manner to traditionally engineered components. Many of the predictions made were based

A History of the Artefact Engineering View

Understanding Software Engineering 130

on the future ability to adequately formalise those concepts and store them for potential

reuse. The justification for the assumption was that existing techniques and future

expectations in the area of AI show that it may be possible. However, to date that has

certainly not been the case. There is no evidence to believe that ‘knowledge components’

can be universally defined and formalised in computer implementable terms.

The second assumption concerns how those components could be reused to construct a

system. Lowry notes that the major obstacle to be overcome was the ability to control the

search for potentially reusable components during the program synthesis stage. That point

assumes that software components could be sought out and used to realise the domain-

level components identified during the initial stages of design. It assumes that

components could be found to meet the design rather than designs being generated to

utilise the component-base. Moreover, the justification assumes that that was how the

process occurs in traditional engineering design.

The inability to adequately describe the underlying principles or scientific knowledge of

software components was addressed by an ACM Task Force on the Core of Computer

Science. That report, Computing as a Discipline (Denning, Comer et al. 1989), identifies

3 different paradigms that pervade software development.

“The three major paradigms, or cultural styles, by which we approach our

work provide a context for our definition of the discipline of computing. The

first paradigm, theory, is rooted in mathematics and consists of our steps

followed in the development of a coherent, valid theory: (1) characterize

objects of study (definition); (2) hypothesize possible relationships among

them (theorem); (3) determine whether the relationships are true (proof); (4)

interpret results. …

The second paradigm, abstraction (modeling), is rooted in the experimental

scientific method and consist of four stages that are followed in the

investigation of a phenomenon: (1) form a hypothesis; (2) construct a model

and make a prediction; (3) design an experiment and collect data; (4) analyze

results. …

The third paradigm, design, is rooted in engineering and consists of four steps

followed in the construction of a system (or device) to solve a given problem:

A History of the Artefact Engineering View

Understanding Software Engineering 131

(1) state requirements; (2) state specifications; (3) design and implement the

system; (4) test the system.” (Denning, Comer et al. 1989)

Software developers face the unique situation where they must deal with all of those

paradigms simultaneously. Moreover, the autho rs suggest that research efforts face the

problem of having to devise explanatory theories that encompass all of the issues.

Research may sound plausible when they explain development theories in terms of one of

those paradigms, however all of them must be considered.

“Many debates about the relative merits of mathematics, science, and

engineering are implicitly based on an assumption that one of the three

processes (theory, abstraction, or design) is the most fundamental. Closer

examination, however, reveals that in computing the three processes are so

intricately intertwined that it is irrational to say that one is fundamental. …

The three processes are of equal – and fundamental – importance in the

discipline, which is a unique blend of interaction among theory, abstraction,

and design.” (Denning, Comer et al. 1989)

During the early to mid 1990s, many research agendas progressed based on the artefact

engineering view of software development. Research ideas in software architecture,

object-oriented technology, domain modelling, and design and component reuse rely on

that guiding assumption. D’Ippolito notes that one of the differences between traditional

engineering and software engineering is that engineers are able to model their designs in

order to compare them with the requirements and make predictions about the

implementation (D'Ippolito and Plinta 1989). His research group advocates the use of

domain modelling to provide similar benefits for software engineering and provide

examples in the simulation of military systems (D'Ippolito and Lee 1992a). The ability to

successfully model the components of real-world tangible systems is then extrapolated to

suggest the approach could be applied to all software systems and provide the basis of

software engineering. Indeed, they claim it puts the “engineering into software

engineering” (D'Ippolito and Lee 1992b).

Similar ideas have been put forward by researchers in software composition. For instance,

the Ithica (Intelligent Tools for Highly Advanced Commercial Applications) Esprit II

Project proposed a component-based approach to application development based on

A History of the Artefact Engineering View

Understanding Software Engineering 132

object-oriented technology, domain modelling, software architectures and system

frameworks (Nierstrasz, Tsichritzis et al. 1991; Fugini, Nierstrasz et al. 1992; Nierstrasz,

Gibbs et al. 1992; Tsichritzis, Nierstrasz et al. 1992). Despite some successful

applications, Nierstrasz notes that many issues are still to be resolved. Those issues relate

to component connections and composition models, and useful graphical abstractions to

represent software components (Nierstrasz and Meijler 1995).

Other research issues have also been developed through analogies with engineering

disciplines. Kogut developed ideas about design reuse by comparing software engineering

with chemical engineering (Kogut 1994; Kogut 1995) and Leveson explained important

issues in software system safety by comparing them with progress in steam engine design

(Leveson 1992).

Research in software reuse also developed ideas that suggest software systems

components could be developed, located, and synthesised into application systems in

analogous ways to other engineering systems. For instance, (Castano and DeAntonellis

1993; D'Alessandro, Iachini et al. 1993; Fugini and Faustle 1993).

The emergent research field of software architecture has also used many comparisons

with traditional engineering systems. For example, Van der Linden’s research into

constructing large-scale systems from ‘building blocks’ (Linden and Muller 1995); Perry

& Wolf’s foundations for software architecture (Perry and Wolfe 1992); Kructhen’s

explanation of the different types of software architecture in terms of the architecture

views (Kruchten 1995); Inverardi’s explanation of software architecture’s as processes of

chemical reactions (Inverardi and Wolf 1995); and Whitehead’s explanation that software

architecture can be used as the basis for a component marketplace (Whitehead, Robbins et

al. 1995).

Despite all these publications being based on the artefact engineering view of software

development, not all research agreed that engineering should be used as a metaphor for

understanding software development. Once again, their disagreement identifies the

underlying principles of the components and systems as the stumbling block. For

example, Marco, in his book Software Engineering: Concepts and Management, states

the following:

“The logical nature of the product ... is the major difference between software

‘engineering’ and real ‘engineering’. Because of this … there are few physical

A History of the Artefact Engineering View

Understanding Software Engineering 133

laws which can be used to model, describe, or predict the behavior of

software. Obviously some mathematical ‘laws’ are relevant to software, but

these have not yet been demonstrated to fill the role that physical laws do in

other forms of development. It is because of the lack of physical laws that the

software aspect of computer science is sometimes called artificial science –

like political science or social science – rather than natural science like

physics or chemistry.” (Marco 1990)

This does not suggest that rigorous mathematics cannot be used in software development.

It states that what is represented by the mathematics used is completely different in the

respective disciplines and cannot be used to justify the analogies.

Moreover, researchers in fields such as software architecture, which do subscribe at least

implicitly to the artefact engineering view, identify problems not found in other

engineering disciplines. For instance, Garlan identifies a number of reasons why it is so

difficult to build software systems out of existing parts (Garlan, Allen et al. 1995).

1. Assumptions about the nature of the components: Many software components make

assumptions about supporting infrastructure that exists within those components or

within other components. They make assumptions about how the thread of control is

passed through a collection of components as they are executed. Finally, they make

assumptions about the nature of the data that they will be manipulating.

2. Assumptions about the nature of the connectors: Software components make

assumptions about the protocol or pattern of interaction that will be made between

them. They also make assumptions about the nature of the data that is passed during

that communication.

3. Assumptions about the global architectural structure: Software components make

assumptions about the other large-scale subsystems that exist and the global

architecture style that governs their means of communication and their visibility.

4. Assumptions about the construction process: Some software components, especially

those concerned with the instantiation or initialisation of an application make

assumptions about the order in which the application is ‘constructed’ or instantiated.

Those assumptions are not made by components of other engineering disciplines and they

provide a glimpse into the unique nature of software components and systems. Further

research suggests those differences could be addressed by considering the component

A History of the Artefact Engineering View

Understanding Software Engineering 134

interfaces in more detail (e.g., (Shaw 1995a)) however, they do not address the

fundamental, underlying principles of software components that require them to make

those assumptions and why they are not required by other engineering components.

From the mid 90s onwards, a number of publications questioned the artefact engineering

view explicitly or provided more detailed analysis of the fundamental nature of software

systems and components. During the 1995 ICSE conference Jackson gave a keynote

speech The World and the Machine (Jackson 1995).

“The requirement – that is, the problem – is in the world; the machine is the

solution we construct. The point is trite and obvious. But perhaps we have yet

to come to terms with it, to understand it fully, and act on that understanding.”

(Jackson 1995)

Jackson examines the relationship between software systems and the world to which they

apply and identifies a number of interesting facets.

• the modelling facet, where the machine simulates the world;

• the interface facet, where the world touches the machine physically;

• the engineering facet, where the machine acts as an engine of control over the

behaviour of the world; and

• the problem facet, where the shape of the world and of the problem influences the

shape of the machine and of the solution.

He notes that a number of issues make it difficult for software developers to deal with

those facets of the relationship between the world and the machine and provides a number

of useful principles to observe when dealing with them. The core of Jackson’s

observations were concerned with the how the problems in the world could be modelled

successfully in the machine.

“Traditionally, I am claiming, we pay too little attention to the world in which

our problems are found.” (Jackson 1995)

The issues that needed to be addressed by software engineering researchers were: it’s

difficult to successfully model the world, there are many different and valid views of the

world, and the common language terms used to capture the descriptions of the world are

inherently ambiguous.

A History of the Artefact Engineering View

Understanding Software Engineering 135

Gilb also notes the problem of ambiguous terms, but in relation to how software

engineers describe the design process. Terms like ‘system’, ‘design’, and ‘component’

have well-understood meanings in traditional engineering disciplines but they have not

been defined appropriately for the discipline of software development. Therefore, before

researchers continue to develop theories for “What should software engineering be?”, he

suggests they should concentrate on the questions: “What is engineering?” and “What is

software engineering?” (Gilb 1996).

Those two questions were indirectly addressed by other research emerging at that time.

Wasserman, in Toward a Discipline of Software Engineering (Wasserman 1996),

identifies eight fundamental concepts that have emerged and remained constant during

software engineering research. Consequently, he claims those concepts provide a

foundation for determining “What is software engineering?”

• Abstraction: The ability to deal with complex problems by suppressing some of

the unnecessary lower- level detail. It allows developers to represent concepts and

terms that are familiar in the problem and solution domains. Moreover, it is the

central concept of information hiding.

• Analysis and Design Methods and Notations: Analysis methods provide a means

of formalising the problem domain. Design deals with the structure of the system

implementation. There is a cognitive leap to be performed from the problem to the

solution and methods attempt to assist this process. However, lack of universal

design notations and the interrelated nature of the two processes make this concept

difficult to deal with.

• User Interface Prototyping: User Interface prototyping is essential for quickly

developing and determining the requirements of the system with the client.

Moreover, the UI is important for the effective use of the system. However, it is

clear that good interface design skills are different from those needed in other

aspects of development.

• Modularity and Architecture: Issues of large-scale and large-granularity design

significantly influence the quality of systems. Architecture styles and design

patterns are providing standardised or, at least, better-publicised, design

exemplars.

A History of the Artefact Engineering View

Understanding Software Engineering 136

• Life Cycle and Process: A well-defined and manageable process provides benefits

for software developers. Considerable research attention has been focussed on

processes, however it appears as though the issue of software process is not as

fundamental to software engineering as are abstraction and modularization.

• Reuse: The long-standing notion of component reuse is essential to a discipline of

software engineering. Some small-granularity reuse success has been achieved,

however success beyond the level of function and well-defined class libraries has

proved to be more difficult.

• Metrics: Metrics currently exist for testing, quality assurance and cost estimation.

However, it is impossible to measure improvements in software engineering

without a well-defined set of items to be measured and accurate measurements of

current practice.

• Tools and Integrated Environments: Integrated support for the development

process is essential to improve software engineering. However, the diverse range

of existing environments reflects the wide range of development processes and

methods currently being used.

All of those concepts have proved to be extremely useful in software development.

However, they all contain aspects that are not completely understood and are the subject

of ongoing research efforts. Those aspects are related to the fact that software engineering

researchers have not been able to identify the fundamental principles of software

components and systems – the supporting science for software engineering.

Xia examines several of those issues in Software Engineering: a methodological analysis

(Xia 1997). He also notes that software engineering must develop its supporting science,

however current research efforts produce results based on concepts that are not properly

defined or universally understood. Moreover, those long-term research efforts are often

overlooked because of pressing business concerns to produce short-term solutions.

Commentaries on software engineering education have suggested aspects of the software

supporting science. Maibaum attempts to identify the praxis of software engineering so it

could be formalised and taught to software engineering students.

“Is the knowledge used by software engineers different in character from that

used by engineers from the conventional disciplines? The latter are

A History of the Artefact Engineering View

Understanding Software Engineering 137

underpinned not just by mathematics, but also by some physical science(s) –

providing models of the world in terms of which artifacts must be understood.

… Software engineering may be distinguished from other engineering

disciplines because the artifacts constructed by the latter are physical, whereas

those constructed by the former are conceptual.” (Maibaum 1997)

Moreover, Maibaum notes that the ‘real world’ constrains the construction of physical

systems in a way that is has no analogue in the engineering of concepts and abstractions.

The subsequent assertion is that logic should become the supporting science of software

engineering because “logic is the mathematics of concepts and abstractions”. Maibaum’s

justification is that philosophical logicians have been dealing with concepts and

abstractions long before the existence of computers. However, he seems to ignore the

work done by philosophers in epistemology and metaphysics who have also been dealing

with concepts and abstractions long before the existence of computers but who do not

define them in terms of logic.

Parnas has also published many articles on software engineering education, specifically

on the difference between computer science and software engineering (see for example

(Parnas 1997; Parnas 1999)). His argument that computer science and software

engineering should be treated as different disciplines is quite valid. However, the

examination of computer science as the supporting science of software engineering does

not detail the exact nature of that science. He notes that “Engineers do use mathematics”.

Therefore, software engineers should use mathematics. Indeed,

“Every programmer uses ‘formal methods’ because programs are formal and

programming is formalisation. However, in software we use different

mathematics! We need discrete mathematics and notations suited for

piecewise continuous functions (tabular expressions).” (Parnas 1997)

There is no examination of how concepts and abstractions can be represented using

formal methods and what are the limitations of that approach. Just because formal

methods can be used to represent some aspects of software engineering does not

necessarily mean it is the supporting science being searched for. The problem is nobody

has proved it either way.

An emphasis on modelling can also be seen in the relatively new area of Systems

Engineering. This area of software development has arisen out of traditional engineering

A History of the Artefact Engineering View

Understanding Software Engineering 138

disciplines such as control systems, automotive engineering, and the computerisation of

what were originally mechanical systems. One of the central tasks of the systems

engineering process is to model the solution to clarify requirements and analyse

alternative solutions (see for example). The main practitioners are in fact engineers, and

in terms of this discussion, are converting existing artefacts into software models. This

line of thinking traces back to the comments on D’Ippolito earlier in this chapter.

However, just like those earlier comments, the modelling approach taken by systems

engineers fails to consider how the ability to successfully model the components of real-

world tangible systems is then extrapolated to be successfully applied to all software

systems

Finally, recent research has provided renewed emphasis on component-based software

engineering (CBSE). However, while research is progressing and some results are being

used in practice, researchers note that “there’s little agreement on what ‘components’ and

‘component-based software engineering’ are” (Kozaczynski and Booch 1998). Brown and

Wallnau provide a summary of the closing discussions at the workshop on CBSE at ICSE

98 (Brown and Wallnau 1998). Those workshop participants provide a number of

definitions of what a component is, however Brown and Wallnau note a number of key

differences between those definitions. Aspects of component granularity, context

dependence, and component autonomy differ between the various definitions. Those

aspects have no direct analogues in traditional engineering components and are similar to

the problems previously identified by Garlan that make it difficult to construct software

systems from existing building blocks. The report notes that while research has yet to

identify the fundamental principles of software components and systems, commercial

utilisation of CBSE is progressing based on interface constraints imposed by the

somewhat standardised, commercial component infrastructure products. Moreover, the

consensus in the research community is that those research problems will be solved and

that CBSE provides one of the best prospects for improving software engineering in the

next century (McConnell 2000).

3.4 Conclusion
The term ‘software engineering’ was coined for the 1968 NATO conference. An analysis

of that conference showed the term was suggested merely to provide a starting point for

discussion concerned with improving software development. It appears as though the

A History of the Artefact Engineering View

Understanding Software Engineering 139

term was implicitly accepted even though many problems with it were identified. The

assumption was that the metaphor of engineering was useful for software development

and that those problems would be solved by subsequent research. An analysis of that

research shows one question has continued to arise but has never been thoroughly

addressed. What are the fundamental principles of software components and systems?

Research has suggested that identifying and developing the supporting science of

software engineering can solve that fundamental issue. Moreover, the supporting science

must somehow deal with a critical difference between software systems and traditionally

engineered systems. Software systems are based, somehow, on the notions of concepts

and abstractions whereas traditionally engineered systems are constrained by their

physical tangibility and can be understood by using mathematical representations from

the physical sciences. Moreover, research suggests that the supporting science of software

engineering is somehow based on the mathematical representations of logic. Those issues

were summed up in the paper by Baber – Comparison of Electrical “Engineering” of

Heaviside’s Times and Software “Engineering” of Our Times (Baber 1997). An analysis

of that paper, however, shows our understanding of the similarities and differences

between software and traditional engineering is still not sophisticated enough.

Baber’s paper argues that software development is not yet an engineering discipline, at

least not in the sense commonly accepted by traditional engineering disciplines. Rather,

what is practised today is a pre-engineering phase of what can and should become a true

engineering discipline. By examining the transition of those traditional disciplines from

their pre-engineering phases to their current state, we could learn from their successes and

failures, and accelerate our own transition.

By examining the history of electrical engineering during its transition period and by

using supporting examples from shipbuilding and bridge design, Baber identifies three

phases in the evolution of an engineering discipline.

1. The “pre-engineering” phase where the evolution of the discipline is driven by

practical needs and concerns. General properties and relationships of the building

materials of the discipline are identified and formulated into “rules of thumb” to assist

practitioners.

2. The “consolidation” phase which marks the beginning of the transition from a

practice-driven discipline to a theory-driven one. The observations and generalised

A History of the Artefact Engineering View

Understanding Software Engineering 140

rules identified during the pre-engineering phase are codified and integrated into

formal, mathematical theories which explain the interaction between the underlying

“quantities of interest” of the discipline.

3. The “reformulation and reorganisation” phase in which the theoretical work is

repackaged in a manner which makes it more useable for the practitioner. Because the

theoretical work, which explains the interaction of the “quantities of interest”, usually

consists of very complex mathematics, it needs to be made more useable and to be

shown as beneficial to the developer. This step allows the practitioners of the

discipline to move to a theory-driven approach.

During the practice-driven approach to development, the practitioner is only able to

represent the physical form of the system design. However, once developers begin to

utilise knowledge of the theoretical foundations of the discipline it becomes possible to

represent particular properties of the proposed system. That enabled the designer to model

the design with a representation that provides the ability to predict the suitability of the

design to serve a particular purpose or to meet some predetermined requirements.

Although the use of theoretical foundations provides significant leverage in system

design, Baber’s historical analysis shows there was considerable opposition to the

utilisation of that theory-driven development. That opposition came from the established

members of the discipline who held positions of considerable authority and influence.

Consequently, a division occurred between the proponents of the respective approaches.

They each developed their own conflicting theories and resulting predictions of

observable phenomena. Whilst the theory-driven practitioners were able to prove the

validity of their own theories while the practice-driven theories could not, it was not

enough to convert all of the practitioners away from the traditional approaches.

Baber presents a detailed timeline of the events that marked the transition period of

electrical engineering. Those events feature specific examples of engineering design

problems caused by the practice-driven approach, examples of the rift that occurred as

members of the discipline moved towards theory-driven development, and the specific

examples which mark the three phases of the transition process.

1. Pre-Engineering Phase: Examples of the design errors caused by the practice-driven

mentality of the discipline. For instance, in 1856 the chief electrician of the Atlantic

Telegraph Company, Whitehouse, ruined the first transatlantic cable by applying an

A History of the Artefact Engineering View

Understanding Software Engineering 141

input voltage that theoretical analysis had predicted would be too great. Whitehouse

was aware of that theoretical analysis and had chosen to ignore it.

2. Consolidation Phase: In 1873, Maxwell published twenty equations which, by

building on the general theories of others, succeeded in explaining the relationships

between the fundamental quantities of the discipline. The fundamental quantities of

interest in electricity were: the electric field, the magnetic field, and the electric

charge. The secondary quantities of interest included: current, time rate of change of

electric field, time rate of change of magnetic field, and voltage. However, due to the

complexity of the mathematics, the ability to successfully use his theories was beyond

the reach of almost all electrical practitioners.

3. Reformulation and Reorganisation: Oliver Heaviside saw a copy of Maxwell’s

theories when they were published and immediately realised their potential for

improving the design of electrical systems. However, it took Heaviside many years to

fully understand and apply those theories in practical usage. For instance, in 1877 he

“explained theoretically why the maximum working speed of an undersea telegraph

circuit was different in the two directions” (Baber 1997). In 1887, in co-operation

with his brother, he wrote a paper that included for the first time the condition for

distortionless transmission. Although they were theoretically valid, both those

examples, and others, faced opposition from proponents of the practice-driven

approach because they contradicted existing theories. In fact, it was not until around

1890 that the “balance of power and influence” began to change from the practice-

driven practitioners to the theory-driven ones.

Baber’s understanding of the evolution of engineering disciplines is similar to the view

taken by the researchers already presented in this chapter. From that understanding, he

draws an analogy with software engineering by presenting a selection of events, errors,

and failures from the history of software development. Baber asserts that the fundamental

cause of the failures were the same as those in the field of electrical engineering – the

“lack of a scientific, mathematical foundation or failure to apply whatever such basis may

exist” (Baber 1997). He proposes that,

“The solutions to our problems today, while different in detail, will be

fundamentally and essentially the same as the solutions to those problems a

100 years ago: developing a scientific, mathematical basis for the work of the

A History of the Artefact Engineering View

Understanding Software Engineering 142

engineer and structuring and organizing it to facilitate its regular practical

application.” (Baber 1997)

The software system failures, according to Baber, are evidence that software development

is in the pre-engineering phase of evolutionary progress. However, he suggests research

ideas exist that mark the beginning of the other phases. For Baber, the beginning of the

Consolidation Phase occurs in 1967 when Robert Floyd presented the paper, Assigning

Meanings to Programs, in the Symposium of Applied Mathematics. It presents a complex

method for analysing a computer program to determine whether its execution would fulfil

certain execution criteria. The beginning of the Reformulation and Reorganisation Phase

is subsequently marked by the work of Hoare (Hoare 1969) and others, who summarised

Floyd’s work and applied those concepts to practical software development problems.

However, while Baber identifies these events, which he claims mark the beginning of the

phases, he notes the phases are not yet complete so it is impossible to determine if they in

fact correspond to those in electrical engineering.

Those “formal methods” techniques have since become the subject of much software

engineering research. However, they have had little impact on software development in

practice. Baber’s conviction in formal methods leads him to suggest that software

engineering’s reluctance to utilise formal methods is similar to the resistance to theory-

based development experienced in electrical engineering. He concludes with the

following remarks:

“The analogy between the traditional engineering disciplines and software

development suggests that software development also will undergo a

transition to an engineering field in the current sense of the term. If the

analogy continues to hold, we can expect software engineering tomorrow to

be characterized by the regular use of predictive models based on a

mathematical, scientific, and theoretical foundation.” (Baber 1997)

But how far does the analogy continue to hold? Based on the work of Floyd and Hoare,

software developers are able to determine, mathematically, whether the execution of a

computer program fulfils certain criteria, such as paths of execution and values of

variables. According to Baber, that is analogous to the ability of electrical engineers to

represent, mathematically, the quantities of interest of their discipline.

A History of the Artefact Engineering View

Understanding Software Engineering 143

At first glance, the paper by Hoare, and the subsequent work by other formal methods

researchers appears to be analogous to the use of mathematics by engineers. Formal

methods provide a rigorous technique for proving what a program does. Therefore, it can

be used to determine whether the implemented system meets its objectives.

“One of the most important properties of a program is whether or not it carries

out its intended function. The intended function of a program, or part of a

program, can be specified by making general assertions about the values

which the relevant variables will take after execution of the program.” (Hoare

1969)

That is analogous to how engineers use mathematical techniques to prove their designs

meet the required objectives. However, engineers also use mathematical techniques to

model and analyse their requirements, and model the required properties of their major

components. That is in addition to proving the correctness of the designs. The previous

chapter that analyses the cruise control designs detailed the use of modelling in the

engineering designs. During the analysis and design stages, the engineers developed

mathematical models of system and component properties, models of vehicle motion as a

whole, models of environmental influences, and models of human driving behaviour.

Those were in addition to the models used to prove the correctness of the system during

the implementation and testing stages.

The application of formal methods in software engineering does not occur during the

analysis and design stages of software development in an analogous way. They differ in

terms of what is modelled. The engineering analysis section of the Cruise Control chapter

noted that the models used by engineers are not models of abstract functionality. They are

models of how the underlying properties of the discipline, which engineering components

exhibit and manipulate, are used by engineers to realise the required functionality. This

crucial difference between engineering components and software components becomes

clearer by looking briefly at the evolution of engineering components.

In the history of electronic engineering, the notion of an ‘electric’ force was identified in

natural phenomena and used by people to produce useful devices. For example, as far

back as 50 BC, electric eels were used to treat arthritic conditions even though nobody

know how or why it worked (Hill 1975).

A History of the Artefact Engineering View

Understanding Software Engineering 144

Science, in its attempt to understand nature, conducted experiments on that natural force

and discovered that different materials produced interesting effects. Those properties and

effects were labelled voltage, current, resistance, capacitance, and inductance. Many

experiments were performed and mathematical relationships were determined to explain

those effects on the underlying properties of the discipline. Those mathematical

relationships, such as Ohm’s law, represent idealised effects on the properties of the

discipline. Many more experiments had to be performed to determine how physical

materials could be guaranteed to meet those idealised effects. Take resistance as an

example. Scientists discovered that some physical materials restricted the flow of current

and that could be used to produce useful effects. However, they could not guarantee or

predict the amount of resistance it would give. Ohm was able to explain, mathematically,

that the relationship between the voltage applied across the terminals of a resisting device

and the current passing through it should remain constant at a constant temperature. That

is the device’s ‘resistance’. His analysis was based on many experiments and

considerable mathematical analysis using analogies with the known laws of fluid

dynamics (Jungnickel and McCormmach 1986). However, physical materials did not

naturally exhibit that definition of an idealised resistance. Considerable experimentation

was performed to identify how well physical materials could be made to match that

idealised definition of resistance (Marsten 1962). For example Barrett published the

results of experiments of over 100 different materials to determine their resistance

(Barrett, Brown et al. 1902). Moreover, Dummer provides a bibliography of

approximately 350 publications on the nature of resistance in different materials which he

claims is only a starting point for a more complete catalogue (Dummer 1956). Those

experiments were also hampered by the fact that the devices used to measure the concept

of resistance could not be guaranteed to work predictably enough to use Ohm’s law. It

was not until Wheatstone developed a technique of measuring resistance that was immune

to variations in the other components of the system that the resistance of physical

materials could be determined (Powers 1976). Finally, it was discovered that physical

resistors only approximated the idealised concept of resistance over particular

temperature ranges, frequency ranges, and particular geometries of physical materials.

Similar progress was made on the other idealised electronic components – for example

capacitance (Podolsky 1962).

A History of the Artefact Engineering View

Understanding Software Engineering 145

Therefore, there exists no physical material that precisely exhibits the concept of

resistance as specified by Ohm’s Law. However, research and experimentation has shown

that certain materials, constructed in particular physical arrangements, and used in a

constrained operating environment, can be made to approximate that specification of

resistance for the purposes of using that law to engineer predictable systems.

The result is that mathematical models were not discovered to explain the effects of

physical materials on the underlying properties of the discipline. Rather, it was discovered

that the effects of physical materials on those underlying properties could be made to

conform to idealised mathematical models. Those mathematical models could then be

used to predict the effects of components within particular environmental parameters.

Using those idealised concepts, circuit theories were devised to explain how they could be

predictably combined. Those circuit theories were formulated using the known physical

laws of conservation of charge and conservation of ene rgy (Gray 1969). System design

could then proceed based on those mathematical idealisations of components and

systems. In fact, circuit theory is concerned solely with mathematical idealisations of

circuit elements and not with physical components (Belevitch 1962). Further analysis of

the history electronic engineering reveals design soon became constrained so that

functionality was thought of solely in terms of those idealised components and their

combinations (Darnell 1958; Brothers 1962; Darnell 1962). Readers may also be

interested in Susskind’s detailed examination of the early history of electronics (Susskind

1968a; Susskind 1968b; Susskind 1969a; Susskind 1969b; Susskind 1970a; Susskind

1970b).

Engineers are constrained to thinking in terms of functionality that can be achieved using

the underling materials and methods of their discipline. In the case of electronic

engineering, the most basic functionality was identified during the discipline’s evolution

and was able to be explained using mathematical idealisations. When the physical

materials could be constrained to meet those mathematical idealisations, designers were

able to use mathematical techniques to represent the requirements of their designs. The

same mathematical techniques could also be used to represent the proposed functionality

of their systems. The design process then proceeds by using techniques to solve the

mathematical equations relating the requirements and the possib le functionality.

This is not how formal methods are used in software engineering. In electronic

engineering, the requirements are represented in terms of functionality performed on the

A History of the Artefact Engineering View

Understanding Software Engineering 146

underlying properties of the discipline. That functionality can then be specified using

mathematical techniques and the components of the discipline can be used to realize that

mathematical specification. There are no analogous underlying properties in the discipline

of software development. The requirements are represented using concepts and

abstractions. The implementation medium of software development is used to refine and

implement those concepts and abstractions. It is not until those concepts and abstractions

are refined to a very low level of granularity that formal methods can be used.

It may be argued that the discipline of software engineering is simply waiting for its

‘Newton’ to come along (Gallagher 1997) and identify the appropriate underlying

principles of the discipline. Moreover, it may be possible to develop a discipline of

software engineering by constraining the component base to a subset of axiomatic

‘idealisations’ that will allow us to develop systems analogously to traditional engineers.

Those suggestions cannot be properly evaluated without a thorough investigation of what

software developers deal with – concepts and abstractions. That is the subject of Chapter

5 of this thesis. Before that however, the thesis turns to an analysis of the artefact

engineering view of software development when applied to a specific aspect of software

engineering research – software architecture.

An Understanding of Software Architecture

Understanding Software Engineering 147

4. An Example of Understanding Based on the
Artefact Engineering View – Software
Architecture

4.1 Introduction
Software engineers have been discussing the architecture of their systems since the late

1960s and software architecture research has been a separate field of study since the late

1980s. While the discipline is still quite new and the ideas are still solidifying, confusion

exists concerning the nature and meaning of software architecture and that confusion is

restricting the progress of software architecture research and the adoption of its ideas in

practice. For instance, the call for papers for a recent IFIP conference on software

architecture (Perry 1998) details the need to address the following questions:

1. What are the most difficult tasks performed by practising software architects and what

is available from research to help solve them?

2. Where are the gaps between business needs and research results, and what can be

done to bridge those gaps?

3. What are the important problems being addressed in research and why are they (or

why are they not) relevant to practice?

Mobray (Mobray 1998) recognises the importance of architecture research ideas and

discusses why they are so hard to put into practice. He notes that software architecture

ideas differ because of confused terminology, the lack of complete models, and

disagreement about which views of the system are necessary. One reason for the

differences is the lack of a universally agreed definition or even understanding of what

software architecture is or should be. Bennett (Bennett 1997) captures the result of that

confused understanding by noting that the research community is almost unanimous in its

conviction that software architecture describes something about the structure of a system

and that it plays a vital role in determining the systems emergent properties. However,

they are much less unanimous on the questions of which elements should be included in

the architecture, how to co-ordinate different collections of those elements (views), and

how to evaluate the architecture against the external requirements. The problem is not that

An Understanding of Software Architecture

Understanding Software Engineering 148

there are no answers to these problems, rather, the difficulty arises from the fact that there

have been so many different answers given.

The confusion exists because the understanding of the term architecture is based on

analogies with traditional engineering or building disciplines. That way of understanding

is a consequence of the artefact engineering view of software development and is evident

in the philosophy of the self-proclaimed ‘World-wide Institute of Software Architects’

(WWISA 1999):

“There is a compelling analogy between building and software construction.

It is not new, but it has never taken root and bloomed. The analogy is not just

convenient or superficial. It is truly profound. It not only raises the right

questions, it has the answer to what has been called ‘The Software Crisis.’

Software architecture is now at a point identical to where building

architecture was in the mid-1800’s as it faced the inventive momentum of the

industrial revolution. Now, as then, people with very different skills and roles

can – and do – call themselves architects. In 1998, they refer to themselves as

software architects despite training as engineers or programmers, not

architects. However, it is no longer adequate for a software craftsman with a

flair for design to build the huge, complex infrastructures of the information

revolution. …

Software systems are being built in a manner akin to erecting an office

building without an architect and without clear roles.” (WWISA 1999)

This chapter examines our understanding of software architecture by presenting an

architecture-centric case study of a software system and then a chronological review of

the theoretical understanding of software architecture. The case study provides practical

examples of architecture issues by tracing the large-scale system structures used during

the design, implementation and maintenance of the HyperEdit system. It also highlights

architecture issues that are not easily explainable within the current understanding of

software architecture. The final section traces the history of architecture ideas in software

engineering research and shows the current understanding of architecture is based on

analogies with traditional engineering disciplines. Further analysis however, shows two

fundamental differences exist between the types of systems built by software developers

and traditional engineers or architects, and those differences undermine the validity of

An Understanding of Software Architecture

Understanding Software Engineering 149

those analogies. The result is that the confusion surrounding software architecture can

only be removed if a better understanding of software development as a whole can be

achieved.

4.2 HyperEdit: A Case Study in Software Architecture
This section presents a case study in software architecture. The system under study is the

diagram meta-editor system, HyperEdit, which is one of a collection of co-operating tools

designed to support software engineering design activities. The development of that tool

suite formed the HyperCase project (Cybulski and Reed 1992) of the Amdahl Australian

Intelligent Tools Program (AAITP), a co-operative research effort between Amdahl

Australia and La Trobe University.

This case study was originally intended to provide a tangible basis for a discussion of

research ideas in software architecture. However, it soon became apparent that significant

differences exist between theory and practice and the case study was expanded to

investigate those differences. That investigation considered the design rationale used by

the development team and identified software development issues that affected the

architecture decision making process. The concluding remarks apply resulting insights to

architecture research as a whole.

The HyperEdit application was chosen as the subject for the study because it was the first

application to be developed within the project and it had a six-year period of evolution.

That evolution was the result of revisions in its core functional requirements and to its

responsibilities as a member of the co-operating tools within the evolving HyperCase

project. That is, changes to the architecture of the larger system within which it operated.

The term ‘large-scale application’ is obviously as relative one. The HyperEdit system

contained requirements that resulted in subsystems that are common in many ‘large-scale

applications’ – regardless of their size. They include the ability to communicate with

other applications, the ability to manipulate large amounts of data that is stored in a

remote repository, and complex GUI manipulation capabilities.

The study begins with a brief description of the global HyperCase environment and its

evolution. Subsequent sections detail the evolution of the HyperEdit architecture. They

include descriptions used in the original design documents and representations developed

during maintenance procedures. Because developers other than the original implementers

performed that maintenance process, the documentation has enabled identification of

An Understanding of Software Architecture

Understanding Software Engineering 150

system representations that were beneficial in acquiring the knowledge necessary to

perform system modifications. The concluding sections discuss factors that influenced the

architecture decision making of the design team and, finally, the results are compared

with existing theories in software architecture research.

4.2.1 The Global HyperCase Architecture

The HyperCase environment is a loosely coupled collection of design support tools used

to develop the documents produced during the software engineering process. In addition,

all of the documents produced can be interconnected using a hypertext connection

mechanism. In the original conception (Cybulski and Reed 1992) the tool suite consisted

of a number of front-end authoring tools, a number of design support tools (such as

configuration management and design reasoning recording), and management support

tools (such as a project tracking (Cleary and Reed 1993)). Figure 4-1 depicts the

architecture of the

original system concept.

The authoring tools,

including HyperEdit,

would communicate to

the document repository

(HyperBase) using the

communication

mechanism (EventTalk).

The tools advise the

HyperBase of all user-

instigated changes to the documents; those changes are applied; and the front-end tools

are informed to update their displays appropriately. Relevant support tools are then

invoked, and finally, the HyperBase modifies the persistent data in the physical repository

(HyperDict).

The final architecture of the implemented HyperCase system turned out to be quite

different to the original conception. It consists of a central message server, which co-

ordinates communication between the clients of the system, a central repository that

stores the majority of the persistent data in the system, and the series of application tools.

Moreover, each user is supported by a link server that co-ordinates and creates the

Figure 4-1: Original HyperCase Conceptual Architecture

An Understanding of Software Architecture

Understanding Software Engineering 151

hypertext links, and a

hypertext server, which

launches new applications,

navigates through the

system, and follows the

hypertext links (figure 4-2).

The message server, a

subscribe/dispatch system,

is responsible for all inter-

client and client-repository communications. Client applications subscribe to particular

classes of messages and all client-generated messages are addressed to either a particular

message class or a particular application. That mechanism facilitates point-to-point,

broadcast, and multicast methods of inter-client communication. An additional advantage

of the message-server architecture is that individual tools are well insulated from changes

made to other tools.

The core functional requirements of the original HyperCase concept were realised in the

initial implementation. However, the gross structural arrangement is quite different from

the original conceptual architecture. The implemented HyperCase system differed from

its original conception for two reasons. These are worth noting because they relate to the

HyperEdit case study.

• First, many of the changes were due to increased knowledge of implementation

alternatives and system partitioning and intercommunication alternatives as the

project proceeded.

• Second, the HyperCase project comprised a number of individual tools that were

the product of independent Ph.D. research projects. The implementation of those

tools proceeded at varying speeds and their designs were continually modified as

the relevant research ideas evolved.

4.2.2 The HyperEdit System

In presenting the software architectures that were devised or utilised during the evolution

of HyperEdit, the following phases are considered:

• The original system concept and requirements.

Figure 4-2: HyperCase Implemented Architecture

An Understanding of Software Architecture

Understanding Software Engineering 152

• Initial implementation.

• Reverse engineering and maintenance process.

The discussion is based on the textual descriptions and high- level graphical

representations used in the documents produced during the various phases of the project

lifecycle. In addition, individual project member’s recollections of the architectures

discussed during design meetings that were not recorded in project documentation were

also utilised.

4.2.2.1 Original System Concept

HyperEdit was part of a research project whose aim was to produce proof-of-concept

tools. Accordingly, the original requirements were stated as a loosely defined collection

of ideas that evolved over time, rather than a rigorously defined specification document.

The central requirement, as proposed by Jacob Cybulski, was to produce a graphical

editor editor. That is, an application that would allow the graphical creation of the tools

required to produce the software engineering diagrams developed during a project’s

lifecycle. The process of defining the specific editors was to be purely graphical. The

concept became known in the project as the ‘graphical definition paradigm’ and was a

major intellectual challenge.

Conceptually, the system would be started in a meta-editor mode that would allow the

definition of a particular type of diagram editor. That definition process would consist of

the design and construction of the

graphical objects to be manipulated

during the creation of a particular

diagram style. For example, the creation

of a state-transition diagram editor would

require the identification of the objects

that exist in that style of diagram, the

states and transitions, and their particular

attributes. In addition, it would require

the identification of the operations that

could be performed on those objects by

the editor. For example, the ability to

change the visual appearance of the

“HyperEdit, a graphical editor construction tool, ...

incorporates windows, menus, object-oriented

graphics, and mouse control. Unlike other tools, its

customisation is fully interactive and totally user-

driven, there is no need for HyperEdit or the

application re-programming, recompilation, nor

relinking. Such extendibility is achieved by the

availability of a HyperEdit meta-editor in which

users can define tailor-made editors, their window

and page layout, the type and look of editable

graphical objects, finally the editor buttons, controls,

menus and their behaviour.” (Cybulski and

Proestakis 1991)

An Understanding of Software Architecture

Understanding Software Engineering 153

objects, such as text annotations, and the ability to connect the objects together.

The definition of specific editor objects required the ability to define the following

functionality through graphical manipulation:

• The definition of the visual appearance of the objects.

• The definition of object customisation. E.g., which attributes will be modifiable in

the eventual specific editor (text fields, line colours, fill styles, etc).

• The definition of connection rules. E.g., the implementation of syntax-directed

editing through the specification of how objects can connect to other objects.

The definition of specific editor functionality included:

• The definition of the Graphical User Interface (GUI) layout.

• The definition of the functionality available to the user, specified through possible

menu items.

After defining the objects, connection rules, and available functionality of a particular

diagram editor, HyperEdit could be started as that specific editor.

The original design goal included a requirement to

provide a clear delineation between the visual

representation of a diagram and its semantic content.

It would then be possible to utilise HyperEdit to

represent the same structured, software design

document in terms of different software

diagramming techniques (figure 4-3). For instance, a

textual representation of object definitions would

exist in the repository and they could be represented

using particular flavours of object-oriented analysis

methods (e.g., Booch, Rumbaugh, or UML). Moreover, it was a requirement to

dynamically update the visual presentation and diagram editor definitions without

needing to shut down and ‘re-compile’ the system. For example, if the connection rules of

a particular diagram style were modified or a new component was added to the palette of

a particular editor, those changes would be propagated and incorporated into currently

executing HyperEdits. Because multiple instances of a specific HyperEdit editor could be

running simultaneously, the system was required to communicate with other HyperEdit

Figure 4-3: HyperEdit
Conceptual Architecture

An Understanding of Software Architecture

Understanding Software Engineering 154

instances, in addition to the repository, to update object, diagram and editor definitions

while the application was executing. Furthermore, the multiple executing HyperEdits

could be distributed across many networked machines.

The document describing the original HyperEdit concept (Cybulski and Proestakis 1991)

contained a section describing the ‘system architecture’. It details the major functional

components of the system. Unfortunately, it does not include a graphical representation.

“Three major sub-systems may be identified in the HyperEdit architecture,

ISDUIMS, SAT and EventTalk. Their brief description follows:

• SDUIMS (ISD User Interface Management System): The core of

HyperEdit presentation layer consists of a number of text and graphic

primitives. The primitives are of sufficiently high level to facilitate

functional expression, ease of use, and flexibility in the creation of

windows, dialogue boxes, menus, palettes, buttons, text and graphics, all

to be mouse and keyboard controlled. …

• SAT (Systems Analysis Tools): To assist with quick acceptance and

efficient cross-over to HyperEdit, ... the system is equipped with a number

of standard text and graphics editors, which could be used in the

construction of system analysis and design documents. E.g., data flow

diagrams, entity-relationship diagrams, … etc.

• EventTalk: HyperEdit allows full control over text and graphics editors

from some other user program via a specially devised communication

protocol – EventTalk. The main objective of EventTalk is to advise the

controlling program of all user- instigated changes to the document

contents associated with the creation, deletion and editing of its

components … so that it could perform validation of user actions.”

(Cybulski and Proestakis 1991)

4.2.2.2 Initial HyperEdit Implementation

The initial implementation of HyperEdit differed from its original conception in terms of

both functionality and gross structural architecture. The core requirements, the ability to

define, produce, and utilise specific software diagram editors, and support the graphical

object definition of the components contained within those editors, was achieved.

An Understanding of Software Architecture

Understanding Software Engineering 155

However, the ability to customise the functionality of specific editors was not

implemented. Moreover, the clear separation between the visual presentation and the

semantic content of diagrams was not attained. Nevertheless, the primary goal, the ability

to graphically create and utilise different diagram editors, was realised.

Figure 4-4 depicts the utilisation of the implemented HyperEdit system. The diagram on

the left shows HyperEdit in its object-editor mode being use to create a new

‘documentation object’, which will be used in entity-relationship diagrams. Its visual

appearance is synthesised from a collection of graphic primitives and its specific

behaviour is enabled by providing menu interfaces to standard graphical object

functionality. The object is subsequently utilised in the entity-relationship diagram, which

shows the documentation object having the ability to modify the value of its text and the

ability to use its visual attributes to depict some user-defined status. Those abilities were

specified during the object’s creation.

In the project documentation the architecture of the implemented system was depicted

using two different graphical representations. The first was a layered system that

described the gross structure of a single executing HyperEdit with well-defined interfaces

between the major components (figure 4-5) (Proestakis 1993).

• The HyperEdit layer provides the collection of diagram manipulation functions.

• The ET (EventTalk) library is the protocol level of communication between the

particular HyperEdit and the other executing HyperEdits and the repository.

• The Message Server layer is the physical, distributed communication mechanism,

which was implemented in a Blackboard style.

Figure 4-4: HyperEdit Object Editor and Entity Relationship Editor

An Understanding of Software Architecture

Understanding Software Engineering 156

• The Database Server provides the functionality

necessary to interact with the physical repository.

A second architecture was required to represent the

operation of multiple HyperEdit instances executing on

distributed machines (figure 4-6). That architecture depicts

the distributed nature and communication requirements of

the system, which are hidden in the abstraction model of the

layered architecture.

The need for different representations of the system highlights two interesting

architectural issues. The first concerns why those two architectures were required and the

differences between what they represent. The second concerns the types of connections

that exist between the components of software systems.

The layered architecture uses individual layers to represent the major functional

components that exist in any single instantiation of the system. The complexity of the

communication detail is hidden in the abstraction of the ‘ET library’ and ‘Blackboard’

layers, while that detail is explicitly depicted in the distributed blackboard architecture.

Figure 4-5: HyperEdit
Layered Architecture

Figure 4-6: HyperEdit Distributed Communications Architecture

An Understanding of Software Architecture

Understanding Software Engineering 157

This use of abstraction is a well-known property of particular architecture views and is a

consequence of information hiding in good software engineering design.

However, unlike the layered architecture, the distributed blackboard architecture shows

the HyperEdit system can consist of multiple instances of itself. Those multiple instances

can run simultaneously on distributed machines, communicating with each other as well

as with a common data repository. This feature of software architecture – the ability of a

system to be connected with multiple executing instances of itself – does not exist in any

other discipline. An opposing argument

could cite two electronics chips of the

same type connected together. However,

in the HyperEdit example, and for

software systems in general, two or

more separate software instances can be

executed and communicate with each

other from a sole, implemented,

executable program file15.

The other interesting architectural issue

concerns the types of connections that

exist between the components of the

software system and their visibility in

the source code implementation. In the

layered architecture, there are

differences between how the individual

layers are realised and how they

interface with each other. At the highest

level, the HyperEdit engine and

EventTalk (ET) routines exist in the

same executing HyperEdit process. The

program modules that explicitly

implement those layers are evident in an

15 This unique feature of software systems is discussed in more detail later in the chapter.

“The logical black board system is implemented

through a network of local message servers. There is

one message server on every node running one or

more HyperEdit editors. The messages are distributed

through the database server, which acts as the

governing executive / message distributor for the

black board system. The message server therefore has

several functions. Firstly, it acts as the interface

mechanism between the database or future knowledge

base and the executing HyperEdits; ... Secondly, it

provides a local storage mechanism, ... Thirdly, the

message server acts as the local controller for

hypertext operation.”

"The message server is implemented using remote

procedure calls, as is the database server. ... At this

point, there are only two remote functions,

ETBBSendMessage and ETMessageReceived. ... On

receiving a remote call, the server interrogates the

type of message and acts accordingly. … The

HyperEDIT editors then process the message and

send a reply to the black board executive (database

server). … The database server then collates the

replies, determines if any further actions are required

and sends control messages to the message servers.”

(Proestakis 1993)

An Understanding of Software Architecture

Understanding Software Engineering 158

examination of the source code and the connections between components are procedural

invocations in that source code.

In contrast, the blackboard system operates as a separately executing process and is used

by HyperEdit to facilitate the communication between individual HyperEdit applications

and the repository. The blackboard system has an instantiation on each node of the

distributed system. Unlike the HyperEdit engine and ET routines, the source code that

implements the blackboard functionality is not found in the HyperEdit source code.

However, the interface calls to the blackboard mechanism are evident. To utilise the

blackboard ‘layer’ the HyperEdit application must incorporate a library of routines that

implement the interface to that layer at link time. This is due to the actual implementation

of the blackboard system. The concept of link-time incorporation of library routines in

software implementation and execution is such an established part of software

development that it does not appear no teworthy. However, because the concept does not

exist in other disciplines, and the design and construction processes of those disciplines

serve, at least partly, as the basis for developing architecture theories for software

engineering, it needs to be considered.

The implementation of the message servers, which exist within the blackboard

communication mechanism, are realised using operating system pipes and remote

procedure calls. Consequently, the HyperEdit layer and the Blackboard layer operate as

two distinct system processes that communicate through operating system, rather than

source code, connections. The interface connections between the layers are evident in the

procedure calls to the appropriate routines. However, the implementation of the

Blackboard layer exists in a separately executing process. Again, this is not a feature of

the design and construction of corporeal artefacts.

The source code modules that implement the final layer of the architecture, the Database

Server, similarly do not exis t in the HyperEdit source code. However, unlike the

blackboard mechanism that becomes a layer of the application during the linking stage,

the invocation of the database interface routines is not evident anywhere in the HyperEdit

code or Blackboard layer code.

The database server is a separately executing process that may exist anywhere on the

network. It interfaces to the blackboard layer by linking in the appropriate library of

routines. The communication between HyperEdit and the appropriate database routine is

An Understanding of Software Architecture

Understanding Software Engineering 159

made possible by sending a message

through the blackboard interface, which is

then interpreted by the database server.

The appropriate database routine is not

invoked by a direct procedure call from

the preceding layer. It is invoked by

interpreting attributes of an abstract data

type that is read from the blackboard.

That is, the routine to invoke is

determined by analysing the value of the data that is passed through the connection. There

is no explicit path of procedural invocation that can be traced from the HyperEdit engine

routines, through the ET interface, to the blackboard interface, and finally, to the database

server. This is evident in the text-box description of the Database Server (DBMS)

implementation.

To summarise, three types of software component connection were identified:

1. Source component to an internal source component: Those procedural invocations

exist between source modules that both exist in the implemented source code.

Furthermore, large-scale abstractions of component connections are explicitly evident

in the source code.

2. Source component to an explicit, external source component: Those procedural

invocations connect source code modules with other modules that have been

implemented in external libraries. Those libraries do not become part of the system

until they are linked. Moreover, they may be third party packages for which there is

no available source code implementation. Therefore, the architecture abstractions are

based on components that are known about in the source code but the details of those

components may only be evident in the machine code of the system.

3. Source component to an implicit, external source component: A module invocation

exists, as in the previous two cases, however it is used to pass on a data structure to an

auxiliary software system. The auxiliary software system uses the value of the data

structure to determine which internal module should be invoked. In this situation,

architecture connections are based on components that may not be known about by

“The final component [the DBMS] is responsible

for the information storage and retrieval

requirements of the HyperEdit system. This layer

also introduces a further layer of abstraction, as

its implementation is not database or file

management method specific. That is, the server’s

interface is static, but the implementation of the

data access routines is flexible, in terms of

interfacing with the user’s site storage

mechanisms.” (Proestakis 1993)

An Understanding of Software Architecture

Understanding Software Engineering 160

the source system and are only evident in the executing machine code of external

processes, possibly running on other machines.

This range of connection types highlights the way in which software architectures abstract

away unnecessary implementation detail. However, it is worth noting that these types of

component connections are not evident in other engineering disciplines. Moreover, it

highlights the difficulty in identifying the boundaries between communicating software

systems.

4.2.2.3 Architectures used during System Maintenance

A large amount of maintenance has been performed on HyperEdit since its initial

implementation. That was due to the prototype nature of the system, changes to its

operating environment, and changes to some of its core functionality. To facilitate the

maintenance process, high- level system depictions of both its implementation and

operation were developed. Developers other than those responsible for the original

implementation did the majority of the maintenance performed on HyperEdit. Those

developers had a thorough understanding of the system’s requirements and functionality,

however they did not possess a full working knowledge of the system’s implementation

or internal operation. Therefore, a process of reverse engineering was required to develop

system representations that would assist in deriving the knowledge necessary to make the

required modifications. The resulting system depictions are those derived during that

process and were actually used to assist the maintainers rather than being created solely

for the purposes of satisfying documentation requirements.

During the maintenance process, the developers needed to perform two basic activities to

gain the required understanding of the implementation. First, they needed to identify

where functional concepts were implemented in the source code. For example, a bug

existed in the code that implemented the resizing of components on the screen. The

maintainers, familiar with the system functionality, possessed knowledge of what

concepts were involved and the instances of operation that would cause the bug to

manifest itself. However, locating where those concepts were implemented in hundreds of

thousands of lines of source code, which had been separated into different procedures,

modules, files, and directories by someone else, was not a trivial exercise. The second

type of activity required was the ability to trace how the operation of the application

An Understanding of Software Architecture

Understanding Software Engineering 161

caused the flow of control to move throughout the implemented source modules. Due to

the event-based nature of the programming environment, that also was a nontrivial task.

To support those maintenance activities, two large-scale structural representations of the

application were created. The first allowed the maintainers to identify the location at

which modifications in the source code were required. The HyperEdit system was

implemented in a Unix environment using C and X/Motif as the implementation medium

and a relational database as the repository. The architectural depiction generated by the

maintainers consists of a hierarchy of informal block diagrams detailing the module calls

throughout the application. The highest- level diagram contained blocks for each of the C

files and X libraries with the connections representing module interactions across the

files. Each file has its own refinement diagram to represent the source code modules that

are defined in each file and interconnections depicting module interactions. The cross-

reference and function definition information was generated using standard Unix code

analysis tools (ctags & cxref). The call-graph architecture diagrams were automatically

generated using HyperEdit itself. Furthermore, a WAIS (wide-area information server)

search facility was used to search the source code. The maintainers were able to search

for specific concepts in the source code and locate routines in which those concepts were

defined or utilised. The static, source code call-graph architecture was then used to locate

the appropriate file and source code modules to modify. Moreover, its immediate

dependencies could also be viewed. That representation of the system’s static, source

code implementation showed the cross-reference information required to perform many

of the maintenance tasks. However, only interconnections visible as explicit procedure

calls were visible. It was not possible, for example, to follow the event-based nature of

the X/Motif GUI environment because the information necessary was hidden in the

precompiled libraries of that GUI environment.

The second maintenance architecture was

used to represent the control flow through

the application. The HyperEdit

application was graphically intensive and

required the implementation of many

low-level graphic manipulation routines.

The decision to use X/Motif as the GUI

toolkit constrained the developers to its

Figure 4-7: Event-Based Operating
Architecture

An Understanding of Software Architecture

Understanding Software Engineering 162

event-based programming model. That model hides many of the direct procedural

invocations that are explicit in procedural programming languages and that made it

difficult to trace the connection between GUI events and source code invocation. An

X/Motif system begins operation by invoking a sequence of initialisation routines to

create the infrastructure for an event-based execution environment. That infrastructure

includes the creation of the initial graphical user interface and the instantiation of the

event loop system. Once the application sets up its execution infrastructure it goes into a

loop in which the ‘Event Handler’ provides the two-way causal relationship between GUI

manipulation events and procedure invocations in the user-defined source code (the

HyperEdit engine). The architecture depicted in figure 4-7 was utilised to represent that

event-based operation.

In that architecture four different areas are identified:

• Initialisation Process: The collection of routines required to create the operating

infrastructure needed for the GUI environment.

• Graphical User Interface: The collection of widgets on the display that are

manipulated by the user input to generate events. They include the routines

present in the X/Motif libraries that perform the low-level graphical manipulation

that result in visible changes on the display.

• Event Loop System: Consists of the ‘Event Queue’ and ‘Event Handler’. Events

are sent to the queue from the GUI and the application ‘Engine’. The ‘Event

Handler’, based on the information defined during the Initialisation process,

processes them appropriately. The concept of ‘callbacks’ allows the translation of

GUI events to application Engine procedure invocations. That is why it can be so

difficult to debug X/Motif applications. The abstractions make it extremely

difficult to follow causal links between code invocations and tangible

manifestations on the display and vice-versa.

• The Application Engine: The collection of routines that perform the processing

required when a particular piece of functionality is invoked from the user

interface. That includes data modification and transactions with the repository,

interfacing with the message passing system, and generating appropriate X/Motif

events to realise the runtime GUI dynamics.

An Understanding of Software Architecture

Understanding Software Engineering 163

Both the dynamic operation architecture and the static, call-graph implementation

architecture were useful during the system maintenance process. The call-graph

representation of the system used large scale abstractions based on the building constructs

provided by the implementation medium – source code statements, functions, and C files.

In contrast, the dynamic operation architecture used abstractions based on the run-time,

functional groupings of the routines rather than where they exist in the source code

implementation. Both are valid representations of the system architecture, yet they

graphically depict completely different collections of concepts.

4.2.3 Maintenance That Affected the System Architecture

Three major modifications to the HyperEdit system and their effect on the system

architecture are detailed. The first modification, a change in the application's

communication mechanism, resulted in a major modification to the system architecture.

The second modification required the addition of an application interface that would

allow HyperEdit to be controlled by a remote manipulation tool. That modification

resulted in a redesign of the HyperEdit architecture, however due to resource cons traints

the necessary changes to the large-scale structure were not made. Consequently, the

redesign was compromised to make the modifications fit the existing architecture. The

final modification was the extraction of hypertext functionality to exist as a separate tool.

Whilst it was considered to be a major modification, there was no change evident in the

system architecture. Those modifications are summarised and their consequences for

software architecture in general are discussed.

4.2.3.1 Changing the System Communication Mechanism

As the project evolved the original blackboard style architecture was found to be

inadequate and was replaced with a more robust, flexible, and efficient message passing

system. The HyperEdit application required two types of communication. First, the ability

to communicate with the repository to load and save data and second, the ability to

communicate with the other executing HyperEdits in the overall environment.

The initial choice of communication mechanism was the blackboard-style configuration

described previously (figure 4-6). However, during actual utilisation of the system, the

blackboard architecture did not exhibit satisfactory performance. The problems associated

with the practical use of the system were caused by the prototype nature of the tools using

the connection mechanism and the number of messages sent by those clients.

An Understanding of Software Architecture

Understanding Software Engineering 164

The blackboard server had the responsibility of keeping track of all the currently

executing HyperEdit processes and ensuring that the current blackboard message

remained available until all processes had polled the blackboard for that message.

Moreover, the blackboard server had to ensure each process accessed the current message

only once. In theory, the blackboard architecture should have sufficed in a conventional

and fully operational environment. However, because the project was of a prototype

nature, with tools whose stability was initially unreliable, keeping track of the currently

executing HyperEdits was a difficult job. In addition, ensuring that each process read all

messages only once was difficult when each process polled the server at different

intervals and could disappear at random times.

The communication mechanism not only had to meet the needs of the HyperEdit

application but also the requirements of the other applications in the HyperCase tool suite.

It became apparent as those tools evolved that the aforementioned problems with the

blackboard style architecture would only be exacerbated. Moreover, as the research,

design, and implementation of those other tools proceeded it became apparent that the

global connection mechanism would need to support point-to-point, multi-cast, and

broadcast communication styles between the tools. With the magnitude of the number of

messages envisaged, the utilisation of a single storage location, which all tools would be

required to access, would be inefficient from a performance perspective.

The blackboard architecture was replaced with the current subscribe/dispatch message

server topology (Baragry, Cleary et al. 1994) (figure 4-2). In that arrangement, all

messages in the system are categorised into particular classes and each tool in the

HyperCase tool suite subscribes to the classes they are interested in. The messages

generated by the individual tools are assigned a particular message class before being sent

to the server and the server subsequently dispatches those messages to the message

queues of the tools subscribed to that class.

The message server topology had a number of advantages over the original blackboard

style. Most importantly, it satisfied the range of communication styles required by the

individual tools. In addition, because the responsibility for storing the messages was

shifted to the individual tool’s message queue, rather than the single storage location of

the blackboard arrangement, the storage and processing requirements of the central

message server were significantly reduced. The result for the message server, which was

An Understanding of Software Architecture

Understanding Software Engineering 165

the bottleneck of the system, was improved communication performance and insulation

from the occasionally unreliable nature of some of the evolving tools.

The modification of the communication mechanism also solved a number design

principles and conceptual integrity issues that had been compromised during the original

implementation process. HyperEdit was the first tool to exist in the tool suite and its

implementation and the implementation of the communication mechanism occurred

concurrently. As that implementation proceeded, the clear delineation between the

communication responsibilities of HyperEdit, the repository, and the blackboard system

became blurred. The replacement of the communication mechanism provided the

opportunity to ensure its conceptual integrity by completely separating it from the

HyperEdit-specific functionality and ensuring it existed as a separate process within the

global HyperCase environment. That enabled future modifications to occur to the

message server without requiring the downtime of HyperEdit.

4.2.3.2 The Addition of a Remote Manipulation Interface

A major modification was made to HyperEdit to create an interface that would allow the

remote generation, manipulation, and analysis of HyperEdit documents. An example of

that functionality was the creation of a visualisation tool for Amdahl Corporation's

ObjectStar rule-based development environment (Amdahl 1998). A HyperEdit editor was

defined to create diagrams to depict the high- level structure of ObjectStar applications.

The visualisation tool was used to analyse an ObjectStar application’s source code and

subsequently send messages to an executing HyperEdit to automatically construct the

high- level graphical representation of that system. Another HyperEdit editor was defined

to represent the fine-grained rule language of ObjectStar modules. Each module in the

high- level system representation was then automatically linked, using hypertext, to a

visual depiction of the source code for that module. Finally, by using the message server

functionality, the visualisation tool was also able to receive events from the HyperEdit

editors when user-instigated modifications to the visual representation of the system were

made. Those modifications could then be passed to another tool to automatically replicate

the graphical changes in the physical source code of the system. The user was

subsequently able to graphically navigate through and modify an ObjectStar application.

The ability to remotely manipulate and analyse HyperEdit diagrams provided the ability

to develop an ObjectStar application using both textual and graphical representations with

changes made in one medium automatically replicated in the other. Moreover, because

An Understanding of Software Architecture

Understanding Software Engineering 166

the graphical representation and manipulation tool, HyperEdit, was completely separate

from the tool that analyzed a particular programming environment, similar systems could

be developed for any language or development environment without requiring any

modifications to the HyperEdit system.

The implementation of the remote interface required two architecture-level analyses of

the HyperEdit system. First, a means of communicating between an executing HyperEdit

and its remote manipulation tool had to be provided. Second, once the HyperEdit process

had received a particular message, a means of invoking the appropriate diagram

manipulation routines had to be implemented. The replacement of the blackboard

communication mechanism with the message passing style architecture satisfied the

communication requirements between executing HyperEdits and remote manipulation

tools. However, identifying the appropriate source code routines to invoke for diagram

manipulations was not as simple because of the high number of dependencies between the

X/Motif GUI code and the internal data manipulation code within the HyperEdit Engine.

Therefore, the implementation of the remote manipulation interface required a re-design

of the large-scale system arrangement of the HyperEdit engine routines to provide a clear

interface between the GUI manipulation code and the internal diagram manipulation

functions.

The conceptual arrangement of the new system would make it possible to invoke any

piece of functionality from the remote interface that was available from the existing GUI.

Although the diagram itself was stored as an easily identifiable data structure in the

source code, the routines that manipulated that data structure were a mixture of user-

defined code and pre-defined functionality provided by the X/Motif GUI environment.

The existence of that mixture, and the high number of dependencies caused by it, was a

result of designing the system to utilize the X/Motif GUI system. To provide a clear

interface between the GUI/X environment and the user defined source code, the block

entitled “HyperEdit Engine Routines” in

the dynamic operation architecture of

HyperEdit (figure 4-7) was separated into

two distinct parts. The first, the GUI

Callbacks module, was responsible for

dealing with the reception of the X events

that represent the user’s manipulation of
Figure 4-8: Redesigned Event-Based

Operation

An Understanding of Software Architecture

Understanding Software Engineering 167

the system at the GUI. The second, the ‘new’ Engine, contains only user-defined source

code routines that make changes to the internal diagram representation and appropriate

updates to the GUI. The new engine would receive its invocations solely from the local

message queue. With that conceptual arrangement, the source of the message sent to the

engine could either be from the system’s GUI callbacks or from any other tool that could

generate messages compliant with the HyperCase environment’s message server. The

new structural arrangement is depicted in figure 4-8.

The implementation of that conceptual architecture did not eventuate. From a technical

point of view, the design appeared to meet the requirements. However, from a

management perspective, the human and financial resources did not exist to allow such

major modifications to the system. Nevertheless, the functionality to remotely manipulate

the tool was important and a compromise was reached. The amount of available

functionality was reduced to meet the capabilities of the existing architecture.

The message passing system was utilised to send remote calls to the appropriate

HyperEdit, however the translation of those messages into appropriate function

invocations did not occur through a distinct, abstract interface. Some remote requests had

direct functional implementations in the HyperEdit engine. For instance, a request to add

an object to the current document at a particular location was quite simple to satisfy. An

equivalent procedure already existed in the collection of engine routines. When a message

of that type was received, the equivalent engine function was invoked with the message

attributes used as the appropriate parameters. In contrast, a message requesting the

addition of a joining flow or edge between two existing objects on the screen was not as

easy to achieve. The code to implement object connections was written in terms of the

many X events that are generated throughout the joining process in the GUI. Each mouse

click or drag performed in the joining process on the GUI would generate events. Those

events resulted in procedure invocations in the engine that stored information as the

process proceeded. The joining process in the engine was an aggregation of all those

generated events and resulting procedure calls. No single function existed that accepted

two particular component identifiers and the relevant connection attributes to produce the

appropriate flow. That original arrangement occurred as a result of designing the system

to efficiently utilise the implementation constructs provided by the GUI environment. To

change that arrangement, the remote manipulation routine was required to simulate the

generation of X events that occur during the GUI-based joining of components. That was

An Understanding of Software Architecture

Understanding Software Engineering 168

achieved by breaking the message into its constituent parts and invoking a number of

low-level engine routines.

In the end, the overriding resource constraints forced the conceptual integrity and design

principles to be compromised. It was not conceptually pure, but it worked. While that

compromise was acceptable because of the prototype nature of the system, the

consequence is code that is harder to understand and modify. Finally, from an architecture

perspective, the compromise resulted in modifications that occurred at a level which had

no impact on the gross structural arrangement. Therefore, the new functionality is not

evident in the representation of the implemented architecture (figure 4-7).

4.2.3.3 Extraction of the Hypertext Mechanism

The final major modification to be described was the extraction of functionality that

implements the hypertext mechanism. This modification was performed to change the

hypertext functionality from something of limited capability and whose implementation

was tightly coupled to the application and its data, to something that existed as a separate

tool and provided far greater functionality. The motivations, design alternatives, and

ramifications for the software architecture are discussed.

A requirement of the global HyperCase system was that all components of the documents

produced during a software development lifecycle should have the potential to be the

source or destination of a hypertext link. That would enable the developers, maintainers,

and project managers to traverse the logical relationships through the document base

regardless of the document types. Links would connect graphical design documents,

source code modules, requirement statements, design rationale, and project management

schedules.

The initial implementation of the hypertext functionality in HyperEdit was quite primitive

compared to the current version. A conscious design decision was made initially to keep

the hypertext functionality as simple as possible until ongoing research within the project

had fully completed the hypertext requirements of HyperEdit/HyperCase. The hypertext

information was initially realised by keeping it closely coupled to the HyperEdit

document components. The implementation of each generic diagram component

contained an attribute to store link information. That information provided details of

connections either to other HyperEdit diagrams or to other documents and the tools

required for displaying them. The HyperEdit application contained the appropriate

An Understanding of Software Architecture

Understanding Software Engineering 169

functionality to modify that attribute information and to process the information when the

link was followed. While that implementation was adequate for dealing with the

HyperEdit system, it was understood that it would not satisfy the hypertext requirements

of the other emerging tools in the HyperCase tool suite. The design rationale of the initial

implementation however, ensured the functionality was easy to replace when the full

requirements of the system were developed.

Two high- level issues had to be resolved to implement a more versatile hypertext system.

First, how should the conceptual data model be organised to store the hypertext

information? Should hypertext links be stored as attributes of the source component or

should those relationships between components be stored as first-class components

themselves with the source, destination, and other useful information recorded as

attributes of the link. A good example of the differences between those two alternatives is

evident in the implementation of global information systems. The most popular, the

World Wide Web (WWW), uses a very simplistic hypertext model, where the link

information is stored within the data, i.e., as tags in the HTML document. Alternatively,

another global, hypermedia-based information system, Hyper-G, stores its hypertext

information separately from the data shown on each page (see for example (Flohr 1995)).

The Hyper-G client is responsible for associating the data and hypertext information in a

seamless manner that allows the user to navigate the information base. The Hyper-G

hypertext model provides greater flexibility and functionality than the WWW model.

However, the trade-off is that Hyper-G systems require more intelligent clients and

servers to store and display the information.

The second design issue to be resolved was where the processing capability required to

generate, modify, and follow hypertext links should be implemented in the conceptual

architecture. Should all of the tools replicate the hypertext functionality, or should a

single tool be developed to handle all hypertext operations? Those issues were solved

through research in hypertext-based, information system design that was performed

within the project at the time (Cooper 1996). In addition, internal design meetings solved

problems relating to the application of the concepts developed in that research to the

specific problems faced.

To resolve the first issue, a decision was made to have a data model in which the

hypertext link information was kept separate from the software document components.

That allowed for far greater flexibility when dealing with the hypertext information. The

An Understanding of Software Architecture

Understanding Software Engineering 170

hypertext information became ‘first-class’ objects rather than simply attributes of other

data. Architecturally, it is interesting that the result of that high- level decision, which

influenced many aspects of design, and set constraints on the hypertext functionality of

the system, is not evident in the conventional architecture representations. The

implemented architectures of HyperEdit remain identical regardless of which data model

had been chosen. Whilst data models are used extensively in software engineering design,

it is interesting that they are not considered part of the system architecture, even though

the functionality of the system is often devised with respect to the data model envisaged.

The resolution of the second design issue, assigning the responsibility for the hypertext

functionality, occurred with the decision to construct a single tool to deal with the

creation, deletion, modification, and traversal of hypertext links. The primary design

constraint on the decision was flexibility. The production of a single hypertext server

resulted in the majority of the functionality residing in a single location, rather than being

replicated in all of the tools. Consequently, new tools added to the environment would

only require relatively minor functional enhancements to make them compliant with the

hypertext system. Moreover, future modifications made to the hypertext requirements

would be implemented in a singe tool rather than in all HyperCase tools. Again, it is

interesting to see the effect of that system modification on the HyperEdit architecture.

The source code to realise the hypertext functionality was removed from the ‘HyperEdit

Engine Routines’ (figures 4-5 & 4-7) and now exists as a separate tool in the HyperCase

tool suite. The execution of the tool suite requires each user to have a ‘HyperText Server’,

which is responsible for the hypertext operations of all the tools used by that user. The

HyperText Server is represented as a high- level module in the global HyperCase

architecture (figure 4-2). However, representations of the individual HyperEdit

architecture (figures 5 & 7) fail to show that module, even though its existence is required

for the successful operation of HyperEdit. The situation in which a major component of

the system is seemingly invisible in the large-scale representation causes us to repeat the

often-asked question, “What constitutes software architecture?”

4.2.4 Factors That Influenced Architecture Decisions

With the benefit of hindsight, and with the knowledge gained from improved

understanding in software architecture research, it has been possible to identify factors

that played an influential part in how architecture decisions were made in the evolution of

An Understanding of Software Architecture

Understanding Software Engineering 171

HyperEdit. Those factors were not necessarily explicit in the design reasoning at the time,

however under the spotlight of the case study their importance has now been recognised.

The factors discussed are:

• The effect of changing requirements on the architecture as the design progresses.

• Knowledge of available architecture alternatives and their practical consequences.

• The effect of the implementation environment on the designer's ability to choose

different architectures.

The subsequent discussion details the degree to which those factors are specific to the

project under investigation and those which are applicable to software development in

general.

4.2.4.1 Changing Requirements

The effect on the architecture of changing system requirements poses some well-known

but largely unanswered questions. The modification that added the remote manipulation

capability to HyperEdit is an example that highlights the reasons why some changes

require architecture modification and others do not. As mentioned in the previous section,

the modifications that implemented the remote manipulation capability can be divided

into two parts. The first was the ability to communicate with HyperEdit and the second

was the ability to invoke the appropriate internal functionality.

The message passing style communication architecture of HyperEdit has proved to be

quite resilient to changing requirements. To implement the remote manipulation interface

the infrastructure required to communicate with HyperEdit was already present because

HyperEdit was already able to communicate with other executing HyperEdits and with

the repository. To realise the remote manipulation communication all that was required

was a new communication protocol and the ability for HyperEdit to distinguish between

HyperEdit/repository messages and the remote manipulation messages. The required

changes took place at a single level of design abstraction and were implemented without

architecture modification. The conceptual design of HyperEdit contained a single

subsystem, the message server, which dealt with the inter-tool communication protocol.

Analysis of the flow of control through that subsystem shows clear interfaces between it

and the rest of the HyperCase/HyperEdit system. Implementing the modifications

required for remote manipulation communication did not affect how the flow of control

An Understanding of Software Architecture

Understanding Software Engineering 172

moved around the global system. Similarly, new tools could, and have, been added to the

global environment without modifications to the global architecture. Moreover, other

inter-tool communication protocols have been specified without architecture

modification. By looking at the conceptual design of the system, modifications that only

affect a single level of design abstraction and do not affect the flow of control through

that conceptual model were implemented without changes to the system architecture.

In contrast, the modifications needed to process and implement the remote manipulation

messages required changes to the interaction between the dedicated HyperEdit code and

the X/Motif environment. Because of the way those components were initially

implemented, the required modifications resulted in design changes to the flow of control

within the subsystems that comprise those architecture components. A brief discussion of

the interaction between the user-defined code and the X/Motif environment is needed to

explain the issue. The utilisation of the X/Motif GUI package required the developers to

conform to the event-based programming model provided by the GUI system. In that

model, manipulations at the GUI front-end of the system result in procedural invocations

in the source code via the X event handler, and vice versa (figure 4-7). The application

contained a great deal of user-defined source code that was independent of the GUI

specific code. For example, code for message and data processing. In addition, the

complexity of the graphical manipulation requirements of the application resulted in the

use of many high- level and low-level graphical manipulation routines provided by the

GUI toolkit. Consequently, the interaction of the user defined source code with the GUI

environment was spread across many levels of conceptual granularity. Furthermore,

because the flow of control through the system is subject to the event-based model of the

GUI environment, the point at which control was passed to the source code from the GUI

occurred at many different levels of conceptual granularity. The changes required to

implement the remote manipulation capability would require changes to the point at

which the flow of control was passed through to the user-defined code. The reason

architecture modifications were required to realise that part of the remote manipulation

capability was because changes would need to be made at multiple levels of conceptual

design abstraction.

Making an architecture resilient to requirements change that affect many levels of design

abstraction appears to be considerably harder than making a design malleable when the

modifications only affect a single level of abstraction. A characteristic of mature domains

An Understanding of Software Architecture

Understanding Software Engineering 173

is that they consist of well-understood collections of concepts and their relations. When

determining the potential for future changes to result in modifications to the system

architecture it is possible for the designer to envisage how those interconnected concepts

will cope. However, this is a lot harder to do in domains that do not have well-understood

collections of concepts.

4.2.4.2 Knowledge of Architecture Alternatives

One of the major modifications to HyperEdit was the replacement of the blackboard style

communication mechanism with the subscribe/dispatch message-passing arrangement.

During the course of this case study it was interesting to look back at the design meetings

and documents to understand why the blackboard architecture was selected when

hindsight shows the decision was inappropriate. The result has been the discovery of how

knowledge of possible architecture alternatives influenced the designers’ ability to choose

the initial architecture. Moreover, it highlights how difficult it is to determine how a

proposed architecture will perform before it has been implemented.

As is often the case in large team projects, many aspects of the design become matters for

debate and opinion. The design of the communication mechanism for HyperEdit, and the

surrounding HyperCase environment, was such a case. The need to allow for flexibility

was recognised at an early stage. The requirements stated that tools would have the ability

to communicate explicitly with each other and that specific inter-tool communication

should be able to be monitored without the sending or receiving tools being aware of it.

For instance, as a HyperEdit tool communicated with the repository, the project tracking

tool would be able to ‘eavesdrop’ on the ensuing communication and automatically track

the developer’s progress, updating the relevant project management charts and reports

appropriately (Cleary and Reed 1993). Two high- level alternatives were considered to

satisfy those requirements: the blackboard architecture that was eventually chosen, and a

dispatch-messaging approach, similar to the one that eventually replaced the blackboard

system.

At that early stage in the development process, both high- level design alternatives

appeared to satisfy the functional requirements. The blackboard arrangement was selected

over the message passing infrastructure because some members of the team had had

direct experience in implementing a blackboard system in the past. The developers knew

how to implement the high level concepts of the blackboard arrangement while the

An Understanding of Software Architecture

Understanding Software Engineering 174

implementation of a message passing arrangement would require more design work to

determine how it could be implemented.

The lack of knowledge of different architecture alternatives was also a significant factor.

The blackboard style was not selected because it was the only known communication

mechanism, however it appeared to be the most appropriate choice amongst the limited

number of known alternatives. Contributing to this lack of knowledge of other

alternatives was the level of experience of the developers. They simply had not

encountered enough large-scale system designs to develop an extensive knowledge base

of architecture arrangements from which an appropriate solution could be selected. That

does not excuse the team for its decision, however it is certainly the case that the level of

knowledge of different architecture styles is now more widely understood than during the

time frame of this project. Furthermore, while the general design issues have been known

for some time, the level of knowledge of architecture issues across the entire software

engineering community has improved as a result of case-studies of the types reported

here. In addition, analysis of implemented architectures, taxonomies of popular styles,

publications of design patterns, and workshops to collaboratively develop new

architectures and styles have improved the level of knowledge of large-scale structure

issue in software development (e.g., (Wolf 1997)). The level of knowledge of different

architecture styles possessed by the software engineer is no longer based solely on direct

personal experience.

A related factor was the lack of knowledge about the consequences of choosing a

particular architecture. The concept of a blackboard communication mechanism appeared

to be appropriate during the design phase of the project. However, it was not until the

system was implemented that all project members finally accepted the impracticality of

the structure to meet the needs of the project and execution environment. Issues such as

message throughput and system stability could not be determined until it was

implemented. That was a result of the failure of the developers to evaluate the abstract

concept of the blackboard style with respect to the practical execution environment of

HyperEdit / HyperCase rather than the generic system requirements.

Software engineering researchers and managers would like to think that developers make

their decisions about system architecture completely objectively. However, in this case

study at least, the design decisions of the developers were affected by experiential bias.

The number of design alternatives was limited to those of the designers’ previous

An Understanding of Software Architecture

Understanding Software Engineering 175

experience. In addition, the alternative that the designers were most familiar with received

additional weighting in the ensuing comparison. Finally, the developers were also

affected by their lack of knowledge concerning the way in which the actual

implementation of those high- level concepts influence the non-functional attributes of

design.

4.2.4.3 Influence of the Implementation Medium on Architecture Decisions

The case study has identified a number of areas where decisions about the architecture of

the system were influenced by the implementation medium in which it was to be realised.

Those influences were:

• The selection of a particular architecture because it was known how to implement

it in the chosen operating system and programming languages.

• The development of a particular architecture because part of its components

already existed in the chosen operating system and programming languages.

• The restriction of architecture alternatives to meet the particular operating and

connection requirements of a previously selected software component.

• The restriction of architecture alternatives because of the execution model of the

virtual machine that executed a chosen programming language.

One of the contributing factors in the selection of the blackboard style was the fact that it

was known to be realisable in the chosen implementation medium. The developers had

previous experience with the blackboard concept and had enough knowledge of the

chosen implementation medium to immediately see how the concepts of the blackboard

style could be realised using pipes, filters, text files, and appropriate server functionality.

Moreover, prior knowledge of the remote procedure call support provided by the

operating system made it easy to see how the inter-machine communication could be

handled. Whilst the ability to implement a particular architecture does not make it the

most appropriate, it was recognisably a contributing factor in the architecture selection

process.

This case study also uncovered evidence of architecture alternatives being devised to

utilise the known infrastructure or services of the implementation environment. That is,

starting with knowledge of the smaller granularity building blocks or services provided by

the operating system, an architecture was created specifically to utilise them. That was

An Understanding of Software Architecture

Understanding Software Engineering 176

evident in the decision to replace the blackboard system with a message-passing style.

After the decision was made to replace the blackboard mechanism, a review by David

Cleary of the high- level inter-process communication mechanisms of the chosen

operating system (SystemV Unix) was performed. That revealed three alternatives:

message queues, semaphores, and shared memory. The existence of the message queue

infrastructure led to the investigation of a generic message passing approach, based on

those queues, for solving the problem. The generic style was then tailored to the

subscribe/dispatch approach to meet the specific functional requirements of the project

(Baragry, Cleary et al. 1994). While the subsequent message passing implementation has

satisfied the flexible communication requirements of the HyperCase project, a significant

factor in its selection was not just its technical attributes but also the fact that the

operating system provided mechanisms to directly support its implementation.

Interestingly, during the project’s maintenance, work was performed on the message

server to improve its performance and expand the available functionality. During that

process the operating system supplied infrastructure of the architecture (message queues)

were abandoned and replaced by retro-fitting the architecture on top of the socket level

functionality of the operating system. The ‘retro-fitting’ required additional code to

realise the concepts of the message passing style in terms of socket level communication,

which is at a lower level of abstraction than message queues but which provide additional

and more flexible functionality. However, in terms of the executing applications, the

socket-based message passing continued to work in the same manner as the message-

queue based architecture. Such developments are not uncommon. They are consistent

with the basic consequences of information hiding and prototyping in which functions are

implemented as quickly as possible and then replaced with an improved version at a later

stage (Reed, 1994 in Reed 2000). The point is that the architecture was devised to utilise a

set of design abstractions provided by the operating system and continued to work as

devised when that underlying infrastructure was replaced.

The underlying implementation environment supported architecture creativity by

providing direct support for some architecture styles, however in other instances it served

to constrain the developers. At the beginning of the HyperEdit design, a GUI support

package was required to provide the low and high- level graphic manipulation. At that

time, the only alternative available within the financial constraints of an academic

research group, which would operate in our Unix environment, was X/Motif. As

An Understanding of Software Architecture

Understanding Software Engineering 177

discussed previously, an X-based application begins by setting up an event loop and

generating the initial user interface. As the GUI is manipulated, it generates events that,

as they are processed, invoke the appropriate routines in the user-defined code. That

choice of GUI support package forced the developers to use the event- loop based

architecture of X/Motif for the implementation of HyperEdit. However, the original

conceptual design specified a layered style architecture. The resulting system could be

represented by both styles. The source code implemented by the developers was

structured in a manner consistent with the layered approach. However, because the

procedure invocation was dependent on the X event handler, the dynamic operation of

that architecture was event-based. Structurally, the code represented a layered system but

behaviourally it operated as an event-based system. In contrast, as the global HyperCase

project evolved, additional applications were developed utilising Tcl/Tk as the GUI

support package. That provided similar high- level GUI capabilities as X/Motif without

constraining the developers to an event- loop architecture. Because HyperEdit required

low-level graphic manipulation capabilities not provided by Tcl/Tk it was not possible to

replace the X/Motif GUI environment.

The choice of programming language provided another example of architecture

constraints imposed by the implementation environment. Although no specific example

exists in the HyperEdit development, a number of other tools in the HyperCase

environment had components of their systems implemented using Prolog. The conceptual

design phase of ProTract, the project tracking tool (Cleary and Reed 1993), identified the

need for some inferencing capabilities. As mentioned earlier, the project tracker would

intercept messages produced by the development tools and attempt to infer how the status

of the project was progressing with respect to the project plans. The rule-based language,

Prolog, was best suited to implement that capability. However, Prolog is an interpreted

language that evaluates the rules using a backward chaining inference engine. During the

subsequent design of the project tracking tool, the developer was forced to design the

system architecture and individual components within the constraints imposed by the

backward chaining inference engine that forms the basis of Prolog’s execution (Cleary

1997). In that particular situation, the implementation language was chosen based on the

requirements and the architecture of that system was subsequently designed to operate

within the conceptual limitations imposed by that language.

An Understanding of Software Architecture

Understanding Software Engineering 178

In this case study, a team of researchers were implementing a large and complex system.

Some of the decisions clearly flowed from a lack of experience. However, even among

more experienced designers, the nature of the development and run-time domains, i.e., the

overall implementation environment; will often drive the choices made at higher levels of

abstraction, including the highest level, the system architecture.

4.2.5 Discussion

Research literature strongly suggests that the system architecture should be set as early as

possible in the design process and that doing so can provide significant benefits. This is

especially true for product- line commercial software as well as the research based

prototype project discussed in this case study. However, the HyperEdit study identified a

number of issues that made the selection of the architecture at the beginning of the design

process extremely difficult. The first concerns the factors that influenced the decision-

making ability of the developers. They were: the designer’s lack of knowledge of

different architectures and their properties, the influence of the implementation medium

on architecture decisions, and the ability to cope with changing requirements during the

project lifecycle. The second issue concerns what the designers should be specifying in

that initial architecture. There were a number of different architecture representations

used during the development of HyperEdit. Which one(s) were the starting architecture or

architectures? What elements should be included in the system architecture? Finally,

where was the boundary between the HyperEdit architecture and the architecture of the

global HyperCase environment? Those issues are discussed keeping mind the research

based nature of the HyperCase project.

4.2.5.1 Deciding On the Initial Architecture

The degree to which requirements can change during the course of a project is obviously

project dependent. While some projects can have their requirements firmly set before

beginning design, that was not the case in the HyperEdit/HyperCase project. The goal of

the project was to produce tools that test and evaluate concepts that support software

development based on ongoing software engineering research. Therefore, the system

requirements of the individual tools, including HyperEdit, were subject to change more

than those of traditional software development projects. That played a significant part in

the ability to determine a correct architecture at the beginning of the project. However, as

the majority of software development involves maintenance, it is possible to argue that

An Understanding of Software Architecture

Understanding Software Engineering 179

the changing requirements experienced in this case study simply occurred a lot earlier in

the application’s lifetime compared with other projects. Indeed, some researchers argue

that software development is a continual maintenance process (Gallagher 1997).

Traditional literature on system design has always stressed the need to design for

malleability or modifiability, yet little research currently exists that compares the

malleability of recognised architecture styles. Kazman (Kazman, Bass et al. 1994) has

described a method of analysing system architectures to determine their ability to meet

future modifications. However, the method requires knowledge of the future changes and

can only be applied to mature domains in which a canonical functional partitioning has

been performed. For instance, Kazman’s paper used the example of user interface toolkits

that have a well-codified set of concepts. A great deal of research is still required to

achieve similar techniques in domains that do not have the same degree of well-defined

functionality.

Doble (Doble 1997) has provided three patterns for change resilience in software

architecture. He suggests that because of the business environment, developer knowledge,

and performance/schedule constraints, it may not be possible to design to cater for all

possible changes. His three patterns are:

1. The “Design for Now” Approach: Due to tight schedules, low developer experience

and turbulent business environment, it may be best to worry about the current

requirements and let the future pay for itself.

2. The “Laser-Guided Bombing” Approach: The development team might have enough

experience and enough development time to develop a list of anticipated changes that

could be catered for, based on the business needs. This approach hopes to cater for a

subset of all possible changes.

3. The “Saturation Bombing” Approach: With enough developer expertise, suitable

project constraints, and well-defined business domain, it may be possible to design to

anticipate all imaginable changes.

Observations from the HyperEdit case study also identified the effects of the developer’s

lack of knowledge of known architectures and the ramifications of choosing a particular

architecture on the decision making process. This situation frequently occurs in project

situations where new domains and applications are being undertaken. The current state of

understanding in software architecture and design patterns would certainly have improved

An Understanding of Software Architecture

Understanding Software Engineering 180

the development of HyperEdit. However, many issues still require attention. For example,

one observation noted that while it was possible to reason about architectures at an

abstract level, it was not until they were actually being implemented that some issues

became apparent. It was not until the process of implementation that the developer

obtained the level of detail necessary to effectively rationalise about the architecture

concepts. Those issues have parallels in the area of general decision making theory.

Much of the research in software architecture is premised on a development process that

matches what is termed the rational model of decision making.

“The individual has objectives and a payoff function that permits the ranking

of all possible alternative actions to those goals. The actor is presented with

and understands the alternative courses of action. The actor chooses the

alternative (and consequences) that contribute most to the ultimate goal. In a

rigorous model of rational action the actor can accurately rank all alternatives

and consequences and can perceive all alternatives and consequences … this

assumption has been at the heart of consumer behaviour theories and

microeconomics, political philosophy, and social theory.” (Laudon and

Laudon 1996)

However, Laudon and Laudon’s summary of models of decision making (Laudon and

Laudon 1996) details three criticisms of the rational model. First, the number of

comparisons required to evaluate all alternatives is computationally impossible in a

human time frame. Decision makers simply do not have time to compare all possible

alternatives. Second, because of conflicting goals, it is not possible to rank all alternatives

and consequences realistically. Third, in a real life situation it is impossible to specify a

finite set of alternatives and consequences. Those criticisms are as applicable to

architecture decision making as they are to general-purpose decision making. Moreover,

each of those criticisms is compounded by the fact that software architecture is such a

new field which deals with abstract concepts that have yet to be defined and have no

direct, tangible, manifestation that can facilitate a common understanding.

Laudon and Laudon reviewed several alternative models of decision making that address

the deficiencies with the rational model. Whilst those models do not provide any specific

model for software architecture they can help explain how software architect’s arrive at

the decisions they do.

An Understanding of Software Architecture

Understanding Software Engineering 181

• Satisficing: Choosing the first available alternative in order to move closer to the

ultimate goal instead of searching for all the alternatives and consequences.

• Bounded rationality: Idea that people will avoid new uncertain alternatives and

stick with tried and true rules and procedures.

• Muddling through: Because of the existence of conflicting goals, this method

involves successive limited comparisons where the test of a good decision is

whether the majority of people agree with it.

• Psychological influences: The effect of underlying personality dispositions

towards the treatment of information, selection of alternatives, and evaluation of

consequences.

Those alternative models of decision making explain many of the observations made

about issues that affected the architecture decision making performed during the

HyperEdit lifecycle. However, those issues are not generally discussed in software

architecture research.

The final issue that had an effect on the designers’ ability to set the initial architecture

was the influence of the implementation medium. Those issues were: the ease with which

an architecture alternative could be implemented in the chosen implementation medium;

the selection of an architecture to utilise known building blocks of the computing

environment; and the constraints placed on possible architectures by the execution model

of the implementation environment. Those observations contradict the traditional view of

software development in which the high- level design is determined before any low-level

decisions are made. The observations are, however, supported by design research in other

disciplines that recognise the effects of lower level issues on the current level of design

abstraction. Those disciplines include electronic and mechanical design theory, traditional

architecture and conceptual theory building. For example, Alberts’ thesis on design

theory discusses general design issues in electronic and mechanical design:

“In practice however, design will never be of a completely top-down nature.

... Knowledge about which functions can be realised given specific physical

properties of the realisation material is propagated upwards. Without such

knowledge about the feasibility of alternatives, design would result in a ‘blind

search’.” (Alberts, Wognum et al. 1991; Alberts 1993)

An Understanding of Software Architecture

Understanding Software Engineering 182

Darnell quoted the keynote speech by Morton at the 1959 Electronic Components

conference, which described how this principle had reached an extreme in electronic

circuit design. In that domain, the ability of designers to develop useful solutions was

restricted to those achievable using known components.16

“With this viewpoint, the system designer has translated his overall system

requirements to those of components, thinking only in terms of classical

inductance, capacitance, resistance, tubes, and transistors. The component

designer, adopting this viewpoint, therefore has been limited in his

permissible solutions only to finding new techniques and materials for the

classical elements.” (Darnell 1962)

Similarly, Lawson described those effects in the discipline of traditional architecture and

how an architect’s education deliberately utilises that feature.

“… there is no meaningful division to be found between analysis and

synthesis but rather a simultaneous learning about the nature of the problem

and the range of possible solutions … [And] architects need to know, for

example, about the structural properties of wood but this does not mean they

could become furniture designers.” (Lawson 1980)

Finally, this issue is not just something which affects system design but is also well

understood with regard to conceptual theory building. The ability of the human mind to

develop systematic theories is influenced by the knowledge of the underlying concepts

that already exist in human language. Our language is unavoidably permeated by

concepts and theories. Common nouns are used to represent our concepts and not the

things we perceive. Therefore, it would be impossible to assume conceptualisation begins

with a ‘clean slate’ with which we can develop our conceptual objects and models. The

objects in the world are already delineated to some extent by the classifications embodied

in socially inherited language. In fact, learning a language essentially means learning to

grasp objective thought concepts (attributed to Frege in (Popper 1979f))17.

The waterfall model of design is no longer regarded as the best approach to software

development, however research still suggests that the best way to approach development

16 This was discussed in chapter 3.
17 This is discussed in more detail in the next chapter.

An Understanding of Software Architecture

Understanding Software Engineering 183

is to perform the architecture level of design first. The system architecture is important

and needs to be determined in order to set the pattern of design. However, little research

exists which incorporates the observations found in this case study. In fact, the evidence

suggests it may be exceedingly hard to determine the correct architecture at the beginning

of the project and that indeed it may not always be necessary to do so (Reed 1987;

Perrochon and Mann 1999; Reed 2000). In software architecture research, the recognition

of those principles is starting to become more prevalent. For example, Cockburn

(Cockburn 1996) details the affects of social issues on software architecture. Those social

issues included the psychological bias of the developers, the knowledge of language, and

software development skills. Furthermore, Cockburn suggests a number of design

principles/patterns for dealing with those effects. However, software architecture research

has a long way to go in determining how the architecture level of design should be

performed in a manner that incorporates those observations that serve to contradict the

rational model of decision making that underlies the dominant view of software

engineering.

4.2.5.2 What Constitutes the Software Architecture?

The case study highlighted three factors that make it difficult to specify the large-scale

structures of a software system. First, there were many architectures represented during

the HyperEdit lifecycle. Which one, or ones, should be identified as the most appropriate?

Second, what components should be specified in the system architectures? Third, what

connections should be specified in the system architectures?

There are many definitions of the term software architecture (see (SEI 1997)), however

using the simplest definition of the term, the high level structure of the software system, a

number of different, yet valid, architectures were identified. They can be categorised into

three broad groups:

• Conceptual Architectures: The representations used during the conceptual design

phase of development that depict what the designer believes should be

implemented. In the case study, conceptual architectures were used to convey the

initial ideas of both HyperEdit (figure 4-3) and its global environment –

HyperCase (figure 4-1).

• Static Implementation Architectures: The representations that depict the source

code modules and the relationships between them. Examples in the case study are

An Understanding of Software Architecture

Understanding Software Engineering 184

the layered architecture of HyperEdit’s initial implementation (figure 4-5) and the

call-graph structure used during maintenance.

• Dynamic Operation Architectures: The architectures that depict how the system

executes in terms of functional abstractions of the implemented system and

execution abstractions of the computing environment (e.g., processes, distributed

machines). The distributed communications architecture (figure 4-6) and the

event-based operation architectures (figures 4-7 and 4-8) are examples.

Other researchers have identified multiple high level representations for software

systems, for example (Kazman, Bass et al. 1994; Kruchten 1995; Soni, Nord et al. 1995).

Those different representations may use different labels, however overall, they identify

similar collections of structures. They all contain representations of the developers

conceptual or logical view, representations of how it is implemented in source code, and

representations of how it operates in a computing environment18. Furthermore, definitions

of software architecture are now recognising the existence of multiple views of the

system (e.g., (Bass, Clements et al. 1998)). However, there is still no general agreement

about which views should be specified to represent the system architecture.

The understanding of those different views is based on analogies with traditional

engineering development whose high- level system design may consist of different

diagrams for different stakeholders in the development process. For example, a building

design may have a different representation for the architect, interior decorator, landscape

gardener and the electrician. Using those analogies as the basis for our understanding has

been evident from the earliest software architecture research publications (e.g., (Perry and

Wolfe 1992)) to the most recent (e.g., (Bass, Clements et al. 1998))19. However, the case

study identified a number of observations that are not easily explainable using analogies

with traditional engineering development. The first issue was the different types of

component connections found in the HyperEdit architecture. Those different types, which

are not found in other engineering disciplines, make it difficult to determine what

components should be represented in the architecture and how the connections between

the components should be represented. The second issue was the lack of a data model in

the system architecture. None of the different architecture views suggested by research

18 These issues are discussed in detail later in this chapter.

An Understanding of Software Architecture

Understanding Software Engineering 185

contain a representation of the system data model. The data model is extremely important

to the system yet it is not considered part of the architecture. Interestingly, no other

discipline produces systems that pass complex data items between components or build

functionality that manipulates complex data types. Finally, the conceptual and

implemented architectures of both HyperCase and HyperEdit were different to each other.

Moreover, when maintenance was performed and system architectures were extracted

from the implemented system, they were different to the original conception. It could be

argued that was because of the research nature of the HyperCase project, the changing

requirements, and the lack of developer knowledge. However, another case study

(Bowman, Holt et al. 1999) has shown the difference between the conceptual and

concrete architectures of the Linux operating system. Furthermore, it is not until the

architecture was extracted from the implemented system that it could be compared with

the conceptual or original design architecture. That is not the case with views of

traditional building systems because the architecture can be viewed directly in the

implemented system/artefact.

Despite the fact that there is much confusion about many aspects of software architecture,

which can not be resolved using analogies with traditional engineering disciplines, those

analogies continue to be used as the basis for our understanding. An investigation of those

analogues is now presented.

4.3 Software Architecture Theory: An example of
understanding based on the artefact engineering
view

4.3.1 The Origins of Software Architecture Understanding

The first papers to specify the large-scale structures of software systems appeared in the

late 1960s. In 1968 Dijkstra detailed the large-scale structure of the ‘THE-

Multiprogramming System’ (Dijkstra 1968). His discussion discussed the advantages of

partitioning the operating system into layers like ‘onion-rings’. At the NATO conference

in 1969, Sharp made the following lengthy comment that could be viewed as leading the

way to contemporary software architecture research.

19 This is discussed in the next section.

An Understanding of Software Architecture

Understanding Software Engineering 186

“I think that we have something in addition to software engineering:

something that we have talked about in small ways but which should be

brought out into the open and have attention focussed on it. This is the subject

of software architecture. Architecture is different from engineering.

As an example of what I mean, take a look at OS/360. Parts of OS/360 are

extremely well coded. Parts of OS, if you go into it in detail, have used all the

techniques and all the ideas which we have agreed are good programming

practice. The reason that OS is an amorphous lump of program is that it had

no architect. Its design was delegated to a series of groups of engineers, each

of whom had to invent their own architecture. And when these lumps were

nailed together they did not produce a smooth and beautiful piece of software.

I believe that a lot of what we construe as being theory and practice is in fact

architecture and engineering; you can have theoretical or practical architects:

and you can have theoretical and practical engineers. I don’t believe for

instance that the majority of what Dijkstra does is theory – I believe that in

time we will probably refer to the ‘Dijkstra School of Architecture’.

What happens is that specifications of software are regarded as functional

specifications. We only talk about what it is we want the program to do. It is

my belief that anybody who is responsible for the implementation of a piece

of software must specify more than this. He must specify the design, the form;

and within that framework programmers or engineers must create something.

No engineer or programmer, no programming tools, are going to help us, or

help the software business, to make up for a lousy design.

Probably a lot of people have experience of seeing good software, an

individual piece of software which is good. And if you examine why it is

good, you will probably find that the designer, who may or may not have been

the implementer as well, fully understood what he wanted to do and he

created the shape. Some of the people who can create shape can’t implement

and the reverse is equally true. The trouble is that in industry, particularly in

the large manufacturing empires, little or no regard is being paid to

architecture.” (NATO 1976b) (p. 150)

An Understanding of Software Architecture

Understanding Software Engineering 187

A few years later, Spooner developed his own “Software Architecture for the 1970s”

(Spooner 1971), contrasting it with Dijkstra’s large-scale system structure. As the 70s

progressed, practitioners began detailing the advantages of theorising about those system-

level structures and the consequences of decisions made at those higher levels of design.

Parnas described how the effectiveness of modularization is dependent upon the criteria

used in dividing the system into modules (Parnas 1972). In addition, Brooks wrote his

essays on software engineering (Brooks 1975) in which chapter four, Aristocracy,

Democracy, and System Design, stressed the importance of the conceptual design phase

and how it affects subsequent development. Those examples show software developers

were able to identify and reason about high- level structures of their software systems and

recognised the importance of decisions made at that level of design. Moreover, it shows

that the term ‘architecture’ was well established as the word for designating those

structures.

Interestingly, that period of time saw a more distinct partitioning of software and

hardware design as separate activities, which had until then been more closely entwined

(Weinberg 2000). Indeed, Brooks, who was the originator of many software architecture

ideas, also published articles on the architecture of computer hardware (Brooks 1962).

Given this, and the extent to which Brooks draws on analogies with hardware

development paradigms in The Mythical Man-Month (Brooks 1975), it could be argued

that many of the concepts Brooks used for understanding the large-scale partitioning of

software systems would have evolved from his understanding of the concepts involved in

computer architecture20.

Despite those, and many other examples of software developers reasoning about the

large-scale structures of their systems, it was Mary Shaw’s 1989 paper, Larger Scale

Systems Require Higher Level Abstractions (Shaw 1989) that led to the separate area of

research that is today referred to as software architecture. In that paper, Shaw recognised

the existence of high- level system representations that are used during the development

process and which could be recorded and passed onto other designers. Shaw had been

working on abstraction techniques previously (Shaw 1984) and noted the use of those

abstractions in the development process could result in a “software architecture level of

20 The influence of experience on the ability to understanding new phenomena is discussed in the next
chapter.

An Understanding of Software Architecture

Understanding Software Engineering 188

design.” Shaw’s work identified and labelled a number of different styles of architecture

that are still used as examples today. For example, ‘layered’ and ‘pipe & filter’. While

Shaw’s paper discussed the importance of higher- level system abstractions, it merely

identified concepts which others began to theorise about.

Perry and Wolf's paper (Perry and Wolfe 1992), as its title suggests, laid the foundations

for many architecture research ideas. It also contained the first attempt to define

architecture, or at least, the concepts of software architecture. They stated that a model of

architecture consists of three components: elements, form, and rationale. The elements are

either processing, data, or connecting elements; form is defined in terms of properties and

relationships among the elements (the constraints); and rationale provides the underlying

basis for the architecture in terms of system constraints. Much of the understanding in

that paper was derived through analogies with other disciplines that highlighted

similarities and differences. For example, computer hardware, network architecture, and

traditional building architecture. One of those analogies compared the different

representations of software system the multiple views of a traditional building design that

are used by the various stakeholders in the development process. That specific analogy is

discussed in detail in a later section.

From those research foundations, many definitions of software architecture have

emerged. Of the early definitions, the one by Garlan and Shaw was the most often cited:

“Beyond the algorithms and data structures of the computation; designing and

specifying the overall system structure emerges as a new kind of problem.

Structural issues include gross organization and global control structure;

protocols for communication, synchronization, and data access; assignment of

functionality to design elements; physical distribution; composition of design

elements; scaling and performance; and selection among design alternatives.”

(Garlan and Shaw 1993)

Garlan and Perry, in an introduction to a special issue on software architecture in the

IEEE Transaction on Software Engineering, provided a simpler, all-encompassing

definition:

“The structure of the components of a program/system, their

interrelationships, and principles and guidelines governing their design and

evolution over time.” (Garlan and Perry 1995)

An Understanding of Software Architecture

Understanding Software Engineering 189

However, neither of these, nor any other definition, has become an accepted standard.

The Software Engineering Institute web site houses many of the definitions that have

been published in software architecture literature (SEI 1997). The most recent definitions

differ from the originals by catering for issues that emerged out of published experience

reports – the existence of multiple views of software architecture.

The HyperEdit case study presented a number of architecture types that were uncovered

during that system’s development. They are now compared with other work on software

architecture views. A number of software architecture case studies and theories based on

practical experience have been published suggesting the need for multiple large-scale

representations to capture the architecture of a software system. Soni (Soni, Nord et al.

1995), as a result of surveying many software systems used in industrial applications,

identified four different large-scale structural depictions used throughout the development

process:

• Conceptual architecture: describes the system in terms of the major design

elements and the relationships among them.

• Module interconnection architecture: encompasses functional decomposition and

system layers.

• Execution architecture: describes the dynamic structure of the system.

• Code architecture: describes how the source code, binaries, and libraries are

organised in the development environment.

Kazman (Kazman, Bass et al. 1994), while discussing the analysis of quality attributes of

system architecture, asserted that the architecture can be described from (at least) three

different perspectives:

• Functional: Partitions the overall behaviour into a collection of functions that are

individually simple enough to conceptualise.

• Structural: The collections of components that represent the computational entities

and the connections and control relationships between them.

• Allocation: Depicts how the domain functionality is realised in the software

structure.

An Understanding of Software Architecture

Understanding Software Engineering 190

Finally, Kruchten presented his collection of system representations that had been

successfully used to capture the architecture information in several large projects

(Kruchten 1995):

• Logical view: Where the required system is decomposed into a set of key

abstractions, taken (mostly) from the problem domain.

• Process view: Depicts how the main, functional abstractions map onto executing

processes and threads of control.

• Physical view: Reflects distributed aspects by showing how the software maps

onto the hardware.

• Development view: Focuses on the actual software module organisation in the

development environment.

Those four views are depicted with a fifth view that illustrates them with a few use-cases

or scenarios.

From those experience reports, the use of multiple views to represent the system

architecture has become accepted in the discipline and has become part of the most recent

definition of software architecture by Bass et al:

“The software architecture of a program or computing system is the structure

or structures of the system, which comprise software components, the external

visible properties of those components, and the relationships among them.”

(Bass, Clements et al. 1998)

By externally visible properties the authors of the definition mean the “assumptions

components can make of a component, such as its provided services, performance

characteristics, fault handling, shared resource usage, and so on.” (Bass, Clements et al.

1998). The intent of the definition is that “a software architecture must abstract away

some information from the system … and yet provide enough information to be a basis

for analysis, decision making, and hence risk reduction.” (Bass, Clements et al. 1998).

The authors also note that “the definition makes clear that systems can comprise more

than one structure, and that no one structure holds the irrefutable claim to being the

system architecture.” (Bass, Clements et al. 1998)

The prevailing consensus in software architecture research is that those representations

are different views of the system architecture, where each view provides a different

An Understanding of Software Architecture

Understanding Software Engineering 191

abstraction of the underlying implementation detail. Therefore, each view is a subset of

the detail that exists in the implementation. That way of understanding the nature of

software architecture views can be traced back to the foundations paper of Perry and Wolf

(Perry and Wolfe 1992). From their analogies with traditional building architecture they

noted:

“… a building architect works with the customer by means of a number of

different views in which some particular aspect of the building is emphasized.

... For the builder, the architect provides the ... floor plans plus additional

structural views that provide an immense amount of detail about various

explicit design considerations such as electrical wiring, plumbing, heating,

and air-conditioning. ... Analogously, the software architect needs a number

of different views of the software architecture for the various uses and users.

At present, we make do with only one view: the implementation.” (Perry and

Wolfe 1992)

The same analogy was used by Bass et al to explain their definition of architecture. They

claim the multiple representations are analogous to the different building representations

used by the architect, the interior decorator, the landscaper, and the electrician. They

summarise the most useful representations or views used by software developers as:

module structure, conceptual or logical structure, process structure or co-ordination

structure, physical structure, uses structure, calls structure, data flow, control flow, and

class structure. (Bass, Clements et al. 1998)

The IEEE draft recommended practice for architectural description (IEEE and Committee

1998) also reflects this understanding of large-scale software structures. The standard

recognises the growing importance of software architecture in system development,

however it is more cautious about how it refers to architecture and architecture views.

The term architecture is defined very generally in the standard as “the highest-level

conception of a system in its environment”. Similarly, the concept of an architecture view

is defined as “a representation of a whole system from the perspective of a related set of

concerns”.

Those definitions recognise the existence of the concepts but deliberately take care not to

relate them to any preconceived structural meaning. The result however, is that the

definitions are so general they could apply to many different things. Finally, the standard,

An Understanding of Software Architecture

Understanding Software Engineering 192

while recognising the existence of many different system views and viewpoints does not

specify which ones should be used in a project.

Despite those definitions, confusion still exists concerning the exact nature of the

representations, why they are necessary, and which ones should or should not be included

in the description of the system architecture. Other researchers have offered explanations

for this.

Clements, in his overview of the field (Clements 1996), suggested five reasons why the

community has failed to reach a consensus on what exactly we mean by software

architecture.

1. Advocates bring their own methodological biases with them. While most definitions

of the term agree at the core, they differ seriously at the fringes. Those differences are

attributable to the motivation each researcher has for examining the structural issues

in the first place.

2. The study is following practice, not leading it. Research still involves observing the

design principles and actions used whilst developing real systems and abstracting the

commonalties.

3. The field is still quite new.

4. The foundations have been imprecise. The field contains a remarkable number of

undefined and ambiguous terms. In addition to the textual terms, diagrammatic

representations of architectural structures also suffer from ambiguity in interpretation.

5. The term is over-utilised and its meaning as it relates to software engineering is

becoming diluted.

That confusion concerning the meaning of software architecture was observed by Bass et

al (Bass, Clements et al. 1998) who noted that definitions of system structures include the

following:

• Architecture is high level design.

• Architecture is the overall structure of the system.

• Architecture is the structure of the components of a program or system, their

interrelationships, and principles and guidelines governing their design and

evolution over time.

An Understanding of Software Architecture

Understanding Software Engineering 193

• Architecture is components and connectors; architecture is components,

connectors, and constraints.

They continued by suggesting the lack of a well-accepted definition is not as troubling as

it appears because the concept of software architecture can still be successfully used

while a discipline-wide consensus evolves. Their argument uses the notion of an ‘object’

as a similar example. The exact definition of an ‘object’ is still debated by object-oriented

programming researchers and practitioners, yet the apparently ill defined concept has

resulted in a full- fledged paradigm shift in software development. (Bass, Clements et al.

1998)

To summarise the current understanding of software architecture:

• Software developers have been able to identify and theorise about the large-scale

structures of software systems since early in the discipline.

• Those large-scale structures are considered the ‘architecture’ of the software

system. That understanding is based on analogies with traditional engineering

disciplines whose built systems exhibit large-scale structures that are termed the

‘architecture’.

• Research has successfully sought to improve the development process at the

software architecture level of design.

• Experience suggests many system representations are required to depict the

architecture of a software system.

• Those representations are considered analogous to the multiple representations of

traditiona lly built artefacts.

• Confusion still exists about the exact nature of software architecture and the views

used to represent it.

In analysing the current understanding of software architecture, a brief summary of the

traditional notion of architecture is presented to see if it can clarify the confusion.

4.3.2 Traditional Notions of Architecture

The architecture of a built thing, in general parlance, refers to its “unifying or coherent

form or structure” (Miriam-Webster Dictionary 1997). That generic concept is easy to

understand when dealing with our vast range of physical artefacts. People without

An Understanding of Software Architecture

Understanding Software Engineering 194

specific training in the respective fields can perceive building architecture, computer

architecture, naval architecture, etc. However, difficulties arise when you apply the same

concept to elicit the architecture of a system whose only tangible manifestation of the

construction is the source code implementation (Bennett 1997). Despite this, the generic

term ‘architecture’ appears to be appropriate when referring to the large-scale structure or

form of software systems. Therefore, because the field has yet to agree on precisely how

the term should apply to software systems it is worth looking at its historical usage in an

attempt to gain some insight.

Interestingly enough, many reference books in the field of architecture itself fail to define

the term (for example (Pevsner, Fleming et al. 1975; Standen 1981)). Moreover, those

that do, describe something quite ethereal that fails to assist in the application of the term

to software. For example:

“The art of designing and building according to rules and proportions

regulated by nature and taste, so that the resultant edifices arouse a response

by virtue of their qualities of beauty, geometry, emotional power, picturesque,

intellectual content, or sublime essence, is called Architecture, a term which

suggests something far more significant, sophisticated, and intellectually

complex than a mere building, although it must also involve sound

construction, convenient planning, and durable materials. ... Architecture

implies a sense of order, an organisation, a geometry, and an aesthetic

experience of a far higher degree than that in a mere building.” (Curl 1993)

An often quoted definition by Sir Henry Wotton from his 1624 book, The Elements of

Architecture, states that it must fulfil three conditions: ‘Commodite’, ‘Firmness’, and

‘Delight’.

“To constitute architecture, a building must not only be conveniently planned

for its purpose (‘commodity’), and be soundly built of good materials

(‘firmness’), but must also give pleasure to the eye of the discriminating

beholder (‘delight’). It is this third quality, added to the other two essentials,

that differentiates ‘architecture’ from mere ‘building.” (Briggs 1959).

A chronological comparison of the different definitions of traditional architecture reveals

how the term has become more encompassing over time. Briggs, commenting on Sir

Henry Wotton’s definition, detailed how primitive buildings such as huts and even the

An Understanding of Software Architecture

Understanding Software Engineering 195

Egyptian pyramids could be counted as architecture. Moreover, “in modern times, bridges

and other structures which are now commonly regarded as ‘civil engineering’ rather than

architecture or even building.” (Briggs 1959). In spite of this historical meaning of the

term, current usage and definitions of ‘architecture’ certainly do include those items.

While the discipline of architecture itself has proceeded without a formal definition of the

term – at least not in the sense that we seek, there is a long history of architects formally

discussing the nature of their discipline. It is generally accepted that Vitruvius’ treatise,

Ten Books On Architecture (Vitruvius 1931) in the first century BC, was not the first

systematic account of architecture, however his works are the most ancient which have

survived to this day. In addition, there exists a vast number of books that detail specific

architectures, the history of the discipline, and theories explaining particular aspects of

the discipline (e.g., (Watson 1990; Kruft 1994; Gelernter 1995)).

“Another version of this theory looks not to whole forms, but to general

principles of form which are even more abstract and universally applicable

than types. For many centuries these principles were thought to be embodied

in the five Orders of architecture (Tuscan, Doric, Ionic, Corinthian,

Composite), each of which set out specific rules for the proportions of

columns and the spaces between them, the proportions of entablatures relative

to the columns and the spaces between them, embellishment and ornament of

the complete ensemble.” (Gelernter 1995)

Not all architects agree on the most appropriate solution for a particular problem’s

requirements or even on the best architectural design theory. However, the discipline does

have a common understanding of what it means to be an architect and what the goal of

architectural design is:

“That is what architects are, conceivers of buildings. What they do is to

design, that is, supply concrete images for a new structure so that it can be put

up. The primary task for the architect, then as now, is to communicate what

proposed buildings should be and look like.” (Kostof 1986)

That common understanding has coalesced over a long period of time through the

publication of architectural theories and education of architects in apprenticeships, guilds,

schools, and universities. The exact definition of what architecture is may vary, however

An Understanding of Software Architecture

Understanding Software Engineering 196

there exists a common understanding of what the architect does – the architect designs

representations of physical structures so they can be built.

4.3.3 Issues That Undermine the Existing Understanding of Software
Architecture

The logical progression from the recognition of large-scale structures in software

systems; to Shaw’s call for an architecture level of design; through to Perry and Wolf’s

foundations for the discipline; and finally to the explanation of the multiple, high- level

representations required to depict a software system as different views of the

implementation detail appears valid. However, a more thorough comparison of the

systems built by the respective disciplines shows it is quite specious. It is based on the

implicit assumption that the software development process is analogous to those

‘construction’ disciplines in which the completed artefacts or systems exhibit a unique

representational abstraction, fixed during the early stages of design, which we describe as

‘the architecture’. The problem of obtaining an acceptable definition of software

architecture or a set of common architecture views is due to the assumption that software

systems have an analogous, unique design abstraction, determinable at the early stages of

the design. That understanding of architecture and the use of architecture views follows

from Perry and Wolf’s statement,

“… there are a number of interesting architectural points in building

architecture that are suggestive for software architecture.”

However it ignores the statement that began that sentence,

“While the subject matter of the two is quite different...” (Perry and Wolfe

1992).

The subject matter of the two is quite different and any attempt to use analogies between

the disciplines can only be done by ensuring that conjectures extrapolated from those

analogies are not invalidated by those differences.

An Understanding of Software Architecture

Understanding Software Engineering 197

A comparison of the disciplines shows that two important differences exist between the

artefacts that software developers produce and those produced by the more established

engineering disciplines. The first is the concept of form and the other is the concept of

system execution. Those differences between the fundamental natures of the respective

systems have a significant impact on the way we use the notions of architecture and

architecture views in the development process.

Systems produced by traditional engineering disciplines are corporeal. They have a

physical form, a tangibility that allows the viewer to perceive its large-scale structure – its

architecture. That architecture can be viewed in the original design documents, traced

throughout the design process and viewed in the physical realisation of the system.

Australia’s most famous piece of architecture, the Sydney Opera House, provides a good

example. Figure 4-9 depicts the large-scale system design developed by the architect and

a picture of its physical appearance (Sydney Opera House 1999). You can see the

architecture in the design and in the realisation.

The analogous concept of form does not exist for software systems. Figure 4-10 depicts

one of the software architectures of the HyperEdit system. It also depicts the only tangible

Figure 4-9: Architecture Diagrams and Physical Representation of the
Sydney Opera House

An Understanding of Software Architecture

Understanding Software Engineering 198

aspect of that system, its source code. You cannot see the architecture of a software

system by looking at the thousands of lines of source code. It simply does not exist in the

same fashion. The difference is so obvious it can easily be missed. Others have claimed

the user interface can be thought of as a tangible aspect of a software system. However,

that does not invalidate the claim that there is a fundamental difference between the forms

of the systems produced by the respective disciplines.

The difference between the concept of system form in the respective disciplines affects

how the notions of architecture and architecture views are used in the development

processes. The architecture of a physical artefact describes its physical form. To repeat

the previously stated quote:

“That is what architects are, conceivers of buildings. What they do is to

design, that is, supply concrete images for a new structure so that it can be put

up. The primary task for the architect, then as now, is to communicate what

proposed buildings should be and look like.” (Kostof 1986).

Architects represent the geometric properties of the building materials and/or

components. The physical magnitudes and relations of those components and how they

are juxtaposed in space. That is the case in traditional architecture, civil engineering, and

Figure 4-10: Architecture Diagram and Physical Implementation of HyperEdit System

An Understanding of Software Architecture

Understanding Software Engineering 199

mechanical engineering. Those architectures depict the physical form of the system or the

components that comprise the system. System functionality is inferred from those

components21.

Traditional building disciplines produce many different representations of their system

architecture. Those views are constructed by removing some of the implementation detail

and leaving a subset of the devised form. They are understood in the context of the global

structure using the understanding of the physical form or features of the entire system.

For example, how the wiring moves throughout the spatial arrangement of the automotive

vehicle, or how the plumbing system is laid out within the spatial arrangement of the

building. Those high- level representations can be developed both before the system is

realised or as documentation after the system is completed. They depict a view of what

the physical system is or will be. Not how the system will operate, but how the system

will exist as a corporeal artefact.

Software systems have no analogous physical form. They are not tangible systems. The

high- level, abstract, design representations must be different to those produced by the

peer level of design in other engineering disciplines. Empirical research has shown that

software developers produce multiple, high- level abstractions to represent their systems

and the evolution of research ideas has assumed that they can be devised and used in an

analogous manner to those architecture views of other disciplines. It may indeed be

possible, however the current understanding of software architecture views is based on an

assumption that has never been validated. During software development, large-scale

design representations are created in the conceptual design phase, the implementation

stage, the maintenance stage, and all other stages in between. Do they have any relation to

each other? Is it possible to derive them all from the source code? Are they immutable in

the same sense as traditionally built architectures? Software engineering researchers

answer “Of course!” to these questions and use further analogies with other engineering

disciplines as justification. Those justifications however, fail to consider the differences

between the disciplines and the lack of tangibility of software is one difference that makes

the use of those analogies hard to justify. To determine whether those multiple

representations of software architecture are views in an analogous sense to other

disciplines the following question needs to be answered. What is it about the nature of our

21 Electronic engineering generally does not have that property and is discussed separately.

An Understanding of Software Architecture

Understanding Software Engineering 200

discipline, rather than other disciplines, which makes it so? That question will be

addressed in the next chapter.

The other important difference between software systems and traditionally engineered

artefacts concerns the concept of system execution. Software has a distinction between

the implemented system, the collection of source code, and the executing system, that is,

the way the source code is executed by the implementation environment to realise the

required system. That distinction does not exist in any other discipline. A software system

is nothing more than a collection of source code statements until it is compiled and

executed, statement by statement, by the ‘virtual machine’ implied by the semantics of

the programming language. It is not until that stage that the system realises the desired

result. A fact that is taught to all computer science students and perhaps forgotten not

long after.

Some researchers contest the uniqueness of the distinction between system

implementation and system execution. Counter arguments make analogies with other

disciplines such as, “What about the flow of movement through a building?” or “What

about the execution of a motor vehicle or electronic device?” To refute those claims, a

distinction is made between the operation and the execution of a system. This distinction

is critical to realising the differences between software systems and traditionally built

artefacts and, therefore, warrants a few examples. Users can operate a software system

through its user interface but that operation cannot occur until the system is being realised

through its execution by the computer. The HyperEdit case study showed that the

structure of the static, source code implementation of a software system represents

something completely different to its dynamic operation. They are not different

abstractions of the complex, underlying detail.

Motor vehicles and electronic devices certainly operate but they are not executed in the

same manner. The construction of a motor vehicle results in the existence of a constant

mechanical linkage between the physical components. As the driver is operating the

vehicle, the gross structure of its dynamic operation is exactly the same as the gross

structure that was the result of its construction. Similarly, computer architecture remains

the same whether the machine is being used or not. A user can operate mechanical and

electronic devises but they have no need of an external system to provide its execution.

They may require power through electricity or combustible fuel for the components of the

system to operate and exhibit the required properties. However, once supplied that power

An Understanding of Software Architecture

Understanding Software Engineering 201

they continue to execute independently and have no need of concepts such as a ‘thread of

control’.

4.3.4 Examining the Fundamental Nature of Software Systems to Understand
the Representations Used to Depict Them

A large amount of invaluable research and empirical study has been undertaken in the

field of software architecture. However, this thesis has identified two important

differences between software development and traditional engineering disciplines that

serve to undermine the understanding we have of software architecture and architecture

views. Software systems have no large-scale, visible, gross structural form that is

analogous to traditionally engineered systems. In addition, software systems have a

distinction between the physical source code implementation and how that code is

executed by the computer to realise the required system. Those differences invalidate the

assumption that software architectures are analogous to those used by traditional

engineering disciplines and that software architecture views are different abstractions of

the underlying implementation detail of software systems. However, by using traditional

engineering architectures as a contrast, those differences provide an insight into the

fundamental nature of software systems. That fundamental nature and the high- level

abstractions used to represent it explain why those representations must necessarily be

multiple, independent architectures.

The architectures used to represent the only ‘tangible’ part of the system that exists, the

source code implementation, are fundamentally different to those used to represent the

executing system. Representations of the source code implementation depict how the

system is implemented using the building blocks provided by the implementation

language(s). Those building blocks include files, procedures, functions, rules, object

definitions, etc. That is the only system representation that can be directly perceived by

us, yet it does not contain all the implementation detail necessary to understand what the

system does or how the system executes to realise the requirements22. It is missing

services provided by the operating system; services provided by other software systems,

both those provided at compile time by linking in additional libraries and those provided

at run-time by communicating processes; and it is missing information that affects the

22 Again, some may argue that the user interface constitutes a tangible aspect of the system. That debate is
not considered here because it does not alter the subsequent conjectures.

An Understanding of Software Architecture

Understanding Software Engineering 202

operation of the system because it is hidden in data values rather than being explicit in

procedural invocation. The source code is the lowest level of system granularity, the

detail from which larger-scale abstractions are generated. However, it is missing the detail

necessary for the system to execute. That additional detail is available only at run-time

after the source code has been compiled and is being executed. The missing information

is depicted in the abstract concepts evident in the architecture representations of the

dynamic execution of the system. Those representations detail the operating system

processes, the inter-process communication abstractions, and the other services that

become part of the system at compile or runtime. The representations we have to depict

the static implementation of the system and those which represent the dynamic execution

of that system are different. One is not merely a subset or more abstract ‘view’ of the

other. They are different, and the reason they are different is because of the differences

that exist between the discipline of software development and those from which we draw

the concepts of architecture and architecture views. Our systems have no tangible form

and our systems have a distinction between system implementation and system execution.

The difference between system implementation and system execution also highlights the

fact that no software system representation, from lowest level of detail, through to most

abstract architecture contains the information that explains how the system is executed. It

is not immediately obvious because few, if any, other disciplines require it in their system

representations. In other disciplines you look at the architecture of a system and infer how

it works. That is because those systems are not executed by another machine. Software

systems are executed and knowledge of the operation of that execution engine, the virtual

machine implied by the language, is necessary to understand how the system is executed.

The majority of systems are implemented in procedural or object-oriented languages and

developers can conceptualise the operation of those by implicitly following the

procedural invocations as the thread of control moves through the system components.

Object-oriented terms like ‘message passing’ are still, at the code level, procedure

invocations. Designers viewing system representations automatically apply that

knowledge of how that model of abstraction operates to solve a problem, often without

explicitly realising it. It becomes evident however, when attempting to understand a

system representation that has been implemented in a language that utilises its own virtual

machine rather than traditional procedural invocation. For example, understanding how a

system implemented in Prolog operates must be done with the knowledge of how a

An Understanding of Software Architecture

Understanding Software Engineering 203

backward-chaining inference engine works. In addition, systems implemented in

functional languages such as Scheme or Lisp must be evaluated with respect to how the

computer executes that language. The dynamic execution architectures of a realised

system are not generated by abstracting away detail from the large and complex

implementation because those details do not exist in the implementation. Again, we have

an architecture representation that is not a subset or abstraction of some other, more

complex, representation. It is different to the implementation because of the fundamental

nature of software systems.

The other noted difference between the respective disciplines, the concept of system

form, also leads to the necessity of multiple independent architectures to represent a

software system. Shaw’s original article on software architecture noted the existence of

higher level abstractions for software systems that could lead to an architecture level of

system design. Traditional building disciplines develop the architecture, the gross

structural form of the system, during the initial design stages of the development process.

It can then be tracked and modified through the design process, and subsequently viewed

in the realised system. This cannot be achieved in software design. The current

understanding of software architecture views is that they are different abstractions of the

complex, underlying implementation detail. The existence of large-scale software

representations developed during system design is often noted, but research does not

explain their relationship with the representations that are generated after the system has

been implemented. That is due to the nature of the elements that are contained in those

representations. They are not representations of corporeal components in an analogous

manner to traditional system architecture.

The concepts represented in the design level depictions of software architecture contain

abstract domain level concepts. They are mentally conceived entities that have no

tangible manifestation. They may attempt to model or mimic tangible things, but they

themselves have no form. The realisation process of a software system as an executing

computer program occurs by implementing those mentally conceived, domain level

concepts using the constructs provided by the programming language and operating

system, and subsequently executing them in a machine. Those mentally conceived

notions may be similar to implementation level concepts, however they do not have to be.

Indeed the essence of software development is the process of implementing those domain

level concepts of our minds using the constructs provided by whatever implementation

An Understanding of Software Architecture

Understanding Software Engineering 204

environment is at our disposal23. This is not generally the case in any other engineering

discipline.

Progress in software design research is concerned with reducing the cognitive distance

between the concepts that exist in our minds and those that are realisable in the

implementation medium of our discipline. Programming language improvements, such as

object-oriented languages and FGLs, attempt to bring the implementation level closer to

the mentally conceived components. Alternatively, design methods and patterns attempt

to provide techniques that help to develop mental level components, and their

interactions, that are more easily, and predictably, realisable in our implementation

medium(s).

High- level software design representations consist of abstract concepts that depict domain

level functionality and/or behaviour. In contrast, large-scale representations of the

implementation can consist of abstract concepts provided by the implementation medium.

For instance, language constructs (e.g., functions, rules), virtual machines, inferencing

engines, files, operating sys tem processes, etc. They are different collections of concepts.

A conceptual architecture can be realised by many implementation architectures and an

implementation architecture can be represented by many conceptual architectures. The

difference between the two can be explained through a better understanding of a word

that is often used in software architecture research – ‘abstraction’. The existence of

different architectures for a software system has been explained as different abstractions

of the complex implementation detail. The definition of the word abstraction is often

quoted from Shaw’s work as a simplified description of a system that emphasises some of

the system’s details or properties while suppressing others (Shaw 1984). That definition

matches the one in a standard English dictionary. It also matches how views are assumed

to be generated in traditional built architecture, where each view is a subset of the system

as a whole. However, that is not the situation with software architectures. The design and

implementation architectures contain different collections of concepts. They are not

different subsets of the underlying system. They match the definition of abstraction

discussed in philosophy and psychological – for example (Corsini 1984). In those fields,

abstraction is the technique by which higher order concepts are used to further intellectual

reasoning by representing distinct, yet similar, particular instances. For example, apples

23 This is discussed in more detail in the next chapter.

An Understanding of Software Architecture

Understanding Software Engineering 205

and bananas can be represented by a single concept, fruit. That is how abstraction is used

in software architecture. The collection of particular implementation concepts, such as

objects, message queues, etc are represented by a different concept such as a blackboard.

A blackboard does not exist in the software system. What ‘exists’ is a collection of

programming objects or procedures, in conjunction with operating system message

queues. We simply choose to refer to that collection by the single concept ‘blackboard’.

Similarly, there is no particular instance of ‘fruit’. There are apples, bananas, oranges, etc.

We simply choose to refer to them collectively as ‘fruit’24.

Software architecture views are not developed by merely removing the unwanted detail.

They involve the generation of higher level, abstract concepts to represent the underlying

detail. Moreover, many higher level concepts can be used to represent the same particular

instances. That is why many architectures can be used to describe the high level structure

of a software system.

A counter argument is often made that engineering disciplines, such as electronic and

chemical, design system architectures that do not represent the physical form of their

components. Their high- level designs also represent components of functionality or

behaviour rather than the physical form of the system. That would appear to be similar to

design- level software architectures. However, differences exist which serve to invalidate

attempts to use direct analogies from those disciplines. The functionality depicted in high-

level electronic engineering architectures exists in terms of componentised aggregations

of a small set of physical properties on which the discipline is based. They are: current,

voltage, capacitance, inductance, and resistance – this is even simplified to binary

operations in digital logic design25. The concepts realised by the functional components

of those disciplines may be large and complex but they are all aggregations of those basic

elements. Moreover, the functionality is ultimately constrained by those properties

(Darnell 1962). The nature of the components used in those representations are

fundamentally different to the nature of the functional components depicted in high- level

software design representations because functionality in software is not constrained in

any analogous way.

24 Again, these issues are detailed in the next chapter.
25 This was discussed in the previous two chapters.

An Understanding of Software Architecture

Understanding Software Engineering 206

It is because of the differences between software development and traditional engineering

disciplines that software architectures developed at the beginning of the design process

are not views of the complex implementation detail in an analogous manner to traditional

engineering disciplines. They consist of completely different collections of concepts. It is

true that some representations, for example high- level object diagrams, have a smaller

cognitive distance between the design level concepts and the implementation level

concepts. However, that is not true of all high- level software architectures developed

early in the design process. Because of the nature of software development they cannot

be. Those architectures, developed during the early stages of the design process rather

than derived from the implementation, are created at the ‘architecture level of design’.

They are different from the architectures developed during the same stage of other

disciplines and are not different views of the implementation complexity.

4.3.5 Discussion

The current understanding of software architecture views as different abstractions of a

complex, underlying, implementation is based on an extrapolation from the assumption

that software development is analogous to traditional engineering disciplines. However,

that notion of architecture views fails to consider differences between the respective

disciplines: the concept of visible system form and system realisation through execution.

Those differences provide a contrast that gives an insight into the fundamental nature of

software systems and the processes required to develop them. Moreover, it is that

fundamental nature which necessitates the existence of multiple, independent

representations. While the ‘views’ suggested by other researchers are similar to those

representations suggested by this theory of software systems, they are based on specious

analogies with other disciplines and lack the understanding required to explain why they

are necessary26.

Software architecture research is undoubtedly producing results that are benefiting the

development community (e.g., (Bass, Clements et al. 1998; Bass and Kazman 1999)).

However, the lack of a complete understanding of software architecture is causing

confusion regarding what is considered the architecture of a software system and how

those representations can be used to improve the development process. A better

An Understanding of Software Architecture

Understanding Software Engineering 207

understanding of the fundamental nature of software systems and their development is a

necessity. Answers are needed for the questions that are often posed in commentary-style

journal articles (e.g., (Gilb 1996)) and in informal conference discussions and keynote

addresses (e.g., (Reed 1987; Xia 1998)). “What do we build and how do we build them?”

“What does software engineering really mean?” These are not easy questions to answer.

They will not present quantitative results that are easily testable or easily publishable.

What is required is work on the philosophical foundation of the discipline. Without a

good understanding of the nature of our own discipline we will continue to grasp at

analogies and attempt fit the square-pegs of other disciplines into the round-holes of our

own problems. The foundation of that understanding is presented in the next chapter.

26 A paper summarising this argument was submitted for publication in 2000 (prior to submission of this
Thesis) and subsequently appeared in WICSA 2001.

A Foundation for Software Engineering

Understanding Software Engineering 208

5. Uncovering a Foundation for Software
Engineering

5.1 Introduction
The artefact engineering view of software development, which pervades software

engineering research, is based on perceived analogies with traditional engineering

disciplines. However, a detailed study of the systems produced by the respective

disciplines, the approaches they use to develop them, and an analysis of the analogies

used, shows software engineering research needs to develop a better understanding of the

underlying principles of both disciplines in order to determine the applicability of that

view.

Traditional engineers build artefacts. In contrast, software engineers build models of

reality. Nevertheless, software engineers would like to build systems using techniques

similar to those used by other engineers.

The design approaches used by those other engineers have evolved, in part, due to the

nature of the systems they build and the components and materials used to build them.

Therefore, for the design process of software engineering to be thought of as analogous,

the nature of what the respective disciplines build must also be analogous. That is, it must

be possible to understand the nature of software components and systems in a similar way

to the nature of engineering components and systems. For that to be possible, the

fundamental nature of models of reality must be analogous to the fundamental nature of

traditionally built artefacts. To determine the validity of that assertion it is necessary to

turn to other disciplines that have examined the nature of models of reality. Those

disciplines are the fields of philosophy, specifically in the areas of metaphysics and

epistemology, and the discipline of psychology, which has developed theories to explain

concept development, utilisation, and evolution. Examining the theories developed by

those disciplines uncovers a foundation for the understanding of software systems and the

processes used to produce them. The conclusion is that software systems cannot be

understood in a similar manner to traditionally engineered systems. In order to develop an

engineering discipline of software development, far more attention must be paid to the

fundamental nature of the systems that are built.

A Foundation for Software Engineering

Understanding Software Engineering 209

The chapter begins by briefly explaining the process of software development in terms of

the models it builds. In the research literature, there are many references to the fact that

software developers build conceptual models. This chapter examines the use of models in

the development process and identifies the developer’s formation of conceptual constructs

as one of the major sources of difficulty both for software engineering research and for

software development in general. Existing research clearly acknowledges the existence of

conceptual modelling issues in software development. The problem appears to be that

very few people have fully considered the impact of the relevant philosophical and

psychological issues on the ability to ‘engineer’ those models as software systems.

A description is then provided of the assumptions that must hold if the development of

the conceptual construct can be performed using an ‘engineering’ approach. The relevant

issues from the fields of philosophy and psychology are then detailed and discussed to

determine the validity of those assumptions. It should be noted however, that it would be

impossible to explain all of the relevant issues from those disciplines in a single chapter.

Such an undertaking would require an entire book in itself. The major theories from those

disciplines are presented to argue that ‘software engineering’ is an attempt to ‘engineer’

conceptual processes. The software development process is then described a second time

noting the influence of the relevant issues that become apparent from the more detailed

understanding of the human conceptual apparatus.

The goal of the chapter is not to provide an explanation of how those foundational issues

specify how software engineering should be performed. It is simply to show that the

issues have significant ramifications for how we currently think about the development

process. Moreover, it may be that by viewing software development in that new light,

current problems in software engineering research may be better understood.

5.2 The Conceptual Construct
The process of software development can be partitioned into the following phases27:

• Requirements Elicitation: where a description of the problem is obtained from the

client.

27 The exactness of the partitioning is the source of some conjecture in software engineering research. The
classification of activities into the development phases shown is necessary to allow the subsequent

A Foundation for Software Engineering

Understanding Software Engineering 210

• Analysis: where the requirement specifications are analysed to identify

ambiguities, contradictions, etc, and the developers acquire a thorough

understanding of the problem to be solved.

• Design: where a software-based solution to the specified requirements is devised.

• Implementation and Testing: where the proposed solution is implemented and

tested to ensure it meets the client’s requirements.

Different design methods and programming languages influence the analysis and design

phases as the evolution of the software solution proceeds towards a structure that can be

implemented in the chosen programming language. The most well known programming

approaches are (see Design in (Marciniak 1994)):

• Structured: The problem is broken into a hierarchical collection of subproblems

that represent the functions required to implement the system. The top-level

function provides the complete solution, calling appropriate subprograms as

necessary. Many data structures store the required information, which are then

passed to the appropriate routines as they are called. This approach is directly

supported by procedural programming languages and has historically been the

most popular approach in software development.

• Data-structured: Like the Structured approach, the data-structured approach

partitions the system in terms of data and functionality. However, it is aimed at

database intensive systems that have a large, common, data store rather than many

smaller data structures. The data is defined first and in detail. The procedures of

functionality are then designed with respect to the data model. This approach is

directly supported by database manipulation languages.

• Modular: Based on the notion of ‘information hiding’ (Parnas 1972), this

approach advocates decomposing a problem into modules such that each module

contains some specific functionality identified during the design. The advantage

of this approach is that changes made to the system, such as a modified data

model, have little effect on other areas of the system. The problem of change

dependency is a problem with the Structured and Data-structured approaches. The

discussion to proceed. However, the arguments presented no not rely on the exactness of that
classification.

A Foundation for Software Engineering

Understanding Software Engineering 211

goal of Modular design is to encapsulate the appropriate data structures with its

manipulating procedures. This approach can be implemented using traditional

procedural programming languages.

• Object-oriented: Beginning as an extension to Modular design that treated the

information-hiding modules as ‘objects’, object-oriented design has now become a

completely new paradigm of design that deals with objects, classes, and

inheritance between classes. The key concept is to encapsulate data and

functionality together to minimise change dependency. However, the theory is

more detailed than the original Modular approach. Object-oriented design is

quickly becoming the most popular form of design and object-oriented

programming languages have been designed to more explicitly support the

relevant design concepts than traditional procedural languages.

In addition to the different design methods, different software process models specify the

order in which the particular phases should be carried out. Example process models

include chaotic, waterfall, multiple builds, evolutionary, spiral, rapid prototyping, and

disciplined evolutionary (see Design in (Marciniak 1994)).

Software engineering theories have devised improved process models for ordering the

phases and improved paradigms for designing and implementing systems. However, the

gross structure of software development has remained unchanged. That is, obtain the

requirements from the client, develop a sufficient understanding of the problem to

produce a design, devise a solution to the problem that can be implemented in software,

and then implement and test that solution. To determine if those phases of software

development can be ‘engineered’ it is necessary to look at the artefacts produced by them.

The work presented here looks specifically at the most recent theories in software

development, object-oriented design, though the issues presented are equally applicable to

other design approaches. It should also be noted that the description of the software

design process is necessarily simplified to concentrate solely on the artefacts produced.

Many theoretical aspects of the process are omitted for brevity.

The most recent theories in object-oriented software engineering (Larman 1997;

Jacobson, Booch et al. 1998; Bruegge and Dutoit 1999; Oestereich 1999; Pooley and

Stevens 1999) all suggest similar approaches to those development phases and the

artefacts produced by them. During requirements elicitation, use-cases are used to

A Foundation for Software Engineering

Understanding Software Engineering 212

develop and represent the system

requirements in a manner that can be

understood by the customers, users, and

developers. Use-cases represent the

behaviour of the system from the user’s

point of view, where the ‘user’ is anything

external to the system that interacts with

it. For example, a user might be a person,

another information system or a hardware

device (Pooley and Stevens 1999) (p. 99).

The behaviour is represented as chunks of functionality that the system offers to add a

result of value to the users of the system. Those users are referred to as ‘actors’ in the

individual use-cases (Jacobson, Booch et al. 1998) (pp. 134-135). Jacobson et al use the

example of a complex banking system. An individual use case for a (very simple)

customer ATM withdrawal is depicted in Figure 5-1.

Figure 5-1: Withdraw Money Use -Case

Withdraw Money Use Case:

1. The Back Customer identifies himself or

herself.

2. The Back Customer chooses from which
account to withdraw money and specifies how
much to withdraw.

3. The system deducts the amount from the

account and dispenses the money.

Figure 5-2: Use-Case Model Diagram

A Foundation for Software Engineering

Understanding Software Engineering 213

Figure 5-4: Analysis of the Withdraw Use -Case

Figure 5-3: Analysis of Pay Invoice

The use-case model for an entire system or subsystem is the combination of the individual

use-cases. Additionally, that model can be represented in graphical form. For example,

figure 5-2 (from (Jacobson, Booch et al. 1998)) depicts the use-case model for a ‘Billing

and Payment’ subsystem. The structure of use-cases is not rigidly defined and the

requirements elicitation process may require further refinement of the initially presented

use-cases. Their main purpose is to provide a simple means of communication between

the interested parties and to provide a basis for analysis and design. Moreover, their use,

in combination with domain models and business process models, allow the developers to

obtain a thorough understanding of the problem space.

During the analysis phase, the

requirements specified in the

collection of use-cases are refined by

identifying and reusing similar

concepts (using terminology from

both the developer’s and the

customer’s vocabulary), specifying

the functionality with greater

precision, and removing ambiguities

(Jacobson, Booch et al. 1998) (p.

174). Consequently, the developers also become more familiar with the problem domain.

The result of the analysis phase is the generation of an analysis model that identifies the

significant concepts of the problem and the way they need to interact to provide a

satisfactory solution. For example, a diagram of the concepts resulting from an analysis of

the ‘Withdraw Money’ use-case is depicted in figure 5-3 and the analysis of a ‘Pay

Invoice’ use-case is depicted in Figure 5-4 (both diagrams from (Jacobson, Booch et al.

1998)).

As use-cases are refined during

the analysis phase, the system

moves closer to design because

the identified concepts and

their interactions become more

formal. Indeed, some object-

oriented researchers argue that

A Foundation for Software Engineering

Understanding Software Engineering 214

Figure 5-5: Invoice
Statechart

the product of the analysis phase, the analysis model, can be viewed as an initial version

of the design model (Jacobson, Booch et al. 1998) (p. 178).

The boundary between analysis and design is not clearly defined. The goal of analysis is

to specify exactly what the system is to do without necessarily how it is supposed to do it.

However, constructs used to represent concepts during the analysis phase often have

direct analogues in the design phase. Therefore, it may not be clear where the analysis

concept ends and the design concept begins.

Despite this blurred boundary, the goal of system design is to transform the analysis

model into a design model. The design model is comprised of constructs that are directly

realisable in the chosen implementation medium, that is, the combination of hardware

environment and software programming language(s). The analysis model consists of the

identified concepts from the problem domain and the interactions between them that are

required to realise a solution to the problem. However to

implement the system, those concepts need to be realised

using the constructs of the chosen programming languages (in

this case, ‘objects’). For example, figure 5-5 (from (Jacobson,

Booch et al. 1998)) depicts a more detailed design

representation of the Invoice class than the one identified

during the requirements and analysis stage. The statechart

diagram depicts how the Invoice object changes state as its

internal functionality (submit, schedule, time out, and close) is

executed. The notions of ‘state’ and ‘functionality of objects’

are constructs provided by the implementation environment

and are applied to the concept, ‘Invoice’, to allow its

implementation in a software system28.

To depict how the entire software design may be partitioned into high- level constructs of

software engineering theory, a design may also include a software architecture and a

deployment model. For example, figure 5-6 (from (Jacobson, Booch et al. 1998)) depicts

how the total Banking System may be distributed across the many machines linking the

buyer and the client.

28 This point is discussed in more detail later in the chapter.

A Foundation for Software Engineering

Understanding Software Engineering 215

Figure 5-6: Design Deployment Model

Many factors outside of the original functional requirements influence the transformation

from analysis model to design model. Non-functional requirements and constraints such

as system perfo rmance, response time, reliability, modifiability, etc all impact on the how

the analysis model is shaped into a collection of constructs that are executed by the

machine. The desire to reuse existing software components also influences the

transformation. Software architecture styles, product- line architectures and design

patterns all provide reusable large-scale structures that are known to realise successful

solutions. Similarly, component libraries and design frameworks provide previously

implemented smaller-scale components that can be used to reduce development time and

improve system quality.

The artefacts produced during the transition from requirements elicitation to the design

representation are often talked about as models. The object-oriented references cited have

Figure 5-7: Relationship Between Models

A Foundation for Software Engineering

Understanding Software Engineering 216

talked about use-case models, analysis models, design models and their relationships

(figure 5-7). Dillon and Tan describe the models produced during the development

process, and the transformations between them, in more general terms (Dillon and Tan

1993) (Figure 5-8).

“The conceptual model consists of

the model of the real world of

interest… It is a representation of the

essential characteristics of the real

world that are important for the

problems that the software system is

meant to address. This model is

arrived at by a process of analysis or

knowledge acquisition. No

assumptions are made about the

nature of the software structures that

will be used to encode the structure

of the software system.

Once the conceptual model has been defined and verified, the process of its

transformation into the software structure begins. Since the software structure

defines the basis of the software implementation, sufficient attention has to be

paid to the classes of structures that are available in the implementation

medium when defining the software structure. In the traditional software

engineering, the software structure is the program structure…

During this process of transformation, the conceptual structures are

transformed into the set of acceptable software structures. This process is

referred to as design. The software structure model of the system should

provide the data structures, the knowledge structures as appropriate, the

functions, procedures and methods, the methods of control and inference if

necessary, and the modules in the system.” (Dillon and Tan 1993) (pp. 24-26).

Texts and papers describing software development methodologies constantly refer to

terms such as conceptual models, use-case models, analysis models, design models,

process models, architectures, architecture styles, design patterns, programming

Figure 5-8: Development of Models

 Real World

Conceptual Model

Software Structure

Implementation

Analysis

Design

Implementati

A Foundation for Software Engineering

Understanding Software Engineering 217

paradigms, design paradigms, implementation mediums, and programming constructs.

However, the use of those terms is certainly not consistent. The understanding of their

place in the development process can be traced back to the origins of the discipline. For

example, the notion of ‘Concept’ was discussed during the 1968 NATO conference and

presented in chapter 3. Brooks, in his famous No Silver Bullet paper, noted the following,

“The essence of a software entity is a construct of interlocking concepts: data

sets, relationships among data items, algorithms, and invocations of functions.

This essence is abstract in that such a conceptual construct is the same under

many different representations. It is nonetheless highly precise and richly

detailed. I believe the hard part of building software to be the specification,

design, and testing of this conceptual construct, not the labor or representing

it and testing the fidelity of the representation. We still make syntax errors, to

be sure; but they are fuzz compared with the conceptual errors in most

systems.” (Brooks 1987) [Brooks’ italics].

His earlier book, The Mythical Man-Month (Brooks 1975), dedicated a chapter to the

importance of the conceptual construct and the importance of conceptual integrity in

system design.

Harel also discussed the nature of models in his follow-up to Brooks’ article, Biting the

Silver Bullet: Toward A Brighter Future For System Development (Harel 1992). He

described the need to depict the system analysis and design representations using strata of

conceptual models that tame the complexity of the solution. That should be done “by

allowing the designer to capture the system’s inherent conceptual structure in a natural

way.” He goes onto say,

“We will first conceptualize, using the ‘proper’ entities and relationships, and

then formulate and reformulate our conceptions as a series of increasingly

more comprehensive models represented in an appropriate combination of

visual languages. A combination it must be, since system models have several

facets, each of which conjures up different kinds of mental images.” (Harel

1992)

Harel believed the conceptual model should capture the result of problem analysis by

consisting of a functional model of the system and a behavioural model that depicts how

the functional model will be executed. A structural model is then used to represent the

A Foundation for Software Engineering

Understanding Software Engineering 218

result of the design phase by depicting the implementation responsibility of the various

parts of the conceptual model to constructs that can be implemented in software.

While many different methods have been proposed, the purpose of system analysis and

design has remained unchanged. During system analysis, a model is developed that

depicts the problem domain concepts and their interactions in a manner that completely

meets the needs of the requirements. The goal of system design is then to transform that

model into a collection of concepts and interactions that can be directly realised using the

implementation of software developers – programming language constructs, operating

system constructs, and hardware constructs. The result of the design phase is what Brooks

labelled the conceptual construct.

5.3 Engineering the Conceptual Construct
One of the aims of software engineering research is to improve the process of designing

and implementing the conceptual construct. It is founded on the belief that the utilisation

of an ‘engineering’ approach will result in software systems that exhibit reduced

development costs and improved product quality. Aspects of this ‘engineering’ approach

that have been identified in traditional engineering disciplines and have become goals for

software engineering research include:

• Design Reuse: Software designs that solve one problem can be used to solve other

problems.

• Component Reuse: Software code fragments written to implement one design can

be used in other software implementations. That includes individual components

of the implementation and also the gross, structural form or architecture of the

solution.

• Predictable or Repeatable Design Processes: Standardised processes of design and

implementation that can be successfully analysed to improve estimation of

development time and product quality.

• Formal Methods: The ability to represent the artefacts used in the development

process in a rigorous mathematical formalism that can then be analysed and

manipulated using known mathematical techniques.

• Standard Engineering Methods: Standard techniques to deal with the complexity

of large-scale software design problems.

A Foundation for Software Engineering

Understanding Software Engineering 219

• Graphical Notations: The ability to communicate software designs and solutions

between developers using standard graphical representations.

Those aspects are all related and can be thought of as stemming from the issue of

software design and component reuse.

“Software development cannot possibly become an engineering discipline so

long as it has not perfected a technology for developing products from

reusable assets in a routine manner, on an industrial scale. Software reuse

cannot, in turn, achieve this status unless we make the following provisions: a

sound scientific foundation that encompasses relevant design principles,

widely accepted engineering standards that compile these principles into

working practical solutions, and coherent managerial standards that enable the

deployment of these solutions under acceptable conditions of product quality

and process maturity.” (Mili, Addy et al. 1999)

Attempts to incorporate significant levels of reuse in the development process have

ranged from the elicitation of the client’s requirements all the way to the implementation

of the source code (e.g., (Cybulski, Neal et al. 1998)). Some of them have been very

successful. However, as many researchers have commented, the promises of software

reuse remain for the most part unfulfilled. Few researchers (in the literature) have ever

questioned whether the goal is even possible (e.g., (Glass 1998a)), while others, of

course, may have questioned it in more informal debates. The reason no one knows

whether the goal is possible is because software engineering does not have a fundamental

understanding of the types of systems it builds or the intellectual processes required to

build them. The history of the artefact engineering view of software development

(Chapter 3) showed that researchers simply assume software systems are analogous to

traditional engineering disciplines, therefore, the goal is possible.

The belief that conceptual structures can be designed and implemented using an

‘engineering’ approach that incorporates significant amounts of reuse requires one

significant assumption on the part of the software development community. That belief is

stated in the following assertion:

 The identification of items that can be reused from previous applications,

from the requirements analysis stage to the implementation stage, assumes

that different clients and developers experience the same reality and can

A Foundation for Software Engineering

Understanding Software Engineering 220

model it using similar collections of distinct concepts and concept

relationships. Moreover, those concepts and relationships can be specifically

defined in terms of essential features and represented the same way in two

different applications using the implementation medium of software

development – hardware and software constructs.

Occasionally, the distinction between physical artefacts and human thought constructs are

highlighted by software engineering researchers. For example,

“Ultimately, a program is a fiction, not made of matter that wears an tears; it

is closer to encapsulated human thought than to physical artifacts…” (Belady

1989) (p. viii)

“There is no consensus about what technical approaches are best for various

kinds of reuse problems and little understanding of the nature of reuse

opportunities, let alone the constraints, difficulties, and short comings of

reuse.” (Biggerstaff and Perlis 1989) (p. x)

However, those highlighted issues rarely lead to a questioning of the assumption. It is

simply believed that the reason we have not achieved the required levels of reuse is

because we haven’t yet mastered the technical difficulties. To determine the validity of

that assumption, what is required is a review of other disciplines that already research

those issues – philosophy and psychology. In a nutshell, we need to examine the question,

when we build software, are we actually doing what we think we’re doing?

5.4 Is the Assumption Valid? A Summary of the
Relevant Research in Philosophy and Psychology

Karl Popper’s 1979 article, Two Faces Of Common Sense (Popper 1979g), began by

apologising for being concerned with philosophy as most philosophers seemed to have

lost touch with reality. Furthermore, he felt there was a widespread feeling of anti-

intellectualism in the community. Regardless of whether or not a similar feeling of anti-

intellectualism exists in the software engineering community, it is clear that philosophical

issues are rarely discussed systematically in the research literature. Nevertheless, Popper

continued,

“... we all have our philosophies, whether or not we are aware of this fact, and

our philosophies are not worth very much. But the impact of our philosophies

A Foundation for Software Engineering

Understanding Software Engineering 221

upon our actions and our lives is often devastating. This makes it necessary to

try to improve our philosophies.” (Popper 1979g)

Those philosophies guide our understanding of both the global agendas of software

engineering research, which are discussed in the next chapter, and they explain our

understanding of the more specific, underlying principles of software components and

systems. Those underlying principles concern our understanding of concepts, theories,

models, and abstractions, which are topics philosophers have been debating for over two

thousand years.

However, the application of those philosophical debates to the specific context of

software engineering is not a simple task. Bechtel discusses the issue while presenting

philosophical theories in the context of cognitive science.

“The fact that philosophical claims lie so far removed from empirical inquiry

poses a challenge to anyone turning to philosophical investigations from

training in empirical research. In order to evaluate a philosophical claim you

must follow the often complicated chain of reasoning offered in support of the

claim. This, however, is not meant to deter outsiders from entering the

philosophical arena. … All that is required for the nonphilosopher to get

involved with philosophy of mind is to begin to confront the issues. This

means becoming an active participant in the debates by offering arguments

for or against different positions. It is not enough simply to turn to

philosophers as authorities and cite what a particular philosopher has said as

an answer to one of these foundational questions. … Rather than simply

accepting an authority, it is necessary to explore the issues and to evaluate the

arguments advanced for competing claims.” (Bechtel 1988a)

A few software engineering researchers have used philosophical positions in support of

particular research ideas, even though they may not continue to be supported within the

discipline of philosophy itself.

“This proclivity to borrow positions from philosophy is rather common but

poses serious dangers because what might be controversial in philosophy may

be accepted by a particular scientist or group of scientists without recognizing

its controversial character.” (Bechtel 1988b)

A Foundation for Software Engineering

Understanding Software Engineering 222

The definition of objects in terms of ‘intension’ and ‘extension’ is one such example in

software engineering research and it is discussed later in the chapter.

To ensure this treatise does not fall into the same trap, the chapter begins with a detailed

account of the relevant philosophical theories that relate to the underlying principles of

software engineering. Discussions with senior researchers in both philosophy and

psychology have also been used to ensure important areas have not been missed or

misunderstood (Cumming 2000; Fox 2000). The presentation begins with the ideas of

classical greek philosophy and traces the debates through to the analysis of language by

Wittgenstein. Obviously, the presentation could not include every debate. It focuses on a

number of traditions within the history of philosophy, each of which have offered a

general perspective on important issues relevant to our understanding of the underlying

principles of software engineering. Other philosophical traditions, such as the

hermeneutics of Heidegger, could have been included (for example, see Heidegger in

(Urmson and Ree 1989)). However, the material presented is enough to raise the issues

required to challenge the artefact engineering view of software development and suggest

the benefits of a model building view, which is the goal of the thesis. Future research

could then make use of Heidegger’s theories in more specific applications of that view.

The resulting presentation compresses a long history of debate into to a short summary

and, consequently, it may be difficult to follow – especially for an audience of software

engineering researchers who are not primarily trained in philosophy. However, it was

necessary to present that amount of detail within the size constraints of this thesis to

develop an appreciation of the relevant issues for the understanding of the underlying

principles of software engineering.

The presentation of those philosophical traditions is followed by a presentation of the

relevant research in the field of psychology. Those theories of concept development,

utilisation, and evolution are based on a more empirical approach and the results may be

more accessible to the reader. However, they lack the depth of explanatory argument

contained in the discipline of philosophy. Importantly, the relevant theories from

psychology research parallel those from philosophy for the purposes of this treatise.

A Foundation for Software Engineering

Understanding Software Engineering 223

5.4.1 Western Philosophy: Metaphysics and Epistemology

5.4.1.1 The Definition of Concepts in Classical Greek Thought

The person generally credited with first discussing the problems we have when defining

concepts is Socrates. Living around 400 BC, he did not write any of his own thoughts

down, however they were recorded in the works of Xenophon, Aristotle, and, most

copiously, in the dialogues of Plato. The goal for Socrates was to discover universally

true definitions of our concepts. At that time, education was offered by the Sophists, who

were itinerant professors that travelled between cities giving lectures. The sophists mainly

taught the art of rhetoric and argued that precise definitions were impossible because

words meant different things in different contexts. Consequently, they taught logical

tricks to manipulate those meanings for the purposes of winning an argument. Socrates

argued that the search for universal truth, rather than mere victory in debate, required the

definition of concepts and maintained that we could not have correct knowledge in any

field until those definitions were discovered.

Socrates attempted to discover that higher knowledge of concepts by developing ‘Socratic

definitions’. Using dialectic discussion with others, he attempted to identify the set of

essential characteristics of a concept that all instances of that concept possessed. Socrates’

dialectic discussions would begin by asking his interlocutor for the definition of a term,

for example, “What is courage?” The response would be subsequently questioned until

Socrates could gather enough evidence to refute the original definition. For instance,

Socrates would provide counter examples which people agreed represented the original

concept but would fail to completely satisfy the definition offered. The respondent would

then be asked for another definition that would be similarly picked apart. The result

would inevitably be that no satisfactory definition could be attained.

Socrates’ quest for absolute knowledge led, in part, to his execution. Plato, however,

continued the philosophical tradition, which included the search for the understanding of

universal definitions. He argued that it was impossible to identify the essential

characteristics of concepts in the instances that we perceive. Through a long line of

arguments Plato submits that because we can identify concepts such as ‘tableness’ in the

physical instances that we perceive, then they must exist. However, because we cannot

successfully develop definitions that account for all the observed examples, there must be

differences between the concept and the instances that instatiate it. For example, because

A Foundation for Software Engineering

Understanding Software Engineering 224

we know about concepts such as ‘courage’ and ‘knowledge’, and can recognise examples

of them, those concepts must exist and somehow we must have knowledge of them.

However, the instances we perceive are only incomplete reproductions of the pure notions

of ‘Courage’ and ‘Knowledge’.

Plato believed those absolute concepts, which he termed ‘Forms’ or ‘Ideas’, do not exist

in the physical world. They exist in some other world which our souls have access to

before we are born. During our lifetime, we perceive objects that remind us of these pure

Forms and the goal of philosophy is the pursuit of understanding them. The consequence

is that all possible concepts exist in the world of Forms and we understand the sensory

world around us as objects that faintly copy these innate and subconsciously known ideal

Forms. Moreover, our knowledge is about these abstract Forms.

Aristotle was a student in Plato’s academy who sought to develop a complete taxonomy

of the natural world based on a rigorous logical analysis of worldly experience. His

subsequent analysis and theories of abstraction resulted in a different understanding of the

problem of concept definitions. Aristotle also believed in a notion of Forms but those

‘Forms’ do not exist in a different, non-physical world as Plato had suggested. Aristotle

argued that if Plato was correct then it would be impossible to account for the occurrence

of change. That is, Plato’s philosophies could not account for the generation of new

substances. To solve the dilemma, Aristotle suggested it was necessary to differentiate

between matter and form. For example,

“A table is wood and glue put together in a certain way. Aristotle

distinguishes as separate aspects of the table its matter (the wood and glue)

and its form (how it is put together, its structure). … Form is immanent : the

form of a table exists only as the form of this table or that table, that is, as the

form of certain matter. There is no separately existing transcendental Platonic

Form of Table.” (see Aristotle in (Urmson and Ree 1989)).

Moreover, the form or structure of an object is normally determined by its function. For

example,

“It is because of what it has to do that a table has a flat top and four legs.

Form may in fact be identified with function: to say what a table is is to say

what it does or is for.” (see Aristotle in (Urmson and Ree 1989)).

A Foundation for Software Engineering

Understanding Software Engineering 225

According to Aristotle, matter could subsequently be broken down into further elements

such as earth, air, fire, and water. He then argued that all human thought is concerned

with manipulating these forms using the principles of categorical logic.

“Thought is the more active process of engaging in the manipulation of forms

without any contact with external objects at all. Thus, thinking is potentially

independent of the objects of thought, from which it abstracts the form alone.

Even the imagination, according to Aristotle, involves the operation of the

common sense without stimulation by the sensory organs of the body. Hence,

although all knowledge must begin with information acquired through the

senses, its results are achieved by rational means. Transcending the sensory

preoccupation with particulars, the soul employs the formal methods of logic

to cognize the relationships among abstract forms.” (Kemerling 1997a)

Aristotle also attempted to provide a means of systematically defining all aspects of

reality. He believed that true knowledge could be represented in categorical logic and that

thought and language provides a true account of reality. His categorical logic consisted of

assertions of subject-predicate form and that all predicates could be defined in terms of

the essential features or properties they exhibited. Those features were divided into ten

particular categories. The most important category is substance, which describes a thing

in terms of what it most truly is. The substance then acts as the subject for which the other

categories can be attached as predicates. Those other categories are: quantity, quality,

relative, where, when, being in a position, having, acting on, and being affected by. Used

in conjunction, these categories provide a comprehensive account of what any individual

thing is. For example,

“Chloë is a dog who weighs forty pounds, is reddish-brown, and was one of a

litter of seven. She is in my apartment at 7:44 a.m. on June 3, 1997, lying on

the sofa, wearing her blue collar, barking at a squirrel, and being petted.”

(Kemerling 1997a).

Furthermore, Aristotle believed his system could explain both specific instances, such as

Chloe the dog, and the more general species or genera, such as dogs or animals.

Therefore, for Aristotle, to recognise an object was to identify the appropriate Form

within it. Moreover, the essence of that Form could defined in terms of its essential

properties according to Aristotle’s categories (Bechtel 1988a).

A Foundation for Software Engineering

Understanding Software Engineering 226

Plato and Aristotle’s philosophies, of which the issue of concept definition were only one

aspect, served as the basis of science and philosophy for many centuries. Indeed, it is

argued that people are either Platonist or Aristotelian in their philosophy of the world.

“That is, each of us is inclined either toward the abstract, speculative,

intellectual apprehension of reality, as Plato was, or toward the concrete,

practical, sensory appreciation of reality, as Aristotle was. The differences

between the two approaches may be too fundamental for argumentation or

debate, but the coordination or synthesis of the two together is extremely

difficult, so choice may be required.” (Kemerling 1997a).

5.4.1.2 How We Have Knowledge Of Concepts: Rationalism, Empiricism, and the
Kantian Revolution

During the ensuing centuries, the progress of philosophy was significantly influenced by

the power of the Christian church. While its progression continued, it did so only within

the bounds of accepted theology. With the advent of the renaissance and the growth of

science based on empirical studies, philosophy began to distinguish itself from accepted

Christian dogma by providing alternative solutions to problems of the mind and of the

natural world. Of particular interest to software developers is the notion of our

understanding of the world and how it can be modelled in a rigorous manner. Those

issues are examined in the areas of metaphysics and epistemology.

• Metaphysics seeks to understand what sorts of things ultimately compose our

reality and how they relate to one another.

• Epistemology seeks to understand how people can have knowledge of that reality

and how that knowledge can be represented.

Aristotelian philosophy provided a basis with which scientists could describe and classify

natural phenomena. However, neither his metaphysics, nor the work of philosophers after

him, could explain the dynamic nature of phenomena or explain the rapidly developing

field of natural sciences (Bechtel 1988a). Two different avenues of thought emerged to

explain these: either all of our thoughts about the world are inferences from sensory

experience (empiricism) or the world exhibited a natural order that could be derived by

rational analysis (rationalism).

Around the seventeenth century, philosophers in continental Europe, especially Descartes,

Spinoza, and Leibniz, led the rationalist approach. They believed that because our

A Foundation for Software Engineering

Understanding Software Engineering 227

experiences could be error-prone or illusionary, the only way to develop a precise

understanding of the world is to use pure reason. In order to provide that certainty, the

rationalists, like Plato before them, took their model of knowledge from mathematicians

who derive theorems from axioms they took to be indubitable (Bechtel 1988a). For

example, Spinoza claimed to deduce the entire system of thought from a restricted set of

definitions and self-evident axioms (Kemerling 1997a). The senses had a role to play but

they were secondary to that of reason.

“We can get beyond guesswork and fallible opinion to knowledge by

operating as geometricians and arithmeticians operate, namely by pure

thought, not vitiated by the deliverance of our senses. Where we can calculate

and demonstrate we can know. No set of sense-impressions can yield

knowledge. Where we can only observe and demonstrate we cannot know. No

set of sense- impressions can yield knowledge. Only by exercises of pure

thought can we ascertain truths.” (see Epistemology in (Urmson and Ree

1989)).

The metaphysical belief required to follow the rationalist approach is that the world

consists of a number of ready made parts and the relation between those parts has been

constructed in a logically sensible manner. Therefore, the rigorous use of logic can

successfully define it. However, there were a number of problems with this approach to

epistemology. The use of pure reason guarantees the indubitability of our knowledge but

leaves serious questions about its practical content. By ignoring the effect of our sense

impressions on knowledge, we can only deal in abstract truths. For example,

“Pure geometry cannot tell us the positions or dimensions of actual things in

the world, but only, for example, that if there is something in the world

possessing certain dimensions, then it has certain other dimensions.

Geography could get nowhere without geometry, but geometry by itself

cannot establish the position or even the existence of a single hill or island.

Truths of reason win the prize for certainty only at the cost of being silent

about what, if anything, actually exists or happens.” (see Epistemology in

(Urmson and Ree 1989)).

While Rationalism was developing in continental Europe, philosophers in Britain were

developing an opposing epistemological view, Empiricism, where reason plays a less

A Foundation for Software Engineering

Understanding Software Engineering 228

central role to the importance of sensory perception. The philosophers Locke, Berkeley,

and Hume had noticed the success that scientists such as Bacon, Newton, and Ryle had

achieved using a program of rigorous observation and experimentation. Consequently,

they sought to provide a theory of knowledge that was compatible with a carefully

conducted study of nature.

The empiricists tried to show that knowledge is developed by observing naturally

occurring phenomena and then developing concepts and theories from it using the

principles of induction and association. For example, Locke maintained that every thing

we know or believe is made up of ideas that come from our receiving sense impressions

and then reflecting on them. To explain our knowledge of concepts that we had not

encountered physical instances of, he suggested that complex ideas could be developed

by conjoining simpler components.

“My idea of ‘unicorn,’ for example, may be compounded from the ideas of

‘horse’ and ‘single spiral horn,’ and these ideas in turn are compounded from

less complex elements. What Locke held was that every complex idea can be

analyzed into component parts and that the final elements of any complete

analysis must be simple ideas, each of which is derived directly from

experience.” (Kemerling 1997a)

For Locke, those elements could be refined until an idea was defined in terms of its

primary and secondary qualities. The primary qualities are its quantifiable attributes such

as size, weight, microscopic structure, etc. The secondary qualities are subjective views of

the element. For example, smell, taste, and colour. From these qualities, we then define an

object as a particular class or species by identifying its nominal essences – the most

important features of that object.

The empiricists also believed that the world consisted of identifiable objects and that

observation and abstraction could infer their important properties and interrelationships.

However, this system of epistemology also encountered problems when subject to

rigorous analysis. For example, there is always the possibility of mistaken perceptions.

Empiricists hold that the foundations of our knowledge are sense-impressions, but what

guarantee is there that those impressions are correct? How do we know those sense-

impressions are unadulterated by any assumptions, guesses, or expectations?

A Foundation for Software Engineering

Understanding Software Engineering 229

Furthermore, assuming the initial sense-impressions are correct, what guarantee is there

that our inferences from that sensory stimulus to the complex ideas are correct?

“Our knowledge of the world around us, together with our mere beliefs and

conjectures about this world, are all conglomerations of interlocking

conclusions inferred, sometimes legitimately, sometimes riskily and

sometimes illegitimately from our impressions. Knowledge, unlike belief and

conjecture, would be the product solely of legitimate and riskless inferences.

But then what, if anything, can guarantee our inferences themselves against

being mistaken? … We discover the ways in which things always or

sometimes happen only by finding them happening and then collating our

findings; and even then the laws and regularities that at any particular time we

claim to have ascertained are always subject to subsequent correction.” (see

Epistemology in (Urmson and Ree 1989)).

Both the empiricists and the rationalists had assumed that the objects of knowledge exist

independent of us and we must determine how we can know them. That assumption dates

back to Aristotelian philosophy which assumed that man is a ‘blank tablet’ that can be

filled with knowledge either through inferences from sensory experience or from rational

analysis. However, neither account could provide a systematic explanation for our

knowledge of the world.

“The rationalists had tried to show that we can understand the world by

careful use of reason; this guarantees the indubitability of our knowledge but

leaves serious questions about its practical content. The empiricists, on the

other hand, had argued that all of our knowledge must be firmly grounded in

experience; practical content is thus secured, but it turns out that we can be

certain of very little. Both approaches have failed.” (Kemerling 1997a)

In the late seventeenth century, Kant suggested that the only way of resolving these

problems was to revolutionise our way of thinking about knowledge. He considered it

analogous to that of Copernicus who resolved many issues in astronomy by changing the

fundamental assumption of astronomical theories from an earth-centred solar system to a

sun-centred one. Kant proposed that rather than assume the objects of our knowledge

exist independent of our minds, it was actually the process of conceptualisation that partly

created the things we experience. The categories we contain in our cognitive apparatus

A Foundation for Software Engineering

Understanding Software Engineering 230

are applied to the sensory input we receive to create the world we conceive. Kant’s

approach attempted to synthesise the approaches of the rationalists and the empiricists

and resolve the dilemmas that each one faced. Knowledge is created from the sensory

inputs we receive, but it is the abstract truths of our reason that provide the organising

principles of that sensory input.

Kant classified our statements about the world using a twofold process. They are either

analytic or synthetic and they are either a priori or a posteriori. An analytic statement is

something that is true by virtue of the meaning of the words in it. For example, the

statement “a bachelor is unmarried” is true because of the definition of the word

‘bachelor’. A statement, therefore, is analytic if its negation results in a logical absurdity.

All other statements are then synthetic. For example, the statement, “the car is red”,

maybe false and is therefore synthetic. Only these synthetic statements make useful

claims about the world. A statement is a priori if it is “independent of all experience and

even of all impressions of the senses” (see Kant (Urmson and Ree 1989)), that is, it relies

solely on pure reason. All analytic statements are then a priori because they can be

verified by virtue of the definition of their terms and without resorting to experience. In

contrast, a posteriori statements must be grounded in experience and may be true or false

in particular cases. Combining the two, three types of statements are then possible

(analytic a posteriori being impossible by definition):

• Analytic a priori: All analytic statements as already discussed.

• Synthetic a posteriori: Matters of fact that we know through our experience.

• Synthetic a priori: Kant identifies statements from mathematics and science in

this category. For example, “every event has a cause”. “This can be denied

without logical absurdity and yet, in its complete generality, is something neither

confirmable nor falsifiable by sense experience.” (see Kant (Urmson and Ree

1989))

Kant, in contrast to previous philosophers such as Hume, suggested that we have

synthetic a priori knowledge about the world. For example,

“Our knowledge that two plus three is equal to five and that the interior angles

of any triangle add up to a [180 degrees]. These (and similar) truths of

mathematics are synthetic judgements, Kant held, since they contribute

significantly to our knowledge of the world; the sum of the interior angles is

A Foundation for Software Engineering

Understanding Software Engineering 231

not contained in the concept of a triangle. Yet, clearly, such truths are known

a priori, since they apply with strict and universal necessity to all of the

objects of our experience, without having been derived from that experience

itself. … The question is, how do we come to have such knowledge? If

experience does not supply the required connection between the concepts

involved, what does?” (Kemerling 1997a).

Kant argued that it is the synthetic a priori notions that allow us to impose order on the

sensory world we experience. For example, the statement “x causes y” is used by all

people to understand the relationship between phenomena.

“It [causality] is certainly not abstracted from any perceived necessary

connexion, since all that we ever perceive is successions of occurrences. That

we do not abstract the relation of causal necessity from perception had already

been shown by Hume … yet we do apply this concept to perception.” (see

Kant (Urmson and Ree 1989)).

Kant labeled the synthetic a priori concepts that we apply to perception, ‘Categories’, and

set about identifying all of those logical structures.

The result of Kant’s conjectures is that there is no single independent world that we can

all know because what we experience is influenced by the ‘categories’ we subconsciously

impose on the world in an attempt to understand it. Our knowledge is based on the world

we construct in our attempt to find meaning and purpose. These ideas repudiate the

metaphysical quest to identify everything that exists. The goal now became not to

understand the structure of the world but the structure of how we understand the world.

It is necessary to detail two philosophical terms which now become important – idealism,

and its opposite, realism.

• Idealism: is the theory that physical objects have no existence apart from a mind

that is conscious of them.

• Realism: asserts that physical objects exist essentially independently of the mind

of any perceiver.

Kant’s theories are therefore a type of idealism.

A Foundation for Software Engineering

Understanding Software Engineering 232

5.4.1.3 Pragmatism, Analytic Philosophy, and Logical Positivism

After the introduction of Kant’s revolutionary epistemology, philosophers in America

continued the investigation of how our conceptual apparatus influences our perception of

the world. The work of Peirce, James, and others led to the philosophical principle of

pragmatism. Peirce’s pragmatism (in the late nineteenth century) was based on the belief

that humans have an unshakeable desire to understand the world around them.

“Feeling keenly dissatisfied by any suspension in judgment, we invariably

seek to eliminate it by forming a belief, to which we then cling firmly even in

the face of evidence to the contrary. So powerful is this urge to believe

something in every circumstance that many people (as Bacon had noted

centuries before) adopt beliefs upon whatever seems ready-to-hand, including

individual interest, appeals to authority, or the dictates of a priori reasoning.”

(Kemerling 1997a).

From this line of reasoning, Peirce concluded that humans develop concepts and theories

to help them understand the world around them. As those concepts and theories are

employed, they build expectations about the world that may fail. When those expectations

fail, the conceiver modifies those concepts and theories to provide a better match with the

experienced reality. Moreover, he suggested that as people investigate reality, they will

converge, in the long run, on the same conception of the world, the one that most clearly

corresponds with reality.

Peirce also wondered how we could define those concepts. The result was his pragmatic

maxim:

“Consider what effects, which might conceivably have practical bearings, we

conceive the object of our conception to have. Then, our conception of these

effects is the whole of our conception of the object.” (see Peirce in (Urmson

and Ree 1989)).

A concept, then, is defined in terms of the effects it has on our senses and we know we

have true knowledge of an object when we can predict those effects when we come to

deal with it.

An interesting aside that parallels the problem that software engineering research has with

terminology concerns the label applied to Peirce’s philosophy. As other philosophers

A Foundation for Software Engineering

Understanding Software Engineering 233

extended and modified his line of thought, the concept of ‘pragmatism’ became more

general than Peirce had originally intended. To save his original meaning Peirce wrote,

“To serve the precise purpose of expressing the original definition, he begs to

announce the birth of the word ‘pragmaticism’, which is ugly enough to be

safe from kidnappers.” (see Peirce in (Urmson and Ree 1989))

Philosophy, especially in English speaking countries, then moved towards an analysis of

language to explain how we derive and can be sure about the meaning of concepts and

propositions. At the beginning of the twentieth century, Frege attempted to construct a

foundation for the meaning of mathematical terms and expressions by defining them

using purely logical concepts – in the process creating the first predicate calculus. That

process led Frege to focus more closely on the meaning of terms and symbols in language

in general. Using puzzles about concept identity, Frege developed his theory about sense

and reference (or denotation). For example, he considered the statement “The morning

star is the evening star”. In the existing theory of language, terms were simply thought of

as words that referred to existing objects of experience. The terms ‘morning star’ and

‘evening star’ both refer to the planet ‘Venus’. Subsequently, the statement “the morning

star is the evening star” is the same, in terms of our knowledge of things, as the tautology

“Venus is Venus”. However, this is obviously not the case. The first statement is more

informative than the second is. To solve this problem, Frege distinguished between the

‘sense’ and the ‘reference’ of a term. The ‘sense’ of a word, phrase or symbol is the

concept it expresses, while its ‘reference’ is the real world object it represents.

“The expressions ‘4’ and ‘8/2’ have the same denotation [reference] but

express different senses, different ways of conceiving the same number. The

descriptions ‘the morning star’ and ‘the evening star’ denote the same planet,

namely Venus, but express different ways of conceiving of Venus and so have

different senses. The name ‘Pegasus’ and the description ‘the most powerful

Greek god’ both have a sense (and their senses are distinct), but neither has a

denotation. However, even though the names ‘Mark Twain’ and ‘Samuel

Clemens’ denote the same individual, they express different senses.” (Frege in

(Zalta 1999))

Analytic philosophy follows Frege’s logical analysis of language and attempts to solve

philosophical problems by restating them in precise logical terminology. Two of the

A Foundation for Software Engineering

Understanding Software Engineering 234

earliest analytic philosophers were G. E. Moore and Bertrand Russell. Like Frege, Russell

began by attempting to resolve the philosophical problems of mathematics using logic.

He did this by analysing the fundamental terms of mathematics in terms of purely logical

concepts and then developing a symbolic logic to allow the deduction of all mathematical

propositions. After publishing this work, with Whitehead, in Principia Mathematica, he

then attempted to use logic to solve philosophical problems in metaphysics,

epistemology, ethics, political theory, and the history of philosophy. Russell believed that

philosophers should use the ‘scientific method’ of evaluating all hypotheses through the

weighing of evidence and they should use logic to exhibit the ‘logical form’ of natural

language statements. Because the logical form of a statement could be significantly

different to its grammatical from, “a statement’s logical fo rm, in turn, would help the

philosopher resolve problems of reference associated with the ambiguity and vagueness

of natural language.” (Russell in (Zalta 1999)). Russell’s analytic approach was able to

solve many philosophical problems, such as the use of descriptions and proper names,

and as a result, it prepared the way for the development of the philosophical movement

called logical positivism.

At the end of the First World War, the Vienna Circle, a group of philosophers,

mathematicians, physicists and social scientists, began the movement of logical

positivism. Noting scientific advances, such as Einstein’s theory of relativity, and Frege

and Russell’s use of logical analysis to analyse and solve philosophical problems, they

proposed to reduce the philosophy of human knowledge by using only logical and

scientific foundations. One of their central doctrines was the ‘Verifiability Principle’

which asserts that a statement is meaningful only if it can, in principle, be true or false.

“Hence the class of meaningful propositions is exhaustively divisible intro

those whose truth-or-falsity can be established on formal grounds (i.e. logic

and mathematics), and those in which it is, or could be, confirmed by

verification (or falsification) through sense-experience.” (see Logical

Positivism in (Urmson and Ree 1989)).

A consequence was that because many theories in metaphysics and, to a lesser extent,

epistemology could not be verified by sensory experience, they were considered

meaningless. Furthermore, they believed that the natural language used to express

philosophical problems could be restricted to remove ambiguities. That language would

A Foundation for Software Engineering

Understanding Software Engineering 235

then match the logical structure of the world and the logical structure of human

knowledge of the world.

“Experience (it was held) can be resolved into its ultimate constituents,

namely the immediate and incorrigible sensory observations of which the

observer’s world consists. The structure so presented is reflected in language;

more precisely, it can be shown by logical analysis that the propositions in

which knowledge is expressed are similarly reducible to elementary

propositions, corresponding one-to-one with actual or possible items of sense-

experience.” (see Logical Positivism in (Urmson and Ree 1989))

One of the most influential philosophers on the logical positivists was a student of

Russell’s, Ludwig Wittgenstein. Wittgenstein began from the metaphysical premise that

the world consists entirely of simple facts, none of which are dependent on any other.

Human beings then have thoughts about these worldly facts that are our way of picturing

the way things really are. Moreover, our thoughts can be represented in language.

Because human language represents and communicates the facts in logical propositions,

human language must have a structural similarity to the way things really are. The entire

world could, in principle, be adequately represented as a long list of atomic sentences.

“An informative statement will be a picture of some possible state of affairs in

the same way as a sketch-map can picture a battle or the arrangement of the

furniture in a room.” (see Wittgenstein in (Urmson and Ree 1989)).

5.4.1.4 Human Understanding and Conceptual Relativism

Wittgenstein left the field of philosophy for 10 years and returned with a completely

different theory of language and attempts to define meaning from it. His original theory

was that language represented the logically connected facts of the world and that a

restricted, ideal language could be constructed that perfectly described that world of facts.

However, he realised that this theory, and the work of the logical positivists, required too

much precision in the use and definition of words and in the representation of logical

structure. In practice, people’s use of language does not conform to such a rigid structure.

Rather than simply state facts about the logical structure of the world, people use

language in a variety of different ways, which he refered to as different language games.

Examples of games include giving orders, asking, thanking, cursing, greeting and praying

(Wittgenstein 1968). These different language games are learned through childhood and

A Foundation for Software Engineering

Understanding Software Engineering 236

while a few of them may take precedence in philosophical analysis, they do not account

for all language usage.

By analysing the use of words in different language games, Wittgenstein developed a new

theory for the meaning of words. The accepted doctrine was that names apply to

particular objects when those objects possess certain features or properties. That theory

goes back to Socrates quest for the defining properties of concepts and Aristotelian

essentialism. Wittgenstein showed that many real world entities that are referred to using

the same term cannot be defined using the same set of essential features. Wittgenstein

uses the example of the term ‘game’.

 “Consider for example the proceedings that we call ‘games’. I mean board-

games, card-games, ball-games, Olympic games, and so on. What is common

to them all? – don't say: “There must be something common, or they would

not be called ‘games’” – but look and see whether there is anything common

to all. – For if you look at them you will not see something that is common to

all, but similarities, relationships, and a whole series of them at that. To

repeat: don’t think, but look! – Look for example at board games, with their

multifarious relationships. Now pass to card-games; here you will find many

correspondences with the first group, but many common features drop out,

and others appear. When we pass next to ball-games, much that is common is

retained, but much is lost. – Are they all ‘amusing’? Compare chess with

noughts and crosses [tic-tac-toe]. Or is there always wining and losing, or

competition between players? Think of patience. In ball games there is

winning and losing; but when a child throws his ball at the wall and catches it

again, this feature has disappeared. Look at the parts played by skill and luck;

and at the difference between skill in chess and skill in tennis. Think now of

games like ring-a-ring-a-roses; here is the element of amusement, but how

many other characteristic features have disappeared! And we can go through

the many, many other groups of games in the same way; can see how

similarities crop up and disappear…

And the result of this examination is: we see a complicated network of

similarities overlapping and criss-crossing: sometimes overall similarities,

sometimes similarities of detail.” ((Wittgenstein 1968) par 66)

A Foundation for Software Engineering

Understanding Software Engineering 237

Wittgenstein suggested that although these different examples of the same concept do not

have a shared set of defining features, they do have something in common that cannot be

easily identified as particular properties.

“I can think of no better expression to characterize these similarities than

‘family resemblances’; for the various resemblances between members of a

family overlap and criss-cross in the same way.” ((Wittgenstein 1968) par

66).

Wittgenstein concluded that words and sentences can not have precisely defined

meanings or logically defined constructions. The purpose of language is not to represent

the structure of a logically defined reality but to allow communication between people.

Therefore, the meaning of words and sentences can vary as groups of people apply them.

“The members of any community—cost accountants, college students, or rap

musicians, for example—develop ways of speaking that serve their needs as a

group, and these constitute the language-game … they employ. Human beings

at large constitute a greater community within which similar, though more

widely-shared, language-games get played.” (Kemerling 1997a).

Wittgenstein then concluded that the existence of many philosophical mistakes was due to

the inability to identify the nature of the particular language games and the rules that

govern them.

The theory that the precise meaning of words is relative to its use within a context can be

traced back to Frege’s analysis of language (Reck 1997). Furthermore, another recent

philosopher, Willard Quine, analysed the notions of logical positivism by taking the

consequences of the their theories to their logical extremes. By doing so, he also arrived

at the conclusion that the precise meanings of concepts are relative to the observer. Quine

however went further than Wittgenstein and suggested that all concepts, even those of

scientific observation, are culturally dependent 29. He argued,

“… words do not have specific meanings, but only meanings in the context of

a whole network of other words to which they are connected in the sentences

we take as true.” (Bechtel 1988a).

29 The relativism of scientific observation is discussed in the next chapter – specifically in the theories of
Feyerabend.

A Foundation for Software Engineering

Understanding Software Engineering 238

In fact, Quine argued that every theory contains its own ontology and we should abandon

the idea that words can have specific meanings.

“Statements, apart from an occasional collector’s item for epistemologists, are

connected only deviously with experience, [so that] there is many a slip twixt

objective cup and subjective lip.” (see Quine in (Urmson and Ree 1989)).

The basic core of this conceptual relativism, that the precise definition and meaning of

concepts is dependent on context, is now generally accepted as standard in contemporary

philosophy. The conceptual schemes (contexts) that govern the precise meaning of a

concept can operate over an entire culture or period; or it may be conceived more

narrowly as the theoretical framework of a particular community: for example, quantum

physicists, or software engineering researchers (see Cognitive Relativism (Fieser 1999)).

However, debate still occurs concerning particular aspects of conceptual relativism. For

example, the exact nature of the relationship between the meaning of a concept and its

conceptual scheme, the relationship between different conceptual schemes, and issues

concerning whether particular conceptual schemes take precedence over others. Some

philosophers argue an extreme form of conceptual relativism in that no conceptual

scheme has precedence over any other and that conceptual relativism implies a form of

relative idealism. In contrast, other philosophers argue that the success of science shows

that some form of conceptual schemes must be applicable to all people. Still others have

argued that relative idealism must be tempered by some sort of common-sense realism

(Smith 1995).

This conceptual relativism can be traced back to the Sophists, particularly Protagoras,

who noted,

 “Man is the measure of all things – of things that are, that they are, of things

that are not, that they are not.” (see Cognitive Relativism in (Fieser 1999)).

However, the success of Socrates, Plato, and Aristotle in belittling the philosophy of the

Sophists has meant that conceptual relativism had few supporters through the ages.

Nevertheless, the thorough analysis of the ensuing philosophic traditions has shown that

the Socratic definition of concepts is still impossible.

A Foundation for Software Engineering

Understanding Software Engineering 239

5.4.1.5 Definition and Meaning

To reduce the ambiguity and vagueness of words in language, philosophers and logicians

have sought techniques to agree on the definition of terms. Swartz (Swartz 1997) and

Kemerling (Kemerling 1997b) explain the issues and analyse the effectiveness of

attempts to develop precise definitions of concepts. They detail the following types of

definitions:

• Stipulative Definitions: Specify how a term is to be used. It assigns meaning to a

new term or restricts the meaning of a term in a particular context. The use of

stipulative definitions for new terms is always correct because there are no

existing standards with which to compare it. However, when stipulating the

definition of existing concepts, especially those with a well-entrenched usage, it is

often difficult to stay within the newly imposed boundaries.

• Lexical Definitions: Provide a description of how a term is already used within a

community. For example, dictionaries provide lexical definitions. The correctness

of the lexical definition is the degree to which it accurately captures the common

usage. Therefore, they do not define words, they merely report the standard usage.

• Precising Definitions: Reduce the vagueness of a term in a particular context.

They often combine the previous types of definitions by beginning with the lexical

definition and them stipulating the new restrictions on its usage. Examples include

the attempt by legislators to define the meanings of commonly used terms in a

legal context.

• Theoretical Definitions: Are examples of stipulative definitions within a scientific

or intellectual context. Often these definitions imply the acceptance of other

definitions within a larger, encompassing theoretical framework. For example,

Newton’s theoretical definitions of ‘mass’ and ‘inertia’ “carried with them a

commitment to (at least part of) his theories about the motion of physical objects.”

(Kemerling 1997b)

• Persuasive Definitions: Used to attach some emotive meaning to a term for the

purposes of winning an argument. Persuasive definitions generally bastardise

existing lexical definitions and have no legitimacy. For example, “‘Logic’ is by

definition ‘the study of the means by which to win an argument’. (Swartz 1997)

A Foundation for Software Engineering

Understanding Software Engineering 240

Philosophers have for quite some time defined the precise meaning of a term using the

concepts: ‘extension’ and ‘intension’. The extension of a term is the collection of things

to which that term is correctly applied. That application can refer to things in the past,

present or future tenses. For example, “the extension of the word ‘chair’ includes every

chair that is (or ever has been or ever will be) in the world.” (Kemerling 1997b). The

intension of a term, on the other hand, is the set of defining or essential characteristics

that are shared by everything to which it applies. For example, the intension of the word

‘chair’ may be “a piece of furniture designed to be sat upon by one person at a time.”

(Kemerling 1997b). Similarly, the intension of the word ‘triangle’ may be “(the properties

of) being closed, having three straight sides, and lying in a plane.” (Swartz 1997).

There is a reciprocating relationship between the intension and extension of a term. As

the intension of a term becomes greater or more precise, the extension, the set of things to

which it applies, decreases. For example,

“The term ‘black’ denotes a certain class. Adding the term ‘round’ to ‘black’,

viz. increasing the intension, creates a new expression whose extension is a

new, smaller, class, a proper subclass of the former.” (Swartz 1997)

Terms can be defined using the intension or extension separately. Definition by intension

is most obvious in the disciplines of science and mathematics. For example, “x is a circle”

means “x is a locus of a point in a plane lying equidistant from a given point” (Swartz

1997). However in general situations and especially when teaching children, terms are

often defined by extension – pointing out or describing example objects. The meaning of

the term is defined by pointing out and noting particular examples of a category and also

noting examples of objects that are definitely not in the category. These definitions by

extension can include pointing out particular objects, not only visually, but by using any

of the senses or by describing objects that the person has been in contact with before. A

restricted form of definition by extension, which is solely concerned with visually

pointing out a particular example, is definition by ostension.

For a long time it was thought that definition by extension leads to the subject developing

a mental definition by intension. That is, as objects are pointed out as either part or not

part of a particular category, the subject would develop theories about which were the

essential features that determined an object’s membership in the category. However, that

theory has come under attack in recent times in both the disciplines of philosophy and

A Foundation for Software Engineering

Understanding Software Engineering 241

psychology (Swartz 1997). The thrust of the attack concerns the identification of the

essential attributes. Because there are many features of an object to identify, there exists a

large number of attributes that all members could have in common. None the less, people

do develop meanings of concepts successfully using definition by extension. Swartz

claims that the ability to do so is innate in our conceptual apparatus.

“How is it, then, that human beings can ever use this method, and indeed

frequently do so with such success? Here one must offer a scientific theory, a

theory to the effect that we human beings are physically sufficiently like one

another that we will often, after only a few tries, ‘come up with’ the same

sorts of linguistic hypotheses as those of our fellow human beings. In short,

the explanation is that we have a built- in (hard-wired perhaps) predisposition

to frame similar sorts of linguistic posits as other human beings.” (Swartz

1997).

Despite the fact that people can successfully define objects by extension, that definition

can never guarantee the creation of the exact intension. Terms with the same extension

may have different intensions. In contrast, the definition of the term by intension does

specify the exact extension. However, while an intensional definition does specify an

exact extension, it does not guarantee that the intension specifies the correct set of objects

that was intended. While we would like a definition to ‘fit’ the intended extension as

closely as possible, often a particular set of defining characteristics omits certain objects

that were intended or includes additional objects that were not. To find an intension that

fits the required extension exactly is very difficult, and in some cases, impossible.

The Classical Theory of Definition, as described by Swartz, has two principal tenets,

“(1) that a ‘proper’ intensional definition states in the definiens the logically

necessary and sufficient conditions for the application of the definiendum;

and (2) that there are intensional definitions for each of the class terms (e.g.

‘horse’, ‘house, ‘musical instrument’, ‘educated person’, etc.) which we use.”

(Swartz 1997).

This theory does not claim that a concept has an innate definition, or set of essential

features that can be identified. However, it does claim that for most concepts, definitions

can be constructed, based on identifiable features, to suit that purpose. Proponents of this

Classical theory often use examples from mathematics and geometry to illustrate the

A Foundation for Software Engineering

Understanding Software Engineering 242

process. However, Swartz notes that the theory cannot automatically be extrapolated to

other concepts.

“Somewhat uncritically, on the basis of this model, people believed that

comparable definitions could be constructed in more ordinary contexts, that

definitions of ordinary class terms – not just those in mathematics and science

– ought to specify the necessary and sufficient conditions for the application

of the definiendum.” (Swartz 1997)

As has been pointed out, the more recent philosophers (e.g., Frege, Wittgenstein, Quine,

and their academic descendants) have shown that this is not the case. The precise

meaning of a term is dependent on the context and culture in which it is used. Apart from

some extreme examples, there can be no single, universal intensional definition.

Swartz and Kemerling discuss two different alternatives to deal with the problems facing

intensional definitions – the ‘cluster-concept’ (Swartz 1997) and the ‘genus and

differentia’ (Kemerling 1997b) definitions. To explain the idea of a cluster concept

Swartz uses the definition of the concept ‘lemon’. Lemons exhibit the following

characteristics: are yellow, sour, ovoid, grow on trees, as big as a ten year old’s fist, are

juicy, have internal seeds, have a peculiar aroma, have a thick skin, internally segmented,

pulpy, have a pocked surface, green prior to maturation, grow in a semitropical

environment, have a waxy skin, contain vitamin C, and are edible. If all of these features

were used to specify the concept’s intension it may over specify the term ‘lemon’. For

example, if an object were found that did not meet one of these characteristics but did

meet all the others, it would probably still be classified as a lemon. However, it is

difficult, if not impossible, to identify which ones are necessary for an object to meet in

order to be classified as a lemon. As long as it meets most of them, then it would be a

lemon. A ‘cluster-concept’ is a collection of features, none of which is individually

necessary, but the majority of which, are.

“Thus in one sense we do not know the definition of ‘lemon’: that is, we

cannot give a classical intensional definition for it. Yet it would be absurd to

say that we do not know what ‘lemon’ means. Of course we do. The concept,

lemon, is a cluster concept, and we know the conditions in the cluster and we

are fairly well agreed on their relative importance.” (Swartz 1997).

A Foundation for Software Engineering

Understanding Software Engineering 243

In addition to the idea of the ‘cluster-concept’, logicians have proposed the use of ‘genus

and differentia’. The process begins by identifying a more general or broader category

that includes all of the intended members. Because this will include items that are not

intended, the genus is supplemented with a differentia, which identifies the defining

characteristics of the intended items from the others that exist in this general category.

For example, to define the concept ‘chair’ the general genus to which it belongs may be

“piece of furniture” and the differentia required to identify all cha irs from the other pieces

of furniture may be “designed to be sat upon by one person at a time.” (Kemerling 1997b)

Swartz concludes that although the classical theory that concept definition can be

achieved using intension and extension is still quite pervasive, and does work for a small

number of domains, it should not be relied upon.

“In short, very often we know the extension of a term very well, we can even

‘go on’ reasonably well, yet we are unable to specify the intension, and

moreover ought on many occasions to resist the demand that we try to give an

intensional definition for the term.” (Swartz 1997)

5.4.1.6 Using Theories to Understand Phenomena: The Philosophy of Science

The theories concerning the formation and definition of concepts have significant

ramifications for software engineering researchers, specifically in the areas of component

design and reuse. Those issues are examined later. However, they do not explain how

concepts are used to construct complex explanatory theories or models of reality. Those

issues are examined in philosophy of science and they have significant ramifications for

software engineering, specifically in the areas of design reuse, software architecture, and

design patterns.

The ‘philosophy of science’ is reasonably recent in the discipline of philosophy, however

its origins can be traced all the way back to Aristotle. Indeed, until the scientific

revolution of the seventeenth century it was difficult to distinguish between philosophy

and science – there was no sharp line between physics and metaphysics. However, since

the nineteenth century, philosophers of science have been theorising about how science

progresses and how people can know the knowledge it develops is valid. Those theories

deal with issues that include the methods used by science, the relationships between

experiment and theory, and whether the theories developed by science match the reality

of the world. All of these have ramifications for how software engineers develop their

A Foundation for Software Engineering

Understanding Software Engineering 244

designs to automate real world processes, how software engineers can be sure those

designs are valid, and whether or not those designs can be reused for other problems and

in other contexts. To detail these issues, it is necessary to explain the theories of the

logical positivists and their opponents, specifically those of Karl Popper. Philosophers of

science have also developed many theories to explain how scientific and non-scientific

disciplines have evolved. Those issues are discussed in the next chapter, which examines

how software engineering research can progress.

The logical positivists have been the most influential group on the philosophy of science

in the twentieth century. As has been discussed, the logical positivists originated in the

1920s and were predominantly influenced by the philosophical ideas of positivism, the

successful use of logic by Russell and Frege to explain mathematics and language, and

the radical advances in physics – especially those of quantum mechanics and relativity

theory. They proposed to determine what made science a reliable source of knowledge.

Their epistemological view was that the world exhibited a logical structure that was

captured in the language used to express and communicate it. This positivism led them to

the Verifiability Principle, which asserts that the only significant theories of science are

those than can be verified as being either true or false by testing them against experience.

Their explanation of science was that scientists propose hypotheses which were accepted

if sufficient evidence was found to support it. The logical positivists assumed the method

of discovery was a type of induction where the scientist observes phenomena and

recognises regularities of cause. Those regularities are captured in scientific hypotheses

that can be verified using experimentation. If the hypothesis was successfully verified,

then it must capture the essential structure of reality and could become a scientific law.

The logical positivists believed the issues involved in discovering the hypothesis could

only be explained by psychologists and, instead, concentrated on developing detailed

explanations for how the hypotheses could be justified using the tools of logic. As an

example, Rudolph Carnap attempted a logical, axiomatic account of all space and time. In

his Logical Structure of the World he details a rigorously formal version of empiricism

(see (Fieser 1999) on Carnap).

Some philosophers prior to the logical positivists had discussed the issues concerning the

discovery of hypotheses. Comte, who introduced the ideas of positivism, believed that the

concepts involved in hypotheses, specifically those of interaction such as ‘cause’, were

intellectual constructs developed by scientists. That is, there is no natural concept of

A Foundation for Software Engineering

Understanding Software Engineering 245

cause. It is something invented by us to explain the regularities observed in nature and to

allow us to make predictions about future events. A contemporary of Comte’s, Whewell,

believed these concepts did exist but they could not be seen directly. He believed Kant’s

notion that we apply our innate notions of cause on the reality that we experience. The

correct notion of cause could only be discovered by successfully developing theories that

explain reality (see Philosophy of Science in (Urmson and Ree 1989)).

The theories of the logical positivists became the dominant explanation for the structure

of science. However, there were many problems with them. One of those was that

scientific thinking does not necessarily follow the strict canons of logic. Moreover, others

had argued many years before against the assumption that hypotheses, which are

developed using induction by abstracting general theories from repeated observation,

could be successfully verified using empirical testing. The empiricist Hume had argued

that inductive evidence could never establish definitively, or even render probable, the

truth of any general claim. It is always possible that there might be counter-evidence to a

general claim that simply had not been discovered yet. Similarly, the mathematician

Poincaré argued against the basic positivist assumption that reality had a logical structure

that could be captured in all-encompassing scientific laws. Poincaré began to study the

philosophy of his discipline when the successful introduction of non-Euclidean

geometries challenged the assumption that geometry had a single logical structure. His

research showed that scientific theories may start with experience but they do not exactly

match it.

“For example, look at the problem of finding a mathematical law that

describes a given series of observations. In this case, representative points are

plotted in a graph, and then a simple curve is interpolated. The curve chosen

will depend both on the experience which determines the representative points

and on the desired smoothness of the curve even though the smoother the

curve the more that some points will miss the curve. Therefore, the

interpolated curve – and thus the tentative law – is not a direct generalization

of the experience, for it ‘corrects’ the experience. The discrepancy between

observed and calculated values is thus not regarded as a falsification of the

law, but as a correction that the law imposes on our observations. In this

sense, there is always a necessary difference between facts and theories, and

A Foundation for Software Engineering

Understanding Software Engineering 246

therefore a scientific theory is not directly falsifiable by the experience” (see

Poincaré in (Fieser 1999)).

Poincaré’s conclusion was that scientific theories are not immutable truths. Rather, they

are explanations, chosen by convention, that help people explain reality and make useful

predictions about the future. Therefore, neither Euclidean geometry, nor any other such as

Reimann geometry, is the ‘true’ geometry. One may simply be more convenient than the

other for the purpose we wish to use it for.

These issues, which contradict the theories of science proposed by the logical positivists,

were constructed into formal theories by Karl Popper. Popper was a contemporary of the

logical positivists and was part of many of the meetings of the Vienna Circle. However,

he did not agree with their positivist approach, in particular, with the Verification

Principle. His attack began on the belief that people devise theories using induction. Like

Hume, Popper showed this belief must be false because evidence could be found to

support virtually any theory (Popper 1979b). He argued this belief was part of the

prevailing influence of Aristotelian essentialism in that “intuitive knowledge consists in

grasping the ‘indivisible form’ or essence or essential nature of a thing” (Popper 1983). If

all things could be defined in terms of their essential features then the things that

comprise those defining features would also have to be defined. Similarly, those defining

features would also have to be defined and an infinite regress of definition would ensue.

Moreover, this belief assumes the empiricist ‘bucket-theory’ of knowledge, in which

people’s minds begin as an empty bucket that is filled by observing and conceptualising

the objects of experience. However, because there are so many facts to be observed, and

because so many features can be identified for each thing, how can the essential ones be

determined? Popper’s conclusion was that people do not observe things and seek to

somehow define them in terms of important features, as the logical positivists had

assumed. Rather, they observe defining or important features and characteristics and then

seek a label, a concept name or theory, to represent them in their knowledge structure

(Popper 1983).

Popper believed people had a purpose in developing concepts and theories and this

purpose directed how concepts and theories were identified. He explained his theory

based on his ‘3 worlds’ model of human knowledge (Popper 1979g; Popper 1979c):

• World One is the physical world.

A Foundation for Software Engineering

Understanding Software Engineering 247

• World Two is our conscious experience or perceptions of world one.

• World Three is the collection of theories that we use to explain our understanding

of world one. These include theoretical situations, problems, problem situations,

critical arguments, the state of discussion on the state of critical arguments; and

the contents of books, journals, etc.

The link between the worlds is our mind. Humans can devise theories to explain the

world. As the mind (world 2) experiences reality (world 1) it can devise explanatory

concepts and theories (world 3) that can be communicated, written down, and shared with

others. However, the link also works the other way. As humans perceive the world (world

1) in their minds (world 2) they automatically apply the concepts and theories that are

inherent in culture and language (world 3). All our actions in the first world are

influenced by our second world grasp of the third world. Popper quotes the philosopher

Myhill, “our formalisations correct our intuitions while our intuitions shape our

formalisations.” (Popper 1979c). Concepts are partly a means of formulating theories and

partly a means of summing up theories. In this sense, Popper has provided similar

arguments to those of Kant when he proposed a solution to synthesise the epistemological

theories of empiricism and rationalism. For Popper, people do not share an objective

reality. However, they do develop and share an objective knowledge (world 3) of it.

With this model of knowledge, Popper showed that different concepts and theories (w3)

could not only be used by the mind (w2) to explain our experience of nature (w1), but that

it was unavoidable. All observation is theory- laden. For Popper, theories are not

developed by simply observing nature. Concepts, theories, and therefore knowledge, are

developed within the context of solving a problem. Therefore, it is the overriding context

of problem solving that governs which features of reality are observed. In an attempt to

understand nature, different theories are implicitly applied and tested to see how well they

match reality. A scientist’s or anyone else’s observations are selectively designed to test

the extent to which a given theory functions as a satisfactory solution to a given problem.

As Charles Darwin noted, “all observation must be for or against some view.” (Popper

1979d)

Following these arguments, Popper concluded that the only true test of a theory was not

whether it could be verified but whether it could be falsified. All knowledge is

provisional, conjectural, and hypothetical – scientific theories can never be finally proved.

A Foundation for Software Engineering

Understanding Software Engineering 248

Observation can merely provisionally confirm or conclusively refute them; hence at any

given time we have to choose between the potentially infinite number of theories that will

explain the set of phenomena under investigation. Therefore, ‘true’ theories are only those

that are yet to be falsified, and the only scientifically useful theories are those that can be

falsified. They only ‘laws of nature’ are those hypotheses that are yet to be refuted.

Popper claims the development of knowledge is a continuous process of “conjectures and

refutations”. A scientist begins by making a conjecture about how the world is and then

seeks to refute that hypothesis by testing the theory with attempts to falsify it. If the

hypothesis is disproved, then it should be discarded and replaced with a different

conjecture. For example, consider the different theories of gravitation. Galileo’s

explanation that gravity acts as a constant acceleration is an adequate theory to explain

falling objects on earth. However, it fails to provide an adequate explanation for the

motion of celestial bodies. Consequently, Newton conjectured a new theory of gravitation

as a force that is not a constant acceleration but one that is proportional to the mass of the

interacting bodies and the inverse square of the distance between them. When dealing

with the phenomena of falling objects on earth, the mass of the falling object and its

distance above the ground are negligible compared to the mass and radius of the earth.

Therefore, Galileo’s theory is a good approximation to Newton’s in some contexts.

Finally, Newton’s theory was later superseded by Einstein who developed a theory of

gravitation outside the confines of Newtonian mechanics. His theory explains gravitation

as curvature in the entire fabric of space & time.

According to Popper, the development of newer, more complex theories is due to

imaginative leaps of understanding. Moreover, he claims that it may not be until we have

been working on a problem for a considerable length of time that we really begin to

understand it to the extent required to see the full ramifications of the solution we have

devised. When we first encounter a problem, we don’t know much about it. We always

start with an inadequate solution and then criticise it. Only then can we develop a better

theory, which will also be criticised. This process gradually leads to useful knowledge.

“To understand a problem means to understand its difficulties; and to

understand its difficulties means to understand why it is not easily soluble –

why the more obvious solutions do not work. We produce the obvious

solution and then criticize them, in order to find out why they do not work. In

this way, we become acquainted with the problem, and may proceed from bad

A Foundation for Software Engineering

Understanding Software Engineering 249

solutions to better ones – provided always that we have the creative ability to

produce new guesses, and more new guesses. … If we have been working on

a problem long enough, and intensively enough, we begin to know it, to

understand it, in the sense that we know what kind of guess or conjecture or

hypothesis will not do at all, because it simply misses the point of the

problem, and what kind of requirements would have to be met by any serious

attempt to solve it. We begin to see the ramifications of the problem, its

subproblems, and its connections with other problems.” (Popper 1979d)

The theories of Popper, and other philosophers of science, oppose the claims of the

logical positivists. However, their original conviction in positivism, logic, and

verifiability still have a strong influence on how people, especially non-philosophers,

view the evolution of science. Popper notes,

“Human observation showed an immensely powerful ‘need for regularity’ …

which makes them sometimes experience regularities even when there are

none; which makes them cling to their expectations dogmatically; and which

makes them unhappy and may drive them to despair and to the verge of

madness if certain assumed regularities breakdown.” (Popper 1979b).

Indeed, Popper shows that a single counter- instance is never enough to refute the belief in

an existing theory and they may, in fact, be retained even though considerable evidence

conflicts with them.

“There are fashions in science, and some scientists climb on the bandwagon

almost as readily as do some painters and musicians.” (Popper 1979e)

Other philosophers of science, especially Kuhn and Feyerabend, have argued that Popper

did not fully considered the effects of our theories on the concepts we identify. They

disagree with Popper that our collection of theories (Popper’s world 3) is objective and

accumulative. That is, that everyone has access to the same collection of explanatory

theories about the world and that those theories simply grow in a linear, progressive

fashion as newer, more complex theories are discovered to replace older, simpler ones.

Kuhn, being the first philosopher to systematically study the history of science as well as

the philosophical theories about it, argued that science passes through stages. In each

stage the researchers of a particular discipline operate within what Kuhn called a

paradigm (and later a disciplinary matrix). These paradigms consist of the concepts,

A Foundation for Software Engineering

Understanding Software Engineering 250

theories, and example problems that researchers use to conceptualise the world they

observe. Therefore, the concepts and theories developed by researchers in a discipline are

contextually dependent on the encompassing paradigm they are operating within. In this

sense, Kuhn is similar to Quine, who argued on epistemological grounds that all concepts

are context-dependent. The consequence of Kuhn’s theory is that the very notion of

‘objective facts’ that can be viewed by all researchers is called into question. All

observations are tinctured by theory.

“How we capture behavior may depend upon the theory we are using to try to

understand the behavior. Theory- ladenness does not entail that we can see

whatever we want to. Given the way we have been trained to see, what we see

is determined by what there is to see.” (Bechtel 1988b)

Kuhn argued that as a scientific discipline progresses, it passes between different

paradigms. During those transitions a revolution occurs, where the concepts used to

understand and theorise about a set of phenomena are completely replaced by a new set of

concepts and theories. For example, the shift in physics from Newtonian mechanics to

quantum mechanics. The result of those revolutions is a new paradigm that consists of

new concepts and theories that can not be objectively compared with the previously

existing paradigm because of their paradigm dependence. For example, the different

theories of gravitation developed by Newton and Einstein exist within the different

paradigms of Newtonian mechanics and quantum mechanics. Any attempt to use these

concepts of gravitation outside the paradigm-dependent way of conceptualising reality

simply does not make sense. Moreover, these paradigms govern how new observations of

phenomena are conceptualised and those concepts and theories are also paradigm-

dependent.

Feyerabend, a student of Popper’s, took the notion that concepts and theories are relative

to a particular paradigm to an extreme. He proposed a deliberately controversial theory

that the meaning of all terms is relative to a particular view of the world and that those

views are not neatly packaged in successively utilised paradigms as Kuhn had suggested.

Therefore, science can progress with a plurality of encompassing views. Moreover, it may

be possible that one theory can develop ‘facts’ that refute a competing theory and that a

newer theory may reveal ‘facts’ that were not possible with the older one. The progress of

science, therefore, does not occur with a traditional, sanitised, concrete methodology and

researchers should abandon the belief that it does so. Feyerabend believed scientists

A Foundation for Software Engineering

Understanding Software Engineering 251

become stuck in a conservative view of their discipline and develop theories that simply

seek to perpetuate each other without taking the risk of developing anything truly new

and exciting (Feyerabend in (Zalta 1999))30.

5.4.1.7 Consistency and Coherence in Theory Creation

The idea that concepts and theories are relative to some paradigm or encompassing

viewpoint does not mean it is possible to “see whatever we want to see”. We all interact

with the same reality, but the way that reality is understood as concepts and theories is

influenced by previously established ways of understanding. Moreover, freedom of

construction of those concepts and theories can be exercised only within limits. Within

theories concepts must be consistent with each other and constitute a coherent and

consistent system.

“Consistency is the controlling logic relation. Although one cannot always

systematically prove consistency when one has it ... one can recognize

inconsistency.” (Lee 1973).

One set of concepts is no closer to a ‘true’ reality than any other. It is only more useful

than another in that it yields conceptual interpretations that better suit the apparent

demands of a given situation or problem. As the process of understanding proceeds, it is

possible that concepts can be created in terms of other concepts and eventually their

relation to concrete, real-world experiences gets left behind. For example, logic and pure

mathematics are two areas where conceptual manipulation of symbols occurs without

those symbols requiring any direct, perceptual referents.

“With increasing powers of symbolisation, the mind grasps abstract relations

and veridical perception is established. An orderly external world composed

of facts is systematically organised by further application of logical

principles, and veridical percepts are placed in relation to this more inclusive

order. Finally, the principles of order themselves can be critically examined in

a system of pure logic.” (Lee 1973).

Abstraction is used to devise concepts and theories that encompass a wider range of

applicability than the original theories. For example, the role of mathematical modelling

30 The views of Kuhn and Feyerabend are discussed in more detail in the next chapter, along with other
philosophers of science such as Lakatos and Laudan.

A Foundation for Software Engineering

Understanding Software Engineering 252

in social science deals with abstract idealisations of real world entities and not with the

direct concepts.

“We have learned that pure mathematics is neutral and, when applied, it is

applied to our ideas about some matter of fact, and not the facts themselves.

What gets mathematized is not a chunk of reality but some of our ideas about

it.” (Bunge 1973).

One of the most influential tools in the generalisation of concepts and theories to

encompass a wider area of applicability is the use of analogy. For example, as mentioned

in chapter 3, Ohm devised the law of basic current flow by studying the well-established

theories of hydrodynamic systems (Jungnickel and McCormmach 1986). Ohm was able

to show that both disciplines contained the concepts of substance flow through a

conductive element, the concept of force to generate the flow, and the concept of

resistance to the flow in that conductive element. He was then able to devise a

mathematical relationship for current flow based on the established mathematical

relationships that described hydrodynamic systems. By developing a more abstract theory

that describes two or more systems, if only in a sketchy way, it is possible to identify

analogies and thereby generate theories to explain phenomena in new fields or generate

encompassing theories across a range of fields (Bunge 1973). However, although an

abstract theory can be used to explain the phenomena in two distinct situations, it is only

because of an identified similarity. It does not mean the two situations are identical or that

other abstract theories in one of those areas can be used to explain phenomena in the

other.

Analogy is a very powerful tool in developing new theories. However, it is only able to

suggest equivalence without being able to establish it. Therefore, the reckless use of

analogy has also been misleading in scientific research. Bunge provides many good

examples of this in a range of fields including quantum physics, information and entropy,

and social evolution. Identity implies equality, equality implies equivalence, and

equivalence implies similarity, however the converse is not true. “Analogy is undoubtedly

prolific, but it gives birth to as many monsters as healthy babies. In either case its

products ... are just that: newborns that must be reared, if at all, rather than worshipped”

(Bunge 1973).. Bunge continues by quoting Gerard, “Analogical thinking is ... in our

view not so much a source of answers on the nature of phenomena as a source of

challenging questions”. (Bunge 1973).

A Foundation for Software Engineering

Understanding Software Engineering 253

Many issues of epistemology and philosophy of science that relate to software

engineering have been detailed here, though the discussion has certainly not all covered

all of them. Before detailing the effects they have on software engineering research, it is

necessary also to detail relevant theories that psychologists have devised to explain the

role of concepts and theories in our understanding of real-world processes.

5.4.2 The Psychology of Cognition

Ultimately, the development of a software system requires that we can conceptualise the

real world and convert our understanding into an executable description. But the fact that

we can understand and interact with the world at all is quite an astonishing feat in itself!

Furthermore, the fact that we can do so without a conscious understanding of how our

mind performs this task belies the complexity of the processes involved. Psychologists

have been researching the field of cognition for many decades and have devised theories

that explain how we develop our conceptual apparatus and how that apparatus is used to

allow us to function in the world. Steven Pinker begins his book, How the Mind Works,

with the disclaimer, “we don’t understand how the mind works – not nearly as well as we

understand how the body works” (Pinker 1997). Despite the fact those complex

operations have not been fully understood, psychologists have devised many experiments

and illusions that provide glimpses into how the mind operates and they have developed

theories that explain both cognition and concept development and utilisation.

We must be able to conceptualise in order to function in the world the way that we do.

The human brain gets its visual information about the world from the splashes of light

that pass through the eyes and onto the retina. The light from the 3-dimensional world

forms a 2-dimensional image on the retina which is somehow perceived as a collection of

3-dimensional shapes, objects, surfaces, etc with different depth, texture, and colours.

Without the cognitive apparatus required to reconstruct the apparent 3-dimensional

structure of the world, everything that we see would just be a constant stream of visual

psychedelia. The ability to do so seems to be largely innate in us. Research shows that the

limited visual experience of three to four month old infants is enough to perceive the

visual milieu as a collection of cohesive, solid, objects that follow natural laws of

movement and contact interaction (Kellman 1996; Spelke and Hermer 1996).

From the ability to visualise the world as a collection of objects, the mind has evolved the

ability to think about those objects as concepts or ideas – the ability to generate

A Foundation for Software Engineering

Understanding Software Engineering 254

knowledge. Evolutionary theories of natural selection suggest that the ability to generate

knowledge and reason about those objects has helped us to deal with and survive in the

world (Pinker 1997). From the sensory experience obtained through interaction with real

world objects, concepts and categories are developed along with the ability to infer rules

concerning their interaction. No two physical situations are exactly alike and the ability to

infer in terms of categories has ensured that we do not have to treat every situation as

completely new. Consequently, our ability to survive in the world has improved.

“An intelligent being … has to put objects in categories so that it may apply

its hard-won knowledge about similar objects, encountered in the past, to the

object at hand.” (Pinker 1997)

The fact tha t we have conceptual apparatus that enables us to perceive the world in a

manner that allows us to develop knowledge about it is interesting for software

development. More important though are the theories that explain how that apparatus

works and how those concepts and categories are identified. They have significant

ramifications for the assumptions that underlie software engineering research.

5.4.2.1 The Classical Theory of Categories

The classical theory of categories holds that something is a member of a particular

category because it satisfies the set of necessary and sufficient features or attributes that

constitute the category’s defining properties, functions, and uses (McCauley 1987). As

people interact with the world they become acquainted with the important properties of a

particular category as they deal with the individual objects that instantiate them.

Perception then, is a decisive process where the person interacts with objects and utilises

certain attributes of that object to infer what sort of concept it is. Therefore, categories

can be treated as specifications (Bruner 1958).

Using this classical theory of categories, learning is a bottom-up process where people

start with the simplest objects and categorise them in terms of the essential attributes.

Objects that are more complex are then identified by combining the previously defined

simple concepts. Moreover, the psychology of cognition can be understood in terms of set

theory where objects belong to a particular set based on their defining features and

simpler or more complex objects can be understood in terms of set operations such as

subsets, intersections, unions, etc (McCauley 1987).

A Foundation for Software Engineering

Understanding Software Engineering 255

That classical theory became quite popular, however attempts to use it to formally define

particular concepts ran into anomalies. For instance, Pinker uses the example of the

concept ‘bachelor’.

“A bachelor, of course, is simply an adult male who has never been married.

But now imagine that a friend asks you to invite some bachelors to her party.

What would happen if you used the definition to decide which of the

following people to invite?

Arthur has been living happily with Alice for the last five years. They have a

two-year-old daughter and have never officially married.

Bruce was going to be drafted, so he arranged with his friend Barbara to have

a justice of the peace marry them so he would be exempt. They have never

lived together. He dates a number of women, and plans to have the marriage

annulled as soon as he finds someone he wants to marry.

Charlie is 17 years old. He lives at home with his parents and is in high

school.

David is 17 years old. He left home at 13, started a small business, and is now

a successful young entrepreneur leading a playboy’s lifestyle in his penthouse

apartment.

Eli and Edgar are homosexual lovers who have been living together for many

years.

Faisal is allowed by the law of his native Abu Dhabi to have three wives. He

currently has two and is interested in meeting another potential fiancée.

Father Gregory is the bishop of the Catholic cathedral at Groton upon

Thames.

The list … shows that the straightforward definition ‘bachelor’ does not

capture our intuitions about who fits the category. Knowing who is a bachelor

is just common sense, but there’s nothing common about common sense.

Somehow it just finds its way into human … brains.” ((Pinker 1997) p. 13)

As an extension to Pinker’s challenge to use this simple definition to determine whom to

invite, imagine writing the piece of software that defined all of the terms and then

A Foundation for Software Engineering

Understanding Software Engineering 256

automatically chose bachelors based on the situations presented. The simple definition

becomes a complex collection of rules and data specifications.

5.4.2.2 The Prototype Theory of Concept Identification

In the mid 70s Eleanor Rosch and her colleagues conducted a number of experiments in

cognitive development that the classical theory of categorisation was unable to explain,

see for example (Rosch 1978). They found that people do not categorise objects in terms

of defining attributes. In addition they discovered that people’s categories do not have

clear-cut boundaries and that complex objects are not categorised in terms of features

identified in simpler concepts and then abstracted to higher- level concepts.

Rosch suggested people conceptualise objects as belonging to a particular category by

developing prototypes – stereotypical examples that a person believes correctly exemplify

their understanding of that category. As new objects are perceived they are compared

with the prototypes to determine which category they should belong to. Objects are not

defined in terms of their essential attributes, they are categorised based upon some

typicality rule which compares them to a previously identified exemplar. As people learn

about a particular environment, the prototype objects are classified before the more

marginal objects can be dealt with.

Like the classical theory, the prototype theory establishes that people’s conceptual

apparatus is constructed as a hierarchic collection of categories. However, unlike the

classical theory, they found it is not generated in a bottom-up fashion. Rosch and her

colleagues found that people initially identify what she terms basic-level categories – for

example, the category ‘chair’. As experience grows, both more specific and more generic

categories are devised to classify objects. For the ‘chair’ example, a more specific, or

subordinate category, would be ‘high-chair’ or ‘stool’ while a more generic, or

superordinate category, would be ‘furniture’. The basic- level categories tend to be the

easiest to identify and correspond to the objects most often perceived. In addition,

members of each basic-level category usually have a family-resemblance and contain

many of the same attributes. Furthermore, people tend to have similar ways of interacting

with them. However, the superordinate level categories may not possess similar attributes.

More detailed descriptions of the classical theory and the results of Rosch’s work can be

found in (Rosch 1978; Keil 1987; McCauley 1987; Neisser 1987a; Neisser 1987b;

Gelman 1996; Pinker 1997).

A Foundation for Software Engineering

Understanding Software Engineering 257

5.4.2.3 The Role of Theories in the Understanding of Concepts

Since the publication of Rosch’s experimental results, psychologists have been attempting

to devise theories of cognition that can successfully explain them. Current theories

examine the role that intuitive theories about the world play in our means of conceiving

the structure of that world. The classical theory of categories assumed that the world as

we see it simply exists and that as we move through it we understand what is going on by

abstracting concepts and their interactions from the sensory cues we experience. That is,

we are somehow separate from the world and the human mind simply perceives the

important properties of particular objects and moves inferentially to concepts and their

relationships. In contrast, recent theories suggest that people’s relationship with the world

is more interactive. As we act in and with the world, we understand it, partly, by imposing

on it our expectations of what concepts and interactions we believe exist.

Research has found that rather than being defined in terms of essential characteristics,

people categorise objects in terms of they roles the play within intuitive theories about

how the world operates. Whereas concepts were traditionally treated as isolated, atomic

units, it is now recognised that they are interrelated and influenced by larger knowledge

systems of theories. Pinker again uses the ever-popular chair example.

“An artifact is an object suitable for attaining some end that a person intends

to be used for attaining that end. The mixture of mechanics and psychology

makes artifacts a strange category. Artifacts can’t be defined by their shape or

their constitution, only by what they can do and by what someone,

somewhere, wants them to do. Probably somewhere in the forests of the world

there is a knot of branches that uncannily resembles a chair. But like the

proverbial falling tree that makes no sound, it is not a chair until someone

decides to treat it as one.” (Pinker 1997).

There is evidence that suggests children begin to form a set of concepts and tacit theories

in their first year of life (Keil 1987; Gelman 1996). As the child encounters and interacts

with events in the world, the objects involved tend to be grouped together and form an

expectation about how objects will interact in future encounters. Rather than as an

analysis of discrete objects in the world, categories are formed by analysing and somehow

storing the structure of those events (Fivush 1987).

A Foundation for Software Engineering

Understanding Software Engineering 258

Researchers propose different theories to explain the exact nature of the interaction

between concepts and theories (for example see (Lakoff 1987; McCauley 1987; Meddin

and Wattenmaker 1987; Neisser 1987b)). However, they all agree that categories are

somehow understood in terms of theories rather than defining features. The term ‘theory’

is often used interchangeably with the term ‘idealised cognitive model’. McCauley

explains the differences as follows.

“… ‘theory’ in contrast to ‘idealized cognitive model’, connotes constructs

that systematically characterize certain aspects of the world, but also a degree

of formality, which probably does not apply to all the cognitive structures in

question. … In contrast, ‘idealized cognitive model’ includes less systematic

constructs that may not adequately describe the more developed cognitive

frameworks that structure large areas of human experience. … Idealized

cognitive models are simplified mental constructs that organize various

domains of human experience, both practical and theoretical. Theories should,

perhaps, be construed simply as the more elaborate and complex of our

idealized cognitive models.” (McCauley 1987).

The collection of a person’s knowledge then is not simply a hierarchy of categories

abstracted from sensory experience. It is the sum of all these cognitive models or theories.

These are then used to plan behaviour and develop new knowledge by mentally playing

out combinatorial interactions among them in the mind’s eye (Pinker 1997).

Theories not only capture our understanding of concepts, but it is those theories that allow

people to conceptualise phenomena as they operate within the constant stream of sensory

experience. The world can be conceived as an infinite variety of concepts and properties,

people’s innate theories of the world impose an order on this endless amount of detail to

allow us to function in it. They form an idealised representation of reality that under-

emphasises or ignores a huge number of possible features by implicitly assuming their

relative lack of importance.

“They specify a set of cues in our environment that serve to define the

situation and therefore establish expectations about probable changes in the

environment and appropriate responses to them.” (McCauley 1987).

A Foundation for Software Engineering

Understanding Software Engineering 259

For instance, McCauley uses Kant’s explanation of the concept ‘triangle’ to highlight the

fact it would be impossible for people to develop their idealised concepts solely by

abstracting from experienced instances.

“No amount of instances of, for example, a triangle … could ever be adequate

to the concept of a triangle in general. It would never attain the universality of

the concept which renders it valid of all triangles, whether right-angled,

obtuse-angled, or acute angle; it would always be limited to a part only of this

sphere. The schema of the triangle can exist nowhere but in thought … Still

less is an object of experience or its image ever adequate to the empirical

concept…” (McCauley 1987).

The consequence, as McCauley continues, is that “the world-in-itself is forever

inaccessible” (McCauley 1987). The world we conceive has already been filtered by the

conceptual apparatus that allows us to cope with that huge amount of detail.

The influence of our innate theories on our conceptualisation of reality is highlighted in

experimental results that were performed many years before these theories of cognitive

development were devised. For example Carmichael showed that concepts identified in

language affect how people perceive different shapes (Carmichael, Hogan et al. 1932).

Similarly, Wertheimer showed how people automatically attempt to group disparate

visual information into clusters so that they can be understood (Wertheimer 1958).

5.4.2.4 Human Understanding and Conceptual Relativism

At the basic- level, people identify similar collections of concepts because they are based

on similarities in appearance and function (Rosch 1978). The superordinate and

subordinate categories however, are developed through cultural convention and are

learned and passed on through language use (McCauley 1987; Neisser 1987a; Pinker

1997). Therefore, as people learn a language they also learn about a culture’s concepts

and theories of the world. All documented cultures have words for the elements of space,

time, motion, speed, mental states, tools, flora, fauna, and weather, and logical

connectives (not, and, same, opposite, part-whole, and general-particular) (Pinker 1997).

However, the meaning of words and the means of conceptualising the world is culturally

dependent. This has been shown in various studies in sociology and anthropology, see for

example (Levi-Strauss 1962; Levi-Strauss 1986; Knudtson and Suzuki 1992; Lee and

Karmiloff-Smith 1996).

A Foundation for Software Engineering

Understanding Software Engineering 260

In addition to cultural dependence, the level of expertise in a domain can affect the

conceptualisation of phenomena. There is evidence to suggest that as mastery of a domain

occurs the basic-level of the conceiver changes. As a domain is mastered, larger and more

complex cognitive models are developed and the new basic- level becomes the next level

in the hierarchy of categories that contains the greatest level of detail (McCauley 1987).

The expert is able to categorise objects more efficiently than a novice based on these

more sophisticated models of the domain.

There is more than one model that can explain a particular situation and it is possible to

entertain these models simultaneously. The ability to do so depends on imaginative

capacity and different aims and purposes (Meddin and Wattenmaker 1987). Those

different models or theories can have different levels of completeness, they may not be

fully consistent, and they can provide different starting points from which further

knowledge can be inferred. They also represent to different levels of veridicality the

world we are trying to conceive.

“Our various cognitive models offer alternative descriptions of the world.

Everyone recognizes from time to time that certain descriptions are not only

less helpful than others (given the problem at hand), but also that some are for

all intents and purposes false.” (McCauley 1987).

The basic level concepts and theories identify some of what McCauley terms, the “major

joints of the world”. However, as “we undertake steps of increasing sophistication … we

rely increasingly on the developed, abstract theories that we consciously entertain.”

(McCauley 1987). There is no guarantee that these abstract theories and concepts provide

definitive reflections of the world. They can only be relied upon based on their

perspicuity rather than proven representational accuracy.

The theories of cognition and human perception/conception are more complex than the

classical theories suggest. However, researchers note that the classical theory of mind still

pervades many theories of science, suggesting it is a carry over from Aristotle’s

essentialism (Gelman 1996; Pinker 1997). Nevertheless, it has been superseded with

theories that define concepts and categories, not as a collection of essential attributes, but

as things that exist within a encompassing theory or model of observed phenomena.

Pinker summarises with the following extract.

A Foundation for Software Engineering

Understanding Software Engineering 261

“Buckminster Fuller once wrote: “Everything you’ve learned … as obvious

becomes less and less obvious as you begin to study the universe. For

example, there are no solids in the universe. There’s not even a suggestion of

a solid. There are no absolute continuums. There are no surfaces. There are no

straight lines.” In another sense, of course, the world does have surfaces and

chairs and rabbits and minds. They are knots and patterns and vortices of

matter and energy that obey their own laws and ripple through the sector of

space-time in which we spend our days. They are not social constructions, not

the bits of undigested beef that Scrooge blamed for his vision of Marley’s

ghost. But to a mind unequipped to find them, they might as well not exist at

all. As the psychologist George Miller has put it, “The crowning intellectual

accomplishment of the brain is the real world … [A]ll [the] fundamental

aspects of the real world of our experience are adaptive interpretations of the

really real world of physics.” (Pinker 1997)

5.5 Understanding the Foundations of Software
Engineering

The theories from philosophy and psychology identify issues that have a tremendous

significance for software engineering research. Although it is impossible to

comprehensively capture all of the theories from these disciplines in such a small number

of pages, it is clear the epistemological and metaphysical assumptions that underlie

current thinking in software engineering research are, at best, too simplistic – at worst

they are fundamentally wrong.

The epistemological assumption required to ‘engineer’ the conceptual construct in

software development was stated at the beginning of this chapter as follows:

 The identification of items that can be reused from previous applications,

from the requirements ana lysis stage to the implementation stage, assumes

that different clients and developers see the same reality and can model it

using similar collections of distinct concepts and concept relationships.

Moreover, those concepts and relationships can be specifically defined in

terms of essential features and represented the same way in two different

applications using the implementation medium of software development –

hardware and software constructs.

A Foundation for Software Engineering

Understanding Software Engineering 262

Two aspects of the research shown highlights the inherent difficulty in ‘engineering’

conceptual constructs. They are the nature of concepts and they way the human mind uses

conceptual models to understand reality. Both philosophical analysis and psychological

experimentation have shown that the human conceptual apparatus does not specify

universally applicable definitions of concepts in terms of essential characteristics or

attributes. Nor does it identify concepts simply by abstracting them from the observed

reality. However, the belief that concepts are defined in such a way is still prevalent

outside the areas of philosophy and psychology. That includes the area of software

engineering. Many philosophers and psychologists have argued this belief is a product of

the still prevailing influence of philosophers who set the foundations for western thinking

– Socrates’ quest for true knowledge through definition and Aristotle’s attempts to define

all knowledge through essential characteristics (see for example (Popper 1979a; Lakoff

1987; Bechtel 1988a; Gelman 1996; Pinker 1997)).

In software engineering, the influence of this implicit philosophical assumption is evident

in the justifications used for particular design paradigms. The most recent of these is

object-orientation. The relevant literature argues that object-orientation has benefits over

previous development approaches because it allows the developer to directly implement

the concepts identified in the problem domain. Those design methods claim that

requirements are elicited by identifying the phenomena that needs to be automated.

Analysis techniques are then used to represent that phenomena as a collection of concepts

and relationships. Those concepts can then be specified as objects and classes by

identifying the essential properties and functionality. Some researchers even refer to the

previously discussed issues from philosophy and psychology as further justification for

that belief. For instance, the following references (Sowa 1983; Dillon and Tan 1993;

Martin and Odell 1995; Bruegge and Dutoit 1999) all appeal to the concepts of intension

and extension as justification for the assumption that concepts can be defined in terms of

essential attributes. Consequently, object-orientation allows software developers to

successfully implement our models of reality. However, that belief is based on the

classical theory of understanding concepts and not on a thorough analysis of the relevant,

contemporary explanations provided by those disciplines.

The discussion that began this chapter showed that the most recent theories of software

development state that requirements should be captured in use-cases. Those use-cases

specify snippets of functionality and are extracted from the different perspectives of the

A Foundation for Software Engineering

Understanding Software Engineering 263

many stakeholders in the deve lopment process. The use-cases are not developed by

abstracting concepts from the observed reality, they are a combination of the observed

reality and the existing conceptual apparatus of the stakeholder that is applied to that

reality in order to understand it. Indeed, the use-cases presented by the stakeholders are

subsets of the larger, encompassing theories that are used by that particular stakeholder to

understand the entire phenomena that needs to be automated in software. Those

encompassing theories or cognitive models could be different for different stakeholders.

The level of ‘expertise’ of the clients and customers of the problem domain may also be

different to those of the analysts and software developers. Therefore, the concepts and

theories deve loped to understand the same phenomena might be different. Although they

may have the same label, the precise meaning of the concepts contained within those use-

cases are dependent on their encompassing theories. Moreover, the use-cases are

represented in natural language, which philosophers and psychologists have shown is

already theory- laden.

Finally, the different people who participant in the requirements elicitation process can

utilise different collections of concepts and theories to understand the same phenomena.

Therefore, there is no guarantee the theories, and the smaller use-cases, used by the

respective stakeholders to understand the phenomena are consistent with each other.

Indeed, there is no guarantee that those explanatory theories used by the respective

stakeholders are commensurable.

Software developers face the dilemma that they have to analyse the requirements

presented by the different stakeholders, however, they can only analyse what those

different stakeholders have described in the use-cases. They can only analyse what has

been said or written in natural language and not necessarily what the stakeholders exactly

meant. A number of issues become apparent:

• Different stakeholders can represent the same phenomena (a snippet of

functionality that needs to be automated) using different use-cases.

• The same concept represented in different use-cases can have slightly different

meanings in each context.

• Different concepts in different use-cases can refer to exactly the same phenomena.

A Foundation for Software Engineering

Understanding Software Engineering 264

• It may be exceedingly difficult to compare the precise meanings of different use-

cases even though the concepts and relationships they describe appear to be

similar.

These issues must be overcome during the analysis and design stages of the development

process. Analysis seeks to amalgamate the use-cases into a single cohesive and consistent

theory of the phenomena that needs to be automated in software. That theory is referred to

as the analysis model or conceptual software architecture. The philosophical and

psychological issues presented in this chapter provide insights into the fundamental

nature of that analysis model, the factors that influence its creation and evolution, and the

way the designer evaluates the effectiveness of the model as it is developed. It is noted

that some of the issues discussed here may be construed as design issues rather than

analysis issues. Furthermore, the following discussion on the design phase may also

contain issues that some researchers may categorise as implementation issues. The aim is

not to provide a hard distinction between analysis and design or design and

implementation; rather it is to highlight the important issues and not how they should be

categorised.

The analysis model must consist of a collection of concepts and relationships that, when

implemented, realises the aspects of phenomena specified in the system requirements. In

general, the understanding of the community outside the disciplines of philosophy and

psychology assume those concepts and relationships can be infe rred from observed

phenomena and that, necessarily, they must also be evident in the natural language used

to capture that phenomena in the requirements. However, contemporary theories in

philosophy and psychology contradict this form of positivism and have shown that reality

does not consist of easily identifiable parts. Rather, there may be many different but

equally valid sets of concepts identified to understand the same phenomena. Those

concepts and theories used to represent that phenomena are imposed by our intellects onto

reality as a means of understanding the infinitely partitionable sensory experience.

Moreover, the concepts and theories devised are not simply abstractions of that observed

phenomena but are implicitly applied to sensory experience specifically to help

understand the phenomena within the context of a particular problem solving activity.

Therefore, many different analysis models can successfully represent the elicited

requirements. Furthermore, those models can consist of many different collections of

A Foundation for Software Engineering

Understanding Software Engineering 265

concepts and relationships, and those concepts and relationships can exist at many

different levels of generality.

The analysis of the different object-oriented designs for the cruise control systems

detailed in chapter 2 of this thesis highlights the situation. The table comparing the

identified ‘objects’ in those designs is reproduced here. Each of the seven object-oriented

designs identifies a different collection of concepts used to develop a model that

represents the problem to be solved. Moreover, that collection does not even consider the

other software designs that utilised different design paradigms. Each of the models

represents an understanding of the cruise control problem, however the precise meaning

of the concepts used in each one is specific to the context of the model they appear in.

Design Example Objects Identified.

Booch Driver, Brake, Engine, Clock, Wheel, Current speed, Desired

speed, Throttle, Accelerator. (9)

Yin & Tanik Driver, Brake, Engine, Clock, Wheel, Cruise control system,

Throttle, Accelerator. (8)

Birchenough Driver, Wheels, Accelerator. (3)

Gomaa (JSD) Cruise control, Calibration, Drive shaft. (3)

Wasserman Cruise controller, Engine monitor, Cruise monitor, Brake

pedal monitor, Engine events, Cruise events, Brake events,

Speed, Throttle actuator, Drive shaft sensor. (10)

Appelbe & Abowd Driver, Brake, Engine, Clock, Wheel, Cruise controller,

Throttle. (7)

Gomaa (Booch OO) Brake, Engine, Cruise control input, Cruise control, Desired

speed, Throttle, Current speed, Distance, Calibration input,

Calibration constant, Shaft, Shaft Count. (12)

Table 5-1: Cruise Control ‘Objects’ (from Chapter 2)

The ability to develop models at different levels of generality is also highlighted in the

other cruise control examples. In addition to the object-oriented designs, three researchers

developed models using the notion of feedback control systems to identify the appropriate

concepts and relationships. The concepts identified by Higgins and Shaw are represented

A Foundation for Software Engineering

Understanding Software Engineering 266

in the following table (Table 5-2). Both developers initially created a model of the system

that consisted of generic, feedback control concepts. Those concepts were then replaced

by concepts that are specific to the particular problem domain – cruise control systems.

Design Example Objects Identified.

Higgins (generic) Actuating entity, Reference input, Summing point, Control

action, Controller, Control signal, Disturbing entity,

Disturbance, Controlled system, Controlled output, Feedback

elements, Primary feedback signal.

Higgins (specific) Driver, New desired speed, Set speed Summing point, Desired

speed, Set throttle pressure summing point, Throttle pressure,

Throttle, Power, Environment, Speed gain/loss, Car, Speed,

Speed sensor, Measured speed

Higgins (complex) Car on summing point, Car on signal, Cruise control on

summing pt., Cruise control on signal, CC active summing pt.,

CC active signal, Set speed summing pt., Desired speed, Set

throttle pressure summing pt., Throttle pressure, Throttle,

Power, Environment, Speed gain/loss, Car, Driver, Press brake,

Press accelerator, Speed, speed sensor, Measured speed, New

desired speed, Brake/Accelerator sensor.

Shaw (generic) Set point, Controller, Input variable, Process, Change to

manipulated variable, Controlled variable.

Shaw (specific) Activate/Inactivate switch, Controller, Desired speed, Throttle

setting, Engine, Wheel rotation, Pulses from wheel.

Table 5-2: Generic and Specific Cruise Control Concepts

Both of those designs represent the same problem, however, they identify different

concepts to the other object-oriented designs. Higgins goes further and provides a more

complex design based on a more sophisticated generic model of feedback systems. Again,

this model is a valid representation of the problem – the model is just more complex. The

original, generic feedback designs also provide valid models of the cruise control

problem. They represent the same reality as the specific models, they are just at a

different level of abstraction. To use the terminology provided by Rosch, the object-

A Foundation for Software Engineering

Understanding Software Engineering 267

oriented designs represent the basic- level categories while the generic feedback models

consist of superordinate- level categories. While some people may conceive of the cruise

control problem in terms of basic-level categories, it is equally valid that someone with

expertise in the domain of feedback control will conceptualise the same reality in terms of

the superordinate categories. In Chapter 2, the design reasoning of Jones, who was trained

as an electronic engineer, illustrates that different way of understanding.

The preceding philosophical and psychological foundations show that none of these

different models is a better match with reality than the others. The only characteristic that

can be used to differentiate between them is the ‘usefulness’ of each model for solving

the exact requirements of the problem.

The foundational issues identified also state that the collection of concepts and

relationships that constitute the analysis models must be constrained by logical

consistency and coherence. The field of human anatomy provides an interesting

illustrative example because the human body is a large and incredibly complex system,

and it is something we all possess an example of. The two most prominent ways of

modelling the gross organisational structure of the anatomical system is in terms of

regional topography and functional systems. Table 5-3 contrasts the structural

arrangement between two popular texts on anatomy and physiology.

The editorial board of Gray’s Anatomy detail the rationale for the choice of organisational

structure:

“Gray’s Anatomy was founded on the principle that to understand the body’s

construction it is necessary to analyze it in terms of its component systems as

well as its regional topography. … Of course, this arrangement is to some

extent an artificial separation of what in the body are intimately

interdependent components, both during development and in the mature body.

It is obvious that whilst there are indeed many clinical conditions where

dysfunction of a particular system occurs, there are many others in which

topographical nearness of different systems is the prime consideration. ...

Clearly what is needed is both a systematic account and a regional,

topographical one. … This would require much more than a single volume.”

(Gray et al 1995)

A Foundation for Software Engineering

Understanding Software Engineering 268

Anatomy, regional and applied (Last 1978) Gray's Anatomy (Gray et al 1995)

Discusses the smallest ‘components’ larger

than cells. Skin, muscles, tendons, bones,

joints, mucous membranes, serous

membranes, blood vessels, lymphatics. It

also discusses the nervous system.

It then partitions the body into: Upper Limb,

Lower Limb, Thorax, Abdomen, Head &

Neck, and Central Nervous System.

Partitions the body into the following

major components: Cells & Tissues,

Integumental System31, Skeletal System,

Muscle, Nervous System,

Haemolymphoid System32,

Cardiovascular System, Respiratory

System, Alimentary System33, Urinary

System, Reproductive System,

Endochrine System34, and Surface

Anatomy.

Table 5-3: Contrasting Anatomical Models

If the human anatomy was to be implemented as a software system, both of these

structural arrangements would result in different analysis models or conceptual

architectures in which the concepts constitute a coherent and consistent system. As Gray

states, the most appropriate conceptual model would be dependent on its intended

function. In contrast, a conceptual model that consisted of lower limbs, thorax, respiratory

system, skeletal system, and alimentary system would not be logically consistent. The

different large-scale concepts overlap in function due to varying levels of generality.

Moreover, it can immediately be seen that many functions would be impossible to

implement due to our intimate knowledge of what bodies do. For instance, which concept

contains the implementation of the femur (thigh bone), the ‘lower limb’ or the ‘skeletal

system’? How could this body ‘see’ anything without any concept implementing a pair of

eyes? The consistency of the conceptual model of this fictitious body is obviously flawed;

our detailed knowledge of the body’s functionality and small-scale componentry make it

obvious. However, how is it possible to detect analogous, logical, inconsistencies in the

conceptual models of systems in domains in which we do not possess such intimate

knowledge? The only method of assurance is a constant process of validation of the

31 Skin and its derivatives: hair, nails, glands, etc.
32 Blood and its derivatives: red blood cells, bone marrow, hemoglobin, etc.
33 Food consumption and processing.

A Foundation for Software Engineering

Understanding Software Engineering 269

model as its design proceeds. As Popper noted, the process consists of a continuous

application of conjectures and refutations until a model is developed that can not be

falsified. The knowledge required to identify inconsistencies in a model is dependent on

the purpose of the model. However, that knowledge is not always immediately obvious.

To repeat the quote used earlier,

“To understand a problem means to understand its difficulties; and to

understand its difficulties means to understand why it is not easily soluble –

why the more obvious solutions do not work. We produce the obvious

solution and then criticize them, in order to find out why they do not work. In

this way, we become acquainted with the problem, and may proceed from bad

solutions to better ones – provided always that we have the creative ability to

produce new guesses, and more new guesses. … If we have been working on

a problem long enough, and intensively enough, we begin to know it, to

understand it, in the sense that we know what kind of guess or conjecture or

hypothesis will not do at all, because it simply misses the point of the

problem, and what kind of requirements would have to be met by any serious

attempt to solve it. We begin to see the ramifications of the problem, its

subproblems, and its connections with other problems.” (Popper 1979d)

This issue highlights immediate questions for software engineering research. For instance,

the analysis model of the system can also be referred to as the system’s logical or

conceptual architecture. Research suggests that model, or architecture, should be created

relatively early in the development process and it then sets the path for subsequent steps

in that process. However, philosophy of science suggests that while developers may

possess the knowledge required to validate that model early on in the development

process, they may not possess the knowledge required to successfully falsify it.

Moreover, it may not be until the development process is well into the design, or even the

implementation stage, that that knowledge is generated by the developers. This would

appear to supply some credence to software engineering researchers who claim the

architecture of a software system cannot always be determined in the earliest stages of the

design process as theory suggests, and that there are cases where it need not be. (Reed

1987).

34 Regulation of internal functions.

A Foundation for Software Engineering

Understanding Software Engineering 270

A second issue that makes it difficult for developers to refute the proposed analysis model

concerns whose knowledge has been used to develop the analysis model. Conceptual

relativism suggests that while there is some common sense realism in that we all

experience the same reality as sensory inputs, the conceptual arrangements we use to

understand that sense data depends on our previous experiences and level of expertise.

The precise meaning of the concepts and theories developed to understand and solve a

particular problem are subjective to the person understanding it. However, the analysis

model is derived from the requirements use-cases and they are generated by a number of

different stakeholders in the development process. In many situations, the clients and

users of the system, who help to generate the use-cases, have a greater level of expertise

or knowledge in the particular problem domain than the system analysts and developers.

Therefore, the precise meanings of the concepts and relationships specified by the clients

in the development of use-cases would be different to those of the developers. The use-

cases represent snippets of the client’s model of how the problem domain operates, while

the analysis model is a product of the developer’s understanding of the client’s model. As

Popper states, it may not be until the developers have worked on the problem for a very

long time, perhaps until the system implementation, that they fully ‘understand’ what the

clients had intended. The fact that use-cases are represented in natural language serves to

exacerbate the problem. Following from the previous arguments of Swartz about

intension and extension, the majority of software development is performed in problem

domains that consist of concepts that can not be precisely defined. Therefore, it would be

easy for clients and software developers to have different understandings of the same

labelled concept because of the spectrum of its ambiguity.

The process of design aims to transform the conceptual model developed during the

analysis stage into a collection of concepts and relationships that are implementable in

software. The theories presented from philosophy and psychology uncover foundational

issues that concern differences between the concepts used in analysis and those used in

design. They also uncover issues concerning the influence of design criteria on the

preceding analysis process, and how the evolving design model can be evaluated.

To implement the concepts and relationships present in the analysis model, the designers

can only utilise the constructs provided by the implementation medium of software

development. That implementation medium consists of programming language

constructs, operating system services, hardware execution constructs, external ‘off- the-

A Foundation for Software Engineering

Understanding Software Engineering 271

shelf’ software components, and the virtual machine that executes the resulting

software/hardware implementation to realise the solution to the problem. Different

programming languages offer a different variety of implementation constructs. Northrop

(Northrop and Richardson 1991) has classified them into the following design categories:

function-orientated design, data flow-orientated design, data structure-orientated design,

object-based design, and object-orientated design.

Object-oriented languages are claimed to have advantages over other programming

languages because they allow the implementation of the ‘concepts we perceive’ by

encapsulating data and functionality into a single implementation construct. Object-

oriented design proceeds by identifying and specifying the properties and functionality of

the concepts identified in the analysis model. However, the ‘refinement’ of previously

identified concepts occurs within the influence of other constraints placed on the

developers. Those constraints include:

• The partitioning of the solution into major components and their means of

communication – the system architecture.

• The stipulation of interfaces for those components to specify the exact nature of

component interaction.

• The specification of control flow to stipulate how the system will be executed by

the machine to realise the solution.

• The consideration of non-functional requirements such as system performance,

maintainability, and modifiability.

• The desire to utilise previously existing software components.

Jacobson et al (Jacobson, Booch et al. 1998) provide a comparison of the differences

between the analysis and design models:

A Foundation for Software Engineering

Understanding Software Engineering 272

Analysis Model Design Model

Conceptual model, because it is an

abstraction of the system and avoids

implementation issues

Physical model, because it is a blueprint of

the implementation

Design-generic (applicable to several

designs)

Not generic, but specific for an

implementation

Three (conceptual) stereotypes on classes:

<<control>>, <<entity>>, and

<<boundary>>

Any number of physical stereotypes on

classes, depending on the implementation

language

Less formal More formal

Less expensive to develop (1:5 ratio to

design)

More expensive to develop (5:1 ratio to

analysis)

Few layers Many layers

Dynamic (but not much focus on

sequence)

Dynamic (much focus on sequence)

Outlines the design of the system,

including its architecture

Manifests the design of the system,

including its architecture (one of its views)

Primarily created by “leg work”, in

workshops and the like

Primarily created by “visual programming”

in round-trip engineering environments;

the design model is “round-trip

engineered” with the implementation

model

May not be maintained throughout the

complete software lifecycle

Should be maintained throughout the

complete software lifecycle

Defines a structure that is an essential

input to shaping the system – including

creating the design model

Shapes the system while trying to preserve

the structure defined by the analysis model

as much as possible.

Table 5-4: Comparison of the Analysis Model and the Design Model (from (Jacobson,
Booch et al. 1998) p. 219)

A Foundation for Software Engineering

Understanding Software Engineering 273

While there are specific differences between the two it is assumed that the design model

is based, in part, on a refinement of what exists in the conceptual model. However, the

issues of philosophy and psychology show there are more significant differences than

those presented in conventional object-oriented design literature.

Analysis Model Design Model

Concepts and relationships can not be

precisely defined by intension.

Concepts and relationships must be

defined by essential features and specific

functionality

The precise meaning of concepts and

relationships is dependent on the context

of the theory in which they are contained

The precise meaning of concepts and

relationships, their definitions, are

independent of the system in which they

are implemented.

Concepts and relationships are constrained

only by the previous experience and

imaginative ability of the stakeholders in

the development process

Concepts and relationships are constrained

by the constructs provided by the

implementation medium and the execution

model of the virtual machine that executes

it.

Table 5-5: Comparison of the Analysis Model and Design Model based on the
Philosophical and Psychological Foundations

One of the claimed advantages of object-oriented development is that developers can use

objects in a uniform modelling approach throughout the development process (Kaindl

1999). That belief is based on the classical theory of conceptual understanding, which

states that all concepts can be specified in terms of essential features or intensional

definitions. As philosophers and psychologists have noted, the classical theory of

categorisation has proved too simplistic to explain the human thought process and has

now been superseded by more sophisticated theories. The foundations show that the

components of the analysis and design models, though the same label may be used to

refer to them, represent inherently different things. This explains why the transition from

object-oriented analysis to design is not as easy as suggested by object-oriented design

methods. Those methods suggests the transition is smooth and easy, in practice it has

been shown to be quite difficult (Kaindl 1999). This also explains why researchers are

beginning to question the assumption that object-orientated development is advantageous

A Foundation for Software Engineering

Understanding Software Engineering 274

because it allows developers to more easily implement their model of reality (see for

example (Hatton 1998)).

As stated previously, the problem with the classical theory of definition is that concepts

are defined in terms of attributes, which themselves have to be defined. The result is an

infinite regress of definitions. That problem is not faced by design model concepts in

software development because they have been built by aggregating, encapsulating, and

abstracting the constructs provided by the implementation medium. Analysis model

concepts can not be defined because there exists no axiomatic level of definition in our

conceptual apparatus. In contrast, the concepts used in the design and implementation

models of software are built on top of the axiomatic definitions of the Von Neumann

computer architecture. Progress in software development has produced abstractions that

allow developers to design and implement above that axiomatic level. Moreover, the

progress from machine code languages to assembler level languages, and then data flow-

orientated design, data structure-orientated design, function-orientated design, object-

based design, and object-orientated design has made it appear as though developers can

now analyse, design, and implement systems using notations that closely match our

models of reality. That justification for progress in software design methods and

languages has been based on the classical theory of concept definition. Research in the

fields of philosophy and psychology has shown that view is too simplistic.

Dreyfus has noted this same phenomenon in his critique of artificial intelligence research

(Dreyfus 1992). Artificial intelligence attempts to formalise intelligent activity by

transforming it into a set of computer instructions. He shows this is based on the

ontological assumption that explicit facts exist in the world and they can be formalised in

the context- free environment of computer software. That assumption is similar to the one

implicitly made by software engineers and, as has been suggested by philosophers and

psychologists, is also made by most communities, both scientific and non-scientific, who

seek to understand human thought processes. Dreyfus quotes Chomsky (from Language

and Mind) to note the predisposition of researchers to use simplistic examples to justify

the belief in the classical theory of understanding35.

35 Other software engineering researches that exemplify these foundational issues are presented in the next
chapter.

A Foundation for Software Engineering

Understanding Software Engineering 275

“There has been a natural but unfortunate tendency to ‘extrapolate’, from a

thimbleful of knowledge that has been obtained in careful experimental work

and rigorous data-processing, to issues of much wider significance and of

greater social concern.” ((Dreyfus 1992) p. 79)

The previous discussion of the analysis model considered the effects of the philosophical

and psychological foundations on how that model is evaluated during development.

Those effects have even more ramifications during the design and implementation stage.

If the developers don’t develop the knowledge required to falsify the model until the

design or implementation phases, and a falsifying example then appears, does the model

need to be replaced? It may be that the originally conceived collection of concepts and

relationships appeared adequate to satisfy the required properties in the implementation.

However, a new situation may present itself during the implementation stage that was not

previously considered. Similarly, the requirements may be modified to consider a new

situation that was not previously required. Does the model need to be substantially

modified or can the required properties be implemented within the previously existing

concepts? Can the conceptual integrity of the model be ‘fudged’ to ensure the designed

model continues to satisfy the requirements? These are all questions for future research.

5.6 Conclusion
Software engineering research would like to improve the development of software

systems by using approaches similar to those of traditional engineering disciplines. The

evolution of those other engineering approaches has been based, at least in part, on the

underlying principles of the systems those disciplines design and build, and the materials

and components used to build them. The task for software engineering research is to

identify the underlying properties of software systems and determine if they can lead to

an analogous engineering approach for software development. Those underlying

principles are based on the notions of concepts, abstractions, theories, and models. The

disciplines of both philosophy and psychology have a long history of studying those

principles and this chapter has examined the relevant research in those areas to identify

the foundational principles of software engineering. Unfortunately, there are no pre-

packaged collection of theories in the history of philosophy or psychology that explain all

of the issues involved when developing conceptual models in the manner required in

A Foundation for Software Engineering

Understanding Software Engineering 276

software engineering. Not only does a single answer not exist but there are many potential

answers available in the literature of those fields.

This study has identified two broad ways of understanding the underlying principles of

software systems that appear to exist in both philosophy and psychology. The first, the

classical way of understanding, assumes a positivist approach where people are separate

from the world of sensory experience and all people experience the same reality. As

people operate in the world, they generate knowledge by identifying concepts and

categorising them in terms of the essential attributes they exhibit. Moreover, because the

world exists separate from our knowledge of it and all people experience the same reality,

that knowledge captures the world as it really is. With the classical way of understanding,

software components – concepts and theories – can be understood in an analogous way as

traditionally engineered components. Those traditional engineering components are

described in terms of particular properties, and mathematical idealisations of their

behaviour can be developed based on those underlying properties. Therefore, the classical

way of understanding would provide a philosophical foundation for software engineering

research based on the artefact engineering view of software development.

That classical way of understanding has been the dominant way of understanding the

underlying principles of software systems until very recently. Furthermore, it has been

noted that the view still dominates the guiding philosophy of most people outside the

relevant areas of research in philosophy and psychology. Nevertheless, contemporary

research has identified many anomalies with that classical view and has deve loped an

alternative, more sophisticated way of understanding based on the subjective nature of

our interaction with the world. In contrast with the positivist approach, it is suggested that

people cannot consider their knowledge of the world as separate from the world itself.

People do not observe the pre-existing parts of the world and categorise them based on

essential attributes. Instead, as people interact with the world, they apply explanatory

theories that help them understand and solve the problems at hand. Those theories are

automatically and subconsciously applied to reality so that what is conceptualised is

determined, not only by what is there, but by how we have been trained to understand it.

Consequently, all observation is theory- laden. Those theories are passed on through

language and cultural conventions and are modified to become more sophisticated as our

experience in a particular domain grows. Concepts do not identify the pre-existing parts

of the world and they cannot be universally defined in terms of essential attributes.

A Foundation for Software Engineering

Understanding Software Engineering 277

Concepts play roles in our innate theories of understanding and their meanings are

specific to the theory in which they play that role and our level of experience in using

those concepts and theories.

This new way of understanding the underlying principles of software systems contradicts

the classical way, and consequently, contradicts the artefact engineering view of software

development that pervades software engineering research. Alternatively, that new way of

understanding provides a philosophical foundation for software engineering research that

supports a model building view of software development.

That foundation does not dismiss the goal of developing an engineering approach to

software development. What is required is research that explores engineering techniques

based on the philosophical foundations of model building rather than artefact engineering.

Moreover, this chapter has not attempted to provide a definitive summary of all the

relevant issues. That would be a separate thesis in itself. Rather, it has tried to show that

the issues are important and significantly affect our understanding of what software

engineering is all about. Hopefully, it will provide enough evidence to start the debate

that, over a period of time and perhaps in conjunction with researchers in those other

fields, will determine the theories necessary to develop an engineering approach to

software development.

Evaluating Software Engineering Research

Understanding Software Engineering 278

6. Evaluating Software Engineering Research

6.1 Introduction
Despite 30 years of research, there exists a clear dichotomy between the practice of

software development and the approaches suggested by software engineering theory. Our

discipline is littered with examples of development ideas that appeared to offer great hope

and dominated research agendas but soon fell by the wayside. The problem is that

because there has been no understanding of the underlying principles of software systems

and their development, there has been no basis for evaluating those software engineering

ideas. Although empirical studies have increasingly become part of the field in the last

few years, software engineering research can be described as the science of non-

reproduced results36.

While it is difficult to label any single, encompassing belief as the ‘conventional view’ of

software engineering, the use of analogies with traditional engineering disciplines is a

long and established tradition that promotes the artefact engineering view as the most

popular means of driving research agendas. In the absence of a widely accepted

understanding of software based on underlying principles, understanding has had to rely

on analogies with ‘built artefact’ disciplines. Therefore, when software engineering ideas

are proposed to improve development practices, they appear to be plausible because our

understanding is already implicitly based upon them. Moreover, as a result of the demand

for more and more applications, we are now desperately in search of more efficient ways

of building systems. Ross predicted the inherent danger of this situation at the original

NATO conference.

“Ross: My main worry is in fact that somebody in a position of power will

recognize this crisis … and believe someone who claims to have a

breakthrough, an easy solution. The problem will take a lot of hard work to

solve. There is no worse word than ‘breakthrough’ in discussing possible

solutions.” (NATO 1976a) (p. 81)

36 Reed made this observation with respect to Computer Science in 1991 (Reed 1991) though, historically, it
applies equally well to software engineering.

Evaluating Software Engineering Research

Understanding Software Engineering 279

The history of our discipline shows that Ross was quite perspicacious. There has been a

virtual myriad of ‘silver bullets’, each touted as “…a breakthrough, an easy solution”.

Nevertheless, despite their apparent plausibility, those ideas either do not work in practice

or they are simply not adopted. The reason suggested by this thesis is that our existing

understanding of software engineering – the artefact engineering view – does not match

the way people actually build software.

Chapters 2, 3, and 4 presented the history and application of that understanding and

analysed it in detail revealing many anomalies. Chapter 5 then provided a foundation for

software engineering based on the underlying principles of software systems and the

cognitive processes required to develop them – the model building view of software

development. That view provides the framework with which it becomes possible to

evaluate and justify past, present, and future software engineering research ideas. A

primary goal of that research should now be to continue the exploration of those

underlying principles so that ideas for the improvement of software development can be

evaluated without relying solely on the analogies that have dominated our field so far.

Amongst the barriers to real progress in our field is the lack of understand ing of the way

research-based disciplines progress. One of the arguments put to justify the current state

of software engineering is that it is young, and that other bodies of science and

engineering have existed for hundreds, and in some cases, thousands of years. Moreover,

the history of science has revealed the many mistakes and periods of slow progress made

by those disciplines. Therefore, some argue why should we be concerned at our current

relative position on the path of progress? However, if we can understand the way in

which those other (scientific and engineering) disciplines have evolved, and can identify

the nature and causes of those things which prevented progress, then perhaps we can

avoid them and accelerate our own improvement.

That understanding is developed in this chapter by presenting the relevant work from the

history and philosophy of science. That work details the way in which research in a

particular discipline, including the formulation and evaluation of empirical studies, is

guided by underlying assumptions that can change over time. Those changes however,

lead to vastly different collections of theories to explain the phenomena under

investigation. Unfortunately, it is difficult to compare alternative theories that are based

on different guiding assumptions. Moreover, the ideas presented show that when research

Evaluating Software Engineering Research

Understanding Software Engineering 280

based on a new set of guiding assumptions is proposed, it is often difficult for researchers

to change from their established way of thinking.

The conjecture of this thesis is that this is what is happening in software engineering

research. The artefact engineering view has been the established and dominant guiding

assumption in software engineering research. However, a better understanding of the

underlying principles of software systems and their development can lead to an improved

way of understanding software engineering, that is, the model building view.

In addition, examples are presented to show that the model building view has already

provided useful contributions to software engineering research. The foundations

elucidated in the previous chapter and the philosophy of science ideas of this chapter have

been used to build new ways of understanding important aspects of software

development. They range from Ambler et al’s approach to understanding the effects of

different programming paradigms; to more general descriptions of how these issues

impact the entire software lifecycle (e.g., Dahlbom); and finally to specific theories of

software engineering provided by Naur and Blum. These researches present interesting

and progressive ways of thinking about software development but they certainly have not

led to mainstream research and design practices. However, they can now be re-evaluated

in a new light.

6.2 The Progression of Research-Based Disciplines
The history and philosophy of science has developed many theories that explain the

progress of research-based disciplines. The most popular of those is the work of Thomas

Kuhn, and his ideas are often cited in software engineering research. However, his ideas

are certainly not the only ones, nor are they the most recent. This section aims to present a

brief, though comprehensive, account of those explanations to develop an understanding

of how research in general is justified and evaluated and, hence, how software

engineering research can be improved. The exposition begins with the relevant aspects of

the accounts provided by logical positivism and Karl Popper. The work of Kuhn is then

presented in detail and that is followed by the alternate explanations provided by

Feyerabend, Lakatos, and Laudan. While that amount of detail may appear excessive,

researchers often cite some of the more popularly known though controversial aspects of

those theories. Therefore, an attempt has been made to provide enough information to

avoid that problem, which has been previously identified by Bechtel.

Evaluating Software Engineering Research

Understanding Software Engineering 281

“Most scientists, however, simply adopt a philosophy of science that is

popular, or that suits their purposes, and cite it as authority. This proclivity to

borrow positions from philosophy is rather common but poses serious dangers

because what might be controversial in philosophy may be accepted by a

particular scientist or group of scientists without recognizing its controversial

character.” (Bechtel 1988b)

Logical positivism, as detailed in the previous chapter, became the dominant explanation

for the progression of scientific disciplines in the 20th century. One of its main tenets was

that nature had an underlying logical order that could be captured in rigorously specified

explanatory theories. Hypotheses devised to explain real world events and phenomena

were verified by deducing them from existing, axiomatic ‘laws of nature’, using known

facts as initial conditions, and through experimentation to ensure they successfully

predicted natural phenomena. Because those theories, or laws, captured the logical nature

of reality, there could be no alternative paradigms for explanation. Therefore, according

to the logical positivists, disciplines progressed in a cumulative manner by discovering

the laws of the objective reality that was experienced by all. Although the central tenets of

logical positivism have been subsequently refuted and alternative explanations for the

progress of scientific disciplines have been proposed, researchers note that they still exert

a powerful influence on the way people, especially those not familiar with the history and

philosophy of science, believe disciplines progress (Bechtel 1988b).

Popper provides the first major objection to the positivist model of scientific progress. As

the previous chapter detailed, his attacks began with the beliefs that induction could be

used to develop hypotheses and that experimentation could be used to verify them as laws

of nature. His theories about ‘conjectures and refutations’ show it is impossible to prove

that scientific theories match a logical order of reality. The best that can be achieved are

theories that provide useful explanations of the observed phenomena. The goal of science

is to develop theories and then attempt to falsify them. Theories are only valid in the

sense that they were yet to be falsified. As detailed in the previous chapter, one of the

important features of Popper’s theories, and earlier commentators such as Poincaré, is that

observation is theory- laden. Popper attempts to account for the theory- ladeness of

observation with his 3-world model of scientific knowledge. His conclusion is that

theories are implicitly applied to the reality we experience in an attempt to understand it.

Therefore, scientific progress is not the linear accumulation of theories that capture the

Evaluating Software Engineering Research

Understanding Software Engineering 282

logical structure of the objective reality we all share. Rather, it is the development of

improved theories, through conjectures and refutations, which continually home in on the

truth. Progress is concerned with the development of theories that provide better

explanations of reality. Moreover, while we cannot prove that we experience the same

objective reality, Popper’s model results in a world 3 that allows people to share the

explanatory theories of that reality – that is, they share an objective knowledge of reality.

The previous chapter noted that philosophers after Popper argued he did not fully

consider the effects of the theory-laden nature of observation. Their theories differed from

Popper’s by giving alternate descriptions for the way in which people identify concepts

and theories and how they are used to explain phenomena. Those issues were then

developed into more detailed models of the progression of scientific disciplines.

Moreover, their models include a more thorough analysis of historical activity in those

disciplines than previously considered.

Kuhn’s The Structure of Scientific Revolutions (Kuhn 1962) provides a far different

account of progress in a discipline than previously considered. Based on his review of

historical accounts, Kuhn identifies five different stages in the progress of a scientific

discipline: (1) immature science, (2) normal science, (3) crisis, (4) revolution, and (5)

resolution. An immature science develops into a normal science as its initial theoretical

foundations are laid and a set of theories is devised to explain and predict observed

phenomena (Kuhn 1977c). It is the description of the remaining phases that set Kuhn

apart from previous philosophies of science.

Normal science operates within a dominant paradigm that provides the underlying

guiding assumptions that govern the way practitioners in a discip line understand the

phenomena they seek to explain and provides a common conceptual framework that

allows researchers to work on problems together. Philosophers still debate the exact

definition of a Kuhnian paradigm. However, for the purposes of this discussion it can be

explained as a collection of theories, methods, and standard example problems. Because

of the theory- laden nature of observation, the paradigm sets the contextual framework

that constrains a practitioner’s view of the world to the concepts that fit within the

framework. Moreover, researchers are often unaware of the guiding influence of those

assumptions. For example, the physics paradigm of Newtonian mechanics provides a

contextual framework that constrains the physicist to conceptualising the world in terms

Evaluating Software Engineering Research

Understanding Software Engineering 283

of forces and masses. Theories devised within that paradigm can only be constructed in

terms of the concepts allowed by the paradigm.

Within the stage of normal science, practitioners are indoctrinated into a paradigm during

their education. Students are taught using textbooks that feature the paradigm-defining

concepts, theories, and example problems. They are rarely exposed to the sort of research

problems that may question the paradigm until they are well established in the discipline.

Moreover, those textbook examples merely reinforce the relevant theories and omit the

information about how that knowledge was acquired and about why it was accepted by

the profession (Kuhn 1977b).

As practitioners work during a period of normal science they continue to do what they

learned to do as students – imitate the exemplars they learned in school in new contexts

(Bechtel 1988b). The examples and models provide analogies that practitioners can apply

to other problems (Kuhn 1977d). The theories developed by practitioners are not the

imaginative leaps of understanding suggested by Popper, which are conjectured and

subsequently tested by refutation. Practitioners devise their theories based on a

constraining framework and attempt to fit those theories to nature in order to explain it.

However, those theories seldom fit nature precisely. Practitioners don’t look for exact

matches between experiment and theory. Instead, they look for reasonable agreement.

During normal science those discrepancies between theoretical predictions and empirical

observations are not taken to falsify the theory, but rather as creating further problems

that scientists must solve. (Kuhn 1977b).

“Closely examined, whether historically or in the contemporary laboratory,

[normal science] seems an attempt to force nature into the preformed and

relatively inflexible box that the paradigm supplies. No part of the aim of

normal science is to call forth new phenomena; indeed those that will not fit

in the box are often not seen at all. Nor do scientists normally aim to invent

new theories, and they are often intolerant of those invented by others.

Instead, normal-scientific research is directed to the articulation of those

phenomena and theories that the paradigm already supplies.” (Kuhn 1962) (p.

24).

The prevailing paradigm facilitates theoretical successes at the outset, however, Kuhn

argues that eventually anomalies accrue and scientific discoveries of natural phenomena

Evaluating Software Engineering Research

Understanding Software Engineering 284

are made that conflict with the established way of understanding. Eventually the

discipline reaches a stage of ‘crisis’ and new fundamental theories are required. To

explain these anomalies, alternative theories are suggested that go outside the contextual

framework of the guiding paradigm but which offer their own promise of a new problem-

solving tradition. As these new theories gather supporters, they compete to become the

new guiding paradigm of the discipline. However, it is not easy to systematically compare

new paradigms with each other or with the established paradigm. According to Kuhn,

because of the theory-laden nature of observation, all observations, including the results

of experiments, are reported in a theory or paradigm dependent manner. The problem is

commonly referred to as the incommensurability of theories. Proponents of competing

paradigms have to resort to non-rational or non-quantifiable means for advancing their

claims, for example thought experiments (Kuhn 1977a). Their arguments are necessarily

circular in that they can only use the concepts and theories allowed by the paradigm in

that paradigm’s defence (Kuhn 1962) (p. 94). Eventually a new paradigm emerges as the

dominant one. However, because of the incommensurability of theories, practitioners

cannot simply add the new paradigm to the existing one. A revolution is required in

which the concepts and theories of the existing paradigm are replaced by the new one.

“The transition from a paradigm in crisis to a new one from which a new

tradition of normal science can emerge is far from a cumulative process, one

achieved by an articulation or extension of the old paradigm. Rather it is a

reconstruction of the field from new fundamentals, a reconstruction that

changes some of the field’s most elementary theoretical generalizations as

well as many of its paradigm methods and applications.” (Kuhn 1962) (p. 84).

The revolution does not guarantee that all practitioners will switch to the new way of

conceptualising the research problems of the discipline. There exists an enormous inertia

to switching between paradigms. Indeed, that is why Kuhn argues that paradigm

revolutions cannot occur until the discipline has reached a stage of crisis that makes the

practitioners open to new ideas.

“As Kuhn describes the history of scientific development, it becomes quite

apparent that scientists are on the whole pretty much like the rest of us, and

are inclined to defending their preconceptions and commitments than to

leaping off into the dark.” (Abel 1981)

Evaluating Software Engineering Research

Understanding Software Engineering 285

While many practitioners will eventually be coerced towards the new paradigm as a way

of solving the anomalies of the prevailing crisis, Kuhn argues that some will cont inue to

cling to their established ways of thinking.

“The transfer of allegiance from paradigm to paradigm is a conversion

experience that cannot be forced. Lifelong resistance, particularly from those

whose productive careers have committed them to an older tradition of

normal science, is not a violation of scientific research standards but an index

to the nature of scientific research itself. The source of resistance is the

assertion that the older paradigm will ultimately solve all its problems, that

nature can be shoved into the box the paradigm provides… Conversions will

occur a few at a time until, after the last holdouts have died, the whole

profession will again be practising under a single, but now different

paradigm.” (Kuhn 1962) (pp. 151-152)

When the new paradigm gains ascendancy, the final stage, resolution, is achieved, and a

new period of normal science occurs. The cycle is then repeated.

Kuhn’s theories are quite popular and are often cited in software engineering research

literature, especially as justification for some new idea or as reference to the often-used

term – ‘paradigm’. However, other philosophers of science have provided different or

more sophisticated explanations for the progression of professional disciplines. The most

radical of these is Feyerabend. His theories, also based on significant historical analysis,

take the theory- laden nature of observation and the incommensurability of theories to

more extreme consequences. He argues that because of the influence of the prevailing

wisdom on the way practitioners of a discipline conceptualise the phenomena under

investigation, it unduly biases their attempts to falsify it. The underlying governing

assumptions help determine what is labelled as significant facts or data. Consequently, it

may not be until a theory from an opposing paradigm or set of guiding assumptions is

considered that data comes to light that can falsify an established theory.

Feyerabend believes a particular paradigm should never be allowed to dominate a

discipline and that there should be no ‘normal science’ as Kuhn described it. Because

practitioners become indoctrinated into a paradigm-specific view of their discipline, they

unnecessarily reject alternative approaches. He argues that practitioners should entertain

these alternatives before the crisis stage is reached. This is especially difficult as the

Evaluating Software Engineering Research

Understanding Software Engineering 286

newer alternatives will not be as developed as the established paradigm and may contain

errors and problems that make it easy for ardent supporters of the established paradigm to

criticise them.

“Science is a complex and heterogeneous historical process which contains

vague and incoherent anticipations of future ideologies side by side with

highly sophisticated theoretical systems and ancient and petrified forms of

thought. Some of its elements are available in the form of neatly written

statements while others are submerged and become known only by contrast,

by comparison with new and unusual views.” (Feyerabend 1979) (p. 146)

Feyerabend’s views are often unfairly dismissed as being extreme. His most popularly

cited book, Against Method (Feyerabend 1979), was deliberately written from a

provocative perspective so that it could be contrasted with a companion volume to be

written by his friend and fellow contemporary philosopher of science, Imre Lakatos.

Unfortunately, Lakatos died before it could be written. Lakatos’ work offers an account

of scientific progress that provides the large-scale structure missing in Popper’s theories

while allowing more flexibility for theory enhancement than Kuhn’s revolutions and

without resorting to the methodological anarchy proposed by Feryerabend. Unlike Kuhn,

Lakatos proposes that disciplines consist of competing paradigms rather than there being

a single dominant one and that progress comes from within those paradigms rather than

completely replacing one with another. He introduces the notion of a ‘research

programme’, which contains the guiding assumptions for the discipline. A research

programme consists of a ‘hard core’ set of assumptions and theories that must be accepted

by the practitioners and cannot be modified. In addition, a ‘protective belt’ of auxiliary

assumptions and theories surrounds the hard core. Progress consists of developing new

theories in the protective belt to accommodate evidence that either has accumulated or is

developed in the course of the research (Bechtel 1988b). Those developments are made in

both the early stages of the discipline, to deal with unrealistic assumptions that need to be

corrected, and in subsequent stages of the discipline to deal with anomalies detected by

practitioners during their research (see ‘Rationality, Historicist theories of’ in (Zalta

1999)).

Lakatos argues that changes to the protective belt could either be ‘progressive’ or

‘degenerative’. If the modifications provide explanations for the anomalies detected, and

they continue to explain everything that the previous theories explained, and they allow

Evaluating Software Engineering Research

Understanding Software Engineering 287

the research programme to make new predictions, then the change is progressive. In

contrast, if the modification simply rearranges the existing assumptions to deal with the

anomalies, but without resulting in any new predictions, then it is degenerative. Lakatos

argues that disciplines could progress, go through extended periods of degeneration, and

then progress again. As Bechtel points out, the nurturing of new and diverse paradigms is

essential for the development of any discipline, even when they may, at first sight, be

thought to be ‘degenerative’. (Bechtel 1988b)

Laudan’s explanation of scientific progress attempts to deal with problems he identified

in the theories of Kuhn and Lakatos. Laudan’s ‘research tradition’ is similar to the

‘research programme’ of Lakatos, however it is less rigid and does not consist of an

immutable set of hard core theories. The content of his research tradition is a collection of

common ontological assumptions about the nature of the world and methodological

principles about how to revise theories and generate new ones. Laudan details two types

of problems that must be overcome by a research tradition. The first are empirical

problems such as experimental and observed anomalies that must be explained using

theories within the common ontological assumptions. The second are conceptual

problems that may manifest themselves as logical inconsistencies between two theories or

accepted viewpoints within the research tradition.

Laudan also differs from Lakatos in how competing research traditions result in progress

for the discipline. He argues that an established research tradition, which has solved the

most problems, should be accepted as the most useful. However, an alternative tradition,

which is currently solving problems at the fastest rate, should also be pursued. Unlike

Lakatos, Laudan does not believe alternative traditions should be cumulative. It may be

that an alternative tradition provides progress in an otherwise unsolved area at the

expense of not being able explain previously solved problems. For Laudan, scientific

progress is not about the research tradition that comes closest to the truth. Progress in a

discipline can only be measured by the continual solving of problems.

These descriptions provide a glimpse of the many different theories proposed to explain

the progress of scientific disciplines and research-based disciplines in general. At present,

there is no single, universally agreed model that explains the progress of disciplines. This

presents a problem for using these ideas to explain the progress of software engineering.

Indeed, some researchers, as will be shown, have used this problem to argue that we

should not use philosophy of science ideas at all in our own research. However, Laudan et

Evaluating Software Engineering Research

Understanding Software Engineering 288

al (Laudan, Donovan et al. 1986) provide a comprehensive survey of the different

philosophical models of theory change and note areas of substantial agreement between

them. Those areas are summarised so they can be used to understand how software

engineering research can be evaluated and justified.

The areas of agreement include:

1. The most important units of understanding scientific change are large-scale, relatively

long- lived conceptual structures which different modellers refer to as ‘paradigms’,

‘global theories’, ‘research programmes’, or ‘research traditions’, and which, for

neutrality, we term ‘guiding assumptions’.

2. Guiding assumptions, once accepted, are rarely if ever abandoned simply because

they face empirical difficulties. They tend to endure in spite of negative experimental

or observational tests. In short, negative evidence is less important in the assessment

of large-scale theories than is commonly thought…

3. Data do not fully conform to theory choice, i.e., observations and experiments do not

provide a sufficient base for unambiguous choices between sets of guiding

assumptions or between rival theories.

4. Metaphysical, theological, and other non-scientific factors play an important role in

the assessment of scientific theories and guiding assumptions. Assessment is more

than just a matter of the relationship between the guiding assumptions or theory and

the evidence.

5. Assessments of guiding assumptions depend as much upon judgements about their

potential as on their record of performance, and the former is not reducible to the

latter.

6. Scientists do not make absolute judgements about the merits or demerits of a

particular set of assumptions or a particular theory, but comparative judgements about

extant rivals.

7. There are no neutral observations in science; rather they are all theory- laden, although

not necessarily laden with the theories whose competition that arbitrate.

8. The generation of new, and the modification of existing scientific theories is not a

random process; rather in most cases it takes place with respect to a heuristic or set of

guidelines.

Evaluating Software Engineering Research

Understanding Software Engineering 289

9. Guiding assumptions are never abandoned unless there is a new set available to

replace them.

10. The coexistence of rival sets of guiding assumptions in a science is the rule rather

than the exception. Debate about rival sets of assumptions does not alternate with

periods of universal assent to one set, but occur constantly.

11. New sets of guiding assumptions are not judged by the same yardstick as well-

established sets.

12. A later set of guiding assumptions seldom accommodates all the explanatory

successes of its predecessors. There are losses as well as gains in the replacement

process.

13. The technical machinery of confirmation theory and inductive logic has little if any

light to shed on theory appraisal.

14. The assessment of low-level scientific theories is based in part on the success of the

guiding assumptions with which they are associated.

15. The solutions given to problems by a scientific theory are often recognised as

approximate only when that theory has been replaced by a new theory.

Laudan et al (Laudan, Donovan et al. 1986) also summarise the areas where the major

philosophies of scientific progress disagreed though they are not included here.

6.3 New Guiding Assumptions for Software
Engineering: The Model Building View

The use of traditional engineering disciplines as a source of ideas for the improvement of

software development has provided a set of guiding assumptions that has allowed

software engineering researchers to produce many useful theories since the NATO

conferences of the late 60s. However, previous chapters have explored in detail the nature

of the artefact engineering view of software development and identified many anomalies

in it. Subsequent chapters explored the nature of concepts, theories, and abstractions

using research from epistemology, metaphysics, psychology and the history and

philosophy of science. That analysis suggests theories based on a model or theory

building view are another useful source of guiding assumptions for improving software

development. Research ideas based on the model building view already have a history in

software engineering research, though they are hardly ‘dominant’. Much of that research

Evaluating Software Engineering Research

Understanding Software Engineering 290

incorporates these ideas in specific aspects of software development. However, other

work, specifically that of Naur and Blum, uses it to detail a new way of thinking about

software engineering in general. This section details some of those ideas and suggests

they should be pursued more explicitly in future research.

It should be noted however, that this is not meant as a thorough analysis of their work.

Nor does it suggest that particular aspects of their theories are entirely correct or that they

are first to make them. For example, Blum’s definition of ‘software engineering’ is hardly

the most thorough or useful, nor has he been the first person to criticise the quest for a

‘silver bullet’. What the presentation seeks to achieve is to make evident the fact that

software engineering research based on a different set of guiding assumptions to the

conventional, artefact engineering view already exists. Moreover, that research may need

to be re-evaluated with respect to a more sophisticated way of understanding the way in

which research-based disciplines eva luate their work, and therefore, progress as a whole.

The detailed analysis of that research would be the subject of future work.

6.3.1 Applying the Model Building View to Specific Aspects of Software
Development

6.3.1.1 The Influence of Programming Language Paradigms

Ambler, Burnett, and Zimmerman detail the way different programming language

paradigms guide the problem solving process of software development by providing a

framework of conceptual structures for expressing the solution (Ambler, Burnett et al.

1992). While they do not explain paradigms in terms of Kuhn or other philosophers, their

descriptions show their concept of programming paradigms is certainly equivalent to the

way they are used by philosophers.

“A programming paradigm is a collection of conceptual patterns that together

mould the design process and ultimately determine a program’s structure.

Such conceptual patterns structure thought in that they determine the form of

valid programs. They control how we think about and formulate solutions,

and even whether we arrive at solutions at all.

Once we can visualize a solution via a paradigm’s conceptual patterns, we

must express it within a programming language. For this process to be

effective, the language’s features must adequately reflect the paradigm’s

conceptual patterns… In practice, a language that supports a paradigm well is

Evaluating Software Engineering Research

Understanding Software Engineering 291

often hard to distinguish from the paradigm itself.” (Ambler, Burnett et al.

1992)

The philosophical theories presented in the previous chapter noted that all observation is

theory- laden and that there are many different, yet useful ways to conceptualise the

phenomena under investigation. Ambler et al observe that different programming

language paradigms help to constrain the types of concepts and relationships the

developer implicitly applies to the problem domain to those that can be implemented in a

particular style of programming language. That is, while many design methodologies are

programming language independent, it is often easier to implement the results of a

particular design method using a particular programming language.

They classify programming languages into three categories that together capture the

continuum of approaches to software systems implementation.

• Operational Paradigms: The operational approach encompasses languages that

explicitly define the sequence of step-by-step instructions required to construct a

solution. This paradigm captures many different types of languages. These include

imperative or procedural languages that capture, in an abstract model, the

structure and operations of a Von Neumann-style machine architecture. These

languages allow the specification of data variables and how they should be

manipulated, step-by-step, during system execution. The operational paradigm

also includes object-oriented languages, which capture the same model but

encapsulate the functionality and data within a single structure. Also included are

functional languages, such as lisp and scheme, which specifies a systematic

approach based on a mathematical model of functional composition. These

languages need to specify the step-by-step approach to implementation but using

an abstract model of a virtual machine implemented above the traditional Von

Neumann architecture.

• Definitional Paradigms: In the definitional paradigm there is no step-by-step

description of how to execute the solution. The programming languages construct

solutions by stating facts, rules, constraints, equations, transformations, and other

properties about the solution value set. From this information, the system must

derive a scheme, including an evaluation ordering, for computing a solution.

These languages include rule-based languages that rely on inference engines,

Evaluating Software Engineering Research

Understanding Software Engineering 292

transformational approaches, logic-based languages, and constraint-based

programming languages.

• Demonstrational Paradigms: Programming by demonstration or by example,

neither specifies operationally how to compute a value nor set constrains in the

solution value set. Rather, they demonstrate solutions to specific instances of

similar problems and let the system generalise an operational solution from the

demonstrations. These languages include many visual or iconic programming

languages.

6.3.1.2 The Philosophy of the Software System

Lawson also exemplifies some of the aspects of the model building view in his

Philosophies for Engineering Computer-Based Systems (Lawson 1990). The initial

description of his thesis is similar to the issues discussed by Ambler et al.

“Software engineering methods and tools are important, but they should be

the result of a well-developed philosophy for solving the application problem.

By philosophy I mean a unifying common view of how a problem or a class

of problems shall ‘in principle’ by treated. The view, which is based on

concepts, must be commonly held by all project team members and all other

parties with vested interests. It involves the development of a strategy from

which decisions (large and small) emanate.” (Lawson 1990)

As an example, Lawson details the design rationale behind the development of the Simula

programming language. He notes that it’s philosophy was aimed at solving a particular

class of problems and its users found it useful for a much wider class of programming

problems. During his subsequent analysis of ‘philosophies’ Lawson discusses

‘philosophical decay’, citing the OS/360 operating system project as an example. During

that project, the initial philosophy of the solution degenerated as new features were

added, time pressures intensified, and additional people were added to the project.

Lawson’s conclusion was that “philosophies, once established, must be nurtured and

treated with respect; otherwise, they deteriorate” (Lawson 1990). This is consistent with

what Brooks concludes from his experiences in the OS/360 project when he discussed the

integrity of the conceptual model of the proposed design. Brooks notes that the

conceptual model dictates the eventual solution and for it to remain cohesive, it should

Evaluating Software Engineering Research

Understanding Software Engineering 293

reflect a single philosophy and flow from as few minds as possible (see chapter 4 in

(Brooks 1975)).

Lawson uses the term ‘philosophy for software engineering’ in two different contexts. In

the first context, he talks about the philosophy of the programming language. This is

equivalent to how Ambler et al describe the influence of programming language

paradigms on software development – they constrains the framework from which

concepts and relationships can be used to synthesise solutions that can be implemented.

However, in the second context, he discusses the integrity of the ‘philosophy’ as the

ability to maintain those concepts and relationships of the conceptual model as they are

refined and implemented. This use of ‘philosophy’ refers to the logical consistency and

cohesiveness of the conceptual model devised to solve the problem. As the previous

chapter noted, during design that model is transformed from a collection of analysis level

concepts to a set of design level concepts. That process is more than just a refinement,

those collections of concepts are fundamentally different. Therefore, when the

transformation takes place the logical consistency and cohesiveness of the initial model of

the solution may be lost or compromised. Moreover, as problems are identified during the

system design and implementation, fixes may be introduced that degrade the consistency

and coherence of that model. That is what Lawson means by retaining the integrity of the

system philosophy.

Both of Lawson’s uses of the term ‘philosophy’ are valid, however his argument, in light

of the description of philosophical ideas presented in previous chapters, appears confused.

Nevertheless, his paper highlights the usefulness of the philosophical ideas to software

engineering. It also highlights the difficulty of using them without a thorough

understanding of how they relate to each other and how they relate to software

development.

The application of the philosophical theories to software development is also present in

the work of Lehman, this time from the perspective of improving the enormous amount of

time, money, and effort spent on maintaining software systems (Lehman 1980). From that

perspective he details issues in software evolution and explains how research has

progressed by developing the view that a software system can be best understood as a

model.

Evaluating Software Engineering Research

Understanding Software Engineering 294

“Any program is a model of a model within a theory of a model of an

abstraction of some portion of the world or some universe of discourse.”

(Lehman 1980) [Lehman’s emphasis].

According to Lehman, software systems can then be classified into one of three classes:

• S-Programs: Programs whose function is formally defined by and derivable from

a specification. Examples include programs to solve problems based on

mathematical algorithms, such as the 8-queens problems, or based on concepts

that are inherently well defined, such as depicting geometric shapes on the

computer screen. The specification can be formally expressed and captures

exactly the problem to be solved. Therefore, the solution can be precisely

evaluated with respect to the specification and does not need to match any real-

world process.

• P-Programs: These include programs whose specification can be captured

unambiguously but concepts within it cannot be implemented in a software system

without a degree of approximation. Lehman uses the example of chess playing

and weather prediction. In these problem domains, the requirements of a computer

system can be defined precisely – the rules of chess and the set of non- linear

equations required to model global weather patterns. However, for system

implementation, the solutions cannot precisely implement these requirements in a

useable system. The procedures for analysing the state of a chess game and

determine the next possible moves cannot be implemented completely – they can

only be approximated. Furthermore, non- linear equations for weather modelling

cannot be precisely implemented – they can only be approximated using simpler

sets of equations. Both the problem statement and its solution approximate the

real-world situation.

• E-Programs: These attempt to implement processes of human or social activity

and result in a greater degree of approximation than the P-programs. Moreover,

the people operating within that problem domain will use that software solution in

their work. Therefore, they in turn become part of the problem they are attempting

to provide a solution for. “The program has become a part of the world it models,

it is embedded in it. Conceptually at least, the program as a model contains

elements that model itself, the consequence of its execution.” (Lehman 1980).

Evaluating Software Engineering Research

Understanding Software Engineering 295

Operating systems, air traffic control systems, and inventory-stock control are all

examples of these sys tems. The pressure for system modification is immense. “As

[the users] become more familiar with a system whose design and attributes

depend at least in part on user attitudes and practice before system installation,

users will modify their behavior to minimize effort or maximize effectiveness.

Inevitably this leads to pressure for system change.” (Lehman 1980)

Lehman notes that P and E programs are closely related and they differ from S-programs

because they represent a computer application in the real world. He refers to them

collectively as A-type programs. Because these programs are models of real world

processes that, for various reasons, are under constant pressure to change, Lehman argues

that the traditional life cycle of stages from requirements to implementation and testing is

not easily applicable. Indeed, as noted earlier, Gallagher takes this point to an extreme

and argues all software development should be considered as a process of maintenance

rather than as a traditional process of artefact creation (Gallagher 1997).

6.3.1.3 Paradigms of Software Design Methodologies

Hirschheim and Klein also exemplify the differences between the artefact engineering

and model building views of software development in their Four Paradigms of

Information Systems Development (Hirschheim and Klein 1989). They recognise the

growing importance of making explicit the guiding assumptions on the research of a

professional community and identify four different paradigms that influence software

systems development.

“As developers must conduct inquiry as part of systems design and have to

intervene into the social world as part of systems implementation, it is natural

to distinguish between two types of related assumptions: those associated with

the way in which systems developers acquire the knowledge needed to design

the system (epistemological assumptions), and those that relate to their view

of the social and technical world (ontological assumptions).” (Hirschheim and

Klein 1989)

They identify two dimensions of both the epistemological and ontological issues: the

subjectivist-objectivist dimension and the order-conflict dimension. In the first

dimension, the objectivist applies models and methods derived from the natural sciences

to the study of human affairs. In contrast, the subjectivist refutes this approach and seeks

Evaluating Software Engineering Research

Understanding Software Engineering 296

to understand the basis of human life by exploring the subjective experience of

individuals. In the other dimension, the ordered view assumes the world is characterised

by order, stability, and functional co-ordination, while the conflict view stresses change,

conflict and coercion. The result is four paradigms for systems development:

functionalism (objective-order), social relativism (subjective-order), radical structuralism

(objective-conflict), and neohumanism (subjective-conflict).

Those four paradigms are then explained through generic story forms, identifying the key

actors, the narrative of how systems development proceeds, the major plot, and the

assumptions that guide the whole process. The first two, functionalism and social

relativism, are the most applicable or recognisable in software development. The

functionalism paradigm closely associates with the established artefact engineering view

of systems development. They label their story as the ‘developer-as-systems-expert’, who

seeks to identify the underlying order of the domain and capture it as the rules, data, and

functionality of a software implementation. In contrast, the social relativism approach

identifies the developer as a facilitator, trying to interpret some structure from a reality

that it inherently unstructured. It favours an approach to development that facilitates the

learning of all that are involved.

6.3.1.4 The Influence on the Model Building View of the Development Process as a
Whole

The philosophical foundations for the model building have also been used by Winograd

and Flores in the field of artificial intelligence (Winograd and Flores 1985). Their

research attacks the guiding assumptions used in the understanding of cognition and

attempts to represent it in computer systems. The thrust of their argument against the

established way of understanding is similar to that of Dreyfus (Dreyfus 1992), which was

briefly discussed in the previous chapter, however their conclusions also include sections

that are applicable to software development in general.

Winograd and Flores begin by identifying the ‘rationalistic’ tradition as the dominant set

of guiding assumptions in the understanding of cognition and systems development. Their

explanation of the ‘rationalistic’ tradition is similar to the classical theory of concepts and

meanings.

Evaluating Software Engineering Research

Understanding Software Engineering 297

“Problem solving requires the representation of a situation in terms of

identifiable objects with well-defined properties, and the logical application of

general rules to situations so presented.” (Winograd and Flores 1985) (p. 15).

“Meaning can be analyzed in terms of correspondence between sentences in a

natural language, and interpretations in a formal language for which the rules

of reasoning are well defined.” (Winograd and Flores 1985) (p. 17)

They subsequently attack that rationalistic tradition by using the philosophy of

hermeneutics, specifically the work of Heidegger, and the neurobiology research of

Maturana. Heidegger’s philosophy builds on the notion that concepts cannot be defined

independent of context. He explores the theory that concepts of reality can only be

understood with respect to the person interpreting the world around them. Heidegger’s

‘being- in-the-world’ operates by constantly interpreting its material and social

environment. Rather than having knowledge of reality, his theories describe a constant

process of being, which is characterised by unconsciously applying theories to reality in

an attempt to understand and operate within in it. Those theories become articulated and

improved when a ‘breakdown’ occurs that challenges the accepted way of understanding

(for example, see Heidegger in (Urmson and Ree 1989)). Maturana’s research in

neurobiology also challenges the accepted understanding of knowledge acquisition.

Rather than explaining knowledge as the interpretation and generation of concepts from

sensory input, his research shows that neurological processes are triggered, not by all

sensory input, but by expected patterns of sensory input. Maturana explores these results

to develop his theory of understanding that is similar to the description of conceptual

relativism and the application of theories in the understanding of reality detailed in the

previous chapter.

Winograd and Flores apply these counter claims to the rationalistic tradition in the

justification of research in artificial intelligence systems and finally to the development of

software systems in general. Their conclusions explore areas that are similar to Lehman’s

discussion of A-type software systems and Hirschheim and Klein’s social relativism

paradigm.

Dahlbom and Mathiassen discuss the model building issues in all phases of the software

development lifecycle (Dahlbom and Mathiassen 1993). They begin by exploring two

different ways of understanding reality: the mechanistic view, which is similar to the

Evaluating Software Engineering Research

Understanding Software Engineering 298

classical theory of meaning or the rationalistic tradition, and the romantic view, which

relies on the subjective interpretation of the observer rather than on an objective,

observable reality. These views are then explored in the context of software development

to show how they lead to completely different ways of approaching the software design

process. For example, the constructionist approach matches the artefact engineering view

of development. In contrast, the evolution approach explains software development as a

constant process of evolution as the users, managers, and programmers all develop more

sophisticated models of the problem domain and the role of the software system in that

domain. That evolution occurs over successive versions as the use of that software

facilitates that evolution of understanding.

Their analysis then proceeds to a more managerial level and uses the different paradigms

of understanding to explore the quality of software systems in general. That is, how the

system could be evaluated as solving the original problem in the context of the problem

setting.

Through an analysis of the evolution of many disciplines, Dahlbom and Mathiassen note

that a change of guiding assumptions occurs in all professional disciplines as the relevant

researchers seek to develop a better understanding of that discipline. Their conclusion is

that these ideas can be expected to increase in the research agendas of software

development.

“If we look at the history of modern science, it all begins with the natural

sciences and positivism. Hermeneutics and an interest in the humanities come

later, and partly as a reaction to a dominating mechanistic perspective. This

order of events seems somehow natural, and we find it almost everywhere we

look. Sooner or later in the history of a practice it will turn to science for

advice, passing through a stage of positivism only to enter a more chaotic

period of attempts to develop hermeneutic alternatives. We have seen this

happen in education, medicine, and social work. And we are seeing it happen

in systems development. We began by taking an interest in computers, only

later to realize that there were people involved too.” (Dahlbom and

Mathiassen 1993) (p. 208)

Evaluating Software Engineering Research

Understanding Software Engineering 299

6.3.2 Improving Software Engineering Research using the Model Building
View

6.3.2.1 The Research of Peter Naur

Peter Naur provides one of the most detailed explorations of the application of the model

building view to software development. Naur was a major contributor at the NATO

conferences and was co-editor of the published transcripts (NATO 1976a; NATO 1976b).

His contributions reveal a mixed set of guiding assumptions about the nature of software

engineering. As detailed in chapter 3, those comments used analogies with the complexity

of civil engineering design, the architecture theories of Alexander, and the large-scale

partitioning of automotive designs to inspire ideas that are based on the guiding

assumptions of the artefact engineering view of software development. However, he also

made a number of ins ightful comments that highlight aspects of software development

that conflict with that way of understanding. For example, his remark during the debate

following McIlroy’s Mass Produced Software Components (McIlroy 1968) paper from

the 1968 conference highlights his struggle to understand software development using the

engineering analogies and still come to grips with the essential nature of software

systems.

“Naur: What I like about this is the stress on basic building principles, and on

the fact that big systems are made from smaller components. … A

comparison with our hardware colleagues is relevant. Why are they so much

more successful than we are? I believe that one strong reason is that there is a

well established field of electronic engineering, that the young people start

learning about Ohm’s Law at the age of fourteen of thereabouts, and that

resistors and the like are known components with characteristics which have

been expounded at length at the early level of education. The component

principles of our systems must be sorted out in such a form that they can be

put into elementary education.” (NATO 1976a)

Naur’s research, both prior to and following the NATO conferences, details the transition

he made from understanding software systems using an artefact engineering point of view

to a model building one. His examination of the issues is driven by attempts to identify

the “component principles of our systems” and subsequent publications have been

collected in a single volume of work (Naur 1992a). A few years before the NATO

Evaluating Software Engineering Research

Understanding Software Engineering 300

conferences, Naur published his preliminary ideas on the important principles of software

– the concepts of data, datalogy, and datamatics.

“By datalogy I will understand the discipline of data, their nature, and use. An

important part of datalogy is datamatics, the processing of data by automated

means.” (Naur 1992d)

His initial research examines the nature of data and compares its use in software with the

underlying concepts of data in mathematics and linguistics. By the mid 70s, Naur was

examining these issues in more detail (Naur 1992c). His analysis examines the

relationship between data, words, concepts, and their philosophical understanding.

Drawing on the work of philosophers such as Wittegstein, Naur began to develop theories

for applying those issues to the specific context of software development.

“Data science is the science of dealing with data, once they have been

established, while the relation of data to what they represent is delegated to

other fields and sciences.” (Naur 1992c)

The mid 80s saw Naur publish research that examined in more detail the relationship

between data and what it represents. His explanation of Intuition in Software

Development (Naur 1992f) questions the emphasis of software engineering research on

design methods. Based on his reading of the philosophical issues, he suggests that

intuition, the way the designer understands the problem, is the driving factor in

determining the integrity of the developed system. He notes that our intuition is not

perfect, nor is it well understood. The role of design methods is to “guard us against the

occasional errors of intuition” (Naur 1992f). According to Naur, to improve software

development, research should be directed at understanding our attempts to relate the

world, our knowledge of it, and our use of texts to capture that knowledge.

In 84, Naur summarises many of those developing ideas in the keynote address entitled,

Programming as Theory Building (Naur 1985), delivered at the Euromicro 84 conference.

“Some views on programming, taken in a wide sense and regarded as a

human activity, are presented… it is concluded that the proper, primary aim

of programming is, not to produce programs, but to have the programmers

build theories of the manner in which the problems at hand are solved by

program execution. …

Evaluating Software Engineering Research

Understanding Software Engineering 301

A more general understanding of the presentation is a conviction that it is

important to have an appropriate understanding of what programming is…

What I am concerned with is the activity of matching some significant part

and aspect of an activity in the real world to the formal symbol manipulation

that can be done by a program running on a computer.” (Naur 1985)

His understanding of theory development is explained through the philosophy of Ryle,

who explored the notion of concepts, meaning, and language (see Ryle in (Kemerling

1997)). For Naur, the conclusion for software developers is that understanding these

philosophical issues can lead to three important advantages.

1. The programmer having the theory of the program can explain how the solution

relates to the affairs of the world that it helps to handle.

2. The programmer having a theory of the program can explain why each part of the

program is what it is, in other words is able to support the actual program text with a

justification of some sort.

3. The programmer having a theory of the program is able to respond constructively to

any demand for modification of the program so as to support the affairs of the world

in a new manner. The design of how a modification is best incorporated into an

established program depends on the perception of the similarity of the new demand

with the operational facilities already built into the program. (Naur 1985)

Naur notes though, that the difficulty of this view of software development is that it is

extremely difficult to capture the essence, that is, the theory of the program in an

objective way that can be shared with others.

“The main claim of the Theory Building View of programming is that an

essential part of any program, the theory of it, is something that could not

conceivably be expressed, but is inextricably bound to human beings.” (Naur

1985)

Naur’s later publications continue to explore the relationship between human thoughts,

languages in general, and the structures available in programming languages (Naur

1992g; Naur 1992h; Naur 1992e). That research led him to examine why such a different

view of software development could exist. His later work explores ideas similar to the

history and philosophy of science sources presented earlier in this chapter (Naur 1992b).

They reject the myth that science, including computer science and the sought after science

Evaluating Software Engineering Research

Understanding Software Engineering 302

of software engineering, can be based on a rationalistic approach or on a logical

foundation of objective truth. His view of software development as theory or model

building concludes with three different aspects that must be kept in mind by developers.

1. The aspect of the world that is being described or pictured by the model, the modelee

for short.

2. The model, being a program in execution by a computer.

3. The elements of which the model has been built, typically items of computer

hardware and the mechanisms of a certain programming language.

6.3.2.2 The Research of Bruce Blum

The final and most extensive examination and application of the philosophical issues to

software engineering has been performed by Bruce Blum. His work can be described as

the quest to explain the software paradox (as stated by Stucki).

“The software community has done an excellent job of attempting to

automate everyone’s job except their own!” (Blum 1985)

Blum identifies three reasons why this is the case.

1. We really don’t understand what software is.

2. We have not performed a systems analysis of the software development process.

3. The implementation of new software development paradigms is as much a social

problem as a technical issue. (Blum 1985).

Blum’s research is summed up in his culminating work, Beyond Programming: To a New

Era of Design (Blum 1996). Blum believes the existence of the software paradox is due to

a faulty model of understanding the nature of software development and reality. That

understanding developed during the embryonic stages of the software engineering

discipline and remains to this day. Therefore, to improve the nature of software

engineering, nothing short of a Kuhnian paradigm-shift is required.

Blum begins with his definition of software engineering and the subsequent issues raised

by it.

“The application of tools, methods, and disciplines to produce and maintain

an automated solution to a real-world problem.

Evaluating Software Engineering Research

Understanding Software Engineering 303

Much of the software process is devoted to characterizing the real-world

problem so that an automated solution can be constructed. Because the

problem interacts with its solution, the software product must evolve.

Moreover, because the software operates in a computer, it must be expressed

as a formal model of a computation.” (Blum 1996) (pp. 4-5)

To develop his new paradigm, Blum presents a detailed examination of these issues from,

as he describes them, ‘first principles’. Those principles are detailed during the

exploration of three broad topics. First, to examine the relationship between computer

science and software engineering, he explores the nature of science, the relationship

between science and technology, and the concepts of truth and knowledge. Second,

because software design is a form of problem solving, he explores the innate mechanisms

of human problem solving, the social context of achieving solutions, and the nature of

design in general. Finally, the third section applies those issues to the software

engineering process. In that section, the history of software design is presented and the

nature of design methods are examined in terms of the previously explored philosophical

and design reasoning issues. His book culminates with an examination of how those

issues result in a new paradigm for software engineering and presents the results of a

fourteen year case study of the application of that paradigm to Blum’s specific area of

medical information systems. His conclusion is that while Naur suggests moving towards

programming as theory building, he suggests software engineering should move beyond

programming altogether.

The introduction to Blum’s examination of science and technology critiques Mary Shaw’s

article Prospects for an Engineering Discipline of Software (Shaw 1990), which was also

discussed in chapter 3 of this thesis. Noting her conclusion, that a discipline of software

engineering requires a supporting science, Blum surmises that it is difficult to fault the

steps Shaw proposes to develop this software science,

“Yet it is equally difficult to understand what is meant by science and

engineering in the context of computer technology. In the popular view,

science uncovers the truths around which we build our technologies. Is this a

valid statement? What are the truths of computer science? Are there

alternative computer sciences … Is there an envelope around what can be

guided by computer science, and, if yes, how do we address problems outside

the envelope?” (Blum 1996) (p. 21).

Evaluating Software Engineering Research

Understanding Software Engineering 304

Blum’s subsequent analysis of science in general presents a summary of the relevant

issues from the history and philosophy of science, which are similar to the sources

presented at the beginning of this chapter. To determine how those issues affect software

engineering, Blum examines the relationship between science and technology. He begins

with Shaw’s representation of the traditional view, which states that science drives

technology.

“In Shaw’s model of the growth of an engineering discipline, science was

given a direction by the technology; once mature, the science served to drive

the technology. That is, as a technology matured, its ad hoc solutions were

extracted and embedded in a body of scientific knowledge, which in time

would serve as a forcing function for that technology.” (Blum 1996) (p. 54).

However, his examination of the relevant research and case studies in the area of science

and technology reveals that is not the case.

“Science may support technological improvement or the identification of

presumptive anomalies, but technology’s problem solving mission resists the

acceptance of new scientific knowledge as a solution mechanism in search of

a problem; that is, technology exploits scientific knowledge, but it is not

driven by it.” (Blum 1996) (p. 62)

Blum continues to examine the nature of science. He asserts, an admittedly limited view,

that the goal of science is to produce models of reality. He then proceeds to examine the

ability of science to produce faithful models of reality. His description is based on the 3

world epistemological model of Popper and the epistemological consequences of Kuhn’s

theories of science. The result is similar to the conclusions of the previous chapter of this

thesis, which examined different

theories of epistemology in greater

detail. There is no objective reality

that all people share. The best that

can be achieved are progressively

more detailed models of it. Blum

continues by examining the issues

involved in modelling that reality.

His analysis results in a model of Figure 6-1: Models-of-reality space

Free Bound

Ideational

Representation

Computational

Phenomena

Evaluating Software Engineering Research

Understanding Software Engineering 305

models-of-reality (figure 6-1: from (Blum 1996) p. 72). The vertical dimension depicts

representation. The computational representations are the well-defined notations of, for

example, mathematics and logic. The word ‘ideational’ is used to capture the other

extreme of ambiguous, subjective expression. The horizontal dimension represents the

phenomena to be modelled. Bound phenomena represent aspects of reality that depict

repeatable, observable processes such as the physical laws of motion. Models of bound

phenomena can be used to describe and predict those aspects of reality. In contrast, free

phenomena are processes that can be described but are not necessarily bound to behaving

the same way in the future.

Traditionally, science, which develops computational models of bound phenomena, and

art, which explores ideational representations of free processes, are placed at opposite

corners of the model. However, Blum’s analysis of the theory of models argues that a

clear distinction is not possible.

“Thus, design – and by extension, all creative activities – merge art and

science/technology within the (holistic) context of a larger system. We cannot

isolate ‘science’ and the ‘art’ components of our technology…” (Blum 1996)

(p. 75).

Computational models of bound phenomena are possible, however Blum points out that

software engineering does not always deal with bound phenomena. This leads to a central

tension in software engineering.

“The science of computer technology is that of a free phenomena. It is the

study of the transformation of ideas into operations…

Our goal is to reduce the central tension in the software process: the fact that

we start with a need that often is poorly defined and difficult to represent and

we must end up with a formal model that executes within a computer.

Traditionally, computer science has chosen to concentrate on the formal

aspects of the process, but more is needed.” (Blum 1996) (pp. 85-86).

Blum’s analysis then considers design more specifically. His begins with the traditional

understanding of design, technological design, in which designers employ technological

knowledge to construct an artefact that satisfies the stated requirements. Through a study

of relevant areas he develops a more sophisticated model (ecological design) that

incorporates the human environment in which the design is initiated, conducted, and

Evaluating Software Engineering Research

Understanding Software Engineering 306

evaluated. That study begins by laying foundations that show the traditional

understanding of design, technological, is a consequence of the rationalistic or positivist

understanding of reality. Blum shows, through the work of many researchers in design

theory, that disciplines are slowly moving away from that model of understanding and

towards a more humanistic and subjective understanding of reality. To understand design

from a more subjective understanding, Blum details theories from the areas of problem

solving in cognitive science, the nature of expertise, the nature of complex problems, and

the role of reflection and context in the problem solving process. The result is a collection

of theories that challenge the traditional understanding of design.

“If … ‘learning, thinking, and knowing are relations among people engaged

in activity in, with, and arising from the socially and culturally constructed

world’, then ‘changing existing situations into preferred ones’ will impact

what we think and know. Thus, paradoxically, we find that change is the

invariant, not knowledge.

These are just some of the implications for a new era of design.” (Blum 1996)

(pp. 158-160).

With these foundations, Blum analyses design theories from different disciplines. They

include architecture, industrial design, engineering and systems design. Finally, Blum

includes theories that specify how these design processes are influenced by the different

stakeholders who participate in the design process. The result of Blum’s lengthy and

detailed analysis of many issues is a set of foundations for understanding his definition of

software engineering.

However, these foundations do not provide a ‘silver bullet’ for the problems of software

engineering. Indeed, they show such a thing is impossible.

“Our objective as software designers is to employ software technology to

improve the human environment. We seek instruments to guide us in this

endeavor, but we also recognize that such instruments may not exist

independently of their use; that is, these instruments cannot be discovered,

they must be designed. We are constrained by software’s central tension: the

environment we wish to modify exists in-the-world and may not be subject to

formal descriptions, whereas the software we create exists in-the-computer

and must be represented formally – as models of the real world and as models

Evaluating Software Engineering Research

Understanding Software Engineering 307

of computations. We might take solace from our studies of the foundation if

they produced formal models of the world that could be represented in the

computer or if they demonstrated the existence of an integrating force that

would synthesize the individual models. But this does not seem to be the case.

There is no independent ‘design process’ that can be discovered and

dissected. We must accept the fact that the design process is an ephemeral

artifact, a residue of the process’s conduct. It provides clues as to what was

done, it offers insights into what should not have been done, but it never

establishes what ought to be done.” (Blum 1996) (p. 242)

Blum’s solution to this dilemma is adaptive design.

“We should move from our historic interest in modeling the product in favor

of a concern for modeling solutions to the problem. This implies a migration

from build-to-specifications (together with their realizations as programs) to

the use of as-built specifications that describe evolving responses to problem-

space needs. That is, we should go from the characterization of solutions in-

the-computer to solutions in- the-world. Clearly, such a shift goes beyond

programming. Clearly, too, such a shift will not be easy and cannot be phased

in.” (Blum 1996) (p. 263)

During adaptive design, the design centres on the building of a formally expressed,

conceptual model for a problem solution. Implementation is the automatically generated

realisation of a correct and valid solution (Blum 1993). The concepts that comprise those

conceptual models exist as fragments in the repository of the development environment

and surrogates are used to capture their expression from many different perspectives and

many different levels of granularity. To construct a solution to a problem, the developer

generates a conceptual model using the fragments that exist in the knowledge base. That

conceptual model captures the concepts of primary interest in a scheme that permits

automatic transformation to an executable form and allows automated reasoning about its

correctness. The execution of the application is performed by the encompassing

environment that keeps track of the fragments to be executed for a particular application.

In Blum’s environment, the design becomes the product. The concept fragments and

conceptual models that group them into applications evolve as both the developers’ and

users’ understanding of the problem domain becomes more sophisticated (Blum 1996)

(pp. 304-308).

Evaluating Software Engineering Research

Understanding Software Engineering 308

A detailed explanation of the approach is not presented here. Blum provides many

references to the description of his approach to design and a case study of its use in the

development environment, TEDIUM. Clearly Blum’s description of adaptive design is

also evident in other development environments, for example Amdahl’s ObjectStar

environment (Amdahl 1998). However, for this thesis, the important aspect of Blum’s

approach is the philosophical basis for it and not the end product.

Finally, Blum notes that the implementation of the knowledge required to realise this

system is possible only because there is a well-understood application domain that is

supported by a mature technology (Blum 1993). Although Blum’s detailed analysis of the

foundational issues and its application in a new design paradigm is interesting, it is not

clear how it can be applied to more general purpose software development.

6.4 Conclusion: Evaluating Software Engineering
Research

This chapter began with a description of the different theories in the history and

philosophy of science. One of the conclusions of those different theories is that research

performed in particular disciplines is directed and validated by underlying guiding

assumptions that determine how the phenomena under investigation is understood.

Moreover, those guiding assumptions usually change as a discipline progresses and

develops more sophisticated models for understanding that phenomena. In the context of

software engineering, the implication of this thesis is that the artefact engineering view of

software development has provided a dominant set of guiding assumptions. However, a

more detailed examination of the phenomena under investigation (the underlying

principles of software and software systems) shows that a model building view of

software development holds the potential for a more beneficial set of guiding

assumptions.

To highlight the potential of the model building view, a selection of existing research in

the software engineering literature was presented that is based either implicitly or

explicitly on that way of understanding software development. However, that selection

was certainly not exhaustive. Because the issues presented in this thesis aim at providing

a philosophical foundation for software engineering research, arguments could be made

that those foundations are exemplified in many other published researches and

commentaries. For example, a recent IEEE Software issue was dedicated to architectural

Evaluating Software Engineering Research

Understanding Software Engineering 309

design with the guest editor suggesting we should be Reevaluating the Architectural

Metaphor (Coplien 1999b). Moreover, in that issue Perrochon and Mann question the

appropriateness of the belief that an architecture should always be specified before the

implementation is commenced (Perrochon and Mann 1999). Other examples include

popular columns in software engineering journals by authors such as Glass and Jackson

that often highlight anomalies in the established way of understanding software

engineering. However, there has been no established foundation to explain why those

anomalies exist (see for example (Glass 1994; Glass 1998b; Jackson 1998b; Jackson

1998a)). Kumagai has suggested that perspectives on software engineering based on an

eastern rather than western view of the world may be an interesting source of research

ideas (Kumagai 1998). There are strong parallels between the theories of conceptual

relativism presented from the disciplines of philosophy and psychology and the eastern

philosophies discussed by Kumagai. Those parallels have been a source of interest for this

author, however they were not used in this thesis – though they may be used in future

research (see for example (Capra 1983)). Additionally, cognitive studies in software

engineering research also highlight issues that can be explained using a model building

view of software development rather than an artefact engineering perspective – see for

example (Silverman 1983; Adelson and Soloway 1985; Silverman 1985; Curtis 1989;

Curtis, Krasner et al. 1991; Dumas and Parsons 1995; Stacy and Macmillian 1995;

Winograd 1995).

Despite the argument presented in this thesis, that the model building provides the

philosophical foundations necessary to explain and justify many issues in software

engineering research, the theories in the history and philosophy of science suggest

considerable resistance will always meet any transition between sets of guiding

assumptions. Both Naur and Blum have commented on the resistance to their research

ideas and the sense of frustration it has caused.

Naur: “Several of the writings of the section are unusual by their sharply

critical tone of voice. I am aware that thereby they can hardly avoid being

painful to certain persons involved. They are in fact quite painful to me, being

manifestations of the fact that the field in which I have spent a good part of

my professional life gives strong support to pretentious ignorance and

misunderstanding on a large scale.” (Naur 1992a) (p. 479).

Evaluating Software Engineering Research

Understanding Software Engineering 310

Blum: “I believe that my work has never been accepted within the mainstream

because it employs an alternative paradigm and therefore is outside the

mainstream. True, there are many other approaches that also exist within

alternative paradigms, but that work is undertaken by communities of

researchers who share their work and mutually promote their findings. Given

the volume of new reports produced each year, it is not surprising that

researchers marshall their time, read selectively, and focus their energies on

the topics of principle interest to them. This is not sour grapes; it is simply an

acceptance of reality.” (Blum 1996) (pp. 302-303)

This does not suggest that problems cannot be identified in either Naur’s or Blum’s work.

Nor does it suggest that those ideas should be accepted simply because they are based on

an alternate set of guiding assumptions. However, the theories presented at the beginning

of this chapter suggest that researchers evaluating these new ideas need to remain aware

of the influence of guiding assumptions on the understanding of the discipline. For

example, in ACM Computing Reviews, Teplitzky (Teplitzky 1994) reviews Blum’s

analysis of software design methods based on these philosophical foundations (Blum

1994). Teplitzky’s analysis contains some interesting points, however his editorial

commentary accuses Blum of suffering from “the fog of academia” and criticises his

approach as being deliberately elitist when in fact Blum had simply appealed to

established lines of argument in philosophy. Blum’s work receives similar treatment from

other reviewers – see for example (Mitchell 1996). There is nothing secretive or elitist

about the dialect used by Blum. If software engineering researchers are to understand the

underlying principles of software systems then they must confront these philosophical

issues. While that work should clearly be criticised for errors in argument, evaluators

need to ensure it is not merely being criticised for being different.

Similar debates about the appropriateness of the philosophical issues also exist in other

disciplines. For example, researchers of design in general have also turned to the

philosophy of science for ideas (Jacques 1981). Braha and Maimon found parallels

between the theories in the history and philosophy of science and traditional engineering

design (Braha and Maimon 1997). In contrast, Cross argues that design theories should

not be compared with theories of science (Cross, Naughton et al. 1981). His argument

centres on two principle tenets. First, he notes that design is inherently different enough

from science to make the analogies invalid. Second, the theories in the philosophy of

Evaluating Software Engineering Research

Understanding Software Engineering 311

science are currently in dispute and therefore should not be applied to the field of design

in general.

“Attempts to equate ‘design’ with ‘science’ must logically be predicated upon

a concept of science that is epistemologically coherent and historically va lid.

The history of the twentieth-century debate in the philosophy of science

suggests that such a concept does not yet exist. It would therefore seem

prudent for writers on design method to back away from this particular line of

argument, at least for the time being.” (Cross, Naughton et al. 1981)

However, the arguments of Cross do not translate to the discipline of design in software

engineering. The differences he identifies between the fundamental natures of ‘design’

and ‘science’ are based on the nature of built forms, which does not exist in an analogous

way in software engineering37. Moreover, the fact that some disputes exist between the

different philosophies of science ignores the commonalties identified by Laudan et al,

which were presented earlier in this chapter.

Similar arguments against the application of philosophical foundations to software

development can be found in the software engineering literature. For example, Meyer

(Meyer 1997) discusses the philosophical nature of abstract data types by noting that the

exact meaning of object definitions is relative to the person using them.

“If I am thirsty, an orange is something I can squeeze; if I am a painter, it is a

color which might inspire my palette; if I am a farmer, it is produce that I can

sell at the market; if I am an architect, it is slices that tell me how to design

my new opera house, overlooking the harbor; but if I am none of these, and

have no other use for the orange, then I should not talk about it, as the concept

of orange does not for me even exist.” (Meyer 1997) (p. 147)

However, rather than using this observation as inspiration for examining the disciplines

that have been studying the principles of conceptual relativism and then determining their

implications for software engineering, Meyer argues the opposite.

“Over the years many articles and talks have claimed to examine how

software engineers could benefit from studying philosophy, general systems

theory, ‘cognitive science’, psychology. But to a practicing software

Evaluating Software Engineering Research

Understanding Software Engineering 312

developer the results are disappointing. If we exclude from the discussion the

generally applicable laws of rational investigation, which enlightened minds

have known for centuries … and which of course apply to software science as

to anything else, it sometimes seems that experts in the disciplines mentioned

may have more to learn from experts in software than the reverse.” (Meyer

1997) (p. 148)

Meyer’s claim is not based on an examination of the philosophical issues nor any critique

of the theories those disciplines have proposed. We are led to believe that because

software developers have built some large and complex systems, and the underlying

principles of those systems are based on the notions of concepts, theories, and

abstractions, then those other disciplines have more to learn from us because they are still

arguing about those principles while we have been successfully using them.

“Software builders have tackled – with various degrees of success – some of

the most challenging intellectual endeavors ever undertaken. Few engineering

projects, for example, match in complexity the multi-million line software

projects commonly being launched nowadays. Through its more ambitious

efforts the software community has gained precious insights on such issues

and concepts as size, complexity, structure, abstraction, taxonomy,

concurrency, recursive reasoning, the difference between description and

prescription, language, change and invariants. All of this is so recent and so

tentative that the profession itself has not fully realized the epistemological

implications of its own work.

Eventually someone will come and explain what lessons the experience of

software construction holds for the intellectual world at large.” (Meyer 1997)

(p. 148)

Meyer’s comments show a complete lack of understanding of both the relevant

philosophical issues and the complexity of traditionally engineered systems. Based on

both the ignorance and arrogance expressed in his comments, perhaps those lessons he

welcomes will include theories explaining how a discipline of software engineering can

progress in spite of rather than because of the way it understands those issues.

37 This was argued in the Chapter 4.

Conclusion

Understanding Software Engineering 313

7. Conclusion
This thesis has made explicit and then explored issues that influence the understanding of

software engineering. The aim has been to show that understanding in software

engineering research has been dominated by analogies with traditional engineering

disciplines. However, an alternative approach, based on philosophical foundations, offers

the potential for an improved way of thinking about software systems and how they are

developed. The previous chapter specified how guiding assumptions govern the way

researchers in a discipline understand the phenomena they investigate. Those guiding

assumptions are not always explicitly stated and practitioners are not always aware of

them. Indeed, it is not necessary for practitioners to be aware of them to operate as

researchers within a discipline. However, those guiding assumptions set research agendas,

direct investigations, bias observations, and justify conclusions. Moreover, those sets of

guiding assumptions change as a discipline evolves and research based on different sets

of guiding assumptions are not always commensurable with each other. In software

engineering research, the most prevalent view has been that software development can be

understood as artefact engineering. The research presented in this thesis has developed an

alternative view that software development can also be understood as model or theory

building. The conclusion is that this view has the potential to improve software

engineering research.

Because it is not necessary to be aware of the underlying philosophical issues when

performing research, it is often difficult to make others aware of their significance – let

alone get them to evaluate different theories about them. Before we can question our

guiding assumptions, we first need to be made aware of them. And to be made aware of

them we need to encounter situations that cannot be explained without resorting to

questioning, not just the situation, but how we think about that situation. Towards the end

of my research, and as I was beginning to write up my thoughts, I had the chance to

explain my theories to Keith Gallagher who was visiting my University at the time. He

mentioned I should read Blum’s Beyond Programming book. The immediate similarities

between our work were obvious. However, what I could not understand was why I had

never heard of Blum’s work, or similar efforts. It may simply have been shoddy research

on my part. However, I had never seen his work cited, or that of Naur, in the context I

was working on – the philosophical understanding of software engineering. In

Conclusion

Understanding Software Engineering 314

comparison with those two researchers, the advantage I have is that I am writing this at

the beginning (hopefully) of my research career, rather than at its culmination. To

remember how I thought about software engineering before developing a different way of

understanding it I only have to reach back a few years rather than a few decades. Had I

encountered Blum’s book before coming to similar conclusions I probably wouldn’t have

fully realised its implications for software engineering. Without understanding the

influence of guiding assumptions on research and without comprehending the prevailing

influence of the classical but now outdated theories of how we have knowledge of reality,

his conclusions would have made little sense. From those realisations, and the realisations

achieved from trying to explain these theories to other software engineering researchers,

the difficulty in explaining these issues to others has become apparent. Consequently, I

decided to write the thesis in an order that reflects the evolution of my own understanding

of software engineering rather than simply presenting a new approach. The turning point

in my understanding came with the cruise control comparison so that was the logical

place for the substance of this thesis to begin. That study highlighted issues that cannot be

adequately explained without resorting to an analysis of the fundamental nature of

software engineering and, therefore, prepares the reader for the subsequent philosophical

treatment. This conclusion can now summarise the issues in a different light.

The NATO conferences established the artefact engineering view of software

development. At that time, the software development community had produced many

large-scale systems and was looking for a way of directing research efforts that would

result in improved practices. Engineering was a natural choice. The disciplines appear

similar with many terms beings used between the two. The term ‘software engineering’

was suggested as a means of provoking discussion, a starting point for developing a view

of software development that would provide significant leverage for researchers and

developers. The analogies with traditional engineering disciplines used by the conference

participants were able to highlight important issues and thereby served to reinforce the

artefact engineering view. However, other insightful comments were made that could not

easily be explained using that same view. The conference failed to achieve consensus

among the participants concerning the applicability of the artefact engineering view.

Nevertheless, the term stuck and became the dominant guiding principle for the next

thirty years (at least) of software engineering research.

Conclusion

Understanding Software Engineering 315

The research from the history and philosophy of science shows that guiding assumptions

are not always chosen because they solve all of the problems of a particular research

discipline. They simply have to show potential for solving problems. During the 1968

NATO conference, the idea that software systems could be engineered showed enormous

potential for improved development practices. For instance, McIlroy’s Mass Produced

Software Components paper provided a vision of software engineering that matched the

participants understanding of traditional engineering, and which, if realised, could solve

many of the concerns that led to the conference. The debate during the 1968 meeting

concerned whether or not that vision was applicable. However, by 1969, without

resolving the identified problems, the debate turned to how to achieve that vision. The

artefact engineering view of software development provided the necessary direction for

research in a field that had previously lacked a common view. Its emergence as the

dominant set of guiding assumptions is consistent with the philosophical and

psychological theories presented. This is not meant as a criticism of those conference

participants, it is merely provided as an explanation for their actions.

Despite the fact that the analogies used between software development and traditional

engineering disciplines have illuminated many issues for researchers, the analyses

presented in this thesis show that many of the similarities and differences were

misunderstood. On the evidence presented, the conclusion is that researchers have not had

a thorough understanding of software development, nor have they had a thorough

understanding of those engineering disciplines used in the comparisons. Nevertheless, the

result of using those analogies has facilitated significant progress in software engineering

techniques. One of the anomalies that did arise, and which has remained the source of

debate, has been the question of the underlying principles of software systems and

software development. Researchers realise that the methods of engineering are based on

the ability to model and predict the properties of system and component designs based on

the underlying principles of the discipline. The underlying principles of software systems

were obviously different, however it is not immediately apparent what they are. However,

those differences have not been used to question the validity of the underlying

assumptions of software engineering. Rather, the research concerned with the progress of

the discipline has sought to identify the relevant ‘science’ of software engineering. That

‘science’, it is supposed, will explain the underlying principles and provide the rigorous

mathematical techniques necessary to make software development an ‘engineering’

Conclusion

Understanding Software Engineering 316

discipline. Unfortunately, those principles and the associated ‘science’ have never been

discovered. Formal methods have been suggested as the science for software engineering,

however a comparison of both what is represented by the mathematics, and how it is used

in the development processes of both software development and traditional engineering

shows the suggestion is incorrect.

By using traditional engineering development as a contrasting position from which to

observe the software engineering approach, the differences become apparent and the

nature of the underlying principles of the two disciplines become clear. That was evident

in the cruise control case study. The engineering designs all followed a similar process.

The designers began with a common design strategy, feedback control, which the history

of control systems has shown to be the most useful way of approaching the problem. An

initial system architecture was developed that consists of well-known generic components

in a well-known structural arrangement. Those components represent standard

functionality that can be applied to the underlying properties of the discipline – electrical

signals. The functionality of those components and the environmental influences on the

system were then modelled mathematically and a combination of experimental testing

and additional mathematical and graphical analysis techniques were then used to solve the

unknown parameters of those mathematical models. Because the system components are

specified in terms of idealised functions that can be applied to the underlying properties

of the discipline, the functionality of the components are independent of the context in

which they are used.

The design approach of the software developers was completely different. They began

with a design formalism that allowed them to depict the concepts and relationships

required to solve the problem. The successive stages of design serve to refine and

implement the functionality of the initial model. The identified concepts and relationships

represent the functionality to be performed. However, because the system needs to be

executed by a computer, the model also needs to include, or be supplemented by, a

depiction of how the model should be executed to solve the problem. Finally, because the

model needs to be realised in the implementation medium of the discipline, the model

needs to be specified in a structure that maps easily onto the constructs provided by that

implementation medium. The different design methods provided different ways of

capturing these three aspects of the software model, however they do all capture it.

Conclusion

Understanding Software Engineering 317

The contrast between approaches provides a glimpse of the fundamental nature of

software systems and shows how their development differs from traditional engineering

development. Traditional engineers build artefacts to solve real world problems. Software

developers build models of reality to automate real world processes. Traditional engineers

design their systems to meet the functionality that is achievable using the pre-existing

components of their implementation medium. Software developers use a tremendously

malleable implementation medium to realise the component functionality of their designs.

Therefore, making the artefact engineering view of software development explicit and

then examining it with respect to what artefact engineers actually do, reveals a different

understanding of software development – the model building view.

The model building view provides a way of identifying the underlying principles of

software systems (abstractions, concepts, and theories), which can be examined through

disciplines that have a long history of researching those principles – the disciplines of

philosophy and psychology. Both of these disciplines show there is a classical way of

understanding concepts and theories. In that classical view, the observer is separate from

reality and that reality is objective in that everybody experiences the same phenomena

and can classify it in the same way. Our explanations of the world are inferred from what

is really there and the concepts and relationships that comprise those explanations are

defined in terms of essential attributes or features. This classical way of understanding

matches the way traditional engineers understand their components and systems and,

therefore, it appears to provide a philosophical foundation for the artefact engineering

view of software development. That is, if the classical view is a valid means of

understanding, then our models of reality can be treated in a similar manner to

traditionally engineered artefacts. Indeed, some software engineering researchers have

used aspects of the classical way of understanding, especially the notions of concept

definition by intension and extension, as justification for their views.

Unfortunately, it is not the case. Philosophical analysis and experimental psychology

have developed more sophisticated theories of understanding that repudiate that classical

view. As a consequence, the underlying principles of software systems cannot be

understood in the same way as traditionally engineered systems. Reality cannot be

considered as separate from people’s understanding of it. There is a myriad of detail to

observe and people would not be able to function by constantly inferring concepts and

relationships from the infinite amount of detail presented to them. Instead, people

Conclusion

Understanding Software Engineering 318

automatically and subconsciously apply concepts and theories to that detail in order to

understand the world and function in it. As people interact with phenomena, they apply

different concepts and theories to it in order to provide a useful explanation for it. If one

theory does not provide a suitable explanation, a different or more complex theory is

generated and applied. The consequence is that there is no objective reality that all people

share. Many different concepts and theories can explain the same reality. The reason the

world is forever inaccessible is because all observation is tainted by the theories that we

automatically and subconsciously use to understand that world. Therefore, it is impossible

to detect which concepts and theories are closest to the truth. They can only be measured

by their usefulness, not their veridicality. Furthermore, those concepts and theories

become part of the culture of different groups of people and pass between them as they

communicate.

The other significant contradiction to the classical way of understanding concerns the

definition of concepts and relationships. The precise meaning of concepts cannot be

specified independent of the context in which they are used. That context is the theory

being used to understand the experienced phenomena. Therefore, while it may be possible

to define a concept by essential attributes, that does not mean the same concept can be

represented by the same definition in another context.

Commentaries in philosophy and psychology recognise that the classical way of

understanding still dominates people’s guiding assumptions in the general community and

this is evident in the justifications used for software engineering theories. However,

detailed analysis has provided more sophisticated explanations of human understanding

that explain how people develop and use models of reality. Those theories provide the

foundation for a new understanding of software development. In addition, that foundation

provides a way of explaining existing research in software development, a way of

explaining anecdotes provided by experienced practitioners, and highlights issues that can

lead to new avenues of inquiry.

One criticism encountered when explaining these theories to other researchers is that it

does not explain how software development should be performed. That was not the

purpose of the thesis. A few years ago, I came across a cartoon in a book on mathematics,

which unfortunately I cannot find now. It captures the conclusion this thesis has

attempted to present. Two children are playing in a sandpit The first asks the other, “Have

you found the answer yet?” and is met by the reply, “No, but now I know how to ask the

Conclusion

Understanding Software Engineering 319

right questions”. This treatise has examined the fundamental nature of what software is so

that the right questions can then be asked about how it could be engineered. Nevertheless,

a number of conjectures have become apparent that could be used as the basis for

subsequent research in the areas of reuse, patterns, and architecture.

The first concerns software reuse. Substantial gains have been made as a result of our

efforts to reap the benefits of widespread software reuse. However, we have yet to

achieve the same scales of reuse that has been achieved by traditional engineering

disciplines. The philosophical foundations of the model building view may provide some

insights to explain this. The first insight concerns the difference between

requirements/analysis concepts and design/implementation concepts. Concepts are

identified during the requirements/analysis stage of the development process and have to

be precisely defined and implemented as software constructs during the

design/implementation stage. However, the concepts we entertain in our explanations of

the world do not identify objective real-world parts and they cannot be universally

defined by essential attributes. They are theory dependent and are subjective to the person

using that theory to understand the phenomena under investigation. This results in two

different types of concepts. The first (referred to here as concepts1) are the fuzzy, theory-

dependent concepts applied to sensory experience to assist human understanding. The

second (referred to here as concepts2) are the independent, rigorously defined structures

of software design and implementation. The identification of a concepts1 concept can

result in an infinite variety of concepts2 definitions. If a concept is identified during the

development process of a system, then its definition, the resulting software construct, is

only a realisation of that concept within the theory used to understand the problem at

hand. For example, if the object-oriented analysis of a problem identifies a class,

‘Customer’ (concepts1), then its definition (concepts2) only provides the required features

of a ‘Customer’ within the confines of the problem that the system solves. The

philosophical foundations of software engineering suggest that if the analysis of a

different problem also identifies a ‘Customer’ (concepts1) during its analysis stage, then

the original ‘Customer’ definition (concepts2) may not be applicable in the new context. It

may be possible to reuse the ‘Customer’ definition in the new situation, but it equally well

may not be. This contradicts the idea of software reuse based on the classical theory of

understanding and the artefact engineering view of software development.

Conclusion

Understanding Software Engineering 320

Nevertheless, some successful reuse efforts have been achieved and they can be explained

with the foundations provided by a model building view. The first concerns the

observation that reuse is more successful when the designer browses an asset library

before beginning design rather than searching for and retrieving assets to match the

concepts of a proposed design (Mili, Addy et al. 1999). The human mind applies known

concepts and theories to a situation in order to explain it. That is, humans understand a

situation in terms of how they understand previously encountered situations. Having

knowledge of what is already in a reuse repository before design commences exploits that

innate conceptual ability by allowing the mind to devise a solution to a problem in terms

of that knowledge. As the designer interacts with the problem, knowledge of those

artefacts will be automatically and subconsciously applied to the situation to determine if

they provide a useful explanation. Therefore, the human conceptual apparatus makes it a

lot easier to design a system to reuse known artefacts than it is to find artefacts to meet a

designed system.

Mili’s analysis of software reuse also notes that software product lines provide the most

dominant form of systematic software reuse today (Mili, Addy et al. 1999). This fact can

also be explained as a consequence of the model building view. The precise meaning of

concepts identified during the requirements/analysis phase of development (concepts1)

are dependent on the roles they play within the encompassing theory being used to

explain the phenomena under investigation. That encompassing theory is the designer’s

conceptual model of the problem. If the same problem/phenomena was represented using

a different conceptual model, a similar collection of concepts may still be identified.

However, the precise meanings of the concepts that constitute that second model will be

different because they play different roles and, therefore, require different definitions.

Product line architectures appear to improve the potential for software reuse because they

constrain the developer to utilising similar conceptual models to explain similar problems.

Therefore, the concepts (concepts1) that remain invariant across the different conceptual

models in the product line can be realised by the same implementations (concepts2), while

the concepts that change can be modified as necessary.

Another successful reuse effort concerns artefacts that do not represent implementations

of the fuzzy, theory dependent concepts used in human understanding (concepts1). For

example, user interface components are often used as examples in explanations of

successful reuse theories. However, they are not the same as the concepts used to explain

Conclusion

Understanding Software Engineering 321

real world phenomena. Rather, they have been defined independent of human experience

for use in software deve lopment. That is, when they were created, they were specified

precisely and those precise definitions are passed on to system developers when they

learn about and use those user interface components. Therefore, it is possible to

successfully reuse those software components because they have universally applicable

definitions. Moreover, as those components are utilised during the design process, they

can be understood the same way that engineers understand their components. This is also

the case for other successfully reused software components such as math libraries,

compiler designs, etc.

It may also be the case that when a group of people have been interacting with the same

problem for long enough that they develop common explanatory theories for it. Those

theories, and the concepts that comprise them, may become codified to the point where

their meanings are similar to all members of the community. This detailed, communal

understanding of the phenomena may also lead to the reuse of similar concepts. However,

to extrapolate from the successful reuse of these components to the claim that all software

components can be reused the same way traditionally engineered components can be

reused is to misunderstand the nature of software components.

While the philosophical foundations suggest conjectures for understanding the potential

of software reuse, considerably more research is required if a systematic theory of

software reuse is to be developed.

These foundations can also be applied to develop an understanding of software design

patterns. Software patterns have become extremely useful in software development. Their

historical link with the patterns of Christopher Alexander are well documented, however

the model building view may provide a better explanation as to why they are so useful

and provide insights into how they can be better utilised. Alexander himself questions the

validity of the analogy between software patterns and his building patterns.

“Now, of my evaluation of what you are doing with patterns in computer

science… When I look at the object-oriented work on patterns that I’ve seen, I

see the format of the pattern (context, problem, solution, and so forth). It is a

nice and useful format. It allows you to write down good ideas about software

design in a way that can be discussed, shared, modified, and so forth. So, it is

a really useful vehicle for communication. And, I think that insofar as patterns

Conclusion

Understanding Software Engineering 322

have become useful tools in the design of software, it helps the task of

programming in that way. It is a nice, neat format and that is fine.

However, that is not all that pattern languages are supposed to do. That

pattern language that we began creating in the 1970s had other essential

features. First, it had a moral component. Second, it has the aim of creating

coherence, morphological coherence in the things which are made with it.

And third, it is generative: it allows people to create coherence, morally sound

objects, and encourages and enables this process because of its emphasis on

the coherence of the created whole.

I don’t know whether these features of pattern language have yet been

translated into your discipline.” (Alexander 1999)

Despite the successful application of design pattern theories to software development,

research in the area fails to resolve anomalies that exist between software systems and

traditionally built artefacts. For example, recall the analysis of the Alexander’s work in

chapter three. “The ultimate object of design is form” (Alexander 1964) (p. 15). Software

systems do not have a notion of form that is analogous to that found in traditionally built

artefacts. Hence, it is not clear what Alexander’s term, “the coherence of the created

whole”, means in the context of software systems when using the artefact engineering

view of software development.

However, if software development is understood as model building rather than artefact

engineering, some explanations of how patterns are utilised in the model building process

become evident. People automatically and subconsciously apply their accumulated

concepts and theories to the world in order to understand their experience. In software

development, the subconsciously applied concepts and theories are made explicit and

captured during the requirements/analysis stage of the process. They are then converted

into a collection of constructs and connections that can be precisely specified and

implemented during the design/implementation stage. However, the process of creating a

useful analysis model and the transformation of that analysis model into a design model is

quite complex. The solution embodied in the analysis model is the developer’s theory for

explaining the problem and that theory is not completely specified until it is implemented

in code. However, as chapter five noted, it may take a long period of interacting with the

problem before a satisfactory explanatory theory can be generated that cannot be falsified.

Conclusion

Understanding Software Engineering 323

Indeed, it may not be until the design is in the implementation stage that anomalies

between the requirements and the explanatory theory become apparent. However, when

successfully utilised collections of concepts and theories have been used to capture the

understanding of a problem, and those concepts and theories are known to implementable

in the constructs of software and hardware, they can be made explicit for use by other

developers. Moreover, those concepts and relationships can be represented at a higher

level of abstraction – as superordinate level concepts (see Rosch in chapter 5) – to make

them applicable to analogous problem situations. Software patterns appear to provide a

format for capturing those superordinate level concepts and relationships. They do not

capture naturally occurring aspects of an objective reality. They capture successfully used

ways of understanding a subjective reality that are known to be implementable in

software and hardware constructs. To reiterate, people naturally explain the situations

they encounter in terms of concepts and theories they have used before and modify those

concepts and theories according to the new context. Software patterns make explicit and

capture aspects of the natural thought processes of human understanding. In that sense,

the design patterns used in software development are similar to the structures that the

philosopher Hanson termed our ‘patterns of discovery’ (Hanson 1965).

However, additional research is necessary to explore this conjecture. As Alexander notes,

“It is a nice and useful format. It allows you to write down good ideas about software

design in a way that can be discussed, shared, modified, and so forth. So, it is a really

useful vehicle for communication.” The formalisms used to pass on patterns between

developers may be similar to the formalisms used to communicate patterns in Alexander’s

approach to architecture design. However, the understanding of why patterns work is

similar to the way patterns are discussed in philosophy. Therefore, philosophy may also

reveal further ideas for how they can be improved.

The last conjecture to be made concerns software architecture, specifically software

architecture views. Chapter four of this thesis examined software architecture in detail

and identified many anomalies between the practice of software architecture and the

theories provided by software architecture research. Case studies in software architecture

have shown that many high- level design representations are created during the

development process. Existing software architecture research suggests those different

representations are analogous to the many different architecture representations used

during the development of traditionally engineered artefacts. Those views provide

Conclusion

Understanding Software Engineering 324

different abstractions that capture useful subsets of the underlying implementation detail.

However, chapter 4 also identified many anomalies between software architecture,

traditional architecture, and their different representations. First, software systems have

no form that is analogous to the form of traditionally built artefacts. Second, a computer

must execute a software system in order to realise its intended purpose. Third, different

high- level software representations do not capture subsets of the underlying

implementation detail the way traditional architecture views do.

Those anomalies exist because of the prevailing influence of the artefact engineering view

of software development. However, they can be explained by changing to a model

building view. During the software development process, the designer must create an

initial conceptual model that makes explicit the concepts and relationships, the

explanatory theory, which the designer believes explains the problem. That conceptual

model can consist of many different types of concepts and relationships, at many different

levels of generality, and are limited only by the designer’s experience and imagination.

However, to implement that conceptual model, the collection of concepts and

relationships must be transformed into a collection of constructs and connections

provided by the implementation medium. Those constructs and connections may have the

same labels as the concepts and relationships in the conceptual model, however the

philosophical foundations of the model building view show that one is not simply a

refinement of the other. The types of concepts and relationships are fundamentally

different. As stated previously, one set of concepts is the fuzzy, theory-dependent

concepts used in human understanding (concepts1). The other set of concepts is the

formally specified, context- independent concepts of software implementation (concepts2).

Finally, to realise the required system, a computer must execute the implemented

constructs. That implementation can exist across many different machines, many different

processes, and may include many different instantiations of the one software system.

Therefore, the model building view of software development suggests three different

types of high- level system representation are required during the development process.

Those different types of representation are not different abstractions, or subsets, of the

complex implementation detail. They are fundamentally different and are required

because of the unique nature of software systems. First, representations of the conceptual

model are required. These are produced as the initial step in the design process and

represent the model that is to be implemented as a solution to the problem. They consist

Conclusion

Understanding Software Engineering 325

of the concepts and relationships that constitute the designer’s explanatory theory for the

problem. Second, representations of the static implementation are required. These depict

the implementation of the system in terms of software and hardware constructs and their

dependencies. They represent the structural form of the implemented system but do not

contain enough explicit information to depict the control flow through the executing

system. While the constructs in the static implementation may appear similar to the

concepts in the conceptual model representations, they are fundamentally different and

one is not merely a refinement of the other. Third, representations are required to

represent the dynamic operation of the system. These depict the behaviour of the system

and may consist of concepts from the conceptual model, concepts from the static

implementation model, concepts used by the computer in the execution of the system, and

concepts depicted to the user such as user interface constructs.

Each of these types of high- level system representation are fundamentally different and

those differences can only be satisfactorily explained by rejecting the prevailing artefact

engineering view of software development and accepting a model building view. This

conjecture was first presented in (Baragry and Reed 1998).

Other areas of future research may include analysing the historical arguments that were

used to advocate particular development methodologies in terms of the philosophical

foundations presented. Furthermore, future research could determine how the

philosophical foundations fit in the slowly evolving ‘Software Engineering Body of

Knowledge’ (Bourque, Dupuis et al. 1999). And finally, the experimental procedures in

cognitive psychology that were used to determine the theory-dependent nature of human

observation could be applied, with suitable modification, to elucidate how software

engineers perform system analysis.

This thesis has examined the philosophical and psychological foundations of software

development and has used the subsequent analyses to explain difficulties with what may

be considered the conventional wisdom of software engineering research. Dealing with

these issues the thesis will be contentious. The criticisms faced by new ways of

understanding phenomena in the research of a discipline have been detailed in the history

and philosophy of science and were documented in the previous chapter. Therefore,

despite the detailed analysis and critique of the conventional, artefact engineering view of

Conclusion

Understanding Software Engineering 326

software development and the explication of an alternative model building view, which is

based on philosophical and psychological foundations, it is reasonable to expect that this

thesis will face criticisms. Some of them may be well founded due to errors on my part.

Others will simply be because the ideas are different. Those criticisms have been

exemplified in comments I have received from software engineering researchers during

conversations and in reviews of articles submitted for publication. Again, some of them

were well founded and assisted my own understanding of the issues while others were

simply based on an innate refusal to identify and accept the influence of guiding

assumptions on software engineering research. The fact these issues can inspire criticisms

based on irrational justification may lead to despair for established researchers who would

like to see the discipline move forward. That was exemplified in the comments of Peter

Naur and Bruce Blum in the previous chapter. Therefore, a few comments are warranted

concerning the implications of this thesis.

A review by Suchman of Terry Winograd’s proposal for new way of understanding

cognition and software systems captures some of the issues.

“There are two kinds of books in the world. One the one hand, there are those

books that fall neatly into a particular intellectual tradition, to which they

contribute some development, clarification, or revision or received ideas. For

such books, the critical question is what is their thesis, and how well do they

succeed in its exposition. On the other hand, there are those books, which tend

to come along less often, that aim to challenge the basic soundness of

received ideas, and to propose radical alternatives. Understanding Computers

and Cognition aims to be this second kind; namely, a radical book that should

be read as such.

Taken as a radical book, the question to ask about Understanding Computers

and Cognition, beyond how well it succeeds in its arguments, is whether those

arguments are about something important.” (Stefik 1987)

This thesis also falls into that second category. It is not a threat to established research

agendas, though some may view it that way. It has examined and made explicit the

fundamental nature of what software systems are. It has not, apart from a few conjectures,

proposed how software development or software engineering should be performed. The

goal has been to provide a foundation for explaining existing research anomalies, which

Conclusion

Understanding Software Engineering 327

can then be used as justification for or against proposed theories in future work.

Moreover, the thesis does not claim that software cannot be engineered, though some may

also view it that way. The goal must now be to determine how to engineer software as

explanatory theories of the world rather than as another built artefact. That goal, however,

may in fact require fundamental changes in research agendas. Furthermore, it does not

advocate that all software engineers must have academic training in philosophy or need to

understand Kant’s Critique of Pure Reason (Kant 1933) in addition to software

development texts. There exist many mainstream books that popularise the philosophical

theories of the foundational issues. For example, Pirsig’s Zen and the Art of Motorcycle

Maintenance (Pirsig 1974) and Gaarder’s Sophie’s World (Gaarder 1996). Software

engineering practitioners should have some idea of these issues, however the specifics of

this thesis are aimed at software engineering researchers. Indeed, practitioners may never

be consciously aware of these issues even though researchers must become far more

informed in these areas.

“Plato, who formulated this analysis of understanding in Euthyphro, goes on

to ask in Meno whether the rules required to make behavior intelligible to the

philosopher are necessarily followed by the person who exhibits the behavior.

That is, are rules only necessary if the philosopher is to understand what is

going on, or are those rules necessarily followed by the person insofar as he is

able to behave intelligently? ... In the case of theorem proving ... Plato

thought that although people acted without necessarily being aware of any

rules, their action did have a rational structure which could be explicated by

the philosopher.” (Dreyfus 1992) (p.176)

As a final comment, I return to the Einstein’s quote that opened this thesis.

“If we knew what it was we were doing, it wouldn’t be called research, would

it?”

That understanding of research as proposing explanatory conjectures that may or may not

be correct, applies equally well to the explicitly stated, specific theories of software

engineering as it does to our guiding assumptions that may not be explicitly understood

but which also, may or may not be correct. As to whether or not this work constitutes

software engineering research, this thesis finishes with a comment by John of Salisbury,

who wrote in 1159 in his book, Policratus,

Conclusion

Understanding Software Engineering 328

“Who is more contemptible than he who scorns knowledge of himself?” (in

(Saul 1997)).

Bibliography

Understanding Software Engineering 329

8. Bibliography
Abel, C. (1981). Vico and Herder: The Origins of Methodological Pluralism. Design:

Science: Method. Proceedings of the 1980 Design Research Society Conference. R.
Jacques and J. A. Powell (eds), Westbury House.

Adelson, B. and E. Soloway (1985). “The Role of Domain Experience in Software
Design.” IEEE Transactions on Software Engineering SE-11(11): pp. 1351-1360.

Alberts, L. K. (1993). YMIR: An Ontology for Engineering Design. Doctoral Thesis.
University of Twente.

Alberts, L. K., P. M. Wognum, et al. (1991). Design as Science instead of Art. Technical
Report February 1991 Memoranda Informatica 91-10, University of Twente, The
Netherlands.

Alexander, C. (1964). Notes on the Synthesis of Form, Harvard University Press.

Alexander, C. (1999). “The Origins of Pattern Theory: the future of the theory and the
generation of a living world.” IEEE Software(September/October): pp. 71-82.

Ambler, A. L., M. M. Burnett, et al. (1992). “Operational Versus Definitional: A
Perspective on Programming Paradigms.” Computer(September): pp. 28-43.

Amdahl (1998). “ObjectStar Software Solutions.”, http://www.amdahl.com/objectstar/
September 1998.

Appelbe, B. and G. Abowd (1995). “Beyond Objects: A response.” Software Engineering
Notes 20(3): pp. 45-48.

Atlee, J. M. and J. Gannon (1993). “State-Based Model Checking of Event-Driven
System Requirements.” IEEE Trans on Software Engineering 19(1).

Awad, M., J. Kuusela, et al. (1996). Object Oriented Technology for Real-Time Systems:
a practical approach using OMT and Fusion, Prentice Hall.

Baber, R. L. (1997). “Comparison of Electrical "Engineering" of Heaviside's Times and
Software "Engineering" of Our Times.” IEEE Annals of the History of Computing
19(4): pp. 5-17.

Baragry, J. (1996). An Initial Comparison of Software and Engineering Designs of
Automotive Cruise Control Systems. Proceedings Australian Software Engineering
Conference, Melbourne, Australia, IEEE Computer Society Press.

Baragry, J., D. Cleary, et al. (1994). Unix Inter-component Communication within a
Hypertext Based CASE Tool. Proceedings Australian Unix User Group Conference,
Melbourne.

Baragry, J. and K. Reed (1998). Why Is It So Hard To Define Software Architecture?
Proceedings Asia Pacific Software Engineering Conference, Tapei, Taiwan.

Barrett, W. F., W. Brown, et al. (1902). “Researches on the Electrical Conductivity and
Magnetic Principles of Upwards of One Hundred Different Alloys of Iron.”
Institution of Electrical Engineers XXXI(Feb 13th).

Bass, L., P. Clements, et al. (1998). Software Architecture in Practice, Addison-Wesley.

Bass, L. and R. Kazman (1999). Architecture-Based Development. Technical Report
April 1999 CMU/SEI-99-TR-007, Software Engineering Institute.

Bibliography

Understanding Software Engineering 330

Bechtel, W. (1988a). Philosophy of Mind: an overview for cognitive science, Erlbaum
Associates.

Bechtel, W. (1988b). Philosophy of Science: an overview for cognitive science, Erlbaum
Associates.

Belady, L. (1989). Forward. Software Reusability: Concepts and Models. T. J.
Biggerstaff. and A. J. Perlis (eds), ACM Press.

Belevitch, V. (1962). “Summary of the History of Circuit Theory.” Proceedings of the
IRE 50(5): pp. 848-855.

Beltrami, S. (1998). Automobile Design. Personal Communication with Jason Baragry.

Bennett, D. (1997). Desiging Hard Software: the essential tasks, Manning Publications.

Biggerstaff, T. J. and A. J. Perlis (1989). Preface. Software Reusability: Concepts and
Models. T. J. Biggerstaff and A. J. Perlis (eds), ACM Press.

Birchenough, A. and J. R. Cameron (1989). JSD and Object Orientated Design. JSP and
JSD: The Jackson Approach to Software Development. J. R. Cameron (ed), IEEE
Computer Society Press.

Blum, B. I. (1985). “Understanding the Software Paradox.” ACM SigSoft Software
Engineering Notes 10(1): pp. 43-47.

Blum, B. I. (1993). “The Economics of adaptive Design.” Journal of Systems and
Software 21(2): pp. 117-128.

Blum, B. I. (1994). “A Taxonomy of Software Development Methods.” Communications
of the ACM 37(11): pp. 82-94.

Blum, B. I. (1996). Beyond Programming: To A New Era Of Design, Oxford University
Press.

Boeing (1998). 777 Computing Design Facts.
http://www.boeing.com/commercial/777family/cdfacts.html. March 1998.

Booch, G. (1986). “Object-Orientated Development.” IEEE Trans on Software
Engineering SE-12(2).

Booch, G. (1991). Object Orientated Design with Applications, Benjamin / Cumming Pub
Co.

Bourque, P., R. Dupuis, et al. (1999). “The Guide to the Software Engineering Body of
Knowledge.” IEEE Software(November/December): pp. 35-44.

Bowman, I. T., R. C. Holt, et al. (1999). Linux as a Case Study: Its Extracted Software
Architecture. Proceedings ICSE, Los Angeles, California, IEEE Computer Society
Press.

Brackett, J. (1987). Automobile Cruise Control and Monitoring System Example.
Technical Report TR 87-07, Wang Inst of Graduate Studies, Boston Univ.

Braha, D. and O. Maimon (1997). “The Design Process: Properties, Paradigms, and
Structure.” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans 27(2): pp. 146-166.

Briggs, M. S. (1959). Everyman's Concise Encyclopedia of Architecture.

Bibliography

Understanding Software Engineering 331

Broadbent, G. (1981). Design Methods - 13 Years After - A Review. Design: Science:
Method. Proceedings of the 1980 Design Research Society Conference. R. Jacques
and J. A. Powell (eds), Westbury House.

Brooks, F. P. (1962). Architectural Philosophy. Planning a Computer System - Project
Stretch. W. Buchholz (eds), McGraw-Hill: pp. 5-16.

Brooks, F. P. (1975). The Mythical Man-Month: Essays in Software Engineering,
Addison-Wesley Publishing.

Brooks, F. P. (1987). “No Silver Bullet.” IEEE Computer 20(4): pp. 10-19.

Brothers, J. T. (1962). “Historical Development of Component Parts Field.” Proceedings
of the IRE. 50(5): pp. 912-920.

Brown, A. W. and K. C. Wallnau (1998). “The Current State of CBSE.” IEEE
Software(Sept/Oct).

Bruegge, B. and A. H. Dutoit (1999). Object-Oriented Software Engineering: Conquering
Complex and Changing Systems, Prentice Hall.

Bruner, J. S. (1958). On Perceptual Readiness. Readings In Perception. D. S. Beardslee
and M. Wertheimer (eds): pp. 686-729.

Bunge, M. (1973). Method, Model, and Matter.

Capra, F. (1983). The Tao of Physics. Second Ed.

Carmichael, L., H. P. Hogan, et al. (1932). “An Expiremental Study Of The Effect Of
Language On The Reproduction Of Visually Perceived Form.” Journal of
Experimental Psychology 44: pp. 163-174.

Caromel, D. (1993). “Towards a Method of Object-Oriented Concurrent Programming.”
Communications of the ACM 36(9): pp. 90-102.

Castano, S. and V. DeAntonellis (1993). A Constructive Approach to Reuse of
Conceptual Components. Proceedings 2nd Intl Workshop on Software Reusability,
Lucca, Italy.

Cleary, D. (1997). Design Issues of the HyperCase ProTract Tool. Personal
Communication with Jason Baragry.

Cleary, D. and K. Reed (1993). PROTRACT: A Computerised Tool for Tracking
Software Development using Event Based Activity Specifications. Proceedings
Australian Software Engineering Conference.

Clements, P. C. (1996). Software Architecture: An Executive Overview. Technical
Report February CMU/SEI-96-TR-003, Software Engineering Institute.

Cockburn, A. (1996). “The Interaction of Social Issues and Software Architecture.”
Communications of the ACM 39(10): pp. 40-46.

Cooper, M. (1996). A Navigation Support System for the Amdahl Australian Intelligent
Tools Program Integrated CASE System. Masters Thesis. La Trobe University.

Coplien, J. (1999a). Architecture as Metaphor. http://www.bell-
labs.com/~cope/ArchitectureAsMetaphor.html. March 2000.

Coplien, J. O. (1999b). “Reevaluating the Architectural Metaphor: Toward Piecemeal
Growth.” IEEE Software(Sept/Oct).

Bibliography

Understanding Software Engineering 332

Corsini, R. e. (1984). Encyclopedia of Psychology. New York, NY Wiley.

Cox, B. (1991). Planning the Software Industrial Revolution. Supply-side Economic of
Software Reuse. Proceedings International Workshop on Software Reuse.
http://rbse.jse.gov/eicherman/wisr/wisr.html.

Cox, B. (1992). “Superdistribution and Electronic Objects.” Dr. Dobb's Journal(October).

Cox, B. J. (1990). “Planning the Software Industrial Revolution.” IEEE
Software(November): pp. 25-33.

Cross, N., J. Naughton, et al. (1981). Design Method and Scientific Method. Design:
Science: Method. Proceedings of the 1980 Design Research Society Conference. R.
Jacques and J. A. Powell (eds), Westbury House.

Cumming, G. (2000). Conversations on the application of theories in psychology to
software engineering research. Personal Communication with Jason Baragry.

Curl, J. S. (1993). Encyclopedia of Architectural Terms.

Currie, B. and R. A. Sharpe (1990). Structural Design, Stanley Thornes.

Curtis, B. (1989). Cognitive Issues in Reusing Software Artifacts. Software Reusability:
Applications and Experience. T. J. Biggerstaff. and. A. J. Perlis (eds), ACM Press.

Curtis, B., H. Krasner, et al. (1991). “A Field Study of the Software Design Process for
Large Systems.” Communications of the ACM 31(11): pp. 1268-1288.

Cybernetica, P. ASC Glossary: Model. Online:
http://pespmc1.vub.ac.be/ASC/MODEL/html, Principia Cybernetica Web.

Cybulski, J. and A. Proestakis (1991). HyperEDIT: An Object-Oriented Diagram Meta
Editor. Technical Report June. 1991 TR009, AAITP, La Trobe University.

Cybulski, J. L., R. D. Neal, et al. (1998). “Reuse of Early Life-Cycle Artifacts:
workproducts, methods, and tools.” Annals of Software Engineering 5: pp. 227-251.

Cybulski, J. L. and K. Reed (1992). “A Hypertext Based Software Engineering
Environment.” IEEE Software(March): pp. 62-68.

Dahlbom, B. and L. Mathiassen (1993). Computers in Context: the philosophy and
practice of systems design, Blackwell.

D'Alessandro, M., P. L. Iachini, et al. (1993). The Generic Reusable Component: an
Approach to Reuse Hierarchical OO Designs. Proceedings 2nd Intl Workshop on
Software Reusability, Lucca, Italy.

Darnell, P. S. (1958). “History, Present Status, and Future Development of Electronic
Components.” IRE Transactions on Component Parts CP-5(3 (Sept)).

Darnell, P. S. (1962). “Future of the Component Parts Field.” Proceedings of the IRE
50(5).

D'Azzo, J. J. and C. H. Houpis (1988). Linear Control System Analysis and Design,
McGraw-Hill. Third Ed.

Denning, P. J., D. E. Comer, et al. (1989). “Computing as a Discipline. (Final report of
the Task Force on the Core of Computer Science).” Communications of the ACM
32(1): pp. 9-23.

Bibliography

Understanding Software Engineering 333

DeRemer, F. and H. H. Kron (1976). “Programming- in-the-Large Versus Programming-
in-the-small.” IEEE Transactions on Software Engineering(June).

Dijkstra, E. W. (1968). “The Structure of the "THE" - Multiprogramming System.”
Communications of the ACM 11(5): pp. 341-346.

Dillon, T. and P. L. Tan (1993). Object-oriented conceptual modeling, Prentice-Hall.

D'Ippolito, R. S. and K. Lee (1992a). Modelling Software Systems by Domain.
Proceedings AAAI-92 Workshop on Automating Software Design.

D'Ippolito, R. S. and K. Lee (1992b). Putting the Engineering into Software Engineering.
Tutorial presented at the SEI Conference on Software Engineering Education..

D'Ippolito, R. S. and C. P. Plinta (1989). Software Development using Models.
Proceedings Fifth International Workshop on Software Specification and Design.

Doble, J. (1997). Change Resilience Patterns in Software Architecture & Design.
Proceedings OOPSLA '97 Workshop: Exploring Large System Issues,
http://www.ccsi/~brr/doble.html.

Dreyfus, H. L. (1992). What Computers Still Can't Do: A Critique of Artificial Reason,
MIT Press.

Dumas, J. and P. Parsons (1995). “Discovering the Way Programmers Think About New
Programming Environments.” Communications of the ACM 38(6).

Dummer, G. W. A. (1956). Fixed Resistors, Sir Isaac Putman & Sons.

Ellinger, H. E. (1985). Automotive Electrical Systems, Prentice Hall.

Feyerabend, P. K. (1979). Against Method.

Fieser, E. J. (1999). The Internet Encyclopedia of Philosophy.
http://www.utm.edu/research/iep/. December 1999.

Fivush, R. (1987). Scripts and categories: interrelationships in development. Concepts
and Conceptual Development. U. Neisser (ed), Cambridge University Press: pp.
234-254.

Flohr, U. (1995). “Hyper-G Organizes the Web.” Byte magazine(November).

Fox, J. (2000). Conversations on the application of theories in philosophy to software
engineering research. Personal Communication with the Jason Baragry.

Fugini, M. G. and S. Faustle (1993). Retrieval of Reusable Components in a Development
Information System. Proceedings 2nd Intl Workshop on Software Reusability,
Lucca, Italy.

Fugini, M. G., O. Nierstrasz, et al. (1992). “Application Development through Reuse: the
Ithaca Tools Environment.” ACM SIGOIS Bulletin 13(2): pp. 38-47.

Gaarder, J. (1996). Sophie's World: a novel about the history of philosophy. London,
Pheonix., P. Moller (trans).

Gallagher, K. (1997). The Nature of Software Engineering. Personal Communication
with Jason Baragry.

Gamma, E., R. Helm, et al. (1994). Design Patterns: elements of reusable object-
orientated software, Addison-Wesley.

Bibliography

Understanding Software Engineering 334

Garlan, D., R. Allen, et al. (1995). Architecural Mismatch or Why it's hard to build
systems out of existing parts. Proceedings ICSE'17, Seattle, Washington.

Garlan, D. and D. E. Perry (1995). “Introduction to the Special Issue on Software
Architecture.” IEEE Transactions on Software Engineering 21(4).

Garlan, D. and M. Shaw (1993). An Introduction to Software Architecture. Advances in
Software Engineering and Knowledge Engineering. V. Ambriola (ed), World
Scientific.

Gelernter, M. (1995). Sources of Architectural Form: a critical history of Western design
theory, Manchester University Press.

Gelman, S. A. (1996). Concepts and Theories. Perceptual and Cognitive Development. R.
Gelman and T. K.-F. Au (eds). London, Academic Press.

Germann, S. and R. Isermann (1994). Modelling and control of longitudinal vehicle
motion. Proceedings American Control Conference, Baltimore, Maryland.

Giancoli, D. C. (1988). Physics for Scientists and Engineers, Prentice-Hall International.
2nd Ed.

Giesecke, F. E., A. Mitchell, et al. (1974). Technical Drawing.

Gilb, T. (1996). “Level 6: Why We Can't Get There From Here.” IEEE
Software(January).

Glass, R. L. (1994). “The Software Research Crisis.” IEEE Software(November): pp. 42-
47.

Glass, R. L. (1998a). “Reuse: What's Wrong with This Picture.” IEEE Software 15(2): pp.
57-59.

Glass, R. L. (1998b). “Success? Failure? or Both?” IEEE Computer(May): pp. 103.

Gomaa, H. (1989). Structuring Criteria for Real Time System Design. Proceedings
International Conference on Software Engineering, Pittsburgh, USA, IEEE
Computer Society Press.

Gomaa, H. (1993). Software Design Methods for Concurrent and Real-Time Systems,
Addison-Wesley.

Gray, H., et al (1995). Gray's Anatomy. Churchill Livingstone. 38th Ed.

Gray, P. E. (1969). Electronic Principles: Physics, Models, and Circuits, John Wiley &
Sons.

Gray, P. R. and R. G. Meyer (1984). Analysis and Design of Analog Integrated Circuits,
John Wiley & Sons. Second Ed.

Hanson, N. R. (1965). Patterns Of Discovery: an inquiry into the conceptual foundations
of science. Cambridge, University Press.

Harel, D. (1992). “Biting the Silver Bullet: Toward a brighter future for System
Development.” IEEE Computer. (January).

Harel, D. and e. al (1990). “STATEMATE: A Working Environment for the
Development of Complex Reactive Systems.” IEEE Transactions on Software
Engineering 16(4): pp. 403-413.

Bibliography

Understanding Software Engineering 335

Hatton, L. (1998). “Does OO Sync with How We Think?” IEEE Software(May/June): pp.
46-54.

Higgins, D. A. (1987). Specifying Real-Time/Embedded Systems using Feedback Control
Models. Proceedings SMC XII: Twelfth Structured Methods Conference.

Hill, D. W. (1975). “From Torpedo to Telemetry.” Electronics and Power(November):
pp. 1110.

Hirschheim, R. and H. K. Klein (1989). “Four paradigms of information systems
development.” Communications of the ACM 32(10): pp. 1199(18).

Hoare, C. A. R. (1969). “An Axiomatic Basis for Computer Programming.”
Communications of the ACM 12(10): pp. 576-580,583.

Horowitz, P. and W. Hill (1989). The Art of Electronics, Cambridge University Press.
2nd Edition.

IEEE, A. W. G. and S. E. S. Committee (1998). Draft Recommended Practice for
Architectural Description. Draft Standard December IEEE P1471/D4.1, IEEE.

Inverardi, P. and A. L. Wolf (1995). “Formal Specification and Analysis of Software
Architectures Using the Chemical Abstract Machine Model.” IEEE Transactions of
Software Engineering 21(4).

Ioannou, P., Z. Xu, et al. (1993). Intelligent Cruise Control: Theory and Experiment.
Proceedings 32nd Conference on Decision and Control, San Antonio, Texas, IEEE
Press.

Ioannou, P. A. and C. C. Chen (1993). “Autonomous Intelligent Cruise Control.” IEEE
Transactions on Vehicular Technology 42(4): pp. 657-672.

Jackson, M. (1995). The World and the Machine. Proceedings ICSE 17, Seattle,
Washington.

Jackson, M. (1998a). “Defining a Discipline of Description.” IEEE Software(Sept/Oct
98).

Jackson, M. (1998b). “Will There Ever Be Software Engineering?” IEEE Software(Jan-
Feb): pp. 36-39.

Jacobson, I., G. Booch, et al. (1998). The Unified Software Developent Process, Addison
Wesley Longman.

Jacques, R. (1981). Introduction. Design: Science: Method. Proceedings of the 1980
Design Research Society Conference. R. Jacques and J. A. Powell (eds), Westbury
House.

Jones, D.-W. (1994). “Cruising With Ada.” Embedded Systems
Programming(November): pp. 18-44.

Jungnickel, C. and R. McCormmach (1986). Intellectual Mastery of Nature: theoretical
physics from Ohm to Einstein.

Kaindl, H. (1999). “Difficulties in the Transition from OO Analysis to Design.” IEEE
Software(September/October).

Kant, I. (1933). Critique of Pure Reason. London, Macmillan., N. K. Smith (trans).

Bibliography

Understanding Software Engineering 336

Kazman, R., L. Bass, et al. (1994). SAAM: A Method for Analyzing the Properties of
Software Architectures. Proceedings ICSE, Sorrento, Italy, IEEE Computer Society
Press.

Keil, F. C. (1987). Conceptual development and category structure. Concepts and
Conceptual Development. U. Neisser (ed), Cambidge University Press: pp. 175-
200.

Kellman, P. J. (1996). The Origins of Object Perception. Perceptual and Cognitive
Development. R. Gelman and T. K.-F. Au (eds). London, Academic Pres.

Kemerling, G. (1997a). History of Western Philosophy.
http://people.delphi.com/gkemerling/hy. March 1999.

Kemerling, G. (1997b). Definition and Meaning.
http://people.dephi.com/gkemerling/e05.htm. October 1999.

Knudtson, P. and D. Suzuki (1992). Wisdom of the Elders, Allen & Unwin.

Kogut, P. (1994). Design Reuse: Chemical Engineering vs. Software Engineering. SARG
Presentation 21 March 1994, Software Engineering Institute. Centre for Reusable
Defense Software (CARDS).

Kogut, P. (1995). “Design Reuse: Chemical Engineering vs. Software Engineering.”
ACM SigSoft Software Engineering Notes 20(5).

Koning, J. (1984). “Cruise Control For Cars.” Electronics Australia(June): pp. 44-54.

Kostof, S. (1986). The Architect: chapters in the history of the profession, Oxford
University Press.

Kozaczynski, W. and G. Booch (1998). “Component Based Software Engineering: Guest
Editors' Introduction.” IEEE Software(Sept/Oct).

Kruchten, P. (1995). “Architectural Blueprints - The "4+1" View Model of Software
Architecture.” IEEE Software(November).

Krueger, C. W. (1992). “Software Reuse.” ACM Computing Surveys 24(2): pp. 131-183.

Kruft, H.-W. (1994). A History of Archiectural Theory: from Vitruvius to the present,
Zwemmer., E. C. Ronald Taylor, and Antony Wood (trans).

Kuhn, T. (1962). The Structure of Scientific Revolutions, University of Chicago Press.

Kuhn, T. S. (1977a). A Function for Thought Experiments. The Essential Tension,
University of Chicago Press.

Kuhn, T. S. (1977b). The Function of Measurement in Modern Physical Science. The
Essential Tension, University of Chicago Press.

Kuhn, T. S. (1977c). The History of Science. The Essential Tension, University of
Chicago Press.

Kuhn, T. S. (1977d). Second Thoughts on Paradigms. The Essential Tension, University
of Chicago Press.

Kumagai, A. (1998). Oriental Philosophy and Software Engineering. Position Paper for
Asia Pacific Forum on Software Engineering. Proceedings ICSE '98, Kyoto Japan.

Lakoff, G. (1987). Cognitive models and prototype theory. Concepts and Conceptual
Development. U. Neisser (ed), Cambridge University Press: pp. 63-100.

Bibliography

Understanding Software Engineering 337

Larman, C. (1997). Applying UML and Patterns: an introduction to object-oriented
analysis and design.

Last, R. J. (1978). Anatomy, regional and applied, Churchill Livingstone. 6th Ed.

Laudan, L., A. Donovan, et al. (1986). “Scientific Change: philosophical models and
historical research.” Synthese(69): pp. 141-223.

Laudon, K. C. and J. P. Laudon (1996). Information, Management, and Decision Making.
Management Information Systems: New Approaches to Organization &
Technology, Prentice Hall International: pp. 116-147.

Lawson, B. (1980). How Designers Think. London, The Architectural Press Ltd.

Lawson, H. W. (1990). “Philosophies for Engineering Computer-Based Systems.” IEEE
Computer 23(12): pp. 52-63.

Lee, B. J., Y. W. Kim, et al. (1993). Engine Throttle Control Using Anticipatory Band in
the Sliding Phase Plane. Proceedings American Control Conference, San Francisco,
California.

Lee, H. N. (1973). Percepts, Concepts and Theoretical Knowledge, Memphis State
University Press.

Lee, K. and A. Karmiloff-Smith (1996). The Development of External Symbol Systems:
The Child as a Notator. Perceptual and Cognitive Development. R. Gelman and T.
K.-F. Au (eds). London, Academic Press.

Lehman, M. M. (1980). “Programs, Life Cycles, and Laws of Software Evolution.”
Proceedings of the IEEE 68(9): pp. 1060 - 1076.

Leveson, N. G. (1992). High-Pressure Steam Engines and Computer Software.
Proceedings International Conference on Software Engineering, World Congress
Centre, Melbourne Australia.

Levi-Strauss, C. (1962). The Savage Mind. London, Weidenfeld and Nicholson.

Levi-Strauss, C. (1986). Structural Analysis in Linguistics and in Anthropology.
Semiotics: an introductory anthology. R. E. Innis (ed).

Lewis, T. G. and P. W. Omen (1990). “The Challenge of Software Deve lopment.” IEEE
Software(November): pp. 9-12.

Linden, F. J. v. d. and J. K. Muller (1995). “Creating Architectures with Building
Blocks.” IEEE Software(Novermber): pp. 51-60.

Liubakka, M. K., D. S. Rhode, et al. (1994). Adaptive Automotive Speed Control.
Proceedings Proceedings of Workshop on Advances in Control and its Applications,
Springer-Verlag.

Lowry, M. R. (1992). “Software Engineering in the Twenty-First Century.” AI Magazine
(Fall): pp. 71-87.

Maibaum, T. (1997). “What We Teach Software Engineers in the University: Do We
Take Engineering Seriously?” Software Engineering Notes 22(6): pp. 40-50.

Marciniak, J. J., Ed. (eds). (1994). Encyclopedia of Software Engineering. New York,
John Wiley.

Marco, A. (1990). Software Engineering: Concepts and Management, Prentice-Hall.

Bibliography

Understanding Software Engineering 338

Marsten, J. (1962). “Resistors - A Survey of the Evolution of the Field.” Proceedings of
the IRE(May): pp. 920.

Martin, J. and J. Odell (1995). Object-oriented Methods: A Foundation, PTR Prentice
Hall.

McCauley, R. N. (1987). The role of theories in a theory of concepts. Concepts and
Conceptual Development. U. Neisser (ed), Cambridge University Press: pp. 288-
309.

McConnell, S. (2000). “The Best Influences on Software Engineering.” IEEE
Software(January/February).

McIlroy, M. D. (1968). Mass Produced Software Components. Software Engineering
Concepts and Techniques: Proceedings of the NATO Conferences.

Meddin, D. L. and W. D. Wattenmaker (1987). Category cohesiveness, theories, and
cognitive archeology. Concepts and Conceptual Development. U. Neisser (ed),
Cambridge Unversity Press: pp. 25-62.

Mehra, R. K. and K. Baheti (1995). Introduction and Motivation for the Real-Life Control
Design Challenge Problem Session. Proceedings 34th Conference on Decision &
Control, New Orlean, LA.

Mellor, S. J. and R. Johnson (1997). “Why Explore Object Methods, Patterns, and
Architectures?” IEEE Software(January): pp. 27-30.

Meyer, B. (1997). Object-Orientated Software Construction, Prentice Hall. 2nd Ed.

Mili, A., E. Addy, et al. (1999). “Toward an Engineering Discipline of Software Reuse.”
IEEE Software(September/October).

Miriam-Webster Dictionary. (1997). http://www.m-w.com/netdict.htm.

Mitchell, P. (1996). Beyond Programming: To a New Era of Design. 16th August 1996.
http://www.ercb.com/ddj/1996/ddj.9608.html. May 1998.

Mobray, T. J. (1998). “Will the Real Architecture Please Sit Down?” Component
Strategies(December).

Muller, R. and G. Nocker (1994). Intelligent Cruise Control with Fuzzy Logic. Fuzzy
Logic Control and Applications. M. J. Roberts (ed), IEEE Press: pp. 74-80.

Nakamura, K., T. Ochiai, et al. (1983). “Application of Microprocessor to Cruise-Control
System.” IEEE Transactions on Industrial Electronics IE-30(2): pp. 108-113.

NATO (1976a). Report on a Conference Sponsored by the NATO Science Committee.
Garmisch Germany, Oct 7-11 1968. Software Engineering Concepts and
Techniques: proceedings of the NATO conferences. P. Naur and B. Randell (eds),
Mason/Charter.

NATO (1976b). Report on a Conference Sponsored by the NATO Science Committee,
Rome, Italy Oct 27-31, 1969. Software Engineering Concepts and Techniques:
Proceedings of the NATO confereces. J. N. Bruxton and B. Randall (eds),
Petrochelli/Charter.

Naur, P. (1985). “Programming as Theory Building.” Microprocessing and
Microprogramming 15(5 (May)): pp. 253-261.

Naur, P. (1992a). Computing: a human activity, ACM Press, Addison-Wesley.

Bibliography

Understanding Software Engineering 339

Naur, P. (1992b). Computing and the So-Called Foundations of the So-Called Sciences
(1990). Computing: a human activity, ACM Press, Addison-Wesley: pp. 49-63.

Naur, P. (1992c). Data and their Applications (1974). Computing: a human activity, ACM
Press, Addison-Wesley: pp. 9-22.

Naur, P. (1992d). Datalogy and Datamatics and Their Place in Education (1966).
Computing: a human activity, ACM Press, Addison-Wesley: pp. 175-180.

Naur, P. (1992e). Human Knowing, Language, and Discrete Structures (1989).
Computing: a human activity, ACM Press, Addison-Wesley: pp. 518-535.

Naur, P. (1992f). Intuition in Software Development (1985). Computing: a human
activity, ACM Press, Addison-Wesley: pp. 449-466.

Naur, P. (1992g). The Place of Strictly Defined Notation in Human Insight (1989).
Computing: a human activity, ACM Press, Addison-Wesley: pp. 468-478.

Naur, P. (1992h). Programming Languages are not Languages - Why 'Programming
Language' is a Misleading Designation (1988). Computing: a human activity, ACM
Press, Addison-Wesley: pp. 503-510.

Neisser, U. (1987a). The ecological and itellectual bases of categorization. Concepts and
Conceptual Development. U. Neisser (eds), Cambridge University Press: pp. 1-11.

Neisser, U. (1987b). From Direct Perception to Conceptual Structure. Concepts and
Conceptual Development. U. Neisser (ed), Cambridge University Press: pp. 11-23.

Nierstrasz, O., S. Gibbs, et al. (1992). “Component-Oriented Software Development.”
Comunications of the ACM (September): pp. 160-165.

Nierstrasz, O. and T. D. Meijler (1995). “Research Directions in Software Composition.”
ACM Computing Surveys 27(2).

Nierstrasz, O., D. Tsichritzis, et al. (1991). Objects + Scripts = Applications. Proceedings
Esprit, Kluwer Academic Publishers.

Northrop, L. M. and W. E. Richardson (1991). Design Evolution: Implications for
Academia and Industry. Proceedings SEI Conference on Software Engineering
Education, Pittsburgh, Pennsylvania, USA, Springer-Verlag.

Oda, K., H. Takeuchi, et al. (1991). Practical Estimator for Self-Tuning Automotive
Cruise Control. Proceedings American Control Conference.

Oestereich, B. (1999). Developing Software with UML: Object-oriented analysis and
design in practice, Addison Wesley Longman.

Parnas, D. L. (1972). “On the Criteria to be Used in Decomposing Systems into
Modules.” Communications of the ACM(December).

Parnas, D. L. (1997). Softare Engineering: An Unconsummated Marriage. Proceedings
Foundations of Software Engineering, Zurich Switzerland.

Parnas, D. L. (1999). “Software Engineering Programs are not Computer Science
Programs.” IEEE Software(November/December): pp. 19-30.

Patel, D., Y. Wang, et al. (2000). “Comparative Studies of Engineering Approaches for
Software Engineering.” Annals of Software Engineering 10.

Perrochon, L. and W. Mann (1999). “Inferred Designs.” IEEE Software(Sept/Oct).

Bibliography

Understanding Software Engineering 340

Perry, D. E. (1998). Working IFIP Conference on Software Architecture. February 1998.
http://www.bell- labs.com/user/dep/prof/wicsa1/. September 1998.

Perry, D. E. and A. L. Wolfe (1992). “Foundations for the Study of Software
Architecture.” ACM SigSoft 17(4).

Petroski, H. (1994). Design Paradigms: Case Histories of Error and Judgement in
Engineering, Cambridge University Press.

Pevsner, N., J. Fleming, et al. (1975). A Dictionary of Architecture.

Pinker, S. (1997). How the Mind Works. New York, Norton.

Pirsig, R. M. (1974). Zen and the Art of Motorcycle Maintenance, Random House.

Podolsky, L. (1962). “Capacitors.” Proceedings of the IRE(May): pp. 924.

Pooley, R. and P. Stevens (1999). Using UML: software engineering with objects and
components, Addison Wesley Longman.

Popper, K. R. (1979a). The Aim Of Science. Objective Knowledge: an evolutionary
approach, Oxford University Press.

Popper, K. R. (1979b). Conjectural Knowledge: My solution of the problem of induction.
Objective Knowledge: an evolutionary approach, Oxford Univeristy Press.

Popper, K. R. (1979c). Epistemology Without A Knowing Subject. Objective
Knowledge: an evolutionary approach, Oxford Univeristy Press.

Popper, K. R. (1979d). Evolution And The Tree Of Knowledge. Objective Knowledge: an
evolutionary approach, Oxford University Press.

Popper, K. R. (1979e). Of Clouds and Clocks. Objective Knowledge: an evolutionary
approach, Oxford University Press.

Popper, K. R. (1979f). On The Theory Of The Objective Mind. Objective Knowledge: an
evolutionary approach, Oxford University Press.

Popper, K. R. (1979g). Two Faces Of Common Sense: An arguement for commonsense
realism and against the commonsense theory of knowledge. Objective Knowledge:
an evolutionary approach, Oxford University Press.

Popper, K. R. (1983). Two Kinds Of Definitions (1945). A Pocket Popper. D. Miller (ed),
Fontana.

Powers, B. P. (1976). “Wheatstone's Contribution to Electrical Engineering.” Electronics
and Power(May): pp. 295-298.

Proestakis, A. (1993). HyperEDIT: Architectural Overview and Distributed Building
Process Description. Technical Report June, 1993. TR017, AAITP, La Trobe
University.

Reck, E. (1997). Frege's influence on Wittgenstein: Reversing Metaphysics via the
Context Principle. Early Analytic Philosophy. W. W. Tait (ed), Open Court: pp.
123-185.

Reed, K. (1987). Commercial Software Engineering, The Way Forward. (keynote
address). Proceedings Australian Software Engineering Conference, Canberra.
ACT. Australia.

Bibliography

Understanding Software Engineering 341

Reed, K. (1991). The Impact of Government Policies on Software Engineering: a fact of
life and a necessary evil. (keynote address). Tri-Ada 91, San Jose CA. USA.

Reed, K. (2000). Conversations 1992-2000. Personal Communication with Jason
Baragry.

Rosch, E. (1978). Principles of Categorization. Cognition and Categorization. E. Rosch
and B. B. Lloyd (eds), Lawrence Erlbaum Associates: pp. 27-48.

Rutland, N. K. (1991). A crash course on the application of a new principle of design to
vehicle speed control. Proceedings Conference on Decision and Control, Brighton,
England.

Rutland, N. K. (1992). “Illustration of a new principle of design: vehicle speed control.”
Intl. Journal of Control 55(6): pp. 1319-1334.

Saksena, M., P. Freedman, et al. (1997). Guidelines for Automated Implementation of
Executable Object Oriented Models for Real-Time Embedded Control Systems.
Proceedings 18th Real-Time Systems Symposium.

Saul, J. R. (1997). The Unconscious Civilisation, The Free Press.

Schokralla, S. H. (1998). Beoing 777 Case Study. March 1998.
http://www1.needs.org/develop/b777/main.html. CAD 3D Modelling.

Sedra, A. S. and K. C. Smith (1991). Microelectronic Circuits, Saunders College
Publishing. Third International Ed.

SEI (1997). Software Architecture Definitions.
http://www.sei.cmu.edu/architecture/definitions.html. September 1998.

Shaout, A. and M. A. Jarrah (1997). “Cruise Control Technology Review.” Computers
and Electrical Engineering 23(4): pp. 259-271.

Shaw, M. (1984). “Abstraction Techniques in Modern Programming Languages.” IEEE
Software(Oct): pp. 10-26.

Shaw, M. (1989). “Large Scale Systems Require Higher-Level Abstraction.” Proceedings
of Fifth International Workshop on Software Specification and Design, IEEE
Computer Society. : pp. 143-146.

Shaw, M. (1990). Prospects for an Engineering Discipline of Software. Technical Report
September CMU/SEI-90-TR-20, Carnegie Mellon University, Software
Engineering Institute.

Shaw, M. (1994). Making Choices: A Comparison of Styles for Software Architecture.
Unpublished Report May, SEI, Carnegie Mellon University.

Shaw, M. (1995a). Architectural Issues in Software Reuse: It's not just the functionality,
it's the packaging. Proceedings IEEE Symposium on Software Reusability.

Shaw, M. (1995b). “Beyond Objects: A Software Design Paradigm Based on Process
Control.” ACM Software Engineering Notes 20(1).

Shaw, M. (1995c). “Comparing Architectural Design Styles.” IEEE Software 12(6
(Nov)).

Silverman, B. G. (1983). “Analogy in Systems Management: A Theoretical Inquiry.”
IEEE Transactions on Systems, Man, and Cybernetics SMC-13 (6): pp. 1049-1075.

Bibliography

Understanding Software Engineering 342

Silverman, B. G. (1985). “Software Cost and Productivity Improvements: An Analogical
View.” IEEE Computer (May): pp. 86-96.

Smith, B. (1995). “Formal Ontology, Common Sense and Cognitive Science.”
International Journal of Human-Computer Studies(43): pp. 641-647.

Smith, C. U. and J. A. Dallen (1984). Future Directions for VLSI and Software
Engineering. VLSI Engineering: Beyond Software Engineering. T. L. Kunii (ed).
Berlin; New York, Springer-Verlag.

Smith, R. J. (1984). Circuits, Devices and Systems, Wiley. Fourth Ed.

Smith, S. L. and S. L. Gerhart (1988). Statemate and Cruise Control: a Case2 Study.
Proceedings COMPSAC 88: Twelth Annual International Computer Software and
Applications Conference.

Soni, D., R. L. Nord, et al. (1995). Software Architecture in Industrial Applications.
Proceedings ICSE '95, Seattle, Washington.

Sowa, J. F. (1983). Conceptual Structures: information processing in mind and machine,
Addison-Wesley.

Spector, A. and D. Gifford (1986). “A Computer Science Perspective of Bridge Design.”
Communications of the ACM 29(4): pp. 267-283.

Spelke, E. A. and L. Hermer (1996). Early Cognitive Development: Objects and Space.
Perceptual and Cognitive Development. R. Gelman and T. K.-F. Au (eds). London,
Academic Press.

Spooner, C. R. (1971). “A Software Architecture for the 70's: Part I - The General
Approach.” Software - Practice and Experience 1(Jan-March): pp. 5-37.

Stacy, W. and J. Macmillian (1995). “Cognitive Bias in Software Engineering.”
Communication of the ACM 38(6).

Standen, D. (1981). Terms in Practice: a dictionary for Australian arthitects, Royal
Austrlian Institute of Architects.

Stefani, R. T., J. Clement J. Savant, et al. (1994). Design of Feedback Control Systems,
Saunders College Publishing. Third Ed.

Stefik, M. J. (1987). “Book Reviews - Understanding Computers and Cognition: A New
Foundation for Design.” Artificial Intelligence(31): pp. 213-261.

Susskind, C. (1968a). “The Early History of Electronics: I. Electromagnetics before
Hertz.” IEEE Spectrum(August): pp. 90-98.

Susskind, C. (1968b). “The Early History of Electronics: II. The experiments of Hertz.”
IEEE Spectrum(December): pp. 57-60.

Susskind, C. (1969a). “The Early History of Electronics: III. Prehistory of
radiotelgraphy.” IEEE Spectrum(April): pp. 69-74.

Susskind, C. (1969b). “The Early History of Electronics: IV: First radiotelgraphy
experiments.” IEEE Spectrum(August): pp. 66-70.

Susskind, C. (1970a). “The Early History of Electronics: V. Commercial beginnings.”
IEEE Spectrum(April): pp. 78-83.

Susskind, C. (1970b). “The Early History of Electronics: VI. Discovery of the Electron.”
IEEE Spectrum(September): pp. 76-79.

Bibliography

Understanding Software Engineering 343

Swartz, N. (1997). Definitions, Dictionaries, and Meanings. September 1997.
http://www.sfu.ca/philosophy/swartz/definitions.htm. October 1999.

Sydney Opera House(1999). http://www.soh.nsw.gov.au. 20 April 1999.

Takasaki, G. M. and R. E. Fenton (1977). “On the Identification of Vehicle Longitudinal
Dynamics.” IEEE Trans on Automatic Control AC-22(4): pp. 610-615.

Teplitzky, P. (1994). A Taxonomy of Software Development Methods. From Computing
Reviews. http://www.acm.org/pubs/toc/Abstracts/0001-0782/188377.html. May
1998.

The Institution of Engineers, A. (1973). Australian Standard: Engineering Drawing
Practice.

Tjalve, E., M. M. Andreasen, et al. (1979). Engineering Graphic Modelling, Newnes -
Butterworths.

Tsichritzis, D., O. Nierstrasz, et al. (1992). “Beyond Objects: Objects.” IJICIS 1(1): pp.
43-60.

Tsujii, M., H. Takeuchi, et al. (1991). Application of Self-Tuning to Automotive Cruise
Control. Advances in Adaptive Control. K. S. Narendra, R. Ortega and P. Dorato
(eds), IEEE Press: pp. 282-287.

Urmson, J. O. and J. Ree, Eds (eds). (1989). The Concise Encyclopedia of Western
Philosophy and Philosophers. London; Boston, Unwin Hyman.

Vitruvius, P. (1931). Vitruvius, On Architecture., F. Granger (trans).

Ward, P. T. and D. A. Keskar (1987). A Comparison of Ward/Mellor and Boeing/Hatley
Real Time Methods. Proceedings SMC XII: Twelfth Structured Methods
Conference.

Wasserman, A. I. (1996). “Towards a Discipline of Software Engineering.” IEEE
Software(November).

Wasserman, A. I., P. A. Pircher, et al. (1989). “An Object-Oriented Structured Design
Method for Code Generation.” ACM SIGSoft Software Engineering Notes 14(1):
pp. 32-55.

Watson, D. (1990). Rule-Generated Architecture. Geelong, Australia, Deakin University
Press.

Wegner, P. (1984). “Capital-Intensive Software Technology.” IEEE Software(July): pp.
7-45.

Weinberg, J. (2000). Architecture as Metaphor. Personal Communication with Jason
Baragry.

Wertheimer, M. (1958). Principles of Perceptual Organisation. Readings In Perception. D.
C. Beardslee and M. Wertheimer (eds): pp. 115-135.

Whitehead, E. J., J. E. Robbins, et al. (1995). Software Architecture: Foundation of a
Software Component Marketplace. Proceedings 1st Intl Workshop on Architectures
for Software Systems, Seattle, Washington.

Winograd, T. (1995). “From Programming Environments to Environments for
Designing.” Communications of the ACM 38(6).

Bibliography

Understanding Software Engineering 344

Winograd, T. and F. Flores (1985). Understanding Computers and Cognition: a new
foundation for design, Ablex Pub. Corp.

Wittgenstein, L. (1968). Philosphical Investigations. Oxford, Blackwell. 3rd Ed.

Wolf, A. L. (1997). “Succeedings of the Second International Software Architecture
Workshop (ISAW-2).” Software Engineering Notes 22(1): pp. 42-56.

The Wright Brothers(1995). http://www.hfmgv.org/histories/wright/wrights.html. June
1999.

WWISA (1999). “Philosophy.”, Worldwide Institute of Software Architects
http://www.wwisa.org/ October 1999.

Xia, F. (1997). Software Engineering Research: A Methodological Analaysis.
Proceedings Asia-Pacific Software Engineering Conference.

Xia, F. (1998). (Panel Session) How Can We Conduct Research In Software Engineering.
Proceedings Asia Pacific Software Engineering Conference, Taipei, Taiwan.

Yin, W. P. and M. M. Tanik (1991). “Reusability in the real-time use of Ada.”
International Journal of Computer Applications in Technology 4(2).

Zakian, V. (1991). “Well Matched Systems.” I.M.A. Journal of Mathematical Control and
Information(8): pp. 29-39.

Zalta, E. E. N. (1999). The Stanford Encyclopedia of Philosophy. December 1999
Archive. http://plato.stanford.edu/.

