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Summary 
Since its origin, software engineering research has sought to improve the practice of 
software development based on analogies with traditional engineering disciplines. Those 
disciplines are perceived to have more rigorous, predictable, and mature development 
methods and similar techniques would be beneficial for software developers. The 
underlying assumption is that the systems built by the respective disciplines are similar 
enough for the transfer of ideas to be possible. That is, software engineers have an 
artefact engineering view of software development. 

However, a detailed comparison of the way software developers and traditional engineers 
address an identical problem shows that significant differences exist between the 
respective design approaches. Traditional engineers design and build corporeal artefacts 
to solve real-world problems. In contrast, software developers solve real-world problems 
by implementing models of reality that explain and automate a perceived process. 

These differences help explain many research issues that are currently the source of 
debate, for example, the area of software architecture. A case study of a large-scale 
system highlights the issues involved and a chronological review of the theory shows 
existing theory is based on specious analogies with traditional notions of architecture that 
fail to consider significant differences between software development and other 
engineering disciplines. 

A foundation for the understanding of software systems is then proposed based on an 
examination of research performed in other disciplines that are concerned with model 
building. They include metaphysics and epistemology, the history and philosophy of 
science, and the psychology of cognition. The conclusion is that models of reality cannot 
be understood using the same principles as other built artefacts and that software 
engineers must consider the role of subjective interpretation in human understanding. 

Finally, an examination of how research-based disciplines progress shows that the 
understanding of the phenomena under investigation is significantly influenced by 
guiding assumptions that can change over time. The conjecture of this thesis is that the 
artefact engineering view has been the established guiding assumption in software 
engineering research. However, a better understanding of the underlying principles of 
software systems leads to an improved approach to software engineering – the model 
building view. That different way of understanding is exemplified by conjecturing 
alternate explanations for software reuse, architecture, and design patterns. The objective 
for software engineering research now becomes how to engineer those explanatory 
models of reality. 
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If we knew what it was we were doing, 

it wouldn’t be called research, 

would it? 

– Albert Einstein. 
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1. Introduction 
Since its emergence 30 years ago as a distinct research discipline, “Software 

Engineering” has developed many tools and techniques designed to help the software 

development community improve the way it builds systems. In that time, debate has 

contained many conflicting theories, ideas, conjectures, proposals, and analogies, 

concerning the nature of software development and how it can be improved. A central 

tenet of software engineering research is that the process of software development can 

benefit by learning from the development techniques of traditional engineering 

disciplines. That gained currency in the first software engineering conference in 1968 and 

it is still evident in the most recent research publications. See for example, the latest 

Annals of Software Engineering issue – Comparative Studies of Engineering Approaches 

for Software Engineering (Patel, Wang et al. 2000). For the entire duration of our young 

discipline, analogies with traditional engineering disciplines have served as the 

inspiration, evidence, and justification for many of our research ideas. They have 

pervaded our thought both explicitly and implicitly. Yet despite the massive investment in 

software engineering research, many fundamental goals have eluded us. For instance, 

software component reuse has not yet been achieved to the same extent as in other 

engineering disciplines; object-oriented development has failed to meet its initial claims; 

researchers still cannot agree on a definition of software architecture; and, finally, 

software developers still do not enjoy the benefits of rigorous mathematical analysis that 

other engineering disciplines do. Software engineering research has proposed many 

solutions in those particular areas, however, none of them have been universally accepted. 

Moreover, until very recently, there has been little, if any, effort made to understand the 

philosophical basis of those issues or to assess whether our expectations are reasonable. 

The assumption has been that solutions are possible because analogous approaches are 

presumed to exist in other engineering disciplines and all that is required is more 

research. 

This thesis contributes to that debate by developing an understanding of software 

engineering based on philosophical and psychological foundations which can be used to 

analyse the contradictions between the practice and evolution of software development 

and the theoretical expectations  of software engineering. The premise of this thesis is that 



Introduction 

Understanding Software Engineering 3 

 

software engineering theories have been dominated by the guiding assumption that 

software system development can be understood as being analogous to the development 

of traditionally engineered artefacts and systems. That is, software engineers have an 

artefact engineering view of software development. While that assumption has enabled 

software engineering research to make a significant contribution to development 

practices, a thorough analysis reveals it leads to numerous anomalies. By examining the 

differences between software systems and traditionally engineered artefacts, a better 

understanding of the fundamental nature of software systems has been achieved and that 

can be used to improve software engineering research. The aim of the thesis is to 

convince software engineering researchers of the potential benefits of moving from an 

artefact engineering view of software development to a model building view. 

The quote by Einstein that begins this thesis captures both how the ideas within were 

discovered and how the resulting conclusions should be interpreted. Because the content 

of the thesis is philosophical in nature, it is necessary to explain how it came about. When 

my Ph.D. research began, I had just completed an undergraduate degree comprising 

training in both computer science and electronic engineering. My initial research topic 

was to develop a graphical approach to what is now referred to as component-based 

software engineering. The project was part of the Amdahl Intelligent Tools Programme 

(AAITP), a collaborative research effort between Amdahl Australia and La Trobe 

University (see (Cybulski and Reed 1992)). Within the project group, my supervisor and 

project Director, Karl Reed, and I, were definitely of the view that software development 

could be understood as analogous to traditional engineering development. In contrast, 

other project members, specifically the deputy director, Jacob Cybulski, and another 

Ph.D. student, David Cleary, were of the opinion that software development was 

significantly unique that the analogies could not be easily applied. That led to some lively 

debates between the group members and allowed a close examination of the issues. As 

my research progressed, I examined contemporary theories in software reuse, design 

methods, graphical representations, visual languages, software architecture, and research 

in traditional engineering design. It was the analysis of theories in software architecture 

that initiated the change in research direction – specifically, reading Mary Shaw’s 1994 

technical report, Making Choices: A Comparison of Styles for Software Architecture 

(Shaw 1994) (later published as (Shaw 1995c)). In that report, Shaw compared and 
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analysed eleven different software designs for automotive cruise control systems. While 

discussing many issues about that report with Reed, he suggested that an interesting 

exercise would be to compare the software designs with published engineering designs of 

automotive cruise control systems. Even if it failed to provide a definitive answer to the 

“should software development be like traditional engineering?” debate, it was something 

that had never been done before and would be a worthwhile research contribution. 

Already ‘knowing’ that software development was like engineering development, I 

suggested the comparison would be pointless and that perhaps he didn’t know what he 

was talking about. Nevertheless, I eventually went ahead with it. The result was a 

comprehensive study of twenty two software design examples and fourteen traditional 

engineering examples of the cruise control problem, which culminated in a series of 

questions that would lead to a profound change in my understanding of software systems 

and software development. Those questions led me from the specific software 

engineering topic of graphical component-based design to a more encompassing theory of 

the philosophical understanding of the discipline as a whole. 

The thesis begins with that comparison of software designs and engineering designs for 

automotive cruise control systems. A selection of designs from each discipline is 

presented in detail to exemplify the approaches used and to capture the design rationale. 

The descriptions include the design steps taken, the models used, the representations 

depicted, and the analysis and design techniques utilised. Because so much published and 

informal conjecture exists concerning the relationship between the disciplines, a 

significant amount of detail is included to counter any preconceived biases. That detail 

includes a brief introduction to control theory to explain the engineering designs. From 

the analyses, a generic design approach for each discipline is developed which accounts 

for the similarities and differences noted between the respective disciplines. Those 

generic design approaches are summarised as follows. When the software developers 

approached the problem they each began with a pre-selected design formalism, either a 

particular design method or software architecture style, which served as the basis for 

performing the system analysis. That analysis resulted in an initial representation of the 

system, that is, a conceptual model or system architecture. As the designs proceeded, the 

components of the initial representation were refined and the model was augmented with 

additional models of the system until all aspects of the required functionality, behaviour, 
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and structure were depicted. From that point, the system designs could be analysed for 

various design, implementation, and testing properties. 

The traditional engineering examples also exhibited a common approach to the design 

process. The engineers all began with a similar feedback control architecture, which is a 

well-known structural arrangement in that discipline, and which consisted of generic 

engineering components that are also well-known to the practitioners of the discipline. 

The required behaviour of each of the components in that architecture was then specified 

using mathematical models. The design process proceeded by using a combination of 

mathematical and experimental techniques to solve the unknown parameters of those 

mathematical models of the generic component behaviour. Finally, system testing ensured 

the implemented system performed as predicted by the models. 

The generic approaches of the two disciplines were then compared. The most striking 

aspect of the comparison was the immense difference between the design approaches of 

the respective disciplines – especially for someone whose pedagogic training had led to a 

predisposition to thinking about software engineering in terms of analogies with 

traditional engineering. A staunch advocate of the artefact engineering view of software 

development would argue, “Of course they are different! The purpose of software 

engineering research is to make software development more like the engineering 

development approach”. However, it has been almost 25 years since the goal of 

engineering software had been set and the software design examples were still doing 

something completely different to ‘engineering’. 

Rather than blindly accept that argument I tried to determine why they were so different. 

Perhaps the reason why the design approaches were so different was due to fundamental 

differences between what was being built? Perhaps those differences, which have never 

been systematically examined, invalidate the artefact engineering view of software 

development? Therefore, subsequent research was performed to investigate and identify 

significant differences between engineering and software components; investigate how 

those components evolved; and determine how designers think about them during the 

development process. For example, traditional engineers can only construct their systems 

using the building blocks of their discipline. Those building blocks are aggregations of 

functionality determined by the underlying physical properties upon which the discipline 

is founded. As the design proceeds, both the problem requirements and the components of 
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the proposed solution space are modelled, mathematically, to allow the comparison and 

evaluation of common properties. That allows the designer to predict the ability of the 

proposed solution to satisfy the given requirements. 

Conversely, software developers work with an implementation medium that enables them 

to implement almost any concept. The initial system representation depicts the concepts 

and relationships in the designer’s perception of how the solution should work. That 

model can take any form and the concepts within the model can come from many 

different views of the problem domain and many levels of generality of those views. The 

components and relationships in that model are then decomposed, refined, and finally 

implemented in code. The remainder of the cruise control comparison explores those 

ideas and develops the following conjecture to explain the differences between the 

respective disciplines. 

The Model Building Conjecture: Traditional engineers design corporeal 

artefacts to solve some real-world problem. In contrast, software developers 

solve a problem by implementing a model of some real-world phenomena. 

More precisely, traditional engineers utilise the properties of physical components and 

materials to build corporeal artefacts that solve real-world problems, mathematically 

modelling the underlying functional properties of the materials and components of their 

discipline during the design process. In contrast, software developers solve real-world 

problems by developing and then implementing models of reality that explain and 

automate a perceived process. That model must be conceived by the developer and 

implemented using the constructs provided by the software language(s) being utilised and 

the virtual machine(s) used to execute the resulting implementation. 

From that study, my research agenda changed significantly. I could not continue to 

develop ideas based on an artefact engineering view of software development when that 

view could be completely inappropriate. Based on questions posed at the conclusion to 

the cruise control study, the goal became an explo ration of the fundamental nature of 

what software developers build and that resulted in a model building view of software 

development. Those questions include: 

• Why can engineering components be modelled mathematically and can that be 

achieved in software? 
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• What does it mean to build explanatory theories of reality? 

• Can those model building issues explain areas of contention in contemporary 

software engineering research? 

• And if the design approaches are so different, why have analogies with other 

disciplines persisted in being used as the inspiration and justification of research 

ideas for so long?  

Those questions form the basis of the rest of the thesis and the last question serves as the 

starting point for the third chapter. It presents an examination of the history of 

engineering analogies in software engineering research and an analysis of their validity. 

That history begins with the NATO conferences on software engineering from the late 

1960s (NATO 1976a; NATO 1976b). Although the idea that software development could 

be understood as analogous to traditional engineering development may have occurred to 

practitioners before that time, the NATO conferences saw the first formal expression of 

that goal and it serves as a useful starting point for analysis. The published transcripts and 

selected reports from those conferences provide an invaluable historical record from 

which the understanding of software development that researchers and practitioners had 

at that time can be explored. While the transcripts are no substitute for actually being 

there, they capture significantly more debate than is provided in present-day conference 

proceedings. Indeed, substantial quotations have been included so that the precise flavour 

of the arguments and debates is clear. 

The label ‘software engineering’ was suggested by the NATO science committee as a 

starting point for generating ideas for improving the software development process. The 

perception was that traditional engineering development could provide useful insights for 

software development researchers. The 1968 conference report details many comments, 

insights, analogies, and conjectures that were used for and against the appropriateness of 

‘software engineering’ and they are presented in detail in the chapter. Importantly, they 

show there was no clear consensus concerning the appropriateness of the engineering 

metaphor. However, by the 1969 conference a significant change in emphasis was evident 

in the transcripts and reports. The belief that software development could be understood 

as analogous to engineering development appears to have been accepted despite the 

recognition of many anomalies generated by the assumption. Subsequent debate turned to 



Introduction 

Understanding Software Engineering 8 

 

the application of those analogies to the specifics of software development. Although the 

artefact engineering view of software development had not been substantiated by detailed 

analysis, it became the dominant view of software engineering research. 

The investigation then examines the way in which this view was perceived in subsequent 

years. A selection of publications are presented and analysed. They range from McIlroy’s 

Mass Produced Software Components paper from the 1968 NATO conference through to 

contemporary publications on component-based software engineering. The examination 

attempts to determine the understanding of software engineering researchers by 

presenting the arguments and analogies they use and analysing them in detail to 

determine their validity. What becomes clear is that software engineering researchers did 

not have a thorough understanding of the fundamental nature of software or software 

development, nor did they have a thorough understanding of the engineering approaches 

they were using as the source of software engineering ideas. This is not meant as a 

criticism of those researchers, indeed much of their research has led to significant 

progress in the discipline. However, with the benefit of hindsight, numerous anomalies 

become evident that require explanation. 

One anomaly that repeatedly appeared, yet was never satisfactorily explained, concerned 

the underlying principles of software systems. Analogies had highlighted the importance 

of the underlying principles of engineering disciplines for developing the science required 

to support the mathematical treatment of engineering design. However, the nature of 

analogous principles in software development never became clear. Researchers concluded 

that to become an engineering discipline software engineering research needed to identify 

those principles and to develop an appropriate ‘software science’. However, they did not 

question whether their identification would invalidate the goal of software engineering – 

that assumption was firmly entrenched. Research had to ensure that a ‘software science’ 

was achieved somehow. Formal methods are a good example. Software engineering 

researchers have developed formal methods to apply rigorous mathematical techniques to 

software development. Moreover, arguments have used the following syllogism to justify 

those methods in software engineering: Engineers use mathematical techniques. Formal 

methods allow the mathematical treatment of software development. Therefore, the use of 

formal methods can lead to software engineering. However, the study shows the role of 
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mathematics in the design approaches of the respective disciplines is quite different, and 

therefore, the reasoning is false. 

The analysis of the engineering analogies used by researchers and the elicitation of their 

understanding of software engineering highlighted many issues for further investigation. 

Specifically, a number of additional anomalies were identified that may be causing 

misunderstanding between the theory and practice of software engineering. Therefore, 

before examining the underlying principles of software systems, the impact of those 

anomalies were examined in the specific context of software architecture research. That 

served as the basis for the fourth chapter.  

The chapter on software architecture begins with a case study of the design, 

implementation, and maintenance of one of the applications developed as part of the 

AAITP project. That system, HyperEdit, is a graphical editor generator system that can be 

used to graphically create the diagram editors used to construct software diagrams. Its 

development occurred over a number of years with different designers and maintainers, 

and provided practical evidence of how designers use architecture principles in the 

development process. The goal of the chapter is to identify the large-scale structures 

identified during the development and maintenance processes, identify the issues that 

affected the decision making process at the architecture level of design, and to compare 

those with existing theory. 

The case study identified many different factors that influenced the architecture decision 

making process of the project group that are not adequately accounted for in conventional 

software architecture theory. They included the influence of changing requirements on the 

architecture, how knowledge of available architectures and their practical consequences 

affected decisions, and how architectures were developed to take advantage of pre-

existing knowledge of structures in the implementation environment. Those issues are 

discussed in detail, however significant analysis is reserved for a discussion of the 

different large-scale system representations identified during the design and maintenance 

process and how they relate to existing theory. 

Many different large-scale representations of the HyperEdit system were identified. 

Conventional theory claims those different representations are analogous to the different 

architecture views that exist in the development of traditionally built artefacts. In those 

disciplines the different views provide graphical subsets of the complex, underlying 



Introduction 

Understanding Software Engineering 10 

 

implementation detail. However, analysis of the identified software architectures shows 

they are not all subsets of the same underlying implementation detail. A review of the 

history of ideas in software architecture research shows our understanding of architecture 

views are based on comparisons with traditionally built artefacts. In those disciplines, 

systems exhibit an immutable architecture, set early in the design process, which is 

visibly recognisable in the physically implemented form. However, differences that exist 

between software systems and traditionally built artefacts serve to undermine the idea that 

the two notions of ‘architecture’ are sufficiently analogous for concepts from one to be 

automatically applicable in the other. Those differences concern the notion of system 

form and the fact that to realise the required software system a computer must execute its 

implementation. The conclusion is that the different large-scale software representations 

are not analogous to the different architecture views of built artefacts. Rather, their 

explanation is somehow related to the unique, fundamental nature of software systems. 

To determine how they should be understood it is necessary to identify and explore the 

underlying principles of software systems. That is the topic of the fifth chapter of the 

thesis. 

The underlying principles of software systems are related, somehow, to concepts, models, 

abstractions, theories, and how they are used by the human mind to understand reality and 

solve problems. Those issues have been explored by other disciplines for many years and 

their theories serve as a starting point for uncovering the foundations of software 

engineering. Philosophy, especially in the fields of epistemology and metaphysics, has a 

long history of identifying the concepts that constitute reality and how they are 

represented in knowledge. Additionally, psychologists, especially in the fields of 

conceptual development and cognition, have devised experiments and theories to explain 

how concepts are used to capture reality, how they are devised, and how they evolve. 

Finally, theories in the history and philosophy of science explain how models and theories 

are used to explain the world, how those theories can be verified, and how they evolve 

over time. 

Unfortunately, these disciplines do not offer ready-made explanations of the underlying 

principles of software engineering. Nevertheless, different theories from these fields have 

been cited in software engineering research as justification for proposed ideas. To ensure 

this treatise does not simply adopt one of the many different philosophical and 
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psychological positions to support a presupposed understanding of software engineering, 

it presents, in detail, the major theories from those disciplines that are related to the 

underlying principles of software systems. An attempt to compress two thousand years of 

thought into a handful of pages is, perhaps, over ambitious. However, without this 

material, the basis for the conclusions is unlikely to be clear. In addition, this is the path 

that was trodden to reach the final point, and the reader is entitled to see the chain of 

reasoning that occurred. 

The conclusion of that presentation is the identification of two main phases of thinking 

about the underlying issues. The classical way of understanding concepts and theories 

dates back to the philosophies of Plato and Aristotle and begins with the assumption that 

people can be considered as separate from their environment and that all things can be 

classified in terms of essential attributes. That assumption results in a belief that all 

people observe the same objective reality and our concepts are derived by inferring 

abstractions from that reality. As people operate in the world, they associa te objects with 

known concepts by identifying the essential attributes. Furthermore, because reality is 

objective, theories used to explain phenomena capture the natural order of the world. 

However, as progress occurred in both philosophy and psychology, a different way of 

thinking about the issues emerged. Many philosophical arguments and psychological 

experiments highlighted anomalies in the classical way of understanding. Subsequent 

research showed that people’s conception of reality cannot be considered as separate from 

some objective reality. As people interact with the world, they automatically and 

subconsciously apply their accrued concepts and theories to the observed phenomena in 

order to understand it. Consequently, people’s explanatory theories do not capture the 

natural order of the world. Rather, they are subjective to the person using them and 

different theories cannot be evaluated as being better or worse depictions of reality. Each 

can only be evaluated in terms of the usefulness it provides a person in their attempt to 

understand and operate in the world. An additional contradiction to the classical way of 

understanding concerns the definition of concepts. Experiments and dialectic debate have 

shown that people do not classify phenomena into different classes of concepts based on 

the existence of essential attributes. Instead, concepts are defined in terms of the roles the 

play within people’s explanatory theories of the world. Although those conclusions 

contradict the classical way of understanding, researchers note that the classical way of 
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understanding still pervades the philosophical assumptions of people who have not 

studied the relevant philosophical and psychological research. That is also evident in the 

justification of the artefact engineering view of software development. 

The chapter continues by applying those philosophical foundations to our understanding 

of the software development process. It does not provide a comprehensive explanation in 

terms of those foundations – that would require another thesis. The aim is to show the 

applicability of those foundations to our understanding to software engineering and to 

advocate its use as the basis for future research. The conclusion is that software 

engineering researchers should explicitly consider the potential benefits of moving from 

an artefact engineering view of software development to a model building view. 

Finally, the thesis argues that these foundations can be used to improve software 

engineering research by providing a basis with which to evaluate and justify research 

ideas. However, to develop that ability, researchers must become aware of how research 

in general is evaluated and justified. The history and philosophy of science has devised 

many theories to explain the role of research in the progress of a discipline. While 

philosophers hold different opinions about many of the issues, some consensus has 

emerged. As a discipline performs research, guiding assumptions dictate how researchers 

understand the phenomena under investigation, even though those researchers might not 

be explicitly aware of them. Those guiding assumptions change as a discipline evolves, 

and radically new ways of understanding the same phenomena occur. That new way of 

understanding is difficult to evaluate at first but is soon used to explain problems and 

anomalies with existing theories and provides the potential for significant progress in the 

discipline. The contention of this thesis is that an artefact engineering view of software 

development has provided the dominant set of guiding assumptions for software 

engineering research. However, an alternative model building view offers the potential to 

explain existing problems and anomalies and can provide new insights for improvement. 

Unfortunately, changes in guiding assumptions do not occur smoothly. Proponents of the 

existing way of understanding may refuse to see the benefits of an alternative approach, 

despite the anomalies present in the original. Moreover, it is not always easy to compare 

two sets of guiding assumptions. Some researchers have already presented research based 

on a model building view of software engineering, although their theories are rarely cited 
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in mainstream research. Aspects of their work are presented – specifically the theories of 

Peter Naur and Bruce Blum. 

This thesis does not claim that the artefact engineering view should be completely 

replaced by a model building view. Not enough research has been performed to illustrate 

the benefits of this new way of understanding to convince the mainstream research 

community of the benefits of such a complete change. However, the goal has been to 

provide enough detail to make the issues explicit for other researchers and to convince 

them that it is worthy of more detailed investigation. Moreover, research based on an 

alternate way of understanding should not be dismissed simply because it is different. To 

facilitate research based on this different way of understanding, the concluding chapter 

includes a number of conjectures about how the model building view of understanding 

can provide explanatory theories for software reuse, patterns, and architecture. 

This thesis has been the result of the author’s research into a number of areas. It has been 

an adventure, a journey into parts unknown, and into regions I never expected to visit 

when my task began. My view is that the reader will have a better understanding of the 

results if the journey is laid out, and they can experience it in part for themselves, 

travelling with me, as it were. 

The thesis examines the way in which software engineering researchers understand the 

phenomena they investigate and the history of that “understanding”. As a consequence, 

many of the ideas presented are philosophical in nature. These ideas are rarely discussed 

explicitly in the research literature and, in practice, debating such issues can be very 

difficult. Moreover, a succinct linear presentation is difficult to achieve. The decision to 

present the issues in roughly the same order as my own progression through them results 

in a spiral- like presentation in which some of the discussion may appear to be repetitious. 

However, what we have is merely the recurrence of themes that are presented in 

successively greater detail as the narrative develops. It is hoped therefore, that the style of 

presentation will assist in the clarification of what are, after all, complex and contentious 

issues. 

Before entering the thesis, let me remind the reader of Einstein’s comment on the nature 

of research and plant a seed to help interpret what is to be encountered. The audience of 

this work is software engineering researchers, and the reason we do research is because 

we do not know exactly what it is we are doing. What is required is a continual 
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questioning of our guiding assumptions, especially the implicit ones that may not be 

immediate obvious, and a commitment to remain open-minded to radically different ways 

of understanding the same phenomena we may have been studying for a very long time.  
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2. Is Software Development Analogous to Traditional 
Engineering? A Comparison Of Designs for 
Automotive Cruise Control 

2.1 Introduction 
The idea that the discipline of software development could become an engineering 

discipline received its first formal expression at the NATO Conference on Software 

Engineering in 1968 (NATO 1976a). The motivation was that software development was 

perceived to be unstructured and unpredictable while engineering was perceived to be 

disciplined, predictable, and well structured. Over the years, this goal has been questioned 

by some, while others, committed to the goal, have argued that we still have a long way to 

go. Part of the problem is that the exact relationship between software development and 

traditional engineering disciplines is not fully understood. This study seeks to clarify the 

issue by comparing the design approaches of software developers and traditional 

engineers when confronted with the same problem – automotive cruise control. The 

detailed study of multiple, published design examples from both disciplines shows that 

while analogies between the disciplines appear to be valid, there exists significant 

differences between the design approaches taken by the respective disciplines. Traditional 

engineers build corporeal artefacts to solve real-world problems, mathematically 

modelling the materials and components of the discipline during the design process. In 

contrast, software developers solve real-world problems by implementing models of 

reality that explain a perceived process. This difference between the fundamental natures 

of the systems developed by the respective disciplines is caused by differences between 

the implementation mediums used by them. 

The study consists of a number of stages. After analysing the cruise control requirements 

from both disciplines to ensure the study is comparing designs of a similar problem, a 

selection of specific design examples from both disciplines is presented. The design 

examples detail the steps taken by each designer by stating the models developed, the 

techniques utilised, and by reproducing significant design diagrams. To present a 

comparison free of any preconceived biases towards similarities between the disciplines, 

a considerable amount of detail is included. In addition, because some readers may be 

unfamiliar with the design concepts and techniques used in the engineering examples, 
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they are preceded by a brief discussion of control system theory and design techniques 

that are relevant to the cruise control problem. 

Generic design approaches are then developed for each discipline and they are compared 

to identify the similarities and differences between the disciplines. That comparison 

results in the model-building conjecture to explain the differences between the design 

approaches. That conjecture is then analysed to determine why the differences and 

similarities exist.  

The conclusion recommends further avenues of research that have been made apparent by 

the results of the comparison. Finally, a number of comments are made about the 

discipline of software engineering as a whole. 

An initial comparison of the cruise control designs was published previously (Baragry 

1996). This chapter provides considerably expanded detail in terms of the presented 

designs, the analysis and comparison of those designs, and the implications for software 

engineering research than in the paper in which the study was first reported1. 

2.2 The Cruise Control Requirements 
A cruise control system is a device for keeping an automobile at a constant speed over 

varying terrain. Although those requirements are relatively simple, it is necessary to detail 

their expression by both disciplines to ensure the problem is an appropriate one for a 

comparison of design approaches. While the scope of this study does not include the 

formulation of requirements, it does makes several observations that relate to the 

differences that exist.  

The software designs all contained a basic set of cruise control requirements. 

• The cruise control system can only operate when the engine is running. 

• When the driver activates the system the vehicle speed should remain at the 

current value until the system is interrupted or is de-activated. 

• Pressing the brake pedal suspends the system operation until the driver resumes 

cruising.  

                                                 

1 This study has been submitted for publication in IEEE Transactions on Software Engineering. 
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• When the driver resumes operation, the system should bring the vehicle speed to 

the previously set value. 

The specific requirements of individual examples differed slightly with some specifing a 

small amount of additional functionality. The following requirements, specified by Booch 

(Booch 1986) as a collection of system inputs and outputs, formed the basis of many of 

the examples. 

• System on/off: If on, denotes that 

the cruise control system should 

maintain the speed of the car. 

• Engine on/off: If on, denotes that 

the car engine is turned on; the 

cruise-control system is only 

active if the engine is on. 

• Pulses from the wheel: A pulse is sent for every revolution of the wheel. 

• Accelerator: Indication of how far the accelerator has been pressed. 

• Brake: On when the brake is pressed; the cruise-control system temporarily 

reverts to manual control if the brake is pressed. 

• Increase/Decrease speed: Increase or decrease the maintained speed; only 

applicable if the cruise-control system is on. 

• Resume: Resume the last maintained speed; only applicable if the cruise control 

system is on. 

• Clock: Timing pulse every millisecond. 

• Throttle: Digital value for the engine throttle setting. 

Some of the software designs based their system requirements on those presented in a 

published example by Brackett (Brackett 1987). That paper could not be located in the 

literature, however the details are evident in the work of others – e.g., (Smith and Gerhart 

1988). Brackett’s core requirements were the same as those presented by Booch with 

additional functionality specified to provide auxiliary monitoring functions such as 

monitoring the average speed, fuel economy, and maintenance requirements of the 

vehicle.  

Figure 2-1: Booch Requirements.  
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The hardware design examples also had a common set of core requirements for the cruise 

control system that were the same as those presented for the software designs. They 

included the ability to engage/disengage the system, the ability to set the current speed as 

the cruising speed, the ability to temporarily disengage the system when the brake pedal 

is pressed, and the ability to resume the last recorded cruising speed (see (Shaout and 

Jarrah 1997)). However, in contrast to the software examples, the requirements were 

often stated in an ‘engineering language’. For example Rutland’s design requirements 

were stated as: 

“The primary objectives of an automatic vehicle control system is to maintain 

a constant vehic le speed and acceptable ride comfort, for the set of all 

possible load forces. A particular load force, possible or fictitious, is said to 

be tolerable if it keeps the speed, and comfort levels, within predetermined 

margins. … The only input [external to the control system] to be considered is 

a load force due to the changing gradient of the road profile and the varying 

wind speed. The important outputs are the error from the required speed and 

the outputs relating to a comfortable ride.” (Rutland 1992) 

While the core requirements of the engineering examples remained the same, additional 

functional and performance requirements were introduced as cruise control technology 

evolved. Functionally, these included the ability to slightly increase or decrease the set 

cruising speed, which is similar to the software design requirements. However, from a 

performance perspective, those additional requirements included “smooth and minimal 

throttle movement”, “universality: the same control module must meet the performance 

requirements for different vehicle lines 

without recalibration”, and “simplicity: 

design concepts and diagrams should be 

understandable to automotive engineers 

with basic control [theory] background.” 

(Liubakka, Rhode et al. 1994). Figure 2-2 

depicts Muller’s representation of the 

requirements for the ‘man-machine 

interface’ (Muller and Nocker 1994). 

More recently, the desire to alleviate congestion on urban highways has led to the 

development of autonomous intelligent cruise control systems (AICC). These are 

Figure 2-2: Man-Machine Interface. 
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designed to provide automatic vehicle following where “the throttle and brake are 

controlled by the computer, and only steering is under manual control. The sensor on 

board of the vehicle senses relative distance and velocity of the immediate vehicle in 

front, and the computer control system sends the appropriate commands to the throttle 

and brake” (Ioannou and Chen 1993). The requirements of AICC systems encompass 

those of traditional cruise control systems and provide valid examples for the design 

comparison. 

Traditional cruise control systems have been commercially available since the late 1950s 

and AICC systems have recently been introduced in commercial vehicles by, for example, 

Mercedes Benz (Shaout and Jarrah 1997).  

Despite slight variations in the requirements, both between and within the respective 

disciplines, it can be seen that a common, core set of requirements exists for all design 

examples. The variations that exist do not undermine the ability to develop a useful 

comparison of the design approaches and any design reasoning that is influenced by those 

variations is detailed in the comparison. 

2.3 The Software Designs 
The problem of automotive cruise control has been used numerous times as a design 

example in software engineering research literature – both for detailing and comparing 

the use of proposed design methods or techniques. Twenty-two examples were located for 

use in this study, though that list is not exhaustive. In addition, Shaw used many of the 

designs in a comparison of software architecture styles (Shaw 1994; Shaw 1995c). 

Indeed, part of the impetus for this study came from reading that comparison. 

This study uses the examples to generate a generic software design approach that is 

subsequently compared with the design approach of traditional engineering development. 

The software designs are loosely categorised in terms of the methods or techniques they 

are used to exemplify. 

• Object-Oriented (OO) Design: Booch (Booch 1986) used the cruise control 

problem to present his initial approach to object-oriented design. Birchenough and 

Cameron (Birchenough and Cameron 1989) used it to exemplify the application of 

Jackson System Development (JSD) to software design. Yin and Tanik (Yin and 

Tanik 1991) used it in their exploration of reusability in Ada. Wasserman et al 
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(Wasserman, Pircher et al. 1989) presented an OO extension to structured analysis 

and design using cruise control to highlight their architectural design method. 

Gomaa (Gomaa 1989; Gomaa 1993) used cruise control to analyse different real-

time system design methods. His study examined a Booch approach and a JSD 

approach to OO design. He also analysed the Naval Research Laboratory software 

cost reduction method (NRL/SCR) using the same problem and used it to present 

his ADARTS approach, which extends DARTS for Ada systems by using an 

information-hiding structuring step. Finally, Appelbe and Abowd (Appelbe and 

Abowd 1995) respond to Shaw’s comparison of her process control model of 

cruise control with Booch’s OO design by presenting an updated version based on 

a more recent approach to OO design by Booch. 

• State or Control Based Design: Smith and Gerhart (Smith and Gerhart 1988) 

illustrated the application of a functional decomposition approach to the Statemate 

interactive development environment (Harel et al 1990). While the approach 

employed functional decomposition, the emphasis on state-based design allows it 

to grouped in this category. Atlee and Gannon (Atlee and Gannon 1993) 

investigated the safety of a cruise control design by model-checking an event-

based representation of the problem. 

• Process Control Feedback Loops: Shaw (Shaw 1995b) represented the cruise 

control problem as a process control architecture using the design technique of 

feedback control from traditional engineering disciplines. Higgins (Higgins 1987) 

used a similar approach to his feedback control model resulting, however, in a 

different representation. Jones (Jones 1994) produced a distinctive design 

example, again using feedback control, by claiming to design a system from a 

traditional engineer’s mindset rather than a software developer’s one. 

• Real Time Structured Analysis and Design (RTSAD): Ward and Keskar (Ward 

and Keskar 1987) used the problem as an example to compare the Ward/Mellor 

and Boeing/Hatley real-time extensions to DeMarco structured analysis and 

design. Gomaa (Gomaa 1993) presented an example of an RTSAD cruise control 

system and compared it with his design approach for real-time systems (DARTS). 

It extends RTSAD by partitioning the design into concurrent tasks. Booch (Booch 

1986) also produced a design based on traditional structured analysis and design 
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to compare with his OO design. However, it does not include any real-time 

analysis. 

• Concurrent Object-Oriented Design: Four published examples depicted the cruise 

control problem when decomposed and implemented using concurrent, object-

oriented system methodologies. Saksena et al (Saksena, Freedman et al. 1997) 

presented the ROOM method (real- time object-oriented modelling). Gomaa 

(Gomaa 1993) presented the CODARTS method (concurrent design approach for 

real-time systems). Awad et al (Awad, Kuusela et al. 1996) presented the Octopus 

method. Lastly, Caromel (Caromel 1993) presented his own approach to 

concurrent, OO design. 

Those publications provide examples of cruise control design produced using different 

design methodologies, using different styles of the same design methodology, and by 

different designers using the exact same design method. A single example from each 

category is chosen to illustrate the way in which software developers actually perform 

‘design’. The descriptions contain a brief account of the general approach and concentrate 

on the concepts elicited by the designers to model the problem and solution. Those 

concepts are most apparent in their graphical representation of the  designs. The 

similarities and differences between the various software approaches are then highlighted 

and a generic design strategy is identified. Finally, it is worth noting that none of the 

software designs describes a commercially available system. 

2.3.1 Object-Oriented Design 

Booch (Booch 1986) used the design of a cruise control system to illustrate the 

differences between object-oriented and traditional functional decomposition 

development techniques. Initially, both techniques require the identification or creation of 

a model of the problem space. Booch developed a data flow diagram (DFD) from the 

requirements (figure 2-3) that acts as a starting point for both designs. The object-oriented 

design is created by extracting the objects of the system from the DFD and depicting the 

dependencies between them (figure 2-4). Booch provides very simple guidelines for how 

objects were extracted from the DFD,  

“Typically, the objects we identify in this step derived from the nouns we use 

in describing the problem space.” (Booch 1986) 



Cruise Control Comparison 

Understanding Software Engineering  22 

However, this is a very early example of OO design. More recent analysis techniques, 

including Booch’s own (Booch 1991), provide more detailed rules and guidelines for 

identifying objects in the problem space. 

The implementation of the design proceeds by identifying the attributes of each object, 

the methods performed and suffered by it, establishing their visibility with respect to each 

other, establishing their interfaces, and finally, realising them in code.  

Booch notes that due to the autonomous nature of objects it is not possible to identify a 

central thread of control from the object diagram. While it was not explicitly developed in 

Booch’s example, complex object diagrams need to be complemented with a 

representation that denotes the dynamic interaction between them. State transition 

diagrams are often used in OO design methods, including Booch's more recent technique, 

to achieve that purpose. 

2.3.2 State Based Design 

Smith and Gerhart (Smith and Gerhart 1988) used the problem to analyse the 

effectiveness of the Statemate development environment (Harel et al 1990). Statemate 

uses activity charts to represent the functional properties of the system and statecharts to 

represent the controlling mechanism between those activity charts. A further 

representation, module charts, depict how those state and activity charts are realised in 

implemented components. Different design methodologies can be utilised with Statemate 

depending on the order and emphasis used when creating the respective charts. In their 

Figure 2-3: Booch DFD Figure 2-4: Booch Object Model 
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example, Smith and Gerhart used a functional decomposition method, based on 

Brackett’s formulation of the problem statement, and compared their results to a 

traditional, structured-analysis and design approach to the same problem. 

The design begins by modelling the requirements as three separate types of activities to 

be monitored by the system: 

1. Standard driving events (e.g.: braking 

and acceleration). 

2. Cruise control actions (e.g.: activate, 

inactivate, etc). 

3. Monitor features (e.g.: speed calculation, 

etc). 

These lead directly to the top-level activity 

chart (figure 2-5). The controlling statechart 

is then developed for the top- level activity 

chart. The design continues by recursively 

developing activity charts and the 

corresponding controlling statecharts for the 

activities in the highest- level activity chart. 

Figures 2-6 & 2-7 show the activity chart and 

statechart for the ‘Control Speed’ activity from 

figure 2-5. 

Figure 2-5: Top-Level Activity Chart 

Figure 2-6: Control Speed Activity Chart 

Figure 2-7: Control Speed State 
Chart 
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2.3.3 Process Control Feedback Loops 

Traditionally, software design approaches have begun by eliciting the important 

functions, objects, states, or events from the system requirements or problem domain. In 

contrast, Shaw (Shaw 1995b) began by recognising the cruise control problem as a 

specialisation of the generic control problem. Consequently, the high level requirements 

could be satisfied using the process control feedback model, which is a well-known 

approach to design in conventional engineering disciplines (e.g., (Stefani, Clement J. 

Savant et al. 1994)). By comparing the current output with a predetermined reference 

point, the generic feedback model modifies its operation to maintain a stable output to a 

system when the environment or the system input may be unstable. 

Starting with the generic feedback system architecture (figure 2-8), Shaw matched the 

entities of the cruise control requirements with the concepts of the generic feedback 

model – e.g., ‘set speed’ to ‘set point’, ‘throttle setting’ to ‘manipulated variable’, and 

‘current speed’ to ‘controlled variable’ (figure 2-9). Shaw then used a state transition 

technique to represent the system’s activation and control (figure 2-10) and an event table 

technique to represent how the set point is determined. Those three sub-architectures were 

combined to realise the global system architecture (figure 2-11), which contains all the 

functional and behavioural information necessary to proceed with the implementation.  

Figure 2-8: Generic Feedback Model Figure 2-9: Specific Feedback Model 

Figure 2-11: Global Architecture Figure 2-10: Feedback STD 
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2.3.4 Real Time Structured Analysis and Design 

Ward and Keskar (Ward and Keskar 1987) compared two methods used for real time 

system development – Ward/Mellor and Boeing/Hatley. Both approaches are extensions 

of DeMarco Structured Analysis. This section details the Ward/Mellor approach with 

aspects of the Boeing/Hatley approach used for comparison in a later section. 

Their requirements for the cruise control system are similar to those of Booch and that 

description highlights the core functions that were subsequently used to derive the initial 

data-flow diagram. 

“Increase speed at a uniform rate by gradually opening the throttle; capture 

and store the instantaneous speed for subsequent use as the desired speed; 

compare the instantaneous speed with the desired speed and adjust the throttle 

to minimize the deviation.” (Ward and Keskar 1987) 

Because the traditional structured analysis notations fail to capture time-dependant  

behaviour, the Ward/Mellor approach provides extensions to the basic DFD. A 

transformation schema extends the basic DFD with events and control processes. The 

control transformation diagram (figure 2-12) contains the information of the original DFD 

in conjunction with the control and event information (dotted lines). It depicts how the 

control process ‘Control Speed’ receives events from internal and external interfaces and 

how they enable, disable, or trigger the basic functions. A state transition diagram (figure 

2-13) complements the control transformation diagram by describing its logical operation. 

Slight modifications to these two diagrams were performed by the designers to correct an 

anomaly in the logic discovered during analysis. 

Figure 2-13: Ward/Mellor STD Figure 2-12: Ward/Mellor CTD 
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2.3.5 Concurrent Object-Oriented Design 

Saksena et al (Saksena, Freedman et al. 1997) 

presented their experience in applying real-time 

scheduling theory to embedded control system 

designs. The particular design example is 

developed using his ROOM (real-time object-

oriented modelling) methodology, though the 

authors note their guidelines could be applied to 

other methodologies such as UML (unified 

modeling language). The representation of the 

problem using the ROOM methodology provides the information required for this study. 

The first step in the methodology was the identification of ‘actors’, which are 

encapsulated concurrent objects that communicate via point-to-point links. For the cruise 

control example, the actors encapsulate the input/output hardware interfaces and the 

cruise control logic (figure 2-14).  

The designers then specified the 

behaviour of the actors using 

ROOMcharts, a formalism based on 

statecharts. The high- level ROOMchart 

consists of a ManualControl state and 

an AutomaticControl state with the 

appropriate transitions between them 

(figure 2-15). Those states were then 

decomposed using refinement 

ROOMcharts (figure 2-16 & 2-17). 

The real-time behaviour of the design 

was analysed by specifying the timing 

constraints of the identified 

transactions and representing them 

using message charts. Figure 2-18 

depicts the initial message chart for the 

control loop transaction. 

Figure 2-14: Actor Structure 

Figure 2-16: Manual Control ROOMchart 

Figure 2-15: Top-Level ROOMchart 
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The final step in the design was to map the actors onto the operating system abstractions 

that support concurrent functions. The two typical abstractions are operating system 

processes and separate threads of control within a single process. For models with high 

inter-actor communication, the designers recommend using individual threads for 

realising the actors. 

2.4 The Hardware Designs 
Engineers have investigated the problem of automotive cruise control since the 1950s. 

Fourteen examples of, or directly relating to, cruise control design were gathered from the 

engineering design literature (Takasaki and Fenton 1977; Nakamura, Ochiai et al. 1983; 

Koning 1984; Ellinger 1985; Oda, Takeuchi et al. 1991; Rutland 1991; Tsujii, Takeuchi et 

al. 1991; Rutland 1992; Ioannou, Xu et al. 1993; Ioannou and Chen 1993; Lee, Kim et al. 

1993; Germann and Isermann 1994; Liubakka, Rhode et al. 1994; Muller and Nocker 

1994; Shaout and Jarrah 1997). In addition, Shaout (Shaout and Jarrah 1997) provides a 

historical review of cruise control technology and Liubakka (Liubakka, Rhode et al. 

1994) discusses different design strategies before the presentation of his own design. 

More examples are available, especially in the relatively new area of autonomous 

intelligent cruise control. However, for the purposes of this study, these examples provide 

a broad spectrum of design strategies that are detailed in an attempt to develop a generic 

engineering design approach. 

The individual designs could not be categorised into distinct design methodologies as 

easily as the software design examples. Rather than being used to exemplify different 

design methodologies, the hardware examples used more advanced design strategies in an 

attempt to provide an improved solution to the problem. In that sense they are more 

Figure 2-17: Automatic Control ROOMchart Figure 2-18: Top-Level Message Chart 
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evolutionary in their development than the software designs. To gain an understanding of 

the evolutionary nature of the solutions and to provide data for developing a generic 

engineering approach to system design this section presents the processes used to design 

five of the examples. Those examples range from the earliest mechanical feedback 

implementations, to the introduction of microprocessor controlled solutions, to adaptive 

design strategies, and finally, to fuzzy logic and autonomous intelligent cruise control 

systems. The remaining examples are used in later sections to highlight issues that impact 

upon the comparison of software and traditiona l engineering design approaches. Unlike 

the software examples, at least four of the designs are actual cruise control products.  

To provide an effective comparison of software and traditional engineering design 

approaches it is necessary to present sufficient detail of what engineers do to elicit how 

they approached the design process and, subsequently, why that approach was required. 

Because some software engineering researchers may be unfamiliar with the engineering 

techniques and terminology used the design examples are preceded by a brief introduction 

to control system design theory and analysis techniques. 

2.4.1 Basic Control System Analysis and Design 

Traditional engineering disciplines have a long history of design and implementation of 

control systems. This introduction serves to clarify what is happening in the cruise control 

design examples and, in the later comparison, why it happened that way. In control 

theory, the manipulation of electronic signals is represented in terms of system transfer 

functions and system designs must be linear and stable for both efficient design and 

satisfactory functioning. Those core concepts, plus the fundamental concepts of feedback 

control systems such as proportional feedback, PID control etc, are described. In 

addition, standard analysis techniques such as Bode, Nyquist, root-locus, etc. and some of 

the more specific design techniques used by the individual example are also described. 

The reader is referred to the following references from which the summary has been 

developed: (Gray and Meyer 1984; Smith 1984; D'Azzo and Houpis 1988; Horowitz and 

Hill 1989; Sedra and Smith 1991; Stefani, Clement J. Savant et al. 1994). 

The functionality of an electronic circuit is nearly always described in terms of how the 

applied input, usually a voltage, is transformed into some corresponding output, which 

again is usually a voltage. Engineers speak of the transfer function, which is the ratio of 

the output signal to the applied input. For example, an audio amplifier might produce an 
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output voltage that is 100 times as large as the input voltage. In this case, the transfer 

function is simply a constant of 100. 

Those signals are a time varying quantity that can be 

represented by a graph such as the one shown in figure 

2-19. Using the technique of Fourier analysis, the 

waveforms can be represented as a sum of sine waves of 

different amplitudes and frequencies. That allows circuit 

analysis and design to be performed in terms of 

mathematical representations of sine wave input signals, which greatly simplifies the 

process (figure 2-20). 

The system is linear when the system transfer function does not vary with respect to the 

amplitude of the input signal. The output signal is just an amplified replication of the 

input signal. The size of that amplification or gain may vary with respect to the frequency 

of the input signal. For example, the gain of the system may remain constant only over a 

particular frequency range or bandwidth. However, it remains a linear system. The ability 

to keep a system linear is important because linear systems are considerably easier to 

design than nonlinear ones due to the complicated mathematics required to represent 

nonlinear systems. In practice, most systems are nonlinear, although in most cases the 

nonlinearity is small enough to be neglected or the limits of operation are small enough to 

allow a linear approximation to be made. Due to the nature of the physical components 

and the materials that constitute electronic components, the characteristics of an 

amplifying system remain linear only over a limited range of input and output voltages. 

Once the input or output signal exceeds that boundary, the transfer function cannot be 

used to predict the output signal from the applied input signal. 

Using these foundation concepts, system design and analysis can be performed in terms 

of block diagrams of transfer functions. For control systems like the cruise control 

example, the system must provide the correct output for a varying input signal and 

Figure 2-19: Time-varying 
input signal 

Figure 2-20: Sine-wave signal 

V denotes the peak amplitude in volts and ω denotes the angular 

frequency in radians per second (ω = 2πƒ and ƒ = 1/T Hz). 

tVt aa ωυ sin)( =
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operating environment. However, environmental conditions and variations in the physical 

components can make that impossible. For example, the gain of active components, such 

as transistors that amplify the input signal, can vary due to voltage supply variations, 

temperature changes, or device ageing. The technique of system feedback can eliminate 

the effects of those variations on the transfer function by providing the following 

characteristics: 

4. Increased accuracy: the closed loop system may be used to drive the difference 

between the actual and desired response to zero. 

5. Reduced sensitivity to changes in components. 

6. Reduced effects of external disturbances. 

7. Increased speed of response and bandwidth. 

For the purposes of control systems, the basic feedback block diagram is represented in 

figure 2-21, where G represents the transfer function of the system and H is the transfer 

function of the feedback path. Using simple block diagram algebra: 

G = V2/V1, H = VF/V2, and V1 = Vs + VF. 

V2 = GV1 = G(Vs + VF) = G(Vs + HV2) = GVs + GHV2. 

The global transfer function, GF, then becomes: 

GF = V2/ Vs = G/(1-GH)  

This has many consequences for system design. 

• If the quantity GH is positive, as it approaches unity the global system gain 

becomes infinite. The system produces an output with no input. This is an 

unstable system. 

Figure 2-21: Control System Transfer Functions 
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• If GH is negative, but the magnitude of the gain is large, then GF ≅ -G/(GH) = -

1/H. The system transfer function becomes solely dependent on the gain of the 

feedback network. This is called negative feedback. 

Because the global feedback system transfer function (GF) is independent of the original, 

system transfer function (G), it becomes immune to variations in the gain of the original 

system and other external disturbances. The system output is directly proportional to the 

system input and because the feedback path consists of passive components, which do not 

have variable gain, it remains immune to the previously mentioned variations. Although 

negative feedback systems do suffer from low gain, the improvement in system 

performance and stability far outweighs this drawback. Moreover, gain can easily be 

obtained with an amplification stage after the feedback network. 

For the cruise control problem, the feedback system 

needs to accurately track the desired speed. This 

requires a system with a large gain to respond quickly to 

fluctuations in the actual speed of the vehicle. With a 

large gain however, the system may become unstable. 

Stability can be restored with additional compensatory 

components, however these add to the cost and reduced 

reliability of the system. Figure 2-22 depicts the ability 

of a system to track a desired value. When the gain of 

the system is high, the system quickly reaches the 

desired value but oscillates around that value before 

tracking accurately. With lower system gain, the response time of the system to reach the 

desired value is much larger, however it then tracks the value more accurately. The 

problem for the designer of control systems is to provide the necessary accuracy and 

speed of response with adequate stability and reliability at a minimum cost. 

There are various methods of analysis for determining the stability of feedback control 

systems. Traditional methods rely on root-locus and steady-state frequency response 

analysis. If these analyses show the basic system does not meet the desired specifications 

it can be improved using compensators. Modern control theory provides analysis 

techniques and methods to ensure stability using state-variable feedback, sensitivity 

functions, parameter optimisation, and other mathematically intensive techniques. Often a 

designer will have to use multiple methods to solve the problem. The techniques 

Figure 2-22: System Response  
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mentioned in the cruise control design examples to be detailed are briefly discussed to 

assist understanding. 

A designer can calculate if the design meets its specification by determining the time 

response of the controlled variable. Laplace transforms simplify the calculation of time 

response transfer functions by allowing the solution to differential equations to be 

performed using simpler algebraic operations in conjunction with a table of transforms. 

The Laplace transform of the function, f(t), is designated F(s), where the parameter ‘s’ is 

a complex quantity. Because the transfer functions of feedback system components are a 

function of time, they can be represented as GF(s) = G(s)/(1-G(s)H(s)). The previous 

discussion noted that the system will be unstable when the denominator of that transfer 

function becomes zero. Therefore, to determine if a negative feedback system will be 

unstable, the designer needs to solve the 

characteristic equation 1 + G(s)H(s) = 0. 

The root-locus method provides a graphical 

representation that is used to determine the 

system stability. It plots, on the complex 

plane, the roots of the characteristic 

equation for a closed loop system as a 

function of gain. It provides an easy way of 

determining if the system will be stable. 

Figure 2-23 depicts the relationship 

between the root-locus and the system 

response. If the roots of the equation lie on 

the left-hand side of the s plane (imaginary 

axis), the system is stable. If the roots are on the right 

hand side the system is unstable and the output will 

grow exponentially. If the roots lie on the axis of s 

plane, the system remains in constant oscillation.  

The other method for determining the system stability is 

by analysing the frequency response of the system. Two 

types of graphical plot of the frequency response are 

used – Bode and Nyquist diagrams. The Bode plot 

(figure 2-24) graphs the magnitude of the gain and 

Figure 2-23: Root-Locus Analysis 

Figure 2-24: Bode Plot Analysis 
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phase of the system (amplification in decibels) versus the frequency of the input signal. 

The gain is plotted in decibels, the phase in degrees, while the frequency is plotted on a 

logarithmic scale. The Bode representation allows the designer to view the system’s 

response to various variable values and determine their appropriateness. Stability can be 

determined by examining where the magnitude plot crosses the 0-dB line. If at this 

frequency the phase angle is less (in magnitude) than 180°, the amplifier is stable. The 

Nyquist diagram plots the frequency response of the system in the imaginary plane using 

polar coordinates. This provides the designer with a different representation of the system 

response. The advantage of the Nyquist representation is that the designer can 

immediately recognise if the system is unstable using the Nyquist criterion – if the 

Nyquist plot encircles the point (-1, 0) the system is unstable. 

If initial analysis shows the design will result in an unstable system, the introduction of 

additional components can be used to reshape the root- locus. This is system 

compensation. The types of compensation used in the cruise control examples are 

proportional plus integral control and proportional plus integral plus derivative control. 

The frequency response of a system can be considered in terms of how it responds to a 

sudden step input (its transient response) and how it responds to a constant sinusoidal 

input (its steady-state response). The transient response details how quickly the system 

reaches the desired value and the steady-state response details how well it tracks the value 

once it has reached it. If the transient response 

is satisfactory but the steady-state error is too 

large, the system can be improved by operating 

on the actuating signal to produce one that is 

proportional to both the magnitude and the 

integral of this signal. The proportional plus integral controller (PI) is depicted in figure 

2-25. This compensation changes the root locus to improve the steady state error without 

appreciably affecting the response time. Proportional plus derivative compensation (PD 

control) improves the transient response by moving the root- locus farther to the left of the 

imaginary axis. This is achieved by operating on the actuating signal to produce one that 

is proportional to both the magnitude and the derivative (rate of change) of the signal. 

Finally, the PI and PD controllers can be combined in a single controller to produce a 

proportional plus integral plus derivative controller (PID). 

Figure 2-25: Integral Compensation 
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Advances in mathematical representation techniques, such as representing control 

systems in terms of state variables, has led to modern control theory methods. Techniques 

such as parameter optimisation and recursive least squares analysis, provide the designer 

with improved means of analysing the stability of control systems allowing the problem 

of optimal control to be addressed. The specifics of those techniques are mathematically 

intensive and are not required to understand their usage in the cruise control design 

examples. 

2.4.2 Mechanical Cruise Control Systems 

Ellinger (Ellinger 1985) and Koning (Koning 1984) provide implementation descriptions 

of the original analogue or mechanical cruise control systems that were used before the 

introduction of more advanced microprocessor based systems. Written for automobile 

mechanics and electronic hobbyists respectively, they do no t discuss the design of the 

system explicitly, however they include sufficient detail to infer the design rationale. 

Ellinger’s description begins by detailing the basic feedback loop architecture. The driver 

engages the system at the desired speed, a sensor is used to determine the current speed, 

and a controller is used to reduce the difference between the current and desired speeds. 

The controller unit achieves that function by connecting to a power servo actuator unit 

that directly affects the throttle. 

Details of the speed sensor, controller unit, and 

power servo actuator components required to 

implement the design were then discussed. The 

discussion details different types of speed sensors 

that could be used (flyweight governor or rotating 

magnet) and the locations in the vehicle where they 

could be positioned (speedometer cable or 

driveshaft). The internal operation of the speed 

controller unit and its connection to the power servo 

unit to manipulate the throttle provides a description 

of how the properties of mechanical components 

were used to implement the feedback network (figure 

2-26). 

Figure 2-26: Mechanical 
Flyweight Governor Speed 

Control Unit 
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“Centrifugal flyweights mechanically move a shaft against a spring. ... When 

the speed control is engaged a solenoid will clamp an armature against this 

shaft. ... When speed is slowed about 1/4 mph below the set speed, the plate 

closes the air port. This increases the vacuum in the controller housing. The 

housing is connected to the power servo so that the vacuum is increased in the 

power servo ... Increased vacuum in the power servo begins to open the 

throttle. When the speed increases about 1/4 mph above the set speed, the 

plate will move to close the vacuum port. Air comes into the housing through 

the air port to lower the vacuum. This gradually reduces the throttle opening 

to slow the automobile. The speed controller moves the control plate back and 

forth to adjust the vacuum so that it will hold the set speed within +/- 2 mph. 

... Only enough vacuum is supplied by the speed controller [to the power 

servo] to position the throttle correctly. Air and vacuum are balanced while 

the automobile is running at the set speed". (Ellinger 1985) 

2.4.3 Microprocessor Based Control 

With the increase in availability and decrease in price of microchips, automotive 

companies began to centre their cruise control designs on the microprocessor (Shaout and 

Jarrah 1997). Nakumura, Ochiai, & Tanigawa (Nakamura, Ochiai et al. 1983) utilised a 

microprocessor in their design and claimed significant improvements over conventional 

analogue designs. In addition to the basic cruise control requirements they were able to 

realise increased functionality, such as system preset, transmission control, and fail-safe 

functions – functionality that existing analogue designs could rarely obtain. Moreover, the 

microprocessor-based design was able to rectify deficiencies identified in the analogue 

designs. Those deficiencies include compensating the feedback system for improved 

stability, coping with degrading factors such as vehicle characteristics, and handling 

nonlinearity due accelerator link hysteresis. 

Nakamura began with a 

standard feedback control 

arrangement (figure 2-27) with 

the controller implemented in 

an electronic controller unit 

(ECU). The ECU has the ability 

Figure 2-27: Nakamura Block Diagram 
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to manipulate the automatic transmission unit in addition to the actuator-controlled 

throttle. To improve on previously developed cruise control designs, Nakamura identified 

issues in the physical environment that may degrade system performance. He observed 

that “the cruise control system is a nonlinear control system in which the accelerator link 

has the hysteresis characteristics” (Nakamura, Ochiai et al. 1983). Hysteresis refers to “a 

retardation of the effect when forces acting upon a body are changed (as if from viscosity 

or internal friction)” (Miriam-Webster Dictionary 1997). In the context of the cruise 

control system this refers the force required to manipulate the throttle. The actuator is 

required to exert a force on the accelerator to keep the vehicle at a constant speed, for 

example during an incline in the road. However, because of the nature of the physical 

link, the force required to keep the car at a constant speed once the road has become level 

again may be different than it was previously. This does not change the generic feedback 

architecture devised to meet the solution, however the functionality of the components 

which comprise the architecture need to be devised with respect to those characteristics. 

Nakamura also noted that the driving speed of the vehicle periodically fluctuated while 

the vehicle was under control of the cruise-control system and this variable needs to be 

considered in the design of the feedback components. 

“Since the speed signal is transferred via the speedometer cable, if angular 

velocity fluctuation caused by cable torsional resonance exceeds the ECU 

linear calculation limit, constant speed control becomes impossible.” 

(Nakamura, Ochiai et al. 1983) 

The design proceeds by analysing the 

requirements of the system using an 

event-based approach. The results of the 

analysis were represented using a simple 

flowchart. Using the results of the 

requirements analysis and the previously 

identified system issues, the components 

of the generic feedback system (figure 2-

27) were replaced by trans fer functions 

(figure 2-28) to mathematically express 

the elements to be controlled. The ECU, 

actuator, throttle-valve connection, and 
Figure 2-28: System Transfer Functions 
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vehicle characteristics were each modelled as transfer functions. That included using 

standard transfer functions for generic components such as the well-known Butterworth 

filter that was employed in the ECU design. 

The design process ensued by solving the transfer function equations to ensure the 

implemented system remained stable. Utilising the root- locus analysis technique, with 

parameter optimisation, graphical and mathematical tools were used to determine the 

appropriate values for the parameters of the transfer functions needed to meet the 

requirements. The system was then tested experimentally to ensure the design met the 

required objectives. The designers also note, “in the general running test, we enjoyed 

satisfactory driving without any problem.” (Nakamura, Ochiai et al. 1983). 

2.4.4 Considering the External Inputs in More Detail 

The design by Rutland (Rutland 1992) begins by suggesting that previously published 

cruise control designs do not fully consider the effects of the external environment when 

determining what disturbances should be considered in the analysis of the feedback 

system. For example, wind velocity and angle of the road could affect the rate of 

acceleration required to bring the vehicle to the desired speed. Moreover, he suggests it is 

not possible to design the system to consider those disturbances using the traditional 

stability analysis techniques such as Bode and Nyquist. Utilising a more recent design 

analysis technique called ‘matching’ (Zakian 1991), which employs a set theoretic 

approach and results in quantitative design criteria in terms of the inputs, he proposes to 

design a better cruise control system. 

Rutland notes that the principle of feedback control is required to satisfy the design 

criteria and explains that “an electrical feedback implementation incorporating a 

microcontroller” is the most appropriate generic system architecture to begin with. 

Moreover, he decides to 

utilise the same system 

configuration as Nakamura 

(figure 2-29) because it 

minimised cost and 

complexity. The process of 

implementing the generic 

architecture begins with the 
Figure 2-29: Feedback Block Diagram 
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selection of a pneumatic type actuator component, because it “gives the best compromise 

between the conflicting criteria of performance, cost, and reliability” (Rutland 1992). The 

pneumatic actuator connects to the throttle using a bead chain rather than a cable. This 

type of connection eliminated the problem of link hysteresis that was faced in the 

Nakamura design. An inexpensive speed sensor, connected to the speedometer cable for 

reliability, was selected as being suitable for the design. 

The block diagram of the system (figure 2-29) was modelled as a collection of 

appropriate transfer functions that could be solved to satisfy the required functionality. To 

develop the transfer functions, Rutland draws on the work of a number of published 

researches. They included Takaskai and Fenton’s (Takasaki and Fenton 1977) published 

models of vehicle longitudinal dynamics, the previously discussed design of Nakamura’s, 

and a number of other published designs. The resulting mathematical model (figure 2-30) 

is more detailed than Nakamura’s 

and includes variables to 

represent external inputs such as 

the angle of the road to the  

horizontal (θ) and the wind 

velocity (vw). They are in 

addition to the variables required 

for the driving forces, velocities, 

and throttle settings. 

In addition to the more detailed models, Rutland’s and Nakamura’s designs use 

significantly different techniques to solve the transfer functions. The traditional 

techniques for solving transfer functions were considered inadequate for representing the 

full set of external factors. Rutland recognised that if the design requirements were 

conceptualised differently, Zakian’s matching technique (Zakian 1991), which uses 

numerical methods on sets of values, could be utilised to resolve the conflicting design 

criteria. The primary objectives of the cruise control problem were then restated as:  

“To maintain a constant vehicle speed and acceptable ride comfort, for the set 

of all possible load force. A particular load force ... is said to be tolerable if it 

keeps the speed and ride comfort levels, within predetermined margins. … 

Using this definition, an essential objective of control system design is to 

Figure 2-30: Block Diagram of Transfer Functions 
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ensure the set of all possible load forces is a subset of the set of tolerable 

ones.” (Rutland 1992) 

The design then became a matter of adjusting the two sets to obtain a good match. 

The major difficulty with the technique, and the source of a great deal of Rutland’s design 

work (Rutland 1991), was the conceptualisation of the sets of possible and tolerable 

inputs so they could be compared. For example, the effect of the wind velocity can be 

modelled as having a persistent component and a superimposed transient component that 

produces the familiar gusts. The solution proceeds by utilising known mathematical 

analysis techniques to solve the equations. They were the method of inequalities to 

formulate the problem as a set of inequalities and the moving boundaries numerical 

search algorithm, for its simplicity and robustness, to solve those inequalities.  

2.4.5 Adaptive Speed Control 

The motivation for the design by Liubakka (Liubakka, Rhode et al. 1994) came from the 

manufacturer’s point of view that a design for mass production differs substantially from 

an academic study of competing theories. The cruise control system should consist of a 

single control module that provides acceptable performance over a wide range of vehicle 

lines. Moreover, it should do so without need for recalibration. The complexity of speed 

control design strategies had increased to meet more stringent customer expectations, 

however for “commonly used proportional feedback controllers, no single controller gain 

is adequate for all vehicles and all operating conditions. Such simple controllers no longer 

have the level of performance expected by customers.” (Liubakka, Rhode et al. 1994). 

For example, to accelerate to a desired speed, “low power cars will generally need higher 

[system] gains than high power cars. This suggests a need for adaptation to vehicle 

parameters.” (Liubakka, Rhode et al. 1994). For an individual car, the best performance 

on flat roads is achieved with slow response to input fluctuations, while rolling hill terrain 

requires a faster response. In control design terms, slow system response requires high 

gain in the integral compensator, while faster response requires a lower integral 

compensation gain. “This suggests the need for adaptation to disturbances.” (Liubakka, 

Rhode et al. 1994) 

The designer reviews the history of cruise control design strategies and concludes that a 

well-tuned proportional integral (PI) controller achieves the best performance. The 
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difficulty with the PI controller, however, is how to keep it well tuned when the system 

and operating conditions vary so greatly. The controller gain is dependent on: 

• Vehicle parameters (engine, transmission, weight, load, etc). 

• Vehicle speed. 

• Torque disturbances (road slope, wind, etc.). 

Figure 2-31 (from (Germann and 

Isermann 1994)) depicts how those 

conditions affect the vehicle model. 

Because the vehicle parameters are not 

constant and torque disturbances are not 

measurable, it is not possible to 

automatically set the system gain. 

Considerable testing and calibration 

work is required to ascertain the 

system gain of a PI controller for one 

type of vehicle. If the controller is then applied to a different model in the company’s 

range of vehicles, or to different variations of the original vehicles, such as a larger 

engine capacity or automatic transmission, the controller gain must be retuned. The goal 

for Liubakka was to design a “an adaptive controller that outperforms its fixed gain 

competitors, yet retains their simplicity and robustness.” (Liubakka, Rhode et al. 1994)   

Starting with the dynamics that are relevant to the design problem, a block diagram of the 

system transfer functions was developed (figure 2-32). A note is made that individual 

blocks contain different parameters and, possibly, a slightly different structure to 

represent the variations among different vehicle lines. Additionally, a separate input is 

made to the vehicle dynamics module to represent the road disturbance input such as a 

constant slope road or rolling hills. 

The distinguishing feature of this example is the design of the adaptive control algorithm 

used to optimise the parameters of the system for the particular operating conditions. The 

algorithm is based on an approach to feedback analysis that minimises the sensitivity of 

the output response to parameter variation. Liubakka notes that the sensitivity analysis 

method was original proposed in engineering literature in the 1960s, however it was 

Figure 2-31: Vehicle Modelling 
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abandoned because it led to instability when used in systems that required fast adaptation.  

The designers re-evaluated the strategy based on analysis work from the late 1980s that 

proved the sensitivity-based approach could result in stable system design if it matched a 

‘pseudo-gradient condition’. 

 “From the known bounds on vehicle parameters and torque disturbances, we 

evaluate, in the frequency domain, a ‘phase-uncertainty envelope’. Then we 

design a sensitivity filter to guarantee that the pseudo-gradient condition is 

satisfied at all points encompassed by the envelope.” (Liubakka, Rhode et al. 

1994) 

Beginning with a well-tuned, fixed-gain PID controller designed for a reference vehicle, a 

sensitivity filter was developed to adaptively tune the system within the bounds of an 

uncertainty envelope around that model. The PID controller for the reference vehicle was 

tuned to satisfy the conflicting requirements of providing a small speed error to accurately 

track the desired speed, and of minimising the amount of throttle motion to provide 

acceptable driver comfort. This was achieved by including the throttle position in the 

transfer function of the integral section of the controller. Adaptive control was attained by 

passing the speed error to the sensitivity filter, which produces a sensitivity function 

based on partial derivatives of the signal with respect to the proportional gain and the 

Figure 2-32: Transfer Functions of Adaptive Model 
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integral gain. Those partial derivatives are passed onto the gradient filter to develop the 

optimal proportional and integral gains using a gradient optimisation technique. 

The final testing and implementation of the system required subjective analysis based on 

experience with tuning standard PI controllers to determine the free parameters of the 

system. 

2.4.6 A Fuzzy Approach to Autonomous Intelligent Cruise Control 

Autonomous intelligent cruise control (AICC) systems are the subject of considerable 

attention in the control system community. Engineers at Mercedes-Benz, for example, 

have designed an AICC system that maintains speed and distance from preceding vehicles 

(Muller and Nocker 1994). The system operates as a traditional cruise control system by 

keeping the vehicle at the desired set speed as long as no preceding vehicle is detected. If 

a preceding vehicle is detected, the AICC switches automatically to distance control, 

driving with the same speed as the preceding vehicle at an ‘optimal distance’. If the 

preceding vehicle accelerates over the pre-selected maximum or leaves the lane, the 

system reverts to the original speed control. Finally, to handle emergencies, the driver can 

override the system at any time by braking or accelerating. 

The general cruise control feedback structure is 

augmented with deceleration control and a 

distance sensor (figure 2-33). Accurate distance 

sensing is notoriously difficult due to sharp road 

curvature, driver intentions, oncoming traffic, 

weather conditions, and particular driving 

situations. Those disturbances can never be 

eliminated and they are difficult to model 

accurately and implement in traditional PID control schemes (see Shaout’s review of 

cruise control technology (Shaout and Jarrah 1997)). Moreover, PID controllers fail to 

adequately handle steep ascents and descents because of their poor transmission shifting 

strategies. Experiments by the designers with PID control resulted in an unsatisfactory, 

jerky ride. To provide a more intelligent type of cruise control design, which would more 

accurately mimic driver behaviour, the designers chose to utilise a fuzzy logic control 

unit. 

Figure 2-33: AICC Block Diagram 
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In general, a fuzzy control unit accepts two inputs: the difference between the desired and 

current speeds, and the vehicle acceleration. Different categories of input value 

combination are then given a membership value. From that table of values a mapping of 

the output is generated from if- then control rules. For this particular design, AICC 

controller inputs were required for the distance error from the ‘optimal distance’, which 

was based solely on the speed of the vehicle, and the speed relative to the preceding 

vehicle. These were used to determine the acceleration or deceleration correction output. 

Experiments with this type of controller resulted in 

good speed tracking, however it was criticised for its 

inflexibility by human testers. Drivers wanted the 

‘optimal distance’ to also depend on weather 

conditions (rain, ice, etc) and driver behaviour (sporty, 

neutral, comfortable, etc). The fuzzy distance 

controller was subsequently revised (figure 2-34) to 

contain two fuzzy blocks. The first is used to 

determine the ‘optimal (safe) distance’. That stage 

uses sensors for the outside temperature, wiper action, 

and friction of the wheels to determine the weather 

conditions. The driver behaviour can be set using a potentiometer. The second stage uses 

the output from the first stage and the measured distance between the vehicles to 

determine the acceleration output. It extends the original distance controller by utilising 

the speed, distance, and steering angle to determine if the vehicle is in a curve and 

changes the required acceleration accordingly. Furthermore, the output is influenced by 

the driver’s behaviour, which is determined by measuring the brake and accelerator 

actions. 

The final implementation consisted of four fuzzy controllers with approximately two 

hundred rules. Experimentation and test-drives showed the system satisfied the design 

objectives and achieved near-human behaviour. 

Figure 2-34: Fuzzy Controller 
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2.5 The Software Design Approach 

2.5.1 Differences Between Designs That Used Different Methodologies 

All of the software-based cruise control design examples began by utilising a particular 

design methodology to develop a conceptual view of the problem. The terms ‘conceptual 

view’, ‘architectural style’, ‘domain model’, and ‘initial level of abstraction’ are all, to 

some degree, synonyms. They represent the act of depicting a view of the world, system 

context, or domain model, using a collection of separately identifiable concepts and 

relationships. Beginning with that view of the problem, the software designs proceeded 

through many stages until the concepts contained within the initial model were 

implemented. The gross structure of those initial models varied based on the chosen 

design formalism, architecture style, or design methodology. Significant variations also 

exist between designs that utilised the same design formalism or style. This section details 

those differences to develop a generic approach to software development that will be 

compared with a corresponding generic approach to traditional engineering. 

The designer’s initial model of the problem, based on the chosen formalism, highlights 

certain aspects of the problem at the expense of others.  

• State Based Modelling: Models the dynamics of the system, the modes in which it 

will operate, and the conditions that cause transitions between those states. 

• Functional Modelling: Identifies the major functional components required and 

extends the model by incorporating the control signals that highlight the sequence 

of operation of that functionality. 

• Feedback Control Modelling: Models the problem as a generic control system and 

instantiates the constituent concepts with specific concepts from the problem 

domain. 

• Object-Oriented Modelling: Allows the direct modelling of concepts identified in 

the developer’s perception of the problem domain. Different OO analysis 

methods, for example JSD, provide different guidelines for identifying boundaries 

around the entities (objects) that should be treated as first-class objects. 

• Real-time and Concurrent Modelling: Used in extension to one of the preceding 

styles, they provide concepts to explicitly considered timing constraints. They also 
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allow the representation of concepts that can be executed in parallel by the 

computer. 

These models only highlight a subset of the system properties required in a software 

implementation. To provide a complete view of the system design, the initial models were 

complemented with other design representations that emphasised the aspects not depicted 

in the initial model or abstraction.  

All designs must contain formalisms to represent the desired functionality and behaviour 

of the proposed system, and a means of representing the structure of how that 

functionality and behaviour will be implemented in software (Harel 1992). The software 

designs exemplify that observation.  

• The state-based designs began with the behaviour and then developed the 

functionality and structure. 

• The object-oriented notation encapsulates the functionality and structure in a 

single concept, the object, and then augments the design with a representation of 

the control flow. This is usually done with a state transition diagram. 

• The traditional structured analysis and design examples represent the functionality 

and behaviour with data and control flow notations. A structure chart notation 

represents the system structure. 

• Finally, the feedback control representation models the functionality of the design 

using a generic pattern that includes its own internal means of control. An 

additional behavioural notation is then required to depict how the feedback system 

is controlled within a global context. The structure representation depends on how 

the concepts in the feedback model will be implemented in the chosen 

programming language, for example object-oriented or procedural. 

Both Shaw (Shaw 1995c) and Gomaa (Gomaa 1993) performed an analysis of the 

primary design formalisms provided by the different methodologies, using cruise control 

as an example. Shaw, concentrating on properties of the architectures derived using those 

methodologies, reviewed designs from each of the categories mentioned. The designs 

reviewed by Shaw were (Booch 1986; Higgins 1987; Ward and Keskar 1987; Smith and 

Gerhart 1988; Birchenough and Cameron 1989; Yin and Tanik 1991; Atlee and Gannon 

1993; Shaw 1995b) and an NRL/SCR design by Kirby that could not be located in the 
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research literature. Shaw also notes the existence of some of the other designs used in this 

study though they were not used in her own. Shaw’s analysis evaluated the software 

architectures using the following criteria: 

• Locality and separation of concerns. 

• Perspicuity of the design. 

• Analysability and checkability. 

• Abstraction power. 

• Safety. 

• Integration with the vehicle. 

Gomaa, rather than review a set of existing cruise control designs, analysed the ability of 

existing methodologies to represent real- time systems by developing his own cruise 

control designs. The methodologies used where RTSAD, DARTS, JSD, NRL/SCR, and 

OO. The analysis evaluated the methodologies in terms of the following real-time system 

issues: 

• Provision of concepts for representing concurrent tasks. 

• Realisation of information hiding/object structuring to support modifiability and 

reusability. 

• The definition of control aspects of the system using state machines. 

• The handling of timing constraints for real-time issues. 

Both of these research efforts provide useful insights for software development. However, 

for the purposes of this study, only portions of Shaw’s analysis are relevant. Those 

portions are summarised now and a critical examination presented in the comparison of 

software and hardware design approaches. 

Shaw’s discussion begins by noting the substantial differences that exist between the 

software designs, attributing them to variations among individual designers and the way 

each architecture led the designer to view the world. Each designer chose a particular 

architecture style and modelled the solution based on that style. Additional 

representations were then used to provide complementary views of the system. Those 

views were decomposed and combined to create the system, though not all of those 
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models could persist until runtime. Shaw notes that most models provide associated 

techniques to ensure the correctness of the aspects of design they are intended to 

highlight. However, when multiple views were used to provide decompositions from one 

representation to another or when concepts from one model were added to another model, 

confusion could arise. When considering perspicuity of the design, each of the examples 

could be defended as matching some view of reality. However, Shaw claims that styles 

such as object-oriented and process control are more explicit in the ir modelling of the 

‘real world’ than, for example, functional decomposition. The particular modelling styles 

allow the designer to decompose the problem into parts that localise decisions. In 

addition, they facilitate the ability to identify and implement components that can be 

reused in similar applications. Finally, Shaw suggests a guiding factor in choosing a 

particular style is the degree to which it allows the identification of entities that are most 

important to the client.  

2.5.2 Differences Between Designs That Used The Same Methodology 

In addition to differences between designs caused by the use of different methodologies, 

significant differences also exist between designs that used the same methodology or 

architecture style. That was most evident in the collection of object-oriented designs, 

though it also exist in the other design methodologies. 

Booch’s object-orientated analysis (figure 2-4) was a result of ‘objectifying’ the inputs 

and internal states of the data flow diagram (figure 2-3) that was used to conceptualise the 

original requirements. Yin and Tanik (Yin and Tanik 1991) used the same data-flow 

Figure 2-35: Yin & Tanik Object Model Figure 2-36: Yin & Tanik Architecture 
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diagram as Booch to represent the system requirements.  However, from the same 

representation they created a different object model by identifying objects to represent the 

external elements and a single object for the entire cruise control system that 

encompasses all other elements (figure 2-35). The generated system architecture 

discriminates between active and passive objects and incorporates system operations 

(figure 2-36). 

The central tenet of the JSD method is similar to that of object-oriented design, “the key 

to software quality lies in the structuring of the solution to a problem in such a way as to 

reflect the problem itself” (Birchenough and 

Cameron 1989). However, in JSD objects are 

referred to as ‘entities’ and their methods are called 

‘actions’. The JSD approach to analysis emphasises 

the identification of actions before entities, with 

objects becoming entities only if they suffer time-

ordered or state-changing actions. The analysis by 

Birchenough and Cameron results in an ‘object-

model’ that consists of three objects: ‘driver’, 

Figure 2-37: Birchenough JSD Entities 

Figure 2-38: Gomaa JSD Entities 
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‘wheels’, and ‘accelerator’. Figure 2-37 depicts the JSD entities and their actions, with 

time orderings, in structure chart notation. In contrast, Gomaa uses the same JSD 

methodology and identifies ‘cruise control’, ‘calibration’, and (drive) ‘shaft’ as the 

highest level entities. Figure 2-38 shows Gomaa’s ‘cruise control’ and ‘shaft’ structure 

diagrams. In effect, Gomaa models the operations of Birchenough’s ‘driver’ entity within 

his ‘cruise control’ entity. Gomaa also identifies a ‘buttons’ entity, however that entity 

represents the monitoring functions of the Brackett requirements, which Birchenough did 

not consider.  

Appelbe and Abowd (Appelbe and Abowd 1995) note that Booch’s design was presented 

from one of the earliest articles on object-oriented design and provide a new design based 

on Booch’s more recent OO design guidelines (Booch 1991). Those guidelines require 

candidate objects meet the criteria of having state, behaviour, and identity. When applied, 

Figure 2-39: Appelbe Object Model Figure 2-40: Gomaa Object Model 

Figure 2-41: Wasserman High-Level Architecture 
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the guidelines result in an object model of the system that is depicted in figure 2-39. 

Curiously, Gomaa uses the same set of Booch guidelines to develop his object-oriented 

design (Gomaa 1993) and develops a completely different object-model to Appelbe and 

Abowd. His design is shown in figure 2-40. 

Wasserman’s approach to design (Wasserman, Pircher et al. 1989) extends traditional 

structured analysis with additional notations, one of them being the object- like notion of 

information clusters that encapsulate data and functionality in a single structure. That 

approach results in a hierarchical collection of diagrams depicting the information 

clusters, operations, control & data flow, and asynchronous processes in the design. The 

high level system, depicted in Wasserman’s OOSD notation, is shown in figure 2-41. 

The object-oriented designs result in vastly different collections of objects. Table 2-1 

depicts the collections of objects identified by the different designers. 

Design Example Objects Identified. 

Booch Driver, Brake, Engine, Clock, Wheel, Current speed, Desired 

speed, Throttle, Accelerator. (9) 

Yin & Tanik Driver, Brake, Engine, Clock, Wheel, Cruise control system, 

Throttle, Accelerator. (8) 

Birchenough Driver, Wheels, Accelerator. (3) 

Gomaa (JSD) Cruise control, Calibration, Drive shaft. (3) 

Wasserman Cruise controller, Engine monitor, Cruise monitor, Brake 

pedal monitor, Engine events, Cruise events, Brake events, 

Speed, Throttle actuator, Drive shaft sensor. (10) 

Appelbe & Abowd Driver, Brake, Engine, Clock, Wheel, Cruise controller, 

Throttle. (7) 

Gomaa (Booch OO) Brake, Engine, Cruise control input, Cruise control, Desired 

speed, Throttle, Current speed, Distance, Calibration input, 

Calibration constant, Shaft, Shaft Count. (12) 

Table 2-1: Cruise Control ‘Objects’  
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The different object-oriented or object-like methodologies all attempt to achieve the same 

purpose – the identification of the important objects in the designer’s perception of the 

problem.  

“With an object orientated approach … we instead structure our system 

around the objects that exist in our model of reality. By extracting the objects 

from the data flow diagram … immediately we can see that the object 

orientated decomposition closely matches our model of reality.” (Booch 

1986)2 

Similar claims can be found in almost any reference on object-orientated development. 

Those claims are often used as justification for the belief that object-oriented techniques 

promote reusability of implemented concepts – a claim based on the assumption that 

people identify similar objects in their models of reality. However, the enormous 

differences between the collections of objects used by the designers to model a problem 

as small and well-defined as the cruise control system clearly highlights the differences in 

the way similarly trained people can view the same reality. This observation alone calls 

into question the ‘reusability’ claims which pervade object-oriented design reasoning3. 

The differences between design examples created using the same design methodology or 

architecture style were not limited to the object-oriented designs. The design of Smith and 

Gerhart depicts a state-based approach to development that begins by identifying the 

control events that exist in the problem (figures 2-5, 2-6, & 2-7). Their design identifies 

standard driving events, cruise control actions, and monitor features (e.g. speed 

calculation) as the important activities. In contrast, Atlee and Gannon also produced a 

state-based design (Atlee and Gannon 1993). They utilised Brackett’s formulation of the 

cruise control problem to demonstrate their state-based model checking technique for 

verifying the requirements of event-driven systems. They recognise that a state machine 

representation of a system can serve as a temporal logic model, which can be tested for 

safety by presenting the properties as temporal formulae. The result of the process is a 

state-based representation of the system, expressed in computational tree logic (CTL), 

                                                 

2 More recent design guidelines provide rules of increased complexity for identifying those objects, 
however their purpose is still the same. 

3 This point is discussed in more detail in chapter 5. 
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Figure 2-42: Atlee & Gannon CTL Model 
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which is detailed enough to serve as a system architecture. That model does not provide 

enough design rationale to analyse the design process to completion, however there is 

sufficient information to show how the state-based or event-driven approach to design 

drives the initial architecture and how that architecture sets the path for the subsequent 

design 

The initial step in the design process is the partitioning of the system into four possible 

modes: off, inactive, cruise, and override (on but not in control). A transition table 

represents those modes and the events that cause transitions between them. A number of 

operations and transformation algorithms were performed on the requirements to 

determine the validity of the requirements or initial system conception and, finally, the 

system was represented as a CTL model (figure 2-42). The Atlee and Gannon design 

stops at that point, however to complete the design of the system the functionality 

required to generate the identified events and to implement the functionality in each state 

would need to be addressed. 

The different process control based designs also exhibited significant variations. Shaw’s 

design begins with the abstraction of a ‘classic feedback loop’ and proceeds to match the 

concepts of the problem domain to the concepts of the generic feedback architecture. 

Higgins uses a similar approach (Higgins 1987) but develops a different system 

representation. His design begins with a more complex representation of the generic 

feedback pattern that contains a secondary feedback loop (figure 2-43). The process then 

matches the problem domain concepts to the feedback pattern concepts to depict the 

system representation (figure 2-44). Higgins then considers the rest of the system 

operations as feedback concepts and derives another, more complex feedback 

arrangement (figure 2-45).  

Figure 2-44: Higgins Specific Feedback Figure 2-43: Higgins Generic Feedback 
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Shaw and Higgins use the same design approach, beginning with a specific conceptual 

model (feedback control) rather than a particular methodology. This is in fact a design 

pattern strategy. In this approach, a generic arrangement is recognised as a suitable means 

of solving the problem and the pattern is instantiated by realising the generic pattern 

components with specific concepts from the problem domain (Gamma, Helm et al. 1994). 

The relationship between design patterns and software architecture styles is not well 

defined with researchers debating whether or not they are the same. A special issue of 

IEEE Software (Mellor and Johnson 1997) provides many papers discussing the issues. 

Jones (Jones 1994) also begins his design by recognising the need to employ the generic 

feedback architecture of traditional engineering design. Trained as an electronic engineer, 

his design differs from both Shaw’s and Higgin’s because of his more detailed knowledge 

of feedback control systems. His design also matches the concepts of the cruise control 

domain to those of the generic control architecture. However, his pattern-matching 

process goes to a deeper level of detail to consider feedback concepts such as ‘sampling 

frequency’, ‘system gain’, and ‘system stability’. Interestingly, his design process is not 

different to the approach of Shaw and Higgins, however it goes to a greater level of detail. 

The oldest of the design methodologies used in the examples, structured analysis and 

design, also shows variations when used to model the cruise control problem. The 

Ward/Mellor SADT design of Ward and Keskar (figures 2-12 & 2-13) can be compared 

Figure 2-45: Higgin's Complex Feedback Model 
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with their Boeing/Hatley 

representation and with the 

functional decomposition examples 

of Booch and the SADT design of 

Gomaa. Ward and Keskar’s 

examination of the Boeing/Hatley 

technique begins with a data flow 

diagram (figure 2-46) and a 

representation to depict the control 

flow (figure 2-47). 

Booch uses a functional 

decomposition design to 

evaluate his object-

oriented approach. The 

data flow diagram was 

given in figure 2-4 and is 

quite similar to that 

developed by Ward and 

Keskar.  

Gomaa, using RTSAD to 

evaluate real-time 

modeling techniques, 

develops a detailed, 

hierarchical, structured 

Figure 2-49: Gomaa STD 

Figure 2-48: Gomaa DFD 

Figure 2-46: Ward & Keskar's BH DFD Figure 2-47: Ward & Keskar's BH STD 
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design using the Ward/Mellor notation. Beginning with the system context diagram, the 

design is partitioned into the ‘Perform Cruise Control’ and ‘Perform Automobile 

Monitoring’ functions, where the later is used for the monitoring functions of the Brackett 

requirements. The data flow diagram and state-transition diagram for high- level cruise 

control functions are shown in figures (2-48 & 2-49). The data flow diagrams are refined 

to successive levels to complete the design of the system before the structure charts are 

created. 

2.5.3 Discussion 

A generic approach for the software design examples was identified. That approach 

begins by identifying some means of representing the problem ‘on paper’. Modelling the 

problem using a known design methodology or using a known architectural style achieves 

the same purpose. It represents the designer’s mental conception of the problem in terms 

of entities and relationships that can be eventually implemented in a computer program. 

Those methodologies constrain the types of entities that can be chosen for the initial 

model. Design methods such as object-oriented or state-based constrain the entities and 

the relationships to those that can be represented in the chosen formalism. Styles of 

software architecture similarly limit the entities that exist at the highest level of 

abstraction to entity and relationship types of well-known large-scale system 

arrangements such as ‘pipe and filter’ or ‘process control feedback loops’. Although the 

developer is constrained by the choice of formalism used to represent the problem, the 

presented examples show that there can be many variations within a particular style of 

development – even for such a small problem as automotive cruise control. 

The reasons why those differences occurred, both between particular design styles or 

methodological formalisms, and within those formalisms, are examined later during the 

comparison with the generic hardware approach to design. 

Before presenting that generic hardware approach however, there is one more observation 

that influences any attempt to make analogies between the two disciplines. That 

observation concerns the notion of feedback. Only the designs of Shaw, Higgins, and 

Jones identify themselves as being feedback or process control systems. Indeed, Shaw 

stresses the explicitness of her process control approach using Booch’s object-oriented 

design as a counter example. However, the definition of a feedback control system is 

simply the implementation of a “path or loop from the output back to the controller. Some 
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or all of the outputs are measured and used by the controller … [It] may then compare a 

desired plant output with the actual output and act to reduce the difference between the 

two.” (Stefani, Clement J. Savant et al. 1994). All of the software design examples, 

regardless of the methodology used to model the system, use the current speed to affect 

the system control, thereby making them feedback systems. The three ‘feedback’ based 

designs make the concepts of the generic feedback loop explicit during their design 

process. However, those same concepts are also evident in the other examples. They are 

not stated explicitly, but they are still evident. 

This observation highlights questions concerning the discipline’s understanding of what a 

system representation actually is. Those questions are examined in detail during the later 

comparison. 

2.6 The Hardware Design Approach 
All of the engineering designs exhibited a similar pattern. Beginning with a set of system 

specifications, a feedback control architecture consisting of well-known generic 

components was created. The designer then created models, usually mathematical transfer 

functions, of the specific functionality required of those generic components. 

Combinations of analytic and experimental techniques were used to solve the unknown 

parameters of those transfer functions and to implement the functionality of the system. 

Finally, experimental testing of the system fine-tuned the variables and ensured it 

complied with the original performance specifications. Each of the steps in this generic 

process is discussed, detailing the variations that exist. The discussion of feedback control 

architecture, design reuse, component reuse, standard analysis techniques, use of 

mathematical models, and differences between the logical and implementation views of a 

system are used to develop an in-depth understanding of the engineering development 

process. That understanding is subsequently used to compare the traditional engineering 

approach with the software development process. 

2.6.1 The Evolutionary Nature of the Designs 

Starting with the establishment of the specification of the system, the first observation 

concerns the evolutionary nature of the system designs. The problem of cruise control has 

stayed essentially the same since the first cruise control systems in the 1950s. Even the 

most recent variants, autonomous intelligent cruise control systems, are merely extensions 



Cruise Control Comparison 

Understanding Software Engineering  58 

of the original principle – maintaining the constant speed of a vehicle even over varying 

terrain. The need for new designs did not change through the development of new 

requirements. Rather, the requirements were considered in more detail by demanding 

improvements over previous solutions. Those improvements were considered from the 

customer’s point of view not the designer’s. The examples did not suggest a new way of 

designing or analysing the system simply because it was easier than a previously used 

technique. It was done to produce a system that performed better for the customer or was 

cheaper to manufacture for the producer. For instance, Nakamura developed a 

microprocessor based design to provide functionality that traditional mechanical designs 

could not and Liubakka produced a design that worked better across a range of vehicles. 

Traditional methods of control were originally adequate, however as customer 

expectations changed, and better design techniques were applied, improved, rather than 

new, design solutions were possible. The designs, presented in chronological order, 

demonstrate that evolutionary nature. 

From the system specifications, the 

problem was immediately recognised as a 

control problem – an area of engineering 

design with a long history of theory and 

experimentation. That research has led to a 

number of system configurations for 

dealing with control problems, most notably feedback control (figure 2-50). All of the 

engineering designs, regardless of the major area of concern, the complexity of their 

controlling mechanism, or the nature of the components used (mechanical or 

microprocessor based) utilised the principle of feedback control in their system. The 

choice of feedback control as the global system configuration appears to be such an 

obvious choice that only one paper provided any design rationale for the decision: 

“Feedback control is needed to achieve the desired design criteria in the 

presence of disturbances, and uncertainty in the plant model [a production car 

with a carburetted internal combustion engine and manual transmission] and 

parameters. ... The modern trend seems to be to implement digitally with 

microcompomputers ... For the reasons above, an electrical feedback 

implementation incorporating a microcontroller was chosen. The very simple 

Figure 2-50: Generic Feedback Model 
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control system configuration ... was picked to minimize cost and complexity.” 

(Rutland 1992) 

The individual feedback configuration was depicted for each of the presented examples, 

however the use of feedback in the remaining cruise control examples provides additional 

evidence of design reasoning in the engineering disciplines. For instance, an alternative 

approach to the adaptive controller of Liubakka was presented by Oda et al (Oda, 

Takeuchi et al. 1991; Tsujii, Takeuchi et al. 1991). Their design used a feedback network 

within the global feedback structure to self- tune the system to changes in the vehicle 

operating model (figure 2-51). 

Similarly, in contrast to the fuzzy system approach of 

Muller, Ioannou (Ioannou, Xu et al. 1993) used a 

conventional PID controller arrangement to produce 

an AICC system (figure 2-52). Moreover, he used 

feedback control systems to model human driving 

behaviour and then used those models to compare 

and evaluate his PID based design.  

Three other designers used the 

feedback system configuration 

slightly differently to those 

previously presented. Takasaki 

(Takasaki and Fenton 1977) 

developed mathematical models 

of longitudinal vehicle dynamics 

that were used by other designers 

to develop their cruise control transfer functions. 

The derivation of those models involves the use of 

feedback models to identify particular parameter 

values. Furthermore, the design of Lee (Lee, Kim 

et al. 1993) concentrated on just one aspect of the 

design – controlling the movement of the throttle 

in a pneumatic cruise control system. Traditional 

techniques used a ‘bang-bang’ method of control, 
Figure 2-53: Throttle Control 

Figure 2-51: Adaptive Control 

Figure 2-52: AICC PID System 
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where the control direction is switched after the 

error crosses a desired value. Lee develops a 

‘sliding mode’ control by modelling the system 

using the anticipatory band in the phase plane. This 

allowed the system to begin switching the control 

direction before the error reached the desired value, 

thereby allowing a smoother and more accurate 

tracking of the required throttle opening. The resulting system (figure 2-53) uses a 

feedback network to control the throttle within the global feedback network of the overall 

cruise control system. Finally, St. Germann and Isermann discuss model-based methods 

for controlling all longitudinal vehicle dynamics. Obtaining the required functionality is a 

more general design problem than the cruise control system and requires the ability to 

bring the vehicle from any operating point to any other. The result was a feedback system 

incorporating a linear controller and a fuzzy velocity controller (figure 2-54). 

2.6.2 The Reuse of Existing Designs and Components 

In all of the engineering designs the development of the system architecture entailed 

considerable design and component reuse. In fact, the use of feedback control is itself a 

form of design reasoning reuse of the kind that software engineering researchers have 

sought to bring to software development. It is standard practice for engineers to publish 

their designs and utilise the designs of others. For instance, Rutland used the initial 

system architecture of Nakamura’s design and developed his model of transfer functions 

by utilising the work of three other published designs. Liubakka reviewed the published 

history of cruise control examples and identified PID control as the most robust design 

strategy with the best tracking performance. He then improved on previous PID designs 

by using an adaptive control technique to overcome the deficiency with PID controllers – 

their vehicle dependant system gain. 

The hardware cruise control examples provide many examples of component reuse. That 

reuse involves both specific components, such as Nakamura’s use of the Butterworth 

filter, and generic components such as ‘actuators’, ‘speed sensors’ and ‘controllers’. 

“The actual acceleration of the vehicle can be determined using numerical 

differentiation. There is a wide range of nonlinear controllers that can be 

Figure 2-54: St Germann Model 
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chosen as suitable candidates for this application.”  (Germann and Isermann 

1994). 

“A pneumatic type actuator was selected as it gives the best compromise 

between the conflicting criteria of performance, cost, and reliability.” 

(Rutland 1992). 

The ability to reuse previous system structures, especially for routine design problems, is 

enhanced by their capacity to communicate designs graphically. Diagrammatic 

representations serve as a visual communication medium that allows engineers to convey 

their ideas, not only to others, but also to reflect on their own work. The ability of 

engineers to convey their designs and ideas in a uniform, well-understood manner across 

the entire discipline has helped their profession to evolve by successfully building on the 

ideas of others. The graphical communication medium has provided the infrastructure for 

that evolution. Training in technical drawing is required in virtually every engineering 

school in the world. Disciplines have their own standards for graphical representation (for 

example: (The Institution of Engineers 1973)) and all engineers need to understand the 

fundamental principles, the grammar, of their graphical language. In fact, someone 

lacking that understanding is considered professionally illiterate (Giesecke, Mitchell et al. 

1974). 

Shaout’s summary of cruise control technology 

(Shaout and Jarrah 1997) shows clearly the level 

of design reuse, generic component reuse, and 

specific component reuse that is achieved in the 

engineering designs. He states that present day 

cruise control systems are all feedback systems 

consisting of four generic elements: a vehicle 

speed sensor, a user interface, an electronic 

control module, and a throttle actuator (figure 2-

55). Shaout discusses and provides additional detail for each of these generic components. 

However, the specifics of the components are superfluous. For engineers, knowledge of 

the generic system architecture and functionality of the generic components is enough to 

understand the design. 

Figure 2-55: Generic Cruise Control 
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To summarise, the architectures of the cruise control examples exhibit four types of reuse. 

(1) Design reuse of feedback architectures; (2) reuse of components of functionality that 

need to be specified though further decomposition; (3) reuse of generic components that 

need further specification through parameter identification; and (4) reuse of specific 

components that need no additional design detail.  

2.6.3 The Mathematical Modelling of System Requirements and Component 
Behaviour 

Using the architecture of the system, the engineering designs represented the constituent 

components, both generic and specific, using mathematical models. Those mathematical 

models describe the required behaviour of the components, based on the specifications, 

which must be met to successfully implement the system. 

“In order to analyze a dynamic system, an accurate mathematical model that 

describes the system completely must be determined. The derivation of this 

model can be based upon the fact that the dynamic system can be completely 

described by known differential equations or by experimental test data. Thus 

the ability to analyze the system and determine its performance depends on 

how well the characteristics can be expressed mathematically.” ((D'Azzo and 

Houpis 1988) pp. 21). 

The engineering design examples highlight different methods of modelling the cruise 

control problem as the performance requirements changed and as new analysis techniques 

became available. Those variations include modelling system and component properties, 

modelling vehicle motion as a whole, modelling environmental factors, and representing 

models of human driving behaviour. 

The first microprocessor based design, by Nakamura, provides sections explaining how 

the individual components of his system architecture were modelled (figure 2-28). Those 

models are frequency dependent, time varying transfer functions incorporating the 

elements to be controlled. Unknown parameters represent the values that need to be 

determined through analysis and experimentation to provide the specifics of the 

functionality – functionality that must meet the performance and stability requirements. In 

addition to the core control-problem specification, Nakamura’s model of transfer 

functions incorporated aspects to represent externa l disturbances that must be tolerated – 

a model of the accelerator- link hysteresis. Unlike the models produced by software 
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designers, that engineering model does not represent the designer’s perception of the 

functionality that an engineering component should perform. It is a model of the physical 

properties of an actual accelerator link. Similarly, the other component transfer functions 

are not models of the functionality that generic components should perform. They are 

models of the relevant behavioural properties of physical materials, which have been 

determined through experimental testing, and which engineering components can be 

made to match. The physical components exhibit properties that designers utilise as 

functionality4. 

Rutland utilised the same architecture as Nakamura, yet represented the components of 

the system using a different collection of transfer functions (figure 2-30). By realising one 

of the generic components in the architecture with a different physical component he 

eliminated the need for considering accelerator- link hysteresis, thereby removing the 

requirement to represent it in the system transfer function. However, because he 

recognized the need to consider additional environmental factors in the performance 

specification, his mathematical model had to extend Nakamura’s model to incorporate 

them. The parameters of the model represent system variables such as angle of the road to 

the horizontal, wind velocity, load force, driving force at the wheels, throttle angle 

command, and the measured velocity. Interestingly, the final mathematical model 

involves another example of design or design reasoning reuse by incorporating the 

mathematical models of others. 

“A linear perturbation model was considered adequate, since the design is 

restricted to speed regulation at some constant value. According to Takasaki 

and Fenton, under small signal conditions a vehicle’s 

longitudinal dynamics are quite velocity dependent, but 

for speeds greater than 77 km h-1, a second order fixed 

parameter model can be employed to represent the 

dynamics between the throttle angle command and the 

velocity of the vehicle’s wheels.” (Rutland 1992). 

Rutland reused the mathematical model of Takasaki and 

Fenton as the foundation of his own improved model because 

                                                 

4 This is discussed in more detail in the next chapter. 

Figure 2-56: St Germann 
Components 
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it had been published as a separate, self-contained piece of research (Takasaki and Fenton 

1977). Engineers recognise the need for models of systems and the environment to 

develop applications to exist within them. Similarly, St. Germann’s design to control the 

complete longitudinal dynamics of a vehicle began with the rigorous development of a 

mathematical model for the global system. Because the model was described by large, 

non- linear differential equations, which are to complex to be implemented in hardware 

and operate in real time, the model was divided into sections each with its own separate 

model. The powertrain, which includes the intake manifold, engine, and hydrodynamic 

coupling; and the gearbox, driveshaft, tyres, and the motion of the vehicle, each had to be 

modeled. Those models were augmented with models of the brake and a damping system 

to represent air drag and rolling resistance (figure 2-56). 

Finally, Ioannou evaluated his PID-based AICC system by modelling a platoon of 

vehicles in motion (figure 2-57) and by comparing his design with different mathematical 

models of human driving behaviour. Figure 2-58 (Ioannou and Chen 1993) shows the 

block diagram of the generic human driver model. Ioannou utilises three different models 

of human driving behaviour (a linear follow-the- leader-model, a linear optimal control 

model, and a look-ahead model) to derive the transfer functions of the block diagram. He 

concludes:  

“A human driver controller can 

be replaced with a more 

sophisticated one that is based on 

a more realistic model of vehicle 

dynamics and driven by a 

computer and physical sensors. 

Computer control will eliminate 

human reaction time, be more 

accurate, and be capable of 

achieving much better 

performance. Better 

performance will translate into 

smoother traffic flows, 

improved flowrate, less 

Figure 2-58: Human Driver Model 

Figure 2-57: Vehicle Following Model 
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pollution, and safer driving.” (Ioannou and Chen 1993) 

These examples highlight the importance of the designer’s ability to produce 

mathematical models of real world artefacts during the design process. The engineer can 

formulate the problem in terms of mathematical functionality – functionality that is 

known to be achievable using the components of the discipline. Solutions can then be 

found through iteration, analysis, and experimentation to produce an implementation that 

exhibits the required performance attributes. Performing the design in terms of 

mathematical properties results in context or domain independent development. 

“Throughout the various phases of linear analysis … mathematical models are 

used. Once a physical system has been described by a set of mathematical 

equations, they are manipulated to achieve an appropriate mathematical 

format. When this has been done, the subsequent method of analysis is 

independent of the nature of the physical system; i.e., it does not matter 

whether the system is electrical, mechanical, etc … [or] whether the 

controlled variable has the physical form of position, speed, temperature, 

pressure, etc…. This technique helps the designer to spot similarities from 

previous experience.” ((D'Azzo and Houpis 1988) pp. 16&191). 

The designer models particular properties of the problem space and selected generic 

components of the solution space. As the development proceeds, a collection of artefacts 

that exhibit the required component properties are combined into a complete system. That 

system then demonstrates the required properties of the global performance 

specifications. The engineer can model many properties of the system and environment 

and part of the skill of engineering design is to determine which properties are important 

to consider and to what level of detail those properties should be modelled. 

2.6.4 The Use of Standard Techniques During the Design Process 

Standard techniques were used to solve the mathematical models of the cruise control 

designs to ensure they met the performance requirements and remained stable during 

operation. The performance of physical systems, networks and devices can be described 

using appropriate differential equations. However, the classical solution to those 

differential equations is mathematically intensive and tedious. Moreover, if the design 

does not meet the specifications, it is not easy to determine from the solution of those 

differential equations just what physical parameters in the system should be changed to 



Cruise Control Comparison 

Understanding Software Engineering  66 

improve the response. To facilitate the solution of differential equations and to analyse 

and improve the system performance, standard techniques are used to manipulate the 

equations, analyse the system for stability, and represent the performance characteristics 

in a more useful format. 

The cruise control designs provide a broad range of examples that highlight the use of 

standard analysis techniques in the traditional engineering approach to design. 

Throughout the design examples, those techniques were used to validate solutions, 

compare alternatives, and prove the proposed solutions met the specified requirements. 

Nakamura graphs the characteristics of the individual components comprising his cruise 

control design to ensure each one met its prescribed specification. Global system stability 

was then checked using traditional Bode and Nyquist methods and the parameters of the 

system were optimised based on those representations. Rutland recognised that the Bode 

and Nyquist representations could not account for system equations based on a model that 

incorporated variables to represent complex external disturbances. He subsequently used 

a different analysis method, matching, which solved the equations using a set theoretic 

approach. Oda et al (Oda, Takeuchi et al. 1991; Tsujii, Takeuchi et al. 1991) designed a 

self-tuning cruise control system that could be used to operate over a range of vehicle 

models and operating conditions. The system automatically adjusted the feedback gain 

continuously in terms of changes in a vehicle model. That vehicle model was estimated 

using the recursive least squares method to derive the model parameters. It worked by 

placing the estimated model in parallel with the vehicle and using the square of the 

deviation between the vehicle output and the estimated one to reduce the estimated 

parameters. That technique was used because it was the most basic known algorithm, 

requiring the least calculations. It also assured safety and reflected the accumulated 

design experience in the cruise control field. 

In addition to using standard analysis techniques to check the performance and stability 

characteristics of the design, Liubakka uses standard techniques to improve the 

performance of the generic control system. Noting that proportional feedback control has 

conflicting requirements of fast response time and constant error tracking, the 

proportional controller needs to be augmented with integral and derivative compensation. 

Those techniques are recognised in the control system domain as standard methods for 

adjusting the system response to reduce the compromise required between the conflicting 

performance criteria. 
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Engineers realise that although many standard techniques exist, 

“… no single method is to be used to the exclusion of the others. Depending 

on the known factors and the simplicity or complexity of the control-system 

problem, a designer may use one method exclusively or in combination. With 

experience in the design of feedback control systems comes the ability to use 

the advantages of each method to a greater extent.” ((D'Azzo and Houpis 

1988) p. 16). 

Indeed the choice of which technique to use is a notoriously difficult problem. Cruise 

control is seen as a benchmark problem for control system researchers to evaluate 

techniques. Mehra, in an introduction to a ‘real- life, control design problem session’ at 

the 1995 Conference on Decision & Control, made the following remarks: 

“The field of control theory is conspicuous by its lack of meaningful 

benchmark problems. This has led to confusion in the field regarding the 

relative performance of different design approaches [figure 2-59]. … Various 

permutations and combinations of different paradigms lead to a bewildering 

plethora of control design approaches. The most difficult question for an 

application engineer is to decide which approach or paradigm to use for his 

specific application and the control field offers very little guidance to the 

practitioner in this area.” (Mehra and Baheti 1995). 

Figure 2-59: Control System Design 
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2.6.5 The Amount of Assumed Design and Component Knowledge 

The final observation to make about the engineering development process concerns what 

was missing from the engineering design examples – the implementation detail. Only the 

publications by Ellinger and Koning provided any detail of the system implementation 

and that was because they were explaining the implementation rather than detailing the 

design. Nakamura provides a picture of the implementation of his logical ECU design 

(figure 2-60) and the component name of the microprocessor used to implement it. 

However, his design provides no additional description of the implementation detail. 

There is an identifiable division between the 

design and implementation phases of 

engineering development. The representation of 

the system at the end of the design process 

requires no further design decisions to be made 

before it can be implemented – even by 

somebody other than the original designer (Reed, 

1994 in Reed 2000). Moreover, the designers are 

able to assume the readers of their designs have knowledge of other aspects of the system 

or generic engineering components so that system analysis can proceed without providing 

details of those aspects. The members of the engineering profession can assume their 

peers possess a particular level of knowledge of design, generic functionality, specific 

components, and analysis techniques to allow information not explicit in the published 

design to be inferred. 

2.6.6 Summary 

Summarising the process, the designer begins by developing a system architecture. The 

architecture is based on a generic feedback control system incorporating a number of 

generic and specific components from the discipline. The designer analyses the 

requirements and represents them as mathematical transfer functions. Those transfer 

functions are based on the ability to represent, mathematically, properties or functionality 

of generic control systems – an ability that is part of traditional engineering education. 

The process of design subsequently becomes the process of determining the specific 

functional properties of the generic components, which when synthesised, combine to 

emulate the properties of the global transfer function. The models used to represent the 

Figure 2-60: ECU Implementation 
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generic components contain many unknown variables that are determined using standard 

analytical techniques and experimentation and provide validation of the design. 

2.7 Comparison of Design Approaches 
The most striking observation that comes from the presentation of the specific design 

examples and the generation of the generic approaches is just how different the process of 

design is in the respective disciplines. The software designs all exhibit a similar pattern. 

The initial solution was presented in a particular modelling formalism. The designer then 

proceeds to implement the concepts and relationships that constitute that model using 

auxiliary models to capture the properties not present in the primary representation. The 

engineering designs also exhibit a common pattern. The engineer developed an initial 

representation of the solution that consists of generic functionality known to the 

discipline. Moreover, those components are organised in a generic structural arrangement 

that is also well known in the discipline. The components of the architecture were 

modelled mathematically to depict precisely the required functionality of the proposed 

design. Those representations were then refined using further modelling and analysis 

tools to detail, identify, and validate the components required to implement that specific 

functionality. 

There are many aspects of the engineering design approach that are appealing for 

software developers and it is easy to see why considerable research effort has been spent 

in search of an engineering approach to software design. The engineering designs 

incorporate substantial amounts of design and component reuse. They use rigorous 

mathematical techniques to provide quantitative analysis of their  designs. There is 

evidence of a knowledge base of engineering design expertise that can be assumed of 

their fellow practitioners and relied upon to facilitate the understanding of design 

rationale. Finally, the engineering designs are able to achieve context independent 

development. The successful application of these aspects of design would produce 

significant benefits for the discipline of software development.  

The terms ‘component’, ‘design’, ‘system’, ‘architecture’, ‘feedback’, ‘modelling’, 

‘implementation’, and ‘reuse’5 are all evident in both disciplines and their existence 

                                                 

5 Interestingly, a mechanical engineer who works in automotive design reviewed this chapter for me. He 
had difficulty understanding the notion ‘reuse’ in software engineering. The use of existing 
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makes analogies between the disciplines sound plausible. Consider the following 

syllogism as an example, 

Traditional engineering disciplines design systems incorporating considerable 

design and component reuse by utilising quantitative, mathematical analysis 

techniques. The discipline of software engineering designs systems and 

recognises the potential for considerable design and component reuse. 

Therefore, software engineering can improve its development process by 

incorporating quantitative, mathematical analysis techniques. 

Subscription to these types of syllogisms is fraught with danger. Important differences 

exist between the disciplines and they need to be considered before any conclusions can 

be made based on perceived analogies. Moreover, before determining if software 

development can or should be like traditional engineering development, the reasons why 

those differences exist between the disciplines must be examined. 

One essential difference between the engineering and software development designs 

concerns the utilisation of modelling techniques in the design process. By viewing the 

design processes from the point of view of how they utilise models and what properties 

they represent, it is possible to see how the disciplines differ. 

Summarising the definitions of (Cybernetica ; Tjalve, Andreasen et al. 1979), a model is 

an object, process, device, scheme, or procedure that shares crucial properties of an 

original, modelled object or process but is easier to manipulate or understand because it 

highlights the properties of interest, whilst omitting the remainder. These models consist 

of a type (mathematical, causal, dynamic, stochastic, etc), the properties tha t it highlights 

(function, structure, dynamics, etc), and its use (simulation, verification, investigation, 

etc). However, a model may also contain properties not found in the original object, for 

instance, the physical form of a functional model may be different to that of the original 

object. When modelling it is important to be conscious of the differences so that the most 

appropriate model for the situation is chosen.  During systems analysis, the model usually 

aspires to represent the real world or the  relation between some observed phenomena in 

the real world and those important properties should be specifically highlighted in the 

model. 

                                                                                                                                                  

components was such a natural thing for engineers that he couldn’t imagine us having such problems 
with it. 
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The models used in the engineering design examples are mathematical representations of 

the functionality of their discipline. The unknown parameters of those models represent 

the system variables of the problem domain but the mathematical relations themselves 

represent achievable functionality of the engineering components. The designer knows 

that engineering components can be used to exhibit the functionality of particular 

mathematical relationships. The goal is to represent the problem in a similar mathematical 

relationship and solve the parameters of those equations. For example, Rutland’s control 

system architecture was refined with a collection of transfer functions. Those transfer 

functions represent mathematical manipulations of input signals that can be implemented 

using known engineering components. The parameters of the transfer functions represent 

the domain concepts of velocity, wind speed, throttle angle, and angle of the road to the 

horizontal, etc. However, once those domain concepts are represented as parameters of 

mathematical relationships, the design process becomes a matter of developing 

functionality to solve the mathematical problem. The design becomes independent of the 

problem domain. 

The reason engineers work in this fashion is because they can only build using the 

artefacts provided by their discipline. The evolution of those engineering building blocks 

began as simple functional manipulations of the underlying properties of the discipline. 

For the electronics domain of the microprocessor-based cruise control designs, those 

underlying properties are electronic signals and the concepts of voltage, current, 

resistance, inductance, and capacitance. The intricate operations of modern electronic 

components are merely complex aggregations of a small number of functional operations 

that can be applied to this small set of properties. Furthermore, because the interactions 

between these small number of underlying concepts can be represented by mathematical 

relationships, the complex aggregations can also be represented mathematically. This is 

evident in the structure of the design textbooks used by engineers. For example, D’Azzo’s 

text, Linear Control System Analysis and Design (D'Azzo and Houpis 1988), begins with 

a presentation of the mathematics of simple electronic circuits. It details how simple 

configurations of resistors, capacitors, inductors, voltage sources and current sources are 

modeled using mathematical relationships. 

“In order to analyse a dynamic system, an accurate mathematical model that 

describes the system completely must be determined.” (D'Azzo and Houpis 

1988) 
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The level of detail of D’Azzo’s mathematical analysis of physical systems is extensive 

and provides many ways of using mathematics to represent systems, system properties, 

and techniques to simplify their analysis. With this mathematical foundation the text 

proceeds to the theory of linear control systems. The mathematical understanding of 

complex control systems is presented in terms of the mathematical foundations that were 

developed for the simple systems. Indeed, all of the engineering design texts used in this 

study began with sections concerned with mathematical modelling of basic electronic 

circuits before they proceeded to more complex design theory. Furthermore, the basis of 

engineering education courses is also the development of mathematical representations 

for the simplest components and systems of the discipline.  

In contrast to the engineering designs, the software developers used different design 

methodologies, software architectures, or patterns for development as a means of 

developing an initial view of the problem. The software engineer does not produce 

models of existing designs or components. The first step of the software development 

process is the creation of a model of reality, specifically, the reality confined by the 

bounds of the problem to be solved. 

Software developers are not constrained by their implementation medium. They work 

with a medium that allows them to implement almost any concept, so long as it can be 

sufficiently well defined. This is in contrast with traditional engineers who can only 

implement using the components of the particular engineering discipline and whose 

functionality is constrained to the possible aggregations of underlying properties of that 

discipline. For the software developer, there are many ways of modelling aspects of 

reality and there are many levels of generality for those models. Moreover, because of the 

flexibility of the software implementation medium, almost any of those models can be 

successfully implemented. The purpose of design methods, software architecture styles, 

and design patterns is to assist in the creation of the initial model of the problem by 

constraining the designer to developing one that is relatively easy to implement in our 

implementation medium.  

A speculative hypothesis may be that it is possible to view the actions of software 

developers as similarly modelling the problem to match the properties of the 

implementation medium. The difference between the disciplines is that the properties of 

the respective implementation mediums are different. The software designs model the 

problem using functional and behavioural viewpoints and the implementation structure of 
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those viewpoints. The implementation medium of the software developer is the 

programming language. It could be speculated that design methods assist the problem 

solving process by providing functional and behavioural representations because they 

match the information flow constructs of programming languages: sequence, iteration, 

and selection. Furthermore, the structural properties of the implementation depend on the 

concept structures of the programming language, such as procedures, rules, and objects, 

and the execution constructs of the operating environment, such as threads, processes, and 

distributed systems. This hypothesis however, requires further investigation. 

In summary, the difference between the respective disciplines is due to the fundamental 

nature of the implementation mediums they build with and, subsequently, the 

fundamental nature of the systems they construct. Engineers design physical artefacts. 

Software developers implement models of reality. Traditional engineers use modelling 

techniques to represent the properties of a possible implementation, based on known, 

generic functionality. Software developers use modelling techniques to develop models of 

reality that can be implemented in computer programs. This conjecture explains the 

differences observed during the case study. Those differences include the purpose of the 

published designs, the differences between the initial models and the differences between 

designs that utilised similar modelling formalisms. These are now briefly described. 

The intended purpose of the design publications in the respective disciplines was also 

different. The software designs were used to illustrate a particular design methodology or 

style of software architecture. Conversely, the intention of the engineering publications 

was to present a solution to the cruise control problem. The authors of the majority of the 

engineering designs came from automotive engineering companies, not academia. 

Furthermore, in Shaout’s review of cruise control technology, the majority of the 

references came from patent applications. In the software design examples, the use of the 

cruise control problem was secondary to the explanation of the design methodology. The 

exception was the design of Jones (Jones 1994). That design is interesting because it is a 

software design performed by an electronic engineer. It begins with an attack on the 

software approach to cruise control design and illustrates the difference in emphasis 

between the designs of the respective disciplines. 

“I attended a software conference where one of the speakers gave a 

presentation prescribing a commonly accepted software development method 

… by designing an automotive cruise control. The design was terrible but he 
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was proud of it! … His academic expertise was an excellent example of how 

software development often puts the emphasis in the wrong place, ignoring 

the real problems that result in catastrophic failure. 

The speaker who provoked my wrath obviously knew a lot about computer 

science, but very little about physical science, system engineering, testing, 

economics, safety, and closed-loop servo systems. He approached the cruise 

control design as if it were a software design problem. His design method 

stressed how functions should be grouped with other functions in tasks or 

packages based on temporal sequence or information-hiding criteria. He drew 

a context diagram. He drew a state-transition diagram, and then drew several 

levels of data-flow diagrams. He created a task-structure diagram. Then he 

drew a system architecture diagram. He partitioned the architecture into task 

and package structures. By the time he was finished, he had an impressive 

looking but totally impractical design consisting of seven tasks, a message 

queue, and four asynchronous interrupts. … 

The problem is viewed as one of information processing or program 

structuring instead of system engineering. ” (Jones 1994) 

This difference in approaches stems from a fundamental difference between the 

disciplines. The task of the engineer is to utilise materials, components, and systems of 

the discipline to solve real-world problems. Their research attempts to develop improved 

methods of modelling their problems so they can be solved using functional properties of 

those materials, components, and systems. Alternatively, the task of the software 

developer is to implement models of reality to automate some perceived process. 

Software development research is concerned with improved ways of modelling reality for 

more effective implementation, maintenance, and reuse. Methodologies are generic 

problem-solving processes that facilitate the implementation of theories that are devised 

to explain ‘real-world’ processes. The difference is exemplified in the implementation of 

the controller mechanisms of the respective cruise control systems. Ellinger describes the 

mechanical flyweight governor speed control unit (figure 2-26) as follows: 

The act of setting the desired speed causes the activation of an 

electromagnetic solenoid. The activated solenoid causes an armature to block 

off an air flow port. The restriction of the air flow causes vacuum to increase 
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in the controller housing. The increased vacuum in the controller housing 

results in increased vacuum in a power servo unit. The increase in vacuum in 

the power servo unit causes the throttle to open further. 

This description of the controller unit’s operation shows how the properties of the 

discipline (electromagnetic force, mechanical motion, air vacuum) are utilised by the 

designer to achieve the desired result. In contrast, the following pseudo-code fragment 

could represent the logic for a software based controller unit: 

If (system_activated) 

   Error = Desired_Speed – Current_Speed; 

      If (Error > 0) 

      Increase_Speed(Error); 

The conjecture that engineers build artefacts while software developers build models of 

reality also explains the observation made concerning the labelling of some software 

systems as feedback control systems. All of the engineering designs used a similar 

generic feedback architecture. The designs differed in terms of (1) the types of 

components used to realise the generic functionality; (2) the issues considered when 

modelling the system mathematically; and (3) the mathematical formalism used to model 

the problem. In contrast, the software designs differed in the primary formalism used to 

develop the initial model and in the specifics of that initial model when the chosen 

formalism was applied. All of the software designs were feedback systems because they 

all used the current speed to manipulate the system control. The difference was in the 

types of concepts used to represent the problem (the design formalism) and the specificity 

of the concepts identified within that formalism. For example, in an object-oriented 

formalism, the designer is free to choose which objects constitute the designer’s 

perception of the problem. The designer can choose between the specifics of the problem 

domain, as Booch did, or a mental model of a more general representation of the problem, 

for example Shaw’s feedback control system. They are all feedback loops, they are just at 

different levels of generality. 

No software design is more perspicuous than the others are. Shaw’s claims that object-

oriented and process control feedback loops provide a closer match of reality than 

functional decomposition is ill- founded. They appear more perspicuous when the 

understanding of software systems begins from the assumption that software systems are 
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analogous to traditionally engineered corporeal systems. However, by understanding 

software systems as implemented models of reality, all of the software designs implement 

the generic notion of a feedback system, they simply use different collections of mental 

concepts to do it. As a final observation, the model-building conjecture shows that the 

generally accepted notion that object-orientation is beneficial because it allows 

developers to implement their models of reality is also ill- founded. The discussion of 

philosophical foundations in Chapter 5 explains these comments in greater detail. 

2.8 Conclusion 
Can analogies with traditional engineering disciplines be used to improve the process of 

software development? The answer is neither yes nor no. This study has shown that the 

question is too simplistic. The study presented what developers do when they design. It 

then developed a generic approach to how the design proceeds. Fina lly, it presented why 

the respective disciplines designed using that approach, explaining the observed 

differences. Compared with traditional engineers, who build physical artefacts, software 

developers implement models of reality – explanatory theories of real-world processes. 

Software developers would like to ‘engineer’ their ‘systems’ using an analogous approach 

to traditional engineering development. They would like to use the same how approach to 

design. However, this detailed study shows that significant differences between what the 

respective disciplines design makes it extremely difficult to make valid analogies, 

regardless of how plausible they may sound. 

It may be possible to improve the software development process by examining how 

traditional engineers work. However, any attempt to do so must consider the differences 

that exist. What we build is nothing like traditionally engineered systems. They are 

models of reality, theories of how concepts and relationships should interact to solve a 

problem. The concepts that comprise our systems are limited only by our imaginations. 

Engineers do not model reality in the same way. They are constrained to developing 

systems using the components of their discipline. Those materials and components are 

aggregations of a small set of possible manipulations to a handful of domain- level 

concepts. 

This study has based a conjecture about the fundamental differences between traditional 

engineering and software development on a relatively small case study – the automotive  

cruise control system. The design of linear control systems is a small discipline within the 



Cruise Control Comparison 

Understanding Software Engineering  77 

global sphere of engineering design and it would be foolish to base such an all-

encompassing conjecture on the design approach of one engineering discipline. However, 

the conjecture is not based on the difference between the design approaches, it is based on 

the reasons why those approaches were used. Those reasons are applicable to all fields of 

engineering. Some engineering disciplines, such as civil engineering or chemical 

engineering, are more materials-based than the component-based nature of the control 

system domain (Reed, 1996 in Reed 2000). However, the design techniques they rely on 

are still based on mathematical models of the properties of the underlying materials of 

their discipline. For example, see Currie (Currie and Sharpe 1990) for mathematical 

models of civil engineering materials and their structural arrangements. Software 

development implements models of reality in computer programs. Traditional engineers 

utilise properties of physical materials and their structural arrangement to suit a desired 

purpose.  

To use traditional engineering disciplines as a source of ideas for improving the software 

development process we must consider the disciplines in term of what they design and 

build as well as how they design and build. Software developers want the ability to use 

rigorous mathematical techniques to analyse quantified design criteria. Furthermore, they 

want to achieve the same high- levels of design and component reuse, if possible, through 

context- independent development. Are these issues achievable given the fundamental 

nature of the systems built by software developers? This study highlights new research 

questions that need to be examined before that question can be answered. They are: 

• Why can engineering components be modelled mathematically, and can a 

similar approach be achieved in the software implementation medium? 

• What does it mean to build explanatory theories of reality? 

• What affects our ability to create models and how can that be utilised to 

improve the software development process? 

• If the initial model, or software architecture, sets the path for subsequent 

development, what model-building issues affect its creation? Can it be 

influenced by qualitative design criteria, such as design-for-modifiability or 

design-for-performance, or is it a subconscious process that cannot be 

manipulated? 
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• Are there areas of contention in software engineering research that can be 

solved by examining the philosophical foundations those theories are based 

on? 

• If the design approaches of the respective disciplines are so different, why 

have analogies between them been used as the source and validation for 

software engineering research ideas? 

These questions can be answered using research from other disciplines. An understanding 

of the evolution of traditional engineering disciplines and their systems/components can 

be used to determine if software components can be devised to allow the same design 

approach. The history and philosophy of science can be used to develop an understanding 

of the process required to create and validate models of reality. Metaphysics and 

epistemology provide theories for explaining why people have different perceptions of 

reality. Finally, theories about conceptual development in the discipline of psychology 

can be used to understand how we devise the concepts that comprise those 

models/theories. 

Finally, a study of traditional engineering may allow researchers to improve the way in 

which software developers approach the design process. However to validate any attempt 

to use analogies with traditional engineering, software development must develop an 

improved understanding of the fundamental nature of the systems that it builds. Indeed, it 

needs an improved understanding of the philosophical underpinnings of the discipline as a 

whole. Research in the philosophy of science not only provides illumination concerning 

the nature of the systems we build but also how the discipline of software engineering is 

progressing. Different philosophy of science theories explain how scientific disciplines 

evolve through phases of progress as the discipline changes its philosophical 

understanding of the systems it attempts to understand 6. For example, Kuhn explains 

scientific progress through a series of evolutions and revolutions (Kuhn 1962). Though 

Kuhn’s explanation is not the only one, researchers in the philosophy of science agree 

that progressive scientific theories are relative, to varying extents, on the underlying 

guiding assumptions of the discipline. The discipline of software engineering has 

progressed to its current state based on an implicit understanding that software 

                                                 

6 see Chapter Six for more information. 
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development is analogous to traditional engineering development. This study has shown 

that assumption is inadequate. To improve the progress of software engineering it is time 

to develop a better understanding of our discipline. 
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3. A History of the Artefact Engineering View of 
Software Development 

3.1 Introduction 
The cruise control comparison identified many significant differences between the design 

approaches of software development and traditional engineering disciplines. It then 

conjectured the reason for those differences was due to fundamental differences between 

the types of systems built and the implementation mediums used to build them. It 

concluded by highlighting many questions to be answered to evaluate that conjecture. 

One of those was, if the design approaches of the respective disciplines are so different, 

why have analogies between them been consistently used as the source and justification 

for software engineering research ideas? To answer that question this chapter presents and 

analyses a history of the artefact engineering view of software development. That analysis 

examines the arguments used by software engineering researchers to determine their 

understanding of both disciplines. 

Wegner notes that as early 1950 software developers recognised the importance of 

subroutine libraries for capturing and reusing subprograms in software development 

(Wegner 1984). In the early 1960s, Fred Brooks and Jerry Weinberg discussed the 

appropriateness of the term ‘architecture’ for describing structural design issues in 

computer systems. Brooks had been working in the area of computer architecture (Brooks 

1962) and was worried about the appropriateness of the analogy. However, as their 

discussion progressed it seemed to hold (Coplien 1999b). At that time their discussion 

considered computer systems as both hardware and software, in contrast to the more 

software-centric analogies used in recent times (Weinberg 2000). In addition, their 

concept of software architecture included the interface with the computer operator as well 

as the large-scale system structure (Weinberg 2000). That aspect is also evident in 

Brooks’ later comments on the integrity of the system architecture.  

“By architecture of a system, I mean the complete and detailed specification 

of the user interface.” (Brooks 1975) 

Coplien notes therefore, that as early as 1965 the discipline of software development was 

already enough on its feet to consider the influence of design theories in other artefact 

construction disciplines (Coplien 1999a). Nevertheless, it was the NATO conferences on 
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software engineering in the late 1960s that provides the first formal expression and debate 

of software engineering ideas. The transcripts of those debates provide the starting point 

for the history and analysis presented. The analogies and insights used by those 

conference participants are analysed to determine the validity of the analogies used and to 

identify the participants understanding of the fundamental nature of both software 

systems and hardware systems. A selection of the research presented between that time 

and the present, which promotes the view of software development as an artefact 

engineering discipline, is then presented and evaluated in the same way. 

The conclusion, and answer to the originally posed question, is that the label ‘software 

engineering’ was proposed as a starting point for discussion at the 1968 NATO 

conference. Its suggestion was intended to provoke ideas for improving software 

development. However, despite numerous unresolved questions concerning the 

applicability of that metaphor, its implied way of understanding software development 

was tacitly accepted. The series editor of the NATO conference noted, 

“This book points the way to the future of software. It examines our 

shortcomings in software practice and technique and suggests alternatives that 

could overcome many of the problems. But most important, it lays out, by 

implication, the frame of mind that we take to produce dependable software.” 

(NATO 1976a) 

That frame of mind is the artefact engineering view of software development. 

As the discipline of software engineering progressed, its proponents rarely questioned the 

artefact engineering view although numerous anomalies appeared when using that view to 

develop research ideas concerning a discipline of software engineering. The most 

persistent anomaly, which has never been satisfactorily explained, concerns the 

underlying principles of software systems. The assumption made by the relevant 

researchers is that the underlying principles would eventually be discovered or artificial 

intelligence techniques would be developed to overcome the anomalies identified. 

From the analysis presented it is clear that researchers promoting the artefact engineering 

view of software development did not have a thorough understanding of software 

development, traditional engineering, or the relationship between them. That is not a 

criticism of those researchers. It is simply a recognition of the growing body of 

knowledge concerning the relevant issues that can now be applied with the benefit of 
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hindsight. Moreover, fundamentally important decisions concerning the understanding of 

a discipline are made in similar ways in most professional disciplines7. However, to 

develop a better understanding of software development and its relationship with 

traditional engineering, a thorough understanding of the underlying principles of both 

disciplines, and their relationship, is required. 

3.2 In the Beginning: The NATO Conferences 
The NATO conferences on software engineering originated in 1967 when a study group 

on computer science, set up by the NATO science committee, recommended holding a 

working conference on software engineering that would focus on the problems of 

software. Specifically it would address issues pertaining to the design, implementation, 

and maintenance of software. 

“The Science Committee conferences are deliberately designed and structured 

to focus expert attention on what is not known rather than on what is known. 

The participants are carefully selected to bring together a variety of 

complementary viewpoints. Through intensive group discussion, they seek to 

reach agreement on conclusions and recommendations for future research that 

will be of value to the scientific community.” (In the Preface. All quotes from 

the 1968 and 1969 conferences are taken from (NATO 1976a; NATO 1976b)) 

The background of the first conference and the working papers generated by it give the 

first indication of the software development community’s attempt to understand the 

fundamental nature of the discipline. The first is the choice of the term ‘software 

engineering’ itself. 

“[It was] deliberately chosen as being provocative, in implying the need for 

software manufacture to be used on the types of theoretical foundations and 

practical disciplines, that are traditional in the established branches of 

engineering.” ((NATO 1976a) p. 5) 

At that stage in the discipline’s evolution, many large software systems had been 

developed, for example the OS/360 project, and many lessons learned. The community’s 

perception was that the rapidly increasing importance of software systems in many 

                                                 

7 This is discussed in detail in chapter six. 
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activities of society, and the increasing size and complexity of those systems, required 

significant improvement in the way those systems were produced. 

The difficulty in establishing the philosophical assumptions of the NATO conference 

participants, and present day software engineering researchers, is that these philosophical 

issues are very rarely discussed explicitly. Therefore, in the absence of unambiguous 

statements, the only means of capturing their fundamental conception of software and its 

development is to extract it from the ideas that were presented. In the NATO conference 

reports, two types of comments can be used to gain an indication of the variety of 

conceptions that researchers had of software and software systems. They are analogies 

and insightful observations. In the 1968 conference alone, analogies were made between 

software development and aircraft design, civil engineering, mathematics, logic, 

automobile design, frame stressing, and even musical education. For those analogies to be 

perceived as valid, certain assumptions about the nature of software and engineering 

systems and their development must be made. For example, the following extract, taken 

from McIlroy’s often quoted Mass Produced Software Components paper, is indicative of 

many analogies used in software engineering research – both then and now. 

“McIlroy: We undoubtedly produce software by backward techniques. We 

undoubtedly get the short end of the stick in confrontations with hardware 

people because they are industrialists and we are often the crofters. Software 

production today appears in the scale of industrialization somewhere below 

the more backward construction industries.” ((NATO 1976b) p. 89) 

McIlroy’s decision to make an analogy between the production of software systems and 

those systems produced by ‘hardware people’ was based on the desire to have a software 

development process that exhibits the same tractability that traditional engineering 

development appears to have. However, for the comparison to be valid, the nature of 

software must contain characteristics that make it possible for systems to be constructed 

in a similar fashion to hardware systems. That is, the respective materials, components 

and their means of interaction, must be analogous. The question that needs to be asked is: 

Is that in fact the case? 

It is interesting to note that the conference report also contains the first analogies between 

software design and the design theories of Christopher Alexander, whose theories of 
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design in building architecture are quite popular in present day software engineering 

research. 

During the course of the conference the participants made many philosophically 

insightful observations about the nature of a particular topic of discussion. That may have 

been about a specific design method or a comment made by the editors about the state of 

the current discussion. Those insightful comments were often followed by vigorous 

discussion of a more theoretical nature rather than the usual pragmatic issues. For 

example, Fraser made the following comment: 

“Fraser: One of the problems that is central to the software production process 

is to identify the nature of progress and to find some way of measuring it. 

Only one thing seems clear right now. It is that program construction is not 

always a simple progression in which each act of assembly represents a 

distinct forward step and that the final product can be described simply as the 

sum of many sub-assemblies.” ((NATO 1976a) p. 7) 

That comment provides an indication that the nature of software and software systems is 

not something which is easy to grasp. While it may be assumed that engineering systems 

can be designed and implemented in terms of pre-existing components, this insight shows 

that those concepts cannot easily be transferred to software systems. Something uniquely 

fundamental about the nature of software systems, which is not quite explicitly 

understood, is brought closer to the surface of our understanding by these comments. 

Many of the discussions associated with those insights resulted in confusion between the 

participants. As the discussion delved into more philosophical issues there was a lack of 

common understanding between the participants concerning the exact meaning of words. 

Confusion also arose concerning how those theoretical concepts were applicable to 

specific aspects of software development. For instance, the discussion concerning the 

logical completeness of software systems resulted in a discussion of what the participants 

meant by the term logical completeness. After much discussion the following comments 

were made: 

“Genuys: I think I would just prefer another term because this one has a 

certain logical flavor, and I'm not certain that... 
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Perlis: (Interrupting) The word ‘logical’ has a meaning outside the realm of 

logic, just as the word ‘complete’ does. I refuse to abrogate to the specialist in 

mathematics the word ‘completeness’ and in logic, the word ‘logical’. 

Bauer: The concept seems to be clear by now. It has been defined several 

times by examples of what it is not.” (op. cit p. 26) 

The concept of ‘logical completeness’ was identified as an important design criterion and 

discussion ensued to determine how to apply that concept to the actual practice of system 

design. However, the discussion eventually veered away from that goal and centred on 

the semantics of the words ‘logical’ and ‘completeness’. Whilst that diversion into 

semantics was necessary, the debate failed to return to the original goal, that of 

determining how to apply ‘logical completeness’, in any of its possible meanings, to 

specific design situations. The best that was achieved were generic statements such as 

“ensuring that a system was capable of performing a ‘basic’ set of operations”. 

Those debates, and the insightful observations about pragmatic issues, highlighted the 

need for a better theoretical understanding of the discipline. However, as the discussion 

worked towards important answers the issue would often be abandoned due to the 

difficulties inherent in debating such esoteric concepts. That abandonment of the 

theoretical debates gives the impression of placing the philosophical foundations of 

software engineering into the ‘too hard basket’. 

Attempting to discover what others believe are the philosophical underpinnings of the 

discipline is a difficult task, though one that must be addressed. Interpreting the views of 

others is naturally fraught with danger due to the ambiguity of natural language and the 

problem of access to the actual people concerned. In addition, there is the potential for the 

community-wide understanding of terms such as ‘design method’, ‘high- level language’, 

and ‘module’, to change over time as the discipline evolves and matures. Moreover, using 

those terms and theories as the basis for extracting people’s philosophical views is subject 

to the prejudices and philosophical biases of the researcher. The only means of 

minimising the risk of misinterpretation is by identifying those potential sources of error 

and maintaining a vigilant watch to ensure their effects do not taint the conclusions 

reached. That effort was consciously made, however to what level of success is hard to 

gauge. 
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The nature of the source material also provides a potential source of error. The conference 

proceedings provide edited transcripts of the conference discussions as well as copies of 

the invited addresses and, unfortunately, only a few of the working papers in full. The 

editors decided to structure the proceedings following the “normal sequence of steps in 

the development of a software product, from project start, through design, production or 

development, to distribution and maintenance” (op. cit p. 3). Those steps were augmented 

with sections about ‘Software Engineering and Society’, ‘The Nature of Software 

Engineering’, ‘Education’, and ‘Software Pricing’.  The editors used transcripts of the 

discussions, which were recorded by stenographers and captured on magnetic tape, to 

place content into that structure. The printed comments are also interspersed with 

excerpts from all of the working papers where they were relevant. While the editors 

attempted to retain the “spirit and liveliness” of the conference by retaining the original 

wording and context as much as possible, any attempt to ext ract the philosophical 

assumptions of the participants must also consider the editors influence on the source 

material. Despite these inherent difficulties, the analogies and insights provided useful 

material for showing how the philosophical assumptions of the delegates at the NATO 

conferences shaped the origins of software engineering understanding.  

The insights and analogies are presented in the order depicted in the proceedings, using 

additional comment to put them in context. They are then examined to determine what 

assumptions they make about the fundamental nature of software and software systems 

and later in the chapter they are analysed in detail using additional information from the 

engineering disciplines that they purport to identify similarities between. That analysis 

questions the validity of those analogies and consequently begins to question the 

assumptions made about the fundamental nature of software systems. 

3.2.1 The 1968 NATO Conference 

The first section of the proceedings, Software Engineering and Society, collates 

discussions concerning the growing importance of software systems and the more general 

problems faced by the research community. The first excerpt, by Graham, is part of a 

discussion about the nature of progress in software development and the inability to 

successfully predict and measure it. 

“Graham: Today we tend to go on for years, with tremendous investments to 

find that the system, which was not well understood to start with, does not 
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work as anticipated. We build systems like the Wright brothers built airplanes 

– build the whole thing, push it off the cliff, let it crash, and start over again.” 

(op. cit p. 7). 

The analogy with the Wright brothers highlights a belief that is evident in the editorial 

comments included in that section. 

“There was general agreement that ‘software engineering’ is in a very 

rudimentary stage of development as compared with the established branches 

of engineering.” (op. cit p. 7) 

That belief assumes we can consider software development to be an engineering 

discipline and that the early phases of those engineering disciplines were rudimentary in 

an analogous manner to the early stages of software engineering. Gillette explicitly 

expresses this belief in the ensuing comment. He suggests that, like the aircraft industry, 

as the software development discipline evolves it will become better at specifying its 

systems and estimating its development schedules. 

“Gillette: We are in many ways in an analogous position to the aircraft 

industry, which also has problems producing systems on schedule and to 

specification. We perhaps have more examples of bad large systems than 

good, but we are a young industry and are learning how to do better.” (op. cit 

p. 7). 

The validity of the analogies concerning the early stages of the disciplines is analysed 

later in this chapter. However, in the same discussion Fraser provides the comment, 

which was used as an example earlier, that suggests the nature of the software systems 

may not be similar enough to those other disciplines for the analogies to be well- founded. 

He notes that the nature of software systems cannot be described “simply as the sum of 

many sub-assemblies”, however, no further discussion is presented that debates the 

differences between software designs and, in these cases, aircraft designs. 

Later comments continue to highlight specific aspects about the nature of software 

systems that may not be present in traditionally engineered systems. Kinslow makes the 

first while discussing management issues in software development. 

“Kinslow: There are two classes of systems designers. The first, if given five 

problems will solve them one at a time. The second will come back and 

announce that these aren’t the real problems, and will eventually propose a 
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solution to the single problem which underlies the original five.” (op. cit p. 

13). 

Why do these different types of designers exist? Believers in the engineering discipline of 

software development, including Kinslow himself, describe the first type of the designer 

as the “system-type” who employs what is considered to be an ‘engineering-mindset’ to 

the problem solving process. However, the analysis of cruise control systems presented in 

Chapter 2 suggests the nature of the systems built by software developers and traditional 

engineers are fundamentally different. Therefore, an alternative reason why these 

different types of developers exist may be based on the fundamental nature of software 

systems rather than the ‘system-type’ and ‘engineering-mindset’ labels. Furthermore, the 

role of training in the respective disciplines may also exert a powerful influence (Reed, 

1993 in Reed 2000). Unfortunately, because no thorough comparison of the fundamental 

natures of software and traditionally engineered systems exists in the research literature, 

arguments for particular hypotheses are difficult to justify and objectively compare. 

Kinslow’s remark is followed in the proceedings by an excerpt from the working paper by 

Berghuis. That excerpt identifies a significant difference between software systems and 

those produced by other ‘system-engineering’ disciplines. 

“Berghuis: Independent software packages don’t exist; they run on an 

equipment (hardware), they need procedures by which to be operated and that 

indicates that we have to define what a system, project, phase of a project, 

releases, versions, etc., mean. Also we have to consider the organisation from 

the point of view of developing systems and in fact we are faced with the 

differences between functional and project organisation. We are also faced 

with the difficulties of system-engineering.” ((NATO 1976a) p. 13). 

That comment highlights the principle of ‘system execution’ – a principle that does not 

exist in any other engineering discipline. Software systems are the only ‘engineered’ 

systems that do not realise the original design requirements until the statements of the 

implemented system are executed by a machine8. Unfortunately, no further discussion of 

this important insight by Berghuis is evident in the proceedings. Moreover, the full text of 

his working paper was not included. 

                                                 

8 This issue is discussed in more detail in Chapter 4. 
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A similar distinction between software systems and engineered systems is highlighted 

later in the proceedings. The editors collated a number of discussion points related to the 

distinction between design and production (implementation) of software systems. 

Significantly, the editor’s note that the “appropriateness of the distinction between design 

and production was contested by several participants” (op. cit. p. 18), however the 

distinction was retained in the conference report to expedite the publication of the report. 

The discussion begins with an excerpt from the working paper of Naur that attempted to 

clarify the distinction. 

“Naur: … The distinction between design and production is essentially a 

practical one, imposed by the need for a division of labour. In fact, there is no 

essential difference between design and production, since even the production 

will include decisions which will influence the performance of the software 

systems, and thus properly belong in the design phase. For the distinction to 

be useful, the design work is charged with the specific responsibility that it is 

pursued to a level of detail where the decisions remaining to be made during 

production are known to be insignificant to the performance of the system.” 

(op. cit p. 18) 

Naur’s comments highlight the implied analogy with traditionally engineered systems – 

the need for a division of labour between design and implementation. No further 

comment is made by Naur regarding why a division of labour should occur in an 

analogous manner to other engineering disciplines. It is assumed that because the division 

is useful for software project management reasons, the nature of software systems should 

allow such a distinction to be possible even though it is recognised that the distinction is 

more arbitrary than in other disciplines. Unfortunately, the full working paper from which 

the extract is taken, The Profiles of Software Designers and Producers, is not published in 

the report. Other participants however, did highlight aspects of software system 

production that question the ability to implement the distinction, even if management 

forces require it. First, Dijkstra notes the difficulty in implementing the distinction 

because the correctness of the program cannot be guaranteed until the structure of the 

system is implemented. Therefore, any artificially enforced distinction between design 

and implementation will merely hinder the ability to “do a decent job” (op. cit p. 18). 

Furthermore, Kinslow identifies the iterative process required to develop systems as 
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another reason why the distinction is difficult, if not impossible, to successfully 

implement. 

“Kinslow: … If you are writing a large production project, trying to build a 

big system, you have a deadline to write the specifications and for someone 

else to write the code. Unless you have been through this before you 

unconsciously skip over some specifications, saying to yourself: I will fill that 

in later. You know you are going to iterate, so you don’t do a complete job the 

first time. Unfortunately, what happens is that 200 people start writing code. 

Now you start through the second iteration, with a better understanding of the 

problem, and it is too late. That is why there is a version 0, version 1, … 

version N. If you are building a big system and you are writing specifications, 

you don’t have the chance to iterate, the iteration is cut short by an arbitrary 

deadline. This is a fact that must be changed.” (op. cit p. 18) 

Kinslow notes that iteration is required because designers need to develop a correct 

understanding of the problem and this cannot be achieved until the design process has 

been traversed on more than one occasion. It may be possible to argue that this iteration is 

an iteration of the design phase and comes before implementation (Reed, 1993 in Reed 

2000). However, the previous point discussed that the distinction between the design and 

implementation phases of software development is  not as clear as it is in traditional 

system development. A separate part of Naur’s comment exemplifies this insight in the 

software development process. Although the term ‘flowchart’ may be outdated, it can be 

successfully replaced with any current design method and still be relevant. 

“[Naur] In my terms design consists of: 

Flowchart until you think you understand the problem. 

Write code until you realise that you don’t. 

Go back and re-do the flowchart. 

Write some more code and iterate to what you feel is the correct solution.” 

((NATO 1976a) p. 18) 

Unfortunately, no debate is generated to determine why this iteration process is required 

in the software development process yet the distinction between design and 

implementation can be maintained in engineering disciplines. Presumably, it is because 
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these issues would be resolved as the ‘software engineering’ discipline matured9. 

Interestingly, Ross concludes the discussion in the conference report with the most 

explicit comment about the difference between software and other engineered systems. 

Again though, it appears not to have lead to any subsequent discussion that may have 

uncovered the significant differences between software and other engineered systems. 

“Ross: The most deadly thing in software is the concept, which almost 

universally seems to be followed, that you are going to specify what you are 

going to do, and then do it. And that is where most of our troubles come from. 

The projects that are called successful have met their specifications. But those 

specifications were based upon the designers’ ignorance before they were 

started.” (op. cit. p. 19). 

The observation by Ross about the importance of the ‘concept’ is similar to the one made 

later by Brooks concerning the importance of conceptual integrity in the design process 

(see Aristocracy, Democracy, and System Design in (Brooks 1975)). 

The topic of the proceedings then changed to the mindset required by a software 

developer and this provided the next analogy with traditionally engineered systems. The 

editors quote another excerpt from the previously discussed working paper by Naur. This 

provides an analogy with the large and complex systems designed by architects and civil 

engineers and, in turn, provided the first reference to the design theories of Christopher 

Alexander in software engineering research. 

“Naur: … software designers are in a similar position to architects and civil 

engineers, particularly those concerned with the design of large heterogeneous 

constructions, such as towns and industrial plants. It therefore seems natural 

that we should turn to these subjects for ideas about how to attack the design 

problem. As one single example of such a source of ideas I would like to 

mention, Christopher Alexander: Notes on the Synthesis of Form.” ((NATO 

1976a) p. 20) 

It appears obvious to Naur that software developers should look at the design methods of 

other engineers, in this case civil engineers and architects. Those disciplines have 

developed techniques to design and build large, complex, heterogeneous systems. 

                                                 

9 Chapter 5 discusses these issues in detail from a philosophical perspective. 
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Software designers also design and build large, complex, heterogeneous systems. 

Therefore, we should look at those disciplines for guidance. For the analogy to be valid, it 

is assumed that the meanings of ‘large’, ‘complex’, ‘heterogeneous’, and ‘system’ must 

be similar enough for the techniques to be applicable, with appropriate modifications, 

across domains. That assumption is analysed in more detail later in this chapter to 

determine its validity. However, as an initial thought, consider the remarks of Alexander 

from of the source suggested by Naur. 

“The ultimate object of design is form … Every design problem begins with 

an effort to achieve fitness between two entities: the forces in question and its 

context. The form is the solution to the problem, the context defines the 

problem. … The rightness of the form depends ... on the degree to which it 

fits the rest of the ensemble.” (Chapter 2: Goodness of Fit in (Alexander 

1964)). 

Many of the theories of Alexander are based on the notion of ‘form’ and the relationship 

between it and the human beings who interact with those built forms. Without thoroughly 

considering the differences between the built form of corporeal artefacts and the nature of 

software structures, it is impossible to successfully determine the appropriateness of 

Alexander’s theories to software engineering design. Yet research literature in software 

engineering shows researchers continue to apply them based on perceived similarities 

with little regard to a thorough examination of the differences. 

The participants then, as well as researchers now, were prepared to draw analogies 

between software development and established engineering disciplines without fully 

considering the differences between them. However, subsequent observations suggest the 

participants were admittedly not fully aware of the exact nature of software systems. 

Perlis, Bauer, and Kolence highlight this in an exchange on the relationship between 

software design and mathematics. 

“Perlis: Software systems are mathematical in nature. A mathematical 

background is not necessary for a designer, but can only add to the elegance 

of the design. 

Bauer: What we need is not classical mathematics, but mathematics. Systems 

should be built in levels and modules, which form a mathematical structure. 
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Kolence: At the abstract level a concise mathematical notation is required by 

which to express the essential structures and relationships irrespective of the 

particular software product being implemented.” ((NATO 1976a) pp. 21-22). 

These comments identify the importance of system structure and the precision and order 

of mathematical expression, however the participants could not quite identify the exact 

relationship between the two. What was missing was a precise understanding of exactly 

what a software system is and the process required to design one. The ensuing comment 

by Smith on the nature of design criteria typifies that, though his comments may no  

longer be agreed with. 

“Smith: There is a tendency that designers use fuzzy terms, like ‘elegant’ or 

‘powerful’ or ‘flexible’. Designers do not describe how the design works, or 

the way it may be used, or the way it should operate. What is lacking is 

discipline, which is caused by people falling back on fuzzy concepts, instead 

of the razors of Occam, which they can really use to make design decisions. 

Also designers don’t seem to realize what mental processes they go through 

when they design. Later they can neither explain, nor justify, nor even 

rationalize, the processes they used to build a particular system. I think that a 

few of Occam’s razors floating around can lead to great simplifications in 

building software…” (op. cit p. 22). 

The conference report then turns to the area of design strategies and techniques. Once 

again, Naur presents an analogy with traditionally engineered systems, this time with the 

automotive industry, to explain the importance of what is now known as software 

architecture. His comment concerns the importance of partitioning the major subsystems 

of a design to minimise their dependencies and to allow the correct ordering of their 

detailed design and implementation. 

“Naur: In the design of automobiles, the knowledge that you can design the 

motor more or less independently of the wheels is an important insight, an 

important part of an automobile designer’s trade. In our field, if there are a 

few specific things to be produced, such as compilers, assemblers, monitors, 

and a few more, then it would be very important to decide what are their parts 

and what is the proper sequence of deciding on their parts. That is really the 

essential thing, what should you decide first.” (op. cit p. 26) 



A History of the Artefact Engineering View 

Understanding Software Engineering  94 

Naur continues by quoting the design ideas of Christopher Alexander and suggests they 

are promising starting points for specific software design strategies. However, the 

suggestion Naur is making is that because designers partition the subsystems of 

automobiles in a particular way, there exist minimal dependencies between the identified 

subsystems. If software developers could partition their systems in an analogous way, 

they could achieve similar benefits that are “an important part of the automobile 

designer’s trade”. For the analogy to be valid, the necessary implication is that 

automobile designers have a choice in the large-scale partitioning of the automobile 

‘system’ that is similar to the choice available to software designers. Using knowledge 

gained from interviews with automobile engineers, the validity of that assumption is 

analysed later in this chapter. Importantly, that analysis uncovers aspects of engineering 

design that have no direct analogue in software development. Furthermore, it suggests 

comments such as “you can design the motor more or less independently of the wheels” 

appears to be true, however many dependencies do actually exist that are not usually 

considered by software engineering researchers. 

The discussion of design strategies moved onto debates about the importance and 

influence of ‘top-down’ and ‘bottom-up’ approaches. The core of the debate was captured 

in an excerpt from a working paper by Gill and was then analysed by the other 

participants including Fraser’s analogy with frame stressing. 

“Gill: The obvious danger in either approach is that certain features will be 

propagated through the layers and will finally cause trouble by proving 

undesirable and difficult to remove, when they should have been eliminated in 

the middle layers. … In practice neither approach is ever adopted completely; 

design proceeds from top and bottom, to meet somewhere in between, though 

the height of the meeting point varies with circumstance.” (op. cit p. 28) 

“Fraser: In designs I have been involved with, and which have not involved 

too many people, I have not been able to identify whether these have been 

‘top-down’ or ‘bottom-up’. They seem to be more like frame stressing, where 

one is trying to stress a structure with welded joints. You fix all the joints but 

one, and see what happens to the one, then fix that joint and free another and 

see what happens with that. It’s a sort of iterative process which follows an 

arbitrary pattern through the structure. Perhaps this only holds for small 
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designs, with few people and with good communication. About large designs, 

I don’t know.” (op. cit pp. 28-29) 

These comments, and the others in the report, highlight interesting aspects of the software 

development process that are uncovered when considering the nature of ‘top-down’ and 

‘bottom-up’ development. The questions that are not answered however, are: What is it 

about software systems and the process required to develop them that results in a mixture 

of top-down and bottom-up design? Moreover, what is it about the nature of software 

systems that result in one design decision constraining the alternatives for the remaining 

decisions? 

Finally, Dijkstra uses an analogy with musical education to address the discussion of 

educating students about software design strategies. 

“Dijkstra: If I look for someone with a position analogous to the way in which 

I experience my own position, I can think of the teacher of composition at a 

school of music. When you have got a class of 30 pupils at a school of music, 

you cannot turn the crank and produce 30 gifted composers after one year. 

The best thing you can do it to make them, well, say, sensitive to the pleasing 

aspects of harmony. What I can do as a teacher is to try to make them 

sensitive to, well, say, useful aspects of structure as a thinking aid, and the 

rest they have to do themselves.” (op. cit pp. 29-30) 

Like all analogies used in software engineering research, Dijkstra’s general comment on 

the harmony of system structure appears reasonable. Music has a substantial amount of 

theory that details which notes and chords can be played together to produce sounds that 

are pleasing to the ear. Similarly, music theory notes many combinations that should not 

be played together. Moreover, there exist patterns of notes and their combination that 

specify certain styles of music. All of these can be taught to students in pedagogic 

education. On closer examination however, the precise application of Dijkstra’s analogy 

to software is considerably more difficult. What exactly are the harmonious structures of 

software composition? Contemporary research in the area of software architecture styles 

and design patterns are concerned with the structure of software systems. However, work 

in those areas is also based on analogies with other disciplines – specifically, theories of 

architecture and the theories of Christopher Alexander. No research in those areas 

however, details why the analogies are valid. All of their theories are justified based on 
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perceived similarities with those other disciplines rather than by examining the 

fundamental nature of software. Furthermore, they fail to systematically consider the 

differences between software systems and those other disciplines. 

Later sections of the conference report deal with management aspects of the development 

process. As the discussion moved into the area of software quality and how it could be 

tracked and measured, McIlroy drew an analogy between software documents and 

engineering drawings. 

“McIlroy: I think we should consider patterning our management methods 

after those used in the preparation of engineering drawings. A drawing in a 

large organization is usually signed by the draftsman, and then after that by a 

draughting supervisor when he agrees that it looks nice. In programming 

efforts you usually do not see that second signature – nor even the first, for 

that matter. Clarity and style seem to count for nothing – the only thing that 

counts is whether the program works when put in place…” (op. cit p. 57) 

Without questioning McIlroy’s desire to be able to track and evaluate the quality of 

software designs, the analogy highlights the question of why it is possible to evaluate 

engineering designs as they proceed yet it is difficult to do the same for software systems. 

One fundamental difference is implied in the comment by Smith that precedes McIlroy’s 

comment in the conference report. 

“Smith: … All documents associated with software are classified as 

engineering drawings. They begin with planning specification, go through 

functional specifications, implementation specifications, etc., etc. This 

activity is represent by a PERT-chart with many nodes. If you look down a 

PERT-chart you discover that all the nodes on it up until the last one produce 

nothing but paper. It is unfortunately true that in my organisation people 

confuse the menu with the meal.” (op. cit pp. 57-58) 

The topic of discussion moved back to education and the concepts that software 

developers should be trained in. That debate uncovered aspects of the fundamental nature 

of software systems and how they are different to traditionally engineered systems. 

However, it soon moved into a discussion of semantics and terminology and the 

examination of the differences between the disciplines was not completed. The debate 

appeared to flow on from the previous comment by Ross who notes the difficulty in 



A History of the Artefact Engineering View 

Understanding Software Engineering  97 

dealing with the ‘concept’ of software. Indeed the title of that section in the conference 

report is Concepts and the editors note the importance of the discussion and the difficulty 

faced by the participants when discussing it. 

“Editors: The above title [Concepts] has been chosen, perhaps somewhat 

arbitrarily, for a report on a discussion about the basic techniques or ways of 

thinking, that software engineers should be trained in. 

It is perhaps indicative of the present state of software production, that this 

topic was one of the most difficult to report on.” (op. cit p. 62)  

Ross begins the discussion by detailing his understanding of the nature of software 

development. It specifies his conception of the ‘plex’ concept, how that concept relates to 

emerging thoughts about software components, and how software development can be 

performed by systematically composing large scale systems out of smaller components. 

His presentation is important for researchers interested in historical debates about 

software component-based design. Additionally, his explanation of the ‘plex’ concept 

highlights aspects about the specific nature of software systems. 

“Ross: … A ‘plex’ has three parts: Data, Structure, and Algorithm (i.e. 

behaviour). You need all three aspects if you are going to have a complete 

model of something – it is not sufficient to just talk about data structures, 

though this is often what people do. … The key thing about the ‘plex’ concept 

is that you are trying to capture the totality of meaning, or understanding, of 

some problem of concern. We want to do this in some way that will map into 

different mechanical forms … using different software implementations.” (op. 

cit p. 62) 

Ross explains his concepts using the example of implementing a banking system. His 

comments use terminology such as ‘semantic packages’ and ‘idealized plex’ that are 

precursors to the terminology used today in object-oriented design theory such as 

‘business processes’, ‘use-cases’, and ‘analysis objects’. A point that would have 

highlighted important differences between software systems and other engineered 

systems concerns the difference between the ‘plex’ and the ‘idealized plex’. Ross states 

that the ‘idealized plex’ is “one in which the mechanical representation has been thrown 

away”. This is equivalent to the difference between analysis level objects and 

design/implementation level objects in contemporary object-oriented design theories. The 
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difference between those objects has never been satisfactorily explained and still causes 

problems in present day software development (Kaindl 1999)10. However, before the 

participants could debate those differences the discussion changed to the problem of 

terminology. 

“van der Poel: You are using, without definition, many terms which I just 

don’t understand.” ((NATO 1976a) p. 63) 

Perlis replied by defining the terms used by Ross (plex, data, structure, function, 

algorithm, and component) in terms of LISP – “they are all just functions.” From that 

point, the discussion moves into different interpretations of Ross’s comments. 

The debate highlights the fact that software development researchers could identify 

differences between software and traditionally engineered systems. Those differences 

provide a glimpse into the fundamental nature of software but it is extremely difficult to 

discuss them because researchers lack a common universe of discourse or collection of 

cohesive concepts with which to label and discuss the issues. The universe of discourse 

that is currently used comes from other engineering domains yet the terms borrowed from 

those disciplines fail to precisely capture the meanings of the concepts used in software 

development. 

Towards the end of the conference report, the discussion turned to the, now famous, term 

– ‘software crisis’. 

“Editors: Quite early in the conference statements were made by several 

members about the tendency for there to be a gap, sometimes a rather large 

gap, between what was hoped for from a complex system, and what was 

typically achieved.” (op. cit p. 77) 

The subsequent discussion by the participants was preceded by comments by Buxton who 

attempted to put the debate about ‘software crisis’ into an objective context. 

“Buxton: In a conference of this kind, when those present are technically 

competent. One has a tendency to speed up communication by failing to state 

the obvious. Of course 99 percent of computer systems work tolerably 

                                                 

10 This is discussed in more detail in chapter 5. 
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satisfactorily; that is the obvious. … The matter that concerns us is the 

sensitive edge, which is socially desperately significant.” (op. cit p. 77) 

The subsequent debate, which concerned the degree to which there was a problem, was 

captured by the comments of Kolence and Ross. 

“Kolence: I do not like the use of the word ‘crisis’. It is a very emotional 

word. The basic problem is that certain classes of systems are placing 

demands on us which are beyond our capabilities and our theories and 

methods of design and production at this time. … There are many areas where 

there is no such thing as a crisis … It is large systems that are encountering 

great difficulties. 

Ross: It makes no difference if my legs, arms, brain, and digestive tract are in 

fine working condition if I am at the moment suffering from a heart attack. I 

am still very much in a crisis.” (op. cit p. 78) 

These comments highlight an issue that has never been solved. What exactly is the 

‘software crisis’? Buxton noted that it was concerned with the “sensitive edge” of 

development but what is that edge? Kolence implied that development approaches, at that 

time, worked appropriately enough. It was the theories concerning large-scale 

construction issues that needed to be addressed. Alternatively, Ross implied that while 99 

percent of development was performed successfully using existing theories, perhaps the 

problems faced at the “sensitive edge” were indicative of a fundamental 

misunderstanding in the research community. 

The participants did attempt to identify the causes of the ‘crisis’, beginning with Kinslow 

who drew an analogy with bridge design. 

“Kinslow: … I have never seen an engineer build a bridge of unprecedented 

span, with brand new materials, for a kind of traffic never seen before – but 

that’s exactly what happened on OS/360 and TSS/360.” (op. cit p. 79) 

For Kinslow’s analogy to be valid, it must be assumed that terms such as ‘unprecedented 

requirements’ and what it means to meet them must be somewhat similar across the 

disciplines. A bridge designed to span a particular distance and to carry a particular load 

needs to ensure that the weight-bearing capacity of the materials used in a particular 

structural arrangement will be sufficient. That must be determined in conjunction with the 

effects of environmental conditions such as potential weather situations and the 



A History of the Artefact Engineering View 

Understanding Software Engineering  100 

supporting characteristics of the ground on which the bridge will be built. The validity of 

that comparison is analysed later in this chapter. However, a comment made in the 

working paper by Gill was included in the current debate by the editors and highlights the 

difficulty faced when making these analogies and using them to develop better theories 

about software design. 

“Gill: Software is as vital as hardware, and in many cases much more 

complex, but it is much less well understood. It is a new branch of 

engineering, in which research, development, and production are not clearly 

distinguished, and its vital role is often overlooked.” (op. cit p. 80) 

One of differences between software and other engineered systems, which may be a result 

of those differences and which has often been made, was then stated by Kinslow. 

Unfortunately, no useful explanation has been accepted by the development community 

to explain why this situation exists.  

“Kinslow: Personally, after 18 years in the business I would like just once, 

just once, to be able to do the same thing again. Just once to try an 

evolutionary step instead of a confounded revolutionary one.” (op. cit p. 80) 

Ross then made a comment that, with the benefit of 30 years of hindsight, seems quite 

prophetic. A software development community that is in search for solutions but that has 

an insufficient understanding of its problems and why they exist is vulnerable to people 

who claim to have ‘the’ solution. Perhaps he envisaged the future of proposed solutions 

and the inevitable marketing hype that led to their fanatical support. 

“Ross: My main worry is in fact that somebody in a position of power will 

recognize this crisis – it is a crisis right now, and has been for some years, and 

it’s good that we are getting around to recognizing the fact – and believe 

someone who claims to have a breakthrough, an easy solution. The problem 

will take a lot of hard work to solve. There is no worse word than 

‘breakthrough’ in discussing possible solutions.” (op. cit p. 81) 

The final topic discussed concerns the overriding belief that software development is a 

branch of engineering. The editors note that the majority of the comments reproduced 

here were made during the discussion on software engineering education that occurred 

towards the end of the conference. 
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“David: May I add another question: What does software engineering and 

computing engineering have in common with engineering education as it is 

defined in the United States today, or in Western Europe?” (op. cit p. 82) 

David goes on to answer his own question in a subsequent statement which the other 

participants discussed. 

“David: … Certainly Richard Hamming has stated that the essence of 

computing today is an engineering viewpoint. It certainly is not mathematics 

in the classical sense. In order to find colleagues who have a philosophy 

which may contribute to our own enterprises, engineering is a much more 

fruitful area than would be one of the sciences or mathematics, at least in my 

opinion. ...  

Software engineering and computer engineering have an extremely important 

and nice aspect to them, namely that people want to work on things that meet 

other people’s needs. They are not interested in working on abstractions 

entirely, they want to have an impact on the world. This is the real strength of 

computing today, and it is the essence of engineering. 

Ross: I agree very strongly that our field is in the engineering domain, for the 

reason that our main purpose is to do something for somebody…  

Randell: I am worried about the term ‘software engineering’. I would prefer a 

name indicating a wider scope, for instance ‘data systems engineering’. 

Dijkstra: We, in the Netherlands, have the title Mathematical Engineer. 

Software engineering seems to be the activity of the Mathematical 

Engineering par excellence. This seems to fit perfectly. On the one hand, we 

have all the aspects of an engineering activity, in that you are making 

something and want to see that it really works. On the other hand, our tools 

are basically mathematical in nature.” (op. cit p. 82) 

The final comment goes to McIlroy, who despite his own use of analogies with 

engineering disciplines (McIlroy 1968), notes that software development is different to 

those disciplines and researchers must keep this in mind. 

“McIlroy: ... I am concerned about the connection between software 

engineering and the real world. There is a difference between writing 
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programs and designing bridges. A program may be written with the sole 

purpose to help write better programs, and many of us here have spent our life 

writing programs from the pure software attitude. More than any other 

engineering field, software engineering in universities must consciously strive 

to give its students contact beyond its boundaries.” ((NATO 1976a) p. 83) 

3.2.2 Analysing the Analogies Used During the 1968 NATO Conference 

Analysis of the 1968 NATO conference report shows that during the course of the 

conference a number of analogies were made between software development and other 

engineering disciplines. The implication is that particular characteristics of the nature of 

software systems and other engineered systems must be equivalent for the analogies to be 

valid. However, a number of observations were also made by the participants that suggest 

their understanding of software systems was too insufficient for them to determine the 

equivalence of those characteristics. Moreover, many observations were made that 

provided a glimpse of the fundamental nature of software systems, suggesting it is quite 

different to that of engineering disciplines. With those observations, and with a more 

detailed understanding of other engineering disciplines, those analogies are now 

examined. Before the presentation however, it is important to make the following note. 

The analyses of the comprehension exhibited by those researchers and the ensuing 

analyses of the analogies made by them is not intended as a criticism of the integrity of 

their research. The purpose of the analyses is to obtain a better understanding for the 

future. Indeed their comments and opinions are understandable for researchers in a 

discipline that was still a fledgling at the time11.  

The analysis of the analogies begins with the two comments made about aircraft design. 

Graham commented that we build systems like the Wright brothers built aeroplanes – 

“build the whole thing, push it off the cliff, let it crash, and start over again.” (op. cit p. 7). 

Gillette then noted that the problem of building software systems to specification and 

schedule was analogous to the aircraft industry that had similar problems. Examining why 

the Wright brothers built their aircraft that way, and examining how aircraft are now 

designed, highlights issues that provide an insight into the nature of software systems. 

Graham’s analogy implies that the Wright brothers’ design was tested mainly through 

                                                 

11 These issues are discussed in more detail in chapter six. 
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trial and error because they did not precisely understand the principles involved. The 

Henry Ford museum provides a general-purpose introduction to the Wright brothers (The 

Wright Brothers 1995) and shows that assumption is too simplistic. The Wright brothers 

were repairing and designing bicycles when they became interested in flight and decided 

to design and build a flying machine. Wilbur contacted the Smithsonian Institute in 1899 

and began to research the known theories of aeronautics. Presumably, this would have 

included the theories of Bernoulli who, in the early eighteenth century, formulated the 

principle relating the velocity and pressure of the flow of fluid/air (e.g., (Giancoli 1988) 

pp. 311-312). Techniques in glider design at that time were based on the principle of wing 

shape so that the velocity of the air flow above the wing would be greater than the 

velocity of the air flow below it. Bernoulli’s principle shows that this results in lower air 

pressure above the wing, resulting in the wing lifting. While other factors such as 

turbulence also play a significant part, the Wright brothers used this research to identify 

the important principles that needed to be addressed to design the aircraft. They were: 

wings to provide lift, a power source for propulsion, and a system of control. The control 

problem was addressed by realising that the system needed to 

be controlled in its three degrees of movement: pitch, yaw, 

and roll (figure 3-1). Wilbur devised a method of controlling 

the position of the wings during flight so they could be 

manipulated to change the direction of the plane. A prototype 

test kite was then built to verify the technique. To test the 

wings the brothers built a number of gliders, which they tested 

at Kittyhawk. After a number of designs were tested, the 

brothers used a wind tunnel to refine the shape of their wing 

designs and achieve the lift required. Once the control and 

wing designs were successfully achieved, the engine and 

propeller of the propulsion system were built and the system 

as a whole was used to achieve their first flight. 

The design strategy of the Wright brothers was much more 

sophisticated than simply ‘make it look like a bird, push it off a cliff, and see what 

happens’. It is clear they understood the basic principles of aircraft design before they 

began. The shape of the wings and airflow across them are the determining factors in the 

generation of the lift required for keeping a flying machine off the ground. Moreover, the 

Figure 3-1: Pitch, Roll 
& Yaw 
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direction of those wings with respect to the wind controls the direction of that lift. They 

realised that the physical characteristics of the form of the wings, their size, shape, mass, 

and direction, are crucial design issues. At that time many mathematical techniques and 

equations existed to predict those properties. However, they were simply not detailed 

enough to model the designs to a level of detail required by the Wright brothers. They 

knew the basic principles of aeronautical design. However, because the precise nature of 

those principles and the precise physical characteristics of the implementations that 

exploited them were not known, working prototypes had to be employed to develop the 

design. Again, this is not a criticism of Graham’s analogy. Nevertheless, a deeper analysis 

of that analogy can be used to develop a more profound understanding of engineering 

design, and, as a consequence, software design. 

The Wright brothers could design systems that approximately worked as anticipated. 

What they could not do was determine the precision of those designs without testing 

them. That principle is evident in the contemporary process of aircraft design. 

Mathematical models now exist that define the principles of aeronautical theory and the 

properties and form of physical materials. That has allowed aircraft designers to design 

and build successful systems with far less reliance on working prototypes. For example, 

the Boeing 777 aircraft was the first jetliner to be 100% designed using 3-dimensional 

solid modelling technology. The result was the elimination of the requirement for a full-

scale design model to test the assembly of the design (Boeing 1998).  

“The 777 is the first Boeing airliner 100% designed using 3-D solid modelling 

technology. The software used is CATIA (computer-aided, three dimensional 

interactive application) [and ELFINI (Finite Element Analysis System)] 

developed by Dassault Systems of France.... The 777 division used more than 

2,200 CATIA workstations networked to an eight-mainframe computing 

cluster, this being the largest single CAD project anywhere, requiring 3 Tera-

Bytes … of data to store the information. In addition to being a 3-D design 

tool, CATIA is also used as a digital pre-assembly tool. In the past, Boeing 

built a full-scale non-flying mockup of the complete aircraft to check fit for 

interference problems at a cost of 2.25 million dollars. Since the various 

systems were designed independently, it was necessary to make sure that a 

bolt did not occupy the same physical space as a hydraulic line, or that an 

electrical conduit did not run across the middle of a ventilation duct. The 
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mockup was also used to check accessibility of all the parts for maintenance 

work. With a 3-D database that everyone uses simultaneously, the 

interference problems are eliminated, and the access question is answered by 

maneuvering a digital ‘mechanic’ in 3-D space.” (Schokralla 1998) 

The ability to design to specification and schedule has been significantly improved 

through the use of CAD technology. It has provided the capability to model the 

characteristics of proposed designs at a level of detail necessary for the design to be 

validated against the specifications, thereby eliminating the traditional requirement of 

developing full-scale, functional prototypes. These models consist of mathematical 

representations of the relevant characteristics of the designed system’s physical form. 

Moreover, they are evaluated using mathematical representations of the principles and 

theories that relate those characteristics in aeronautical research. 

The analogies made between aircraft design and software development describe 

similarities between the leve l of system understanding, the ability to predict the working 

properties of the design, and the ability to design to specification and schedule. Those 

analogies appear useful on the surface. However, closer inspection reveals those attributes 

of engineering design are based on the ability to model and predict the properties of the 

physical building materials from which the system is constructed. Moreover, they are 

validated in conjunction with mathematical representations of the theoretical principles of 

the discipline. It is not clear what analogous physical properties and theoretical principles 

exist in the discipline of software development. This is highlighted in Kinslow’s 

comparison that claimed bridge designers do not build systems of unprecedented span 

with unknown materials for a kind of traffic not seen before. The ability to support a 

particular load is determined by the properties of the physical materials and structural 

patterns in which those materials are arranged. For instance, concrete has different load 

bearing characteristics than timber and arch bridge arrangements have different load 

bearing characteristics than suspension bridge arrangements. In addition, those 

characteristics must be considered within the context of environmental conditions such as 

potential weather situations and the supporting characteristics of the ground on which the 

bridge will be built. Again, the properties of the materials that are used by the discipline 

to achieve the requirements appear to have no direct analogue in software development.12 

                                                 

12 Analogies with building design are analysed in greater detail later in this chapter. 
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Naur used an analogy with automobile design to highlight the importance of large-scale 

system partitioning. A statement such as “you can design the motor more or less 

independently of the wheels” is essentially true. The implication derived from that 

analogy was that software engineers could also enjoy significant development gains 

through early system partitioning. For that analogy to be valid, the factors that determine 

how a system can be partitioned must also be analogous. However, many dependencies 

exist between automobile subassemblies and an analysis of those reveals import insights 

concerning the nature of software development and engineering design. While little 

design work is performed on the wheels as such, they are cons idered as part of the rolling 

chassis, which requires a great deal of design work. It is interesting to examine the 

reasons for the general ‘architecture’ of the automobile and the nature of the 

dependencies between the subsystems. Is it actually designed to facilitate the separation 

of concerns between subsystems, as suggested in the original analogy, or do other factors 

exist? 

The following description of automobile design is based on a discussion with the Senior 

Project Engineer in the Vehicle Performance Group, Holden Ltd (formerly General 

Motors Holden Australia) (Beltrami 1998). That discussion covered many issues raised 

by the analogy, including: 

• The relationship, including dependencies, between wheel design and engine 

design. 

• The conceptual architecture of the automobile. Identification of the major 

subsystems, how the architecture evolved in that manner, and why it has failed to 

change from the same basic ‘shape’. 

• The relationship between the engine and chassis subsystems and the design 

reasoning behind the chosen arrangement between those subsystems. 

The only property of the ‘wheel design’ that affects the engine design is its physical size. 

Because the wheel size is a determining factor in the ground clearance of the vehicle, it 

affects the design of the spatial topology of the engine. Engine design is constrained by 

many factors, one of which is that it must occupy set physical dimensions. Another 

example of the effect of wheel size on engine design is, to some extent, on cars with 

automatic transmission. Wheel size affects engine revs at particular speeds and that is a 

determining factor in the design of automatic transmissions. Moreover, the fuel economy 
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of vehicles, which is often an important criterion of the customer, is affected by engine 

revs at cruising speeds, and that is affected by wheel size. For those reasons, wheel size is 

often one of the first design decisions made when designing, or making major 

modifications to the design of a vehicle. 

The conceptual architecture of the automobile at Holden Ltd consists of a number of 

major subsystems: 

• Powertrain (engine, transmission, differential, gearbox, etc). 

• Chassis (suspension, brakes, wheels, floorpan, etc). 

• Body (the shell. ie., panel work, bumpers). 

• Electrical. 

• Trim. 

• Materials. 

Each of these major subsystems has its own design group within the company (along with 

a design group to develop the safety aspects). Naur was correct in detailing the absence of 

major dependencies between wheel and engine design, however examining the design 

decisions related to the dependencies between the engine and the chassis as a whole 

provides a more interesting example. Does this new analogy continue to support Naur’s 

implication that the generic architecture of the vehicle has developed to allow 

independent design of the chassis and engine? 

A vehicle engine needs to generate enough power to pull a total weight of approximately 

2300 kilos. That includes the weight of the engine itself, the rest of the vehicle, 

passengers, and luggage. That power is delivered via the drivetrain to rotate the wheels. 

The movement of those physical components generates inertial forces that significantly 

affect the handling of the vehicle as the forces from the engine are transferred to the 

chassis at the engine mounting points. The engine and chassis are joined by physical 

necessity but they are kept as separate as possible to reduce the effect of these inertial 

loads. As the engine revs, the torque produced causes the physical engine to rotate. If it 

was rigidly connected to the chassis the entire chassis would move causing severe 

handling problems for the driver. That is evident in relatively old, high-powered cars that 

connect the engine to the chassis using solid rubber mounts. More recent vehicles use 

hydraulic mounts that minimise the torque effects. Because the effects of the engine 
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forces on the chassis handling are so significant, the designer must make a choice. In the 

first option, the chassis and engine could be implemented as a single subsystem using a 

counter-balancing flyweight to minimise the engine forces on vehicle handling. That 

would provide advantages in other areas such as system simplicity and rigidity but would 

result in significantly extra weight and engine size. Alternatively, the engine and chassis 

could be designed as separate subsystems. That would minimise the dependencies 

between the two but would require the design of relatively complex mounting 

arrangements. In automobile design everything affects everything else. New subsystems 

must be ‘tuned’ to work as desired and to not affect other subsystems. For instance, even 

the position of the indicator stalk affects the design of the driver airbag system. The 

dependencies between subsystems are enormous. However, because the system’s design 

has evolved over a long period of time, experience has reduced the effects of those 

dependencies. Changing to a completely different automobile configuration would require 

replacing all those years that have been used to minimise the effects of those 

dependencies. Moreover, all the investment put into design, production, and service of the 

existing technology would need to be reproduced. 

Theories in software architecture, and the original comments by Naur, suggest large-scale 

software systems can be partitioned to make use of design teams and to minimise 

dependencies between systems. In automobile design however, the design teams are 

created to work on the subsystems of an architecture that has evolved over a long period. 

The egg and chicken are around the other way. The design of systems in traditional 

engineering disciplines requires the manipulation of physical materials and the 

combination of components constructed from those materials. The materials and 

components interact and exhibit mechanical properties that engineers use to provide the 

desired functionality. In addition, undesired properties may exist and their effects on the 

desired functionality need to be minimised. The important distinction is that engineers 

cannot necessarily ‘produce’ the exact functionality they desire using physical 

components. Rather they combine physical components in a system that produces 

properties that implement the desired functionality. That is not the case in software 

development. 

The difficulty in expressing the characteristics of the systems that software developers 

construct is exhibited in the analogies used to express the ‘types’ of systems that are built 

and, consequently, how the general approach to design is described. For instance, Naur 
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drew an analogy between the “large, heterogeneous constructions” of software and those 

of civil engineering and architecture. Naur’s analogy continued by recommending 

Christopher Alexander’s theories in Notes on the Synthesis of Form (Alexander 1964) as 

a useful source. Alexander characterises the understanding of a ‘large’ and 

‘heterogeneous’ system in the following passages. 

“Today more and more design problems are reaching insoluble levels of 

complexity. ... To match the growing complexity of problems, there is a 

growing body of information and specialist experience. This information is 

hard to handle; it is widespread, diffuse, unorganized. ... As a result, although 

ideally a form should reflect all the known facts relevant to the design, ... the 

technical difficulties of grasping all the information needed for the 

construction of such a form are out of hand – and well beyond the fingers of a 

single individual.” (op. cit p. 3) 

“The reason that iron filing placed on a magnetic field exhibit a pattern ... is 

the field they are in is not homogeneous. If the world were totally regular and 

homogeneous, there would be no forces, and no forms.” (op. cit p. 15) 

According to Alexander, all design problems must achieve some ‘fitness’ between the 

form and its context. The context of the problem provides a set of conflicting constraints 

and the designer must satisfy them. For example, “The iron filings constitute a form, the 

magnetic field a context.” (op. cit p. 20) 

These design theories appear applicable to the problems faced by software developers 

who also face the challenge of constructing complex systems with a large and conflicting 

set of contextual constraints. However, are the design theories of Alexander applicable 

because the situations faced by the respective disciplines are truly similar? Although 

software development and traditional engineering disciplines utilise similar terms to label 

aspects of their design processes, further analysis reveals that the fundamental nature of 

those aspects are considerably different. Alexander states, “The ultimate object of design 

is form” (op. cit p. 15). However, it is not clear that Alexander’s theories, whilst being 

extremely interesting in their own right, are directly applicable to software development. 

Obviously design patterns, which are based on Alexander’s theories, have provided 

significant benefits for software developers. However, differences between the respective 

disciplines suggest the reason why they are useful may be different to the reason they are 
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beneficial in Alexander’s architecture research13. For instance, the concept of physical 

‘form’, which provides the foundation for Alexander’s theories, has no direct analogue in 

software systems. 

Many analogies were used during the 1968 NATO conference to develop ideas about how 

software developers should go about the process of designing and implementing software 

systems. However, the insights provided by the conference participants concerning the 

nature of software systems and the subsequent analysis of the original analogies shows 

the fundamental nature of what the respective disciplines build is significantly different. 

Therefore, although the analogies appear valid and much of the terminology is used 

across disciplines, significant questions arise concerning the appropriateness of applying 

the term ‘engineering’ to software development. The original motivation for doing so was 

obviously well intentioned.  

“The need for software manufacture to be used on the types of theoretical 

foundations and practical disciplines, that are traditional in the established 

branches of engineering.” (NATO 1976a) 

However, the observations made by the participants, and the subsequent analysis of the 

analogies made, shows the application of the analogies do not fully consider the nature of 

software systems. At the end of the 1968 conference, many questions existed concerning 

the applicability, rather than the original intent, of the term ‘software engineering’. 

3.2.3 The 1969 NATO Conference 

The most striking aspect of reading the 1969 conference report is the significant change in 

attitude of the participants. Like the 1968 report, the 1969 report provides a transcript of 

many of the debates that occurred as well as the publication of a selection of the working 

papers presented. However, while the structure of the proceedings is similar, the content 

is markedly different. In fact, the editors of the reports take great care to detail the 

difference in the introduction. 

“The intent of the organizers of the Rome [1969] conference was that it 

should be devoted to a more detailed study of the technical problems, rather 

than including also the managerial problems which figured so largely at 

                                                 

13 This is discussed in chapter seven. 
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Garmisch [1968]. However, once again, a deliberate and successful attempt 

was made to attract an equally wide range of participants. The resulting 

conference bore little resemblance to its predecessor. The sense of urgency in 

the face of common problems was not so apparent as at Garmisch. Instead, a 

lack of communication between different sections of the participants became, 

in the editors’ opinions at least, a dominant feature.” (NATO 1976b) p. 145) 

The structure of the conference report is similar to the 1968 report. The debates are 

grouped into discussions concerning software specification, software quality, software 

flexibility/portability, large system case studies, and software engineering education. Like 

the 1968 report, the debates contain many insightful observations that highlight aspects of 

the nature of software systems and the differences between them and traditionally 

engineered systems. For example, 

“Schwartz: In my experience on large systems, we have pictured the systems 

as a flow of data. On these projects we have people whose sole job is to 

develop and to change and re-do table specifications. Wherever possible we 

try to have programming languages which divorce the data definition from the 

actual procedures… 

Randell: I am reluctant to draw a definite line between the concepts of 

program and data. One of the nice things about SIMULA is that the concept 

of process definition in some sense includes, as special cases, procedure and 

data structure definitions.” (op. cit p. 155) 

This exchange highlights important observations concerning the interrelationships that 

exist between program and data. Moreover, many similar observations are evident in the 

transcript. What was noticeably absent, however, was any discussion concerning the 

nature of software development and its relationship with engineering disciplines. The 

section of the 1968 report that dealt with software engineering education concentrated on 

why software developers should look to those other engineering disciplines. Moreover, 

the previous analysis and description shows that many issues remained unsolved that 

undermined the assumption that the disciplines are analogous. The same section in the 

1969 report however, appears to assume that the analogy is valid and the question had 

changed from what software engineering has to do with traditional engineering, to what 

software engineering has to do with computer science. Indeed, at the risk of inferring too 
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much from the transcript provided, the assumption that software development is an 

engineering discipline appears to pervade the majority of the discussions. At the end of 

the conference reports the reader is left with the impression that the discipline of software 

development entered the 1968 conference with the proposal that it would like to become 

an engineering discipline and needed to examine the relevant issues to see if the goal was 

appropriate. It then left the 1969 conference with the belief that it is an engineering 

discipline and that only the technical issues about how to successfully engineer software 

systems remained to be solved. In the introduction to the 1969 report, the editors make 

the following note about the previous year’s conference. 

“The Garmisch conference was notable for the range of interests and 

experience represented amongst its participants. In fact the complete 

spectrum, from the inhabitants of ivory-towered academe to people who were 

right in the firing- line, being involved in the direction of really large-scale 

software projects, was well covered. The vast majority of these participants 

found commonality in a widespread belief as to the extent and seriousness of 

the problems facing the area of human endeavor which has, perhaps 

somewhat prematurely, been called ‘software engineering’.” (op. cit p. 145) 

Although many of the participants still believed the label ‘software engineering’ had been 

accepted prematurely, the issue was not questioned in the 1969 conference transcript. 

Interestingly, the editors note that the most dominant feature of the conference was the 

communication gap that appeared between the participants during the conference. 

“Eventually the seriousness of this communication gap, and the realization 

that it was but a reflection of the situation in the real world, caused the gap 

itself to become a major topic of discussion. Just as the realization of the full 

magnitude of the software crisis was the main outcome of the meeting at 

Garmisch, it seems to the editors that the realization of the significance and 

extent of the communication gap is the most important outcome of the Rome 

conference.” (op. cit p. 145) 

The final discussion of the conference, which is presented first in the transcript, dealt with 

the need to “talk about, rather than just suffer from, the effects of the communication 

gap.” (op. cit p. 147). Strachey begins by examining the differences between theory and 

practice. 
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“Strachey: … This sort of debating point is not helpful. The truth of the 

matter is that we tend to look with doubt and suspicion at the other side; 

whichever side of that particular barrier we are. On one side we say ‘Well, 

there’s nothing we can get out of computing science: look at the rubbish that 

they are talking’. Or we stand on the other side and look at the very large 

programs and we say ‘Goodness me; what rotten techniques they use and 

look: they all fail.’ 

One of the most interesting things that has been shown at this conference is 

that these projects don’t all fail. It has been shown that some of the them have 

been quite astonishingly successful.” (op. cit p. 147) 

The discussion then turns to how the theories of researchers could be demonstrated and 

verified so practitioners could adopt them with increased confidence. The discussion of 

pilot projects led to an increased distinction between theoreticians and practitioners that 

results in the following remarks by Dijkstra and Randell. 

“Dijkstra: I would like to comment on the distinction that has been made 

between practical and theoretical people. I must stress that I feel this 

distinction to be obsolete, worn out, and fruitless. It is no good, if you want to 

do anything reasonable, to think you can work with such simple notions. Its 

inadequacy, amongst other things, is shown by the fact that I absolutely refuse 

to regard myself as either impractical or not theoretical. 

…  

What is actually happening, I am afraid, is that we all tell each other and 

ourselves that software engineering techniques should be improved 

considerably, because there is a crisis. But there are a few boundary 

conditions which apparently have to be satisfied. I will list them for you: 

We may not change our thinking habits. 

We may not change our programming tools. 

We may not change our hardware. 

We may not change our tasks. 

We may not change the organisational set-up in which the work has to be 

done. 
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Now under these five immutable boundary conditions, we have to try to 

improve matters. This is utterly ridiculous. Thank you. (Applause). 

Randell: … ‘There’s none so blind as them that won’t see.’ … If you have 

people who are completely stuck in their own ways, whether these are ways 

of running large projects without regard for possible new techniques, or 

whether these are ways of concentrating all research into areas of ever smaller 

relevance or importance, almost no technique that I know of is going to get 

these two types of people to communicate. … You have to have good will. 

You have to have means for people to find out that what the others talk is 

occasionally sense. This conference may occasionally have done a little bit of 

that. I wish it had done a lot more. It has indicated what a terrible gulf we so 

stupidly have made for ourselves. (op. cit pp. 151-152) 

The philosophical gulf between theoreticians and practitioners of software development 

appeared suddenly between the 1968 and 1969 conferences. Interestingly its occurrence 

coincides with what the editors noted as the premature acceptance of the label ‘software 

engineering’. 

3.3 The Evolution of the Artefact Engineering View 
From the presentation and analysis of that initial understanding of software engineering, 

an examination is now presented of how that artefact engineering view of software 

development has evolved. 

McIlroy’s invited talk at the 1968 NATO conference was one of the first attempts to 

directly describe software components in terms of engineering terminology. His Mass 

Produced Software Components (McIlroy 1968) is considered a seminal paper on 

software reuse (Krueger 1992) and is based on direct analogies with traditional 

engineering disciplines. 

“Software components (routines), to be widely applicable to different 

machines and users, should be available in families arranged according to 

precision, robustness, generality, and time-space performance. Existing 

sources of components – manufacturers, software houses, users’ groups, and 

algorithms collections – lack the breadth of interest or coherence of purpose 

to assemble more than one or two members of such families, yet software 
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production in the large would be enormously helped by the availability of 

spectra of high quality routines, quite as mechanical design is abetted by the 

existence of families of structural shapes, screws or resistors.” (McIlroy 1968) 

McIlroy claims that the existence of a few similar terms between the disciplines provides 

some validity to the analogy. However, he also notes that not all terms could be directly 

applied between them. 

“The idea of subassemblies carries over directly and is well exploited. The 

idea of interchangeable parts corresponds roughly to our term ‘modularity’, 

and is fitfully respected. Yet this fragile analogy is belied when we seek for 

analogues of other tangible symbols of mass production.” (McIlroy 1968) 

The basis of McIlroy’s conviction seems to be that software components could be 

understood like engineering components. For example, when talking about the use of 

table mechanisms in compiler writing, he says, “I claim we have done enough of this to 

start taking such things of the shelf.” His subsequent claims about developing a sub-

industry of components with varying degrees of precision, robustness, time-space 

performance, and generality were justified using a detailed example of the “lowly sine 

function”. That is reinforced with briefer descriptions concerning how the claims can also 

be applied to the application areas of numerical approximation routines, input-output 

conversion, two and three dimensional geometry, text processing, and storage 

management. 

It is impossible to argue with McIlroy’s desire to improve the efficiency of software 

development by utilising mass produced software components. Especially when the 

practice is perceived to be such a fundamental part of traditional engineering design. 

“What I have just asked for is simply industrialism, with programming terms 

substituted for some of the more mechanically oriented terms appropriate to 

mass production. I think there are considerable areas of software ready, if not 

overdue, for this approach.” (McIlroy 1968) 

However, McIlroy fails to address a number of issues. His claim that software catalogues 

could consist of components classified by “precision, robustness, time-space 

performance, size limits, and binding time of parameters” appears possible for the small 

number of application areas he discussed. The sine function and other application 

domains all consist of concepts that are either extremely well defined a priori (e.g., 
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mathematics) or the relevant concepts have been suitably codified by practitioners over 

time (e.g., input-output functions and compiler writing). Indeed, at that time, there were a 

number of very successful families of components that were widely reused (Reed, 1995 in 

Reed 2000). It is not clear how McIlroy’s ideas, no matter how well intentioned, apply to 

other problem domains in which the relevant components cannot be so easily defined and 

parameterised for classification. That was borne out in the subsequent discussion by the 

conference participants. Perlis began by noting the following. 

“Perlis … Specialists in every part of software have a curious vision of the 

world: All parts of software but his are simple and easily parameterized; his is 

totally variable.” (McIlroy 1968) 

D’Agageyeff suggests why this might be the case. 

“d’Agapeyeff: … It is extremely difficult to construct this software [file 

handling systems] in a way that is efficient, reliable, and convenient for all 

systems and where the nature of the package does not impose itself on the 

user. The reason is that you cannot atomize it. Where work has been 

successful it tends to be concerned with packages that have some structure. … 

But why do we need to take atoms down off the shelf? What you want is a 

description which you can understand, because the time it takes to code it into 

your own system is really very small. In that way you can insert your own 

nuances. The first step in your direction should be better descriptions.” 

(McIlroy 1968) 

Those comments allude to the importance of identifying the differences between software 

components and engineering components. Kolence brought that point back to the nature 

of design. 

“Kolence: We are concerned with a mass design problem. In talking about the 

implementation of software components, the whole concept of how one 

designs software is often ignored. Yet this is the key thing.” (McIlroy 1968) 

The comments by the conference participants show the initial ideas presented in 

McIlroy’s call for software industrialisation are worthy of further investigation. However, 

issues concerning the differences between the nature of software design and engineering 

design must also be considered. Unfortunately, those concerns were not investigated 
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further. Other participants in the debate continued to assume the analogies were valid and 

that the applicability of the ideas to software development are obvious. 

“Naur: What I like about this is the stress on basic building principles, and on 

the fact that big systems are made from smaller components. … A 

comparison with our hardware colleagues is relevant. Why are they so much 

more successful than we are? I believe that one strong reason is that there is a 

well established field of electronic engineering, that the young people start 

learning about Ohm’s Law at the age of fourteen of thereabouts, and that 

resistors and the like are known components with characteristics which have 

been expounded at length at the early level of education. The component 

principles of our systems must be sorted out in such a form that they can be 

put into elementary education.” (McIlroy 1968) 

The belief that the “comparison with our hardware colleagues is relevant” was based on 

the justification of a small number of perceived similarities with those disciplines. The 

important questions concerning the differences however, were not addressed:  

What are the component principles of our systems? and  

How are they different to traditional engineering disciplines? 

The discussion of the previous section shows that between the 1968 and 1969 NATO 

conferences these questions appeared to have been either accepted without question, 

forgotten, or temporarily replaced by more pressing, short-term, technical problems. 

Unfortunately, analysis of the evolution of component ideas in software engineering 

shows these fundamentally important questions have rarely come back to the fore. 

The 1970s saw great advances in software engineering theory. Brooks’ essays on 

software engineering, based on his large-scale system building experience, appeared in 

The Mythical Man-Month (Brooks 1975). The introduction of the ‘information-hiding’ 

concept by Parnas appeared in On the Criteria to be Used in Decomposing Systems into 

Modules (Parnas 1972). And the emphasis on large-scale system design issues by 

DeRemer appeared in Programming-in-the-Large Versus Programming-in-the-Small 

(DeRemer and Kron 1976). All of these are considered canons of the discipline. During 

that time the belief that ‘engineering’ could continue to be used as a valid metaphor for 

software development remained. Moreover, the questions elicited from McIlroy’s call for 

the industrialisation of software engineering were still not addressed. 
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Fifteen years after the NATO conferences, Wegner published his lengthy discourse, 

Capital-Intensive Software Technology (Wegner 1984). He begins with the assumption 

that software development could be treated analogously to traditional engineering 

development and then extends the engineering metaphor to the understanding of 

development resources and products as capital goods. 

“Striking similarities between industrial and software technology have led to 

considerable borrowing of the terminology of industrial technology for 

corresponding concepts of software technology. 

… 

Any reusable resource may be thought of as a capital good whose 

development cost may be recovered over its set of uses. Thus, it seems 

reasonable to identify the notion of capital goods with that of reusable 

resources and the notion of capital with that of reusability. 

… 

Capital formation in software technology is dependent on the implementation 

of concepts and models rather than on the construction of physical machines. 

Our generalized notion of capital includes both conceptual and physical 

capital formation because we see reusability as a key denominator.” (Wegner 

1984) 

Wegner examines the capital- intensive aspects of software development, both in terms of 

the existing state of the art and from his predictions about the future. His treatise is 

divided into four parts: 

1. Software Components: reusability of components, interfaces, function, data, and 

process abstractions, distributed and concurrent processes, and object-oriented 

concepts. 

2. Programming in the Large: paradigms of software technology, paradigms of 

development life cycles, and reusable concepts and models. 

3. Knowledge Engineering: people-oriented knowledge engineering, knowledge-support 

environments, and computer authoring technology. 

4. Accomplishments and Deficiencies of Ada: a case study of Ada as a capital- intensive 

technology, and an analysis of the question of whether it is a product or a process. 
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The first two sections identify important issues that concern the applicability of the 

artefact engineering view. Wegner identifies the following types of software components: 

• Function abstractions: Specified by its input-output relation. Its operation is 

dependent solely on the data parameters. The function implementation is hidden 

from the user. 

• Data abstractions: Able to store an internal state and functionality that determine 

the precise operation of the component. Both data and function specifics are 

hidden from the user. These correspond with contemporary notions of non-

threaded objects. 

• Process abstractions: Similar to data abstractions but have an independently 

executing thread of control. These abstractions may operate conc urrently and may 

be distributed across machines. 

Wegner’s analysis examines aspects of those components that makes them difficult to 

treat as capital- intensive resources in the traditional sense. The nature of component 

interfaces were investigated, identifying aspects of syntactic, compile-time issues and 

semantic, run-time issues that make the realisation of ‘plug-and-socket’ models of 

program construction from existing components difficult. For process models, the 

analysis highlights concurrency control issues and global data sharing as aspects that 

differ from conventional notions of component interaction. 

Rather than examining why those differences exist and how they affect the validity of the 

artefact engineering view, Wegner’s discussion implies they will be solved by dealing 

with issues in development process models. Specifically, the future application of 

knowledge engineering techniques to the software development process to help the 

software developer in the construction of those systems. His analysis of issues concerning 

abstraction, specialisation, pattern recognition, and reusable models, are very useful and 

predict some current issues in software architecture and design patterns. However, while 

the discussion does identify specific differences between the capital- intensive goods of 

software technology and those of traditional engineering, it does not examine them in 

enough detail to identify the underlying principles of software technology, nor does it 

determine if they invalidate the artefact engineering view of software development. 

Wegner’s conclusion states that those differences will be accounted for in the future 

application of expert-system approaches to the software development domain. However, 
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the benefit of 15 years of hindsight shows that has not occurred, despite considerable 

research. It may be that Wegner’s principles were correct and that more research is 

needed. However, other comments in his paper suggest the differences might be more 

fundamental and the metaphor itself needs to be examined in more detailed. His analysis 

of reusability made the following statement. 

“At the present time, reuse of a component in successive versions of an 

evolving program appears to be a more important source of increased 

productivity than reuse of code in different applications. Components are 

rarely portable between applications, and even if they are, the incremental 

benefit of using a component in two applications is only a factor of two. But 

the number of versions of a systems over its lifetime can number in the 

hundreds or even the thousands.” (Wegner 1984) 

Wegner’s examination of the differences between software and traditional capital-

intensive components fails to explore this issue even though the ability to easily reuse 

components across systems is fundamental to traditional engineering. Subsequent 

research in reuse technology has examined those issues in more detail but has also failed 

to provide a software component marketplace that rivals traditional engineering 

components. Moreover, a precise examination of the differences between what an 

application is in the respective disciplines has also never been made. Once again, it may 

be that more research is required. However, Wegner later makes an insight about the 

understanding of software components that questions the metaphor for understanding. 

When discussing the importance of knowledge engineering in the software development 

process, he states,  

“Euclid’s Elements, a magnificent piece of knowledge engineering, provided 

a basis for managing geometrical knowledge.” (Wegner 1984). 

The implication of the subsequent discussion was that the future application of knowledge 

engineering would identify a similar foundation for software engineering knowledge. 

Research has shown that Euclid’s foundations are not the solid basis of geometrical 

knowledge that Wegner asserts. It is only one, though the most popular and ‘default’ one, 

of many axiomatic foundations of geometry. If Wegner’s analogy is valid, how does the 
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issue of conceptual relativism affect the ability of the software engineering research 

community to identify its founding principles? 14 

At approximately that time, Spector and Gifford contributed to the research debate by 

publishing A Computer Science Perspective on Bridge Design (Spector and Gifford 

1986). They interviewed a partner in a consulting engineering firm that specialised in 

bridge design and believed the results provided experience and insights that could be of 

use for computer systems designers – both software and hardware. Their questions 

covered topics from the design process, project management and organisation, tool use, 

reliability and failures. 

Spector and Gifford draw analogies between bridge design and software development 

based on some obvious similarities.  

“Structural engineers decompose a bridge into a hierarchy of subcomponents, 

all of which are ultimately constructed from relatively simply objects like 

beams and plates. Programs … for example, are also hierarchically 

decomposed, but the primitives are instructions… Dynamically, the bridge-

design process is arranged so that separate groups can address separate 

aspects of the design. A bridge-designer’s concerns for functionality, 

reliability, serviceability, and even aesthetics are familiar to computer systems 

designers.” (Spector and Gifford 1986) 

They also note some general differences. 

“The most noticeable difference is that the bridge-design process is much 

more structured than computer systems design. Similar design 

decompositions and project organizations are used for each bridge. Standard 

specifications … further constrain designs, by mandating standardized 

requirements and constraints on materials.” (Spector and Gifford 1986) 

Specific differences were also detailed and classified in terms of attention to reliability, 

the use of tools, standardised bridge requirements, standardised material specifications, 

formal design documents, and separations of design from implementation. 

                                                 

14 Chapter five discusses these issues in further detail. 
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The authors conclude that this mature engineering discipline might provide a “glimpse of 

the future of computer system design”. 

“As computer science matures, there may be more standardized specifications 

and designs. When the design space for certain application areas becomes 

more constrained, it may be possible to produce clearer specifications earlier 

in the design phase. Reliability guarantees may assume increasing 

importance, and the use of tools may become more prevalent.” (Spector and 

Gifford 1986) 

Spector and Gifford’s analysis finishes with caveats that suggest the differences between 

the disciplines may make specific predictions about the future of software engineering 

difficult. However, questions and answers provided in the interview can be used to 

highlight additional glimpses of the component principles of engineering disciplines and 

help determine whether they are applicable to software systems. 

On the surface, the design processes appear similar. The interviewee identified bridge-

design as consisting of preliminary design, main design, and construction phases. The 

preliminary design phase is directly analogous to the initial architecture design stages of 

software development. The preliminary design stage “describes the various alternative 

structures that were considered, estimates the costs of each alternative, and usually 

recommends one of the designs” (Spector and Gifford 1986). The main design stage 

appears similar to other parts of the analysis and design phases of software development. 

“The main design phase involves a complete structural design, making 

drawings, and writing specifications that describe the tests that materials must 

pass before they can be used, their quantities, and some of the construction 

techniques. In effect, the bridge is completely specified during the main 

design phase.” (Spector and Gifford 1986) 

However, detailed descriptions of how the main design phase of bridge-design is 

performed highlights principles of engineering component s that simply do not exist in 

software components. The first step in the design process is to establish the design 

criteria, or detailed specifications, that the bridge must meet. Those criteria are specified 

in terms of specific stresses and loadings that the structure must cope with. Those criteria 

are context independent in the sense that they are applicable to all bridges. Indeed, the 
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American Association of State Highway and Transport Officials (AASHTO) publishes an 

annually revised design specification document that all bridges must meet. 

“[It] prescribes load capacities for vehicular traffic in terms of weight, 

number, and frequency. It gives design loads for wind and outlines procedures 

for obtaining seismic loads. It sets allowable stresses for steel, concrete, and 

other materials, and details design rules for such components as stiffeners, 

columns, etc. It indicates what tests are necessary for various materials before 

they can be approved for use. Most of the individual specifications are 

component specifications, although some specifications are given on a system 

basis.” (Spector and Gifford 1986) 

This provides the starting point for the design specification, however additional criteria 

must also be established. 

“For example, creep is the deformation over time of a material under constant 

stress. The formula for creep is not universal, so we specify the formula that 

we’ll use for a particular project. Another factor of increasing importance 

with larger bridges is natural phenomena: If a bridge is in an area where 

hurricanes can occur, or where there is considerable seismic activity, we have 

to establish appropriate design loadings to account for these phenomena. The 

goal is to establish acceptable bounds in terms of the relevant probability of 

risk and the cost and importance of the project.” (Spector and Gifford 1986). 

A mathematical model of the design, which was accepted in the preliminary design phase, 

is then created. It specifies “where joints, pins, and other connections are to be placed – 

we would consider, for instance, how the bridge should be connected to the piers. We try 

to get a general outline of the various components of the bridge” (Spector and Gifford 

1986). That mathematical model is  then evaluated against the detailed specifications, 

which are also represented in mathematical notation, to ensure the design will meet the 

requirements.  

“There’s the dead load of the structure itself, as well as the live load of the 

vehicles on the bridge. We have to determine how many situations to account 

for. Do we combine the live load with a full hurricane wind? The answer is 

‘no’ because there wouldn’t be vehicles on the bridge during a hurricane. … 

We also have various safety factors for each combination. … This level of 
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analysis gives us the forces acting on all the components.” (Spector and 

Gifford 1986) 

This process is remarkably similar to the process identified in the analysis of engineering 

designs for the cruise control systems discussed in the previous chapter. Engineering 

disciplines can identify the fundamental principles of their disciple and represent them in 

the context-free language of mathematics. Moreover, they have also developed techniques 

for representing the properties of their components and systems/structures using similar 

notations. Those designs can be evaluated with respect to the requirements, and 

predictions about the success of the design can be made. That has provided a significant 

improvement in the design of traditional engineering systems. 

“I have to admire the courage of those pioneer engineers, trying to build long 

flexible bridges without the benefit of much analysis or knowledge of the 

dynamic effects of the wind … We’ve since learned how to actually calculate 

most of the stresses and deflections from all types of loads… Up until the 

1950’s we were using slide rules and desk calculators to help determine the 

forces on components. On reasonably large, indeterminate structures, we used 

approximation techniques to reduce the number of simultaneous equations 

that needed solving. That would leave us with a maximum of 25 simultaneous 

equations that needed solving… With the advent of computers, we returned to 

classical analysis techniques with matrix methods. This allowed us to 

routinely solve hundreds of simultaneous equations. I think the aeronautical 

industry really led the way in this area… Today we’re also using finite-

element methods, which allow us to combine linear components with plate 

elements, and even to compute stresses in solids. With these methods, we’re 

able to calculate the response of just about any type of structure to any 

conceivable load, static or dynamic.” (Spector and Gifford 1986) 

Obviously, spectacular engineering failures have occurred – see for example (Petroski 

1994). Spector and Gifford broached this subject in their interview. If specifications and 

designs can both be modelled and evaluated formally using mathematical techniques, why 

do failures occur? They report that failures generally occur when engineers extrapolate 

beyond their knowledge or models. Engineers still must decide what needs to modelled 

and to what level of precision. They also need to determine safety factors to account for 

variability in loads and materials, which can never been modelled exactly, as well as 
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errors that may occur due material fatigue. Significant failures have also occurred due to 

errors introduced during the connection of the components. 

The ability to mathematically model the fundamental component principles of their 

discipline allows traditional engineers to analyse and verify their designs before 

construction. That point was also made by Smith and Dallen who published a comparison 

of software engineering design and VLSI design, also in the mid 1980s (Smith and Dallen 

1984). Interestingly, that publication compared the two disciplines from the VLSI 

perspective rather than the other research reported here which describes the software 

engineer’s perspective on the processes of other engineers. Their report begins by 

drawing analogies between the disciplines. 

“There are good reasons for drawing analogies between the VLSI and 

software design processes. All design methodologies, irrespective of the 

discipline, embody the same developmental stages. A conceptual model is 

transformed into a physical reality by gradually refining the implementation 

details. The design is tested and evaluated to verify that it meets the design 

objectives or requirements.” (Smith and Dallen 1984) 

The comparison describes the design process of the two disciplines and maps them onto a 

common framework for analysis. One of the main conclusions of their analysis is that 

both disciplines face similar problems in the area of design verification and analysis. 

“Key to the timely evaluation of a design is in early measurement against 

design objectives. While issues of design quality are recognized as important, 

no real place has been found for insuring design quality in the design process. 

If real progress is to be made in VLSI and software engineering, both function 

AND quality will have to be coped with early in the design process. This 

dictates the need for a better balance in the use of proofs, analysis, and 

simulation in support of both software and VLSI design.” (Smith and Dallen 

1984) 

 

By the beginning of the 1990s, software engineering research was providing more 

detailed discussions about what was required of software development in order to become 

an engineering discipline. Those publications and debates detail many useful goals and 

ideals, however none of them address the fundamental questions that arose at the end of 
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the NATO conferences twenty years earlier – What are the underlying principles of 

software components and systems and how are they different to traditional engineering 

disciplines? 

IEEE Software published a special issue in 1990 on The Challenge of Software 

Development. The guest editors, Lewis and Oman, note that the understanding of 

software components was the driving force for the evolution of the discipline. Yet, while 

other aspects of computing had made rapid advancements, software development 

methodology was still “little more than a black-art” (Lewis and Omen 1990). The journal 

gathered 15 academic and industry people to discuss the problem and they identified two 

broad themes: 

• There is an untapped potential for productivity gains through the reuse of standard 

software components. 

• There is a trend toward greater reliance on tools like rapid application-

development and design tools. 

As part of that journal issue, a number of papers were published that highlight current 

thinking in the area. Two of those captured the understanding of software components 

and how a software engineering discipline could evolve. In Prospects for an Engineering 

Discipline of Software (Shaw 1990), Shaw examines the issues to be addressed for 

software development to become an engineering discipline. Summarising many different 

definitions of the term ‘engineering’, Shaw abstracts out the following common 

principles. 

“Creating cost-effective solutions … to practical problems … by applying 

scientific knowledge … building things … in the service of mankind.” (Shaw 

1990) 

The development of that scientific knowledge was examined by discussing the evolution 

of engineering disciplines – in particular civil engineering and chemical engineering. 

Shaw notes that as those fields evolved from simple crafts to professiona l disciplines two 

important processes took place. The disciplines developed the ability to capture and pass 

on the rationale of routine designs and they helped develop and utilise a supporting 

science that could explain and predict the fundamental properties of proposed designs. 
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Based on that analysis, Shaw proposed two tasks to assist the evolution of software 

development towards and engineering discipline. They were: 

• pick an appropriate mix of short-term, pragmatic, possibly purely empirical 

contributions that help to stabilise commercial practice and 

• invest in long term efforts to develop and make available basic scientific 

contributions. (Shaw 1990) 

The endeavour to identify, collate, and disseminate designs and their rationale from 

known implementations proceeded rapidly from approximately that time. Shaw herself 

had been previously working on software systems abstractions (Shaw 1984) and at about 

the same time as the Prospects … paper, she also published one of the first specific papers 

on software architecture. That paper attempts to identify and classify well-known large-

scale system structures (Shaw 1989). Since then, software architecture research has 

produced many useful theories and case studies to capture and disseminate large-scale 

design rationale. Similarly, research in design patterns has also sought to capture and 

disseminate useful rationale from existing designs. However, the second point made by 

Shaw has received far less attention from the research community. Shaw noted that 

computer science has developed some good models and theories to contribute to the 

supporting science of software engineering. Algorithms and data structures, programming 

language semantics and type systems, and compiler design theories have all been used to 

improve the design practices of the discipline. However, no contribution to the ‘scientific 

foundations’ of software systems has allowed the same systematic design process to be 

applied to all software systems as, for example, the way Newtonian mechanics provided a 

foundation for mechanical and civil engineering. 

The other interesting paper in that IEEE Software issue was Planning the Software 

Industrial Revolution by Cox (Cox 1990). Published 20 years after the NATO 

conferences, its thesis is similar to McIlroy’s original call for mass produced software 

components. Cox suggested that software engineering research had been predominately 

concerned with improving development processes and needed to change to a product-

centric paradigm.  

“The familiar process-centric paradigm of software engineering, where 

progress is measured by advancement of the software-development process, 

... The paradigm that may launch the Information Age is the same one that 
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launched the Manufacturing Age 200 years ago. It is a product-centric 

paradigm in which progress is measured by the accretion of standard, 

interchangeable, reusable, components and only secondarily by advancing the 

processes used to build them.” (Cox 1990). 

While much of the motivation was the same as McIlroy’s, Cox notes that the emergence 

of object-oriented technology could now provide a basis to allow people to reason about 

software components in a similar manner to how they reason about tangible components 

in other disciplines. 

“In the broadest sense, ‘object-orientated’ refers to an objective, not a 

technology for achieving it. It means wielding all the tools we can muster, 

from well-proven antiques like Cobol to missing ones like specification 

languages, to enable our consumers by letting them reason about our products 

via the commonsense skills we all use to understand tangible objects.” (Cox 

1990) 

Cox identifies a number of differences between software components and traditional 

engineering components: complexity, nonconformity and mutability, intangibility 

(invisibility), single-threadedness, and ease of duplication. He argues that the issue of 

intangibility could be overcome with object-oriented technology. He deals with the other 

issues in subsequent publications (Cox 1991; Cox 1992). 

Cox’s arguments did not examine, however, how components are understood in the 

respective disciplines. He argues that software reuse could overcome the issue of 

intangibility. However, his arguments do not examine how the design processes of other 

disciplines are able to reason in terms of the underlying component principles and utilise 

existing components to meet design objectives which are stated in terms of those 

principles. The question of the underlying principles of software component principles 

was still not addressed. 

 

The introductory paper by Lewis and Oman in that IEEE Software issue provided a 

summary of software engineering evolution. Their conclusion was that the challenge for 

the 1990’s was to develop a sufficient understanding of the development process to 

automate it as much as possible. This would provide the evolutionary path for software 

engineering research in the 1990s. 
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“1990 and beyond: This era will see the application of expert-system 

techniques to software engineering. The combination of software-engineering 

workstations, expert systems, and automated techniques for development will 

find widespread use in the software industry.” (Lewis and Omen 1990) 

That prediction is similar to the one made by Wegner many years earlier (Wegner 1984). 

Lowry, in Software Engineering in the Twenty-First Century (Lowry 1992), examines in 

detail the impact of knowledge-based approaches on software engineering. He 

summarises attempts to apply AI techniques to software engineering at the beginning of 

the 1990s and makes predictions about the future. His proposal is ‘transformational 

programming’ where prototyping, validation, and modifications are done at the 

specification level and automatic program synthesis translates specifications into 

efficient-code. One of the central features of transformational programming is software 

architecture. 

“To support software developers, software architectures will include the 

functional roles of major software components and their interrelationships 

stated in an application-oriented language; a domain theory that provides 

precise semantics for use in automated reasoning; libraries of prototype 

components with executable specifications; program synthesis capability to 

produce optimized code for components after a prototype system has been 

validated; a constraint system for reasoning about the consistency of a 

developing software system; and design records that link requirements to 

design decisions.” (Lowry 1992) 

According to Lowry, that revolution in software engineering would result in “a broad 

consensus that knowledge-based methods will lead to fundamentally new roles in the 

software-engineering life cycle and a revised view of software as human knowledge that 

is encapsulated and represented in machine manipulable form” (Lowry 1992). 

That picture of the future of software engineering is quite attractive. Moreover, Lowry 

goes into extensive detail about how it would be achieved and the benefits it would 

produce. However, two important assumptions about the nature of software components 

were made by Lowry that were never examined. First, there was an assumption that those 

domain- level ‘knowledge components’ could be thought of and manipulated in a similar 

manner to traditionally engineered components. Many of the predictions made were based 
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on the future ability to adequately formalise those concepts and store them for potential 

reuse. The justification for the assumption was that existing techniques and future 

expectations in the area of AI show that it may be possible. However, to date that has 

certainly not been the case. There is no evidence to believe that ‘knowledge components’ 

can be universally defined and formalised in computer implementable terms.  

The second assumption concerns how those components could be reused to construct a 

system. Lowry notes that the major obstacle to be overcome was the ability to control the 

search for potentially reusable components during the program synthesis stage. That point 

assumes that software components could be sought out and used to realise the domain-

level components identified during the initial stages of design. It assumes that 

components could be found to meet the design rather than designs being generated to 

utilise the component-base. Moreover, the justification assumes that that was how the 

process occurs in traditional engineering design. 

 

The inability to adequately describe the underlying principles or scientific knowledge of 

software components was addressed by an ACM Task Force on the Core of Computer 

Science. That report, Computing as a Discipline (Denning, Comer et al. 1989), identifies 

3 different paradigms that pervade software development. 

“The three major paradigms, or cultural styles, by which we approach our 

work provide a context for our definition of the discipline of computing. The 

first paradigm, theory, is rooted in mathematics and consists of our steps 

followed in the development of a coherent, valid theory: (1) characterize 

objects of study (definition); (2) hypothesize possible relationships among 

them (theorem); (3) determine whether the relationships are true (proof); (4) 

interpret results. … 

The second paradigm, abstraction (modeling), is rooted in the experimental 

scientific method and consist of four stages that are followed in the 

investigation of a phenomenon: (1) form a hypothesis; (2) construct a model 

and make a prediction; (3) design an experiment and collect data; (4) analyze 

results. … 

The third paradigm, design, is rooted in engineering and consists of four steps 

followed in the construction of a system (or device) to solve a given problem: 
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(1) state requirements; (2) state specifications; (3) design and implement the 

system; (4) test the system.” (Denning, Comer et al. 1989) 

Software developers face the unique situation where they must deal with all of those 

paradigms simultaneously. Moreover, the autho rs suggest that research efforts face the 

problem of having to devise explanatory theories that encompass all of the issues. 

Research may sound plausible when they explain development theories in terms of one of 

those paradigms, however all of them must be considered. 

“Many debates about the relative merits of mathematics, science, and 

engineering are implicitly based on an assumption that one of the three 

processes (theory, abstraction, or design) is the most fundamental. Closer 

examination, however, reveals that in computing the three processes are so 

intricately intertwined that it is irrational to say that one is fundamental. … 

The three processes are of equal – and fundamental – importance in the 

discipline, which is a unique blend of interaction among theory, abstraction, 

and design.” (Denning, Comer et al. 1989) 

 

During the early to mid 1990s, many research agendas progressed based on the artefact 

engineering view of software development. Research ideas in software architecture, 

object-oriented technology, domain modelling, and design and component reuse rely on 

that guiding assumption. D’Ippolito notes that one of the differences between traditional 

engineering and software engineering is that engineers are able to model their designs in 

order to compare them with the requirements and make predictions about the 

implementation (D'Ippolito and Plinta 1989). His research group advocates the use of 

domain modelling to provide similar benefits for software engineering and provide 

examples in the simulation of military systems (D'Ippolito and Lee 1992a). The ability to 

successfully model the components of real-world tangible systems is then extrapolated to 

suggest the approach could be applied to all software systems and provide the basis of 

software engineering. Indeed, they claim it puts the “engineering into software 

engineering” (D'Ippolito and Lee 1992b). 

Similar ideas have been put forward by researchers in software composition. For instance, 

the Ithica (Intelligent Tools for Highly Advanced Commercial Applications) Esprit II 

Project proposed a component-based approach to application development based on 
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object-oriented technology, domain modelling, software architectures and system 

frameworks (Nierstrasz, Tsichritzis et al. 1991; Fugini, Nierstrasz et al. 1992; Nierstrasz, 

Gibbs et al. 1992; Tsichritzis, Nierstrasz et al. 1992). Despite some successful 

applications, Nierstrasz notes that many issues are still to be resolved. Those issues relate 

to component connections and composition models, and useful graphical abstractions to 

represent software components (Nierstrasz and Meijler 1995). 

Other research issues have also been developed through analogies with engineering 

disciplines. Kogut developed ideas about design reuse by comparing software engineering 

with chemical engineering (Kogut 1994; Kogut 1995) and Leveson explained important 

issues in software system safety by comparing them with progress in steam engine design 

(Leveson 1992). 

Research in software reuse also developed ideas that suggest software systems 

components could be developed, located, and synthesised into application systems in 

analogous ways to other engineering systems. For instance, (Castano and DeAntonellis 

1993; D'Alessandro, Iachini et al. 1993; Fugini and Faustle 1993). 

The emergent research field of software architecture has also used many comparisons 

with traditional engineering systems. For example, Van der Linden’s research into 

constructing large-scale systems from ‘building blocks’ (Linden and Muller 1995); Perry 

& Wolf’s foundations for software architecture (Perry and Wolfe 1992); Kructhen’s 

explanation of the different types of software architecture in terms of the architecture 

views (Kruchten 1995); Inverardi’s explanation of software architecture’s as processes of 

chemical reactions (Inverardi and Wolf 1995); and Whitehead’s explanation that software 

architecture can be used as the basis for a component marketplace (Whitehead, Robbins et 

al. 1995).  

Despite all these publications being based on the artefact engineering view of software 

development, not all research agreed that engineering should be used as a metaphor for 

understanding software development. Once again, their disagreement identifies the 

underlying principles of the components and systems as the stumbling block. For 

example, Marco, in his book Software Engineering: Concepts and Management, states 

the following: 

“The logical nature of the product ... is the major difference between software 

‘engineering’ and real ‘engineering’. Because of this … there are few physical 
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laws which can be used to model, describe, or predict the behavior of 

software. Obviously some mathematical ‘laws’ are relevant to software, but 

these have not yet been demonstrated to fill the role that physical laws do in 

other forms of development. It is because of the lack of physical laws that the 

software aspect of computer science is sometimes called artificial science – 

like political science or social science – rather than natural science like 

physics or chemistry.” (Marco 1990) 

This does not suggest that rigorous mathematics cannot be used in software development. 

It states that what is represented by the mathematics used is completely different in the 

respective disciplines and cannot be used to justify the analogies. 

Moreover, researchers in fields such as software architecture, which do subscribe at least 

implicitly to the artefact engineering view, identify problems not found in other 

engineering disciplines. For instance, Garlan identifies a number of reasons why it is so 

difficult to build software systems out of existing parts (Garlan, Allen et al. 1995). 

1. Assumptions about the nature of the components: Many software components make 

assumptions about supporting infrastructure that exists within those components or 

within other components. They make assumptions about how the thread of control is 

passed through a collection of components as they are executed. Finally, they make 

assumptions about the nature of the data that they will be manipulating. 

2. Assumptions about the nature of the connectors: Software components make 

assumptions about the protocol or pattern of interaction that will be made between 

them. They also make assumptions about the nature of the data that is passed during 

that communication. 

3. Assumptions about the global architectural structure: Software components make 

assumptions about the other large-scale subsystems that exist and the global 

architecture style that governs their means of communication and their visibility. 

4. Assumptions about the construction process: Some software components, especially 

those concerned with the instantiation or initialisation of an application make 

assumptions about the order in which the application is ‘constructed’ or instantiated. 

Those assumptions are not made by components of other engineering disciplines and they 

provide a glimpse into the unique nature of software components and systems. Further 

research suggests those differences could be addressed by considering the component 
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interfaces in more detail (e.g., (Shaw 1995a)) however, they do not address the 

fundamental, underlying principles of software components that require them to make 

those assumptions and why they are not required by other engineering components. 

From the mid 90s onwards, a number of publications questioned the artefact engineering 

view explicitly or provided more detailed analysis of the fundamental nature of software 

systems and components. During the 1995 ICSE conference Jackson gave a keynote 

speech The World and the Machine (Jackson 1995).  

“The requirement – that is, the problem – is in the world; the machine is the 

solution we construct. The point is trite and obvious. But perhaps we have yet 

to come to terms with it, to understand it fully, and act on that understanding.” 

(Jackson 1995) 

Jackson examines the relationship between software systems and the world to which they 

apply and identifies a number of interesting facets. 

• the modelling facet, where the machine simulates the world;  

• the interface facet, where the world touches the machine physically; 

• the engineering facet, where the machine acts as an engine of control over the 

behaviour of the world; and  

• the problem facet, where the shape of the world and of the problem influences the 

shape of the machine and of the solution. 

He notes that a number of issues make it difficult for software developers to deal with 

those facets of the relationship between the world and the machine and provides a number 

of useful principles to observe when dealing with them. The core of Jackson’s 

observations were concerned with the how the problems in the world could be modelled 

successfully in the machine. 

“Traditionally, I am claiming, we pay too little attention to the world in which 

our problems are found.” (Jackson 1995) 

The issues that needed to be addressed by software engineering researchers were: it’s 

difficult to successfully model the world, there are many different and valid views of the 

world, and the common language terms used to capture the descriptions of the world are 

inherently ambiguous. 
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Gilb also notes the problem of ambiguous terms, but in relation to how software 

engineers describe the design process. Terms like ‘system’, ‘design’, and ‘component’ 

have well-understood meanings in traditional engineering disciplines but they have not 

been defined appropriately for the discipline of software development. Therefore, before 

researchers continue to develop theories for “What should software engineering be?”, he 

suggests they should concentrate on the questions: “What is engineering?” and “What is 

software engineering?” (Gilb 1996). 

Those two questions were indirectly addressed by other research emerging at that time. 

Wasserman, in Toward a Discipline of Software Engineering (Wasserman 1996), 

identifies eight fundamental concepts that have emerged and remained constant during 

software engineering research. Consequently, he claims those concepts provide a 

foundation for determining “What is software engineering?” 

• Abstraction: The ability to deal with complex problems by suppressing some of 

the unnecessary lower- level detail. It allows developers to represent concepts and 

terms that are familiar in the problem and solution domains. Moreover, it is the 

central concept of information hiding. 

• Analysis and Design Methods and Notations: Analysis methods provide a means 

of formalising the problem domain. Design deals with the structure of the system 

implementation. There is a cognitive leap to be performed from the problem to the 

solution and methods attempt to assist this process. However, lack of universal 

design notations and the interrelated nature of the two processes make this concept 

difficult to deal with. 

• User Interface Prototyping: User Interface prototyping is essential for quickly 

developing and determining the requirements of the system with the client. 

Moreover, the UI is important for the effective use of the system. However, it is 

clear that good interface design skills are different from those needed in other 

aspects of development. 

• Modularity and Architecture: Issues of large-scale and large-granularity design 

significantly influence the quality of systems. Architecture styles and design 

patterns are providing standardised or, at least, better-publicised, design 

exemplars. 
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• Life Cycle and Process: A well-defined and manageable process provides benefits 

for software developers. Considerable research attention has been focussed on 

processes, however it appears as though the issue of software process is not as 

fundamental to software engineering as are abstraction and modularization. 

• Reuse: The long-standing notion of component reuse is essential to a discipline of 

software engineering. Some small-granularity reuse success has been achieved, 

however success beyond the level of function and well-defined class libraries has 

proved to be more difficult. 

• Metrics: Metrics currently exist for testing, quality assurance and cost estimation. 

However, it is impossible to measure improvements in software engineering 

without a well-defined set of items to be measured and accurate measurements of 

current practice.  

• Tools and Integrated Environments: Integrated support for the development 

process is essential to improve software engineering. However, the diverse range 

of existing environments reflects the wide range of development processes and 

methods currently being used. 

All of those concepts have proved to be extremely useful in software development. 

However, they all contain aspects that are not completely understood and are the subject 

of ongoing research efforts. Those aspects are related to the fact that software engineering 

researchers have not been able to identify the fundamental principles of software 

components and systems – the supporting science for software engineering. 

Xia examines several of those issues in Software Engineering: a methodological analysis 

(Xia 1997). He also notes that software engineering must develop its supporting science, 

however current research efforts produce results based on concepts that are not properly 

defined or universally understood. Moreover, those long-term research efforts are often 

overlooked because of pressing business concerns to produce short-term solutions. 

Commentaries on software engineering education have suggested aspects of the software 

supporting science. Maibaum attempts to identify the praxis of software engineering so it 

could be formalised and taught to software engineering students.  

“Is the knowledge used by software engineers different in character from that 

used by engineers from the conventional disciplines? The latter are 
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underpinned not just by mathematics, but also by some physical science(s) – 

providing models of the world in terms of which artifacts must be understood. 

… Software engineering may be distinguished from other engineering 

disciplines because the artifacts constructed by the latter are physical, whereas 

those constructed by the former are conceptual.” (Maibaum 1997) 

Moreover, Maibaum notes that the ‘real world’ constrains the construction of physical 

systems in a way that is has no analogue in the engineering of concepts and abstractions. 

The subsequent assertion is that logic should become the supporting science of software 

engineering because “logic is the mathematics of concepts and abstractions”. Maibaum’s 

justification is that philosophical logicians have been dealing with concepts and 

abstractions long before the existence of computers. However, he seems to ignore the 

work done by philosophers in epistemology and metaphysics who have also been dealing 

with concepts and abstractions long before the existence of computers but who do not 

define them in terms of logic. 

Parnas has also published many articles on software engineering education, specifically 

on the difference between computer science and software engineering (see for example 

(Parnas 1997; Parnas 1999)). His argument that computer science and software 

engineering should be treated as different disciplines is quite valid. However, the  

examination of computer science as the supporting science of software engineering does 

not detail the exact nature of that science. He notes that “Engineers do use mathematics”. 

Therefore, software engineers should use mathematics. Indeed, 

“Every programmer uses ‘formal methods’ because programs are formal and 

programming is formalisation. However, in software we use different 

mathematics! We need discrete mathematics and notations suited for 

piecewise continuous functions (tabular expressions).” (Parnas 1997) 

There is no examination of how concepts and abstractions can be represented using 

formal methods and what are the limitations of that approach. Just because formal 

methods can be used to represent some aspects of software engineering does not 

necessarily mean it is the supporting science being searched for. The problem is nobody 

has proved it either way. 

An emphasis on modelling can also be seen in the relatively new area of Systems 

Engineering. This area of software development has arisen out of traditional engineering 
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disciplines such as control systems, automotive engineering, and the computerisation of 

what were originally mechanical systems. One of the central tasks of the systems 

engineering process is to model the solution to clarify requirements and analyse 

alternative solutions (see for example ). The main practitioners are in fact engineers, and 

in terms of this discussion, are converting existing artefacts into software models. This 

line of thinking traces back to the comments on D’Ippolito earlier in this chapter. 

However, just like those earlier comments, the modelling approach taken by systems 

engineers fails to consider how the ability to successfully model the components of real-

world tangible systems is then extrapolated to be successfully applied to all software 

systems 

Finally, recent research has provided renewed emphasis on component-based software 

engineering (CBSE). However, while research is progressing and some results are being 

used in practice, researchers note that “there’s little agreement on what ‘components’ and 

‘component-based software engineering’ are” (Kozaczynski and Booch 1998). Brown and 

Wallnau provide a summary of the closing discussions at the workshop on CBSE at ICSE 

98 (Brown and Wallnau 1998). Those workshop participants provide a number of 

definitions of what a component is, however Brown and Wallnau note a number of key 

differences between those definitions. Aspects of component granularity, context 

dependence, and component autonomy differ between the various definitions. Those 

aspects have no direct analogues in traditional engineering components and are similar to 

the problems previously identified by Garlan that make it difficult to construct software 

systems from existing building blocks. The report notes that while research has yet to 

identify the fundamental principles of software components and systems, commercial 

utilisation of CBSE is progressing based on interface constraints imposed by the 

somewhat standardised, commercial component infrastructure products. Moreover, the 

consensus in the research community is that those research problems will be solved and 

that CBSE provides one of the best prospects for improving software engineering in the 

next century (McConnell 2000). 

3.4 Conclusion 
The term ‘software engineering’ was coined for the 1968 NATO conference. An analysis 

of that conference showed the term was suggested merely to provide a starting point for 

discussion concerned with improving software development. It appears as though the 
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term was implicitly accepted even though many problems with it were identified. The 

assumption was that the metaphor of engineering was useful for software development 

and that those problems would be solved by subsequent research. An analysis of that 

research shows one question has continued to arise but has never been thoroughly 

addressed. What are the fundamental principles of software components and systems? 

Research has suggested that identifying and developing the supporting science of 

software engineering can solve that fundamental issue. Moreover, the supporting science 

must somehow deal with a critical difference between software systems and traditionally 

engineered systems. Software systems are based, somehow, on the notions of concepts 

and abstractions whereas traditionally engineered systems are constrained by their 

physical tangibility and can be understood by using mathematical representations from 

the physical sciences. Moreover, research suggests that the supporting science of software 

engineering is somehow based on the mathematical representations of logic. Those issues 

were summed up in the paper by Baber – Comparison of Electrical “Engineering” of 

Heaviside’s Times and Software “Engineering” of Our Times (Baber 1997). An analysis 

of that paper, however, shows our understanding of the similarities and differences 

between software and traditional engineering is still not sophisticated enough. 

Baber’s paper argues that software development is not yet an engineering discipline, at 

least not in the sense commonly accepted by traditional engineering disciplines. Rather, 

what is practised today is a pre-engineering phase of what can and should become a true 

engineering discipline. By examining the transition of those traditional disciplines from 

their pre-engineering phases to their current state, we could learn from their successes and 

failures, and accelerate our own transition. 

By examining the history of electrical engineering during its transition period and by 

using supporting examples from shipbuilding and bridge design, Baber identifies three 

phases in the evolution of an engineering discipline. 

1. The “pre-engineering” phase where the evolution of the discipline is driven by 

practical needs and concerns. General properties and relationships of the building 

materials of the discipline are identified and formulated into “rules of thumb” to assist 

practitioners. 

2. The “consolidation” phase which marks the beginning of the transition from a 

practice-driven discipline to a theory-driven one. The observations and generalised 
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rules identified during the pre-engineering phase are codified and integrated into 

formal, mathematical theories which explain the interaction between the underlying 

“quantities of interest” of the discipline. 

3. The “reformulation and reorganisation” phase in which the theoretical work is 

repackaged in a manner which makes it more useable for the practitioner. Because the 

theoretical work, which explains the interaction of the “quantities of interest”, usually 

consists of very complex mathematics, it needs to be made more useable and to be 

shown as beneficial to the developer. This step allows the practitioners of the 

discipline to move to a theory-driven approach. 

During the practice-driven approach to development, the practitioner is only able to 

represent the physical form of the system design. However, once developers begin to 

utilise knowledge of the theoretical foundations of the discipline it becomes possible to 

represent particular properties of the proposed system. That enabled the designer to model 

the design with a representation that provides the ability to predict the suitability of the 

design to serve a particular purpose or to meet some predetermined requirements. 

Although the use of theoretical foundations provides significant leverage in system 

design, Baber’s historical analysis shows there was considerable opposition to the 

utilisation of that theory-driven development. That opposition came from the established 

members of the discipline who held positions of considerable authority and influence. 

Consequently, a division occurred between the proponents of the respective approaches. 

They each developed their own conflicting theories and resulting predictions of 

observable phenomena. Whilst the theory-driven practitioners were able to prove the 

validity of their own theories while the practice-driven theories could not, it was not 

enough to convert all of the practitioners away from the traditional approaches. 

Baber presents a detailed timeline of the events that marked the transition period of 

electrical engineering. Those events feature specific examples of engineering design 

problems caused by the practice-driven approach, examples of the rift that occurred as 

members of the discipline moved towards theory-driven development, and the specific 

examples which mark the three phases of the transition process. 

1. Pre-Engineering Phase: Examples of the design errors caused by the practice-driven 

mentality of the discipline. For instance, in 1856 the chief electrician of the Atlantic 

Telegraph Company, Whitehouse, ruined the first transatlantic cable by applying an 
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input voltage that theoretical analysis had predicted would be too great. Whitehouse 

was aware of that theoretical analysis and had chosen to ignore it. 

2. Consolidation Phase: In 1873, Maxwell published twenty equations which, by 

building on the general theories of others, succeeded in explaining the relationships 

between the fundamental quantities of the discipline. The fundamental quantities of 

interest in electricity were: the electric field, the magnetic field, and the electric 

charge. The secondary quantities of interest included: current, time rate of change of 

electric field, time rate of change of magnetic field, and voltage. However, due to the 

complexity of the mathematics, the ability to successfully use his theories was beyond 

the reach of almost all electrical practitioners. 

3. Reformulation and Reorganisation: Oliver Heaviside saw a copy of Maxwell’s 

theories when they were published and immediately realised their potential for 

improving the design of electrical systems. However, it took Heaviside many years to 

fully understand and apply those theories in practical usage. For instance, in 1877 he 

“explained theoretically why the maximum working speed of an undersea telegraph 

circuit was different in the two directions” (Baber 1997). In 1887, in co-operation 

with his brother, he wrote a paper that included for the first time the condition for 

distortionless transmission. Although they were theoretically valid, both those 

examples, and others, faced opposition from proponents of the practice-driven 

approach because they contradicted existing theories. In fact, it was not until around 

1890 that the “balance of power and influence” began to change from the practice-

driven practitioners to the theory-driven ones. 

Baber’s understanding of the evolution of engineering disciplines is similar to the view 

taken by the researchers already presented in this chapter. From that understanding, he 

draws an analogy with software engineering by presenting a selection of events, errors, 

and failures from the history of software development. Baber asserts that the fundamental 

cause of the failures were the same as those in the field of electrical engineering – the 

“lack of a scientific, mathematical foundation or failure to apply whatever such basis may 

exist” (Baber 1997). He proposes that, 

“The solutions to our problems today, while different in detail, will be 

fundamentally and essentially the same as the solutions to those problems a 

100 years ago: developing a scientific, mathematical basis for the work of the 
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engineer and structuring and organizing it to facilitate its regular practical 

application.” (Baber 1997) 

The software system failures, according to Baber, are evidence that software development 

is in the pre-engineering phase of evolutionary progress. However, he suggests research 

ideas exist that mark the beginning of the other phases. For Baber, the beginning of the 

Consolidation Phase occurs in 1967 when Robert Floyd presented the paper, Assigning 

Meanings to Programs, in the Symposium of Applied Mathematics. It presents a complex 

method for analysing a computer program to determine whether its execution would fulfil 

certain execution criteria. The beginning of the Reformulation and Reorganisation Phase 

is subsequently marked by the work of Hoare (Hoare 1969) and others, who summarised 

Floyd’s work and applied those concepts to practical software development problems. 

However, while Baber identifies these events, which he claims mark the beginning of the 

phases, he notes the phases are not yet complete so it is impossible to determine if they in 

fact correspond to those in electrical engineering. 

Those “formal methods” techniques have since become the subject of much software 

engineering research. However, they have had little impact on software development in 

practice. Baber’s conviction in formal methods leads him to suggest that software 

engineering’s reluctance to utilise formal methods is similar to the resistance to theory-

based development experienced in electrical engineering. He concludes with the 

following remarks: 

“The analogy between the traditional engineering disciplines and software 

development suggests that software development also will undergo a 

transition to an engineering field in the current sense of the term. If the 

analogy continues to hold, we can expect software engineering tomorrow to 

be characterized by the regular use of predictive models based on a 

mathematical, scientific, and theoretical foundation.” (Baber 1997) 

But how far does the analogy continue to hold? Based on the work of Floyd and Hoare, 

software developers are able to determine, mathematically, whether the execution of a 

computer program fulfils certain criteria, such as paths of execution and values of 

variables. According to Baber, that is analogous to the ability of electrical engineers to 

represent, mathematically, the quantities of interest of their discipline. 
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At first glance, the paper by Hoare, and the subsequent work by other formal methods 

researchers appears to be analogous to the use of mathematics by engineers. Formal 

methods provide a rigorous technique for proving what a program does. Therefore, it can 

be used to determine whether the implemented system meets its objectives. 

“One of the most important properties of a program is whether or not it carries 

out its intended function. The intended function of a program, or part of a 

program, can be specified by making general assertions about the values 

which the relevant variables will take after execution of the program.” (Hoare 

1969) 

That is analogous to how engineers use mathematical techniques to prove their designs 

meet the required objectives. However, engineers also use mathematical techniques to 

model and analyse their requirements, and model the required properties of their major 

components. That is in addition to proving the correctness of the designs. The previous 

chapter that analyses the cruise control designs detailed the use of modelling in the 

engineering designs. During the analysis and design stages, the engineers developed 

mathematical models of system and component properties, models of vehicle motion as a 

whole, models of environmental influences, and models of human driving behaviour. 

Those were in addition to the models used to prove the correctness of the system during 

the implementation and testing stages. 

The application of formal methods in software engineering does not occur during the 

analysis and design stages of software development in an analogous way. They differ in 

terms of what is modelled. The engineering analysis section of the Cruise Control chapter 

noted that the models used by engineers are not models of abstract functionality. They are 

models of how the underlying properties of the discipline, which engineering components 

exhibit and manipulate, are used by engineers to realise the required functionality. This 

crucial difference between engineering components and software components becomes 

clearer by looking briefly at the evolution of engineering components.  

In the history of electronic engineering, the notion of an ‘electric’ force was identified in 

natural phenomena and used by people to produce useful devices. For example, as far 

back as 50 BC, electric eels were used to treat arthritic conditions even though nobody 

know how or why it worked (Hill 1975). 
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Science, in its attempt to understand nature, conducted experiments on that natural force 

and discovered that different materials produced interesting effects. Those properties and 

effects were labelled voltage, current, resistance, capacitance, and inductance. Many 

experiments were performed and mathematical relationships were determined to explain 

those effects on the underlying properties of the discipline. Those mathematical 

relationships, such as Ohm’s law, represent idealised effects on the properties of the 

discipline. Many more experiments had to be performed to determine how physical 

materials could be guaranteed to meet those idealised effects. Take resistance as an 

example. Scientists discovered that some physical materials restricted the flow of current 

and that could be used to produce useful effects. However, they could not guarantee or 

predict the amount of resistance it would give. Ohm was able to explain, mathematically, 

that the relationship between the voltage applied across the terminals of a resisting device 

and the current passing through it should remain constant at a constant temperature. That 

is the device’s ‘resistance’. His analysis was based on many experiments and 

considerable mathematical analysis using analogies with the known laws of fluid 

dynamics (Jungnickel and McCormmach 1986). However, physical materials did not 

naturally exhibit that definition of an idealised resistance. Considerable experimentation 

was performed to identify how well physical materials could be made to match that 

idealised definition of resistance (Marsten 1962). For example Barrett published the 

results of experiments of over 100 different materials to determine their resistance 

(Barrett, Brown et al. 1902). Moreover, Dummer provides a bibliography of 

approximately 350 publications on the nature of resistance in different materials which he 

claims is only a starting point for a more complete catalogue (Dummer 1956). Those 

experiments were also hampered by the fact that the devices used to measure the concept 

of resistance could not be guaranteed to work predictably enough to use Ohm’s law. It 

was not until Wheatstone developed a technique of measuring resistance that was immune 

to variations in the other components of the system that the resistance of physical 

materials could be determined (Powers 1976). Finally, it was discovered that physical 

resistors only approximated the idealised concept of resistance over particular 

temperature ranges, frequency ranges, and particular geometries of physical materials. 

Similar progress was made on the other idealised electronic components – for example 

capacitance (Podolsky 1962). 
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Therefore, there exists no physical material that precisely exhibits the concept of 

resistance as specified by Ohm’s Law. However, research and experimentation has shown 

that certain materials, constructed in particular physical arrangements, and used in a 

constrained operating environment, can be made to approximate that specification of 

resistance for the purposes of using that law to engineer predictable systems. 

The result is that mathematical models were not discovered to explain the effects of 

physical materials on the underlying properties of the discipline. Rather, it was discovered 

that the effects of physical materials on those underlying properties could be made to 

conform to idealised mathematical models. Those mathematical models could then be 

used to predict the effects of components within particular environmental parameters. 

Using those idealised concepts, circuit theories were devised to explain how they could be 

predictably combined. Those circuit theories were formulated using the known physical 

laws of conservation of charge and conservation of ene rgy (Gray 1969). System design 

could then proceed based on those mathematical idealisations of components and 

systems. In fact, circuit theory is concerned solely with mathematical idealisations of 

circuit elements and not with physical components (Belevitch 1962). Further analysis of 

the history electronic engineering reveals design soon became constrained so that 

functionality was thought of solely in terms of those idealised components and their 

combinations (Darnell 1958; Brothers 1962; Darnell 1962). Readers may also be 

interested in Susskind’s detailed examination of the early history of electronics (Susskind 

1968a; Susskind 1968b; Susskind 1969a; Susskind 1969b; Susskind 1970a; Susskind 

1970b). 

Engineers are constrained to thinking in terms of functionality that can be achieved using 

the underling materials and methods of their discipline. In the case of electronic 

engineering, the most basic functionality was identified during the discipline’s evolution 

and was able to be explained using mathematical idealisations. When the physical 

materials could be constrained to meet those mathematical idealisations, designers were 

able to use mathematical techniques to represent the requirements of their designs. The 

same mathematical techniques could also be used to represent the proposed functionality 

of their systems. The design process then proceeds by using techniques to solve the 

mathematical equations relating the requirements and the possib le functionality. 

This is not how formal methods are used in software engineering. In electronic 

engineering, the requirements are represented in terms of functionality performed on the 
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underlying properties of the discipline. That functionality can then be specified using 

mathematical techniques and the components of the discipline can be used to realize that 

mathematical specification. There are no analogous underlying properties in the discipline 

of software development. The requirements are represented using concepts and 

abstractions. The implementation medium of software development is used to refine and 

implement those concepts and abstractions. It is not until those concepts and abstractions 

are refined to a very low level of granularity that formal methods can be used. 

It may be argued that the discipline of software engineering is simply waiting for its 

‘Newton’ to come along (Gallagher 1997) and identify the appropriate underlying 

principles of the discipline. Moreover, it may be possible to develop a discipline of 

software engineering by constraining the component base to a subset of axiomatic 

‘idealisations’ that will allow us to develop systems analogously to traditional engineers. 

Those suggestions cannot be properly evaluated without a thorough investigation of what 

software developers deal with – concepts and abstractions. That is the subject of Chapter 

5 of this thesis. Before that however, the thesis turns to an analysis of the artefact 

engineering view of software development when applied to a specific aspect of software 

engineering research – software architecture. 
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4. An Example of Understanding Based on the 
Artefact Engineering View – Software 
Architecture 

4.1 Introduction 
Software engineers have been discussing the architecture of their systems since the late 

1960s and software architecture research has been a separate field of study since the late 

1980s. While the discipline is still quite new and the ideas are still solidifying, confusion 

exists concerning the nature and meaning of software architecture and that confusion is 

restricting the progress of software architecture research and the adoption of its ideas in 

practice. For instance, the call for papers for a recent IFIP conference on software 

architecture (Perry 1998) details the need to address the following questions: 

1. What are the most difficult tasks performed by practising software architects and what 

is available from research to help solve them? 

2. Where are the gaps between business needs and research results, and what can be 

done to bridge those gaps? 

3. What are the important problems being addressed in research and why are they (or 

why are they not) relevant to practice? 

Mobray (Mobray 1998) recognises the importance of architecture research ideas and 

discusses why they are so hard to put into practice. He notes that software architecture 

ideas differ because of confused terminology, the lack of complete models, and 

disagreement about which views of the system are necessary. One reason for the 

differences is the lack of a universally agreed definition or even understanding of what 

software architecture is or should be. Bennett (Bennett 1997) captures the result of that 

confused understanding by noting that the research community is almost unanimous in its 

conviction that software architecture describes something about the structure of a system 

and that it plays a vital role in determining the systems emergent properties. However, 

they are much less unanimous on the questions of which elements should be included in 

the architecture, how to co-ordinate different collections of those elements (views), and 

how to evaluate the architecture against the external requirements. The problem is not that 
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there are no answers to these problems, rather, the difficulty arises from the fact that there 

have been so many different answers given. 

The confusion exists because the understanding of the term architecture is based on 

analogies with traditional engineering or building disciplines. That way of understanding 

is a consequence of the artefact engineering view of software development and is evident 

in the philosophy of the self-proclaimed ‘World-wide Institute of Software Architects’ 

(WWISA 1999): 

“There is a compelling analogy between building and software construction. 

It is not new, but it has never taken root and bloomed. The analogy is not just 

convenient or superficial. It is truly profound. It not only raises the right 

questions, it has the answer to what has been called ‘The Software Crisis.’ 

Software architecture is now at a point identical to where building 

architecture was in the mid-1800’s as it faced the inventive momentum of the 

industrial revolution. Now, as then, people with very different skills and roles 

can – and do – call themselves architects. In 1998, they refer to themselves as 

software architects despite training as engineers or programmers, not 

architects. However, it is no longer adequate for a software craftsman with a 

flair for design to build the huge, complex infrastructures of the information 

revolution. … 

Software systems are being built in a manner akin to erecting an office 

building without an architect and without clear roles.” (WWISA 1999) 

This chapter examines our understanding of software architecture by presenting an 

architecture-centric case study of a software system and then a chronological review of 

the theoretical understanding of software architecture. The case study provides practical 

examples of architecture issues by tracing the large-scale system structures used during 

the design, implementation and maintenance of the HyperEdit system. It also highlights 

architecture issues that are not easily explainable within the current understanding of 

software architecture. The final section traces the history of architecture ideas in software 

engineering research and shows the current understanding of architecture is based on 

analogies with traditional engineering disciplines. Further analysis however, shows two 

fundamental differences exist between the types of systems built by software developers 

and traditional engineers or architects, and those differences undermine the validity of 
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those analogies. The result is that the confusion surrounding software architecture can 

only be removed if a better understanding of software development as a whole can be 

achieved. 

4.2 HyperEdit: A Case Study in Software Architecture 
This section presents a case study in software architecture. The system under study is the 

diagram meta-editor system, HyperEdit, which is one of a collection of co-operating tools 

designed to support software engineering design activities. The development of that tool 

suite formed the HyperCase project (Cybulski and Reed 1992) of the Amdahl Australian 

Intelligent Tools Program (AAITP), a co-operative research effort between Amdahl 

Australia and La Trobe University. 

This case study was originally intended to provide a tangible basis for a discussion of 

research ideas in software architecture. However, it soon became apparent that significant 

differences exist between theory and practice and the case study was expanded to 

investigate those differences. That investigation considered the design rationale used by 

the development team and identified software development issues that affected the 

architecture decision making process. The concluding remarks apply resulting insights to 

architecture research as a whole. 

The HyperEdit application was chosen as the subject for the study because it was the first 

application to be developed within the project and it had a six-year period of evolution. 

That evolution was the result of revisions in its core functional requirements and to its 

responsibilities as a member of the co-operating tools within the evolving HyperCase 

project. That is, changes to the architecture of the larger system within which it operated. 

The term ‘large-scale application’ is obviously as relative one. The HyperEdit system 

contained requirements that resulted in subsystems that are common in many ‘large-scale 

applications’ – regardless of their size. They include the ability to communicate with 

other applications, the ability to manipulate large amounts of data that is stored in a 

remote repository, and complex GUI manipulation capabilities. 

The study begins with a brief description of the global HyperCase environment and its 

evolution. Subsequent sections detail the evolution of the HyperEdit architecture. They 

include descriptions used in the original design documents and representations developed 

during maintenance procedures. Because developers other than the original implementers 

performed that maintenance process, the documentation has enabled identification of 
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system representations that were beneficial in acquiring the knowledge necessary to 

perform system modifications. The concluding sections discuss factors that influenced the 

architecture decision making of the design team and, finally, the results are compared 

with existing theories in software architecture research. 

4.2.1 The Global HyperCase Architecture 

The HyperCase environment is a loosely coupled collection of design support tools used 

to develop the documents produced during the software engineering process. In addition, 

all of the documents produced can be interconnected using a hypertext connection 

mechanism. In the original conception (Cybulski and Reed 1992) the tool suite consisted 

of a number of front-end authoring tools, a number of design support tools (such as 

configuration management and design reasoning recording), and management support 

tools (such as a project tracking (Cleary and Reed 1993)). Figure 4-1 depicts the 

architecture of the 

original system concept. 

The authoring tools, 

including HyperEdit, 

would communicate to 

the document repository 

(HyperBase) using the 

communication 

mechanism (EventTalk). 

The tools advise the 

HyperBase of all user-

instigated changes to the documents; those changes are applied; and the front-end tools 

are informed to update their displays appropriately. Relevant support tools are then 

invoked, and finally, the HyperBase modifies the persistent data in the physical repository 

(HyperDict).  

The final architecture of the implemented HyperCase system turned out to be quite 

different to the original conception. It consists of a central message server, which co-

ordinates communication between the clients of the system, a central repository that 

stores the majority of the persistent data in the system, and the series of application tools. 

Moreover, each user is supported by a link server that co-ordinates and creates the 

Figure 4-1: Original HyperCase Conceptual Architecture 
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hypertext links, and a 

hypertext server, which 

launches new applications, 

navigates through the 

system, and follows the 

hypertext links (figure 4-2). 

The message server, a 

subscribe/dispatch system, 

is responsible for all inter-

client and client-repository communications. Client applications subscribe to particular 

classes of messages and all client-generated messages are addressed to either a particular 

message class or a particular application. That mechanism facilitates point-to-point, 

broadcast, and multicast methods of inter-client communication. An additional advantage 

of the message-server architecture is that individual tools are well insulated from changes 

made to other tools. 

The core functional requirements of the original HyperCase concept were realised in the 

initial implementation. However, the gross structural arrangement is quite different from 

the original conceptual architecture. The implemented HyperCase system differed from 

its original conception for two reasons. These are worth noting because they relate to the 

HyperEdit case study. 

• First, many of the changes were due to increased knowledge of implementation 

alternatives and system partitioning and intercommunication alternatives as the 

project proceeded.  

• Second, the HyperCase project comprised a number of individual tools that were 

the product of independent Ph.D. research projects. The implementation of those 

tools proceeded at varying speeds and their designs were continually modified as 

the relevant research ideas evolved. 

4.2.2 The HyperEdit System 

In presenting the software architectures that were devised or utilised during the evolution 

of HyperEdit, the following phases are considered: 

• The original system concept and requirements. 

Figure 4-2: HyperCase Implemented Architecture 
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• Initial implementation. 

• Reverse engineering and maintenance process. 

The discussion is based on the textual descriptions and high- level graphical 

representations used in the documents produced during the various phases of the project 

lifecycle. In addition, individual project member’s recollections of the architectures 

discussed during design meetings that were not recorded in project documentation were 

also utilised. 

4.2.2.1 Original System Concept 

HyperEdit was part of a research project whose aim was to produce proof-of-concept 

tools. Accordingly, the original requirements were stated as a loosely defined collection 

of ideas that evolved over time, rather than a rigorously defined specification document. 

The central requirement, as proposed by Jacob Cybulski, was to produce a graphical 

editor editor. That is, an application that would allow the graphical creation of the tools 

required to produce the software engineering diagrams developed during a project’s 

lifecycle. The process of defining the specific editors was to be purely graphical. The 

concept became known in the project as the ‘graphical definition paradigm’ and was a 

major intellectual challenge. 

Conceptually, the system would be started in a meta-editor mode that would allow the 

definition of a particular type of diagram editor. That definition process would consist of 

the design and construction of the 

graphical objects to be manipulated 

during the creation of a particular 

diagram style. For example, the creation 

of a state-transition diagram editor would 

require the identification of the objects 

that exist in that style of diagram, the 

states and transitions, and their particular 

attributes. In addition, it would require 

the identification of the operations that 

could be performed on those objects by 

the editor. For example, the ability to 

change the visual appearance of the 

“HyperEdit, a graphical editor construction tool, ... 

incorporates windows, menus, object-oriented 

graphics, and mouse control. Unlike other tools, its 

customisation is fully interactive and totally user-

driven, there is no need for HyperEdit or the 

application re-programming, recompilation, nor 

relinking. Such extendibility is achieved by the 

availability of a HyperEdit meta-editor in which 

users can define tailor-made editors, their window 

and page layout, the type and look of editable 

graphical objects, finally the editor buttons, controls, 

menus and their behaviour.” (Cybulski and 

Proestakis 1991) 
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objects, such as text annotations, and the ability to connect the objects together.  

The definition of specific editor objects required the ability to define the following 

functionality through graphical manipulation: 

• The definition of the visual appearance of the objects. 

• The definition of object customisation. E.g., which attributes will be modifiable in 

the eventual specific editor (text fields, line colours, fill styles, etc). 

• The definition of connection rules. E.g., the implementation of syntax-directed 

editing through the specification of how objects can connect to other objects. 

The definition of specific editor functionality included:  

• The definition of the Graphical User Interface (GUI) layout. 

• The definition of the functionality available to the user, specified through possible 

menu items. 

After defining the objects, connection rules, and available functionality of a particular 

diagram editor, HyperEdit could be started as that specific editor. 

The original design goal included a requirement to 

provide a clear delineation between the visual 

representation of a diagram and its semantic content. 

It would then be possible to utilise HyperEdit to 

represent the same structured, software design 

document in terms of different software 

diagramming techniques (figure 4-3). For instance, a 

textual representation of object definitions would 

exist in the repository and they could be represented 

using particular flavours of object-oriented analysis 

methods (e.g., Booch, Rumbaugh, or UML). Moreover, it was a requirement to 

dynamically update the visual presentation and diagram editor definitions without 

needing to shut down and ‘re-compile’ the system. For example, if the connection rules of 

a particular diagram style were modified or a new component was added to the palette of 

a particular editor, those changes would be propagated and incorporated into currently 

executing HyperEdits. Because multiple instances of a specific HyperEdit editor could be 

running simultaneously, the system was required to communicate with other HyperEdit 

Figure 4-3: HyperEdit 
Conceptual Architecture 
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instances, in addition to the repository, to update object, diagram and editor definitions 

while the application was executing. Furthermore, the multiple executing HyperEdits 

could be distributed across many networked machines. 

The document describing the original HyperEdit concept (Cybulski and Proestakis 1991) 

contained a section describing the ‘system architecture’. It details the major functional 

components of the system. Unfortunately, it does not include a graphical representation. 

“Three major sub-systems may be identified in the HyperEdit architecture, 

ISDUIMS, SAT and EventTalk. Their brief description follows: 

• SDUIMS (ISD User Interface Management System): The core of 

HyperEdit presentation layer consists of a number of text and graphic 

primitives. The primitives are of sufficiently high level to facilitate 

functional expression, ease of use, and flexibility in the creation of 

windows, dialogue boxes, menus, palettes, buttons, text and graphics, all 

to be mouse and keyboard controlled. … 

• SAT (Systems Analysis Tools): To assist with quick acceptance and 

efficient cross-over to HyperEdit, ... the system is equipped with a number 

of standard text and graphics editors, which could be used in the 

construction of system analysis and design documents. E.g., data flow 

diagrams, entity-relationship diagrams, … etc.  

• EventTalk: HyperEdit allows full control over text and graphics editors 

from some other user program via a specially devised communication 

protocol – EventTalk. The main objective of EventTalk is to advise the 

controlling program of all user- instigated changes to the document 

contents associated with the creation, deletion and editing of its 

components … so that it could perform validation of user actions.” 

(Cybulski and Proestakis 1991) 

4.2.2.2 Initial HyperEdit Implementation 

The initial implementation of HyperEdit differed from its original conception in terms of 

both functionality and gross structural architecture. The core requirements, the ability to 

define, produce, and utilise specific software diagram editors, and support the graphical 

object definition of the components contained within those editors, was achieved. 
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However, the ability to customise the functionality of specific editors was not 

implemented. Moreover, the clear separation between the visual presentation and the 

semantic content of diagrams was not attained. Nevertheless, the primary goal, the ability 

to graphically create and utilise different diagram editors, was realised. 

Figure 4-4 depicts the utilisation of the implemented HyperEdit system. The diagram on 

the left shows HyperEdit in its object-editor mode being use to create a new 

‘documentation object’, which will be used in entity-relationship diagrams. Its visual 

appearance is synthesised from a collection of graphic primitives and its specific 

behaviour is enabled by providing menu interfaces to standard graphical object 

functionality. The object is subsequently utilised in the entity-relationship diagram, which 

shows the documentation object having the ability to modify the value of its text and the 

ability to use its visual attributes to depict some user-defined status. Those abilities were 

specified during the object’s creation. 

In the project documentation the architecture of the implemented system was depicted 

using two different graphical representations. The first was a layered system that 

described the gross structure of a single executing HyperEdit with well-defined interfaces 

between the major components (figure 4-5) (Proestakis 1993). 

• The HyperEdit layer provides the collection of diagram manipulation functions. 

• The ET (EventTalk) library is the protocol level of communication between the 

particular HyperEdit and the other executing HyperEdits and the repository. 

• The Message Server layer is the physical, distributed communication mechanism, 

which was implemented in a Blackboard style. 

Figure 4-4: HyperEdit Object Editor and Entity Relationship Editor 
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• The Database Server provides the functionality 

necessary to interact with the physical repository. 

A second architecture was required to represent the 

operation of multiple HyperEdit instances executing on 

distributed machines (figure 4-6). That architecture depicts 

the distributed nature and communication requirements of 

the system, which are hidden in the abstraction model of the 

layered architecture.  

The need for different representations of the system highlights two interesting 

architectural issues. The first concerns why those two architectures were required and the 

differences between what they represent. The second concerns the types of connections 

that exist between the components of software systems. 

The layered architecture uses individual layers to represent the major functional 

components that exist in any single instantiation of the system. The complexity of the 

communication detail is hidden in the abstraction of the ‘ET library’ and ‘Blackboard’ 

layers, while that detail is explicitly depicted in the distributed blackboard architecture. 

Figure 4-5: HyperEdit 
Layered Architecture 

Figure 4-6: HyperEdit Distributed Communications Architecture 
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This use of abstraction is a well-known property of particular architecture views and is a 

consequence of information hiding in good software engineering design. 

However, unlike the layered architecture, the distributed blackboard architecture shows 

the HyperEdit system can consist of multiple instances of itself. Those multiple instances 

can run simultaneously on distributed machines, communicating with each other as well 

as with a common data repository. This feature of software architecture – the ability of a 

system to be connected with multiple executing instances of itself – does not exist in any 

other discipline. An opposing argument 

could cite two electronics chips of the 

same type connected together. However, 

in the HyperEdit example, and for 

software systems in general, two or 

more separate software instances can be 

executed and communicate with each 

other from a sole, implemented, 

executable program file15. 

The other interesting architectural issue 

concerns the types of connections that 

exist between the components of the 

software system and their visibility in 

the source code implementation. In the 

layered architecture, there are 

differences between how the individual 

layers are realised and how they 

interface with each other. At the highest 

level, the HyperEdit engine and 

EventTalk (ET) routines exist in the 

same executing HyperEdit process. The 

program modules that explicitly 

implement those layers are evident in an 

                                                 

15 This unique feature of software systems is discussed in more detail later in the chapter. 

“The logical black board system is implemented 

through a network of local message servers. There is 

one message server on every node running one or 

more HyperEdit editors. The messages are distributed 

through the database server, which acts as the 

governing executive / message distributor for the 

black board system. The message server therefore has 

several functions. Firstly, it acts as the interface 

mechanism between the database or future knowledge 

base and the executing HyperEdits; ... Secondly, it 

provides a local storage mechanism, ... Thirdly, the 

message server acts as the local controller for 

hypertext operation.” 

"The message server is implemented using remote 

procedure calls, as is the database server. ... At this 

point, there are only two remote functions, 

ETBBSendMessage and ETMessageReceived. ... On 

receiving a remote call, the server interrogates the 

type of message and acts accordingly. … The 

HyperEDIT editors then process the message and 

send a reply to the black board executive (database 

server). … The database server then collates the 

replies, determines if any further actions are required 

and sends control messages to the message servers.” 

(Proestakis 1993) 
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examination of the source code and the connections between components are procedural 

invocations in that source code. 

In contrast, the blackboard system operates as a separately executing process and is used 

by HyperEdit to facilitate the communication between individual HyperEdit applications 

and the repository. The blackboard system has an instantiation on each node of the 

distributed system. Unlike the HyperEdit engine and ET routines, the source code that 

implements the blackboard functionality is not found in the HyperEdit source code. 

However, the interface calls to the blackboard mechanism are evident. To utilise the 

blackboard ‘layer’ the HyperEdit application must incorporate a library of routines that 

implement the interface to that layer at link time. This is due to the actual implementation 

of the blackboard system. The concept of link-time incorporation of library routines in 

software implementation and execution is such an established part of software 

development that it does not appear no teworthy. However, because the concept does not 

exist in other disciplines, and the design and construction processes of those disciplines 

serve, at least partly, as the basis for developing architecture theories for software 

engineering, it needs to be considered. 

The implementation of the message servers, which exist within the blackboard 

communication mechanism, are realised using operating system pipes and remote 

procedure calls. Consequently, the HyperEdit layer and the Blackboard layer operate as 

two distinct system processes that communicate through operating system, rather than 

source code, connections. The interface connections between the layers are evident in the 

procedure calls to the appropriate routines. However, the implementation of the 

Blackboard layer exists in a separately executing process. Again, this is not a feature of 

the design and construction of corporeal artefacts. 

The source code modules that implement the final layer of the architecture, the Database 

Server, similarly do not exis t in the HyperEdit source code. However, unlike the 

blackboard mechanism that becomes a layer of the application during the linking stage, 

the invocation of the database interface routines is not evident anywhere in the HyperEdit 

code or Blackboard layer code. 

The database server is a separately executing process that may exist anywhere on the 

network. It interfaces to the blackboard layer by linking in the appropriate library of 

routines. The communication between HyperEdit and the appropriate database routine is 
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made possible by sending a message 

through the blackboard interface, which is 

then interpreted by the database server. 

The appropriate database routine is not 

invoked by a direct procedure call from 

the preceding layer. It is invoked by 

interpreting attributes of an abstract data 

type that is read from the blackboard. 

That is, the routine to invoke is 

determined by analysing the value of the data that is passed through the connection. There 

is no explicit path of procedural invocation that can be traced from the HyperEdit engine 

routines, through the ET interface, to the blackboard interface, and finally, to the database 

server. This is evident in the text-box description of the Database Server (DBMS) 

implementation. 

To summarise, three types of software component connection were identified: 

1. Source component to an internal source component: Those procedural invocations 

exist between source modules that both exist in the implemented source code. 

Furthermore, large-scale abstractions of component connections are explicitly evident 

in the source code. 

2. Source component to an explicit, external source component: Those procedural 

invocations connect source code modules with other modules that have been 

implemented in external libraries. Those libraries do not become part of the system 

until they are linked. Moreover, they may be third party packages for which there is 

no available source code implementation. Therefore, the architecture abstractions are 

based on components that are known about in the source code but the details of those 

components may only be evident in the machine code of the system. 

3. Source component to an implicit, external source component: A module invocation 

exists, as in the previous two cases, however it is used to pass on a data structure to an 

auxiliary software system. The auxiliary software system uses the value of the data 

structure to determine which internal module should be invoked. In this situation, 

architecture connections are based on components that may not be known about by 

“The final component [the DBMS] is responsible 

for the information storage and retrieval 

requirements of the HyperEdit system.  This layer 

also introduces a further layer of abstraction, as 

its implementation is not database or file 

management method specific.  That is, the server’s 

interface is static, but the implementation of the 

data access routines is flexible, in terms of 

interfacing with the user’s site storage 

mechanisms.” (Proestakis 1993) 
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the source system and are only evident in the executing machine code of external 

processes, possibly running on other machines. 

This range of connection types highlights the way in which software architectures abstract 

away unnecessary implementation detail. However, it is worth noting that these types of 

component connections are not evident in other engineering disciplines. Moreover, it 

highlights the difficulty in identifying the boundaries between communicating software 

systems. 

4.2.2.3 Architectures used during System Maintenance 

A large amount of maintenance has been performed on HyperEdit since its initial 

implementation. That was due to the prototype nature of the system, changes to its 

operating environment, and changes to some of its core functionality. To facilitate the 

maintenance process, high- level system depictions of both its implementation and 

operation were developed. Developers other than those responsible for the original 

implementation did the majority of the maintenance performed on HyperEdit. Those 

developers had a thorough understanding of the system’s requirements and functionality, 

however they did not possess a full working knowledge of the system’s implementation 

or internal operation. Therefore, a process of reverse engineering was required to develop 

system representations that would assist in deriving the knowledge necessary to make the 

required modifications. The resulting system depictions are those derived during that 

process and were actually used to assist the maintainers rather than being created solely 

for the purposes of satisfying documentation requirements. 

During the maintenance process, the developers needed to perform two basic activities to 

gain the required understanding of the implementation. First, they needed to identify 

where functional concepts were implemented in the source code. For example, a bug 

existed in the code that implemented the resizing of components on the screen. The 

maintainers, familiar with the system functionality, possessed knowledge of what 

concepts were involved and the instances of operation that would cause the bug to 

manifest itself. However, locating where those concepts were implemented in hundreds of 

thousands of lines of source code, which had been separated into different procedures, 

modules, files, and directories by someone else, was not a trivial exercise. The second 

type of activity required was the ability to trace how the operation of the application 
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caused the flow of control to move throughout the implemented source modules. Due to 

the event-based nature of the programming environment, that also was a nontrivial task. 

To support those maintenance activities, two large-scale structural representations of the 

application were created. The first allowed the maintainers to identify the location at 

which modifications in the source code were required. The HyperEdit system was 

implemented in a Unix environment using C and X/Motif as the implementation medium 

and a relational database as the repository. The architectural depiction generated by the 

maintainers consists of a hierarchy of informal block diagrams detailing the module calls 

throughout the application. The highest- level diagram contained blocks for each of the C 

files and X libraries with the connections representing module interactions across the 

files. Each file has its own refinement diagram to represent the source code modules that 

are defined in each file and interconnections depicting module interactions. The cross-

reference and function definition information was generated using standard Unix code 

analysis tools (ctags & cxref). The call-graph architecture diagrams were automatically 

generated using HyperEdit itself. Furthermore, a WAIS (wide-area information server) 

search facility was used to search the source code. The maintainers were able to search 

for specific concepts in the source code and locate routines in which those concepts were 

defined or utilised. The static, source code call-graph architecture was then used to locate 

the appropriate file and source code modules to modify. Moreover, its immediate 

dependencies could also be viewed. That representation of the system’s static, source 

code implementation showed the cross-reference information required to perform many 

of the maintenance tasks. However, only interconnections visible as explicit procedure 

calls were visible. It was not possible, for example, to follow the event-based nature of 

the X/Motif GUI environment because the information necessary was hidden in the 

precompiled libraries of that GUI environment. 

The second maintenance architecture was 

used to represent the control flow through 

the application. The HyperEdit 

application was graphically intensive and 

required the implementation of many 

low-level graphic manipulation routines. 

The decision to use X/Motif as the GUI 

toolkit constrained the developers to its 

Figure 4-7: Event-Based Operating 
Architecture 
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event-based programming model. That model hides many of the direct procedural 

invocations that are explicit in procedural programming languages and that made it 

difficult to trace the connection between GUI events and source code invocation. An 

X/Motif system begins operation by invoking a sequence of initialisation routines to 

create the infrastructure for an event-based execution environment. That infrastructure 

includes the creation of the initial graphical user interface and the instantiation of the 

event loop system. Once the application sets up its execution infrastructure it goes into a 

loop in which the ‘Event Handler’ provides the two-way causal relationship between GUI 

manipulation events and procedure invocations in the user-defined source code (the 

HyperEdit engine). The architecture depicted in figure 4-7 was utilised to represent that 

event-based operation. 

In that architecture four different areas are identified: 

• Initialisation Process: The collection of routines required to create the operating 

infrastructure needed for the GUI environment. 

• Graphical User Interface: The collection of widgets on the display that are 

manipulated by the user input to generate events. They include the routines 

present in the X/Motif libraries that perform the low-level graphical manipulation 

that result in visible changes on the display. 

• Event Loop System: Consists of the ‘Event Queue’ and ‘Event Handler’. Events 

are sent to the queue from the GUI and the application ‘Engine’. The ‘Event 

Handler’, based on the information defined during the Initialisation process, 

processes them appropriately. The concept of ‘callbacks’ allows the translation of 

GUI events to application Engine procedure invocations. That is why it can be so 

difficult to debug X/Motif applications. The abstractions make it extremely 

difficult to follow causal links between code invocations and tangible 

manifestations on the display and vice-versa.  

• The Application Engine: The collection of routines that perform the processing 

required when a particular piece of functionality is invoked from the user 

interface. That includes data modification and transactions with the repository, 

interfacing with the message passing system, and generating appropriate X/Motif 

events to realise the runtime GUI dynamics. 
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Both the dynamic operation architecture and the static, call-graph implementation 

architecture were useful during the system maintenance process. The call-graph 

representation of the system used large scale abstractions based on the building constructs 

provided by the implementation medium – source code statements, functions, and C files. 

In contrast, the dynamic operation architecture used abstractions based on the run-time, 

functional groupings of the routines rather than where they exist in the source code 

implementation. Both are valid representations of the system architecture, yet they 

graphically depict completely different collections of concepts. 

4.2.3 Maintenance That Affected the System Architecture 

Three major modifications to the HyperEdit system and their effect on the system 

architecture are detailed. The first modification, a change in the application's 

communication mechanism, resulted in a major modification to the system architecture. 

The second modification required the addition of an application interface that would 

allow HyperEdit to be controlled by a remote manipulation tool. That modification 

resulted in a redesign of the HyperEdit architecture, however due to resource cons traints 

the necessary changes to the large-scale structure were not made. Consequently, the 

redesign was compromised to make the modifications fit the existing architecture. The 

final modification was the extraction of hypertext functionality to exist as a separate tool. 

Whilst it was considered to be a major modification, there was no change evident in the 

system architecture. Those modifications are summarised and their consequences for 

software architecture in general are discussed. 

4.2.3.1 Changing the System Communication Mechanism 

As the project evolved the original blackboard style architecture was found to be 

inadequate and was replaced with a more robust, flexible, and efficient message passing 

system. The HyperEdit application required two types of communication. First, the ability 

to communicate with the repository to load and save data and second, the ability to 

communicate with the other executing HyperEdits in the overall environment.  

The initial choice of communication mechanism was the blackboard-style configuration 

described previously (figure 4-6). However, during actual utilisation of the system, the 

blackboard architecture did not exhibit satisfactory performance. The problems associated 

with the practical use of the system were caused by the prototype nature of the tools using 

the connection mechanism and the number of messages sent by those clients. 
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The blackboard server had the responsibility of keeping track of all the currently 

executing HyperEdit processes and ensuring that the current blackboard message 

remained available until all processes had polled the blackboard for that message. 

Moreover, the blackboard server had to ensure each process accessed the current message 

only once. In theory, the blackboard architecture should have sufficed in a conventional 

and fully operational environment. However, because the project was of a prototype 

nature, with tools whose stability was initially unreliable, keeping track of the currently 

executing HyperEdits was a difficult job. In addition, ensuring that each process read all 

messages only once was difficult when each process polled the server at different 

intervals and could disappear at random times. 

The communication mechanism not only had to meet the needs of the HyperEdit 

application but also the requirements of the other applications in the HyperCase tool suite. 

It became apparent as those tools evolved that the aforementioned problems with the 

blackboard style architecture would only be exacerbated. Moreover, as the research, 

design, and implementation of those other tools proceeded it became apparent that the 

global connection mechanism would need to support point-to-point, multi-cast, and 

broadcast communication styles between the tools. With the magnitude of the number of 

messages envisaged, the utilisation of a single storage location, which all tools would be 

required to access, would be inefficient from a performance perspective. 

The blackboard architecture was replaced with the current subscribe/dispatch message 

server topology (Baragry, Cleary et al. 1994) (figure 4-2). In that arrangement, all 

messages in the system are categorised into particular classes and each tool in the 

HyperCase tool suite subscribes to the classes they are interested in. The messages 

generated by the individual tools are assigned a particular message class before being sent 

to the server and the server subsequently dispatches those messages to the message 

queues of the tools subscribed to that class. 

The message server topology had a number of advantages over the original blackboard 

style. Most importantly, it satisfied the range of communication styles required by the 

individual tools. In addition, because the responsibility for storing the messages was 

shifted to the individual tool’s message queue, rather than the single storage location of 

the blackboard arrangement, the storage and processing requirements of the central 

message server were significantly reduced. The result for the message server, which was 
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the bottleneck of the system, was improved communication performance and insulation 

from the occasionally unreliable nature of some of the evolving tools. 

The modification of the communication mechanism also solved a number design 

principles and conceptual integrity issues that had been compromised during the original 

implementation process. HyperEdit was the first tool to exist in the tool suite and its 

implementation and the implementation of the communication mechanism occurred 

concurrently. As that implementation proceeded, the clear delineation between the 

communication responsibilities of HyperEdit, the repository, and the blackboard system 

became blurred. The replacement of the communication mechanism provided the 

opportunity to ensure its conceptual integrity by completely separating it from the 

HyperEdit-specific functionality and ensuring it existed as a separate process within the 

global HyperCase environment. That enabled future modifications to occur to the 

message server without requiring the downtime of HyperEdit.  

4.2.3.2 The Addition of a Remote Manipulation Interface 

A major modification was made to HyperEdit to create an interface that would allow the 

remote generation, manipulation, and analysis of HyperEdit documents. An example of 

that functionality was the creation of a visualisation tool for Amdahl Corporation's 

ObjectStar rule-based development environment (Amdahl 1998). A HyperEdit editor was 

defined to create diagrams to depict the high- level structure of ObjectStar applications. 

The visualisation tool was used to analyse an ObjectStar application’s source code and 

subsequently send messages to an executing HyperEdit to automatically construct the 

high- level graphical representation of that system. Another HyperEdit editor was defined 

to represent the fine-grained rule language of ObjectStar modules. Each module in the 

high- level system representation was then automatically linked, using hypertext, to a 

visual depiction of the source code for that module. Finally, by using the message server 

functionality, the visualisation tool was also able to receive events from the HyperEdit 

editors when user-instigated modifications to the visual representation of the system were 

made. Those modifications could then be passed to another tool to automatically replicate 

the graphical changes in the physical source code of the system. The user was 

subsequently able to graphically navigate through and modify an ObjectStar application. 

The ability to remotely manipulate and analyse HyperEdit diagrams provided the ability 

to develop an ObjectStar application using both textual and graphical representations with 

changes made in one medium automatically replicated in the other. Moreover, because 
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the graphical representation and manipulation tool, HyperEdit, was completely separate 

from the tool that analyzed a particular programming environment, similar systems could 

be developed for any language or development environment without requiring any 

modifications to the HyperEdit system. 

The implementation of the remote interface required two architecture-level analyses of 

the HyperEdit system. First, a means of communicating between an executing HyperEdit 

and its remote manipulation tool had to be provided. Second, once the HyperEdit process 

had received a particular message, a means of invoking the appropriate diagram 

manipulation routines had to be implemented. The replacement of the blackboard 

communication mechanism with the message passing style architecture satisfied the 

communication requirements between executing HyperEdits and remote manipulation 

tools. However, identifying the appropriate source code routines to invoke for diagram 

manipulations was not as simple because of the high number of dependencies between the 

X/Motif GUI code and the internal data manipulation code within the HyperEdit Engine. 

Therefore, the implementation of the remote manipulation interface required a re-design 

of the large-scale system arrangement of the HyperEdit engine routines to provide a clear 

interface between the GUI manipulation code and the internal diagram manipulation 

functions. 

The conceptual arrangement of the new system would make it possible to invoke any 

piece of functionality from the remote interface that was available from the existing GUI. 

Although the diagram itself was stored as an easily identifiable data structure in the 

source code, the routines that manipulated that data structure were a mixture of user-

defined code and pre-defined functionality provided by the X/Motif GUI environment. 

The existence of that mixture, and the high number of dependencies caused by it, was a 

result of designing the system to utilize the X/Motif GUI system. To provide a clear 

interface between the GUI/X environment and the user defined source code, the block 

entitled “HyperEdit Engine Routines” in 

the dynamic operation architecture of 

HyperEdit (figure 4-7) was separated into 

two distinct parts. The first, the GUI 

Callbacks module, was responsible for 

dealing with the reception of the X events 

that represent the user’s manipulation of 
Figure 4-8: Redesigned Event-Based 

Operation 
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the system at the GUI. The second, the ‘new’ Engine, contains only user-defined source 

code routines that make changes to the internal diagram representation and appropriate 

updates to the GUI. The new engine would receive its invocations solely from the local 

message queue. With that conceptual arrangement, the source of the message sent to the 

engine could either be from the system’s GUI callbacks or from any other tool that could 

generate messages compliant with the HyperCase environment’s message server. The 

new structural arrangement is depicted in figure 4-8. 

The implementation of that conceptual architecture did not eventuate. From a technical 

point of view, the design appeared to meet the requirements. However, from a 

management perspective, the human and financial resources did not exist to allow such 

major modifications to the system. Nevertheless, the functionality to remotely manipulate 

the tool was important and a compromise was reached. The amount of available 

functionality was reduced to meet the capabilities of the existing architecture. 

The message passing system was utilised to send remote calls to the appropriate 

HyperEdit, however the translation of those messages into appropriate function 

invocations did not occur through a distinct, abstract interface. Some remote requests had 

direct functional implementations in the HyperEdit engine. For instance, a request to add 

an object to the current document at a particular location was quite simple to satisfy. An 

equivalent procedure already existed in the collection of engine routines. When a message 

of that type was received, the equivalent engine function was invoked with the message 

attributes used as the appropriate parameters. In contrast, a message requesting the 

addition of a joining flow or edge between two existing objects on the screen was not as 

easy to achieve. The code to implement object connections was written in terms of the 

many X events that are generated throughout the joining process in the GUI. Each mouse 

click or drag performed in the joining process on the GUI would generate events. Those 

events resulted in procedure invocations in the engine that stored information as the 

process proceeded. The joining process in the engine was an aggregation of all those 

generated events and resulting procedure calls. No single function existed that accepted 

two particular component identifiers and the relevant connection attributes to produce the 

appropriate flow. That original arrangement occurred as a result of designing the system 

to efficiently utilise the implementation constructs provided by the GUI environment. To 

change that arrangement, the remote manipulation routine was required to simulate the 

generation of X events that occur during the GUI-based joining of components. That was 
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achieved by breaking the message into its constituent parts and invoking a number of 

low-level engine routines. 

In the end, the overriding resource constraints forced the conceptual integrity and design 

principles to be compromised. It was not conceptually pure, but it worked. While that 

compromise was acceptable because of the prototype nature of the system, the 

consequence is code that is harder to understand and modify. Finally, from an architecture 

perspective, the compromise resulted in modifications that occurred at a level which had 

no impact on the gross structural arrangement. Therefore, the new functionality is not 

evident in the representation of the implemented architecture (figure 4-7). 

4.2.3.3 Extraction of the Hypertext Mechanism 

The final major modification to be described was the extraction of functionality that 

implements the hypertext mechanism. This modification was performed to change the 

hypertext functionality from something of limited capability and whose implementation 

was tightly coupled to the application and its data, to something that existed as a separate 

tool and provided far greater functionality. The motivations, design alternatives, and 

ramifications for the software architecture are discussed. 

A requirement of the global HyperCase system was that all components of the documents 

produced during a software development lifecycle should have the potential to be the 

source or destination of a hypertext link. That would enable the developers, maintainers, 

and project managers to traverse the logical relationships through the document base 

regardless of the document types. Links would connect graphical design documents, 

source code modules, requirement statements, design rationale, and project management 

schedules. 

The initial implementation of the hypertext functionality in HyperEdit was quite primitive 

compared to the current version. A conscious design decision was made initially to keep 

the hypertext functionality as simple as possible until ongoing research within the project 

had fully completed the hypertext requirements of HyperEdit/HyperCase. The hypertext 

information was initially realised by keeping it closely coupled to the HyperEdit 

document components. The implementation of each generic diagram component 

contained an attribute to store link information. That information provided details of 

connections either to other HyperEdit diagrams or to other documents and the tools 

required for displaying them. The HyperEdit application contained the appropriate 
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functionality to modify that attribute information and to process the information when the 

link was followed. While that implementation was adequate for dealing with the 

HyperEdit system, it was understood that it would not satisfy the hypertext requirements 

of the other emerging tools in the HyperCase tool suite. The design rationale of the initial 

implementation however, ensured the functionality was easy to replace when the full 

requirements of the system were developed. 

Two high- level issues had to be resolved to implement a more versatile hypertext system. 

First, how should the conceptual data model be organised to store the hypertext 

information? Should hypertext links be stored as attributes of the source component or 

should those relationships between components be stored as first-class components 

themselves with the source, destination, and other useful information recorded as 

attributes of the link. A good example of the differences between those two alternatives is 

evident in the implementation of global information systems. The most popular, the 

World Wide Web (WWW), uses a very simplistic hypertext model, where the link 

information is stored within the data, i.e., as tags in the HTML document. Alternatively, 

another global, hypermedia-based information system, Hyper-G, stores its hypertext 

information separately from the data shown on each page (see for example (Flohr 1995)). 

The Hyper-G client is responsible for associating the data and hypertext information in a 

seamless manner that allows the user to navigate the information base. The Hyper-G 

hypertext model provides greater flexibility and functionality than the WWW model. 

However, the trade-off is that Hyper-G systems require more intelligent clients and 

servers to store and display the information. 

The second design issue to be resolved was where the processing capability required to 

generate, modify, and follow hypertext links should be implemented in the conceptual 

architecture. Should all of the tools replicate the hypertext functionality, or should a 

single tool be developed to handle all hypertext operations? Those issues were solved 

through research in hypertext-based, information system design that was performed 

within the project at the time (Cooper 1996). In addition, internal design meetings solved 

problems relating to the application of the concepts developed in that research to the 

specific problems faced. 

To resolve the first issue, a decision was made to have a data model in which the 

hypertext link information was kept separate from the software document components. 

That allowed for far greater flexibility when dealing with the hypertext information. The 
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hypertext information became ‘first-class’ objects rather than simply attributes of other 

data. Architecturally, it is interesting that the result of that high- level decision, which 

influenced many aspects of design, and set constraints on the hypertext functionality of 

the system, is not evident in the conventional architecture representations. The 

implemented architectures of HyperEdit remain identical regardless of which data model 

had been chosen. Whilst data models are used extensively in software engineering design, 

it is interesting that they are not considered part of the system architecture, even though 

the functionality of the system is often devised with respect to the data model envisaged. 

The resolution of the second design issue, assigning the responsibility for the hypertext 

functionality, occurred with the decision to construct a single tool to deal with the 

creation, deletion, modification, and traversal of hypertext links. The primary design 

constraint on the decision was flexibility. The production of a single hypertext server 

resulted in the majority of the functionality residing in a single location, rather than being 

replicated in all of the tools. Consequently, new tools added to the environment would 

only require relatively minor functional enhancements to make them compliant with the 

hypertext system. Moreover, future modifications made to the hypertext requirements 

would be implemented in a singe tool rather than in all HyperCase tools. Again, it is 

interesting to see the effect of that system modification on the HyperEdit architecture. 

The source code to realise the hypertext functionality was removed from the ‘HyperEdit 

Engine Routines’ (figures 4-5 & 4-7) and now exists as a separate tool in the HyperCase 

tool suite. The execution of the tool suite requires each user to have a ‘HyperText Server’, 

which is responsible for the hypertext operations of all the tools used by that user. The 

HyperText Server is represented as a high- level module in the global HyperCase 

architecture (figure 4-2). However, representations of the individual HyperEdit 

architecture (figures 5 & 7) fail to show that module, even though its existence is required 

for the successful operation of HyperEdit. The situation in which a major component of 

the system is seemingly invisible in the large-scale representation causes us to repeat the 

often-asked question, “What constitutes software architecture?” 

4.2.4 Factors That Influenced Architecture Decisions 

With the benefit of hindsight, and with the knowledge gained from improved 

understanding in software architecture research, it has been possible to identify factors 

that played an influential part in how architecture decisions were made in the evolution of 
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HyperEdit. Those factors were not necessarily explicit in the design reasoning at the time, 

however under the spotlight of the case study their importance has now been recognised. 

The factors discussed are: 

• The effect of changing requirements on the architecture as the design progresses. 

• Knowledge of available architecture alternatives and their practical consequences. 

• The effect of the implementation environment on the designer's ability to choose 

different architectures. 

The subsequent discussion details the degree to which those factors are specific to the 

project under investigation and those which are applicable to software development in 

general. 

4.2.4.1 Changing Requirements 

The effect on the architecture of changing system requirements poses some well-known 

but largely unanswered questions. The modification that added the remote manipulation 

capability to HyperEdit is an example that highlights the reasons why some changes 

require architecture modification and others do not. As mentioned in the previous section, 

the modifications that implemented the remote manipulation capability can be divided 

into two parts. The first was the ability to communicate with HyperEdit and the second 

was the ability to invoke the appropriate internal functionality. 

The message passing style communication architecture of HyperEdit has proved to be 

quite resilient to changing requirements. To implement the remote manipulation interface 

the infrastructure required to communicate with HyperEdit was already present because 

HyperEdit was already able to communicate with other executing HyperEdits and with 

the repository. To realise the remote manipulation communication all that was required 

was a new communication protocol and the ability for HyperEdit to distinguish between 

HyperEdit/repository messages and the remote manipulation messages. The required 

changes took place at a single level of design abstraction and were implemented without 

architecture modification. The conceptual design of HyperEdit contained a single 

subsystem, the message server, which dealt with the inter-tool communication protocol. 

Analysis of the flow of control through that subsystem shows clear interfaces between it 

and the rest of the HyperCase/HyperEdit system. Implementing the modifications 

required for remote manipulation communication did not affect how the flow of control 
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moved around the global system. Similarly, new tools could, and have, been added to the 

global environment without modifications to the global architecture. Moreover, other 

inter-tool communication protocols have been specified without architecture 

modification. By looking at the conceptual design of the system, modifications that only 

affect a single level of design abstraction and do not affect the flow of control through 

that conceptual model were implemented without changes to the system architecture. 

In contrast, the modifications needed to process and implement the remote manipulation 

messages required changes to the interaction between the dedicated HyperEdit code and 

the X/Motif environment. Because of the way those components were initially 

implemented, the required modifications resulted in design changes to the flow of control 

within the subsystems that comprise those architecture components. A brief discussion of 

the interaction between the user-defined code and the X/Motif environment is needed to 

explain the issue. The utilisation of the X/Motif GUI package required the developers to 

conform to the event-based programming model provided by the GUI system. In that 

model, manipulations at the GUI front-end of the system result in procedural invocations 

in the source code via the X event handler, and vice versa (figure 4-7). The application 

contained a great deal of user-defined source code that was independent of the GUI 

specific code. For example, code for message and data processing. In addition, the 

complexity of the graphical manipulation requirements of the application resulted in the 

use of many high- level and low-level graphical manipulation routines provided by the 

GUI toolkit. Consequently, the interaction of the user defined source code with the GUI 

environment was spread across many levels of conceptual granularity. Furthermore, 

because the flow of control through the system is subject to the event-based model of the 

GUI environment, the point at which control was passed to the source code from the GUI 

occurred at many different levels of conceptual granularity. The changes required to 

implement the remote manipulation capability would require changes to the point at 

which the flow of control was passed through to the user-defined code. The reason 

architecture modifications were required to realise that part of the remote manipulation 

capability was because changes would need to be made at multiple levels of conceptual 

design abstraction. 

Making an architecture resilient to requirements change that affect many levels of design 

abstraction appears to be considerably harder than making a design malleable when the 

modifications only affect a single level of abstraction. A characteristic of mature domains 
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is that they consist of well-understood collections of concepts and their relations. When 

determining the potential for future changes to result in modifications to the system 

architecture it is possible for the designer to envisage how those interconnected concepts 

will cope. However, this is a lot harder to do in domains that do not have well-understood 

collections of concepts. 

4.2.4.2 Knowledge of Architecture Alternatives 

One of the major modifications to HyperEdit was the replacement of the blackboard style 

communication mechanism with the subscribe/dispatch message-passing arrangement. 

During the course of this case study it was interesting to look back at the design meetings 

and documents to understand why the blackboard architecture was selected when 

hindsight shows the decision was inappropriate. The result has been the discovery of how 

knowledge of possible architecture alternatives influenced the designers’ ability to choose 

the initial architecture. Moreover, it highlights how difficult it is to determine how a 

proposed architecture will perform before it has been implemented. 

As is often the case in large team projects, many aspects of the design become matters for 

debate and opinion. The design of the communication mechanism for HyperEdit, and the 

surrounding HyperCase environment, was such a case. The need to allow for flexibility 

was recognised at an early stage. The requirements stated that tools would have the ability 

to communicate explicitly with each other and that specific inter-tool communication 

should be able to be monitored without the sending or receiving tools being aware of it. 

For instance, as a HyperEdit tool communicated with the repository, the project tracking 

tool would be able to ‘eavesdrop’ on the ensuing communication and automatically track 

the developer’s progress, updating the relevant project management charts and reports 

appropriately (Cleary and Reed 1993). Two high- level alternatives were considered to 

satisfy those requirements: the blackboard architecture that was eventually chosen, and a 

dispatch-messaging approach, similar to the one that eventually replaced the blackboard 

system. 

At that early stage in the development process, both high- level design alternatives 

appeared to satisfy the functional requirements. The blackboard arrangement was selected 

over the message passing infrastructure because some members of the team had had 

direct experience in implementing a blackboard system in the past. The developers knew 

how to implement the high level concepts of the blackboard arrangement while the 
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implementation of a message passing arrangement would require more design work to 

determine how it could be implemented. 

The lack of knowledge of different architecture alternatives was also a significant factor. 

The blackboard style was not selected because it was the only known communication 

mechanism, however it appeared to be the most appropriate choice amongst the limited 

number of known alternatives. Contributing to this lack of knowledge of other 

alternatives was the level of experience of the developers. They simply had not 

encountered enough large-scale system designs to develop an extensive knowledge base 

of architecture arrangements from which an appropriate solution could be selected. That 

does not excuse the team for its decision, however it is certainly the case that the level of 

knowledge of different architecture styles is now more widely understood than during the 

time frame of this project. Furthermore, while the general design issues have been known 

for some time, the level of knowledge of architecture issues across the entire software 

engineering community has improved as a result of case-studies of the types reported 

here. In addition, analysis of implemented architectures, taxonomies of popular styles, 

publications of design patterns, and workshops to collaboratively develop new 

architectures and styles have improved the level of knowledge of large-scale structure 

issue in software development (e.g., (Wolf 1997)). The level of knowledge of different 

architecture styles possessed by the software engineer is no longer based solely on direct 

personal experience. 

A related factor was the lack of knowledge about the consequences of choosing a 

particular architecture. The concept of a blackboard communication mechanism appeared 

to be appropriate during the design phase of the project. However, it was not until the 

system was implemented that all project members finally accepted the impracticality of 

the structure to meet the needs of the project and execution environment. Issues such as 

message throughput and system stability could not be determined until it was 

implemented. That was a result of the failure of the developers to evaluate the abstract 

concept of the blackboard style with respect to the practical execution environment of 

HyperEdit / HyperCase rather than the generic system requirements. 

Software engineering researchers and managers would like to think that developers make 

their decisions about system architecture completely objectively. However, in this case 

study at least, the design decisions of the developers were affected by experiential bias. 

The number of design alternatives was limited to those of the designers’ previous 
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experience. In addition, the alternative that the designers were most familiar with received 

additional weighting in the ensuing comparison. Finally, the developers were also 

affected by their lack of knowledge concerning the way in which the actual 

implementation of those high- level concepts influence the non-functional attributes of 

design. 

4.2.4.3 Influence of the Implementation Medium on Architecture Decisions 

The case study has identified a number of areas where decisions about the architecture of 

the system were influenced by the implementation medium in which it was to be realised. 

Those influences were: 

• The selection of a particular architecture because it was known how to implement 

it in the chosen operating system and programming languages. 

• The development of a particular architecture because part of its components 

already existed in the chosen operating system and programming languages. 

• The restriction of architecture alternatives to meet the particular operating and 

connection requirements of a previously selected software component. 

• The restriction of architecture alternatives because of the execution model of the 

virtual machine that executed a chosen programming language. 

One of the contributing factors in the selection of the blackboard style was the fact that it 

was known to be realisable in the chosen implementation medium. The developers had 

previous experience with the blackboard concept and had enough knowledge of the 

chosen implementation medium to immediately see how the concepts of the blackboard 

style could be realised using pipes, filters, text files, and appropriate server functionality. 

Moreover, prior knowledge of the remote procedure call support provided by the 

operating system made it easy to see how the inter-machine communication could be 

handled. Whilst the ability to implement a particular architecture does not make it the 

most appropriate, it was recognisably a contributing factor in the architecture selection 

process. 

This case study also uncovered evidence of architecture alternatives being devised to 

utilise the known infrastructure or services of the implementation environment. That is, 

starting with knowledge of the smaller granularity building blocks or services provided by 

the operating system, an architecture was created specifically to utilise them. That was 
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evident in the decision to replace the blackboard system with a message-passing style. 

After the decision was made to replace the blackboard mechanism, a review by David 

Cleary of the high- level inter-process communication mechanisms of the chosen 

operating system (SystemV Unix) was performed. That revealed three alternatives: 

message queues, semaphores, and shared memory. The existence of the message queue 

infrastructure led to the investigation of a generic message passing approach, based on 

those queues, for solving the problem. The generic style was then tailored to the 

subscribe/dispatch approach to meet the specific functional requirements of the project 

(Baragry, Cleary et al. 1994). While the subsequent message passing implementation has 

satisfied the flexible communication requirements of the HyperCase project, a significant 

factor in its selection was not just its technical attributes but also the fact that the 

operating system provided mechanisms to directly support its implementation. 

Interestingly, during the project’s maintenance, work was performed on the message 

server to improve its performance and expand the available functionality. During that 

process the operating system supplied infrastructure of the architecture (message queues) 

were abandoned and replaced by retro-fitting the architecture on top of the socket level 

functionality of the operating system. The ‘retro-fitting’ required additional code to 

realise the concepts of the message passing style in terms of socket level communication, 

which is at a lower level of abstraction than message queues but which provide additional 

and more flexible functionality. However, in terms of the executing applications, the 

socket-based message passing continued to work in the same manner as the message-

queue based architecture. Such developments are not uncommon. They are consistent 

with the basic consequences of information hiding and prototyping in which functions are 

implemented as quickly as possible and then replaced with an improved version at a later 

stage (Reed, 1994 in Reed 2000). The point is that the architecture was devised to utilise a 

set of design abstractions provided by the operating system and continued to work as 

devised when that underlying infrastructure was replaced. 

The underlying implementation environment supported architecture creativity by 

providing direct support for some architecture styles, however in other instances it served 

to constrain the developers. At the beginning of the HyperEdit design, a GUI support 

package was required to provide the low and high- level graphic manipulation. At that 

time, the only alternative available within the financial constraints of an academic 

research group, which would operate in our Unix environment, was X/Motif. As 
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discussed previously, an X-based application begins by setting up an event loop and 

generating the initial user interface. As the GUI is manipulated, it generates events that, 

as they are processed, invoke the appropriate routines in the user-defined code. That 

choice of GUI support package forced the developers to use the event- loop based 

architecture of X/Motif for the implementation of HyperEdit. However, the original 

conceptual design specified a layered style architecture. The resulting system could be 

represented by both styles. The source code implemented by the developers was 

structured in a manner consistent with the layered approach. However, because the 

procedure invocation was dependent on the X event handler, the dynamic operation of 

that architecture was event-based. Structurally, the code represented a layered system but 

behaviourally it operated as an event-based system. In contrast, as the global HyperCase 

project evolved, additional applications were developed utilising Tcl/Tk as the GUI 

support package. That provided similar high- level GUI capabilities as X/Motif without 

constraining the developers to an event- loop architecture. Because HyperEdit required 

low-level graphic manipulation capabilities not provided by Tcl/Tk it was not possible to 

replace the X/Motif GUI environment. 

The choice of programming language provided another example of architecture 

constraints imposed by the implementation environment. Although no specific example 

exists in the HyperEdit development, a number of other tools in the HyperCase 

environment had components of their systems implemented using Prolog. The conceptual 

design phase of ProTract, the project tracking tool (Cleary and Reed 1993), identified the 

need for some inferencing capabilities. As mentioned earlier, the project tracker would 

intercept messages produced by the development tools and attempt to infer how the status 

of the project was progressing with respect to the project plans. The rule-based language, 

Prolog, was best suited to implement that capability. However, Prolog is an interpreted 

language that evaluates the rules using a backward chaining inference engine. During the 

subsequent design of the project tracking tool, the developer was forced to design the 

system architecture and individual components within the constraints imposed by the 

backward chaining inference engine that forms the basis of Prolog’s execution (Cleary 

1997). In that particular situation, the implementation language was chosen based on the 

requirements and the architecture of that system was subsequently designed to operate 

within the conceptual limitations imposed by that language. 
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In this case study, a team of researchers were implementing a large and complex system. 

Some of the decisions clearly flowed from a lack of experience. However, even among 

more experienced designers, the nature of the development and run-time domains, i.e., the 

overall implementation environment; will often drive the choices made at higher levels of 

abstraction, including the highest level, the system architecture. 

4.2.5 Discussion 

Research literature strongly suggests that the system architecture should be set as early as 

possible in the design process and that doing so can provide significant benefits. This is 

especially true for product- line commercial software as well as the research based 

prototype project discussed in this case study. However, the HyperEdit study identified a 

number of issues that made the selection of the architecture at the beginning of the design 

process extremely difficult. The first concerns the factors that influenced the decision-

making ability of the developers. They were: the designer’s lack of knowledge of 

different architectures and their properties, the influence of the implementation medium 

on architecture decisions, and the ability to cope with changing requirements during the 

project lifecycle. The second issue concerns what the designers should be specifying in 

that initial architecture. There were a number of different architecture representations 

used during the development of HyperEdit. Which one(s) were the starting architecture or 

architectures? What elements should be included in the system architecture? Finally, 

where was the boundary between the HyperEdit architecture and the architecture of the 

global HyperCase environment? Those issues are discussed keeping mind the research 

based nature of the HyperCase project. 

4.2.5.1 Deciding On the Initial Architecture 

The degree to which requirements can change during the course of a project is obviously 

project dependent. While some projects can have their requirements firmly set before 

beginning design, that was not the case in the HyperEdit/HyperCase project. The goal of 

the project was to produce tools that test and evaluate concepts that support software 

development based on ongoing software engineering research. Therefore, the system 

requirements of the individual tools, including HyperEdit, were subject to change more 

than those of traditional software development projects. That played a significant part in 

the ability to determine a correct architecture at the beginning of the project. However, as 

the majority of software development involves maintenance, it is possible to argue that 
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the changing requirements experienced in this case study simply occurred a lot earlier in 

the application’s lifetime compared with other projects. Indeed, some researchers argue 

that software development is a continual maintenance process (Gallagher 1997). 

Traditional literature on system design has always stressed the need to design for 

malleability or modifiability, yet little research currently exists that compares the 

malleability of recognised architecture styles. Kazman (Kazman, Bass et al. 1994) has 

described a method of analysing system architectures to determine their ability to meet 

future modifications. However, the method requires knowledge of the future changes and 

can only be applied to mature domains in which a canonical functional partitioning has 

been performed. For instance, Kazman’s paper used the example of user interface toolkits 

that have a well-codified set of concepts. A great deal of research is still required to 

achieve similar techniques in domains that do not have the same degree of well-defined 

functionality. 

Doble (Doble 1997) has provided three patterns for change resilience in software 

architecture. He suggests that because of the business environment, developer knowledge, 

and performance/schedule constraints, it may not be possible to design to cater for all 

possible changes. His three patterns are: 

1. The “Design for Now” Approach: Due to tight schedules, low developer experience 

and turbulent business environment, it may be best to worry about the current 

requirements and let the future pay for itself. 

2. The “Laser-Guided Bombing” Approach: The development team might have enough 

experience and enough development time to develop a list of anticipated changes that 

could be catered for, based on the business needs. This approach hopes to cater for a 

subset of all possible changes. 

3. The “Saturation Bombing” Approach: With enough developer expertise, suitable 

project constraints, and well-defined business domain, it may be possible to design to 

anticipate all imaginable changes. 

Observations from the HyperEdit case study also identified the effects of the developer’s 

lack of knowledge of known architectures and the ramifications of choosing a particular 

architecture on the decision making process. This situation frequently occurs in project 

situations where new domains and applications are being undertaken. The current state of 

understanding in software architecture and design patterns would certainly have improved 
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the development of HyperEdit. However, many issues still require attention. For example, 

one observation noted that while it was possible to reason about architectures at an 

abstract level, it was not until they were actually being implemented that some issues 

became apparent. It was not until the process of implementation that the developer 

obtained the level of detail necessary to effectively rationalise about the architecture 

concepts. Those issues have parallels in the area of general decision making theory. 

Much of the research in software architecture is premised on a development process that 

matches what is termed the rational model of decision making. 

“The individual has objectives and a payoff function that permits the ranking 

of all possible alternative actions to those goals. The actor is presented with 

and understands the alternative courses of action. The actor chooses the 

alternative (and consequences) that contribute most to the ultimate goal. In a 

rigorous model of rational action the actor can accurately rank all alternatives 

and consequences and can perceive all alternatives and consequences … this 

assumption has been at the heart of consumer behaviour theories and 

microeconomics, political philosophy, and social theory.” (Laudon and 

Laudon 1996) 

However, Laudon and Laudon’s summary of models of decision making (Laudon and 

Laudon 1996) details three criticisms of the rational model. First, the number of 

comparisons required to evaluate all alternatives is computationally impossible in a 

human time frame. Decision makers simply do not have time to compare all possible 

alternatives. Second, because of conflicting goals, it is not possible to rank all alternatives 

and consequences realistically. Third, in a real life situation it is impossible to specify a 

finite set of alternatives and consequences. Those criticisms are as applicable to 

architecture decision making as they are to general-purpose decision making. Moreover, 

each of those criticisms is compounded by the fact that software architecture is such a 

new field which deals with abstract concepts that have yet to be defined and have no 

direct, tangible, manifestation that can facilitate a common understanding. 

Laudon and Laudon reviewed several alternative models of decision making that address 

the deficiencies with the rational model. Whilst those models do not provide any specific 

model for software architecture they can help explain how software architect’s arrive at 

the decisions they do. 
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• Satisficing: Choosing the first available alternative in order to move closer to the 

ultimate goal instead of searching for all the alternatives and consequences. 

• Bounded rationality: Idea that people will avoid new uncertain alternatives and 

stick with tried and true rules and procedures. 

• Muddling through: Because of the existence of conflicting goals, this method 

involves successive limited comparisons where the test of a good decision is 

whether the majority of people agree with it. 

• Psychological influences: The effect of underlying personality dispositions 

towards the treatment of information, selection of alternatives, and evaluation of 

consequences. 

Those alternative models of decision making explain many of the observations made 

about issues that affected the architecture decision making performed during the 

HyperEdit lifecycle. However, those issues are not generally discussed in software 

architecture research. 

The final issue that had an effect on the designers’ ability to set the initial architecture 

was the influence of the implementation medium. Those issues were: the ease with which 

an architecture alternative could be implemented in the chosen implementation medium; 

the selection of an architecture to utilise known building blocks of the computing 

environment; and the constraints placed on possible architectures by the execution model 

of the implementation environment. Those observations contradict the traditional view of 

software development in which the high- level design is determined before any low-level 

decisions are made. The observations are, however, supported by design research in other 

disciplines that recognise the effects of lower level issues on the current level of design 

abstraction. Those disciplines include electronic and mechanical design theory, traditional 

architecture and conceptual theory building. For example, Alberts’ thesis on design 

theory discusses general design issues in electronic and mechanical design: 

“In practice however, design will never be of a completely top-down nature. 

... Knowledge about which functions can be realised given specific physical 

properties of the realisation material is propagated upwards. Without such 

knowledge about the feasibility of alternatives, design would result in a ‘blind 

search’.” (Alberts, Wognum et al. 1991; Alberts 1993) 
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Darnell quoted the keynote speech by Morton at the 1959 Electronic Components 

conference, which described how this principle had reached an extreme in electronic 

circuit design. In that domain, the ability of designers to develop useful solutions was 

restricted to those achievable using known components.16 

“With this viewpoint, the system designer has translated his overall system 

requirements to those of components, thinking only in terms of classical 

inductance, capacitance, resistance, tubes, and transistors. The component 

designer, adopting this viewpoint, therefore has been limited in his 

permissible solutions only to finding new techniques and materials for the 

classical elements.” (Darnell 1962) 

Similarly, Lawson described those effects in the discipline of traditional architecture and 

how an architect’s education deliberately utilises that feature. 

“… there is no meaningful division to be found between analysis and 

synthesis but rather a simultaneous learning about the nature of the problem 

and the range of possible solutions … [And] architects need to know, for 

example, about the structural properties of wood but this does not mean they 

could become furniture designers.” (Lawson 1980) 

Finally, this issue is not just something which affects system design but is also well 

understood with regard to conceptual theory building. The ability of the human mind to 

develop systematic theories is influenced by the knowledge of the underlying concepts 

that already exist in human language. Our language is unavoidably permeated by 

concepts and theories. Common nouns are used to represent our concepts and not the 

things we perceive. Therefore, it would be impossible to assume conceptualisation begins 

with a ‘clean slate’ with which we can develop our conceptual objects and models. The 

objects in the world are already delineated to some extent by the classifications embodied 

in socially inherited language. In fact, learning a language essentially means learning to 

grasp objective thought concepts (attributed to Frege in (Popper 1979f))17. 

The waterfall model of design is no longer regarded as the best approach to software 

development, however research still suggests that the best way to approach development 

                                                 

16 This was discussed in chapter 3. 
17 This is discussed in more detail in the next chapter. 
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is to perform the architecture level of design first. The system architecture is important 

and needs to be determined in order to set the pattern of design. However, little research 

exists which incorporates the observations found in this case study. In fact, the evidence 

suggests it may be exceedingly hard to determine the correct architecture at the beginning 

of the project and that indeed it may not always be necessary to do so (Reed 1987; 

Perrochon and Mann 1999; Reed 2000). In software architecture research, the recognition 

of those principles is starting to become more prevalent. For example, Cockburn 

(Cockburn 1996) details the affects of social issues on software architecture. Those social 

issues included the psychological bias of the developers, the knowledge of language, and 

software development skills. Furthermore, Cockburn suggests a number of design 

principles/patterns for dealing with those effects. However, software architecture research 

has a long way to go in determining how the architecture level of design should be 

performed in a manner that incorporates those observations that serve to contradict the 

rational model of decision making that underlies the dominant view of software 

engineering. 

4.2.5.2 What Constitutes the Software Architecture? 

The case study highlighted three factors that make it difficult to specify the large-scale 

structures of a software system. First, there were many architectures represented during 

the HyperEdit lifecycle. Which one, or ones, should be identified as the most appropriate? 

Second, what components should be specified in the system architectures? Third, what 

connections should be specified in the system architectures? 

There are many definitions of the term software architecture (see (SEI 1997)), however 

using the simplest definition of the term, the high level structure of the software system, a 

number of different, yet valid, architectures were identified. They can be categorised into 

three broad groups: 

• Conceptual Architectures: The representations used during the conceptual design 

phase of development that depict what the designer believes should be 

implemented. In the case study, conceptual architectures were used to convey the 

initial ideas of both HyperEdit (figure 4-3) and its global environment – 

HyperCase (figure 4-1). 

• Static Implementation Architectures: The representations that depict the source 

code modules and the relationships between them. Examples in the case study are 
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the layered architecture of HyperEdit’s initial implementation (figure 4-5) and the 

call-graph structure used during maintenance. 

• Dynamic Operation Architectures: The architectures that depict how the system 

executes in terms of functional abstractions of the implemented system and 

execution abstractions of the computing environment (e.g., processes, distributed 

machines). The distributed communications architecture (figure 4-6) and the 

event-based operation architectures (figures 4-7 and 4-8) are examples. 

Other researchers have identified multiple high level representations for software 

systems, for example (Kazman, Bass et al. 1994; Kruchten 1995; Soni, Nord et al. 1995). 

Those different representations may use different labels, however overall, they identify 

similar collections of structures. They all contain representations of the developers 

conceptual or logical view, representations of how it is implemented in source code, and 

representations of how it operates in a computing environment18. Furthermore, definitions 

of software architecture are now recognising the existence of multiple views of the 

system (e.g., (Bass, Clements et al. 1998)). However, there is still no general agreement 

about which views should be specified to represent the system architecture. 

The understanding of those different views is based on analogies with traditional 

engineering development whose high- level system design may consist of different 

diagrams for different stakeholders in the development process. For example, a building 

design may have a different representation for the architect, interior decorator, landscape 

gardener and the electrician. Using those analogies as the basis for our understanding has 

been evident from the earliest software architecture research publications (e.g., (Perry and 

Wolfe 1992)) to the most recent (e.g., (Bass, Clements et al. 1998))19. However, the case 

study identified a number of observations that are not easily explainable using analogies 

with traditional engineering development. The first issue was the different types of 

component connections found in the HyperEdit architecture. Those different types, which 

are not found in other engineering disciplines, make it difficult to determine what 

components should be represented in the architecture and how the connections between 

the components should be represented. The second issue was the lack of a data model in 

the system architecture. None of the different architecture views suggested by research 

                                                 

18 These issues are discussed in detail later in this chapter. 
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contain a representation of the system data model. The data model is extremely important 

to the system yet it is not considered part of the architecture. Interestingly, no other 

discipline produces systems that pass complex data items between components or build 

functionality that manipulates complex data types. Finally, the conceptual and 

implemented architectures of both HyperCase and HyperEdit were different to each other. 

Moreover, when maintenance was performed and system architectures were extracted 

from the implemented system, they were different to the original conception. It could be 

argued that was because of the research nature of the HyperCase project, the changing 

requirements, and the lack of developer knowledge. However, another case study 

(Bowman, Holt et al. 1999) has shown the difference between the conceptual and 

concrete architectures of the Linux operating system. Furthermore, it is not until the 

architecture was extracted from the implemented system that it could be compared with 

the conceptual or original design architecture. That is not the case with views of 

traditional building systems because the architecture can be viewed directly in the 

implemented system/artefact. 

Despite the fact that there is much confusion about many aspects of software architecture, 

which can not be resolved using analogies with traditional engineering disciplines, those 

analogies continue to be used as the basis for our understanding. An investigation of those 

analogues is now presented. 

4.3 Software Architecture Theory: An example of 
understanding based on the artefact engineering 
view 

4.3.1 The Origins of Software Architecture Understanding 

The first papers to specify the large-scale structures of software systems appeared in the 

late 1960s. In 1968 Dijkstra detailed the large-scale structure of the ‘THE-

Multiprogramming System’ (Dijkstra 1968). His discussion discussed the advantages of 

partitioning the operating system into layers like ‘onion-rings’. At the NATO conference 

in 1969, Sharp made the following lengthy comment that could be viewed as leading the 

way to contemporary software architecture research. 

                                                                                                                                                  

19 This is discussed in the next section. 
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“I think that we have something in addition to software engineering: 

something that we have talked about in small ways but which should be 

brought out into the open and have attention focussed on it. This is the subject 

of software architecture. Architecture is different from engineering. 

As an example of what I mean, take a look at OS/360. Parts of OS/360 are 

extremely well coded. Parts of OS, if you go into it in detail, have used all the 

techniques and all the ideas which we have agreed are good programming 

practice. The reason that OS is an amorphous lump of program is that it had 

no architect. Its design was delegated to a series of groups of engineers, each 

of whom had to invent their own architecture. And when these lumps were 

nailed together they did not produce a smooth and beautiful piece of software. 

I believe that a lot of what we construe as being theory and practice is in fact 

architecture and engineering; you can have theoretical or practical architects: 

and you can have theoretical and practical engineers. I don’t believe for 

instance that the majority of what Dijkstra does is theory – I believe that in 

time we will probably refer to the ‘Dijkstra School of Architecture’. 

What happens is that specifications of software are regarded as functional 

specifications. We only talk about what it is we want the program to do. It is 

my belief that anybody who  is responsible for the implementation of a piece 

of software must specify more than this. He must specify the design, the form; 

and within that framework programmers or engineers must create something. 

No engineer or programmer, no programming tools, are going to help us, or 

help the software business, to make up for a lousy design. 

Probably a lot of people have experience of seeing good software, an 

individual piece of software which is good. And if you examine why it is 

good, you will probably find that the designer, who may or may not have been 

the implementer as well, fully understood what he wanted to do and he 

created the shape. Some of the people who can create shape can’t implement 

and the reverse is equally true. The trouble is that in industry, particularly in 

the large manufacturing empires, little or no regard is being paid to 

architecture.” (NATO 1976b) (p. 150) 
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A few years later, Spooner developed his own “Software Architecture for the 1970s” 

(Spooner 1971), contrasting it with Dijkstra’s large-scale system structure. As the 70s 

progressed, practitioners began detailing the advantages of theorising about those system-

level structures and the consequences of decisions made at those higher levels of design. 

Parnas described how the effectiveness of modularization is dependent upon the criteria 

used in dividing the system into modules (Parnas 1972). In addition, Brooks wrote his 

essays on software engineering (Brooks 1975) in which chapter four, Aristocracy, 

Democracy, and System Design, stressed the importance of the conceptual design phase 

and how it affects subsequent development. Those examples show software developers 

were able to identify and reason about high- level structures of their software systems and 

recognised the importance of decisions made at that level of design. Moreover, it shows 

that the term ‘architecture’ was well established as the word for designating those 

structures. 

Interestingly, that period of time saw a more distinct partitioning of software and 

hardware design as separate activities, which had until then been more closely entwined 

(Weinberg 2000). Indeed, Brooks, who was the originator of many software architecture 

ideas, also published articles on the architecture of computer hardware (Brooks 1962). 

Given this, and the extent to which Brooks draws on analogies with hardware 

development paradigms in The Mythical Man-Month (Brooks 1975), it could be argued 

that many of the concepts Brooks used for understanding the large-scale partitioning of 

software systems would have evolved from his understanding of the concepts involved in 

computer architecture20.  

Despite those, and many other examples of software developers reasoning about the 

large-scale structures of their systems, it was Mary Shaw’s 1989 paper, Larger Scale 

Systems Require Higher Level Abstractions (Shaw 1989) that led to the separate area of 

research that is today referred to as software architecture. In that paper, Shaw recognised 

the existence of high- level system representations that are used during the development 

process and which could be recorded and passed onto other designers. Shaw had been 

working on abstraction techniques previously (Shaw 1984) and noted the use of those 

abstractions in the development process could result in a “software architecture level of 

                                                 

20 The influence of experience on the ability to understanding new phenomena is discussed in the next 
chapter. 
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design.” Shaw’s work identified and labelled a number of different styles of architecture 

that are still used as examples today. For example, ‘layered’ and ‘pipe & filter’. While 

Shaw’s paper discussed the importance of higher- level system abstractions, it merely 

identified concepts which others began to theorise about. 

Perry and Wolf's paper (Perry and Wolfe 1992), as its title suggests, laid the foundations 

for many architecture research ideas. It also contained the first attempt to define 

architecture, or at least, the concepts of software architecture. They stated that a model of 

architecture consists of three components: elements, form, and rationale. The elements are 

either processing, data, or connecting elements; form is defined in terms of properties and 

relationships among the elements (the constraints); and rationale provides the underlying 

basis for the architecture in terms of system constraints. Much of the understanding in 

that paper was derived through analogies with other disciplines that highlighted 

similarities and differences. For example, computer hardware, network architecture, and 

traditional building architecture. One of those analogies compared the different 

representations of software system the multiple views of a traditional building design that 

are used by the various stakeholders in the development process. That specific analogy is 

discussed in detail in a later section. 

From those research foundations, many definitions of software architecture have 

emerged. Of the early definitions, the one by Garlan and Shaw was the most often cited:  

“Beyond the algorithms and data structures of the computation; designing and 

specifying the overall system structure emerges as a new kind of problem. 

Structural issues include gross organization and global control structure; 

protocols for communication, synchronization, and data access; assignment of 

functionality to design elements; physical distribution; composition of design 

elements; scaling and performance; and selection among design alternatives.” 

(Garlan and Shaw 1993) 

Garlan and Perry, in an introduction to a special issue on software architecture in the 

IEEE Transaction on Software Engineering, provided a simpler, all-encompassing 

definition: 

“The structure of the components of a program/system, their 

interrelationships, and principles and guidelines governing their design and 

evolution over time.” (Garlan and Perry 1995) 
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However, neither of these, nor any other definition, has become an accepted standard. 

The Software Engineering Institute web site houses many of the definitions that have 

been published in software architecture literature (SEI 1997). The most recent definitions 

differ from the originals by catering for issues that emerged out of published experience 

reports – the existence of multiple views of software architecture.  

The HyperEdit case study presented a number of architecture types that were uncovered 

during that system’s development. They are now compared with other work on software 

architecture views. A number of software architecture case studies and theories based on 

practical experience have been published suggesting the need for multiple large-scale 

representations to capture the architecture of a software system. Soni (Soni, Nord et al. 

1995), as a result of surveying many software systems used in industrial applications, 

identified four different large-scale structural depictions used throughout the development 

process: 

• Conceptual architecture: describes the system in terms of the major design 

elements and the relationships among them. 

• Module interconnection architecture: encompasses functional decomposition and 

system layers. 

• Execution architecture: describes the dynamic structure of the system. 

• Code architecture: describes how the source code, binaries, and libraries are 

organised in the development environment. 

Kazman (Kazman, Bass et al. 1994), while discussing the analysis of quality attributes of 

system architecture, asserted that the architecture can be described from (at least) three 

different perspectives: 

• Functional: Partitions the overall behaviour into a collection of functions that are 

individually simple enough to conceptualise. 

• Structural: The collections of components that represent the computational entities 

and the connections and control relationships between them. 

• Allocation: Depicts how the domain functionality is realised in the software 

structure. 
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Finally, Kruchten presented his collection of system representations that had been 

successfully used to capture the architecture information in several large projects 

(Kruchten 1995): 

• Logical view: Where the required system is decomposed into a set of key 

abstractions, taken (mostly) from the problem domain. 

• Process view: Depicts how the main, functional abstractions map onto executing 

processes and threads of control. 

• Physical view: Reflects distributed aspects by showing how the software maps 

onto the hardware. 

• Development view: Focuses on the actual software module organisation in the 

development environment. 

Those four views are depicted with a fifth view that illustrates them with a few use-cases 

or scenarios. 

From those experience reports, the use of multiple views to represent the system 

architecture has become accepted in the discipline and has become part of the most recent 

definition of software architecture by Bass et al: 

“The software architecture of a program or computing system is the structure 

or structures of the system, which comprise software components, the external 

visible properties of those components, and the relationships among them.” 

(Bass, Clements et al. 1998) 

By externally visible properties the authors of the definition mean the “assumptions 

components can make of a component, such as its provided services, performance 

characteristics, fault handling, shared resource usage, and so on.” (Bass, Clements et al. 

1998). The intent of the definition is that “a software architecture must abstract away 

some information from the system … and yet provide enough information to be a basis 

for analysis, decision making, and hence risk reduction.” (Bass, Clements et al. 1998). 

The authors also note that “the definition makes clear that systems can comprise more 

than one structure, and that no one structure holds the irrefutable claim to being the 

system architecture.” (Bass, Clements et al. 1998) 

The prevailing consensus in software architecture research is that those representations 

are different views of the system architecture, where each view provides a different  
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abstraction of the underlying implementation detail. Therefore, each view is a subset of 

the detail that exists in the implementation. That way of understanding the nature of 

software architecture views can be traced back to the foundations paper of Perry and Wolf 

(Perry and Wolfe 1992). From their analogies with traditional building architecture they 

noted: 

“… a building architect works with the customer by means of a number of 

different views in which some particular aspect of the building is emphasized. 

... For the builder, the architect provides the ... floor plans plus additional 

structural views that provide an immense amount of detail about various 

explicit design considerations such as electrical wiring, plumbing, heating, 

and air-conditioning. ... Analogously, the software architect needs a number 

of different views of the software architecture for the various uses and users. 

At present, we make do with only one view: the implementation.” (Perry and 

Wolfe 1992) 

The same analogy was used by Bass et al to explain their definition of architecture. They 

claim the multiple representations are analogous to the different building representations 

used by the architect, the interior decorator, the landscaper, and the electrician. They 

summarise the most useful representations or views used by software developers as: 

module structure, conceptual or logical structure, process structure or co-ordination 

structure, physical structure, uses structure, calls structure, data flow, control flow, and 

class structure. (Bass, Clements et al. 1998) 

The IEEE draft recommended practice for architectural description (IEEE and Committee 

1998) also reflects this understanding of large-scale software structures. The standard 

recognises the growing importance of software architecture in system development, 

however it is more cautious about how it refers to architecture and architecture views. 

The term architecture is defined very generally in the standard as “the highest-level 

conception of a system in its environment”. Similarly, the concept of an architecture view 

is defined as “a representation of a whole system from the perspective of a related set of 

concerns”. 

Those definitions recognise the existence of the concepts but deliberately take care not to 

relate them to any preconceived structural meaning. The result however, is that the 

definitions are so general they could apply to many different things. Finally, the standard, 
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while recognising the existence of many different system views and viewpoints does not 

specify which ones should be used in a project. 

Despite those definitions, confusion still exists concerning the exact nature of the 

representations, why they are necessary, and which ones should or should not be included 

in the description of the system architecture. Other researchers have offered explanations 

for this. 

Clements, in his overview of the field (Clements 1996), suggested five reasons why the 

community has failed to reach a consensus on what exactly we mean by software 

architecture. 

1. Advocates bring their own methodological biases with them. While most definitions 

of the term agree at the core, they differ seriously at the fringes. Those differences are 

attributable to the motivation each researcher has for examining the structural issues 

in the first place. 

2. The study is following practice, not leading it. Research still involves observing the 

design principles and actions used whilst developing real systems and abstracting the 

commonalties. 

3. The field is still quite new. 

4. The foundations have been imprecise. The field contains a remarkable number of 

undefined and ambiguous terms. In addition to the textual terms, diagrammatic 

representations of architectural structures also suffer from ambiguity in interpretation. 

5. The term is over-utilised and its meaning as it relates to software engineering is 

becoming diluted. 

That confusion concerning the meaning of software architecture was observed by Bass et 

al (Bass, Clements et al. 1998) who noted that definitions of system structures include the 

following: 

• Architecture is high level design. 

• Architecture is the overall structure of the system. 

• Architecture is the structure of the components of a program or system, their 

interrelationships, and principles and guidelines governing their design and 

evolution over time. 
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• Architecture is components and connectors; architecture is components, 

connectors, and constraints.  

They continued by suggesting the lack of a well-accepted definition is not as troubling as 

it appears because the concept of software architecture can still be successfully used 

while a discipline-wide consensus evolves. Their argument uses the notion of an ‘object’ 

as a similar example. The exact definition of an ‘object’ is still debated by object-oriented 

programming researchers and practitioners, yet the apparently ill defined concept has 

resulted in a full- fledged paradigm shift in software development. (Bass, Clements et al. 

1998) 

To summarise the current understanding of software architecture: 

• Software developers have been able to identify and theorise about the large-scale 

structures of software systems since early in the discipline. 

• Those large-scale structures are considered the ‘architecture’ of the software 

system. That understanding is based on analogies with traditional engineering 

disciplines whose built systems exhibit large-scale structures that are termed the 

‘architecture’. 

• Research has successfully sought to improve the development process at the 

software architecture level of design. 

• Experience suggests many system representations are required to depict the 

architecture of a software system. 

• Those representations are considered analogous to the multiple representations of 

traditiona lly built artefacts. 

• Confusion still exists about the exact nature of software architecture and the views 

used to represent it. 

In analysing the current understanding of software architecture, a brief summary of the 

traditional notion of architecture is presented to see if it can clarify the confusion. 

4.3.2 Traditional Notions of Architecture 

The architecture of a built thing, in general parlance, refers to its “unifying or coherent 

form or structure” (Miriam-Webster Dictionary 1997). That generic concept is easy to 

understand when dealing with our vast range of physical artefacts. People without 
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specific training in the respective fields can perceive building architecture, computer 

architecture, naval architecture, etc. However, difficulties arise when you apply the same 

concept to elicit the architecture of a system whose only tangible manifestation of the 

construction is the source code implementation (Bennett 1997). Despite this, the generic 

term ‘architecture’ appears to be appropriate when referring to the large-scale structure or 

form of software systems. Therefore, because the field has yet to agree on precisely how 

the term should apply to software systems it is worth looking at its historical usage in an 

attempt to gain some insight. 

Interestingly enough, many reference books in the field of architecture itself fail to define 

the term (for example (Pevsner, Fleming et al. 1975; Standen 1981)). Moreover, those 

that do, describe something quite ethereal that fails to assist in the application of the term 

to software. For example: 

“The art of designing and building according to rules and proportions 

regulated by nature and taste, so that the resultant edifices arouse a response 

by virtue of their qualities of beauty, geometry, emotional power, picturesque, 

intellectual content, or sublime essence, is called Architecture, a term which 

suggests something far more significant, sophisticated, and intellectually 

complex than a mere building, although it must also involve sound 

construction, convenient planning, and durable materials. ... Architecture 

implies a sense of order, an organisation, a geometry, and an aesthetic 

experience of a far higher degree than that in a mere building.” (Curl 1993) 

An often quoted definition by Sir Henry Wotton from his 1624 book, The Elements of 

Architecture, states that it must fulfil three conditions: ‘Commodite’, ‘Firmness’, and 

‘Delight’. 

“To constitute architecture, a building must not only be conveniently planned 

for its purpose (‘commodity’), and be soundly built of good materials 

(‘firmness’), but must also give pleasure to the eye of the discriminating 

beholder (‘delight’). It is this third quality, added to the other two essentials, 

that differentiates ‘architecture’ from mere ‘building.” (Briggs 1959). 

A chronological comparison of the different definitions of traditional architecture reveals 

how the term has become more encompassing over time. Briggs, commenting on Sir 

Henry Wotton’s definition, detailed how primitive buildings such as huts and even the 
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Egyptian pyramids could be counted as architecture. Moreover, “in modern times, bridges 

and other structures which are now commonly regarded as ‘civil engineering’ rather than 

architecture or even building.” (Briggs 1959). In spite of this historical meaning of the 

term, current usage and definitions of ‘architecture’ certainly do include those items. 

While the discipline of architecture itself has proceeded without a formal definition of the 

term – at least not in the sense that we seek, there is a long history of architects formally 

discussing the nature of their discipline. It is generally accepted that Vitruvius’ treatise, 

Ten Books On Architecture (Vitruvius 1931) in the first century BC, was not the first 

systematic account of architecture, however his works are the most ancient which have 

survived to this day. In addition, there exists a vast number of books that detail specific 

architectures, the history of the discipline, and theories explaining particular aspects of 

the discipline (e.g., (Watson 1990; Kruft 1994; Gelernter 1995)).  

“Another version of this theory looks not to whole forms, but to general 

principles of form which are even more abstract and universally applicable 

than types. For many centuries these principles were thought to be embodied 

in the five Orders of architecture (Tuscan, Doric, Ionic, Corinthian, 

Composite), each of which set out specific rules for the proportions of 

columns and the spaces between them, the proportions of entablatures relative 

to the columns and the spaces between them, embellishment and ornament of 

the complete ensemble.” (Gelernter 1995) 

Not all architects agree on the most appropriate solution for a particular problem’s 

requirements or even on the best architectural design theory. However, the discipline does 

have a common understanding of what it means to be an architect and what the goal of 

architectural design is: 

“That is what architects are, conceivers of buildings. What they do is to 

design, that is, supply concrete images for a new structure so that it can be put 

up. The primary task for the architect, then as now, is to communicate what 

proposed buildings should be and look like.” (Kostof 1986) 

That common understanding has coalesced over a long period of time through the 

publication of architectural theories and education of architects in apprenticeships, guilds, 

schools, and universities. The exact definition of what architecture is may vary, however 
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there exists a common understanding of what the architect does – the architect designs 

representations of physical structures so they can be built. 

4.3.3 Issues That Undermine the Existing Understanding of Software 
Architecture 

The logical progression from the recognition of large-scale structures in software 

systems; to Shaw’s call for an architecture level of design; through to Perry and Wolf’s 

foundations for the discipline; and finally to the explanation of the multiple, high- level 

representations required to depict a software system as different views of the 

implementation detail appears valid. However, a more thorough comparison of the 

systems built by the respective disciplines shows it is quite specious. It is based on the 

implicit assumption that the software development process is analogous to those 

‘construction’ disciplines in which the completed artefacts or systems exhibit a unique 

representational abstraction, fixed during the early stages of design, which we describe as 

‘the architecture’. The problem of obtaining an acceptable definition of software 

architecture or a set of common architecture views is due to the assumption that software 

systems have an analogous, unique design abstraction, determinable at the early stages of 

the design. That understanding of architecture and the use of architecture views follows 

from Perry and Wolf’s statement, 

“… there are a number of interesting architectural points in building 

architecture that are suggestive for software architecture.” 

However it ignores the statement that began that sentence, 

“While the subject matter of the two is quite different...” (Perry and Wolfe 

1992). 

The subject matter of the two is quite different and any attempt to use analogies between 

the disciplines can only be done by ensuring that conjectures extrapolated from those 

analogies are not invalidated by those differences.  
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A comparison of the disciplines shows that two important differences exist between the 

artefacts that software developers produce and those produced by the more established 

engineering disciplines. The first is the concept of form and the other is the concept of 

system execution. Those differences between the fundamental natures of the respective 

systems have a significant impact on the way we use the notions of architecture and 

architecture views in the development process. 

Systems produced by traditional engineering disciplines are corporeal. They have a 

physical form, a tangibility that allows the viewer to perceive its large-scale structure – its 

architecture. That architecture can be viewed in the original design documents, traced 

throughout the design process and viewed in the physical realisation of the system. 

Australia’s most famous piece of architecture, the Sydney Opera House, provides a good 

example. Figure 4-9 depicts the large-scale system design developed by the architect and 

a picture of its physical appearance (Sydney Opera House 1999). You can see the 

architecture in the design and in the realisation. 

The analogous concept of form does not exist for software systems. Figure 4-10 depicts 

one of the software architectures of the HyperEdit system. It also depicts the only tangible 

Figure 4-9: Architecture Diagrams and Physical Representation of the 
Sydney Opera House  
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aspect of that system, its source code. You cannot see the architecture of a software 

system by looking at the thousands of lines of source code. It simply does not exist in the 

same fashion. The difference is so obvious it can easily be missed. Others have claimed 

the user interface can be thought of as a tangible aspect of a software system. However, 

that does not invalidate the claim that there is a fundamental difference between the forms 

of the systems produced by the respective disciplines. 

The difference between the concept of system form in the respective disciplines affects 

how the notions of architecture and architecture views are used in the development 

processes. The architecture of a physical artefact describes its physical form. To repeat 

the previously stated quote: 

“That is what architects are, conceivers of buildings. What they do is to 

design, that is, supply concrete images for a new structure so that it can be put 

up. The primary task for the architect, then as now, is to communicate what 

proposed buildings should be and look like.” (Kostof 1986). 

Architects represent the geometric properties of the building materials and/or 

components. The physical magnitudes and relations of those components and how they 

are juxtaposed in space. That is the case in traditional architecture, civil engineering, and 

Figure 4-10: Architecture Diagram and Physical Implementation of HyperEdit System 
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mechanical engineering. Those architectures depict the physical form of the system or the 

components that comprise the system. System functionality is inferred from those 

components21.  

Traditional building disciplines produce many different representations of their system 

architecture. Those views are constructed by removing some of the implementation detail 

and leaving a subset of the devised form. They are understood in the context of the global 

structure using the understanding of the physical form or features of the entire system. 

For example, how the wiring moves throughout the spatial arrangement of the automotive 

vehicle, or how the plumbing system is laid out within the spatial arrangement of the 

building. Those high- level representations can be developed both before the system is 

realised or as documentation after the system is completed. They depict a view of what 

the physical system is or will be. Not how the system will operate, but how the system 

will exist as a corporeal artefact. 

Software systems have no analogous physical form. They are not tangible systems. The 

high- level, abstract, design representations must be different to those produced by the 

peer level of design in other engineering disciplines. Empirical research has shown that 

software developers produce multiple, high- level abstractions to represent their systems 

and the evolution of research ideas has assumed that they can be devised and used in an 

analogous manner to those architecture views of other disciplines. It may indeed be 

possible, however the current understanding of software architecture views is based on an 

assumption that has never been validated. During software development, large-scale 

design representations are created in the conceptual design phase, the implementation 

stage, the maintenance stage, and all other stages in between. Do they have any relation to 

each other? Is it possible to derive them all from the source code? Are they immutable in 

the same sense as traditionally built architectures? Software engineering researchers 

answer “Of course!” to these questions and use further analogies with other engineering 

disciplines as justification. Those justifications however, fail to consider the differences 

between the disciplines and the lack of tangibility of software is one difference that makes 

the use of those analogies hard to justify. To determine whether those multiple 

representations of software architecture are views in an analogous sense to other 

disciplines the following question needs to be answered. What is it about the nature of our 

                                                 

21 Electronic engineering generally does not have that property and is discussed separately. 
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discipline, rather than other disciplines, which makes it so? That question will be 

addressed in the next chapter. 

The other important difference between software systems and traditionally engineered 

artefacts concerns the concept of system execution. Software has a distinction between 

the implemented system, the collection of source code, and the executing system, that is, 

the way the source code is executed by the implementation environment to realise the 

required system. That distinction does not exist in any other discipline. A software system 

is nothing more than a collection of source code statements until it is compiled and 

executed, statement by statement, by the ‘virtual machine’ implied by the semantics of 

the programming language. It is not until that stage that the system realises the desired 

result. A fact that is taught to all computer science students and perhaps forgotten not 

long after.  

Some researchers contest the uniqueness of the distinction between system 

implementation and system execution. Counter arguments make analogies with other 

disciplines such as, “What about the flow of movement through a building?” or “What 

about the execution of a motor vehicle or electronic device?” To refute those claims, a 

distinction is made between the operation and the execution of a system. This distinction 

is critical to realising the differences between software systems and traditionally built 

artefacts and, therefore, warrants a few examples. Users can operate a software system 

through its user interface but that operation cannot occur until the system is being realised 

through its execution by the computer. The HyperEdit case study showed that the 

structure of the static, source code implementation of a software system represents 

something completely different to its dynamic operation. They are not different 

abstractions of the complex, underlying detail. 

Motor vehicles and electronic devices certainly operate but they are not executed in the 

same manner. The construction of a motor vehicle results in the existence of a constant 

mechanical linkage between the physical components. As the driver is operating the 

vehicle, the gross structure of its dynamic operation is exactly the same as the gross 

structure that was the result of its construction. Similarly, computer architecture remains 

the same whether the machine is being used or not. A user can operate mechanical and 

electronic devises but they have no need of an external system to provide its execution. 

They may require power through electricity or combustible fuel for the components of the 

system to operate and exhibit the required properties. However, once supplied that power 
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they continue to execute independently and have no need of concepts such as a ‘thread of 

control’. 

4.3.4 Examining the Fundamental Nature of Software Systems to Understand 
the Representations Used to Depict Them 

A large amount of invaluable research and empirical study has been undertaken in the 

field of software architecture. However, this thesis has identified two important 

differences between software development and traditional engineering disciplines that 

serve to undermine the understanding we have of software architecture and architecture 

views. Software systems have no large-scale, visible, gross structural form that is 

analogous to traditionally engineered systems. In addition, software systems have a 

distinction between the physical source code implementation and how that code is 

executed by the computer to realise the required system. Those differences invalidate the 

assumption that software architectures are analogous to those used by traditional 

engineering disciplines and that software architecture views are different abstractions of 

the underlying implementation detail of software systems. However, by using traditional 

engineering architectures as a contrast, those differences provide an insight into the 

fundamental nature of software systems. That fundamental nature and the high- level 

abstractions used to represent it explain why those representations must necessarily be 

multiple, independent architectures. 

The architectures used to represent the only ‘tangible’ part of the system that exists, the 

source code implementation, are fundamentally different to those used to represent the 

executing system. Representations of the source code implementation depict how the 

system is implemented using the building blocks provided by the implementation 

language(s). Those building blocks include files, procedures, functions, rules, object 

definitions, etc. That is the only system representation that can be directly perceived by 

us, yet it does not contain all the implementation detail necessary to understand what the 

system does or how the system executes to realise the requirements22. It is missing 

services provided by the operating system; services provided by other software systems, 

both those provided at compile time by linking in additional libraries and those provided 

at run-time by communicating processes; and it is missing information that affects the 

                                                 

22 Again, some may argue that the user interface constitutes a tangible aspect of the system. That debate is 
not considered here because it does not alter the subsequent conjectures. 
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operation of the system because it is hidden in data values rather than being explicit in 

procedural invocation. The source code is the lowest level of system granularity, the 

detail from which larger-scale abstractions are generated. However, it is missing the detail 

necessary for the system to execute. That additional detail is available only at run-time 

after the source code has been compiled and is being executed. The missing information 

is depicted in the abstract concepts evident in the architecture representations of the 

dynamic execution of the system. Those representations detail the operating system 

processes, the inter-process communication abstractions, and the other services that 

become part of the system at compile or runtime. The representations we have to depict 

the static implementation of the system and those which represent the dynamic execution 

of that system are different. One is not merely a subset or more abstract ‘view’ of the 

other. They are different, and the reason they are different is because of the differences 

that exist between the discipline of software development and those from which we draw 

the concepts of architecture and architecture views. Our systems have no tangible form 

and our systems have a distinction between system implementation and system execution. 

The difference between system implementation and system execution also highlights the 

fact that no software system representation, from lowest level of detail, through to most 

abstract architecture contains the information that explains how the system is executed. It 

is not immediately obvious because few, if any, other disciplines require it in their system 

representations. In other disciplines you look at the architecture of a system and infer how 

it works. That is because those systems are not executed by another machine. Software 

systems are executed and knowledge of the operation of that execution engine, the virtual 

machine implied by the language, is necessary to understand how the system is executed. 

The majority of systems are implemented in procedural or object-oriented languages and 

developers can conceptualise the operation of those by implicitly following the 

procedural invocations as the thread of control moves through the system components. 

Object-oriented terms like ‘message passing’ are still, at the code level, procedure 

invocations. Designers viewing system representations automatically apply that 

knowledge of how that model of abstraction operates to solve a problem, often without 

explicitly realising it. It becomes evident however, when attempting to understand a 

system representation that has been implemented in a language that utilises its own virtual 

machine rather than traditional procedural invocation. For example, understanding how a 

system implemented in Prolog operates must be done with the knowledge of how a 
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backward-chaining inference engine works. In addition, systems implemented in 

functional languages such as Scheme or Lisp must be evaluated with respect to how the 

computer executes that language. The dynamic execution architectures of a realised 

system are not generated by abstracting away detail from the large and complex 

implementation because those details do not exist in the implementation. Again, we have 

an architecture representation that is not a subset or abstraction of some other, more 

complex, representation. It is different to the implementation because of the fundamental 

nature of software systems. 

The other noted difference between the respective disciplines, the concept of system 

form, also leads to the necessity of multiple independent architectures to represent a 

software system. Shaw’s original article on software architecture noted the existence of 

higher level abstractions for software systems that could lead to an architecture level of 

system design. Traditional building disciplines develop the architecture, the gross 

structural form of the system, during the initial design stages of the development process. 

It can then be tracked and modified through the design process, and subsequently viewed 

in the realised system. This cannot be achieved in software design. The current 

understanding of software architecture views is that they are different abstractions of the 

complex, underlying implementation detail. The existence of large-scale software 

representations developed during system design is often noted, but research does not 

explain their relationship with the representations that are generated after the system has 

been implemented. That is due to the nature of the elements that are contained in those 

representations. They are not representations of corporeal components in an analogous 

manner to traditional system architecture. 

The concepts represented in the design level depictions of software architecture contain 

abstract domain level concepts. They are mentally conceived entities that have no 

tangible manifestation. They may attempt to model or mimic tangible things, but they 

themselves have no form. The realisation process of a software system as an executing 

computer program occurs by implementing those mentally conceived, domain level 

concepts using the constructs provided by the programming language and operating 

system, and subsequently executing them in a machine. Those mentally conceived 

notions may be similar to implementation level concepts, however they do not have to be. 

Indeed the essence of software development is the process of implementing those domain 

level concepts of our minds using the constructs provided by whatever implementation 
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environment is at our disposal23. This is not generally the case in any other engineering 

discipline. 

Progress in software design research is concerned with reducing the cognitive distance 

between the concepts that exist in our minds and those that are realisable in the 

implementation medium of our discipline. Programming language improvements, such as 

object-oriented languages and FGLs, attempt to bring the implementation level closer to 

the mentally conceived components. Alternatively, design methods and patterns attempt 

to provide techniques that help to develop mental level components, and their 

interactions, that are more easily, and predictably, realisable in our implementation 

medium(s). 

High- level software design representations consist of abstract concepts that depict domain 

level functionality and/or behaviour. In contrast, large-scale representations of the 

implementation can consist of abstract concepts provided by the implementation medium. 

For instance, language constructs (e.g., functions, rules), virtual machines, inferencing 

engines, files, operating sys tem processes, etc. They are different collections of concepts. 

A conceptual architecture can be realised by many implementation architectures and an 

implementation architecture can be represented by many conceptual architectures. The 

difference between the two can be explained through a better understanding of a word 

that is often used in software architecture research – ‘abstraction’. The existence of 

different architectures for a software system has been explained as different abstractions 

of the complex implementation detail. The definition of the word abstraction is often 

quoted from Shaw’s work as a simplified description of a system that emphasises some of 

the system’s details or properties while suppressing others (Shaw 1984). That definition 

matches the one in a standard English dictionary. It also matches how views are assumed 

to be generated in traditional built architecture, where each view is a subset of the system 

as a whole. However, that is not the situation with software architectures. The design and 

implementation architectures contain different collections of concepts. They are not 

different subsets of the underlying system. They match the definition of abstraction 

discussed in philosophy and psychological – for example (Corsini 1984). In those fields, 

abstraction is the technique by which higher order concepts are used to further intellectual 

reasoning by representing distinct, yet similar, particular instances. For example, apples 

                                                 

23 This is discussed in more detail in the next chapter. 
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and bananas can be represented by a single concept, fruit. That is how abstraction is used 

in software architecture. The collection of particular implementation concepts, such as 

objects, message queues, etc are represented by a different concept such as a blackboard. 

A blackboard does not exist in the software system. What ‘exists’ is a collection of 

programming objects or procedures, in conjunction with operating system message 

queues. We simply choose to refer to that collection by the single concept ‘blackboard’. 

Similarly, there is no particular instance of ‘fruit’. There are apples, bananas, oranges, etc. 

We simply choose to refer to them collectively as ‘fruit’24. 

Software architecture views are not developed by merely removing the unwanted detail. 

They involve the generation of higher level, abstract concepts to represent the underlying 

detail. Moreover, many higher level concepts can be used to represent the same particular 

instances. That is why many architectures can be used to describe the high level structure 

of a software system. 

A counter argument is often made that engineering disciplines, such as electronic and 

chemical, design system architectures that do not represent the physical form of their 

components. Their high- level designs also represent components of functionality or 

behaviour rather than the physical form of the system. That would appear to be similar to 

design- level software architectures. However, differences exist which serve to invalidate 

attempts to use direct analogies from those disciplines. The functionality depicted in high-

level electronic engineering architectures exists in terms of componentised aggregations 

of a small set of physical properties on which the discipline is based. They are: current, 

voltage, capacitance, inductance, and resistance – this is even simplified to binary 

operations in digital logic design25. The concepts realised by the functional components 

of those disciplines may be large and complex but they are all aggregations of those basic 

elements. Moreover, the functionality is ultimately constrained by those properties 

(Darnell 1962). The nature of the components used in those representations are 

fundamentally different to the nature of the functional components depicted in high- level 

software design representations because functionality in software is not constrained in 

any analogous way. 

                                                 

24 Again, these issues are detailed in the next chapter. 
25 This was discussed in the previous two chapters. 
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It is because of the differences between software development and traditional engineering 

disciplines that software architectures developed at the beginning of the design process 

are not views of the complex implementation detail in an analogous manner to traditional 

engineering disciplines. They consist of completely different collections of concepts. It is 

true that some representations, for example high- level object diagrams, have a smaller 

cognitive distance between the design level concepts and the implementation level 

concepts. However, that is not true of all high- level software architectures developed 

early in the design process. Because of the nature of software development they cannot 

be. Those architectures, developed during the early stages of the design process rather 

than derived from the implementation, are created at the ‘architecture level of design’. 

They are different from the architectures developed during the same stage of other 

disciplines and are not different views of the implementation complexity. 

4.3.5 Discussion 

The current understanding of software architecture views as different abstractions of a 

complex, underlying, implementation is based on an extrapolation from the assumption 

that software development is analogous to traditional engineering disciplines. However, 

that notion of architecture views fails to consider differences between the respective 

disciplines: the concept of visible system form and system realisation through execution. 

Those differences provide a contrast that gives an insight into the fundamental nature of 

software systems and the processes required to develop them. Moreover, it is that 

fundamental nature which necessitates the existence of multiple, independent 

representations. While the ‘views’ suggested by other researchers are similar to those 

representations suggested by this theory of software systems, they are based on specious 

analogies with other disciplines and lack the understanding required to explain why they 

are necessary26. 

Software architecture research is undoubtedly producing results that are benefiting the 

development community (e.g., (Bass, Clements et al. 1998; Bass and Kazman 1999)). 

However, the lack of a complete understanding of software architecture is causing 

confusion regarding what is considered the architecture of a software system and how 

those representations can be used to improve the development process. A better 
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understanding of the fundamental nature of software systems and their development is a 

necessity. Answers are needed for the questions that are often posed in commentary-style 

journal articles (e.g., (Gilb 1996)) and in informal conference discussions and keynote 

addresses (e.g., (Reed 1987; Xia 1998)). “What do we build and how do we build them?” 

“What does software engineering really mean?” These are not easy questions to answer. 

They will not present quantitative results that are easily testable or easily publishable. 

What is required is work on the philosophical foundation of the discipline. Without a 

good understanding of the nature of our own discipline we will continue to grasp at 

analogies and attempt fit the square-pegs of other disciplines into the round-holes of our 

own problems. The foundation of that understanding is presented in the next chapter. 

                                                                                                                                                  

26 A paper summarising this argument was submitted for publication in 2000 (prior to submission of this 
Thesis) and subsequently appeared in WICSA 2001. 
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5. Uncovering a Foundation for Software 
Engineering 

5.1 Introduction 
The artefact engineering view of software development, which pervades software 

engineering research, is based on perceived analogies with traditional engineering 

disciplines. However, a detailed study of the systems produced by the respective 

disciplines, the approaches they use to develop them, and an analysis of the analogies 

used, shows software engineering research needs to develop a better understanding of the 

underlying principles of both disciplines in order to determine the applicability of that 

view.  

Traditional engineers build artefacts. In contrast, software engineers build models of 

reality. Nevertheless, software engineers would like to build systems using techniques 

similar to those used by other engineers. 

The design approaches used by those other engineers have evolved, in part, due to the 

nature of the systems they build and the components and materials used to build them. 

Therefore, for the design process of software engineering to be thought of as analogous, 

the nature of what the respective disciplines build must also be analogous. That is, it must 

be possible to understand the nature of software components and systems in a similar way 

to the nature of engineering components and systems. For that to be possible, the 

fundamental nature of models of reality must be analogous to the fundamental nature of 

traditionally built artefacts. To determine the validity of that assertion it is necessary to 

turn to other disciplines that have examined the nature of models of reality. Those 

disciplines are the fields of philosophy, specifically in the areas of metaphysics and 

epistemology, and the discipline of psychology, which has developed theories to explain 

concept development, utilisation, and evolution. Examining the theories developed by 

those disciplines uncovers a foundation for the understanding of software systems and the 

processes used to produce them. The conclusion is that software systems cannot be 

understood in a similar manner to traditionally engineered systems. In order to develop an 

engineering discipline of software development, far more attention must be paid to the 

fundamental nature of the systems that are built. 
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The chapter begins by briefly explaining the process of software development in terms of 

the models it builds. In the research literature, there are many references to the fact that 

software developers build conceptual models. This chapter examines the use of models in 

the development process and identifies the developer’s formation of conceptual constructs 

as one of the major sources of difficulty both for software engineering research and for 

software development in general. Existing research clearly acknowledges the existence of 

conceptual modelling issues in software development. The problem appears to be that 

very few people have fully considered the impact of the relevant philosophical and 

psychological issues on the ability to ‘engineer’ those models as software systems. 

A description is then provided of the assumptions that must hold if the development of 

the conceptual construct can be performed using an ‘engineering’ approach. The relevant 

issues from the fields of philosophy and psychology are then detailed and discussed to 

determine the validity of those assumptions. It should be noted however, that it would be 

impossible to explain all of the relevant issues from those disciplines in a single chapter. 

Such an undertaking would require an entire book in itself. The major theories from those 

disciplines are presented to argue that ‘software engineering’ is an attempt to ‘engineer’ 

conceptual processes. The software development process is then described a second time 

noting the influence of the relevant issues that become apparent from the more detailed 

understanding of the human conceptual apparatus. 

The goal of the chapter is not to provide an explanation of how those foundational issues 

specify how software engineering should be performed. It is simply to show that the 

issues have significant ramifications for how we currently think about the development 

process. Moreover, it may be that by viewing software development in that new light, 

current problems in software engineering research may be better understood. 

5.2 The Conceptual Construct 
The process of software development can be partitioned into the following phases27: 

• Requirements Elicitation: where a description of the problem is obtained from the 

client. 

                                                 

27 The exactness of the partitioning is the source of some conjecture in software engineering research. The 
classification of activities into the development phases shown is necessary to allow the subsequent 
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• Analysis: where the requirement specifications are analysed to identify 

ambiguities, contradictions, etc, and the developers acquire a thorough 

understanding of the problem to be solved. 

• Design: where a software-based solution to the specified requirements is devised. 

• Implementation and Testing: where the proposed solution is implemented and 

tested to ensure it meets the client’s requirements. 

Different design methods and programming languages influence the analysis and design 

phases as the evolution of the software solution proceeds towards a structure that can be 

implemented in the chosen programming language. The most well known programming 

approaches are (see Design in (Marciniak 1994)): 

• Structured: The problem is broken into a hierarchical collection of subproblems 

that represent the functions required to implement the system. The top-level 

function provides the complete solution, calling appropriate subprograms as 

necessary. Many data structures store the required information, which are then 

passed to the appropriate routines as they are called. This approach is directly 

supported by procedural programming languages and has historically been the 

most popular approach in software development. 

• Data-structured: Like the Structured approach, the data-structured approach 

partitions the system in terms of data and functionality. However, it is aimed at 

database intensive systems that have a large, common, data store rather than many 

smaller data structures. The data is defined first and in detail. The procedures of 

functionality are then designed with respect to the data model. This approach is 

directly supported by database manipulation languages. 

• Modular: Based on the notion of ‘information hiding’ (Parnas 1972), this 

approach advocates decomposing a problem into modules such that each module 

contains some specific functionality identified during the design. The advantage 

of this approach is that changes made to the system, such as a modified data 

model, have little effect on other areas of the system. The problem of change 

dependency is a problem with the Structured and Data-structured approaches. The 

                                                                                                                                                  

discussion to proceed. However, the arguments presented no not rely on the exactness of that 
classification. 
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goal of Modular design is to encapsulate the appropriate data structures with its 

manipulating procedures. This approach can be implemented using traditional 

procedural programming languages. 

• Object-oriented: Beginning as an extension to Modular design that treated the 

information-hiding modules as ‘objects’, object-oriented design has now become a 

completely new paradigm of design that deals with objects, classes, and 

inheritance between classes. The key concept is to encapsulate data and 

functionality together to minimise change dependency. However, the theory is 

more detailed than the original Modular approach. Object-oriented design is 

quickly becoming the most popular form of design and object-oriented 

programming languages have been designed to more explicitly support the 

relevant design concepts than traditional procedural languages. 

In addition to the different design methods, different software process models specify the 

order in which the particular phases should be carried out. Example process models 

include chaotic, waterfall, multiple builds, evolutionary, spiral, rapid prototyping, and 

disciplined evolutionary (see Design in (Marciniak 1994)). 

Software engineering theories have devised improved process models for ordering the 

phases and improved paradigms for designing and implementing systems. However, the 

gross structure of software development has remained unchanged. That is, obtain the 

requirements from the client, develop a sufficient understanding of the problem to 

produce a design, devise a solution to the problem that can be implemented in software, 

and then implement and test that solution. To determine if those phases of software 

development can be ‘engineered’ it is necessary to look at the artefacts produced by them. 

The work presented here looks specifically at the most recent theories in software 

development, object-oriented design, though the issues presented are equally applicable to 

other design approaches. It should also be noted that the description of the software 

design process is necessarily simplified to concentrate solely on the artefacts produced. 

Many theoretical aspects of the process are omitted for brevity. 

The most recent theories in object-oriented software engineering (Larman 1997; 

Jacobson, Booch et al. 1998; Bruegge and Dutoit 1999; Oestereich 1999; Pooley and 

Stevens 1999) all suggest similar approaches to those development phases and the 

artefacts produced by them. During requirements elicitation, use-cases are used to 



A Foundation for Software Engineering 

Understanding Software Engineering  212 

develop and represent the system 

requirements in a manner that can be 

understood by the customers, users, and 

developers. Use-cases represent the 

behaviour of the system from the user’s 

point of view, where the ‘user’ is anything 

external to the  system that interacts with 

it. For example, a user might be a person, 

another information system or a hardware 

device (Pooley and Stevens 1999) (p. 99). 

The behaviour is represented as chunks of functionality that the system offers to add a 

result of value to the users of the system. Those users are referred to as ‘actors’ in the 

individual use-cases (Jacobson, Booch et al. 1998) (pp. 134-135). Jacobson et al use the 

example of a complex banking system. An individual use case for a (very simple) 

customer ATM withdrawal is depicted in Figure 5-1. 

Figure 5-1: Withdraw Money Use -Case  

Withdraw Money Use Case: 

1. The Back Customer identifies himself or 

herself. 

2. The Back Customer chooses from which 
account to withdraw money and specifies how 
much to withdraw. 

3. The system deducts the amount from the 

account and dispenses the money. 

 

Figure 5-2: Use-Case Model Diagram 
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Figure 5-4: Analysis of the Withdraw Use -Case  

Figure 5-3: Analysis of Pay Invoice 

The use-case model for an entire system or subsystem is the combination of the individual 

use-cases. Additionally, that model can be represented in graphical form. For example, 

figure 5-2 (from (Jacobson, Booch et al. 1998)) depicts the use-case model for a ‘Billing 

and Payment’ subsystem. The structure of use-cases is not rigidly defined and the 

requirements elicitation process may require further refinement of the initially presented 

use-cases. Their main purpose is to provide a simple means of communication between 

the interested parties and to provide a basis for analysis and design. Moreover, their use, 

in combination with domain models and business process models, allow the developers to 

obtain a thorough understanding of the problem space.  

During the analysis phase, the 

requirements specified in the 

collection of use-cases are refined by 

identifying and reusing similar 

concepts (using terminology from 

both the developer’s and the 

customer’s vocabulary), specifying 

the functionality with greater 

precision, and removing ambiguities 

(Jacobson, Booch et al. 1998) (p. 

174). Consequently, the developers also become more familiar with the problem domain. 

The result of the analysis phase is the generation of an analysis model that identifies the 

significant concepts of the problem and the way they need to interact to provide a 

satisfactory solution. For example, a diagram of the concepts resulting from an analysis of 

the ‘Withdraw Money’ use-case is depicted in figure 5-3 and the analysis of a ‘Pay 

Invoice’ use-case is depicted in Figure 5-4 (both diagrams from (Jacobson, Booch et al. 

1998)).  

As use-cases are refined during 

the analysis phase, the system 

moves closer to design because 

the identified concepts and 

their interactions become more 

formal. Indeed, some object-

oriented researchers argue that 
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Figure 5-5: Invoice 
Statechart 

the product of the analysis phase, the analysis model, can be viewed as an initial version 

of the design model (Jacobson, Booch et al. 1998) (p. 178). 

The boundary between analysis and design is not clearly defined. The goal of analysis is 

to specify exactly what the system is to do without necessarily how it is supposed to do it. 

However, constructs used to represent concepts during the analysis phase often have 

direct analogues in the design phase. Therefore, it may not be clear where the analysis 

concept ends and the design concept begins. 

Despite this blurred boundary, the goal of system design is to transform the analysis 

model into a design model. The design model is comprised of constructs that are directly 

realisable in the chosen implementation medium, that is, the combination of hardware 

environment and software programming language(s). The analysis model consists of the 

identified concepts from the problem domain and the interactions between them that are 

required to realise a solution to the problem. However to 

implement the system, those concepts need to be realised 

using the constructs of the chosen programming languages (in 

this case, ‘objects’). For example, figure 5-5 (from (Jacobson, 

Booch et al. 1998)) depicts a more detailed design 

representation of the Invoice class than the one identified 

during the requirements and analysis stage. The statechart 

diagram depicts how the Invoice object changes state as its 

internal functionality (submit, schedule, time out, and close) is 

executed. The notions of ‘state’ and ‘functionality of objects’ 

are constructs provided by the implementation environment 

and are applied to the concept, ‘Invoice’, to allow its 

implementation in a software system28.  

To depict how the entire software design may be partitioned into high- level constructs of 

software engineering theory, a design may also include a software architecture and a 

deployment model. For example, figure 5-6 (from (Jacobson, Booch et al. 1998)) depicts 

how the total Banking System may be distributed across the many machines linking the 

buyer and the client. 

                                                 

28 This point is discussed in more detail later in the chapter. 
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Figure 5-6: Design Deployment Model 

Many factors outside of the original functional requirements influence the transformation 

from analysis model to design model. Non-functional requirements and constraints such 

as system perfo rmance, response time, reliability, modifiability, etc all impact on the how 

the analysis model is shaped into a collection of constructs that are executed by the 

machine. The desire to reuse existing software components also influences the 

transformation. Software architecture styles, product- line architectures and design 

patterns all provide reusable large-scale structures that are known to realise successful 

solutions. Similarly, component libraries and design frameworks provide previously 

implemented smaller-scale components that can be used to reduce development time and 

improve system quality. 

The artefacts produced during the transition from requirements elicitation to the design 

representation are often talked about as models. The object-oriented references cited have 

Figure 5-7: Relationship Between Models 
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talked about use-case models, analysis models, design models and their relationships 

(figure 5-7). Dillon and Tan describe the models produced during the development 

process, and the transformations between them, in more general terms (Dillon and Tan 

1993) (Figure 5-8). 

“The conceptual model consists of 

the model of the real world of 

interest… It is a representation of the 

essential characteristics of the real 

world that are important for the 

problems that the software system is 

meant to address. This model is 

arrived at by a process of analysis or 

knowledge acquisition. No 

assumptions are made about the 

nature of the software structures that 

will be used to encode the structure 

of the software system. 

Once the conceptual model has been defined and verified, the process of its 

transformation into the software structure begins. Since the software structure 

defines the basis of the software implementation, sufficient attention has to be 

paid to the classes of structures that are available in the implementation 

medium when defining the software structure. In the traditional software 

engineering, the software structure is the program structure… 

During this process of transformation, the conceptual structures are 

transformed into the set of acceptable software structures. This process is 

referred to as design. The software structure model of the system should 

provide the data structures, the knowledge structures as appropriate, the 

functions, procedures and methods, the methods of control and inference if 

necessary, and the modules in the system.” (Dillon and Tan 1993) (pp. 24-26). 

Texts and papers describing software development methodologies constantly refer to 

terms such as conceptual models, use-case models, analysis models, design models, 

process models, architectures, architecture styles, design patterns, programming 

Figure 5-8: Development of Models 

 Real World 

Conceptual Model

Software Structure

Implementation 

Analysis  

Design 

Implementati
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paradigms, design paradigms, implementation mediums, and programming constructs. 

However, the use of those terms is certainly not consistent. The understanding of their 

place in the development process can be traced back to the origins of the discipline. For 

example, the notion of ‘Concept’ was discussed during the 1968 NATO conference and 

presented in chapter 3. Brooks, in his famous No Silver Bullet paper, noted the following, 

“The essence of a software entity is a construct of interlocking concepts: data 

sets, relationships among data items, algorithms, and invocations of functions. 

This essence is abstract in that such a conceptual construct is the same under 

many different representations. It is nonetheless highly precise and richly 

detailed. I believe the hard part of building software to be the specification, 

design, and testing of this conceptual construct, not the labor or representing 

it and testing the fidelity of the representation. We still make syntax errors, to 

be sure; but they are fuzz compared with the conceptual errors in most 

systems.” (Brooks 1987) [Brooks’ italics]. 

His earlier book, The Mythical Man-Month (Brooks 1975), dedicated a chapter to the 

importance of the conceptual construct and the importance of conceptual integrity in 

system design. 

Harel also discussed the nature of models in his follow-up to Brooks’ article, Biting the 

Silver Bullet: Toward A Brighter Future For System Development (Harel 1992). He 

described the need to depict the system analysis and design representations using strata of 

conceptual models that tame the complexity of the solution. That should be done “by 

allowing the designer to capture the system’s inherent conceptual structure in a natural 

way.” He goes onto say, 

“We will first conceptualize, using the ‘proper’ entities and relationships, and 

then formulate and reformulate our conceptions as a series of increasingly 

more comprehensive models represented in an appropriate combination of 

visual languages. A combination it must be, since system models have several 

facets, each of which conjures up different kinds of mental images.” (Harel 

1992) 

Harel believed the conceptual model should capture the result of problem analysis by 

consisting of a functional model of the system and a behavioural model that depicts how 

the functional model will be executed. A structural model is then used to represent the 
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result of the design phase by depicting the implementation responsibility of the various 

parts of the conceptual model to constructs that can be implemented in software. 

While many different methods have been proposed, the purpose of system analysis and 

design has remained unchanged. During system analysis, a model is developed that 

depicts the problem domain concepts and their interactions in a manner that completely 

meets the needs of the requirements. The goal of system design is then to transform that 

model into a collection of concepts and interactions that can be directly realised using the 

implementation of software developers – programming language constructs, operating 

system constructs, and hardware constructs. The result of the design phase is what Brooks 

labelled the conceptual construct. 

5.3 Engineering the Conceptual Construct 
One of the aims of software engineering research is to improve the process of designing 

and implementing the conceptual construct. It is founded on the belief that the utilisation 

of an ‘engineering’ approach will result in software systems that exhibit reduced 

development costs and improved product quality. Aspects of this ‘engineering’ approach 

that have been identified in traditional engineering disciplines and have become goals for 

software engineering research include: 

• Design Reuse: Software designs that solve one problem can be used to solve other 

problems. 

• Component Reuse: Software code fragments written to implement one design can 

be used in other software implementations. That includes individual components 

of the implementation and also the gross, structural form or architecture of the 

solution. 

• Predictable or Repeatable Design Processes: Standardised processes of design and 

implementation that can be successfully analysed to improve estimation of 

development time and product quality. 

• Formal Methods: The ability to represent the artefacts used in the development 

process in a rigorous mathematical formalism that can then be analysed and 

manipulated using known mathematical techniques. 

• Standard Engineering Methods: Standard techniques to deal with the complexity 

of large-scale software design problems. 
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• Graphical Notations: The ability to communicate software designs and solutions 

between developers using standard graphical representations. 

Those aspects are all related and can be thought of as stemming from the issue of 

software design and component reuse. 

“Software development cannot possibly become an engineering discipline so 

long as it has not perfected a technology for developing products from 

reusable assets in a routine manner, on an industrial scale. Software reuse 

cannot, in turn, achieve this status unless we make the following provisions: a 

sound scientific foundation that encompasses relevant design principles, 

widely accepted engineering standards that compile these principles into 

working practical solutions, and coherent managerial standards that enable the 

deployment of these solutions under acceptable conditions of product quality 

and process maturity.” (Mili, Addy et al. 1999) 

Attempts to incorporate significant levels of reuse in the development process have 

ranged from the elicitation of the client’s requirements all the way to the implementation 

of the source code (e.g., (Cybulski, Neal et al. 1998)). Some of them have been very 

successful. However, as many researchers have commented, the promises of software 

reuse remain for the most part unfulfilled. Few researchers (in the literature) have ever 

questioned whether the goal is even possible (e.g., (Glass 1998a)), while others, of 

course, may have questioned it in more informal debates. The reason no one knows 

whether the goal is possible is because software engineering does not have a fundamental 

understanding of the types of systems it builds or the intellectual processes required to 

build them. The history of the artefact engineering view of software development 

(Chapter 3) showed that researchers simply assume software systems are analogous to 

traditional engineering disciplines, therefore, the goal is possible. 

The belief that conceptual structures can be designed and implemented using an 

‘engineering’ approach that incorporates significant amounts of reuse requires one 

significant assumption on the part of the software development community. That belief is 

stated in the following assertion: 

 The identification of items that can be reused from previous applications, 

from the requirements analysis stage to the implementation stage, assumes 

that different clients and developers experience the same reality and can 
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model it using similar collections of distinct concepts and concept 

relationships. Moreover, those concepts and relationships can be specifically 

defined in terms of essential features and represented the same way in two 

different applications using the implementation medium of software 

development – hardware and software constructs. 

Occasionally, the distinction between physical artefacts and human thought constructs are 

highlighted by software engineering researchers. For example, 

“Ultimately, a program is a fiction, not made of matter that wears an tears; it 

is closer to encapsulated human thought than to physical artifacts…” (Belady 

1989) (p. viii) 

“There is no consensus about what technical approaches are best for various 

kinds of reuse problems and little understanding of the nature of reuse 

opportunities, let alone the constraints, difficulties, and short comings of 

reuse.” (Biggerstaff and Perlis 1989) (p. x) 

However, those highlighted issues rarely lead to a questioning of the assumption. It is 

simply believed that the reason we have not achieved the required levels of reuse is 

because we haven’t yet mastered the technical difficulties. To determine the validity of 

that assumption, what is required is a review of other disciplines that already research 

those issues – philosophy and psychology. In a nutshell, we need to examine the question, 

when we build software, are we actually doing what we think we’re doing? 

5.4 Is the Assumption Valid? A Summary of the 
Relevant Research in Philosophy and Psychology 

Karl Popper’s 1979 article, Two Faces Of Common Sense (Popper 1979g), began by 

apologising for being concerned with philosophy as most philosophers seemed to have 

lost touch with reality. Furthermore, he felt there was a widespread feeling of anti-

intellectualism in the community. Regardless of whether or not a similar feeling of anti-

intellectualism exists in the software engineering community, it is clear that philosophical 

issues are rarely discussed systematically in the research literature. Nevertheless, Popper 

continued, 

“... we all have our philosophies, whether or not we are aware of this fact, and 

our philosophies are not worth very much. But the impact of our philosophies 
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upon our actions and our lives is often devastating. This makes it necessary to 

try to improve our philosophies.” (Popper 1979g) 

Those philosophies guide our understanding of both the global agendas of software 

engineering research, which are discussed in the next chapter, and they explain our 

understanding of the more specific, underlying principles of software components and 

systems. Those underlying principles concern our understanding of concepts, theories, 

models, and abstractions, which are topics philosophers have been debating for over two 

thousand years. 

However, the application of those philosophical debates to the specific context of 

software engineering is not a simple task. Bechtel discusses the issue while presenting 

philosophical theories in the context of cognitive science. 

“The fact that philosophical claims lie so far removed from empirical inquiry 

poses a challenge to anyone turning to philosophical investigations from 

training in empirical research. In order to evaluate a philosophical claim you 

must follow the often complicated chain of reasoning offered in support of the 

claim. This, however, is not meant to deter outsiders from entering the 

philosophical arena. … All that is required for the nonphilosopher to get 

involved with philosophy of mind is to begin to confront the issues. This 

means becoming an active participant in the debates by offering arguments 

for or against different positions. It is not enough simply to turn to 

philosophers as authorities and cite what a particular philosopher has said as 

an answer to one of these foundational questions. … Rather than simply 

accepting an authority, it is necessary to explore the issues and to evaluate the 

arguments advanced for competing claims.” (Bechtel 1988a) 

A few software engineering researchers have used philosophical positions in support of 

particular research ideas, even though they may not continue to be supported within the 

discipline of philosophy itself. 

“This proclivity to borrow positions from philosophy is rather common but 

poses serious dangers because what might be controversial in philosophy may 

be accepted by a particular scientist or group of scientists without recognizing 

its controversial character.” (Bechtel 1988b) 
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The definition of objects in terms of ‘intension’ and ‘extension’ is one such example in 

software engineering research and it is discussed later in the chapter. 

To ensure this treatise does not fall into the same trap, the chapter begins with a detailed 

account of the relevant philosophical theories that relate to the underlying principles of 

software engineering. Discussions with senior researchers in both philosophy and 

psychology have also been used to ensure important areas have not been missed or 

misunderstood (Cumming 2000; Fox 2000). The presentation begins with the ideas of 

classical greek philosophy and traces the debates through to the analysis of language by 

Wittgenstein. Obviously, the presentation could not include every debate. It focuses on a 

number of traditions within the history of philosophy, each of which have offered a 

general perspective on important issues relevant to our understanding of the underlying 

principles of software engineering. Other philosophical traditions, such as the 

hermeneutics of Heidegger, could have been included (for example, see Heidegger in 

(Urmson and Ree 1989)). However, the material presented is enough to raise the issues 

required to challenge the artefact engineering view of software development and suggest 

the benefits of a model building view, which is the goal of the thesis. Future research 

could then make use of Heidegger’s theories in more specific applications of that view. 

The resulting presentation compresses a long history of debate into to a short summary 

and, consequently, it may be difficult to follow – especially for an audience of software 

engineering researchers who are not primarily trained in philosophy. However, it was 

necessary to present that amount of detail within the size constraints of this thesis to 

develop an appreciation of the relevant issues for the understanding of the underlying 

principles of software engineering. 

The presentation of those philosophical traditions is followed by a presentation of the 

relevant research in the field of psychology. Those theories of concept development, 

utilisation, and evolution are based on a more empirical approach and the results may be 

more accessible to the reader. However, they lack the depth of explanatory argument 

contained in the discipline of philosophy. Importantly, the relevant theories from 

psychology research parallel those from philosophy for the purposes of this treatise. 
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5.4.1 Western Philosophy: Metaphysics and Epistemology 

5.4.1.1 The Definition of Concepts in Classical Greek Thought 

The person generally credited with first discussing the problems we have when defining 

concepts is Socrates. Living around 400 BC, he did not write any of his own thoughts 

down, however they were recorded in the works of Xenophon, Aristotle, and, most 

copiously, in the dialogues of Plato. The goal for Socrates was to discover universally 

true definitions of our concepts. At that time, education was offered by the Sophists, who 

were itinerant professors that travelled between cities giving lectures. The sophists mainly 

taught the art of rhetoric and argued that precise definitions were impossible because 

words meant different things in different contexts. Consequently, they taught logical 

tricks to manipulate those meanings for the purposes of winning an argument. Socrates 

argued that the search for universal truth, rather than mere victory in debate, required the 

definition of concepts and maintained that we could not have correct knowledge in any 

field until those definitions were discovered.  

Socrates attempted to discover that higher knowledge of concepts by developing ‘Socratic 

definitions’. Using dialectic discussion with others, he attempted to identify the set of 

essential characteristics of a concept that all instances of that concept possessed. Socrates’ 

dialectic discussions would begin by asking his interlocutor for the definition of a term, 

for example, “What is courage?” The response would be subsequently questioned until 

Socrates could gather enough evidence to refute the original definition. For instance, 

Socrates would provide counter examples which people agreed represented the original 

concept but would fail to completely satisfy the definition offered. The respondent would 

then be asked for another definition that would be similarly picked apart. The result 

would inevitably be that no satisfactory definition could be attained. 

Socrates’ quest for absolute knowledge led, in part, to his execution. Plato, however, 

continued the philosophical tradition, which included the search for the understanding of 

universal definitions. He argued that it was impossible to identify the essential 

characteristics of concepts in the instances that we perceive. Through a long line of 

arguments Plato submits that because we can identify concepts such as ‘tableness’ in the 

physical instances that we perceive, then they must exist. However, because we cannot 

successfully develop definitions that account for all the observed examples, there must be 

differences between the concept and the instances that instatiate it. For example, because 
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we know about concepts such as ‘courage’ and ‘knowledge’, and can recognise examples 

of them, those concepts must exist and somehow we must have knowledge of them. 

However, the instances we perceive are only incomplete reproductions of the pure notions 

of ‘Courage’ and ‘Knowledge’. 

Plato believed those absolute concepts, which he termed ‘Forms’ or ‘Ideas’, do not exist 

in the physical world. They exist in some other world which our souls have access to 

before we are born. During our lifetime, we perceive objects that remind us of these pure 

Forms and the goal of philosophy is the pursuit of understanding them. The consequence 

is that all possible concepts exist in the world of Forms and we understand the sensory 

world around us as objects that faintly copy these innate and subconsciously known ideal 

Forms. Moreover, our knowledge is about these abstract Forms. 

Aristotle was a student in Plato’s academy who sought to develop a complete taxonomy 

of the natural world based on a rigorous logical analysis of worldly experience. His 

subsequent analysis and theories of abstraction resulted in a different understanding of the 

problem of concept definitions. Aristotle also believed in a notion of Forms but those 

‘Forms’ do not exist in a different, non-physical world as Plato had suggested. Aristotle 

argued that if Plato was correct then it would be impossible to account for the occurrence 

of change. That is, Plato’s philosophies could not account for the generation of new 

substances. To solve the dilemma, Aristotle suggested it was necessary to differentiate 

between matter and form. For example, 

“A table is wood and glue put together in a certain way. Aristotle 

distinguishes as separate aspects of the table its matter (the wood and glue) 

and its form (how it is put together, its structure). … Form is immanent : the 

form of a table exists only as the form of this table or that table, that is, as the 

form of certain matter. There is no separately existing transcendental Platonic 

Form of Table.” (see Aristotle in (Urmson and Ree 1989)). 

Moreover, the form or structure of an object is normally determined by its function. For 

example, 

“It is because of what it has to do that a table has a flat top and four legs. 

Form may in fact be identified with function: to say what a table is is to say 

what it does or is for.” (see Aristotle in (Urmson and Ree 1989)). 
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According to Aristotle, matter could subsequently be broken down into further elements 

such as earth, air, fire, and water. He then argued that all human thought is concerned 

with manipulating these forms using the principles of categorical logic. 

“Thought is the more active process of engaging in the manipulation of forms 

without any contact with external objects at all. Thus, thinking is potentially 

independent of the objects of thought, from which it abstracts the form alone. 

Even the imagination, according to Aristotle, involves the operation of the 

common sense without stimulation by the sensory organs of the body. Hence, 

although all knowledge must begin with information acquired through the 

senses, its results are achieved by rational means. Transcending the sensory 

preoccupation with particulars, the soul employs the formal methods of logic 

to cognize the relationships among abstract forms.” (Kemerling 1997a) 

Aristotle also attempted to provide a means of systematically defining all aspects of 

reality. He believed that true knowledge could be represented in categorical logic and that 

thought and language provides a true account of reality. His categorical logic consisted of 

assertions of subject-predicate form and that all predicates could be defined in terms of 

the essential features or properties they exhibited. Those features were divided into ten 

particular categories. The most important category is substance, which describes a thing 

in terms of what it most truly is. The substance then acts as the subject for which the other 

categories can be attached as predicates. Those other categories are: quantity, quality, 

relative, where, when, being in a position, having, acting on, and being affected by. Used 

in conjunction, these categories provide a comprehensive account of what any individual 

thing is. For example, 

“Chloë is a dog who weighs forty pounds, is reddish-brown, and was one of a 

litter of seven. She is in my apartment at 7:44 a.m. on June 3, 1997, lying on 

the sofa, wearing her blue collar, barking at a squirrel, and being petted.” 

(Kemerling 1997a). 

Furthermore, Aristotle believed his system could explain both specific instances, such as 

Chloe the dog, and the more general species or genera, such as dogs or animals. 

Therefore, for Aristotle, to recognise an object was to identify the appropriate Form 

within it. Moreover, the essence of that Form could defined in terms of its essential 

properties according to Aristotle’s categories (Bechtel 1988a). 
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Plato and Aristotle’s philosophies, of which the issue of concept definition were only one 

aspect, served as the basis of science and philosophy for many centuries. Indeed, it is 

argued that people are either Platonist or Aristotelian in their philosophy of the world. 

“That is, each of us is inclined either toward the abstract, speculative, 

intellectual apprehension of reality, as Plato was, or toward the concrete, 

practical, sensory appreciation of reality, as Aristotle was. The differences 

between the two approaches may be too fundamental for argumentation or 

debate, but the coordination or synthesis of the two together is extremely 

difficult, so choice may be required.” (Kemerling 1997a). 

5.4.1.2 How We Have Knowledge Of Concepts: Rationalism, Empiricism, and the 
Kantian Revolution 

During the ensuing centuries, the progress of philosophy was significantly influenced by 

the power of the Christian church. While its progression continued, it did so only within 

the bounds of accepted theology. With the advent of the renaissance and the growth of 

science based on empirical studies, philosophy began to distinguish itself from accepted 

Christian dogma by providing alternative solutions to problems of the mind and of the 

natural world. Of particular interest to software developers is the notion of our 

understanding of the world and how it can be modelled in a rigorous manner. Those 

issues are examined in the areas of metaphysics and epistemology. 

• Metaphysics seeks to understand what sorts of things ultimately compose our 

reality and how they relate to one another. 

• Epistemology seeks to understand how people can have knowledge of that reality 

and how that knowledge can be represented. 

Aristotelian philosophy provided a basis with which scientists could describe and classify 

natural phenomena. However, neither his metaphysics, nor the work of philosophers after 

him, could explain the dynamic nature of phenomena or explain the rapidly developing 

field of natural sciences (Bechtel 1988a). Two different avenues of thought emerged to 

explain these: either all of our thoughts about the world are inferences from sensory 

experience (empiricism) or the world exhibited a natural order that could be derived by 

rational analysis (rationalism). 

Around the seventeenth century, philosophers in continental Europe, especially Descartes, 

Spinoza, and Leibniz, led the rationalist approach. They believed that because our 
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experiences could be error-prone or illusionary, the only way to develop a precise 

understanding of the world is to use pure reason. In order to provide that certainty, the 

rationalists, like Plato before them, took their model of knowledge from mathematicians 

who derive theorems from axioms they took to be indubitable (Bechtel 1988a). For 

example, Spinoza claimed to deduce the entire system of thought from a restricted set of 

definitions and self-evident axioms (Kemerling 1997a). The senses had a role to play but 

they were secondary to that of reason. 

“We can get beyond guesswork and fallible opinion to knowledge by 

operating as geometricians and arithmeticians operate, namely by pure 

thought, not vitiated by the deliverance of our senses. Where we can calculate 

and demonstrate we can know. No set of sense-impressions can yield 

knowledge. Where we can only observe and demonstrate we cannot know. No 

set of sense- impressions can yield knowledge. Only by exercises of pure 

thought can we ascertain truths.” (see Epistemology in (Urmson and Ree 

1989)). 

The metaphysical belief required to follow the rationalist approach is that the world 

consists of a number of ready made parts and the relation between those parts has been 

constructed in a logically sensible manner. Therefore, the rigorous use of logic can 

successfully define it. However, there were a number of problems with this approach to 

epistemology. The use of pure reason guarantees the indubitability of our knowledge but 

leaves serious questions about its practical content. By ignoring the effect of our sense 

impressions on knowledge, we can only deal in abstract truths. For example,  

“Pure geometry cannot tell us the positions or dimensions of actual things in 

the world, but only, for example, that if there is something in the world 

possessing certain dimensions, then it has certain other dimensions. 

Geography could get nowhere without geometry, but geometry by itself 

cannot establish the position or even the existence of a single hill or island. 

Truths of reason win the prize for certainty only at the cost of being silent 

about what, if anything, actually exists or happens.” (see Epistemology in 

(Urmson and Ree 1989)). 

While Rationalism was developing in continental Europe, philosophers in Britain were 

developing an opposing epistemological view, Empiricism, where reason plays a less 
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central role to the importance of sensory perception. The philosophers Locke, Berkeley, 

and Hume had noticed the success that scientists such as Bacon, Newton, and Ryle had 

achieved using a program of rigorous observation and experimentation. Consequently, 

they sought to provide a theory of knowledge that was compatible with a carefully 

conducted study of nature. 

The empiricists tried to show that knowledge is developed by observing naturally 

occurring phenomena and then developing concepts and theories from it using the 

principles of induction and association. For example, Locke maintained that every thing 

we know or believe is made up of ideas that come from our receiving sense impressions 

and then reflecting on them. To explain our knowledge of concepts that we had not 

encountered physical instances of, he suggested that complex ideas could be developed 

by conjoining simpler components.  

“My idea of ‘unicorn,’ for example, may be compounded from the ideas of 

‘horse’ and ‘single spiral horn,’ and these ideas in turn are compounded from 

less complex elements. What Locke held was that every complex idea can be 

analyzed into component parts and that the final elements of any complete 

analysis must be simple ideas, each of which is derived directly from 

experience.” (Kemerling 1997a) 

For Locke, those elements could be refined until an idea was defined in terms of its 

primary and secondary qualities. The primary qualities are its quantifiable attributes such 

as size, weight, microscopic structure, etc. The secondary qualities are subjective views of 

the element. For example, smell, taste, and colour. From these qualities, we then define an 

object as a particular class or species by identifying its nominal essences – the most 

important features of that object. 

The empiricists also believed that the world consisted of identifiable objects and that 

observation and abstraction could infer their important properties and interrelationships. 

However, this system of epistemology also encountered problems when subject to 

rigorous analysis. For example, there is always the possibility of mistaken perceptions. 

Empiricists hold that the foundations of our knowledge are sense-impressions, but what 

guarantee is there that those impressions are correct? How do we know those sense-

impressions are unadulterated by any assumptions, guesses, or expectations? 
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Furthermore, assuming the initial sense-impressions are correct, what guarantee is there 

that our inferences from that sensory stimulus to the complex ideas are correct? 

“Our knowledge of the world around us, together with our mere beliefs and 

conjectures about this world, are all conglomerations of interlocking 

conclusions inferred, sometimes legitimately, sometimes riskily and 

sometimes illegitimately from our impressions. Knowledge, unlike belief and 

conjecture, would be the product solely of legitimate and riskless inferences. 

But then what, if anything, can guarantee our inferences themselves against 

being mistaken? … We discover the ways in which things always or 

sometimes happen only by finding them happening and then collating our 

findings; and even then the laws and regularities that at any particular time we 

claim to have ascertained are always subject to subsequent correction.” (see 

Epistemology in (Urmson and Ree 1989)). 

Both the empiricists and the rationalists had assumed that the objects of knowledge exist 

independent of us and we must determine how we can know them. That assumption dates 

back to Aristotelian philosophy which assumed that man is a ‘blank tablet’ that can be 

filled with knowledge either through inferences from sensory experience or from rational 

analysis. However, neither account could provide a systematic explanation for our 

knowledge of the world. 

“The rationalists had tried to show that we can understand the world by 

careful use of reason; this guarantees the indubitability of our knowledge but 

leaves serious questions about its practical content. The empiricists, on the 

other hand, had argued that all of our knowledge must be firmly grounded in 

experience; practical content is thus secured, but it turns out that we can be 

certain of very little. Both approaches have failed.” (Kemerling 1997a) 

In the late seventeenth century, Kant suggested that the only way of resolving these 

problems was to revolutionise our way of thinking about knowledge. He considered it 

analogous to that of Copernicus who resolved many issues in astronomy by changing the 

fundamental assumption of astronomical theories from an earth-centred solar system to a 

sun-centred one. Kant proposed that rather than assume the objects of our knowledge 

exist independent of our minds, it was actually the process of conceptualisation that partly 

created the things we experience. The categories we contain in our cognitive apparatus 
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are applied to the sensory input we receive to create the world we conceive. Kant’s 

approach attempted to synthesise the approaches of the rationalists and the empiricists 

and resolve the dilemmas that each one faced. Knowledge is created from the sensory 

inputs we receive, but it is the abstract truths of our reason that provide the organising 

principles of that sensory input. 

Kant classified our statements about the world using a twofold process. They are either 

analytic or synthetic and they are either a priori or a posteriori. An analytic statement is 

something that is true by virtue of the meaning of the words in it. For example, the 

statement “a bachelor is unmarried” is true because of the definition of the word 

‘bachelor’. A statement, therefore, is analytic if its negation results in a logical absurdity. 

All other statements are then synthetic. For example, the statement, “the car is red”, 

maybe false and is therefore synthetic. Only these synthetic statements make useful 

claims about the world. A statement is a priori if it is “independent of all experience and 

even of all impressions of the senses” (see Kant (Urmson and Ree 1989)), that is, it relies 

solely on pure reason. All analytic statements are then a priori because they can be 

verified by virtue of the definition of their terms and without resorting to experience. In 

contrast, a posteriori statements must be grounded in experience and may be true or false 

in particular cases. Combining the two, three types of statements are then possible 

(analytic a posteriori being impossible by definition): 

• Analytic a priori: All analytic statements as already discussed. 

• Synthetic a posteriori: Matters of fact that we know through our experience. 

• Synthetic a priori: Kant identifies statements from mathematics and science in 

this category. For example, “every event has a cause”. “This can be denied 

without logical absurdity and yet, in its complete generality, is something neither 

confirmable nor falsifiable by sense experience.” (see Kant (Urmson and Ree 

1989)) 

Kant, in contrast to previous philosophers such as Hume, suggested that we have 

synthetic a priori knowledge about the world. For example, 

“Our knowledge that two plus three is equal to five and that the interior angles 

of any triangle add up to a [180 degrees]. These (and similar) truths of 

mathematics are synthetic judgements, Kant held, since they contribute 

significantly to our knowledge of the world; the sum of the interior angles is 
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not contained in the concept of a triangle. Yet, clearly, such truths are known 

a priori, since they apply with strict and universal necessity to all of the 

objects of our experience, without having been derived from that experience 

itself. … The question is, how do we come to have such knowledge? If 

experience does not supply the required connection between the concepts 

involved, what does?” (Kemerling 1997a). 

Kant argued that it is the synthetic a priori notions that allow us to impose order on the 

sensory world we experience. For example, the statement “x causes y” is used by all 

people to understand the relationship between phenomena. 

“It [causality] is certainly not abstracted from any perceived necessary 

connexion, since all that we ever perceive is successions of occurrences. That 

we do not abstract the relation of causal necessity from perception had already 

been shown by Hume … yet we do apply this concept to perception.” (see 

Kant (Urmson and Ree 1989)). 

Kant labeled the synthetic a priori concepts that we apply to perception, ‘Categories’, and 

set about identifying all of those logical structures. 

The result of Kant’s conjectures is that there is no single independent world that we can 

all know because what we experience is influenced by the ‘categories’ we subconsciously 

impose on the world in an attempt to understand it. Our knowledge is based on the world 

we construct in our attempt to find meaning and purpose. These ideas repudiate the 

metaphysical quest to identify everything that exists. The goal now became not to 

understand the structure of the world but the structure of how we understand the world. 

It is necessary to detail two philosophical terms which now become important – idealism, 

and its opposite, realism. 

• Idealism: is the theory that physical objects have no existence apart from a mind 

that is conscious of them. 

• Realism: asserts that physical objects exist essentially independently of the mind 

of any perceiver. 

Kant’s theories are therefore a type of idealism. 
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5.4.1.3 Pragmatism, Analytic Philosophy, and Logical Positivism 

After the introduction of Kant’s revolutionary epistemology, philosophers in America 

continued the investigation of how our conceptual apparatus influences our perception of 

the world. The work of Peirce, James, and others led to the philosophical principle of 

pragmatism. Peirce’s pragmatism (in the late nineteenth century) was based on the belief 

that humans have an unshakeable desire to understand the world around them. 

“Feeling keenly dissatisfied by any suspension in judgment, we invariably 

seek to eliminate it by forming a belief, to which we then cling firmly even in 

the face of evidence to the contrary. So powerful is this urge to believe 

something in every circumstance that many people (as Bacon had noted 

centuries before) adopt beliefs upon whatever seems ready-to-hand, including 

individual interest, appeals to authority, or the dictates of a priori reasoning.” 

(Kemerling 1997a). 

From this line of reasoning, Peirce concluded that humans develop concepts and theories 

to help them understand the world around them. As those concepts and theories are 

employed, they build expectations about the world that may fail. When those expectations 

fail, the conceiver modifies those concepts and theories to provide a better match with the 

experienced reality. Moreover, he suggested that as people investigate reality, they will 

converge, in the long run, on the same conception of the world, the one that most clearly 

corresponds with reality. 

Peirce also wondered how we could define those concepts. The result was his pragmatic 

maxim: 

“Consider what effects, which might conceivably have practical bearings, we 

conceive the object of our conception to have. Then, our conception of these 

effects is the whole of our conception of the object.” (see Peirce in (Urmson 

and Ree 1989)). 

A concept, then, is defined in terms of the effects it has on our senses and we know we 

have true knowledge of an object when we can predict those effects when we come to 

deal with it. 

An interesting aside that parallels the problem that software engineering research has with 

terminology concerns the label applied to Peirce’s philosophy. As other philosophers 
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extended and modified his line of thought, the concept of ‘pragmatism’ became more 

general than Peirce had originally intended. To save his original meaning Peirce wrote, 

“To serve the precise purpose of expressing the original definition, he begs to 

announce the birth of the word ‘pragmaticism’, which is ugly enough to be 

safe from kidnappers.” (see Peirce in (Urmson and Ree 1989)) 

Philosophy, especially in English speaking countries, then moved towards an analysis of 

language to explain how we derive and can be sure about the meaning of concepts and 

propositions. At the beginning of the twentieth century, Frege attempted to construct a 

foundation for the meaning of mathematical terms and expressions by defining them 

using purely logical concepts – in the process creating the first predicate calculus. That 

process led Frege to focus more closely on the meaning of terms and symbols in language 

in general. Using puzzles about concept identity, Frege developed his theory about sense 

and reference (or denotation). For example, he considered the statement “The morning 

star is the evening star”. In the existing theory of language, terms were simply thought of 

as words that referred to existing objects of experience. The terms ‘morning star’ and 

‘evening star’ both refer to the planet ‘Venus’. Subsequently, the statement “the morning 

star is the evening star” is the same, in terms of our knowledge of things, as the tautology 

“Venus is Venus”. However, this is obviously not the case. The first statement is more 

informative than the second is. To solve this problem, Frege distinguished between the 

‘sense’ and the ‘reference’ of a term. The ‘sense’ of a word, phrase or symbol is the 

concept it expresses, while its ‘reference’ is the real world object it represents. 

“The expressions ‘4’ and ‘8/2’ have the same denotation [reference] but 

express different senses, different ways of conceiving the same number. The 

descriptions ‘the morning star’ and ‘the evening star’ denote the same planet, 

namely Venus, but express different ways of conceiving of Venus and so have 

different senses. The name ‘Pegasus’ and the description ‘the most powerful 

Greek god’ both have a sense (and their senses are distinct), but neither has a 

denotation. However, even though the names ‘Mark Twain’ and ‘Samuel 

Clemens’ denote the same individual, they express different senses.” (Frege in 

(Zalta 1999)) 

Analytic philosophy follows Frege’s logical analysis of language and attempts to solve 

philosophical problems by restating them in precise logical terminology. Two of the 
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earliest analytic philosophers were G. E. Moore and Bertrand Russell. Like Frege, Russell 

began by attempting to resolve the philosophical problems of mathematics using logic. 

He did this by analysing the fundamental terms of mathematics in terms of purely logical 

concepts and then developing a symbolic logic to allow the deduction of all mathematical 

propositions. After publishing this work, with Whitehead, in Principia Mathematica, he 

then attempted to use logic to solve philosophical problems in metaphysics, 

epistemology, ethics, political theory, and the history of philosophy. Russell believed that 

philosophers should use the ‘scientific method’ of evaluating all hypotheses through the 

weighing of evidence and they should use logic to exhibit the ‘logical form’ of natural 

language statements. Because the logical form of a statement could be significantly 

different to its grammatical from, “a statement’s logical fo rm, in turn, would help the 

philosopher resolve problems of reference associated with the ambiguity and vagueness 

of natural language.” (Russell in (Zalta 1999)). Russell’s analytic approach was able to 

solve many philosophical problems, such as the use of descriptions and proper names, 

and as a result, it prepared the way for the development of the philosophical movement 

called logical positivism. 

At the end of the First World War, the Vienna Circle, a group of philosophers, 

mathematicians, physicists and social scientists, began the movement of logical 

positivism. Noting scientific advances, such as Einstein’s theory of relativity, and Frege 

and Russell’s use of logical analysis to analyse and solve philosophical problems, they 

proposed to reduce the philosophy of human knowledge by using only logical and 

scientific foundations. One of their central doctrines was the ‘Verifiability Principle’ 

which asserts that a statement is meaningful only if it can, in principle, be true or false. 

“Hence the class of meaningful propositions is exhaustively divisible intro 

those whose truth-or-falsity can be established on formal grounds (i.e. logic 

and mathematics), and those in which it is, or could be, confirmed by 

verification (or falsification) through sense-experience.” (see Logical 

Positivism in (Urmson and Ree 1989)). 

A consequence was that because many theories in metaphysics and, to a lesser extent, 

epistemology could not be verified by sensory experience, they were considered 

meaningless. Furthermore, they believed that the natural language used to express 

philosophical problems could be restricted to remove ambiguities. That language would 
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then match the logical structure of the world and the logical structure of human 

knowledge of the world. 

“Experience (it was held) can be resolved into its ultimate constituents, 

namely the immediate and incorrigible sensory observations of which the 

observer’s world consists. The structure so presented is reflected in language; 

more precisely, it can be shown by logical analysis that the propositions in 

which knowledge is expressed are similarly reducible to elementary 

propositions, corresponding one-to-one with actual or possible items of sense-

experience.” (see Logical Positivism in (Urmson and Ree 1989)) 

One of the most influential philosophers on the logical positivists was a student of 

Russell’s, Ludwig Wittgenstein. Wittgenstein began from the metaphysical premise that 

the world consists entirely of simple facts, none of which are dependent on any other. 

Human beings then have thoughts about these worldly facts that are our way of picturing 

the way things really are. Moreover, our thoughts can be represented in language. 

Because human language represents and communicates the  facts in logical propositions, 

human language must have a structural similarity to the way things really are. The entire 

world could, in principle, be adequately represented as a long list of atomic sentences. 

“An informative statement will be a picture of some possible state of affairs in 

the same way as a sketch-map can picture a battle or the arrangement of the 

furniture in a room.” (see Wittgenstein in (Urmson and Ree 1989)). 

5.4.1.4 Human Understanding and Conceptual Relativism 

Wittgenstein left the field of philosophy for 10 years and returned with a completely 

different theory of language and attempts to define meaning from it. His original theory 

was that language represented the logically connected facts of the world and that a 

restricted, ideal language could be constructed that perfectly described that world of facts. 

However, he realised that this theory, and the work of the logical positivists, required too 

much precision in the use and definition of words and in the representation of logical 

structure. In practice, people’s use of language does not conform to such a rigid structure. 

Rather than simply state facts about the logical structure of the world, people use 

language in a variety of different ways, which he refered to as different language games. 

Examples of games include giving orders, asking, thanking, cursing, greeting and praying 

(Wittgenstein 1968). These different language games are learned through childhood and 
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while a few of them may take precedence in philosophical analysis, they do not account 

for all language usage. 

By analysing the use of words in different language games, Wittgenstein developed a new 

theory for the meaning of words. The accepted doctrine was that names apply to 

particular objects when those objects possess certain features or properties. That theory 

goes back to Socrates quest for the defining properties of concepts and Aristotelian 

essentialism. Wittgenstein showed that many real world entities that are referred to using 

the same term cannot be defined using the same set of essential features. Wittgenstein 

uses the example of the term ‘game’. 

 “Consider for example the proceedings that we call ‘games’. I mean board-

games, card-games, ball-games, Olympic games, and so on. What is common 

to them all? – don't say: “There must be something  common, or they would 

not be called ‘games’” – but look and see whether there is anything common 

to all. – For if you look at them you will not see something that is common to 

all, but similarities, relationships, and a whole series of them at that. To 

repeat: don’t think, but look! – Look for example at board games, with their 

multifarious relationships. Now pass to card-games; here you will find many 

correspondences with the first group, but many common features drop out, 

and others appear. When we pass next to ball-games, much that is common is 

retained, but much is lost. – Are they all ‘amusing’? Compare chess with 

noughts and crosses [tic-tac-toe]. Or is there always wining and losing, or 

competition between players? Think of patience. In ball games there is 

winning and losing; but when a child throws his ball at the wall and catches it 

again, this feature has disappeared. Look at the parts played by skill and luck; 

and at the difference between skill in chess and skill in tennis. Think now of 

games like ring-a-ring-a-roses; here is the element of amusement, but how 

many other characteristic features have disappeared! And we can go through 

the many, many other groups of games in the same way; can see how 

similarities crop up and disappear…  

And the result of this examination is: we see a complicated network of 

similarities overlapping and criss-crossing: sometimes overall similarities, 

sometimes similarities of detail.” ((Wittgenstein 1968) par 66) 
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Wittgenstein suggested that although these different examples of the same concept do not 

have a shared set of defining features, they do have something in common that cannot be 

easily identified as particular properties. 

“I can think of no better expression to characterize these similarities than 

‘family resemblances’; for the various resemblances between members of a 

family overlap and criss-cross in the same way.” ((Wittgenstein 1968) par 

66). 

Wittgenstein concluded that words and sentences can not have precisely defined 

meanings or logically defined constructions. The purpose of language is not to represent 

the structure of a logically defined reality but to allow communication between people. 

Therefore, the meaning of words and sentences can vary as groups of people apply them. 

“The members of any community—cost accountants, college students, or rap 

musicians, for example—develop ways of speaking that serve their needs as a 

group, and these constitute the language-game … they employ. Human beings 

at large constitute a greater community within which similar, though more 

widely-shared, language-games get played.” (Kemerling 1997a). 

Wittgenstein then concluded that the existence of many philosophical mistakes was due to 

the inability to identify the nature of the particular language games and the rules that 

govern them. 

The theory that the precise meaning of words is relative to its use within a context can be 

traced back to Frege’s analysis of language (Reck 1997). Furthermore, another recent 

philosopher, Willard Quine, analysed the notions of logical positivism by taking the 

consequences of the their theories to their logical extremes. By doing so, he also arrived 

at the conclusion that the precise meanings of concepts are relative to the observer. Quine 

however went further than Wittgenstein and suggested that all concepts, even those of 

scientific observation, are culturally dependent 29. He argued, 

“… words do not have specific meanings, but only meanings in the context of 

a whole network of other words to which they are connected in the sentences 

we take as true.” (Bechtel 1988a). 

                                                 

29 The relativism of scientific observation is discussed in the next chapter – specifically in the theories of 
Feyerabend. 
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In fact, Quine argued that every theory contains its own ontology and we should abandon 

the idea that words can have specific meanings. 

“Statements, apart from an occasional collector’s item for epistemologists, are 

connected only deviously with experience, [so that] there is many a slip twixt 

objective cup and subjective lip.” (see Quine in (Urmson and Ree 1989)). 

The basic core of this conceptual relativism, that the precise definition and meaning of 

concepts is dependent on context, is now generally accepted as standard in contemporary 

philosophy. The conceptual schemes (contexts) that govern the precise meaning of a 

concept can operate over an entire culture or period; or it may be conceived more 

narrowly as the theoretical framework of a particular community: for example, quantum 

physicists, or software engineering researchers (see Cognitive Relativism (Fieser 1999)). 

However, debate still occurs concerning particular aspects of conceptual relativism. For 

example, the exact nature of the relationship between the meaning of a concept and its 

conceptual scheme, the relationship between different conceptual schemes, and issues 

concerning whether particular conceptual schemes take precedence over others. Some 

philosophers argue an extreme form of conceptual relativism in that no conceptual 

scheme has precedence over any other and that conceptual relativism implies a form of 

relative idealism. In contrast, other philosophers argue that the success of science shows 

that some form of conceptual schemes must be applicable to all people. Still others have 

argued that relative idealism must be tempered by some sort of common-sense realism 

(Smith 1995). 

This conceptual relativism can be traced back to the Sophists, particularly Protagoras, 

who noted, 

 “Man is the measure of all things – of things that are, that they are, of things 

that are not, that they are not.” (see Cognitive Relativism in (Fieser 1999)). 

However, the success of Socrates, Plato, and Aristotle in belittling the philosophy of the 

Sophists has meant that conceptual relativism had few supporters through the ages. 

Nevertheless, the thorough analysis of the ensuing philosophic traditions has shown that 

the Socratic definition of concepts is still impossible. 
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5.4.1.5 Definition and Meaning 

To reduce the ambiguity and vagueness of words in language, philosophers and logicians 

have sought techniques to agree on the definition of terms. Swartz (Swartz 1997) and 

Kemerling (Kemerling 1997b) explain the issues and analyse the effectiveness of 

attempts to develop precise definitions of concepts. They detail the following types of 

definitions: 

• Stipulative Definitions: Specify how a term is to be used. It assigns meaning to a 

new term or restricts the meaning of a term in a particular context. The use of 

stipulative definitions for new terms is always correct because there are no 

existing standards with which to compare it. However, when stipulating the 

definition of existing concepts, especially those with a well-entrenched usage, it is 

often difficult to stay within the newly imposed boundaries. 

• Lexical Definitions: Provide a description of how a term is already used within a 

community. For example, dictionaries provide lexical definitions. The correctness 

of the lexical definition is the degree to which it accurately captures the common 

usage. Therefore, they do not define words, they merely report the standard usage. 

• Precising Definitions: Reduce the vagueness of a term in a particular context. 

They often combine the previous types of definitions by beginning with the lexical 

definition and them stipulating the new restrictions on its usage. Examples include 

the attempt by legislators to define the meanings of commonly used terms in a 

legal context. 

• Theoretical Definitions: Are examples of stipulative definitions within a scientific 

or intellectual context. Often these definitions imply the acceptance of other 

definitions within a larger, encompassing theoretical framework. For example, 

Newton’s theoretical definitions of ‘mass’ and ‘inertia’ “carried with them a 

commitment to (at least part of) his theories about the motion of physical objects.” 

(Kemerling 1997b) 

• Persuasive Definitions: Used to attach some emotive meaning to a term for the 

purposes of winning an argument. Persuasive definitions generally bastardise 

existing lexical definitions and have no legitimacy. For example, “‘Logic’ is by 

definition ‘the study of the means by which to win an argument’. (Swartz 1997) 
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Philosophers have for quite some time defined the precise meaning of a term using the 

concepts: ‘extension’ and ‘intension’. The extension of a term is the collection of things 

to which that term is correctly applied. That application can refer to things in the past, 

present or future tenses. For example, “the extension of the word ‘chair’ includes every 

chair that is (or ever has been or ever will be) in the world.” (Kemerling 1997b). The 

intension of a term, on the other hand, is the set of defining or essential characteristics 

that are shared by everything to which it applies. For example, the intension of the word 

‘chair’ may be “a piece of furniture designed to be sat upon by one person at a time.” 

(Kemerling 1997b). Similarly, the intension of the word ‘triangle’ may be “(the properties 

of) being closed, having three straight sides, and lying in a plane.” (Swartz 1997). 

There is a reciprocating relationship between the intension and extension of a term. As 

the intension of a term becomes greater or more precise, the extension, the set of things to 

which it applies, decreases. For example,  

“The term ‘black’ denotes a certain class. Adding the term ‘round’ to ‘black’, 

viz. increasing the intension, creates a new expression whose extension is a 

new, smaller, class, a proper subclass of the former.” (Swartz 1997) 

Terms can be defined using the intension or extension separately. Definition by intension 

is most obvious in the disciplines of science and mathematics. For example, “x is a circle” 

means “x is a locus of a point in a plane lying equidistant from a given point” (Swartz 

1997). However in general situations and especially when teaching children, terms are 

often defined by extension – pointing out or describing example objects. The meaning of 

the term is defined by pointing out and noting particular examples of a category and also 

noting examples of objects that are definitely not in the category. These definitions by 

extension can include pointing out particular objects, not only visually, but by using any 

of the senses or by describing objects that the person has been in contact with before. A 

restricted form of definition by extension, which is solely concerned with visually 

pointing out a particular example, is definition by ostension. 

For a long time it was thought that definition by extension leads to the subject developing 

a mental definition by intension. That is, as objects are pointed out as either part or not 

part of a particular category, the subject would develop theories about which were the 

essential features that determined an object’s membership in the category. However, that 

theory has come under attack in recent times in both the disciplines of philosophy and 
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psychology (Swartz 1997). The thrust of the attack concerns the identification of the 

essential attributes. Because there are many features of an object to identify, there exists a 

large number of attributes that all members could have in common. None the less, people 

do develop meanings of concepts successfully using definition by extension. Swartz 

claims that the ability to do so is innate in our conceptual apparatus. 

“How is it, then, that human beings can ever use this method, and indeed 

frequently do so with such success? Here one must offer a scientific theory, a 

theory to the effect that we human beings are physically sufficiently like one 

another that we will often, after only a few tries, ‘come up with’ the same 

sorts of linguistic hypotheses as those of our fellow human beings. In short, 

the explanation is that we have a built- in (hard-wired perhaps) predisposition 

to frame similar sorts of linguistic posits as other human beings.” (Swartz 

1997).  

Despite the fact that people can successfully define objects by extension, that definition 

can never guarantee the creation of the exact intension. Terms with the same extension 

may have different intensions. In contrast, the definition of the term by intension does 

specify the exact extension. However, while an intensional definition does specify an 

exact extension, it does not guarantee that the intension specifies the correct set of objects 

that was intended. While we would like a definition to ‘fit’ the intended extension as 

closely as possible, often a particular set of defining characteristics omits certain objects 

that were intended or includes additional objects that were not. To find an intension that 

fits the required extension exactly is very difficult, and in some cases, impossible. 

The Classical Theory of Definition, as described by Swartz, has two principal tenets, 

“(1) that a ‘proper’ intensional definition states in the definiens the logically 

necessary and sufficient conditions for the application of the definiendum; 

and (2) that there are intensional definitions for each of the class terms (e.g. 

‘horse’, ‘house, ‘musical instrument’, ‘educated person’, etc.) which we use.” 

(Swartz 1997). 

This theory does not claim that a concept has an innate definition, or set of essential 

features that can be identified. However, it does claim that for most concepts, definitions 

can be constructed, based on identifiable features, to suit that purpose. Proponents of this 

Classical theory often use examples from mathematics and geometry to illustrate the 
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process. However, Swartz notes that the theory cannot automatically be extrapolated to 

other concepts.  

“Somewhat uncritically, on the basis of this model, people believed that 

comparable definitions could be constructed in more ordinary contexts, that 

definitions of ordinary class terms – not just those in mathematics and science 

– ought to specify the necessary and sufficient conditions for the application 

of the definiendum.” (Swartz 1997) 

As has been pointed out, the more recent philosophers (e.g., Frege, Wittgenstein, Quine, 

and their academic descendants) have shown that this is not the case. The precise 

meaning of a term is dependent on the context and culture in which it is used. Apart from 

some extreme examples, there can be no single, universal intensional definition. 

Swartz and Kemerling discuss two different alternatives to deal with the problems facing 

intensional definitions – the ‘cluster-concept’ (Swartz 1997) and the ‘genus and 

differentia’ (Kemerling 1997b) definitions. To explain the idea of a cluster concept 

Swartz uses the definition of the concept ‘lemon’. Lemons exhibit the following 

characteristics: are yellow, sour, ovoid, grow on trees, as big as a ten year old’s fist, are 

juicy, have internal seeds, have a peculiar aroma, have a thick skin, internally segmented, 

pulpy, have a pocked surface, green prior to maturation, grow in a semitropical 

environment, have a waxy skin, contain vitamin C, and are edible. If all of these features 

were used to specify the concept’s intension it may over specify the term ‘lemon’. For 

example, if an object were found that did not meet one of these characteristics but did 

meet all the others, it would probably still be classified as a lemon. However, it is 

difficult, if not impossible, to identify which ones are necessary for an object to meet in 

order to be classified as a lemon. As long as it meets most of them, then it would be a 

lemon. A ‘cluster-concept’ is a collection of features, none of which is individually 

necessary, but the majority of which, are. 

“Thus in one sense we do not know the definition of ‘lemon’: that is, we 

cannot give a classical intensional definition for it. Yet it would be absurd to 

say that we do not know what ‘lemon’ means. Of course we do. The concept, 

lemon, is a cluster concept, and we know the conditions in the cluster and we 

are fairly well agreed on their relative importance.” (Swartz 1997). 
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In addition to the idea of the ‘cluster-concept’, logicians have proposed the use of ‘genus 

and differentia’. The process begins by identifying a more general or broader category 

that includes all of the intended members. Because this will include items that are not 

intended, the genus is supplemented with a differentia, which identifies the defining 

characteristics of the intended items from the others that exist in this general category. 

For example, to define the concept ‘chair’ the general genus to which it belongs may be 

“piece of furniture” and the differentia required to identify all cha irs from the other pieces 

of furniture may be “designed to be sat upon by one person at a time.” (Kemerling 1997b) 

Swartz concludes that although the classical theory that concept definition can be 

achieved using intension and extension is still quite pervasive, and does work for a small 

number of domains, it should not be relied upon. 

“In short, very often we know the extension of a term very well, we can even 

‘go on’ reasonably well, yet we are unable to specify the intension, and 

moreover ought on many occasions to resist the demand that we try to give an 

intensional definition for the term.” (Swartz 1997) 

5.4.1.6 Using Theories to Understand Phenomena: The Philosophy of Science 

The theories concerning the formation and definition of concepts have significant 

ramifications for software engineering researchers, specifically in the areas of component 

design and reuse. Those issues are examined later. However, they do not explain how 

concepts are used to construct complex explanatory theories or models of reality. Those 

issues are examined in philosophy of science and they have significant ramifications for 

software engineering, specifically in the areas of design reuse, software architecture, and 

design patterns. 

The ‘philosophy of science’ is reasonably recent in the discipline of philosophy, however 

its origins can be traced all the way back to Aristotle. Indeed, until the scientific 

revolution of the seventeenth century it was difficult to distinguish between philosophy 

and science – there was no sharp line between physics and metaphysics. However, since 

the nineteenth century, philosophers of science have been theorising about how science 

progresses and how people can know the knowledge it develops is valid. Those theories 

deal with issues that include the methods used by science, the relationships between 

experiment and theory, and whether the theories developed by science match the reality 

of the world. All of these have ramifications for how software engineers develop their 
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designs to automate real world processes, how software engineers can be sure those 

designs are valid, and whether or not those designs can be reused for other problems and 

in other contexts. To detail these issues, it is necessary to explain the theories of the  

logical positivists and their opponents, specifically those of Karl Popper. Philosophers of 

science have also developed many theories to explain how scientific and non-scientific 

disciplines have evolved. Those issues are discussed in the next chapter, which examines 

how software engineering research can progress. 

The logical positivists have been the most influential group on the philosophy of science 

in the twentieth century. As has been discussed, the logical positivists originated in the 

1920s and were predominantly influenced by the philosophical ideas of positivism, the 

successful use of logic by Russell and Frege to explain mathematics and language, and 

the radical advances in physics – especially those of quantum mechanics and relativity 

theory. They proposed to determine what made science a reliable source of knowledge. 

Their epistemological view was that the world exhibited a logical structure that was 

captured in the language used to express and communicate it. This positivism led them to 

the Verifiability Principle, which asserts that the only significant theories of science are 

those than can be verified as being either true or false by testing them against experience. 

Their explanation of science was that scientists propose hypotheses which were accepted 

if sufficient evidence was found to support it. The logical positivists assumed the method 

of discovery was a type of induction where the scientist observes phenomena and 

recognises regularities of cause. Those regularities are captured in scientific hypotheses 

that can be verified using experimentation. If the hypothesis was successfully verified, 

then it must capture the essential structure of reality and could become a scientific law. 

The logical positivists believed the issues involved in discovering the hypothesis could 

only be explained by psychologists and, instead, concentrated on developing detailed 

explanations for how the hypotheses could be justified using the tools of logic. As an 

example, Rudolph Carnap attempted a logical, axiomatic account of all space and time. In 

his Logical Structure of the World he details a rigorously formal version of empiricism 

(see (Fieser 1999) on Carnap).  

Some philosophers prior to the logical positivists had discussed the issues concerning the 

discovery of hypotheses. Comte, who introduced the ideas of positivism, believed that the 

concepts involved in hypotheses, specifically those of interaction such as ‘cause’, were 

intellectual constructs developed by scientists. That is, there is no natural concept of 



A Foundation for Software Engineering 

Understanding Software Engineering  245 

cause. It is something invented by us to explain the regularities observed in nature and to 

allow us to make predictions about future events. A contemporary of Comte’s, Whewell, 

believed these concepts did exist but they could not be seen directly. He believed Kant’s 

notion that we apply our innate notions of cause on the reality that we experience. The 

correct notion of cause could only be discovered by successfully developing theories that 

explain reality (see Philosophy of Science in (Urmson and Ree 1989)).  

The theories of the logical positivists became the dominant explanation for the structure 

of science. However, there were many problems with them. One of those was that 

scientific thinking does not necessarily follow the strict canons of logic. Moreover, others 

had argued many years before against the assumption that hypotheses, which are 

developed using induction by abstracting general theories from repeated observation, 

could be successfully verified using empirical testing. The empiricist Hume had argued 

that inductive evidence could never establish definitively, or even render probable, the 

truth of any general claim. It is always possible that there might be counter-evidence to a 

general claim that simply had not been discovered yet. Similarly, the mathematician 

Poincaré argued against the basic positivist assumption that reality had a logical structure 

that could be captured in all-encompassing scientific laws. Poincaré began to study the 

philosophy of his discipline when the successful introduction of non-Euclidean 

geometries challenged the assumption that geometry had a single logical structure. His 

research showed that scientific theories may start with experience but they do not exactly 

match it. 

“For example, look at the problem of finding a mathematical law that 

describes a given series of observations. In this case, representative points are 

plotted in a graph, and then a simple curve is interpolated. The curve chosen 

will depend both on the experience which determines the representative points 

and on the desired smoothness of the curve even though the smoother the 

curve the more that some points will miss the curve. Therefore, the 

interpolated curve – and thus the tentative law – is not a direct generalization 

of the experience, for it ‘corrects’ the experience. The discrepancy between 

observed and calculated values is thus not regarded as a falsification of the 

law, but as a correction that the law imposes on our observations. In this 

sense, there is always a necessary difference between facts and theories, and 
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therefore a scientific theory is not directly falsifiable by the experience” (see 

Poincaré in (Fieser 1999)). 

Poincaré’s conclusion was that scientific theories are not immutable truths. Rather, they 

are explanations, chosen by convention, that help people explain reality and make useful 

predictions about the future. Therefore, neither Euclidean geometry, nor any other such as 

Reimann geometry, is the ‘true’ geometry. One may simply be more convenient than the 

other for the purpose we wish to use it for. 

These issues, which contradict the theories of science proposed by the logical positivists, 

were constructed into formal theories by Karl Popper. Popper was a contemporary of the 

logical positivists and was part of many of the meetings of the Vienna Circle. However, 

he did not agree with their positivist approach, in particular, with the Verification 

Principle. His attack began on the belief that people devise theories using induction. Like 

Hume, Popper showed this belief must be false because evidence could be found to 

support virtually any theory (Popper 1979b). He argued this belief was part of the 

prevailing influence of Aristotelian essentialism in that “intuitive knowledge consists in 

grasping the ‘indivisible form’ or essence or essential nature of a thing” (Popper 1983). If 

all things could be defined in terms of their essential features then the things that 

comprise those defining features would also have to be defined. Similarly, those defining 

features would also have to be defined and an infinite regress of definition would ensue. 

Moreover, this belief assumes the empiricist ‘bucket-theory’ of knowledge, in which 

people’s minds begin as an empty bucket that is filled by observing and conceptualising 

the objects of experience. However, because there are so many facts to be observed, and 

because so many features can be identified for each thing, how can the essential ones be 

determined? Popper’s conclusion was that people do not observe things and seek to 

somehow define them in terms of important features, as the logical positivists had 

assumed. Rather, they observe defining or important features and characteristics and then 

seek a label, a concept name or theory, to represent them in their knowledge structure 

(Popper 1983). 

Popper believed people had a purpose in developing concepts and theories and this 

purpose directed how concepts and theories were identified. He explained his theory 

based on his ‘3 worlds’ model of human knowledge (Popper 1979g; Popper 1979c): 

• World One is the physical world. 
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• World Two is our conscious experience or perceptions of world one. 

• World Three is the collection of theories that we use to explain our understanding 

of world one. These include theoretical situations, problems, problem situations, 

critical arguments, the state of discussion on the state of critical arguments; and 

the contents of books, journals, etc. 

The link between the worlds is our mind. Humans can devise theories to explain the 

world. As the mind (world 2) experiences reality (world 1) it can devise explanatory 

concepts and theories (world 3) that can be communicated, written down, and shared with 

others. However, the link also works the other way. As humans perceive the world (world 

1) in their minds (world 2) they automatically apply the concepts and theories that are 

inherent in culture and language (world 3). All our actions in the first world are 

influenced by our second world grasp of the third world. Popper quotes the philosopher 

Myhill, “our formalisations correct our intuitions while our intuitions shape our 

formalisations.” (Popper 1979c). Concepts are partly a means of formulating theories and 

partly a means of summing up theories. In this sense, Popper has provided similar 

arguments to those of Kant when he proposed a solution to synthesise the epistemological 

theories of empiricism and rationalism. For Popper, people do not share an objective 

reality. However, they do develop and share an objective knowledge (world 3) of it. 

With this model of knowledge, Popper showed that different concepts and theories (w3) 

could not only be used by the mind (w2) to explain our experience of nature (w1), but that 

it was unavoidable. All observation is theory- laden. For Popper, theories are not 

developed by simply observing nature. Concepts, theories, and therefore knowledge, are 

developed within the context of solving a problem. Therefore, it is the overriding context 

of problem solving that governs which features of reality are observed. In an attempt to 

understand nature, different theories are implicitly applied and tested to see how well they 

match reality. A scientist’s or anyone else’s observations are selectively designed to test 

the extent to which a given theory functions as a satisfactory solution to a given problem. 

As Charles Darwin noted, “all observation must be for or against some view.” (Popper 

1979d) 

Following these arguments, Popper concluded that the only true test of a theory was not 

whether it could be verified but whether it could be falsified. All knowledge is 

provisional, conjectural, and hypothetical – scientific theories can never be finally proved. 
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Observation can merely provisionally confirm or conclusively refute them; hence at any 

given time we have to choose between the potentially infinite number of theories that will 

explain the set of phenomena under investigation. Therefore, ‘true’ theories are only those 

that are yet to be falsified, and the only scientifically useful theories are those that can be 

falsified. They only ‘laws of nature’ are those hypotheses that are yet to be refuted. 

Popper claims the development of knowledge is a continuous process of “conjectures and 

refutations”. A scientist begins by making a conjecture about how the world is and then 

seeks to refute that hypothesis by testing the theory with attempts to falsify it. If the 

hypothesis is disproved, then it should be discarded and replaced with a different 

conjecture. For example, consider the different theories of gravitation. Galileo’s 

explanation that gravity acts as a constant acceleration is an adequate theory to explain 

falling objects on earth. However, it fails to provide an adequate explanation for the 

motion of celestial bodies. Consequently, Newton conjectured a new theory of gravitation 

as a force that is not a constant acceleration but one that is proportional to the mass of the 

interacting bodies and the inverse square of the distance between them. When dealing 

with the phenomena of falling objects on earth, the mass of the falling object and its 

distance above the ground are negligible compared to the mass and radius of the earth. 

Therefore, Galileo’s theory is a good approximation to Newton’s in some contexts. 

Finally, Newton’s theory was later superseded by Einstein who developed a theory of 

gravitation outside the confines of Newtonian mechanics. His theory explains gravitation 

as curvature in the entire fabric of space & time. 

According to Popper, the development of newer, more complex theories is due to 

imaginative leaps of understanding. Moreover, he claims that it may not be until we have 

been working on a problem for a considerable length of time that we really begin to 

understand it to the extent required to see the full ramifications of the solution we have 

devised. When we first encounter a problem, we don’t know much about it. We always 

start with an inadequate solution and then criticise it. Only then can we develop a better 

theory, which will also be criticised. This process gradually leads to useful knowledge. 

“To understand a problem means to understand its difficulties; and to 

understand its difficulties means to understand why it is not easily soluble – 

why the more obvious solutions do not work. We produce the obvious 

solution and then criticize them, in order to find out why they do not work. In 

this way, we become acquainted with the problem, and may proceed from bad 
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solutions to better ones – provided always that we have the creative ability to 

produce new guesses, and more new guesses. … If we have been working on 

a problem long enough, and intensively enough, we begin to know it, to 

understand it, in the sense that we know what kind of guess or conjecture or 

hypothesis will not do at all, because it simply misses the point of the 

problem, and what kind of requirements would have to be met by any serious 

attempt to solve it. We begin to see the ramifications of the problem, its 

subproblems, and its connections with other problems.” (Popper 1979d) 

The theories of Popper, and other philosophers of science, oppose the claims of the 

logical positivists. However, their original conviction in positivism, logic, and 

verifiability still have a strong influence on how people, especially non-philosophers, 

view the evolution of science. Popper notes, 

“Human observation showed an immensely powerful ‘need for regularity’ … 

which makes them sometimes experience regularities even when there are 

none; which makes them cling to their expectations dogmatically; and which 

makes them unhappy and may drive them to despair and to the verge of 

madness if certain assumed regularities breakdown.” (Popper 1979b). 

Indeed, Popper shows that a single counter- instance is never enough to refute the belief in 

an existing theory and they may, in fact, be retained even though considerable evidence 

conflicts with them. 

“There are fashions in science, and some scientists climb on the bandwagon 

almost as readily as do some painters and musicians.” (Popper 1979e) 

Other philosophers of science, especially Kuhn and Feyerabend, have argued that Popper 

did not fully considered the effects of our theories on the concepts we identify. They 

disagree with Popper that our collection of theories (Popper’s world 3) is objective and 

accumulative. That is, that everyone has access to the same collection of explanatory 

theories about the world and that those theories simply grow in a linear, progressive 

fashion as newer, more complex theories are discovered to replace older, simpler ones. 

Kuhn, being the first philosopher to systematically study the history of science as well as 

the philosophical theories about it, argued that science passes through stages. In each 

stage the researchers of a particular discipline operate within what Kuhn called a 

paradigm (and later a disciplinary matrix). These paradigms consist of the concepts, 
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theories, and example problems that researchers use to conceptualise the world they 

observe. Therefore, the concepts and theories developed by researchers in a discipline are 

contextually dependent on the encompassing paradigm they are operating within. In this 

sense, Kuhn is similar to Quine, who argued on epistemological grounds that all concepts 

are context-dependent. The consequence of Kuhn’s theory is that the very notion of 

‘objective facts’ that can be viewed by all researchers is called into question. All 

observations are tinctured by theory. 

“How we capture behavior may depend upon the theory we are using to try to 

understand the behavior. Theory- ladenness does not entail that we can see 

whatever we want to. Given the way we have been trained to see, what we see 

is determined by what there is to see.” (Bechtel 1988b) 

Kuhn argued that as a scientific discipline progresses, it passes between different 

paradigms. During those transitions a revolution occurs, where the concepts used to 

understand and theorise about a set of phenomena are completely replaced by a new set of 

concepts and theories. For example, the shift in physics from Newtonian mechanics to 

quantum mechanics. The result of those revolutions is a new paradigm that consists of 

new concepts and theories that can not be objectively compared with the previously 

existing paradigm because of their paradigm dependence. For example, the different 

theories of gravitation developed by Newton and Einstein exist within the different 

paradigms of Newtonian mechanics and quantum mechanics. Any attempt to use these 

concepts of gravitation outside the paradigm-dependent way of conceptualising reality 

simply does not make sense. Moreover, these paradigms govern how new observations of 

phenomena are conceptualised and those concepts and theories are also paradigm-

dependent. 

Feyerabend, a student of Popper’s, took the notion that concepts and theories are relative 

to a particular paradigm to an extreme. He proposed a deliberately controversial theory 

that the meaning of all terms is relative to a particular view of the world and that those 

views are not neatly packaged in successively utilised paradigms as Kuhn had suggested. 

Therefore, science can progress with a plurality of encompassing views. Moreover, it may 

be possible that one theory can develop ‘facts’ that refute a competing theory and that a 

newer theory may reveal ‘facts’ that were not possible with the older one. The progress of 

science, therefore, does not occur with a traditional, sanitised, concrete methodology and 

researchers should abandon the belief that it does so. Feyerabend believed scientists 
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become stuck in a conservative view of their discipline and develop theories that simply 

seek to perpetuate each other without taking the risk of developing anything truly new 

and exciting (Feyerabend in (Zalta 1999))30. 

5.4.1.7 Consistency and Coherence in Theory Creation 

The idea that concepts and theories are relative to some paradigm or encompassing 

viewpoint does not mean it is possible to “see whatever we want to see”. We all interact 

with the same reality, but the way that reality is understood as concepts and theories is 

influenced by previously established ways of understanding. Moreover, freedom of 

construction of those concepts and theories can be exercised only within limits. Within 

theories concepts must be consistent with each other and constitute a coherent and 

consistent system. 

“Consistency is the controlling logic relation. Although one cannot always 

systematically prove consistency when one has it ... one can recognize 

inconsistency.” (Lee 1973). 

One set of concepts is no closer to a ‘true’ reality than any other. It is only more useful 

than another in that it yields conceptual interpretations that better suit the apparent 

demands of a given situation or problem. As the process of understanding proceeds, it is 

possible that concepts can be created in terms of other concepts and eventually their 

relation to concrete, real-world experiences gets left behind. For example, logic and pure 

mathematics are two areas where conceptual manipulation of symbols occurs without 

those symbols requiring any direct, perceptual referents. 

“With increasing powers of symbolisation, the mind grasps abstract relations 

and veridical perception is established. An orderly external world composed 

of facts is systematically organised by further application of logical 

principles, and veridical percepts are placed in relation to this more inclusive 

order. Finally, the principles of order themselves can be critically examined in 

a system of pure logic.” (Lee 1973). 

Abstraction is used to devise concepts and theories that encompass a wider range of 

applicability than the original theories. For example, the role of mathematical modelling 

                                                 

30 The views of Kuhn and Feyerabend are discussed in more detail in the next chapter, along with other 
philosophers of science such as Lakatos and Laudan. 
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in social science deals with abstract idealisations of real world entities and not with the 

direct concepts. 

“We have learned that pure mathematics is neutral and, when applied, it is 

applied to our ideas about some matter of fact, and not the facts themselves. 

What gets mathematized is not a chunk of reality but some of our ideas about 

it.” (Bunge 1973). 

One of the most influential tools in the generalisation of concepts and theories to 

encompass a wider area of applicability is the use of analogy. For example, as mentioned 

in chapter 3, Ohm devised the law of basic current flow by studying the well-established 

theories of hydrodynamic systems (Jungnickel and McCormmach 1986). Ohm was able 

to show that both disciplines contained the concepts of substance flow through a 

conductive element, the concept of force to generate the flow, and the concept of 

resistance to the flow in that conductive element. He was then able to devise a 

mathematical relationship for current flow based on the established mathematical 

relationships that described hydrodynamic systems. By developing a more abstract theory 

that describes two or more systems, if only in a sketchy way, it is possible to identify 

analogies and thereby generate theories to explain phenomena in new fields or generate 

encompassing theories across a range of fields (Bunge 1973). However, although an 

abstract theory can be used to explain the phenomena in two distinct situations, it is only 

because of an identified similarity. It does not mean the two situations are identical or that 

other abstract theories in one of those areas can be used to explain phenomena in the 

other. 

Analogy is a very powerful tool in developing new theories. However, it is only able to 

suggest equivalence without being able to establish it. Therefore, the reckless use of 

analogy has also been misleading in scientific research. Bunge provides many good 

examples of this in a range of fields including quantum physics, information and entropy, 

and social evolution. Identity implies equality, equality implies equivalence, and 

equivalence implies similarity, however the converse is not true. “Analogy is undoubtedly 

prolific, but it gives birth to as many monsters as healthy babies. In either case its 

products ... are just that: newborns that must be reared, if at all, rather than worshipped” 

(Bunge 1973).. Bunge continues by quoting Gerard, “Analogical thinking is ... in our 

view not so much a source of answers on the nature of phenomena as a source of 

challenging questions”. (Bunge 1973). 
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Many issues of epistemology and philosophy of science that relate to software 

engineering have been detailed here, though the discussion has certainly not all covered 

all of them. Before detailing the effects they have on software engineering research, it is 

necessary also to detail relevant theories that psychologists have devised to explain the 

role of concepts and theories in our understanding of real-world processes. 

5.4.2 The Psychology of Cognition 

Ultimately, the development of a software system requires that we can conceptualise the 

real world and convert our understanding into an executable description. But the fact that 

we can understand and interact with the world at all is quite an astonishing feat in itself! 

Furthermore, the fact that we can do so without a conscious understanding of how our 

mind performs this task belies the complexity of the processes involved. Psychologists 

have been researching the field of cognition for many decades and have devised theories 

that explain how we develop our conceptual apparatus and how that apparatus is used to 

allow us to function in the world. Steven Pinker begins his book, How the Mind Works, 

with the disclaimer, “we don’t understand how the mind works – not nearly as well as we 

understand how the body works” (Pinker 1997). Despite the fact those complex 

operations have not been fully understood, psychologists have devised many experiments 

and illusions that provide glimpses into how the mind operates and they have developed 

theories that explain both cognition and concept development and utilisation. 

We must be able to conceptualise in order to function in the world the way that we do. 

The human brain gets its visual information about the world from the splashes of light 

that pass through the eyes and onto the retina. The light from the 3-dimensional world 

forms a 2-dimensional image on the retina which is somehow perceived as a collection of 

3-dimensional shapes, objects, surfaces, etc with different depth, texture, and colours. 

Without the cognitive apparatus required to reconstruct the apparent 3-dimensional 

structure of the world, everything that we see would just be a constant stream of visual 

psychedelia. The ability to do so seems to be largely innate in us. Research shows that the 

limited visual experience of three to four month old infants is enough to perceive the 

visual milieu as a collection of cohesive, solid, objects that follow natural laws of 

movement and contact interaction (Kellman 1996; Spelke and Hermer 1996). 

From the ability to visualise the world as a collection of objects, the mind has evolved the 

ability to think about those objects as concepts or ideas – the ability to generate 
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knowledge. Evolutionary theories of natural selection suggest that the ability to generate 

knowledge and reason about those objects has helped us to deal with and survive in the 

world (Pinker 1997). From the sensory experience obtained through interaction with real 

world objects, concepts and categories are developed along with the ability to infer rules 

concerning their interaction. No two physical situations are exactly alike and the ability to 

infer in terms of categories has ensured that we do not have to treat every situation as 

completely new. Consequently, our ability to survive in the world has improved.  

“An intelligent being … has to put objects in categories so that it may apply 

its hard-won knowledge about similar objects, encountered in the past, to the 

object at hand.” (Pinker 1997) 

The fact tha t we have conceptual apparatus that enables us to perceive the world in a 

manner that allows us to develop knowledge about it is interesting for software 

development. More important though are the theories that explain how that apparatus 

works and how those concepts and categories are identified. They have significant 

ramifications for the assumptions that underlie software engineering research. 

5.4.2.1 The Classical Theory of Categories 

The classical theory of categories holds that something is a member of a particular 

category because it satisfies the set of necessary and sufficient features or attributes that 

constitute the category’s defining properties, functions, and uses (McCauley 1987). As 

people interact with the world they become acquainted with the important properties of a 

particular category as they deal with the individual objects that instantiate them. 

Perception then, is a decisive process where the person interacts with objects and utilises 

certain attributes of that object to infer what sort of concept it is. Therefore, categories 

can be treated as specifications (Bruner 1958). 

Using this classical theory of categories, learning is a bottom-up process where people 

start with the simplest objects and categorise them in terms of the essential attributes. 

Objects that are more complex are then identified by combining the previously defined 

simple concepts. Moreover, the psychology of cognition can be understood in terms of set 

theory where objects belong to a particular set based on their defining features and 

simpler or more complex objects can be understood in terms of set operations such as 

subsets, intersections, unions, etc (McCauley 1987).  
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That classical theory became quite popular, however attempts to use it to formally define 

particular concepts ran into anomalies. For instance, Pinker uses the example of the 

concept ‘bachelor’. 

“A bachelor, of course, is simply an adult male who has never been married. 

But now imagine that a friend asks you to invite some bachelors to her party. 

What would happen if you used the definition to decide which of the 

following people to invite? 

Arthur has been living happily with Alice for the last five years. They have a 

two-year-old daughter and have never officially married. 

Bruce was going to be drafted, so he arranged with his friend Barbara to have 

a justice of the peace marry them so he would be exempt. They have never 

lived together. He dates a number of women, and plans to have the marriage 

annulled as soon as he finds someone he wants to marry. 

Charlie is 17 years old. He lives at home with his parents and is in high 

school. 

David is 17 years old. He left home at 13, started a small business, and is now 

a successful young entrepreneur leading a playboy’s lifestyle in his penthouse 

apartment. 

Eli and Edgar are homosexual lovers who have been living together for many 

years. 

Faisal is allowed by the law of his native Abu Dhabi to have three wives. He 

currently has two and is interested in meeting another potential fiancée. 

Father Gregory is the bishop of the Catholic cathedral at Groton upon 

Thames. 

The list … shows that the straightforward definition ‘bachelor’ does not 

capture our intuitions about who fits the category. Knowing who is a bachelor 

is just common sense, but there’s nothing common about common sense. 

Somehow it just finds its way into human … brains.” ((Pinker 1997) p. 13) 

As an extension to Pinker’s challenge to use this simple definition to determine whom to 

invite, imagine writing the piece of software that defined all of the terms and then 
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automatically chose bachelors based on the situations presented. The simple definition 

becomes a complex collection of rules and data specifications. 

5.4.2.2 The Prototype Theory of Concept Identification 

In the mid 70s Eleanor Rosch and her colleagues conducted a number of experiments in 

cognitive development that the classical theory of categorisation was unable to explain, 

see for example (Rosch 1978). They found that people do not categorise objects in terms 

of defining attributes. In addition they discovered that people’s categories do not have 

clear-cut boundaries and that complex objects are not categorised in terms of features 

identified in simpler concepts and then abstracted to higher- level concepts. 

Rosch suggested people conceptualise objects as belonging to a particular category by 

developing prototypes – stereotypical examples that a person believes correctly exemplify 

their understanding of that category. As new objects are perceived they are compared 

with the prototypes to determine which category they should belong to. Objects are not 

defined in terms of their essential attributes, they are categorised based upon some 

typicality rule which compares them to a previously identified exemplar. As people learn 

about a particular environment, the prototype objects are classified before the more 

marginal objects can be dealt with. 

Like the classical theory, the prototype theory establishes that people’s conceptual 

apparatus is constructed as a hierarchic collection of categories. However, unlike the 

classical theory, they found it is not generated in a bottom-up fashion. Rosch and her 

colleagues found that people initially identify what she terms basic-level categories – for 

example, the category ‘chair’. As experience grows, both more specific and more generic 

categories are devised to classify objects. For the ‘chair’ example, a more specific, or 

subordinate category, would be ‘high-chair’ or ‘stool’ while a more generic, or 

superordinate category, would be ‘furniture’. The basic- level categories tend to be the 

easiest to identify and correspond to the objects most often perceived. In addition, 

members of each basic-level category usually have a family-resemblance and contain 

many of the same attributes. Furthermore, people tend to have similar ways of interacting 

with them. However, the superordinate level categories may not possess similar attributes. 

More detailed descriptions of the classical theory and the results of Rosch’s work can be 

found in (Rosch 1978; Keil 1987; McCauley 1987; Neisser 1987a; Neisser 1987b; 

Gelman 1996; Pinker 1997). 
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5.4.2.3 The Role of Theories in the Understanding of Concepts 

Since the publication of Rosch’s experimental results, psychologists have been attempting 

to devise theories of cognition that can successfully explain them. Current theories 

examine the role that intuitive theories about the world play in our means of conceiving 

the structure of that world. The classical theory of categories assumed that the world as 

we see it simply exists and that as we move through it we understand what is going on by 

abstracting concepts and their interactions from the sensory cues we experience. That is, 

we are somehow separate from the world and the human mind simply perceives the 

important properties of particular objects and moves inferentially to concepts and their 

relationships. In contrast, recent theories suggest that people’s relationship with the world 

is more interactive. As we act in and with the world, we understand it, partly, by imposing 

on it our expectations of what concepts and interactions we believe exist. 

Research has found that rather than being defined in terms of essential characteristics, 

people categorise objects in terms of they roles the play within intuitive theories about 

how the world operates. Whereas concepts were traditionally treated as isolated, atomic 

units, it is now recognised that they are interrelated and influenced by larger knowledge 

systems of theories. Pinker again uses the ever-popular chair example. 

“An artifact is an object suitable for attaining some end that a person intends 

to be used for attaining that end. The mixture of mechanics and psychology 

makes artifacts a strange category. Artifacts can’t be defined by their shape or 

their constitution, only by what they can do and by what someone, 

somewhere, wants them to do. Probably somewhere in the forests of the world 

there is a knot of branches that uncannily resembles a chair. But like the 

proverbial falling tree that makes no sound, it is not a chair until someone 

decides to treat it as one.” (Pinker 1997). 

There is evidence that suggests children begin to form a set of concepts and tacit theories 

in their first year of life (Keil 1987; Gelman 1996). As the child encounters and interacts 

with events in the world, the objects involved tend to be grouped together and form an 

expectation about how objects will interact in future encounters. Rather than as an 

analysis of discrete objects in the world, categories are formed by analysing and somehow 

storing the structure of those events (Fivush 1987). 
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Researchers propose different theories to explain the exact nature of the interaction 

between concepts and theories (for example see (Lakoff 1987; McCauley 1987; Meddin 

and Wattenmaker 1987; Neisser 1987b)). However, they all agree that categories are 

somehow understood in terms of theories rather than defining features. The term ‘theory’ 

is often used interchangeably with the term ‘idealised cognitive model’. McCauley 

explains the differences as follows. 

“… ‘theory’ in contrast to ‘idealized cognitive model’, connotes constructs 

that systematically characterize certain aspects of the world, but also a degree 

of formality, which probably does not apply to all the cognitive structures in 

question. … In contrast, ‘idealized cognitive model’ includes less systematic 

constructs that may not adequately describe the more developed cognitive 

frameworks that structure large areas of human experience. … Idealized 

cognitive models are simplified mental constructs that organize various 

domains of human experience, both practical and theoretical. Theories should, 

perhaps, be construed simply as the more elaborate and complex of our 

idealized cognitive models.” (McCauley 1987). 

The collection of a person’s knowledge then is not simply a hierarchy of categories 

abstracted from sensory experience. It is the sum of all these cognitive models or theories. 

These are then used to plan behaviour and develop new knowledge by mentally playing 

out combinatorial interactions among them in the mind’s eye (Pinker 1997).  

Theories not only capture our understanding of concepts, but it is those theories that allow 

people to conceptualise phenomena as they operate within the constant stream of sensory 

experience. The world can be conceived as an infinite variety of concepts and properties, 

people’s innate theories of the world impose an order on this endless amount of detail to 

allow us to function in it. They form an idealised representation of reality that under-

emphasises or ignores a huge number of possible features by implicitly assuming their 

relative lack of importance. 

“They specify a set of cues in our environment that serve to define the 

situation and therefore establish expectations about probable changes in the 

environment and appropriate responses to them.” (McCauley 1987). 
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For instance, McCauley uses Kant’s explanation of the concept ‘triangle’ to highlight the 

fact it would be impossible for people to develop their idealised concepts solely by 

abstracting from experienced instances. 

“No amount of instances of, for example, a triangle … could ever be adequate 

to the concept of a triangle in general. It would never attain the universality of 

the concept which renders it valid of all triangles, whether right-angled, 

obtuse-angled, or acute angle; it would always be limited to a part only of this 

sphere. The schema of the triangle can exist nowhere but in thought … Still 

less is an object of experience or its image ever adequate to the empirical 

concept…” (McCauley 1987). 

The consequence, as McCauley continues, is that “the world-in-itself is forever 

inaccessible” (McCauley 1987). The world we conceive has already been filtered by the 

conceptual apparatus that allows us to cope with that huge amount of detail.  

The influence of our innate theories on our conceptualisation of reality is highlighted in 

experimental results that were performed many years before these theories of cognitive 

development were devised. For example Carmichael showed that concepts identified in 

language affect how people perceive different shapes (Carmichael, Hogan et al. 1932). 

Similarly, Wertheimer showed how people automatically attempt to group disparate 

visual information into clusters so that they can be understood (Wertheimer 1958). 

5.4.2.4 Human Understanding and Conceptual Relativism 

At the basic- level, people identify similar collections of concepts because they are based 

on similarities in appearance and function (Rosch 1978). The superordinate and 

subordinate categories however, are developed through cultural convention and are 

learned and passed on through language use (McCauley 1987; Neisser 1987a; Pinker 

1997). Therefore, as people learn a language they also learn about a culture’s concepts 

and theories of the world. All documented cultures have words for the elements of space, 

time, motion, speed, mental states, tools, flora, fauna, and weather, and logical 

connectives (not, and, same, opposite, part-whole, and general-particular) (Pinker 1997). 

However, the meaning of words and the means of conceptualising the world is culturally 

dependent. This has been shown in various studies in sociology and anthropology, see for 

example (Levi-Strauss 1962; Levi-Strauss 1986; Knudtson and Suzuki 1992; Lee and 

Karmiloff-Smith 1996). 
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In addition to cultural dependence, the level of expertise in a domain can affect the 

conceptualisation of phenomena. There is evidence to suggest that as mastery of a domain 

occurs the basic-level of the conceiver changes. As a domain is mastered, larger and more 

complex cognitive models are developed and the new basic- level becomes the next level 

in the hierarchy of categories that contains the greatest level of detail (McCauley 1987). 

The expert is able to categorise objects more efficiently than a novice based on these 

more sophisticated models of the domain. 

There is more than one model that can explain a particular situation and it is possible to 

entertain these models simultaneously. The ability to do so depends on imaginative 

capacity and different aims and purposes (Meddin and Wattenmaker 1987). Those 

different models or theories can have different levels of completeness, they may not be 

fully consistent, and they can provide different starting points from which further 

knowledge can be inferred. They also represent to different levels of veridicality the 

world we are trying to conceive. 

“Our various cognitive models offer alternative descriptions of the world. 

Everyone recognizes from time to time that certain descriptions are not only 

less helpful than others (given the problem at hand), but also that some are for 

all intents and purposes false.” (McCauley 1987). 

The basic level concepts and theories identify some of what McCauley terms, the “major 

joints of the world”. However, as “we undertake steps of increasing sophistication … we 

rely increasingly on the developed, abstract theories that we consciously entertain.” 

(McCauley 1987). There is no guarantee that these abstract theories and concepts provide 

definitive reflections of the world. They can only be relied upon based on their 

perspicuity rather than proven representational accuracy. 

The theories of cognition and human perception/conception are more complex than the 

classical theories suggest. However, researchers note that the classical theory of mind still 

pervades many theories of science, suggesting it is a carry over from Aristotle’s 

essentialism (Gelman 1996; Pinker 1997). Nevertheless, it has been superseded with 

theories that define concepts and categories, not as a collection of essential attributes, but 

as things that exist within a encompassing theory or model of observed phenomena. 

Pinker summarises with the following extract. 
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“Buckminster Fuller once wrote: “Everything you’ve learned …  as obvious 

becomes less and less obvious as you begin to study the universe. For 

example, there are no solids in the universe. There’s not even a suggestion of 

a solid. There are no absolute continuums. There are no surfaces. There are no 

straight lines.” In another sense, of course, the world does have surfaces and 

chairs and rabbits and minds. They are knots and patterns and vortices of 

matter and energy that obey their own laws and ripple through the sector of 

space-time in which we spend our days. They are not social constructions, not 

the bits of undigested beef that Scrooge blamed for his vision of Marley’s 

ghost. But to a mind unequipped to find them, they might as well not exist at 

all. As the psychologist George Miller has put it, “The crowning intellectual 

accomplishment of the brain is the real world … [A]ll [the] fundamental 

aspects of the real world of our experience are adaptive interpretations of the 

really real world of physics.” (Pinker 1997) 

5.5 Understanding the Foundations of Software 
Engineering 

The theories from philosophy and psychology identify issues that have a tremendous 

significance for software engineering research. Although it is impossible to 

comprehensively capture all of the theories from these disciplines in such a small number 

of pages, it is clear the epistemological and metaphysical assumptions that underlie 

current thinking in software engineering research are, at best, too simplistic – at worst 

they are fundamentally wrong. 

The epistemological assumption required to ‘engineer’ the conceptual construct in 

software development was stated at the beginning of this chapter as follows: 

 The identification of items that can be reused from previous applications, 

from the requirements ana lysis stage to the implementation stage, assumes 

that different clients and developers see the same reality and can model it 

using similar collections of distinct concepts and concept relationships. 

Moreover, those concepts and relationships can be specifically defined in 

terms of essential features and represented the same way in two different 

applications using the implementation medium of software development – 

hardware and software constructs. 
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Two aspects of the research shown highlights the inherent difficulty in ‘engineering’ 

conceptual constructs. They are the nature of concepts and they way the human mind uses 

conceptual models to understand reality. Both philosophical analysis and psychological 

experimentation have shown that the human conceptual apparatus does not specify 

universally applicable definitions of concepts in terms of essential characteristics or 

attributes. Nor does it identify concepts simply by abstracting them from the observed 

reality. However, the belief that concepts are defined in such a way is still prevalent 

outside the areas of philosophy and psychology. That includes the area of software 

engineering. Many philosophers and psychologists have argued this belief is a product of 

the still prevailing influence of philosophers who set the foundations for western thinking 

– Socrates’ quest for true knowledge through definition and Aristotle’s attempts to define 

all knowledge through essential characteristics (see for example (Popper 1979a; Lakoff 

1987; Bechtel 1988a; Gelman 1996; Pinker 1997)).  

In software engineering, the influence of this implicit philosophical assumption is evident 

in the justifications used for particular design paradigms. The most recent of these is 

object-orientation. The relevant literature argues that object-orientation has benefits over 

previous development approaches because it allows the developer to directly implement 

the concepts identified in the problem domain. Those design methods claim that 

requirements are elicited by identifying the phenomena that needs to be automated. 

Analysis techniques are then used to represent that phenomena as a collection of concepts 

and relationships. Those concepts can then be specified as objects and classes by 

identifying the essential properties and functionality. Some researchers even refer to the 

previously discussed issues from philosophy and psychology as further justification for 

that belief. For instance, the following references (Sowa 1983; Dillon and Tan 1993; 

Martin and Odell 1995; Bruegge and Dutoit 1999) all appeal to the concepts of intension 

and extension as justification for the assumption that concepts can be defined in terms of 

essential attributes. Consequently, object-orientation allows software developers to 

successfully implement our models of reality. However, that belief is based on the 

classical theory of understanding concepts and not on a thorough analysis of the relevant, 

contemporary explanations provided by those disciplines.  

The discussion that began this chapter showed that the most recent theories of software 

development state that requirements should be captured in use-cases. Those use-cases 

specify snippets of functionality and are extracted from the different perspectives of the 
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many stakeholders in the deve lopment process. The use-cases are not developed by 

abstracting concepts from the observed reality, they are a combination of the observed 

reality and the existing conceptual apparatus of the stakeholder that is applied to that 

reality in order to understand it. Indeed, the use-cases presented by the stakeholders are 

subsets of the larger, encompassing theories that are used by that particular stakeholder to 

understand the entire phenomena that needs to be automated in software. Those 

encompassing theories or cognitive models could be different for different stakeholders. 

The level of ‘expertise’ of the clients and customers of the problem domain may also be 

different to those of the analysts and software developers. Therefore, the concepts and 

theories deve loped to understand the same phenomena might be different. Although they 

may have the same label, the precise meaning of the concepts contained within those use-

cases are dependent on their encompassing theories. Moreover, the use-cases are 

represented in natural language, which philosophers and psychologists have shown is 

already theory- laden. 

Finally, the different people who participant in the requirements elicitation process can 

utilise different collections of concepts and theories to understand the same phenomena. 

Therefore, there is no guarantee the theories, and the smaller use-cases, used by the 

respective stakeholders to understand the phenomena are consistent with each other. 

Indeed, there is no guarantee that those explanatory theories used by the respective 

stakeholders are commensurable. 

Software developers face the dilemma that they have to analyse the requirements 

presented by the different stakeholders, however, they can only analyse what those 

different stakeholders have described in the use-cases. They can only analyse what has 

been said or written in natural language and not necessarily what the stakeholders exactly 

meant. A number of issues become apparent: 

• Different stakeholders can represent the same phenomena (a snippet of 

functionality that needs to be automated) using different use-cases. 

• The same concept represented in different use-cases can have slightly different 

meanings in each context. 

• Different concepts in different use-cases can refer to exactly the same phenomena. 
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• It may be exceedingly difficult to compare the precise meanings of different use-

cases even though the concepts and relationships they describe appear to be 

similar.  

These issues must be overcome during the analysis and design stages of the development 

process. Analysis seeks to amalgamate the use-cases into a single cohesive and consistent 

theory of the phenomena that needs to be automated in software. That theory is referred to 

as the analysis model or conceptual software architecture. The philosophical and 

psychological issues presented in this chapter provide insights into the fundamental 

nature of that analysis model, the factors that influence its creation and evolution, and the 

way the designer evaluates the effectiveness of the model as it is developed. It is noted 

that some of the issues discussed here may be construed as design issues rather than 

analysis issues. Furthermore, the following discussion on the design phase may also 

contain issues that some researchers may categorise as implementation issues. The aim is 

not to provide a hard distinction between analysis and design or design and 

implementation; rather it is to highlight the important issues and not how they should be 

categorised. 

The analysis model must consist of a collection of concepts and relationships that, when 

implemented, realises the aspects of phenomena specified in the system requirements. In 

general, the understanding of the community outside the disciplines of philosophy and 

psychology assume those concepts and relationships can be infe rred from observed 

phenomena and that, necessarily, they must also be evident in the natural language used 

to capture that phenomena in the requirements. However, contemporary theories in 

philosophy and psychology contradict this form of positivism and have shown that reality 

does not consist of easily identifiable parts. Rather, there may be many different but 

equally valid sets of concepts identified to understand the same phenomena. Those 

concepts and theories used to represent that phenomena are imposed by our intellects onto 

reality as a means of understanding the infinitely partitionable sensory experience. 

Moreover, the concepts and theories devised are not simply abstractions of that observed 

phenomena but are implicitly applied to sensory experience specifically to help 

understand the phenomena within the context of a particular problem solving activity. 

Therefore, many different analysis models can successfully represent the elicited 

requirements. Furthermore, those models can consist of many different collections of 
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concepts and relationships, and those concepts and relationships can exist at many 

different levels of generality. 

The analysis of the different object-oriented designs for the cruise control systems 

detailed in chapter 2 of this thesis highlights the situation. The table comparing the 

identified ‘objects’ in those designs is reproduced here. Each of the seven object-oriented 

designs identifies a different collection of concepts used to develop a model that 

represents the problem to be solved. Moreover, that collection does not even consider the 

other software designs that utilised different design paradigms. Each of the models 

represents an understanding of the cruise control problem, however the precise meaning 

of the concepts used in each one is specific to the context of the model they appear in. 

Design Example Objects Identified. 

Booch Driver, Brake, Engine, Clock, Wheel, Current speed, Desired 

speed, Throttle, Accelerator. (9) 

Yin & Tanik Driver, Brake, Engine, Clock, Wheel, Cruise control system, 

Throttle, Accelerator. (8) 

Birchenough Driver, Wheels, Accelerator. (3) 

Gomaa (JSD) Cruise control, Calibration, Drive shaft. (3) 

Wasserman Cruise controller, Engine monitor, Cruise monitor, Brake 

pedal monitor, Engine events, Cruise events, Brake events, 

Speed, Throttle actuator, Drive shaft sensor. (10) 

Appelbe & Abowd Driver, Brake, Engine, Clock, Wheel, Cruise controller, 

Throttle. (7) 

Gomaa (Booch OO) Brake, Engine, Cruise control input, Cruise control, Desired 

speed, Throttle, Current speed, Distance, Calibration input, 

Calibration constant, Shaft, Shaft Count. (12) 

Table 5-1: Cruise Control ‘Objects’ (from Chapter 2) 

The ability to develop models at different levels of generality is also highlighted in the 

other cruise control examples. In addition to the object-oriented designs, three researchers 

developed models using the notion of feedback control systems to identify the appropriate 

concepts and relationships. The concepts identified by Higgins and Shaw are represented 
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in the following table (Table 5-2). Both developers initially created a model of the system 

that consisted of generic, feedback control concepts. Those concepts were then replaced 

by concepts that are specific to the particular problem domain – cruise control systems.  

Design Example Objects Identified. 

Higgins (generic) Actuating entity, Reference input, Summing point, Control 

action, Controller, Control signal, Disturbing entity, 

Disturbance, Controlled system, Controlled output, Feedback 

elements, Primary feedback signal. 

Higgins (specific) Driver, New desired speed, Set speed Summing point, Desired 

speed, Set throttle pressure summing point, Throttle pressure, 

Throttle, Power, Environment, Speed gain/loss, Car, Speed, 

Speed sensor, Measured speed 

Higgins (complex) Car on summing point, Car on signal, Cruise control on 

summing pt., Cruise control on signal, CC active summing pt., 

CC active signal, Set speed summing pt., Desired speed, Set 

throttle pressure summing pt., Throttle pressure, Throttle, 

Power, Environment, Speed gain/loss, Car, Driver, Press brake, 

Press accelerator, Speed, speed sensor, Measured speed, New 

desired speed, Brake/Accelerator sensor. 

Shaw (generic) Set point, Controller, Input variable, Process, Change to 

manipulated variable, Controlled variable. 

Shaw (specific) Activate/Inactivate switch, Controller, Desired speed, Throttle 

setting, Engine, Wheel rotation, Pulses from wheel. 

Table 5-2: Generic and Specific Cruise Control Concepts 

Both of those designs represent the same problem, however, they identify different 

concepts to the other object-oriented designs. Higgins goes further and provides a more 

complex design based on a more sophisticated generic model of feedback systems. Again, 

this model is a valid representation of the problem – the model is just more complex. The 

original, generic feedback designs also provide valid models of the cruise control 

problem. They represent the same reality as the specific models, they are just at a 

different level of abstraction. To use the terminology provided by Rosch, the object-
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oriented designs represent the basic- level categories while the generic feedback models 

consist of superordinate- level categories. While some people may conceive of the cruise 

control problem in terms of basic-level categories, it is equally valid that someone with 

expertise in the domain of feedback control will conceptualise the same reality in terms of 

the superordinate categories. In Chapter 2, the design reasoning of Jones, who was trained 

as an electronic engineer, illustrates that different way of understanding. 

The preceding philosophical and psychological foundations show that none of these 

different models is a better match with reality than the others. The only characteristic that 

can be used to differentiate between them is the ‘usefulness’ of each model for solving 

the exact requirements of the problem. 

The foundational issues identified also state that the collection of concepts and 

relationships that constitute the analysis models must be constrained by logical 

consistency and coherence. The field of human anatomy provides an interesting 

illustrative example because the human body is a large and incredibly complex system, 

and it is something we all possess an example of. The two most prominent ways of 

modelling the gross organisational structure of the anatomical system is in terms of 

regional topography and functional systems. Table 5-3 contrasts the structural 

arrangement between two popular texts on anatomy and physiology. 

The editorial board of Gray’s Anatomy detail the rationale for the choice of organisational 

structure: 

“Gray’s Anatomy was founded on the principle that to understand the body’s 

construction it is necessary to analyze it in terms of its component systems as 

well as its regional topography. … Of course, this arrangement is to some 

extent an artificial separation of what in the body are intimately 

interdependent components, both during development and in the mature body. 

It is obvious that whilst there are indeed many clinical conditions where 

dysfunction of a particular system occurs, there are many others in which 

topographical nearness of different systems is the prime consideration. ... 

Clearly what is needed is both a systematic account and a regional, 

topographical one. … This would require much more than a single volume.” 

(Gray et al 1995) 
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Anatomy, regional and applied (Last 1978) Gray's Anatomy (Gray et al 1995) 

Discusses the smallest ‘components’ larger 

than cells. Skin, muscles, tendons, bones, 

joints, mucous membranes, serous 

membranes, blood vessels, lymphatics. It 

also discusses the nervous system. 

It then partitions the body into: Upper Limb, 

Lower Limb, Thorax, Abdomen, Head & 

Neck, and Central Nervous System. 

Partitions the body into the following 

major components: Cells & Tissues, 

Integumental System31, Skeletal System, 

Muscle, Nervous System, 

Haemolymphoid System32, 

Cardiovascular System, Respiratory 

System, Alimentary System33, Urinary 

System, Reproductive System, 

Endochrine System34, and Surface 

Anatomy. 

Table 5-3: Contrasting Anatomical Models 

If the human anatomy was to be implemented as a software system, both of these 

structural arrangements would result in different analysis models or conceptual 

architectures in which the concepts constitute a coherent and consistent system. As Gray 

states, the most appropriate conceptual model would be dependent on its intended 

function. In contrast, a conceptual model that consisted of lower limbs, thorax, respiratory 

system, skeletal system, and alimentary system would not be logically consistent. The 

different large-scale concepts overlap in function due to varying levels of generality. 

Moreover, it can immediately be seen that many functions would be impossible to 

implement due to our intimate knowledge of what bodies do. For instance, which concept 

contains the implementation of the femur (thigh bone), the ‘lower limb’ or the ‘skeletal 

system’? How could this body ‘see’ anything without any concept implementing a pair of 

eyes? The consistency of the conceptual model of this fictitious body is obviously flawed; 

our detailed knowledge of the body’s functionality and small-scale componentry make it 

obvious. However, how is it possible to detect analogous, logical, inconsistencies in the 

conceptual models of systems in domains in which we do not possess such intimate 

knowledge? The only method of assurance is a constant process of validation of the 

                                                 

31 Skin and its derivatives: hair, nails, glands, etc. 
32 Blood and its derivatives: red blood cells, bone marrow, hemoglobin, etc. 
33 Food consumption and processing. 
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model as its design proceeds. As Popper noted, the process consists of a continuous 

application of conjectures and refutations until a model is developed that can not be 

falsified. The knowledge required to identify inconsistencies in a model is dependent on 

the purpose of the model. However, that knowledge is not always immediately obvious. 

To repeat the quote used earlier, 

“To understand a problem means to understand its difficulties; and to 

understand its difficulties means to understand why it is not easily soluble – 

why the more obvious solutions do not work. We produce the obvious 

solution and then criticize them, in order to find out why they do not work. In 

this way, we become acquainted with the problem, and may proceed from bad 

solutions to better ones – provided always that we have the creative ability to 

produce new guesses, and more new guesses. … If we have been working on 

a problem long enough, and intensively enough, we begin to know it, to 

understand it, in the sense that we know what kind of guess or conjecture or 

hypothesis will not do at all, because it simply misses the point of the 

problem, and what kind of requirements would have to be met by any serious 

attempt to solve it. We begin to see the ramifications of the problem, its 

subproblems, and its connections with other problems.” (Popper 1979d) 

This issue highlights immediate questions for software engineering research. For instance, 

the analysis model of the system can also be referred to as the system’s logical or 

conceptual architecture. Research suggests that model, or architecture, should be created 

relatively early in the development process and it then sets the path for subsequent steps 

in that process. However, philosophy of science suggests that while developers may 

possess the knowledge required to validate that model early on in the development 

process, they may not possess the knowledge required to successfully falsify it. 

Moreover, it may not be until the development process is well into the design, or even the 

implementation stage, that that knowledge is generated by the developers. This would 

appear to supply some credence to software engineering researchers who claim the 

architecture of a software system cannot always be determined in the earliest stages of the 

design process as theory suggests, and that there are cases where it need not be. (Reed 

1987). 

                                                                                                                                                  

34 Regulation of internal functions. 
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A second issue that makes it difficult for developers to refute the proposed analysis model 

concerns whose knowledge has been used to develop the analysis model. Conceptual 

relativism suggests that while there is some common sense realism in that we all 

experience the same reality as sensory inputs, the conceptual arrangements we use to 

understand that sense data depends on our previous experiences and level of expertise. 

The precise meaning of the concepts and theories developed to understand and solve a 

particular problem are subjective to the person understanding it. However, the analysis 

model is derived from the requirements use-cases and they are generated by a number of 

different stakeholders in the development process. In many situations, the clients and 

users of the system, who help to generate the use-cases, have a greater level of expertise 

or knowledge in the particular problem domain than the system analysts and developers. 

Therefore, the precise meanings of the concepts and relationships specified by the clients 

in the development of use-cases would be different to those of the developers. The use-

cases represent snippets of the client’s model of how the problem domain operates, while 

the analysis model is a product of the developer’s understanding of the client’s model. As 

Popper states, it may not be until the developers have worked on the problem for a very 

long time, perhaps until the system implementation, that they fully ‘understand’ what the 

clients had intended. The fact that use-cases are represented in natural language serves to 

exacerbate the problem. Following from the previous arguments of Swartz about 

intension and extension, the majority of software development is performed in problem 

domains that consist of concepts that can not be precisely defined. Therefore, it would be 

easy for clients and software developers to have different understandings of the same 

labelled concept because of the spectrum of its ambiguity. 

The process of design aims to transform the conceptual model developed during the 

analysis stage into a collection of concepts and relationships that are implementable in 

software. The theories presented from philosophy and psychology uncover foundational 

issues that concern differences between the concepts used in analysis and those used in 

design. They also uncover issues concerning the influence of design criteria on the 

preceding analysis process, and how the evolving design model can be evaluated. 

To implement the concepts and relationships present in the analysis model, the designers 

can only utilise the constructs provided by the implementation medium of software 

development. That implementation medium consists of programming language 

constructs, operating system services, hardware execution constructs, external ‘off- the-
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shelf’ software components, and the virtual machine that executes the resulting 

software/hardware implementation to realise the solution to the problem. Different 

programming languages offer a different variety of implementation constructs. Northrop 

(Northrop and Richardson 1991) has classified them into the following design categories: 

function-orientated design, data flow-orientated design, data structure-orientated design, 

object-based design, and object-orientated design. 

Object-oriented languages are claimed to have advantages over other programming 

languages because they allow the implementation of the ‘concepts we perceive’ by 

encapsulating data and functionality into a single implementation construct. Object-

oriented design proceeds by identifying and specifying the properties and functionality of 

the concepts identified in the analysis model. However, the ‘refinement’ of previously 

identified concepts occurs within the influence of other constraints placed on the 

developers. Those constraints include: 

• The partitioning of the solution into major components and their means of 

communication – the system architecture. 

• The stipulation of interfaces for those components to specify the exact nature of 

component interaction.  

• The specification of control flow to stipulate how the system will be executed by 

the machine to realise the solution. 

• The consideration of non-functional requirements such as system performance, 

maintainability, and modifiability. 

• The desire to utilise previously existing software components.  

Jacobson et al (Jacobson, Booch et al. 1998) provide a comparison of the differences 

between the analysis and design models: 
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Analysis Model Design Model 

Conceptual model, because it is an 

abstraction of the system and avoids 

implementation issues 

Physical model, because it is a blueprint of 

the implementation 

Design-generic (applicable to several 

designs) 

Not generic, but specific for an 

implementation 

Three (conceptual) stereotypes on classes: 

<<control>>, <<entity>>, and 

<<boundary>> 

Any number of physical stereotypes on 

classes, depending on the implementation 

language 

Less formal More formal 

Less expensive to develop (1:5 ratio to 

design) 

More expensive to develop (5:1 ratio to 

analysis) 

Few layers Many layers 

Dynamic (but not much focus on 

sequence) 

Dynamic (much focus on sequence) 

Outlines the design of the system, 

including its architecture 

Manifests the design of the system, 

including its architecture (one of its views) 

Primarily created by “leg work”, in 

workshops and the like 

Primarily created by “visual programming” 

in round-trip engineering environments; 

the design model is “round-trip 

engineered” with the implementation 

model 

May not be maintained throughout the 

complete software lifecycle 

Should be maintained throughout the 

complete software lifecycle 

Defines a structure that is an essential 

input to shaping the system – including 

creating the design model 

Shapes the system while trying to preserve 

the structure defined by the analysis model 

as much as possible. 

Table 5-4: Comparison of the Analysis Model and the Design Model (from (Jacobson, 
Booch et al. 1998) p. 219) 
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While there are specific differences between the two it is assumed that the design model 

is based, in part, on a refinement of what exists in the conceptual model. However, the 

issues of philosophy and psychology show there are more significant differences than 

those presented in conventional object-oriented design literature. 

Analysis Model Design Model 

Concepts and relationships can not be 

precisely defined by intension. 

Concepts and relationships must be 

defined by essential features and specific 

functionality 

The precise meaning of concepts and 

relationships is dependent on the context 

of the theory in which they are contained 

The precise meaning of concepts and 

relationships, their definitions, are 

independent of the system in which they 

are implemented. 

Concepts and relationships are constrained 

only by the previous experience and 

imaginative ability of the stakeholders in 

the development process 

Concepts and relationships are constrained 

by the constructs provided by the 

implementation medium and the execution 

model of the virtual machine that executes 

it. 

Table 5-5: Comparison of the Analysis Model and Design Model based on the 
Philosophical and Psychological Foundations 

One of the claimed advantages of object-oriented development is that developers can use 

objects in a uniform modelling approach throughout the development process (Kaindl 

1999). That belief is based on the classical theory of conceptual understanding, which 

states that all concepts can be specified in terms of essential features or intensional 

definitions. As philosophers and psychologists have noted, the classical theory of 

categorisation has proved too simplistic to explain the human thought process and has 

now been superseded by more sophisticated theories. The foundations show that the 

components of the analysis and design models, though the same label may be used to 

refer to them, represent inherently different things. This explains why the transition from 

object-oriented analysis to design is not as easy as suggested by object-oriented design 

methods. Those methods suggests the transition is smooth and easy, in practice it has 

been shown to be quite difficult (Kaindl 1999). This also explains why researchers are 

beginning to question the assumption that object-orientated development is advantageous 
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because it allows developers to more easily implement their model of reality (see for 

example (Hatton 1998)). 

As stated previously, the problem with the classical theory of definition is that concepts 

are defined in terms of attributes, which themselves have to be defined. The result is an 

infinite regress of definitions. That problem is not faced by design model concepts in 

software development because they have been built by aggregating, encapsulating, and 

abstracting the constructs provided by the implementation medium. Analysis model 

concepts can not be defined because there exists no axiomatic level of definition in our 

conceptual apparatus. In contrast, the concepts used in the design and implementation 

models of software are built on top of the axiomatic definitions of the Von Neumann 

computer architecture. Progress in software development has produced abstractions that 

allow developers to design and implement above that axiomatic level. Moreover, the 

progress from machine code languages to assembler level languages, and then data flow-

orientated design, data structure-orientated design, function-orientated design, object-

based design, and object-orientated design has made it appear as though developers can 

now analyse, design, and implement systems using notations that closely match our 

models of reality. That justification for progress in software design methods and 

languages has been based on the classical theory of concept definition. Research in the 

fields of philosophy and psychology has shown that view is too simplistic.  

Dreyfus has noted this same phenomenon in his critique of artificial intelligence research 

(Dreyfus 1992). Artificial intelligence attempts to formalise intelligent activity by 

transforming it into a set of computer instructions. He shows this is based on the 

ontological assumption that explicit facts exist in the world and they can be formalised in 

the context- free environment of computer software. That assumption is similar to the one 

implicitly made by software engineers and, as has been suggested by philosophers and 

psychologists, is also made by most communities, both scientific and non-scientific, who 

seek to understand human thought processes. Dreyfus quotes Chomsky (from Language 

and Mind) to note the predisposition of researchers to use simplistic examples to justify 

the belief in the classical theory of understanding35. 

                                                 

35 Other software engineering researches that exemplify these foundational issues are presented in the next 
chapter. 
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“There has been a natural but unfortunate tendency to ‘extrapolate’, from a 

thimbleful of knowledge that has been obtained in careful experimental work 

and rigorous data-processing, to issues of much wider significance and of 

greater social concern.” ((Dreyfus 1992) p. 79) 

The previous discussion of the analysis model considered the effects of the philosophical 

and psychological foundations on how that model is evaluated during development. 

Those effects have even more ramifications during the design and implementation stage. 

If the developers don’t develop the knowledge required to falsify the model until the 

design or implementation phases, and a falsifying example then appears, does the model 

need to be replaced? It may be that the originally conceived collection of concepts and 

relationships appeared adequate to satisfy the required properties in the implementation. 

However, a new situation may present itself during the implementation stage that was not 

previously considered. Similarly, the requirements may be modified to consider a new 

situation that was not previously required. Does the model need to be substantially 

modified or can the required properties be implemented within the previously existing 

concepts? Can the conceptual integrity of the model be ‘fudged’ to ensure the designed 

model continues to satisfy the requirements? These are all questions for future research. 

5.6 Conclusion 
Software engineering research would like to improve the development of software 

systems by using approaches similar to those of traditional engineering disciplines. The 

evolution of those other engineering approaches has been based, at least in part, on the 

underlying principles of the systems those disciplines design and build, and the materials 

and components used to build them. The task for software engineering research is to 

identify the underlying properties of software systems and determine if they can lead to 

an analogous engineering approach for software development. Those underlying 

principles are based on the notions of concepts, abstractions, theories, and models. The 

disciplines of both philosophy and psychology have a long history of studying those 

principles and this chapter has examined the relevant research in those areas to identify 

the foundational principles of software engineering. Unfortunately, there are no pre-

packaged collection of theories in the history of philosophy or psychology that explain all 

of the issues involved when developing conceptual models in the manner required in 
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software engineering. Not only does a single answer not exist but there are many potential 

answers available in the literature of those fields. 

This study has identified two broad ways of understanding the underlying principles of 

software systems that appear to exist in both philosophy and psychology. The first, the 

classical way of understanding, assumes a positivist approach where people are separate 

from the world of sensory experience and all people experience the same reality. As 

people operate in the world, they generate knowledge by identifying concepts and 

categorising them in terms of the essential attributes they exhibit. Moreover, because the 

world exists separate from our knowledge of it and all people experience the same reality, 

that knowledge captures the world as it really is. With the classical way of understanding, 

software components – concepts and theories – can be understood in an analogous way as 

traditionally engineered components. Those traditional engineering components are 

described in terms of particular properties, and mathematical idealisations of their 

behaviour can be developed based on those underlying properties. Therefore, the classical 

way of understanding would provide a philosophical foundation for software engineering 

research based on the artefact engineering view of software development. 

That classical way of understanding has been the dominant way of understanding the 

underlying principles of software systems until very recently. Furthermore, it has been 

noted that the view still dominates the guiding philosophy of most people outside the 

relevant areas of research in philosophy and psychology. Nevertheless, contemporary 

research has identified many anomalies with that classical view and has deve loped an 

alternative, more sophisticated way of understanding based on the subjective nature of 

our interaction with the world. In contrast with the positivist approach, it is suggested that 

people cannot consider their knowledge of the world as separate from the world itself. 

People do not observe the pre-existing parts of the world and categorise them based on 

essential attributes. Instead, as people interact with the world, they apply explanatory 

theories that help them understand and solve the problems at hand. Those theories are 

automatically and subconsciously applied to reality so that what is conceptualised is 

determined, not only by what is there, but by how we have been trained to understand it. 

Consequently, all observation is theory- laden. Those theories are passed on through 

language and cultural conventions and are modified to become more sophisticated as our 

experience in a particular domain grows. Concepts do not identify the pre-existing parts 

of the world and they cannot be universally defined in terms of essential attributes. 
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Concepts play roles in our innate theories of understanding and their meanings are 

specific to the theory in which they play that role and our level of experience in using 

those concepts and theories. 

This new way of understanding the underlying principles of software systems contradicts 

the classical way, and consequently, contradicts the artefact engineering view of software 

development that pervades software engineering research. Alternatively, that new way of 

understanding provides a philosophical foundation for software engineering research that 

supports a model building view of software development. 

That foundation does not dismiss the goal of developing an engineering approach to 

software development. What is required is research that explores engineering techniques 

based on the philosophical foundations of model building rather than artefact engineering. 

Moreover, this chapter has not attempted to provide a definitive summary of all the 

relevant issues. That would be a separate thesis in itself. Rather, it has tried to show that 

the issues are important and significantly affect our understanding of what software 

engineering is all about. Hopefully, it will provide enough evidence to start the debate 

that, over a period of time and perhaps in conjunction with researchers in those other 

fields, will determine the theories necessary to develop an engineering approach to 

software development. 
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6. Evaluating Software Engineering Research 

6.1 Introduction 
Despite 30 years of research, there exists a clear dichotomy between the practice of 

software development and the approaches suggested by software engineering theory. Our 

discipline is littered with examples of development ideas that appeared to offer great hope 

and dominated research agendas but soon fell by the wayside. The problem is that 

because there has been no understanding of the underlying principles of software systems 

and their development, there has been no basis for evaluating those software engineering 

ideas. Although empirical studies have increasingly become part of the field in the last 

few years, software engineering research can be described as the science of non-

reproduced results36. 

While it is difficult to label any single, encompassing belief as the ‘conventional view’ of 

software engineering, the use of analogies with traditional engineering disciplines is a 

long and established tradition that promotes the artefact engineering view as the most 

popular means of driving research agendas. In the absence of a widely accepted 

understanding of software based on underlying principles, understanding has had to rely 

on analogies with ‘built artefact’ disciplines. Therefore, when software engineering ideas 

are proposed to improve development practices, they appear to be plausible because our 

understanding is already implicitly based upon them. Moreover, as a result of the demand 

for more and more applications, we are now desperately in search of more efficient ways 

of building systems. Ross predicted the inherent danger of this situation at the original 

NATO conference. 

“Ross: My main worry is in fact that somebody in a position of power will 

recognize this crisis … and believe someone who claims to have a 

breakthrough, an easy solution. The problem will take a lot of hard work to 

solve. There is no worse word than ‘breakthrough’ in discussing possible 

solutions.” (NATO 1976a) (p. 81) 

                                                 

36 Reed made this observation with respect to Computer Science in 1991 (Reed 1991) though, historically, it 
applies equally well to software engineering.  
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The history of our discipline shows that Ross was quite perspicacious. There has been a 

virtual myriad of ‘silver bullets’, each touted as “…a breakthrough, an easy solution”. 

Nevertheless, despite their apparent plausibility, those ideas either do not work in practice 

or they are simply not adopted. The reason suggested by this thesis is that our existing 

understanding of software engineering – the artefact engineering view – does not match 

the way people actually build software. 

Chapters 2, 3, and 4 presented the history and application of that understanding and 

analysed it in detail revealing many anomalies. Chapter 5 then provided a foundation for 

software engineering based on the underlying principles of software systems and the 

cognitive processes required to develop them – the model building view of software 

development. That view provides the framework with which it becomes possible to 

evaluate and justify past, present, and future software engineering research ideas. A 

primary goal of that research should now be to continue the exploration of those 

underlying principles so that ideas for the improvement of software development can be 

evaluated without relying solely on the analogies that have dominated our field so far.  

Amongst the barriers to real progress in our field is the lack of understand ing of the way 

research-based disciplines progress. One of the arguments put to justify the current state 

of software engineering is that it is young, and that other bodies of science and 

engineering have existed for hundreds, and in some cases, thousands of years. Moreover, 

the history of science has revealed the many mistakes and periods of slow progress made 

by those disciplines. Therefore, some argue why should we be concerned at our current 

relative position on the path of progress? However, if we can understand the way in 

which those other (scientific and engineering) disciplines have evolved, and can identify 

the nature and causes of those things which prevented progress, then perhaps we can 

avoid them and accelerate our own improvement. 

That understanding is developed in this chapter by presenting the relevant work from the 

history and philosophy of science. That work details the way in which research in a 

particular discipline, including the formulation and evaluation of empirical studies, is 

guided by underlying assumptions that can change over time. Those changes however, 

lead to vastly different collections of theories to explain the phenomena under 

investigation. Unfortunately, it is difficult to compare alternative theories that are based 

on different guiding assumptions. Moreover, the ideas presented show that when research 
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based on a new set of guiding assumptions is proposed, it is often difficult for researchers 

to change from their established way of thinking. 

The conjecture of this thesis is that this is what is happening in software engineering 

research. The artefact engineering view has been the established and dominant guiding 

assumption in software engineering research. However, a better understanding of the 

underlying principles of software systems and their development can lead to an improved 

way of understanding software engineering, that is, the model building view. 

In addition, examples are presented to show that the model building view has already 

provided useful contributions to software engineering research. The foundations 

elucidated in the previous chapter and the philosophy of science ideas of this chapter have 

been used to build new ways of understanding important aspects of software 

development. They range from Ambler et al’s approach to understanding the effects of 

different programming paradigms; to more general descriptions of how these issues 

impact the entire software lifecycle (e.g., Dahlbom); and finally to specific theories of 

software engineering provided by Naur and Blum. These researches present interesting 

and progressive ways of thinking about software development but they certainly have not 

led to mainstream research and design practices. However, they can now be re-evaluated 

in a new light.  

6.2 The Progression of Research-Based Disciplines 
The history and philosophy of science has developed many theories that explain the 

progress of research-based disciplines. The most popular of those is the work of Thomas 

Kuhn, and his ideas are often cited in software engineering research. However, his ideas 

are certainly not the only ones, nor are they the most recent. This section aims to present a 

brief, though comprehensive, account of those explanations to develop an understanding 

of how research in general is justified and evaluated and, hence, how software 

engineering research can be improved. The exposition begins with the relevant aspects of 

the accounts provided by logical positivism and Karl Popper. The work of Kuhn is then 

presented in detail and that is followed by the alternate explanations provided by 

Feyerabend, Lakatos, and Laudan. While that amount of detail may appear excessive, 

researchers often cite some of the more popularly known though controversial aspects of 

those theories. Therefore, an attempt has been made to provide enough information to 

avoid that problem, which has been previously identified by Bechtel. 
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“Most scientists, however, simply adopt a philosophy of science that is 

popular, or that suits their purposes, and cite it as authority. This proclivity to 

borrow positions from philosophy is rather common but poses serious dangers 

because what might be controversial in philosophy may be accepted by a 

particular scientist or group of scientists without recognizing its controversial 

character.” (Bechtel 1988b) 

Logical positivism, as detailed in the previous chapter, became the dominant explanation 

for the progression of scientific disciplines in the 20th century. One of its main tenets was 

that nature had an underlying logical order that could be captured in rigorously specified 

explanatory theories. Hypotheses devised to explain real world events and phenomena 

were verified by deducing them from existing, axiomatic ‘laws of nature’, using known 

facts as initial conditions, and through experimentation to ensure they successfully 

predicted natural phenomena. Because those theories, or laws, captured the logical nature 

of reality, there could be no alternative paradigms for explanation. Therefore, according 

to the logical positivists, disciplines progressed in a cumulative manner by discovering 

the laws of the objective reality that was experienced by all. Although the central tenets of 

logical positivism have been subsequently refuted and alternative explanations for the 

progress of scientific disciplines have been proposed, researchers note that they still exert 

a powerful influence on the way people, especially those not familiar with the history and 

philosophy of science, believe disciplines progress (Bechtel 1988b).  

Popper provides the first major objection to the positivist model of scientific progress. As 

the previous chapter detailed, his attacks began with the beliefs that induction could be 

used to develop hypotheses and that experimentation could be used to verify them as laws 

of nature. His theories about ‘conjectures and refutations’ show it is impossible to prove 

that scientific theories match a logical order of reality. The best that can be achieved are 

theories that provide useful explanations of the observed phenomena. The goal of science 

is to develop theories and then attempt to falsify them. Theories are only valid in the 

sense that they were yet to be falsified. As detailed in the previous chapter, one of the 

important features of Popper’s theories, and earlier commentators such as Poincaré, is that 

observation is theory- laden. Popper attempts to account for the theory- ladeness of 

observation with his 3-world model of scientific knowledge. His conclusion is that 

theories are implicitly applied to the reality we experience in an attempt to understand it. 

Therefore, scientific progress is not the linear accumulation of theories that capture the 



Evaluating Software Engineering Research 

Understanding Software Engineering  282 

logical structure of the objective reality we all share. Rather, it is the development of 

improved theories, through conjectures and refutations, which continually home in on the 

truth. Progress is concerned with the development of theories that provide better 

explanations of reality. Moreover, while we cannot prove that we experience the same 

objective reality, Popper’s model results in a world 3 that allows people to share the 

explanatory theories of that reality – that is, they share an objective knowledge of reality. 

The previous chapter noted that philosophers after Popper argued he did not fully 

consider the effects of the theory-laden nature of observation. Their theories differed from 

Popper’s by giving alternate descriptions for the way in which people identify concepts 

and theories and how they are used to explain phenomena. Those issues were then 

developed into more detailed models of the progression of scientific disciplines. 

Moreover, their models include a more thorough analysis of historical activity in those 

disciplines than previously considered. 

Kuhn’s The Structure of Scientific Revolutions (Kuhn 1962) provides a far different 

account of progress in a discipline than previously considered. Based on his review of 

historical accounts, Kuhn identifies five different stages in the progress of a scientific 

discipline: (1) immature science, (2) normal science, (3) crisis, (4) revolution, and (5) 

resolution. An immature science develops into a normal science as its initial theoretical 

foundations are laid and a set of theories is devised to explain and predict observed 

phenomena (Kuhn 1977c). It is the description of the remaining phases that set Kuhn 

apart from previous philosophies of science. 

Normal science operates within a dominant paradigm that provides the underlying 

guiding assumptions that govern the way practitioners in a discip line understand the 

phenomena they seek to explain and provides a common conceptual framework that 

allows researchers to work on problems together. Philosophers still debate the exact 

definition of a Kuhnian paradigm. However, for the purposes of this discussion it can be 

explained as a collection of theories, methods, and standard example problems. Because 

of the theory- laden nature of observation, the paradigm sets the contextual framework 

that constrains a practitioner’s view of the world to the concepts that fit within the 

framework. Moreover, researchers are often unaware of the guiding influence of those 

assumptions. For example, the physics paradigm of Newtonian mechanics provides a 

contextual framework that constrains the physicist to conceptualising the world in terms 
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of forces and masses. Theories devised within that paradigm can only be constructed in 

terms of the concepts allowed by the paradigm.  

Within the stage of normal science, practitioners are indoctrinated into a paradigm during 

their education. Students are taught using textbooks that feature the paradigm-defining 

concepts, theories, and example problems. They are rarely exposed to the sort of research 

problems that may question the paradigm until they are well established in the discipline. 

Moreover, those textbook examples merely reinforce the relevant theories and omit the 

information about how that knowledge was acquired and about why it was accepted by 

the profession (Kuhn 1977b).  

As practitioners work during a period of normal science they continue to do what they 

learned to do as students – imitate the exemplars they learned in school in new contexts 

(Bechtel 1988b). The examples and models provide analogies that practitioners can apply 

to other problems (Kuhn 1977d). The theories developed by practitioners are not the 

imaginative leaps of understanding suggested by Popper, which are conjectured and 

subsequently tested by refutation. Practitioners devise their theories based on a 

constraining framework and attempt to fit those theories to nature in order to explain it. 

However, those theories seldom fit nature precisely. Practitioners don’t look for exact 

matches between experiment and theory. Instead, they look for reasonable agreement. 

During normal science those discrepancies between theoretical predictions and empirical 

observations are not taken to falsify the theory, but rather as creating further problems 

that scientists must solve. (Kuhn 1977b). 

“Closely examined, whether historically or in the contemporary laboratory, 

[normal science] seems an attempt to force nature into the preformed and 

relatively inflexible box that the paradigm supplies. No part of the aim of 

normal science is to call forth new phenomena; indeed those that will not fit 

in the box are often not seen at all. Nor do scientists normally aim to invent 

new theories, and they are often intolerant of those invented by others. 

Instead, normal-scientific research is directed to the articulation of those 

phenomena and theories that the paradigm already supplies.” (Kuhn 1962) (p. 

24). 

The prevailing paradigm facilitates theoretical successes at the outset, however, Kuhn 

argues that eventually anomalies accrue and scientific discoveries of natural phenomena 
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are made that conflict with the established way of understanding. Eventually the 

discipline reaches a stage of ‘crisis’ and new fundamental theories are required. To 

explain these anomalies, alternative theories are suggested that go outside the contextual 

framework of the guiding paradigm but which offer their own promise of a new problem-

solving tradition. As these new theories gather supporters, they compete to become the 

new guiding paradigm of the discipline. However, it is not easy to systematically compare 

new paradigms with each other or with the established paradigm. According to Kuhn, 

because of the theory-laden nature of observation, all observations, including the results 

of experiments, are reported in a theory or paradigm dependent manner. The problem is 

commonly referred to as the incommensurability of theories. Proponents of competing 

paradigms have to resort to non-rational or non-quantifiable means for advancing their 

claims, for example thought experiments (Kuhn 1977a). Their arguments are necessarily 

circular in that they can only use the concepts and theories allowed by the paradigm in 

that paradigm’s defence (Kuhn 1962) (p. 94). Eventually a new paradigm emerges as the 

dominant one. However, because of the incommensurability of theories, practitioners 

cannot simply add the new paradigm to the existing one. A revolution is required in 

which the concepts and theories of the existing paradigm are replaced by the new one. 

“The transition from a paradigm in crisis to a new one from which a new 

tradition of normal science can emerge is far from a cumulative process, one 

achieved by an articulation or extension of the old paradigm. Rather it is a 

reconstruction of the field from new fundamentals, a reconstruction that 

changes some of the field’s most elementary theoretical generalizations as 

well as many of its paradigm methods and applications.” (Kuhn 1962) (p. 84). 

The revolution does not guarantee that all practitioners will switch to the new way of 

conceptualising the research problems of the discipline. There exists an enormous inertia 

to switching between paradigms. Indeed, that is why Kuhn argues that paradigm 

revolutions cannot occur until the discipline has reached a stage of crisis that makes the 

practitioners open to new ideas.  

“As Kuhn describes the history of scientific development, it becomes quite 

apparent that scientists are on the whole pretty much like the rest of us, and 

are inclined to defending their preconceptions and commitments than to 

leaping off into the dark.” (Abel 1981) 
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While many practitioners will eventually be coerced towards the new paradigm as a way 

of solving the anomalies of the prevailing crisis, Kuhn argues that some will cont inue to 

cling to their established ways of thinking. 

“The transfer of allegiance from paradigm to paradigm is a conversion 

experience that cannot be forced. Lifelong resistance, particularly from those 

whose productive careers have committed them to an older tradition of 

normal science, is not a violation of scientific research standards but an index 

to the nature of scientific research itself. The source of resistance is the 

assertion that the older paradigm will ultimately solve all its problems, that 

nature can be shoved into the box the paradigm provides… Conversions will 

occur a few at a time until, after the last holdouts have died, the whole 

profession will again be practising under a single, but now different 

paradigm.” (Kuhn 1962) (pp. 151-152) 

When the new paradigm gains ascendancy, the final stage, resolution, is achieved, and a 

new period of normal science occurs. The cycle is then repeated. 

Kuhn’s theories are quite popular and are often cited in software engineering research 

literature, especially as justification for some new idea or as reference to the often-used 

term – ‘paradigm’. However, other philosophers of science have provided different or 

more sophisticated explanations for the progression of professional disciplines. The most 

radical of these is Feyerabend. His theories, also based on significant historical analysis, 

take the theory- laden nature of observation and the incommensurability of theories to 

more extreme consequences. He argues that because of the influence of the prevailing 

wisdom on the way practitioners of a discipline conceptualise the phenomena under 

investigation, it unduly biases their attempts to falsify it. The underlying governing 

assumptions help determine what is labelled as significant facts or data. Consequently, it 

may not be until a theory from an opposing paradigm or set of guiding assumptions is 

considered that data comes to light that can falsify an established theory. 

Feyerabend believes a particular paradigm should never be allowed to dominate a 

discipline and that there should be no ‘normal science’ as Kuhn described it. Because 

practitioners become indoctrinated into a paradigm-specific view of their discipline, they 

unnecessarily reject alternative approaches. He argues that practitioners should entertain 

these alternatives before the crisis stage is reached. This is especially difficult as the 
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newer alternatives will not be as developed as the established paradigm and may contain 

errors and problems that make it easy for ardent supporters of the established paradigm to 

criticise them. 

“Science is a complex and heterogeneous historical process which contains 

vague and incoherent anticipations of future ideologies side by side with 

highly sophisticated theoretical systems and ancient and petrified forms of 

thought. Some of its elements are available in the form of neatly written 

statements while others are submerged and become known only by contrast, 

by comparison with new and unusual views.” (Feyerabend 1979) (p. 146) 

Feyerabend’s views are often unfairly dismissed as being extreme. His most popularly 

cited book, Against Method (Feyerabend 1979), was deliberately written from a 

provocative perspective so that it could be contrasted with a companion volume to be 

written by his friend and fellow contemporary philosopher of science, Imre Lakatos. 

Unfortunately, Lakatos died before it could be written. Lakatos’ work offers an account 

of scientific progress that provides the large-scale structure missing in Popper’s theories 

while allowing more flexibility for theory enhancement than Kuhn’s revolutions and 

without resorting to the methodological anarchy proposed by Feryerabend. Unlike Kuhn, 

Lakatos proposes that disciplines consist of competing paradigms rather than there being 

a single dominant one and that progress comes from within those paradigms rather than 

completely replacing one with another. He introduces the notion of a ‘research 

programme’, which contains the guiding assumptions for the discipline. A research 

programme consists of a ‘hard core’ set of assumptions and theories that must be accepted 

by the practitioners and cannot be modified. In addition, a ‘protective belt’ of auxiliary 

assumptions and theories surrounds the hard core. Progress consists of developing new 

theories in the protective belt to accommodate evidence that either has accumulated or is 

developed in the course of the research (Bechtel 1988b). Those developments are made in 

both the early stages of the discipline, to deal with unrealistic assumptions that need to be 

corrected, and in subsequent stages of the discipline to deal with anomalies detected by 

practitioners during their research (see ‘Rationality, Historicist theories of’ in (Zalta 

1999)). 

Lakatos argues that changes to the protective belt could either be ‘progressive’ or 

‘degenerative’. If the modifications provide explanations for the anomalies detected, and 

they continue to explain everything that the previous theories explained, and they allow 
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the research programme to make new predictions, then the change is progressive. In 

contrast, if the modification simply rearranges the existing assumptions to deal with the 

anomalies, but without resulting in any new predictions, then it is degenerative. Lakatos 

argues that disciplines could progress, go through extended periods of degeneration, and 

then progress again. As Bechtel points out, the nurturing of new and diverse paradigms is 

essential for the development of any discipline, even when they may,  at first sight, be 

thought to be ‘degenerative’. (Bechtel 1988b) 

Laudan’s explanation of scientific progress attempts to deal with problems he identified 

in the theories of Kuhn and Lakatos. Laudan’s ‘research tradition’ is similar to the  

‘research programme’ of Lakatos, however it is less rigid and does not consist of an 

immutable set of hard core theories. The content of his research tradition is a collection of 

common ontological assumptions about the nature of the world and methodological 

principles about how to revise theories and generate new ones. Laudan details two types 

of problems that must be overcome by a research tradition. The first are empirical 

problems such as experimental and observed anomalies that must be explained using 

theories within the common ontological assumptions. The second are conceptual 

problems that may manifest themselves as logical inconsistencies between two theories or 

accepted viewpoints within the research tradition. 

Laudan also differs from Lakatos in how competing research traditions result in progress 

for the discipline. He argues that an established research tradition, which has solved the 

most problems, should be accepted as the most useful. However, an alternative tradition, 

which is currently solving problems at the fastest rate, should also be pursued. Unlike 

Lakatos, Laudan does not believe alternative traditions should be cumulative. It may be 

that an alternative tradition provides progress in an otherwise unsolved area at the 

expense of not being able explain previously solved problems. For Laudan, scientific 

progress is not about the research tradition that comes closest to the truth. Progress in a 

discipline can only be measured by the continual solving of problems. 

These descriptions provide a glimpse of the many different theories proposed to explain 

the progress of scientific disciplines and research-based disciplines in general. At present, 

there is no single, universally agreed model that explains the progress of disciplines. This 

presents a problem for using these ideas to explain the progress of software engineering. 

Indeed, some researchers, as will be shown, have used this problem to argue that we 

should not use philosophy of science ideas at all in our own research. However, Laudan et 
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al (Laudan, Donovan et al. 1986) provide a comprehensive survey of the different 

philosophical models of theory change and note areas of substantial agreement between 

them. Those areas are summarised so they can be used to understand how software 

engineering research can be evaluated and justified. 

The areas of agreement include: 

1. The most important units of understanding scientific change are large-scale, relatively 

long- lived conceptual structures which different modellers refer to as ‘paradigms’, 

‘global theories’, ‘research programmes’, or ‘research traditions’, and which, for 

neutrality, we term ‘guiding assumptions’. 

2. Guiding assumptions, once accepted, are rarely if ever abandoned simply because 

they face empirical difficulties. They tend to endure in spite of negative experimental 

or observational tests. In short, negative evidence is less important in the assessment 

of large-scale theories than is commonly thought… 

3. Data do not fully conform to theory choice, i.e., observations and experiments do not 

provide a sufficient base for unambiguous choices between sets of guiding 

assumptions or between rival theories. 

4. Metaphysical, theological, and other non-scientific factors play an important role in 

the assessment of scientific theories and guiding assumptions. Assessment is more 

than just a matter of the relationship between the guiding assumptions or theory and 

the evidence. 

5. Assessments of guiding assumptions depend as much upon judgements about their 

potential as on their record of performance, and the former is not reducible to the 

latter. 

6. Scientists do not make absolute judgements about the merits or demerits of a 

particular set of assumptions or a particular theory, but comparative judgements about 

extant rivals. 

7. There are no neutral observations in science; rather they are all theory- laden, although 

not necessarily laden with the theories whose competition that arbitrate. 

8. The generation of new, and the modification of existing scientific theories is not a 

random process; rather in most cases it takes place with respect to a heuristic or set of 

guidelines. 
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9. Guiding assumptions are never abandoned unless there is a new set available to 

replace them. 

10. The coexistence of rival sets of guiding assumptions in a science is the rule rather 

than the exception. Debate about rival sets of assumptions does not alternate with 

periods of universal assent to one set, but occur constantly. 

11. New sets of guiding assumptions are not judged by the same yardstick as well-

established sets. 

12. A later set of guiding assumptions seldom accommodates all the explanatory 

successes of its predecessors. There are losses as well as gains in the replacement 

process. 

13. The technical machinery of confirmation theory and inductive logic has little if any 

light to shed on theory appraisal. 

14. The assessment of low-level scientific theories is based in part on the success of the 

guiding assumptions with which they are associated. 

15. The solutions given to problems by a scientific theory are often recognised as 

approximate only when that theory has been replaced by a new theory. 

Laudan et al (Laudan, Donovan et al. 1986) also summarise the areas where the major 

philosophies of scientific progress disagreed though they are not included here. 

6.3 New Guiding Assumptions for Software 
Engineering: The Model Building View 

The use of traditional engineering disciplines as a source of ideas for the improvement of 

software development has provided a set of guiding assumptions that has allowed 

software engineering researchers to produce many useful theories since the NATO 

conferences of the late 60s. However, previous chapters have explored in detail the nature 

of the artefact engineering view of software development and identified many anomalies 

in it. Subsequent chapters explored the nature of concepts, theories, and abstractions 

using research from epistemology, metaphysics, psychology and the history and 

philosophy of science. That analysis suggests theories based on a model or theory 

building view are another useful source of guiding assumptions for improving software 

development. Research ideas based on the model building view already have a history in 

software engineering research, though they are hardly ‘dominant’. Much of that research 
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incorporates these ideas in specific aspects of software development. However, other 

work, specifically that of Naur and Blum, uses it to detail a new way of thinking about 

software engineering in general. This section details some of those ideas and suggests 

they should be pursued more explicitly in future research. 

It should be noted however, that this is not meant as a thorough analysis of their work. 

Nor does it suggest that particular aspects of their theories are entirely correct or that they 

are first to make them. For example, Blum’s definition of ‘software engineering’ is hardly 

the most thorough or useful, nor has he been the first person to criticise the quest for a 

‘silver bullet’. What the presentation seeks to achieve is to make evident the fact that 

software engineering research based on a different set of guiding assumptions to the 

conventional, artefact engineering view already exists. Moreover, that research may need 

to be re-evaluated with respect to a more sophisticated way of understanding the way in 

which research-based disciplines eva luate their work, and therefore, progress as a whole. 

The detailed analysis of that research would be the subject of future work. 

6.3.1 Applying the Model Building View to Specific Aspects of Software 
Development 

6.3.1.1 The Influence of Programming Language Paradigms 

Ambler, Burnett, and Zimmerman detail the way different programming language 

paradigms guide the problem solving process of software development by providing a 

framework of conceptual structures for expressing the solution (Ambler, Burnett et al. 

1992). While they do not explain paradigms in terms of Kuhn or other philosophers, their 

descriptions show their concept of programming paradigms is certainly equivalent to the 

way they are used by philosophers.  

“A programming paradigm is a collection of conceptual patterns that together 

mould the design process and ultimately determine a program’s structure. 

Such conceptual patterns structure thought in that they determine the form of 

valid programs. They control how we think about and formulate solutions, 

and even whether we arrive at solutions at all. 

Once we can visualize a solution via a paradigm’s conceptual patterns, we 

must express it within a programming language. For this process to be 

effective, the language’s features must adequately reflect the paradigm’s 

conceptual patterns… In practice, a language that supports a paradigm well is 
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often hard to distinguish from the paradigm itself.” (Ambler, Burnett et al. 

1992) 

The philosophical theories presented in the previous chapter noted that all observation is 

theory- laden and that there are many different, yet useful ways to conceptualise the 

phenomena under investigation. Ambler et al observe that different programming 

language paradigms help to constrain the types of concepts and relationships the 

developer implicitly applies to the problem domain to those that can be implemented in a 

particular style of programming language. That is, while many design methodologies are 

programming language independent, it is often easier to implement the results of a 

particular design method using a particular programming language. 

They classify programming languages into three categories that together capture the 

continuum of approaches to software systems implementation. 

• Operational Paradigms: The operational approach encompasses languages that 

explicitly define the sequence of step-by-step instructions required to construct a 

solution. This paradigm captures many different types of languages. These include 

imperative or procedural languages that capture, in an abstract model, the 

structure and operations of a Von Neumann-style machine architecture. These 

languages allow the specification of data variables and how they should be 

manipulated, step-by-step, during system execution. The operational paradigm 

also includes object-oriented languages, which capture the same model but 

encapsulate the functionality and data within a single structure. Also included are 

functional languages, such as lisp and scheme, which specifies a systematic 

approach based on a mathematical model of functional composition. These 

languages need to specify the step-by-step approach to implementation but using 

an abstract model of a virtual machine implemented above the traditional Von 

Neumann architecture. 

• Definitional Paradigms: In the definitional paradigm there is no step-by-step 

description of how to execute the solution. The programming languages construct 

solutions by stating facts, rules, constraints, equations, transformations, and other 

properties about the solution value set. From this information, the system must 

derive a scheme, including an evaluation ordering, for computing a solution. 

These languages include rule-based languages that rely on inference engines, 
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transformational approaches, logic-based languages, and constraint-based 

programming languages. 

• Demonstrational Paradigms: Programming by demonstration or by example, 

neither specifies operationally how to compute a value nor set constrains in the 

solution value set. Rather, they demonstrate solutions to specific instances of 

similar problems and let the system generalise an operational solution from the 

demonstrations. These languages include many visual or iconic programming 

languages. 

6.3.1.2 The Philosophy of the Software System 

Lawson also exemplifies some of the aspects of the model building view in his 

Philosophies for Engineering Computer-Based Systems (Lawson 1990). The initial 

description of his thesis is similar to the issues discussed by Ambler et al. 

“Software engineering methods and tools are important, but they should be 

the result of a well-developed philosophy for solving the application problem. 

By philosophy I mean a unifying common view of how a problem or a class 

of problems shall ‘in principle’ by treated. The view, which is based on 

concepts, must be commonly held by all project team members and all other 

parties with vested interests. It involves the development of a strategy from 

which decisions (large and small) emanate.” (Lawson 1990) 

As an example, Lawson details the design rationale behind the development of the Simula 

programming language. He notes that it’s philosophy was aimed at solving a particular 

class of problems and its users found it useful for a much wider class of programming 

problems. During his subsequent analysis of ‘philosophies’ Lawson discusses 

‘philosophical decay’, citing the OS/360 operating system project as an example. During 

that project, the initial philosophy of the solution degenerated as new features were 

added, time pressures intensified, and additional people were added to the project. 

Lawson’s conclusion was that “philosophies, once established, must be nurtured and 

treated with respect; otherwise, they deteriorate” (Lawson 1990). This is consistent with 

what Brooks concludes from his experiences in the OS/360 project when he discussed the 

integrity of the conceptual model of the proposed design. Brooks notes that the 

conceptual model dictates the eventual solution and for it to remain cohesive, it should 
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reflect a single philosophy and flow from as few minds as possible (see chapter 4 in 

(Brooks 1975)). 

Lawson uses the term ‘philosophy for software engineering’ in two different contexts. In 

the first context, he talks about the philosophy of the programming language. This is 

equivalent to how Ambler et al describe the influence of programming language 

paradigms on software development – they constrains the framework from which 

concepts and relationships can be used to synthesise solutions that can be implemented. 

However, in the second context, he discusses the integrity of the ‘philosophy’ as the 

ability to maintain those concepts and relationships of the conceptual model as they are 

refined and implemented. This use of ‘philosophy’ refers to the logical consistency and 

cohesiveness of the conceptual model devised to solve the problem. As the previous 

chapter noted, during design that model is transformed from a collection of analysis level 

concepts to a set of design level concepts. That process is more than just a refinement, 

those collections of concepts are fundamentally different. Therefore, when the 

transformation takes place the logical consistency and cohesiveness of the initial model of 

the solution may be lost or compromised. Moreover, as problems are identified during the 

system design and implementation, fixes may be introduced that degrade the consistency 

and coherence of that model. That is what Lawson means by retaining the integrity of the 

system philosophy. 

Both of Lawson’s uses of the term ‘philosophy’ are valid, however his argument, in light 

of the description of philosophical ideas presented in previous chapters, appears confused. 

Nevertheless, his paper highlights the usefulness of the philosophical ideas to software 

engineering. It also highlights the difficulty of using them without a thorough 

understanding of how they relate to each other and how they relate to software 

development. 

The application of the philosophical theories to software development is also present in 

the work of Lehman, this time from the perspective of improving the enormous amount of 

time, money, and effort spent on maintaining software systems (Lehman 1980). From that 

perspective he details issues in software evolution and explains how research has 

progressed by developing the view that a software system can be best understood as a 

model. 
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“Any program is a model of a model within a theory of a model of an 

abstraction of some portion of the world or some universe of discourse.” 

(Lehman 1980) [Lehman’s emphasis]. 

According to Lehman, software systems can then be classified into one of three classes: 

• S-Programs: Programs whose function is formally defined by and derivable from 

a specification. Examples include programs to solve problems based on 

mathematical algorithms, such as the 8-queens problems, or based on concepts 

that are inherently well defined, such as depicting geometric shapes on the 

computer screen. The specification can be formally expressed and captures 

exactly the problem to be solved. Therefore, the solution can be precisely 

evaluated with respect to the specification and does not need to match any real-

world process. 

• P-Programs: These include programs whose specification can be captured 

unambiguously but concepts within it cannot be implemented in a software system 

without a degree of approximation. Lehman uses the example of chess playing 

and weather prediction. In these problem domains, the requirements of a computer 

system can be defined precisely – the rules of chess and the set of non- linear 

equations required to model global weather patterns. However, for system 

implementation, the solutions cannot precisely implement these requirements in a 

useable system. The procedures for analysing the state of a chess game and 

determine the next possible moves cannot be implemented completely – they can 

only be approximated. Furthermore, non- linear equations for weather modelling 

cannot be precisely implemented – they can only be approximated using simpler 

sets of equations. Both the problem statement and its solution approximate the 

real-world situation. 

• E-Programs: These attempt to implement processes of human or social activity 

and result in a greater degree of approximation than the P-programs. Moreover, 

the people operating within that problem domain will use that software solution in 

their work. Therefore, they in turn become part of the problem they are attempting 

to provide a solution for. “The program has become a part of the world it models, 

it is embedded in it. Conceptually at least, the program as a model contains 

elements that model itself, the consequence of its execution.” (Lehman 1980). 
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Operating systems, air traffic control systems, and inventory-stock control are all 

examples of these sys tems. The pressure for system modification is immense. “As 

[the users] become more familiar with a system whose design and attributes 

depend at least in part on user attitudes and practice before system installation, 

users will modify their behavior to minimize effort or maximize effectiveness. 

Inevitably this leads to pressure for system change.” (Lehman 1980) 

Lehman notes that P and E programs are closely related and they differ from S-programs 

because they represent a computer application in the real world. He refers to them 

collectively as A-type programs. Because these programs are models of real world 

processes that, for various reasons, are under constant pressure to change, Lehman argues 

that the traditional life cycle of stages from requirements to implementation and testing is 

not easily applicable. Indeed, as noted earlier, Gallagher takes this point to an extreme 

and argues all software development should be considered as a process of maintenance 

rather than as a traditional process of artefact creation (Gallagher 1997). 

6.3.1.3 Paradigms of Software Design Methodologies 

Hirschheim and Klein also exemplify the differences between the artefact engineering 

and model building views of software development in their Four Paradigms of 

Information Systems Development (Hirschheim and Klein 1989). They recognise the 

growing importance of making explicit the guiding assumptions on the research of a 

professional community and identify four different paradigms that influence software 

systems development. 

“As developers must conduct inquiry as part of systems design and have to 

intervene into the social world as part of systems implementation, it is natural 

to distinguish between two types of related assumptions: those associated with 

the way in which systems developers acquire the knowledge needed to design 

the system (epistemological assumptions), and those that relate to their view 

of the social and technical world (ontological assumptions).” (Hirschheim and 

Klein 1989) 

They identify two dimensions of both the epistemological and ontological issues: the 

subjectivist-objectivist dimension and the order-conflict dimension. In the first 

dimension, the objectivist applies models and methods derived from the natural sciences 

to the study of human affairs. In contrast, the subjectivist refutes this approach and seeks 
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to understand the basis of human life by exploring the subjective experience of 

individuals. In the other dimension, the ordered view assumes the world is characterised 

by order, stability, and functional co-ordination, while the conflict view stresses change, 

conflict and coercion. The result is four paradigms for systems development: 

functionalism (objective-order), social relativism (subjective-order), radical structuralism 

(objective-conflict), and neohumanism (subjective-conflict). 

Those four paradigms are then explained through generic story forms, identifying the key 

actors, the narrative of how systems development proceeds, the major plot, and the 

assumptions that guide the whole process. The first two, functionalism and social 

relativism, are the most applicable or recognisable in software development. The 

functionalism paradigm closely associates with the established artefact engineering view 

of systems development. They label their story as the ‘developer-as-systems-expert’, who 

seeks to identify the underlying order of the domain and capture it as the rules, data, and 

functionality of a software implementation. In contrast, the social relativism approach 

identifies the developer as a facilitator, trying to interpret some structure from a reality 

that it inherently unstructured. It favours an approach to development that facilitates the 

learning of all that are involved. 

6.3.1.4 The Influence on the Model Building View of the Development Process as a 
Whole 

The philosophical foundations for the model building have also been used by Winograd 

and Flores in the field of artificial intelligence (Winograd and Flores 1985). Their 

research attacks the guiding assumptions used in the understanding of cognition and 

attempts to represent it in computer systems. The thrust of their argument against the 

established way of understanding is similar to that of Dreyfus (Dreyfus 1992), which was 

briefly discussed in the previous chapter, however their conclusions also include sections 

that are applicable to software development in general. 

Winograd and Flores begin by identifying the ‘rationalistic’ tradition as the dominant set 

of guiding assumptions in the understanding of cognition and systems development. Their 

explanation of the ‘rationalistic’ tradition is similar to the classical theory of concepts and 

meanings. 
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“Problem solving requires the representation of a situation in terms of 

identifiable objects with well-defined properties, and the logical application of 

general rules to situations so presented.” (Winograd and Flores 1985) (p. 15). 

“Meaning can be analyzed in terms of correspondence between sentences in a 

natural language, and interpretations in a formal language for which the rules 

of reasoning are well defined.” (Winograd and Flores 1985) (p. 17) 

They subsequently attack that rationalistic tradition by using the philosophy of 

hermeneutics, specifically the work of Heidegger, and the neurobiology research of 

Maturana. Heidegger’s philosophy builds on the notion that concepts cannot be defined 

independent of context. He explores the theory that concepts of reality can only be 

understood with respect to the person interpreting the world around them. Heidegger’s 

‘being- in-the-world’ operates by constantly interpreting its material and social 

environment. Rather than having knowledge of reality, his theories describe a constant 

process of being,  which is characterised by unconsciously applying theories to reality in 

an attempt to understand and operate within in it. Those theories become articulated and 

improved when a ‘breakdown’ occurs that challenges the accepted way of understanding 

(for example, see Heidegger in (Urmson and Ree 1989)). Maturana’s research in 

neurobiology also challenges the accepted understanding of knowledge acquisition. 

Rather than explaining knowledge as the interpretation and generation of concepts from 

sensory input, his research shows that neurological processes are triggered, not by all 

sensory input, but by expected patterns of sensory input. Maturana explores these results 

to develop his theory of understanding that is similar to the description of conceptual 

relativism and the application of theories in the understanding of reality detailed in the 

previous chapter. 

Winograd and Flores apply these counter claims to the rationalistic tradition in the 

justification of research in artificial intelligence systems and finally to the development of 

software systems in general. Their conclusions explore areas that are similar to Lehman’s 

discussion of A-type software systems and Hirschheim and Klein’s social relativism 

paradigm. 

Dahlbom and Mathiassen discuss the model building issues in all phases of the software 

development lifecycle (Dahlbom and Mathiassen 1993). They begin by exploring two 

different ways of understanding reality: the mechanistic view, which is similar to the 
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classical theory of meaning or the rationalistic tradition, and the romantic view, which 

relies on the subjective interpretation of the observer rather than on an objective, 

observable reality. These views are then explored in the context of software development 

to show how they lead to completely different ways of approaching the software design 

process. For example, the constructionist approach matches the artefact engineering view 

of development. In contrast, the evolution approach explains software development as a 

constant process of evolution as the users, managers, and programmers all develop more 

sophisticated models of the problem domain and the role of the software system in that 

domain. That evolution occurs over successive versions as the use of that software 

facilitates that evolution of understanding. 

Their analysis then proceeds to a more managerial level and uses the different paradigms 

of understanding to explore the quality of software systems in general. That is, how the 

system could be evaluated as solving the original problem in the context of the problem 

setting. 

Through an analysis of the evolution of many disciplines, Dahlbom and Mathiassen note 

that a change of guiding assumptions occurs in all professional disciplines as the relevant 

researchers seek to develop a better understanding of that discipline. Their conclusion is 

that these ideas can be expected to increase in the research agendas of software 

development. 

“If we look at the history of modern science, it all begins with the natural 

sciences and positivism. Hermeneutics and an interest in the humanities come 

later, and partly as a reaction to a dominating mechanistic perspective. This 

order of events seems somehow natural, and we find it almost everywhere we 

look. Sooner or later in the history of a practice it will turn to science for 

advice, passing through a stage of positivism only to enter a more chaotic 

period of attempts to develop hermeneutic alternatives. We have seen this 

happen in education, medicine, and social work. And we are seeing it happen 

in systems development. We began by taking an interest in computers, only 

later to realize that there were people involved too.” (Dahlbom and 

Mathiassen 1993) (p. 208)  
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6.3.2 Improving Software Engineering Research using the Model Building 
View 

6.3.2.1 The Research of Peter Naur 

Peter Naur provides one of the most detailed explorations of the application of the model 

building view to software development. Naur was a major contributor at the NATO 

conferences and was co-editor of the published transcripts (NATO 1976a; NATO 1976b). 

His contributions reveal a mixed set of guiding assumptions about the nature of software 

engineering. As detailed in chapter 3, those comments used analogies with the complexity 

of civil engineering design, the architecture theories of Alexander, and the large-scale 

partitioning of automotive designs to inspire ideas that are based on the guiding 

assumptions of the artefact engineering view of software development. However, he also 

made a number of ins ightful comments that highlight aspects of software development 

that conflict with that way of understanding. For example, his remark during the debate 

following McIlroy’s Mass Produced Software Components (McIlroy 1968) paper from 

the 1968 conference highlights his struggle to understand software development using the 

engineering analogies and still come to grips with the essential nature of software 

systems. 

“Naur: What I like about this is the stress on basic building principles, and on 

the fact that big systems are made from smaller components. … A 

comparison with our hardware colleagues is relevant. Why are they so much 

more successful than we are? I believe that one strong reason is that there is a 

well established field of electronic engineering, that the young people start 

learning about Ohm’s Law at the age of fourteen of thereabouts, and that 

resistors and the like are known components with characteristics which have 

been expounded at length at the early level of education. The component 

principles of our systems must be sorted out in such a form that they can be 

put into elementary education.” (NATO 1976a) 

Naur’s research, both prior to and following the NATO conferences, details the transition 

he made from understanding software systems using an artefact engineering point of view 

to a model building one. His examination of the issues is driven by attempts to identify 

the “component principles of our systems” and subsequent publications have been 

collected in a single volume of work (Naur 1992a). A few years before the NATO 
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conferences, Naur published his preliminary ideas on the important principles of software 

– the concepts of data, datalogy, and datamatics. 

“By datalogy I will understand the discipline of data, their nature, and use. An 

important part of datalogy is datamatics, the processing of data by automated 

means.” (Naur 1992d) 

His initial research examines the nature of data and compares its use in software with the 

underlying concepts of data in mathematics and linguistics. By the mid 70s, Naur was 

examining these issues in more detail (Naur 1992c). His analysis examines the 

relationship between data, words, concepts, and their philosophical understanding. 

Drawing on the work of philosophers such as Wittegstein, Naur began to develop theories 

for applying those issues to the specific context of software development. 

“Data science is the science of dealing with data, once they have been 

established, while the relation of data to what they represent is delegated to 

other fields and sciences.” (Naur 1992c) 

The mid 80s saw Naur publish research that examined in more detail the relationship 

between data and what it represents. His explanation of Intuition in Software 

Development (Naur 1992f) questions the emphasis of software engineering research on 

design methods. Based on his reading of the philosophical issues, he suggests that 

intuition, the way the designer understands the problem, is the driving factor in 

determining the integrity of the developed system. He notes that our intuition is not 

perfect, nor is it well understood. The role of design methods is to “guard us against the 

occasional errors of intuition” (Naur 1992f). According to Naur, to improve software 

development, research should be directed at understanding our attempts to relate the 

world, our knowledge of it, and our use of texts to capture that knowledge. 

In 84, Naur summarises many of those developing ideas in the keynote address entitled, 

Programming as Theory Building (Naur 1985), delivered at the Euromicro 84 conference. 

“Some views on programming, taken in a wide sense and regarded as a 

human activity, are presented… it is concluded that the proper, primary aim 

of programming is, not to produce programs, but to have the programmers 

build theories of the manner in which the problems at hand are solved by 

program execution. … 
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A more general understanding of the presentation is a conviction that it is 

important to have an appropriate understanding of what programming is… 

What I am concerned with is the activity of matching some significant part 

and aspect of an activity in the real world to the formal symbol manipulation 

that can be done by a program running on a computer.” (Naur 1985) 

His understanding of theory development is explained through the philosophy of Ryle, 

who explored the notion of concepts, meaning, and language (see Ryle in (Kemerling 

1997)). For Naur, the conclusion for software developers is that understanding these 

philosophical issues can lead to three important advantages. 

1. The programmer having the theory of the program can explain how the solution 

relates to the affairs of the world that it helps to handle. 

2. The programmer having a theory of the program can explain why each part of the 

program is what it is, in other words is able to support the actual program text with a 

justification of some sort. 

3. The programmer having a theory of the program is able to respond constructively to 

any demand for modification of the program so as to support the affairs of the world 

in a new manner. The design of how a modification is best incorporated into an 

established program depends on the perception of the similarity of the new demand 

with the operational facilities already built into the program. (Naur 1985) 

Naur notes though, that the difficulty of this view of software development is that it is 

extremely difficult to capture the essence, that is, the theory of the program in an 

objective way that can be shared with others. 

“The main claim of the Theory Building View of programming is that an 

essential part of any program, the theory of it, is something that could not 

conceivably be expressed, but is inextricably bound to human beings.” (Naur 

1985) 

Naur’s later publications continue to explore the relationship between human thoughts, 

languages in general, and the structures available in programming languages (Naur 

1992g; Naur 1992h; Naur 1992e). That research led him to examine why such a different 

view of software development could exist. His later work explores ideas similar to the 

history and philosophy of science sources presented earlier in this chapter (Naur 1992b). 

They reject the myth that science, including computer science and the sought after science 
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of software engineering, can be based on a rationalistic approach or on a logical 

foundation of objective truth. His view of software development as theory or model 

building concludes with three different aspects that must be kept in mind by developers. 

1. The aspect of the world that is being described or pictured by the model, the modelee 

for short. 

2. The model, being a program in execution by a computer. 

3. The elements of which the model has been built, typically items of computer 

hardware and the mechanisms of a certain programming language. 

6.3.2.2 The Research of Bruce Blum 

The final and most extensive examination and application of the philosophical issues to 

software engineering has been performed by Bruce Blum. His work can be described as 

the quest to explain the software paradox (as stated by Stucki). 

“The software community has done an excellent job of attempting to 

automate everyone’s job except their own!” (Blum 1985) 

Blum identifies three reasons why this is the case. 

1. We really don’t understand what software is. 

2. We have not performed a systems analysis of the software development process. 

3. The implementation of new software development paradigms is as much a social 

problem as a technical issue. (Blum 1985). 

Blum’s research is summed up in his culminating work, Beyond Programming: To a New 

Era of Design (Blum 1996). Blum believes the existence of the software paradox is due to 

a faulty model of understanding the nature of software development and reality. That 

understanding developed during the embryonic stages of the software engineering 

discipline and remains to this day. Therefore, to improve the nature of software 

engineering, nothing short of a Kuhnian paradigm-shift is required. 

Blum begins with his definition of software engineering and the subsequent issues raised 

by it. 

“The application of tools, methods, and disciplines to produce and maintain 

an automated solution to a real-world problem. 
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Much of the software process is devoted to characterizing the real-world 

problem so that an automated solution can be constructed. Because the 

problem interacts with its solution, the software product must evolve. 

Moreover, because the software operates in a computer, it must be expressed 

as a formal model of a computation.” (Blum 1996) (pp. 4-5) 

To develop his new paradigm, Blum presents a detailed examination of these issues from, 

as he describes them, ‘first principles’. Those principles are detailed during the 

exploration of three broad topics. First, to examine the relationship between computer 

science and software engineering, he explores the nature of science, the relationship 

between science and technology, and the concepts of truth and knowledge. Second, 

because software design is a form of problem solving, he explores the innate mechanisms 

of human problem solving, the social context of achieving solutions, and the nature of 

design in general. Finally, the third section applies those issues to the software 

engineering process. In that section, the history of software design is presented and the 

nature of design methods are examined in terms of the previously explored philosophical 

and design reasoning issues. His book culminates with an examination of how those 

issues result in a new paradigm for software engineering and presents the results of a 

fourteen year case study of the application of that paradigm to Blum’s specific area of 

medical information systems. His conclusion is that while Naur suggests moving towards 

programming as theory building, he suggests software engineering should move beyond 

programming altogether. 

The introduction to Blum’s examination of science and technology critiques Mary Shaw’s 

article Prospects for an Engineering Discipline of Software (Shaw 1990), which was also 

discussed in chapter 3 of this thesis. Noting her conclusion, that a discipline of software 

engineering requires a supporting science, Blum surmises that it is difficult to fault the 

steps Shaw proposes to develop this software science, 

“Yet it is equally difficult to understand what is meant by science and 

engineering in the context of computer technology. In the popular view, 

science uncovers the truths around which we build our technologies. Is this a 

valid statement? What are the truths of computer science? Are there 

alternative computer sciences … Is there an envelope around what can be 

guided by computer science, and, if yes, how do we address problems outside 

the envelope?” (Blum 1996) (p. 21). 
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Blum’s subsequent analysis of science in general presents a summary of the relevant 

issues from the history and philosophy of science, which are similar to the sources 

presented at the beginning of this chapter. To determine how those issues affect software 

engineering, Blum examines the relationship between science and technology. He begins 

with Shaw’s representation of the traditional view, which states that science drives 

technology. 

“In Shaw’s model of the growth of an engineering discipline, science was 

given a direction by the technology; once mature, the science served to drive 

the technology. That is, as a technology matured, its ad hoc solutions were 

extracted and embedded in a body of scientific knowledge, which in time 

would serve as a forcing function for that technology.” (Blum 1996) (p. 54). 

However, his examination of the relevant research and case studies in the area of science 

and technology reveals that is not the case. 

“Science may support technological improvement or the identification of 

presumptive anomalies, but technology’s problem solving mission resists the 

acceptance of new scientific knowledge as a solution mechanism in search of 

a problem; that is, technology exploits scientific knowledge, but it is not 

driven by it.” (Blum 1996) (p. 62) 

Blum continues to examine the nature of science. He asserts, an admittedly limited view, 

that the goal of science is to produce models of reality. He then proceeds to examine the 

ability of science to produce faithful models of reality. His description is based on the 3 

world epistemological model of Popper and the epistemological consequences of Kuhn’s 

theories of science. The result is similar to the conclusions of the previous chapter of this 

thesis, which examined different 

theories of epistemology in greater 

detail. There is no objective reality 

that all people share. The best that 

can be achieved are progressively 

more detailed models of it. Blum 

continues by examining the issues 

involved in modelling that reality. 

His analysis results in a model of Figure 6-1: Models-of-reality space 
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models-of-reality (figure 6-1: from (Blum 1996) p. 72). The vertical dimension depicts 

representation. The computational representations are the well-defined notations of, for 

example, mathematics and logic. The word ‘ideational’ is used to capture the other 

extreme of ambiguous, subjective expression. The horizontal dimension represents the 

phenomena to be modelled. Bound phenomena represent aspects of reality that depict 

repeatable, observable processes such as the physical laws of motion. Models of bound 

phenomena can be used to describe and predict those aspects of reality. In contrast, free 

phenomena are processes that can be described but are not necessarily bound to behaving 

the same way in the future. 

Traditionally, science, which develops computational models of bound phenomena, and 

art, which explores ideational representations of free processes, are placed at opposite 

corners of the model. However, Blum’s analysis of the theory of models argues that a 

clear distinction is not possible. 

“Thus, design – and by extension, all creative activities – merge art and 

science/technology within the (holistic) context of a larger system. We cannot 

isolate ‘science’ and the ‘art’ components of our technology…” (Blum 1996) 

(p. 75). 

Computational models of bound phenomena are possible, however Blum points out that 

software engineering does not always deal with bound phenomena. This leads to a central 

tension in software engineering. 

“The science of computer technology is that of a free phenomena. It is the 

study of the transformation of ideas into operations… 

Our goal is to reduce the central tension in the software process: the fact that 

we start with a need that often is poorly defined and difficult to represent and 

we must end up with a formal model that executes within a computer. 

Traditionally, computer science has chosen to concentrate on the formal 

aspects of the process, but more is needed.” (Blum 1996) (pp. 85-86). 

Blum’s analysis then considers design more specifically. His begins with the traditional 

understanding of design, technological design, in which designers employ technological 

knowledge to construct an artefact that satisfies the stated requirements. Through a study 

of relevant areas he develops a more sophisticated model (ecological design) that 

incorporates the human environment in which the design is initiated, conducted, and 
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evaluated. That study begins by laying foundations that show the traditional 

understanding of design, technological, is a consequence of the rationalistic or positivist 

understanding of reality. Blum shows, through the work of many researchers in design 

theory, that disciplines are slowly moving away from that model of understanding and 

towards a more humanistic and subjective understanding of reality. To understand design 

from a more subjective understanding, Blum details theories from the areas of problem 

solving in cognitive science, the nature of expertise, the nature of complex problems, and 

the role of reflection and context in the problem solving process. The result is a collection 

of theories that challenge the traditional understanding of design. 

“If … ‘learning, thinking, and knowing are relations among people engaged 

in activity in, with, and arising from the socially and culturally constructed 

world’, then ‘changing existing situations into preferred ones’ will impact 

what we think and know. Thus, paradoxically, we find that change is the 

invariant, not knowledge. 

These are just some of the implications for a new era of design.” (Blum 1996) 

(pp. 158-160). 

With these foundations, Blum analyses design theories from different disciplines. They 

include architecture, industrial design, engineering and systems design. Finally, Blum 

includes theories that specify how these design processes are influenced by the different 

stakeholders who participate in the design process. The result of Blum’s lengthy and 

detailed analysis of many issues is a set of foundations for understanding his definition of 

software engineering. 

However, these foundations do not provide a ‘silver bullet’ for the problems of software 

engineering. Indeed, they show such a thing is impossible. 

“Our objective as software designers is to employ software technology to 

improve the human environment. We seek instruments to guide us in this 

endeavor, but we also recognize that such instruments may not exist 

independently of their use; that is, these instruments cannot be discovered, 

they must be designed. We are constrained by software’s central tension: the 

environment we wish to modify exists in-the-world and may not be subject to 

formal descriptions, whereas the software we create exists in-the-computer 

and must be represented formally – as models of the real world and as models 
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of computations. We might take solace from our studies of the foundation if 

they produced formal models of the world that could be represented in the 

computer or if they demonstrated the existence of an integrating force that 

would synthesize the individual models. But this does not seem to be the case. 

There is no independent ‘design process’ that can be discovered and 

dissected. We must accept the fact that the design process is an ephemeral 

artifact, a residue of the process’s conduct. It provides clues as to what was 

done, it offers insights into what should not have been done, but it never 

establishes what ought to be done.” (Blum 1996) (p. 242) 

Blum’s solution to this dilemma is adaptive design. 

“We should move from our historic interest in modeling the product in favor 

of a concern for modeling solutions to the problem. This implies a migration 

from build-to-specifications (together with their realizations as programs) to 

the use of as-built specifications that describe evolving responses to problem-

space needs. That is, we should go from the characterization of solutions in-

the-computer to solutions in- the-world. Clearly, such a shift goes beyond 

programming. Clearly, too, such a shift will not be easy and cannot be phased 

in.” (Blum 1996) (p. 263) 

During adaptive design, the design centres on the building of a formally expressed, 

conceptual model for a problem solution. Implementation is the automatically generated 

realisation of a correct and valid solution (Blum 1993). The concepts that comprise those 

conceptual models exist as fragments in the repository of the development environment 

and surrogates are used to capture their expression from many different perspectives and 

many different levels of granularity. To construct a solution to a problem, the developer 

generates a conceptual model using the fragments that exist in the knowledge base. That 

conceptual model captures the concepts of primary interest in a scheme that permits 

automatic transformation to an executable form and allows automated reasoning about its 

correctness. The execution of the application is performed by the encompassing 

environment that keeps track of the fragments to be executed for a particular application. 

In Blum’s environment, the design becomes the product. The concept fragments and 

conceptual models that group them into applications evolve as both the developers’ and 

users’ understanding of the problem domain becomes more sophisticated (Blum 1996) 

(pp. 304-308). 
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A detailed explanation of the approach is not presented here. Blum provides many 

references to the description of his approach to design and a case study of its use in the 

development environment, TEDIUM. Clearly Blum’s description of adaptive design is 

also evident in other development environments, for example Amdahl’s ObjectStar 

environment (Amdahl 1998). However, for this thesis, the important aspect of Blum’s 

approach is the philosophical basis for it and not the end product. 

Finally, Blum notes that the implementation of the knowledge required to realise this 

system is possible only because there is a well-understood application domain that is 

supported by a mature technology (Blum 1993). Although Blum’s detailed analysis of the 

foundational issues and its application in a new design paradigm is interesting, it is not 

clear how it can be applied to more general purpose software development. 

6.4 Conclusion: Evaluating Software Engineering 
Research 

This chapter began with a description of the different theories in the history and 

philosophy of science. One of the conclusions of those different theories is that research 

performed in particular disciplines is directed and validated by underlying guiding 

assumptions that determine how the phenomena under investigation is understood. 

Moreover, those guiding assumptions usually change as a discipline progresses and 

develops more sophisticated models for understanding that phenomena. In the context of 

software engineering, the implication of this thesis is that the artefact engineering view of 

software development has provided a dominant set of guiding assumptions. However, a 

more detailed examination of the phenomena under investigation (the underlying 

principles of software and software systems) shows that a model building view of 

software development holds the potential for a more beneficial set of guiding 

assumptions. 

To highlight the potential of the model building view, a selection of existing research in 

the software engineering literature was presented that is based either implicitly or 

explicitly on that way of understanding software development. However, that selection 

was certainly not exhaustive. Because the issues presented in this thesis aim at providing 

a philosophical foundation for software engineering research, arguments could be made 

that those foundations are exemplified in many other published researches and 

commentaries. For example, a recent IEEE Software issue was dedicated to architectural 
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design with the guest editor suggesting we should be Reevaluating the Architectural 

Metaphor (Coplien 1999b). Moreover, in that issue Perrochon and Mann question the 

appropriateness of the belief that an architecture should always be specified before the 

implementation is commenced (Perrochon and Mann 1999). Other examples include 

popular columns in software engineering journals by authors such as Glass and Jackson 

that often highlight anomalies in the established way of understanding software 

engineering. However, there has been no established foundation to explain why those 

anomalies exist (see for example (Glass 1994; Glass 1998b; Jackson 1998b; Jackson 

1998a)). Kumagai has suggested that perspectives on software engineering based on an 

eastern rather than western view of the world may be an interesting source of research 

ideas (Kumagai 1998). There are strong parallels between the theories of conceptual 

relativism presented from the disciplines of philosophy and psychology and the eastern 

philosophies discussed by Kumagai. Those parallels have been a source of interest for this 

author, however they were not used in this thesis – though they may be used in future 

research (see for example (Capra 1983)). Additionally, cognitive studies in software 

engineering research also highlight issues that can be explained using a model building 

view of software development rather than an artefact engineering perspective – see for 

example (Silverman 1983; Adelson and Soloway 1985; Silverman 1985; Curtis 1989; 

Curtis, Krasner et al. 1991; Dumas and Parsons 1995; Stacy and Macmillian 1995; 

Winograd 1995). 

Despite the argument presented in this thesis, that the model building provides the 

philosophical foundations necessary to explain and justify many issues in software 

engineering research, the theories in the history and philosophy of science suggest 

considerable resistance will always meet any transition between sets of guiding 

assumptions. Both Naur and Blum have commented on the resistance to their research 

ideas and the sense of frustration it has caused. 

Naur: “Several of the writings of the section are unusual by their sharply 

critical tone of voice. I am aware that thereby they can hardly avoid being 

painful to certain persons involved. They are in fact quite painful to me, being 

manifestations of the fact that the field in which I have spent a good part of 

my professional life gives strong support to pretentious ignorance and 

misunderstanding on a large scale.” (Naur 1992a) (p. 479). 
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Blum: “I  believe that my work has never been accepted within the mainstream 

because it employs an alternative paradigm and therefore is outside the 

mainstream. True, there are many other approaches that also exist within 

alternative paradigms, but that work is undertaken by communities of 

researchers who share their work and mutually promote their findings. Given 

the volume of new reports produced each year, it is not surprising that 

researchers marshall their time, read selectively, and focus their energies on 

the topics of principle interest to them. This is not sour grapes; it is simply an 

acceptance of reality.” (Blum 1996) (pp. 302-303) 

This does not suggest that problems cannot be identified in either Naur’s or Blum’s work. 

Nor does it suggest that those ideas should be accepted simply because they are based on 

an alternate set of guiding assumptions. However, the theories presented at the beginning 

of this chapter suggest that researchers evaluating these new ideas need to remain aware 

of the influence of guiding assumptions on the understanding of the discipline. For 

example, in ACM Computing Reviews, Teplitzky (Teplitzky 1994) reviews Blum’s 

analysis of software design methods based on these philosophical foundations (Blum 

1994). Teplitzky’s analysis contains some interesting points, however his editorial 

commentary accuses Blum of suffering from “the fog of academia” and criticises his 

approach as being deliberately elitist when in fact Blum had simply appealed to 

established lines of argument in philosophy. Blum’s work receives similar treatment from 

other reviewers – see for example (Mitchell 1996). There is nothing secretive or elitist 

about the dialect used by Blum. If software engineering researchers are to understand the 

underlying principles of software systems then they must confront these philosophical 

issues. While that work should clearly be criticised for errors in argument, evaluators 

need to ensure it is not merely being criticised for being different. 

Similar debates about the appropriateness of the philosophical issues also exist in other 

disciplines. For example, researchers of design in general have also turned to the 

philosophy of science for ideas (Jacques 1981). Braha and Maimon found parallels 

between the theories in the history and philosophy of science and traditional engineering 

design (Braha and Maimon 1997). In contrast, Cross argues that design theories should 

not be compared with theories of science (Cross, Naughton et al. 1981). His argument 

centres on two principle tenets. First, he notes that design is inherently different enough 

from science to make the analogies invalid. Second, the theories in the philosophy of 
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science are currently in dispute and therefore should not be applied to the field of design 

in general. 

“Attempts to equate ‘design’ with ‘science’ must logically be predicated upon 

a concept of science that is epistemologically coherent and historically va lid. 

The history of the twentieth-century debate in the philosophy of science 

suggests that such a concept does not yet exist. It would therefore seem 

prudent for writers on design method to back away from this particular line of 

argument, at least for the time being.” (Cross, Naughton et al. 1981) 

However, the arguments of Cross do not translate to the discipline of design in software 

engineering. The differences he identifies between the fundamental natures of ‘design’ 

and ‘science’ are based on the nature of built forms, which does not exist in an analogous 

way in software engineering37. Moreover, the fact that some disputes exist between the 

different philosophies of science ignores the commonalties identified by Laudan et al, 

which were presented earlier in this chapter. 

Similar arguments against the application of philosophical foundations to software 

development can be found in the software engineering literature. For example, Meyer 

(Meyer 1997) discusses the philosophical nature of abstract data types by noting that the 

exact meaning of object definitions is relative to the person using them. 

“If I am thirsty, an orange is something I can squeeze; if I am a painter, it is a 

color which might inspire my palette; if I am a farmer, it is produce that I can 

sell at the market; if I am an architect, it is slices that tell me how to design 

my new opera house, overlooking the harbor; but if I am none of these, and 

have no other use for the orange, then I should not talk about it, as the concept 

of orange does not for me even exist.” (Meyer 1997) (p. 147) 

However, rather than using this observation as inspiration for examining the disciplines 

that have been studying the principles of conceptual relativism and then determining their 

implications for software engineering, Meyer argues the opposite. 

“Over the years many articles and talks have claimed to examine how 

software engineers could benefit from studying philosophy, general systems 

theory, ‘cognitive science’, psychology. But to a practicing software 
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developer the results are disappointing. If we exclude from the discussion the 

generally applicable laws of rational investigation, which enlightened minds 

have known for centuries … and which of course apply to software science as 

to anything else, it sometimes seems that experts in the disciplines mentioned 

may have more to learn from experts in software than the reverse.” (Meyer 

1997) (p. 148) 

Meyer’s claim is not based on an examination of the philosophical issues nor any critique 

of the theories those disciplines have proposed. We are led to believe that because 

software developers have built some large and complex systems, and the underlying 

principles of those systems are based on the notions of concepts, theories, and 

abstractions, then those other disciplines have more to learn from us because they are still 

arguing about those principles while we have been successfully using them. 

“Software builders have tackled – with various degrees of success – some of 

the most challenging intellectual endeavors ever undertaken. Few engineering 

projects, for example, match in complexity the multi-million line software 

projects commonly being launched nowadays. Through its more ambitious 

efforts the software community has gained precious insights on such issues 

and concepts as size, complexity, structure, abstraction, taxonomy, 

concurrency, recursive reasoning, the difference between description and 

prescription, language, change and invariants. All of this is so recent and so 

tentative that the profession itself has not fully realized the epistemological 

implications of its own work. 

Eventually someone will come and explain what lessons the experience of 

software construction holds for the intellectual world at large.” (Meyer 1997) 

(p. 148) 

Meyer’s comments show a complete lack of understanding of both the relevant 

philosophical issues and the complexity of traditionally engineered systems. Based on 

both the ignorance and arrogance expressed in his comments, perhaps those lessons he 

welcomes will include theories explaining how a discipline of software engineering can 

progress in spite of rather than because of the way it understands those issues. 

                                                                                                                                                  

37 This was argued in the Chapter 4. 
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7. Conclusion 
This thesis has made explicit and then explored issues that influence the understanding of 

software engineering. The aim has been to show that understanding in software 

engineering research has been dominated by analogies with traditional engineering 

disciplines. However, an alternative approach, based on philosophical foundations, offers 

the potential for an improved way of thinking about software systems and how they are 

developed. The previous chapter specified how guiding assumptions govern the way 

researchers in a discipline understand the phenomena they investigate. Those guiding 

assumptions are not always explicitly stated and practitioners are not always aware of 

them. Indeed, it is not necessary for practitioners to be aware of them to operate as 

researchers within a discipline. However, those guiding assumptions set research agendas, 

direct investigations, bias observations, and justify conclusions. Moreover, those sets of 

guiding assumptions change as a discipline evolves and research based on different sets 

of guiding assumptions are not always commensurable with each other. In software 

engineering research, the most prevalent view has been that software development can be 

understood as artefact engineering. The research presented in this thesis has developed an 

alternative view that software development can also be understood as model or theory 

building. The conclusion is that this view has the potential to improve software 

engineering research. 

Because it is not necessary to be aware of the underlying philosophical issues when 

performing research, it is often difficult to make others aware of their significance – let 

alone get them to evaluate different theories about them. Before we can question our 

guiding assumptions, we first need to be made aware of them. And to be made aware of 

them we need to encounter situations that cannot be explained without resorting to 

questioning, not just the situation, but how we think about that situation. Towards the end 

of my research, and as I was beginning to write up my thoughts, I had the chance to 

explain my theories to Keith Gallagher who was visiting my University at the time. He 

mentioned I should read Blum’s Beyond Programming book. The immediate similarities 

between our work were obvious. However, what I could not understand was why I had 

never heard of Blum’s work, or similar efforts. It may simply have been shoddy research 

on my part. However, I had never seen his work cited, or that of Naur, in the context I 

was working on – the philosophical understanding of software engineering. In 
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comparison with those two researchers, the advantage I have is that I am writing this at 

the beginning (hopefully) of my research career, rather than at its culmination. To 

remember how I thought about software engineering before developing a different way of 

understanding it I only have to reach back a few years rather than a few decades. Had I 

encountered Blum’s book before coming to similar conclusions I probably wouldn’t have 

fully realised its implications for software engineering. Without understanding the 

influence of guiding assumptions on research and without comprehending the prevailing 

influence of the classical but now outdated theories of how we have knowledge of reality, 

his conclusions would have made little sense. From those realisations, and the realisations 

achieved from trying to explain these theories to other software engineering researchers, 

the difficulty in explaining these issues to others has become apparent. Consequently, I 

decided to write the thesis in an order that reflects the evolution of my own understanding 

of software engineering rather than simply presenting a new approach. The turning point 

in my understanding came with the cruise control comparison so that was the logical 

place for the substance of this thesis to begin. That study highlighted issues that cannot be 

adequately explained without resorting to an analysis of the fundamental nature of 

software engineering and, therefore, prepares the reader for the subsequent philosophical 

treatment. This conclusion can now summarise the issues in a different light. 

The NATO conferences established the artefact engineering view of software 

development. At that time, the software development community had produced many 

large-scale systems and was looking for a way of directing research efforts that would 

result in improved practices. Engineering was a natural choice. The disciplines appear 

similar with many terms beings used between the two. The term ‘software engineering’ 

was suggested as a means of provoking discussion, a starting point for developing a view 

of software development that would provide significant leverage for researchers and 

developers. The analogies with traditional engineering disciplines used by the conference 

participants were able to highlight important issues and thereby served to reinforce the 

artefact engineering view. However, other insightful comments were made that could not 

easily be explained using that same view. The conference failed to achieve consensus 

among the participants concerning the applicability of the artefact engineering view. 

Nevertheless, the term stuck and became the dominant guiding principle for the next 

thirty years (at least) of software engineering research. 



Conclusion 

Understanding Software Engineering  315 

The research from the history and philosophy of science shows that guiding assumptions 

are not always chosen because they solve all of the problems of a particular research 

discipline. They simply have to show potential for solving problems. During the 1968 

NATO conference, the idea that software systems could be engineered showed enormous 

potential for improved development practices. For instance, McIlroy’s Mass Produced 

Software Components paper provided a vision of software engineering that matched the 

participants understanding of traditional engineering, and which, if realised, could solve 

many of the concerns that led to the conference. The debate during the 1968 meeting 

concerned whether or not that vision was applicable. However, by 1969, without 

resolving the identified problems, the debate turned to how to achieve that vision. The 

artefact engineering view of software development provided the necessary direction for 

research in a field that had previously lacked a common view. Its emergence as the 

dominant set of guiding assumptions is consistent with the philosophical and 

psychological theories presented. This is not meant as a criticism of those conference 

participants, it is merely provided as an explanation for their actions. 

Despite the fact that the analogies used between software development and traditional 

engineering disciplines have illuminated many issues for researchers, the analyses 

presented in this thesis show that many of the similarities and differences were 

misunderstood. On the evidence presented, the conclusion is that researchers have not had 

a thorough understanding of software development, nor have they had a thorough 

understanding of those engineering disciplines used in the comparisons. Nevertheless, the 

result of using those analogies has facilitated significant progress in software engineering 

techniques. One of the anomalies that did arise, and which has remained the source of 

debate, has been the question of the underlying principles of software systems and 

software development. Researchers realise that the methods of engineering are based on 

the ability to model and predict the properties of system and component designs based on 

the underlying principles of the discipline. The underlying principles of software systems 

were obviously different, however it is not immediately apparent what they are. However, 

those differences have not been used to question the validity of the underlying 

assumptions of software engineering. Rather, the research concerned with the progress of 

the discipline has sought to identify the relevant ‘science’ of software engineering. That 

‘science’, it is supposed, will explain the underlying principles and provide the rigorous 

mathematical techniques necessary to make software development an ‘engineering’ 
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discipline. Unfortunately, those principles and the associated ‘science’ have never been 

discovered. Formal methods have been suggested as the science for software engineering, 

however a comparison of both what is represented by the mathematics, and how it is used 

in the development processes of both software development and traditional engineering 

shows the suggestion is incorrect. 

By using traditional engineering development as a contrasting position from which to 

observe the software engineering approach, the differences become apparent and the 

nature of the underlying principles of the two disciplines become clear. That was evident 

in the cruise control case study. The engineering designs all followed a similar process. 

The designers began with a common design strategy, feedback control, which the history 

of control systems has shown to be the most useful way of approaching the problem. An 

initial system architecture was developed that consists of well-known generic components 

in a well-known structural arrangement. Those components represent standard 

functionality that can be applied to the underlying properties of the discipline – electrical 

signals. The functionality of those components and the environmental influences on the 

system were then modelled mathematically and a combination of experimental testing 

and additional mathematical and graphical analysis techniques were then used to solve the 

unknown parameters of those mathematical models. Because the system components are 

specified in terms of idealised functions that can be applied to the underlying properties 

of the discipline, the functionality of the components are independent of the context in 

which they are used. 

The design approach of the software developers was completely different. They began 

with a design formalism that allowed them to depict the concepts and relationships 

required to solve the problem. The successive stages of design serve to refine and 

implement the functionality of the initial model. The identified concepts and relationships 

represent the functionality to be performed. However, because the system needs to be 

executed by a computer, the model also needs to include, or be supplemented by, a 

depiction of how the model should be executed to solve the problem. Finally, because the 

model needs to be realised in the implementation medium of the discipline, the model 

needs to be specified in a structure that maps easily onto the constructs provided by that 

implementation medium. The different design methods provided different ways of 

capturing these three aspects of the software model, however they do all capture it. 
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The contrast between approaches provides a glimpse of the fundamental nature of 

software systems and shows how their development differs from traditional engineering 

development. Traditional engineers build artefacts to solve real world problems. Software 

developers build models of reality to automate real world processes. Traditional engineers 

design their systems to meet the functionality that is achievable using the pre-existing 

components of their implementation medium. Software developers use a tremendously 

malleable implementation medium to realise the component functionality of their designs. 

Therefore, making the artefact engineering view of software development explicit and 

then examining it with respect to what artefact engineers actually do, reveals a different 

understanding of software development – the model building view. 

The model building view provides a way of identifying the underlying principles of 

software systems (abstractions, concepts, and theories), which can be examined through 

disciplines that have a long history of researching those principles – the disciplines of 

philosophy and psychology. Both of these disciplines show there is a classical way of 

understanding concepts and theories. In that classical view, the observer is separate from 

reality and that reality is objective in that everybody experiences the same phenomena 

and can classify it in the same way. Our explanations of the world are inferred from what 

is really there and the concepts and relationships that comprise those explanations are 

defined in terms of essential attributes or features. This classical way of understanding 

matches the way traditional engineers understand their components and systems and, 

therefore, it appears to provide a philosophical foundation for the artefact engineering 

view of software development. That is, if the classical view is a valid means of 

understanding, then our models of reality can be treated in a similar manner to 

traditionally engineered artefacts. Indeed, some software engineering researchers have 

used aspects of the classical way of understanding, especially the notions of concept 

definition by intension and extension, as justification for their views. 

Unfortunately, it is not the case. Philosophical analysis and experimental psychology 

have developed more sophisticated theories of understanding that repudiate that classical 

view. As a consequence, the underlying principles of software systems cannot be 

understood in the same way as traditionally engineered systems. Reality cannot be 

considered as separate from people’s understanding of it. There is a myriad of detail to 

observe and people would not be able to function by constantly inferring concepts and 

relationships from the infinite amount of detail presented to them. Instead, people 
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automatically and subconsciously apply concepts and theories to that detail in order to 

understand the world and function in it. As people interact with phenomena, they apply 

different concepts and theories to it in order to provide a useful explanation for it. If one 

theory does not provide a suitable explanation, a different or more complex theory is 

generated and applied. The consequence is that there is no objective reality that all people 

share. Many different concepts and theories can explain the same reality. The reason the 

world is forever inaccessible is because all observation is tainted by the theories that we 

automatically and subconsciously use to understand that world. Therefore, it is impossible 

to detect which concepts and theories are closest to the truth. They can only be measured 

by their usefulness, not their veridicality. Furthermore, those concepts and theories 

become part of the culture of different groups of people and pass between them as they 

communicate. 

The other significant contradiction to the classical way of understanding concerns the 

definition of concepts and relationships. The precise meaning of concepts cannot be 

specified independent of the context in which they are used. That context is the theory 

being used to understand the experienced phenomena. Therefore, while it may be possible 

to define a concept by essential attributes, that does not mean the same concept can be 

represented by the same definition in another context. 

Commentaries in philosophy and psychology recognise that the classical way of 

understanding still dominates people’s guiding assumptions in the general community and 

this is evident in the justifications used for software engineering theories. However, 

detailed analysis has provided more sophisticated explanations of human understanding 

that explain how people develop and use models of reality. Those theories provide the 

foundation for a new understanding of software development. In addition, that foundation 

provides a way of explaining existing research in software development, a way of 

explaining anecdotes provided by experienced practitioners, and highlights issues that can 

lead to new avenues of inquiry. 

One criticism encountered when explaining these theories to other researchers is that it 

does not explain how software development should be performed. That was not the 

purpose of the thesis. A few years ago, I came across a cartoon in a book on mathematics, 

which unfortunately I cannot find now. It captures the conclusion this thesis has 

attempted to present. Two children are playing in a sandpit The first asks the other, “Have 

you found the answer yet?” and is met by the reply, “No, but now I know how to ask the 
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right questions”. This treatise has examined the fundamental nature of what software is so 

that the right questions can then be asked about how it could be engineered. Nevertheless, 

a number of conjectures have become apparent that could be used as the basis for 

subsequent research in the areas of reuse, patterns, and architecture. 

The first concerns software reuse. Substantial gains have been made as a result of our 

efforts to reap the benefits of widespread software reuse. However, we have yet to 

achieve the same scales of reuse that has been achieved by traditional engineering 

disciplines. The philosophical foundations of the model building view may provide some 

insights to explain this. The first insight concerns the difference between 

requirements/analysis concepts and design/implementation concepts. Concepts are 

identified during the requirements/analysis stage of the development process and have to 

be precisely defined and implemented as software constructs during the 

design/implementation stage. However, the concepts we entertain in our explanations of 

the world do not identify objective real-world parts and they cannot be universally 

defined by essential attributes. They are theory dependent and are subjective to the person 

using that theory to understand the phenomena under investigation. This results in two 

different types of concepts. The first (referred to here as concepts1) are the fuzzy, theory-

dependent concepts applied to sensory experience to assist human understanding. The 

second (referred to here as concepts2) are the independent, rigorously defined structures 

of software design and implementation. The identification of a concepts1 concept can 

result in an infinite variety of concepts2 definitions. If a concept is identified during the 

development process of a system, then its definition, the resulting software construct, is 

only a realisation of that concept within the theory used to understand the problem at 

hand. For example, if the object-oriented analysis of a problem identifies a class, 

‘Customer’ (concepts1), then its definition (concepts2) only provides the required features 

of a ‘Customer’ within the confines of the problem that the system solves. The 

philosophical foundations of software engineering suggest that if the analysis of a 

different problem also identifies a ‘Customer’ (concepts1) during its analysis stage, then 

the original ‘Customer’ definition (concepts2) may not be applicable in the new context. It 

may be possible to reuse the ‘Customer’ definition in the new situation, but it equally well 

may not be. This contradicts the idea of software reuse based on the classical theory of 

understanding and the artefact engineering view of software development. 
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Nevertheless, some successful reuse efforts have been achieved and they can be explained 

with the foundations provided by a model building view. The first concerns the 

observation that reuse is more successful when the designer browses an asset library 

before beginning design rather than searching for and retrieving assets to match the 

concepts of a proposed design (Mili, Addy et al. 1999). The human mind applies known 

concepts and theories to a situation in order to explain it. That is, humans understand a 

situation in terms of how they understand previously encountered situations. Having 

knowledge of what is already in a reuse repository before design commences exploits that 

innate conceptual ability by allowing the mind to devise a solution to a problem in terms 

of that knowledge. As the designer interacts with the problem, knowledge of those 

artefacts will be automatically and subconsciously applied to the situation to determine if 

they provide a useful explanation. Therefore, the human conceptual apparatus makes it a 

lot easier to design a system to reuse known artefacts than it is to find artefacts to meet a 

designed system. 

Mili’s analysis of software reuse also notes that software product lines provide the most 

dominant form of systematic software reuse today (Mili, Addy et al. 1999). This fact can 

also be explained as a consequence of the model building view. The precise meaning of 

concepts identified during the requirements/analysis phase of development (concepts1) 

are dependent on the roles they play within the encompassing theory being used to 

explain the phenomena under investigation. That encompassing theory is the designer’s 

conceptual model of the problem. If the same problem/phenomena was represented using 

a different conceptual model, a similar collection of concepts may still be identified. 

However, the precise meanings of the concepts that constitute that second model will be 

different because they play different roles and, therefore, require different definitions. 

Product line architectures appear to improve the potential for software reuse because they 

constrain the developer to utilising similar conceptual models to explain similar problems. 

Therefore, the concepts (concepts1) that remain invariant across the different conceptual 

models in the product line can be realised by the same implementations (concepts2), while 

the concepts that change can be modified as necessary. 

Another successful reuse effort concerns artefacts that do not represent implementations 

of the fuzzy, theory dependent concepts used in human understanding (concepts1). For 

example, user interface components are often used as examples in explanations of 

successful reuse theories. However, they are not the same as the concepts used to explain 
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real world phenomena. Rather, they have been defined independent of human experience 

for use in software deve lopment. That is, when they were created, they were specified 

precisely and those precise definitions are passed on to system developers when they 

learn about and use those user interface components. Therefore, it is possible to 

successfully reuse those software components because they have universally applicable 

definitions. Moreover, as those components are utilised during the design process, they 

can be understood the same way that engineers understand their components. This is also 

the case for other successfully reused software components such as math libraries, 

compiler designs, etc. 

It may also be the case that when a group of people have been interacting with the same 

problem for long enough that they develop common explanatory theories for it. Those 

theories, and the concepts that comprise them, may become codified to the point where 

their meanings are similar to all members of the community. This detailed, communal 

understanding of the phenomena may also lead to the reuse of similar concepts. However, 

to extrapolate from the successful reuse of these components to the claim that all software 

components can be reused the same way traditionally engineered components can be 

reused is to misunderstand the nature of software components. 

While the philosophical foundations suggest conjectures for understanding the potential 

of software reuse, considerably more research is required if a systematic theory of 

software reuse is to be developed. 

These foundations can also be applied to develop an understanding of software design 

patterns. Software patterns have become extremely useful in software development. Their 

historical link with the patterns of Christopher Alexander are well documented, however 

the model building view may provide a better explanation as to why they are so useful 

and provide insights into how they can be better utilised. Alexander himself questions the 

validity of the analogy between software patterns and his building patterns. 

“Now, of my evaluation of what you are doing with patterns in computer 

science… When I look at the object-oriented work on patterns that I’ve seen, I 

see the format of the pattern (context, problem, solution, and so forth). It is a 

nice and useful format. It allows you to write down good ideas about software 

design in a way that can be discussed, shared, modified, and so forth. So, it is 

a really useful vehicle for communication. And, I think that insofar as patterns 
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have become useful tools in the design of software, it helps the task of 

programming in that way. It is a nice, neat format and that is fine. 

However, that is not all that pattern languages are supposed to do. That 

pattern language that we began creating in the 1970s had other essential 

features. First, it had a moral component. Second, it has the aim of creating 

coherence, morphological coherence in the things which are made with it. 

And third, it is generative: it allows people to create coherence, morally sound 

objects, and encourages and enables this process because of its emphasis on 

the coherence of the created whole. 

I don’t know whether these features of pattern language have yet been 

translated into your discipline.” (Alexander 1999) 

Despite the successful application of design pattern theories to software development, 

research in the area fails to resolve anomalies that exist between software systems and 

traditionally built artefacts. For example, recall the analysis of the Alexander’s work in 

chapter three. “The ultimate object of design is form” (Alexander 1964) (p. 15). Software 

systems do not have a notion of form that is analogous to that found in traditionally built 

artefacts. Hence, it is not clear what Alexander’s term, “the coherence of the created 

whole”, means in the context of software systems when using the artefact engineering 

view of software development. 

However, if software development is understood as model building rather than artefact 

engineering, some explanations of how patterns are utilised in the model building process 

become evident. People automatically and subconsciously apply their accumulated 

concepts and theories to the world in order to understand their experience. In software 

development, the subconsciously applied concepts and theories are made explicit and 

captured during the requirements/analysis stage of the process. They are then converted 

into a collection of constructs and connections that can be precisely specified and 

implemented during the design/implementation stage. However, the process of creating a 

useful analysis model and the transformation of that analysis model into a design model is 

quite complex. The solution embodied in the analysis model is the developer’s theory for 

explaining the problem and that theory is not completely specified until it is implemented 

in code. However, as chapter five noted, it may take a long period of interacting with the 

problem before a satisfactory explanatory theory can be generated that cannot be falsified. 
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Indeed, it may not be until the design is in the implementation stage that anomalies 

between the requirements and the explanatory theory become apparent. However, when 

successfully utilised collections of concepts and theories have been used to capture the 

understanding of a problem, and those concepts and theories are known to implementable 

in the constructs of software and hardware, they can be made explicit for use by other 

developers. Moreover, those concepts and relationships can be represented at a higher 

level of abstraction – as superordinate level concepts (see Rosch in chapter 5) – to make 

them applicable to analogous problem situations. Software patterns appear to provide a 

format for capturing those superordinate level concepts and relationships. They do not 

capture naturally occurring aspects of an objective reality. They capture successfully used 

ways of understanding a subjective reality that are known to be implementable in 

software and hardware constructs. To reiterate, people naturally explain the situations 

they encounter in terms of concepts and theories they have used before and modify those 

concepts and theories according to the new context. Software patterns make explicit and 

capture aspects of the natural thought processes of human understanding. In that sense, 

the design patterns used in software development are similar to the structures that the 

philosopher Hanson termed our ‘patterns of discovery’ (Hanson 1965). 

However, additional research is necessary to explore this conjecture. As Alexander notes, 

“It is a nice and useful format. It allows you to write down good ideas about software 

design in a way that can be discussed, shared, modified, and so forth. So, it is a really 

useful vehicle for communication.” The formalisms used to pass on patterns between 

developers may be similar to the formalisms used to communicate patterns in Alexander’s 

approach to architecture design. However, the understanding of why patterns work is 

similar to the way patterns are discussed in philosophy. Therefore, philosophy may also 

reveal further ideas for how they can be improved. 

The last conjecture to be made concerns software architecture, specifically software 

architecture views. Chapter four of this thesis examined software architecture in detail 

and identified many anomalies between the practice of software architecture and the 

theories provided by software architecture research. Case studies in software architecture 

have shown that many high- level design representations are created during the 

development process. Existing software architecture research suggests those different 

representations are analogous to the many different architecture representations used 

during the development of traditionally engineered artefacts. Those views provide 
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different abstractions that capture useful subsets of the underlying implementation detail. 

However, chapter 4 also identified many anomalies between software architecture, 

traditional architecture, and their different representations. First, software systems have 

no form that is analogous to the form of traditionally built artefacts. Second, a computer 

must execute a software system in order to realise its intended purpose. Third, different 

high- level software representations do not capture subsets of the underlying 

implementation detail the way traditional architecture views do. 

Those anomalies exist because of the prevailing influence of the artefact engineering view 

of software development. However, they can be explained by changing to a model 

building view. During the software development process, the designer must create an 

initial conceptual model that makes explicit the concepts and relationships, the 

explanatory theory, which the designer believes explains the problem. That conceptual 

model can consist of many different types of concepts and relationships, at many different 

levels of generality, and are limited only by the designer’s experience and imagination. 

However, to implement that conceptual model, the collection of concepts and 

relationships must be transformed into a collection of constructs and connections 

provided by the implementation medium. Those constructs and connections may have the 

same labels as the concepts and relationships in the conceptual model, however the 

philosophical foundations of the model building view show that one is not simply a 

refinement of the other. The types of concepts and relationships are fundamentally 

different. As stated previously, one set of concepts is the fuzzy, theory-dependent 

concepts used in human understanding (concepts1). The other set of concepts is the 

formally specified, context- independent concepts of software implementation (concepts2). 

Finally, to realise the required system, a computer must execute the implemented 

constructs. That implementation can exist across many different machines, many different 

processes, and may include many different instantiations of the one software system. 

Therefore, the model building view of software development suggests three different 

types of high- level system representation are required during the development process. 

Those different types of representation are not different abstractions, or subsets, of the 

complex implementation detail. They are fundamentally different and are required 

because of the unique nature of software systems. First, representations of the conceptual 

model are required. These are produced as the initial step in the design process and 

represent the model that is to be implemented as a solution to the problem. They consist 
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of the concepts and relationships that constitute the designer’s explanatory theory for the 

problem. Second, representations of the static implementation are required. These depict 

the implementation of the system in terms of software and hardware constructs and their 

dependencies. They represent the structural form of the implemented system but do not 

contain enough explicit information to depict the control flow through the executing 

system. While the constructs in the static implementation may appear similar to the 

concepts in the conceptual model representations, they are fundamentally different and 

one is not merely a refinement of the other. Third, representations are required to 

represent the dynamic operation of the system. These depict the behaviour of the system 

and may consist of concepts from the conceptual model, concepts from the static 

implementation model, concepts used by the computer in the execution of the system, and 

concepts depicted to the user such as user interface constructs. 

Each of these types of high- level system representation are fundamentally different and 

those differences can only be satisfactorily explained by rejecting the prevailing artefact 

engineering view of software development and accepting a model building view. This 

conjecture was first presented in (Baragry and Reed 1998). 

Other areas of future research may include analysing the historical arguments that were 

used to advocate particular development methodologies in terms of the philosophical 

foundations presented. Furthermore, future research could determine how the 

philosophical foundations fit in the slowly evolving ‘Software Engineering Body of 

Knowledge’ (Bourque, Dupuis et al. 1999). And finally, the experimental procedures in 

cognitive psychology that were used to determine the theory-dependent nature of human 

observation could be applied, with suitable modification, to elucidate how software 

engineers perform system analysis. 

 

This thesis has examined the philosophical and psychological foundations of software 

development and has used the subsequent analyses to explain difficulties with what may 

be considered the conventional wisdom of software engineering research. Dealing with 

these issues the thesis will be contentious. The criticisms faced by new ways of 

understanding phenomena in the research of a discipline have been detailed in the history 

and philosophy of science and were documented in the previous chapter. Therefore, 

despite the detailed analysis and critique of the conventional, artefact engineering view of 
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software development and the explication of an alternative model building view, which is 

based on philosophical and psychological foundations, it is reasonable to expect that this 

thesis will face criticisms. Some of them may be well founded due to errors on my part. 

Others will simply be because the ideas are different. Those criticisms have been 

exemplified in comments I have received from software engineering researchers during 

conversations and in reviews of articles submitted for publication. Again, some of them 

were well founded and assisted my own understanding of the issues while others were 

simply based on an innate refusal to identify and accept the influence of guiding 

assumptions on software engineering research. The fact these issues can inspire criticisms 

based on irrational justification may lead to despair for established researchers who would 

like to see the discipline move forward. That was exemplified in the comments of Peter 

Naur and Bruce Blum in the previous chapter. Therefore, a few comments are warranted 

concerning the implications of this thesis. 

A review by Suchman of Terry Winograd’s proposal for new way of understanding 

cognition and software systems captures some of the issues. 

“There are two kinds of books in the world. One the one hand, there are those 

books that fall neatly into a particular intellectual tradition, to which they 

contribute some development, clarification, or revision or received ideas. For 

such books, the critical question is what is their thesis, and how well do they 

succeed in its exposition. On the other hand, there are those books, which tend 

to come along less often, that aim to challenge the basic soundness of 

received ideas, and to propose radical alternatives. Understanding Computers 

and Cognition aims to be this second kind; namely, a radical book that should 

be read as such. 

Taken as a radical book, the question to ask about Understanding Computers 

and Cognition, beyond how well it succeeds in its arguments, is whether those 

arguments are about something important.” (Stefik 1987) 

This thesis also falls into that second category. It is not a threat to established research 

agendas, though some may view it that way. It has examined and made explicit the 

fundamental nature of what software systems are. It has not, apart from a few conjectures, 

proposed how software development or software engineering should be performed. The 

goal has been to provide a foundation for explaining existing research anomalies, which 
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can then be used as justification for or against proposed theories in future work. 

Moreover, the thesis does not claim that software cannot be engineered, though some may 

also view it that way. The goal must now be to determine how to engineer software as 

explanatory theories of the world rather than as another built artefact. That goal, however, 

may in fact require fundamental changes in research agendas. Furthermore, it does not 

advocate that all software engineers must have academic training in philosophy or need to 

understand Kant’s Critique of Pure Reason (Kant 1933) in addition to software 

development texts. There exist many mainstream books that popularise the philosophical 

theories of the foundational issues. For example, Pirsig’s Zen and the Art of Motorcycle 

Maintenance (Pirsig 1974) and Gaarder’s Sophie’s World (Gaarder 1996). Software 

engineering practitioners should have some idea of these issues, however the specifics of 

this thesis are aimed at software engineering researchers. Indeed, practitioners may never 

be consciously aware of these issues even though researchers must become far more 

informed in these areas. 

“Plato, who formulated this analysis of understanding in Euthyphro, goes on 

to ask in Meno whether the rules required to make behavior intelligible to the 

philosopher are necessarily followed by the person who exhibits the behavior. 

That is, are rules only necessary if the philosopher is to understand what is 

going on, or are those rules necessarily followed by the person insofar as he is 

able to behave intelligently? ... In the case of theorem proving ... Plato 

thought that although people acted without necessarily being aware of any 

rules, their action did have a rational structure which could be explicated by 

the philosopher.” (Dreyfus 1992) (p.176) 

As a final comment, I return to the Einstein’s quote that opened this thesis. 

“If we knew what it was we were doing, it wouldn’t be called research, would 

it?” 

That understanding of research as proposing explanatory conjectures that may or may not 

be correct, applies equally well to the explicitly stated, specific theories of software 

engineering as it does to our guiding assumptions that may not be explicitly understood 

but which also, may or may not be correct. As to whether or not this work constitutes 

software engineering research, this thesis finishes with a comment by John of Salisbury, 

who wrote in 1159 in his book, Policratus,  
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“Who is more contemptible than he who scorns knowledge of himself?” (in 

(Saul 1997)). 
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