

MANAGING AND ANALYSING SOFTWARE

REQUIREMENTS CHANGES

Submitted by:

Shalinka Erandi Jayatilleke

M.Sc (Information Management)

BSc (Hons) (Computer Systems Engineering)

A thesis submitted in total fulfilment

of the requirements for the degree of

Doctor of Philosophy (by published work)

School of Engineering and Mathematical Science

College of Science, Health and Engineering

La Trobe University

Bundoora, Victoria, 3086

Australia

February 2018

ii

Table of Contents

List of Tables .. iv

List of Figures ... vi

List of Abbreviations... viii

Abstract ... x

Statement of Authorship ... xi

Dedication ... xii

Acknowledgement .. xiii

Research Dissemination .. xiv

Structure of thesis .. xv

Chapter 1 Introduction ... 1

1.1 Background .. 1

1.2 Research problems and motivation ... 2

1.3 Aims and scope of the work .. 3

1.4 Contributions ... 5

Chapter 2 A Systematic Review of Requirements Change Management 7

2.1 Preface .. 7

2.2 Publication ... 8

Chapter 3 Managing Software Requirements Changes through Change Specification

and Classification ... 61

3.1 Preface .. 61

3.2 Publications .. 62

Chapter 4 A Method of Requirements Change Analysis ... 91

4.1 Preface .. 91

4.2 Publication ... 92

Chapter 5 A Method of Assessing Rework for Implementing Software Requirements

Changes .. 119

5.1 Preface .. 119

5.2 Publication ... 120

Chapter 6 Conclusions and Future work.. 155

6.1 Research work conducted .. 155

iii

6.1.1 A systematic review of requirements change management 155

6.1.2 Managing requirements changes through change specification and

classification ... 156

6.1.3 A method of requirements change analysis .. 157

6.1.4 A method of assessing rework for implementing software requirements

changes .. 157

6.2 Evaluation of the research work conducted .. 158

6.2.1 A systematic review of requirements change management 158

6.2.2 Managing requirements changes through change specification and

classification ... 159

6.2.3 A method of requirements change analysis .. 159

6.2.4 A method of assessing rework for implementing software requirements

changes .. 160

6.3 Future work .. 161

6.3.1 Change cost/effort estimation ... 161

6.3.2 Requirements change validation ... 161

6.3.3 Applying the methods in an industry case study ... 162

References ... 163

Appendix A ... 185

Appendix B ... 186

iv

List of Tables

Chapter 02

Table 1: Categories and keywords ... 14

Table 2: Study selection process .. 15

Table 3: Classification of exclusion ... 15

Table 4: Data extraction process .. 15

Table 5: Comparison between classifications .. 19

Table 6: Comparison of RCM process models .. 31

Table 7: Limitations of RCM process models ... 32

Table 8: Challenges in traditional RCM resolved by Agile approaches 32

Table 9: Challenges in Agile RCM .. 33

Table 10: Direction is change classification .. 37

Table 11: Change identification through agile methods .. 38

Table 12: Traceability issues and their solutions (not verified) ... 39

Table 13: Traceability issues and their solutions (verified) ... 40

Table 14: Techniques used for impact analysis – Traceability methods 41

Table 15: Techniques used for impact analysis – Non-Traceability methods 42

Table 16: Methods of predicting requirements changes .. 44

Table 17: Change analysis using agile methods .. 44

Table 18: Popular software sizing techniques.. 46

Table 19: Popular estimating techniques – Non-Algorithmic ... 47

Table 20: Popular estimating techniques – Algorithmic .. 48

Table 21: Popular estimating techniques – Agile .. 49

Table 22: Comparison with related work ... 56

Chapter 03

Table 1: Rationale of RDF and GQM relationship .. 72

Table 2: Template for change specification ... 74

Table 3: List of addition questions... 75

Table 4: Application of the Change specification method ... 75

Table 5: Key question of the interview .. 77

Table 6: Key literature used in creation of classification ... 77

Table 7: Detailed change description ... 78

v

Table 8: Template for implementation .. 80

Table 9: Application of the implementation template ... 80

Table 10: Change 01 result .. 84

Table 11: Change 02 result .. 84

Table 12: Direction is change classification .. 87

Table 13: Comparison with the related work ... 88

Chapter 04

Table 1: Use of literature in creating analysis method ... 97

Table 2: Description of secondary functions ... 101

Table 3: Change difficulty identification ... 105

Table 4: Databases associated with the activities .. 110

Table 5: Change difficulty identification-populated .. 113

Table 6: Matrix representation ... 114

Chapter 05

Table 1: Detailed change description ... 128

Table 2: Template for implementation .. 129

Table 3: Change classification outcome .. 131

Table 4: Expansion of change options ... 132

Table 5: Identification of DAAs and IdAAs .. 133

Table 6: Change weight identification ... 137

Table 7: Change weight calculation ... 138

Table 8: Calculated change weights .. 138

Table 9: Template of comparison between rework .. 139

Table 10: Outcome of comparison ... 139

Table 11: Identification of Change 01 ... 143

Table 12: Identification of Change 02 ... 143

Table 13: Change Weight calculation for Change 1 and 2 .. 147

Table 14: Rework assessment for changes 1 and 2 .. 148

Table 15: Comparison with related work ... 151

vi

List of Figures

Chapter 02

Figure 1: Change management process ... 34

Figure 2: Change impact object sets .. 41

Figure 3: Costing Techniques .. 46

Figure 4: RCM with respect to organization level ... 53

Chapter 03

Figure 1: Layout of overview of the methods .. 66

Figure 2: Diskwiz customer order fulfillment process diagram... 68

Figure 3: Layout of the change Specification .. 69

Figure 4: RDF-GQM Relationship .. 73

Figure 5: Onto-terminology Framework .. 73

Figure 6: Partial system design diagram of a course management system 83

Chapter 04

Figure 1: Change analysis method ... 98

Figure 2: Three step analysis process .. 98

Figure 3: Step 1 .. 100

Figure 3.1: Add new activity (matched interfaces) .. 102

Figure 3.2: Add new activity (mismatched interfaces) .. 102

Figure 3.3: Delete activity (matched interfaces) .. 102

Figure 3.4: Delete activity (mismatched interfaces) .. 102

Figure 3.5: Activity reloction (matched interfaces) ... 102

Figure 3.6: Activity relocation (mismatched interfaces) ... 103

Figure 3.7: Merge activities ... 103

Figure 3.8: Replace activity with new activity .. 103

Figure 3.9: Replace activity with existing activity .. 103

Figure 4: Step 3 .. 107

Figure 5: Change dependency matrix .. 108

Figure 6: Partial system design diagram of a course management system 109

Figure 7: Specification & classification of change 01 ... 111

Figure 8: Specification & classification of change 02 ... 111

vii

Figure 9: Activity-Database connectivity .. 113

Figure 10: CDM ... 114

Chapter 05

Figure 1: Overview of the method ... 126

Figure 2: Diskwiz customer order fulfilment process diagram .. 131

Figure 3: Partial system design diagram of a course management system 142

viii

List of Abbreviations

ACM Associate for Computing Machinery

AIS Actual Impact Set

CD Compact Disk

CDM Change Dependency Diagram

CEM Change Event Manager

CEO Chief Executive Officer

CIO Chief Information Officer

CMP Change Management Process

COCOMO Constructive Cost Model

CW Change Weight

DAA Directly Affected Activities

DVD Digital Video Disk

EIS Estimated Impact Set

ER Effort of Rework

GQM Goal Question Metrics

GSD Global Software Development

IC Interaction Comparison

ID Identity

IdAA Indirectly Affected Activities

IEEE Institute of Electrical and Electronics Engineers

IT Information Technology

IW Interaction Weight

LOC Lines of Code

MI Matched Interfaces

MisMI Mismatched Interfaces

PERT Program Evaluation Review Technique

RC Requirements Change

RCM Requirements Change Management

RCMP Requirements Change Management Process

ix

RDF Resources Development Framework

RQ Research Question

RUP Rational Unified Process

SDD System Design Diagram

SIS Starting Impact Set

UCM Use Case Maps

UCP Use Case Points

UML Unified modelling language

x

Abstract

Throughout the development of a software system, there is a tendency for new

requirements to emerge and existing ones to change. The management of changing

requirements during the requirements engineering process and system development is

known as requirements change management (RCM). The literature suggests that

unmanaged changes can cause budget and time overruns and lead to poor quality

products, which will not satisfy customer requirements. In order to address some of

the existing issues of RCM, this thesis aims to create a better understanding of RCM

and presents a requirements change management process (RCMP) that encompasses

change identification, analysis and rework which will be useful in providing a more

rounded solution.

RCM has many aspects that have not been explored and/or understood in depth. A

systematic review presented in this thesis brings together research relevant to RCM,

providing a holistic picture that encompasses the causes of requirements changes,

current issues, solutions provided and the existing knowledge gaps. In the RCMP,

change identification is accomplished by a change specification method and a change

classification method. The outcome of these methods results in less communication

ambiguities and a better understanding of the need for the change. A method of

requirement change analysis is developed to identify how requirement changes

propagate through the existing system design and also to identify the system activities

which are affected due to the changes. The third method presented as part of the RCMP

is to analyse the extra work /rework required to implement a requirements change. The

work presented gives a clear understanding of rework in the context of RCM with an

assessment of the rework calculated using the interactions caused by the changes with

the system activities and their connections.

To demonstrate the usefulness of the methods, several methods are applied to a running

example which explains the application of the methods step by step. This allows for a

better understanding of the mechanics of the methods. The demonstration is further

extended by applying all the methods to a larger case study.

xi

Statement of Authorship

This thesis consists primarily of work by the author that has been published / accepted

or submitted for publication as described by the text.

Except where reference is made in the text of the thesis, this thesis contains no material

published elsewhere or extracted in whole or in part from a thesis submitted for the

award of any degree or diploma.

No other person’s work has been used without due acknowledgement in the main text

of the thesis.

This thesis has not been submitted for the award of any degree or diploma in any other

tertiary institution.

Signed: Date: 12/02/18

xii

Dedication

This thesis is dedicated to my loving parents, Sita and Emil Jayatilleke, sister and

brother-in-law, Enoka and Chamath Abhayagunawardena and my husband, Alex

Romashov (Sasha).

xiii

Acknowledgement

It has been a long journey and along the way there have been many people who have

assisted me to reach this destination.

First and foremost, I would like to thank my principal supervisor, Assc. Prof.

Richard Lai. Thank you for constantly striving to give me insight into the art of

research. It was an absolute pleasure working alongside you and learning the ropes of

postgraduate research. My project and my skills of researching benefited from your

extraordinary wisdom and experience as a researcher and a supervisor. I also thank

you for keeping me focused and for your flexibility as on a few occasions we worked

together until mid-night. You were persistently patient, understanding and

encouraging and worked hard to give me the support I needed as a PhD student,

especially when life was rough for me. Your teaching, guidance and care, coaching,

and mentoring have enabled me to achieve the best possible outcomes for my PhD

studies. You will remain as my invaluable mentor.

I would also like to thank my co-supervisor, Karl Reed. Your words of

encouragement and your faith in my success are greatly appreciated. Thank you for all

the contributions you made during my candidature. My gratitude is extended to La

Trobe University for awarding me a full Postgraduate Graduate Research Scholarship

to study towards a doctoral degree. I’m thankful to Michele Mooney of the School of

Engineering and Mathematical Sciences for her careful proof reading of my work at

various stages of my PhD candidature. To all my friends and colleagues, who have

been a source of joy and support, I am truly grateful.

Last but certainly not least, I am thankful to my family. I am indebted to my

loving parents Sita and Emil Jayatilleke, for your encouragement, unconditional love

and wishes that kept me going and made me determined to achieve this goal. To my

sister Enoka and brother-in-law Chamath, without the two of you, I would have never

started my journey of higher education and I will never forget that. Sasha, you get a

special mention as my partner in life, for the love, support and being a pure source of

happiness that put a smile on my face when I really needed it. Without you, this PhD

could not have become a reality.

xiv

Research Dissemination

Journal paper published

1. S. Jayatilleke and R. Lai, "A systematic review on requirements change

management," Information and Software Technology, vol. 93, pp. 163-185,

2018. DOI: 10.1016/j.infsof.2017.09.004.

Journal papers published online (awaiting print publication)

1. S. Jayatilleke, R. Lai, and K. Reed, "Managing software requirements

changes through change specification and classification," To appear in

Computer Science and Information Systems, 2018. DOI:

10.2298/CSIS161130041J.

2. S. Jayatilleke, R. Lai, and K. Reed, "A method of requirements change

analysis", To appear in Requirements Engineering, pp. 1-16, 2017. DOI:

10.1007/s00766-017-0277-7.

Journal paper submitted

1. S. Jayatilleke and R. Lai, “A method of assessing rework for implementing

software requirements changes”, Requirements Engineering, 2018.

Conference paper

1. S. Jayatilleke and R. Lai, "A method of specifying and classifying

requirements change," in Software Engineering Conference (ASWEC), 2013

22nd Australian, 2013, pp. 175-180: IEEE.

xv

Structure of thesis

This is a thesis by publication. La Trobe University doctoral thesis by publication guidelines

state that the format of the thesis, based primarily on work completed during candidature, may

be presented ‘as a collection of articles or book chapters including at least one substantial

integrating chapter, or a separate introduction, general discussion and conclusion that reveal

the way the articles and book chapters are thematically linked’.

This thesis is structured according to these guidelines. For ease of reading, the publications

have been incorporated into the main body of the thesis document as word documents.

Chapter 1: The introduction provides a foundation for the research that includes the

background, research problem and motivation, aim and scope of the work, and

contributions made.

Chapter 2: A systematic review on requirements change management - In this chapter, we

present a systematic review on the current practices and challenges of RCM. The

review is a result of 184 studies. The findings will enable readers to understand the

current practices, benefits, challenges, and the risks associated in RCM. Through

this review, developers as well as business personnel will be able to understand the

importance of RCM and be informed of a plethora of ways to manage changes.

This will lead to being better informed in making decisions on the associated

requirements changes and can be used as a guide in selecting the methods of change

management as appropriate for the situation. This chapter was published as a paper

in the January 2018 issue of the Web of Science Journal, Information and Software

Technology, Elsevier.

Citation Aim

S. Jayatilleke and R. Lai, "A

systematic review on requirements

change management," Information

and Software Technology, vol. 93,

pp. 163-185, 2018. DOI:

10.1016/j.infsof.2017.09.004.

To understand what research work has

already been achieved in the area of

RCM and identify knowledge gaps to

enable future research work.

xvi

Chapter 3: Managing software requirements changes through change specification and

classification - In this chapter, an examination of the various methods used for

change communication is carried out, as it is the first step in requesting a

requirements change. Successfully completing this step will result in the elicitation

of the correct goals in relation to the changes and knowing these goals will result

in the successful implementation of the said changes. Therefore, in this chapter, a

new way to communicate the required changes through specification and

classification methods is established. The methods will minimise the

communication ambiguities that hinder the process of understanding the changes

at an operational level and will also facilitate guidelines for implementation. This

chapter has been published online and will appear as a paper published in the June

2018 issue of the Web of Science Journal, Computer Science and Information

Systems, ComSIS Consortium. A preliminary version of this paper was presented

at the 2013 Australian Software Engineering Conference, published in IEEE.

Chapter 4: A method for requirements change analysis – This chapter explores the further

analysis of the requirements changes identified in chapter 3. This method will

provide the developers with increased understanding of how changes interact

with each other as well as the processes in the system. The conflicts and/or

dependencies identified through this method will facilitate better decision making

on prioritizing changes, selecting the best possible implementation path and to

realize the complexities associated in executing the change. This chapter has been

published online and will appear as a paper published in the Web of Science

Journal, Requirements Engineering, Springer.

Citation Aim

S. Jayatilleke, R. Lai, and K. Reed,

"Managing software requirements

changes through change

specification and classification," To

appear in Computer Science and

Information Systems, 2018. DOI:

10.2298/CSIS161130041J

To address the existing knowledge gap

in the lack of research done in

understanding and interpreting

requirements changes.

xvii

Chapter 5: A method of assessing rework for implementing software requirements changes –

The work is initiated by defining rework in the context of RCM and then

describes a method of analysing rework for implementing software requirements

changes. The outcome of the methods introduced in chapter 3 and 4 are used in

the initial stages of this method to produce a value that can be used as the

assessment of the rework required to implement a change. This finding enables

developers to have a better understanding of the rework required to compare the

rework between the different options available for implementing a change and to

identify the option that involves the minimal rework. This chapter has been

submitted to the Web of Science Journal, Requirements Engineering, Springer.

Chapter 6: Conclusions and future work – Provides the conclusion and the implication for

future work. This chapter summarises the work conducted in the previous

chapters and provides an evaluation of the work in terms of its strengths and

limitations.

References: list of the previous work referenced in this thesis.

Appendices: list of appendices to support the work in this thesis.

Citation Aim

S. Jayatilleke, R. Lai, and K. Reed,

"A method of requirements change

analysis," Requirements

Engineering, pp. 1-16, 2017. DOI:

10.1007/s00766-017-0277-7.

To enable better decision making based

on the further analysis of requirements

changes and address the drawbacks of

existing methods on impact analysis.

Citation Aim

S. Jayatilleke and R. Lai, “A

method of assessing rework for

implementing software requirements

changes," Submitted to

Requirements Engineering.

To understand the concept of rework in

RCM and generate numerical values

that can be interpreted to assess the

rework required to implement a

requirements change.

Chapter 1

Introduction

1.1 Background

In the current environment, software systems are becoming increasingly more complex. As a

result, the requirements of software systems are more prone to change. New requirements

emerge and existing ones change throughout the development of software systems [1, 2]. New

and/or modified requirements need to be integrated with existing ones, along with adaptations

to the architecture and source code of the software system. Unmanaged changes can be quite

detrimental to the successful completion of a software project and the need to put in place an

effective change management process has become a necessity. In its most primary context,

Sommerville [3] defines requirements change management (RCM) as a process of “managing

changing requirements during the requirements engineering process and system

development”. Requirements changes can be caused by changing user requirements and

business goals and/or be induced by changes in implementation technologies.

The size and complexity of software systems make RCM costly and time consuming. A

significant percentage of software system budgets goes to the operation and maintenance of

software systems [4]. It is important that these changes are identified as early as possible in

the development life cycle as correcting requirements errors late can cost up to 200 times as

much as correcting these errors during the requirements phase [5]. Attention to upfront

requirements activities has been said to produce benefits such as preventing errors, improving

quality, and reducing risk throughout software development projects [6, 7]. Studies conducted

by the Standish Group [8] found a striking 74 percent project failure rate, while 28 percent of

projects were cancelled completely. The study suggests that the top factors of failure are

related to requirements problems, including a lack of user input, a lack of a clear statement of

requirements, and incomplete and changing requirements. Therefore understanding

2

requirements changes and their impact on the rest of the development artifacts would be

beneficial for software development projects.

Managing requirements changes can be problematic due to users’ evolving needs,

disagreement among customers or stakeholders on agreed requirements, errors in

communicating (understanding) changes to the developers, changes in organization goals and

policies, etc. A survey of 4000 European companies found that the management of customer

requirements was one of the principal problem areas in software development and production

[9]. Although there are several techniques that address the problem space of RCM, research

has shown there are still many voids to deal with.

1.2 Research problems and motivation

The research problems addressed in this thesis focus on understanding the current state of

research on RCM and the existing issues in managing requirements changes based on

observations of the available literature. The formation of the research problems are also based

on the drawbacks and limitations of existing techniques related to RCM.

RCM, although not a new concept, has many aspects that have not yet been explored and/or

understood in depth. A plethora of research has been conducted in this area, yet there is no

indication of any work that has collated the varied information relevant to RCM in a

meaningful manner to provide a holistic picture regarding RCM and identify the existing

issues and knowledge gaps. Prior to developing solutions for existing issues, it is important to

uncover the causes of requirements changes. These causes tend to form how changes are

managed and decisions are made concerning RCM. The lack of understanding of the research

space of RCM hinders new efforts in identifying the issues in RCM as well as the development

of new solutions.

A key issue in RCM is the lack of effective communication between business and IT staff in

relation to change [10-13]. Clear communication plays an important role in the effective

identification of requirements changes. In order to establish a common communication

medium, several research studies have attempted a few different techniques such as

taxonomies, classifications and card sorting [14-23]. These existing works have been

3

evaluated as having several drawbacks and limitations, hence the need for a formal/semi-

formal change identification technique still exists. The literature also suggests that there is

little agreement and commonality between the existing methods, which makes it difficult to

compare these methods and select an appropriate one for real-time application. Furthermore,

most of the existing methods lack guidance in applying them to change management activities.

Therefore, the requirements change (RC) communication ambiguities can lead to an end

product that does not satisfy the customer requirements and/or is of poor quality.

Effective communication alone does not equate to the successful management of these

changes. Requirements are usually not standalone entities but have complex connections and

relationships with the other requirements of the system. As a result, a change administered to

one requirement may affect many other requirements [24-28]. Therefore, the need to analyse

and identify the impact of change is an essential characteristic in RCM. One of the popular

techniques used in locating the impact of change is traceability. However, this technique has

a few drawbacks and limitations. The lack of effective impact analysis techniques hinders

efforts to understand a RC in depth, which then, in turn, could result in poor quality / incorrect

implementation of the change.

Another aspect of RCM that has been overlooked is the additional work generated

implementing a RC. This extra work becomes an important factor as part of the impact on the

cost drivers and the duration of the project [5, 29, 30]. The extra work, referred to as rework,

therefore becomes a key contributing factor for change effort estimation. Depending on the

complexity of the changes, the amount of rework required can vary from some software

module modifications to complete overhaul of a system. Therefore, the effort associated with

change implementation activities will vary as well. It is evident from the literature that very

little research work exists on analysing the rework required for requirements change

implementation as well as for change effort estimation. Furthermore, the relationship between

rework and change effort estimation has not been understood particularly well.

1.3 Aims and scope of the work

In many instances, successful software has to conform to the requirements of its customers

and users. The cost of changing requirements increases exponentially as the development

4

progresses through the project’s phases [1, 6]. RCM is one of the core activities utilized to

attain one of the main objectives of software development, which is to satisfy the evolving

needs of customers at a reasonable cost and time. Most approaches to managing RCs can be

classified as methods for change impact analysis, change cost calculation, change complexity

analysis and change verification. Even though many such methods exists, software

development projects and organizations still struggle in the battle to manage RCs.

The aims of this thesis are to create a better understanding of RCM and to develop a

requirements change management process (RCMP) that encompasses several different

characteristics that would be useful in providing a more holistic solution for the issues facing

RCM. It is intended that this process will assist both the business and the development sides

of a software project / organization. By analysing the literature related to RCM, and the

techniques that are developed as part of the RCMP, and setting our research questions based

on the unresolved issues therein, it is anticipated that the work in this thesis will enable the

following:

1) a clearer understanding and a more complete view of RCM in terms of the causes of

requirements changes, the current issues, the solutions provided and the existing

knowledge gaps;

2) better communication of RCs from the business side to the IT side, providing a better

understanding of the required change;

3) the identification of the conflicts and/or interdependencies between RCs and provide

a decision criterion to analyse the requirements changes in more depth;

4) a clearer understanding of the rework needed in the context of RCM along with an

analysis of the rework required in implementing a RC;

The usefulness of the proposed methods of the RCMP is illustrated by applying them to case

studies. The research process, findings and contributions of this research are discussed in detail

in the subsequent chapters of the thesis.

5

1.4 Contributions

In pursuit of the overall objective of the better management of requirements changes, this

thesis makes several contributions to the knowledge on RCM. In this section, the major

contributions of the research are described in brief.

A systematic review of requirements change management: Understanding the research

space of RCM is initiated through a systematic review. It became evident during the review

that there is a large body of information related to RCM, covering a wide range of issues, and

yet no work has been done in collating this information into one piece of work that would be

beneficial for researchers in the area. The outcome of the review resulted the identification of

the following: (1) the causes of requirements changes; (2) the various process used for RCM;

(3) the techniques used for RCM; and (4) the decision making related to RCM. Based on the

various processes used, three main areas of RCM were identified: (1) change identification;

(2) change analysis; and (3) change cost/effort estimation. The methods developed in this

thesis are intended to fill the gaps identified during the review, and, of course, are “informed”

by them.

Managing software requirements changes through change specification and

classification: The RCMP begins with a combination of two methods for requirements change

specification and classification. This two-stage process consists of communication of the

requirements changes through the specification method and understanding the change through

the classification method. The key features of the methods are as follows: (1) they eliminate

ambiguities when communicating change between business and IT personnel at an operational

level, to a better understanding of the reason for the change. As a result, developers are able

to see the relevance of the change to the system, further helping the decision-making process;

and (2) the clear guidelines provided by the change classification process not only provide a

basic course of action for incorporating the change into the system but also determines (when

possible) multiple routes to implementation. This may lead to a minimization of the conflicts

between multiple change implementations. As a result, change elicitation using this method

produces a better outcome in incorporating the change into a system.

6

A method of requirements change analysis: The changes elicited using the specification and

classification methods will be stored in a change event log. These identified changes will then

undergo further analysis. This three-stage process consists of application of the change

analysis functions, calculation of the change difficulty, and application of the change

dependency matrix. The key features of the method are as follows: (1) the change dependency

matrix will help change implementers to identify conflicts and/or dependencies between

multiple changes. The identification of such dependencies will make the process of

determining the suitability of implementing the change possible. This will also help in deciding

which route to take if there are multiple paths identified for the implementation of the change

(through previous methods) as the less conflicted path can be easily identified; (2) as part of

the change analysis, the method will calculate the difficulty level of implementing each

change. The changes will be prioritized based on the results of the calculation. The difficulty

level of the change will assist the developers, as it will indicate how rigorous the change

implementation activity will be. The priority level will assist in determining the

implementation order of the changes.

A method of assessing rework for implementing software requirements changes: This is

the final stage of the RCMP method. The work in this section commences by defining the term

rework in the context of RCM. This is a three-step process. In the first two steps, the method

uses the findings of the previous two methods to identify the activities affected by the change.

In the last step, an assessment of the rework is carried out using an interaction comparison and

interaction weight. The key features of the method are as follows: (1) a numerical

representation of the assessment of rework for all possible implementation options of a

requirements change; (2) selection of a particular implementation option with lesser rework;

and (3) comparison of the assessment of rework between multiple requirements changes.

7

Chapter 2

A Systematic Review of Requirements

Change Management

2.1 Preface

Requirements change and its management has been a topic of interest with researchers and

software development teams alike for a very long time. This interest is due to the importance

requirements change management holds in relation to the success of a software project. We have

discovered that the volatility of requirements and the improper management of their impact is a

major contributor to project failure. The main purpose of this chapter is to identify what research

work has been carried out to date and based on the information gathered; develop a

comprehensive understanding of the research space. Furthermore, we use this review to identify

the strengths and limitations of the existing methods in managing requirement changes as well

as to uncover the research gaps that can potentially lead to future research work.

The chapter consists of a paper that investigates the research space of requirements change

management. This investigation has led to establishing four key research questions. The findings

of these research questions steer the formation of the rest of the thesis.

8

2.2 Publication

S. Jayatilleke and R. Lai, "A systematic review on Requirement Change Management,"

Information and Software Technology, vol. 93, pp. 163-185, 2018. DOI:

10.1016/j.infsof.2017.09.004.

Signed : Date : 12/02/18

 (S. Jayatilleke)

Signed : Date : 12/02/18

 (R. Lai)

Manuscript title Publication status Nature and extent

of candidate’s

contribution

Nature and extent

of co-author’s

contribution

S. Jayatilleke and R.

Lai, "A systematic

review of

requirements change

management".

Information and

Software Technology

Published in

accordance with

Information and

Software

Technology author

guidelines.

Eighty percent

contribution by the

candidate. This

included gathering

information,

drafting and revising

the manuscript.

Twenty percent

contribution by the

co-author. This

included discussions

of the ideas

expressed in the

paper, critical

review and

submission to the

journal.

9

A Systematic Review of Requirements Change Management

Abstract

Context: Software requirements are often not set in concrete at the start of a software

development project; and requirements changes become necessary and sometimes inevitable

due to changes in customer requirements and changes in business rules and operating

environments; hence, requirements development, which includes requirements changes, is a

part of a software process. Previous work has shown that failing to manage software

requirements changes well is a main contributor to project failure. Given the importance of the

subject, there’s a plethora of research work that discuss the management of requirements

change in various directions, ways and means. An examination of these works suggests that

there’s a room for improvement.

Objective: In this paper, we present a systematic review of research in Requirements Change

Management (RCM) as reported in the literature.

Method: We use a systematic review method to answer four key research questions related to

requirements change management. The questions are: (1) What are the causes of requirements

changes? (2) What processes are used for requirements change management? (3) What

techniques are used for requirements change management? and (4) How do organizations

make decisions regarding requirements changes? These questions are aimed at studying the

various directions in the field of requirements change management and at providing

suggestions for future research work.

Results: The four questions were answered; and the strengths and weaknesses of existing

techniques for RCM were identified.

Conclusions: This paper has provided information about the current state-of-the-art

techniques and practices for RCM and the research gaps in existing work. Benefits, risks and

difficulties associated with RCM are also made available to software practitioners who will be

in a position of making better decisions on activities related to RCM. Better decisions will lead

to better planning which will increase the chance of project success.

Keywords

Requirements change management; Agile; Systematic review

10

1. Introduction

Change is an intrinsic characteristic of the software engineering discipline compared to other

engineering disciplines. In real-world scenarios, it is difficult to specify all the requirements

for software as the need and the circumstance of the scenario is subject to change. Factors such

as customer needs, market change, global competition, government policies, etc. contribute

profoundly to the changing nature of requirements. The need for increasingly complex

software is in high demand as organizations struggle to survive in a highly competitive market.

Therefore, managing change in software development is not just important but crucial for the

success of the final product.

Nurmuliani [31] defines requirements volatility as “the tendency of requirements to change

over time in response to the evolving needs of customers, stakeholders, the organisation and

the work environment”. Requirements, in principle, are the needs and wants of the users and

stakeholders of the system captured by an analyst through an elicitation process [3]. These

requirements change (RC) throughout the system development and maintenance process,

which includes the whole lifecycle of a system: requirement formation, analysis, design,

evaluation and learning [1, 3, 16, 17, 31-41]. As this review progresses, we discuss in detail

the factors that can cause these requirements changes. Therefore, requirements change

management (RCM) can be defined as the management of such changing requirements during

the requirements engineering process, system development and the maintenance process [3,

33, 42]. This definition of RCM is an adaptation of the definition provided by Sommerville

[3] who states RCM is a process of “managing changing requirements during the requirements

engineering process and system development”.

Managing such evolving changes has proved to be a major challenge [38-41]. The

consequences of unmanaged or improperly managed requirement changes can spell disaster

for system development. These negative consequences can result in software cost and schedule

overrun, unstable requirements, endless testing and can eventually cause project failure and

business loss [31, 43-49]. Therefore, the proper management of change can be both rewarding

and challenging at the same time.

The research area of RCM is of importance to many parties as requirements change is a

constant factor. Many research studies on have been conducted on improving RCM and many

11

more have been conducted to look for answers in the knowledge gaps found in the current

research. The main motivation of this research paper is to bring together the plethora of

research work done in the area of RCM into one location. This will enable software

practitioners and researchers alike a reference point in acquiring knowledge on the current

practices, benefits, risks and difficulties associated with RCM. As a result, they can form

realistic expectations before making decisions on activities related to RCM. Better decision

making will lead to better planning which will increase the chance of project success. An

equally important reason to conduct this research is to identify the knowledge gaps in the area

of RCM. Given that a lot of research work has been done in this area, we felt it is important

for us as well as other researchers to understand the future of RCM. Although this is a widely

researched area, there are many gaps still remaining that once recognized and remedied could

assist organizations immensely.

2. Research questions (RQs)

To gain an understanding of current trends, practices, benefits and challenges in RCM, we

formulated the following four questions;

RQ1: What are the causes of requirement changes?

The motivation behind this question is to understand why requirement changes occur, which

leads to the realization as to why this has been an evolving topic. To answer this question, we

investigated various events and uncertainties that have been mentioned in literature. We also

investigate whether there is any commonality between these events that would lead to a

recognition pattern in predicting RCs.

RQ2: What processes are used for requirements change management?

The motivation behind this question is to understand the various steps involved in managing

RCs. To answer this question, we investigated the following: (1) recommendations for semi-

formal methods of managing change; (2) formal process models available for RCM

RQ3: What techniques are used for requirements change management?

12

The motivation for this question is to identify and understand the state-of-the-art techniques

in managing major areas of the RCM process. To answer this question, we identify the main

steps required to manage RC based on the answer to RQ2 and then identify in the literature

what techniques have been used in each of these steps.

RQ4: How do organizations make decisions regarding requirements changes?

The motivation behind this question is to discover what factors are involved in making

decisions regarding RCs at different organizational levels. To answer this question, we first

identify the main levels of an organization and use the information available in the literature

on RCM that can be mapped to each level.

3. Review approach

The systematic review was designed in accordance with the systematic review procedures and

processes defined by Kitchenham [50, 51]. According to Kitchenham [50], there are 10

sections in the structure of a systematic review: 1. Title; 2. Authorship; 3. Executive summary

or abstract; 4. Background; 5. Review questions; 6. Review Method; 7. Inclusion and

exclusion of studies; 8. Results; 9. Discussion; and 10. Conclusion. The first 5 sections have

been covered so far. The review method comprises four sections: 1. Data search strategy; 2.

Study selection; 3. Data extraction; and 4. Data synthesis. This section comprises the review

method and the inclusion and exclusion of studies. The results, discussion and conclusion are

presented in the next section.

3.1. Study objectives

As noted earlier, the objective of this literature review is to thoroughly study the background

and existing methods in RCM and thereby provide a critical analysis of the relevant research

work and identify future directions for improvement.

13

3.2. Selected sources

In order to carry out a comprehensive analysis, search strings were established by combining

the keywords through the logical connectors “AND” and “OR”. The studies were obtained

from the following search sources: IEEE, ACM, Science Direct (Elsevier), Springer, Wiley

Inter Science, and Google Scholar. The quality of these sources guarantees the quality of the

study.

3.3. Selected language

The English language is the most commonly used language in the world and most of the

available research is written in English. Therefore, only papers which are written in English

were selected for the literature review.

3.4. Data search

To answer the research question, we undertook the search using four steps;

Step 01 – Identify the fundamental areas to finalize the scope of the review.

Step 02 – Select key words / strings from the defined areas. Key words / strings were limited

to seven (see Table 1).

Step 03 – Describe search expressions based on the first two steps i.e. [Expression = (A1 OR

A2 OR A3 OR A4 OR A5 OR A6 OR A7 OR A8 OR A9 OR A10 OR A11) AND (B1 OR

B2 OR B3 OR B4 OR B5)].

Step 04 – Use the search expression in the libraries mentioned in the selected sources.

Category Area Keywords / Strings

A
Requirement Change

Management

A1 – Requirement change/volatility/creep

A2 – Requirement change difficulties

A3 – Requirement change management

A4 – Requirement change management

models / Processes

A5 – Requirement change identification/type

A6 – Requirement change analysis

A7 – Requirement change factors/causes

A8 – Requirement change decisions

A9 – Change impact analysis

A10 – Agile requirement change management

A11 – Requirement change cost estimation

14

B Nature of study

B1 – Case study

B2 – Experiment

B3 – Surveys

B4 – Industrial

B5 – Literature reviews
Table 1: Categories and keywords

3.5. Study selection (Inclusion and exclusion of studies)

Once the research questions and the data search mechanism were defined, we started the

process of selecting studies which fell under the defined scope and contained the keywords set

out in the review process. As shown in category A of Table 1, the area of RCM has a lot of

potential as change is a constant factor. As a result, our search yielded hundreds of research

papers and studies. After screening these papers, we came to the conclusion that 28% (184)

were relevant to the study.

Papers were excluded for a number of reasons related to format (editorial, seminar, tutorial or

discussion), repetition, lack of peer review, lack of a focus on RC and RCM, redundancy and

lack of quality. Several papers appeared in more than one research repository. We eliminated

the repetitions and only considered one instance of a paper. Details on repeated articles do not

provide any significant information, except the names of the articles which have been

published by more than one publishing authority (e.g. IEEE, ACM). As a result, we do not

mention the names of the repeated articles which were found during the study selection

process. In the initial phase, the extracted papers were independently reviewed by both authors

based on the inclusion and exclusion criteria. In the secondary phase, both authors compared

their outcome of their selection and through discussion, came to agreement on the inclusion

and exclusion of papers. The overall inclusion process comprised five steps, as shown in Table

2. Table 3 provides details of the reasons for the exclusion of 466 papers.

Analysis Phase Inclusion Criteria Number

of Papers

1. Initial search • Papers written in English

650 • Available online

• Contain search keywords and strings

2. Scrutinizing titles • Only published in journals, conferences,

workshops and books 573

• Not an editorial, seminar, tutorial or discussion

15

3. Scrutinizing

abstract
• Experiments, case studies, literature reviews,

industrial and surveys
340

4. Analyzing

introduction and

conclusion

• Main contribution in the areas of search strings
230

5. Analyzing main

contribution
• Reported significant contribution

184
• Originality of work

• Sole focus related to the theme of this review

study
Table 2: Study selection process

Exclusion Criteria No.

Paper format (editorial, seminar, tutorial or discussion) 95

Repetitions 43

Lack of peer review 75

Lack of a focus on RC and RCM 110

Redundancy 98

Lack of quality 45

Total 466
Table 3: Classification of exclusion

3.6. Data extraction

After completing the study selection process, we recorded basic information on each paper in

data extraction form (refer to Table 4) to gather information on the causes of RCs, the study

focus, RCM processes / models, RC identification, RCM techniques, reported challenges in

RCM, decision making in RCM, study findings and knowledge gaps in RCM. The non-

experimental models which presented a proposal without conducting experiments were also

applied.

Aspects Details

Study ID Paper ID

Title Title of paper

Authors Names of authors

Publishers Name of publishing authority

Publishing date Date of publication

Causes of RCs Factors that cause requirement changes

Study focus Focus and perspective of paper

RCM processes / models Processes / models listed for managing RC

RCM techniques Techniques used for RCM (identification, impact analysis,

cost estimation, etc.)

Reported challenges in RCM Challenges and consequences associated with RCM

Decision making in RCM Factors involved in decision making related to RCM

Study findings Lessons learned from the paper

Knowledge gaps in RCM Implications for future work
Table 4: Data extraction process

16

3.7. Data synthesis

Kitchenham [50, 51] states that there are two main methods of data synthesis: descriptive

(qualitative) and quantitative. The extracted data were analysed using a qualitative method to

answer our research questions, which leads to a descriptive data synthesis. One of the co-

authors of this paper has published qualitative systematic reviews [52, 53] using similar

techniques. The analysis used the constant comparison method [54] in comparing studies past

and present in RCM. Using this method, we present the focus of the studies, the proposed

methods, applicability to requirement change management, lessons learned from the studies

and drawbacks and limitation of the studies.

4. Results for RQ1: What are the causes of requirements changes?

It is anticipated that requirements will change during a project life cycle. Whilst this fact is a

constant, delayed discovery of such changes poses a risk to the cost, schedule and quality of

the software [32, 55-57] and such volatility constitutes one of the top ten risks to successful

project development [56-58]. Pfleeger [59] recommends that a method needs to be developed

to understand and anticipate some of the inevitable changes during the development process

in order to reduce these risks. The identification of factors that cause or influence requirements

uncertainty is a necessity. The recognition of such factors will support requirements change

risk visibility and also facilitate better recording of change data [56, 57].

Change cause factors were collected using a key word search on academic papers, industry

articles and books that deal with change management or requirement engineering. We used

the search expressions A1 OR A2 OR A3 OR A5 OR A7 (see Table 1).

Most literature extracted in this survey mentioned/indicated the reasons for requirement

changes. However, it was deemed necessary to present these findings in a form that was

meaningful rather than listing all the causes of RCs mentioned in the literature. Of the literature

extracted, there were three studies that formally classify the causes of RCs. Weiss and Basili

[60] divide changes into two categories: error correction and modifications. This classification

appears to be simplistic and categorising all the identified change causes may not create an in-

depth understanding. Bano et al. [61] classifies change causes also under two categories;

essential and accidental. They further classify the change causes based on their origin: within

17

the project, from the client organization and from the business environment. McGee and Greer

[56, 57] use five areas/domains to classify change causes. For this survey, we use the

classification presented by McGee and Greer as it has a more comprehensive categorization.

The five change areas are: external market, customer organization, project vision, requirement

specification and solution. Within the five change areas, they distinguish between two causes

of change: trigger and uncertainty [56]. The difference between these two categories is that an

event can cause a change without pre- or post-uncertainty. However, uncertainty cannot cause

a change to occur without an event that is triggered to manage the risk of the uncertainty. The

factors that were identified as causes of requirements change were sorted into five areas as

follows:

(i) Change area: External market

In this category, the changes to the requirements are triggered by the events and

uncertainties that occur in the external market which also include stakeholders. These

stakeholders include parties such as customers, government bodies and competitors.

Therefore, events such as changes in government policy regulations [10, 62, 63],

fluctuations in market demands [10, 31, 63, 64] and response to competitors [41, 63, 65,

66] can be considered. Also, uncertainties such as the stability of the market [41, 67] and

the changing needs of the customers [41] are also part of this category.

(ii) Change area: Customer organization

In this category, changes to the requirements are triggered by the events and the

uncertainties that arise from a single customer and their organizational changes. Although

the changes occur within the customer’s organization, such changes have a tendency to

impact the needs of the customer and as a result, impact the design and requirements of the

software project. Therefore, events such as strategic changes within the organization [16],

restructuring of the organization [10, 31, 62, 64, 68], changes in organizational hierarchy

[41, 63, 69] and changes in software/hardware in the organization should be considered.

The stability of the customer’s business environment can create uncertainties that may lead

to changes and these are also part of this category.

18

(iii) Change area: Project vision

In this category, the changes to the requirements are triggered by changes in the vision of

the project. These changes are in response to a better understanding of the problem space

from a customer point-of-view and the emergence of new opportunities and challenges.

Events such as improvements to business processes [3, 63], changes to business cases due

to return on investment [16], overrun in cost/schedule of the project [62, 64], identification

of new opportunities [62] and more participation from the stakeholder [10] should be

considered. Uncertainties, such as the involvement of all stakeholders [63, 68-70], novelty

of application [63, 71], clarity in product vison [10, 63, 70, 72], improved knowledge

development team in the business area [69, 71], identification of all stakeholders [68, 70],

experience and skill of analyst [29, 63, 69, 72], size of the project [3, 69, 73] can also cause

changes under this category.

(iv) Change area: Requirement specification

In this category, changes in the requirements are triggered by events and uncertainties

related to requirement specification. These trigger events are based on a developer’s point-

of-view and their improved understanding of the problem space and resolution of

ambiguities related to requirements. Events such as increased understanding of the

customer [3, 62, 63, 73, 74], resolution of misunderstandings and miscommunication [41,

75, 76] and resolution of incorrect identification of requirements [31] can be considered as

change triggers. Uncertainties, such as the quality of communication within the

development team [16], insufficient sample of user representatives [16], low staff morale

[29], quality of communication between analyst / customer [63, 67, 69, 73], logical

complexity of problem [69, 71, 73], techniques used for analysis [3, 29, 62-64],

development teams’ knowledge of the business area [69, 71], involved customers’

experience of IT [71], quality of requirement specification [16], and the stability of the

development team [16] can contribute towards change under this category.

(v) Change area: Solution

In this category, changes in the requirements are triggered by events and uncertainties

related to the solution of the customer’s requirements and the techniques used to resolve

19

this. Events such as increased understanding of the technical solution [16], introduction of

new tools/technology [10, 33, 41, 62, 63, 66, 68, 77] and design improvement [41, 62, 75]

should be are considered as change triggers. Technical uncertainty and complexity can also

be considered under this category as a cause of change [16].

The five change areas listed above can be mapped to the classification proposed by Bano et

al. [61]. The terms essential and accidental were initially introduced by Brooks [6]. According

to Bano et al. [61], change causes under the essential category are those that are inherent in

nature and cannot be controlled i.e. “fluctuating market demand” cannot be controlled or

avoided by the development team or the organization. In comparison, accidental causes can

be controlled and avoided i.e. “overrun in cost/schedule of the project” can be avoided or at

least controlled by putting better techniques and mechanisms in place. Being able to categorize

change causes under these two categories has added benefits in managing RCs. With essential

causes, the focus should be to deal with their impact and therefore use techniques that will

reduce time and effort for their management. With the accidental causes, the focus should be

to use techniques that avoid such occurrences. Table 5 shows how these five categories in

McGee and Greer’s classification [56] can be mapped to Bano et al.’s classification [61] of

essential and accidental categories.

Bano et al.’s

Classification [61]

McGee and Greer’s Classification [56]

Essential External market Customer organization

Accidental Project vision Requirement

specification

Solution

Table 5: Comparison between classifications

Key findings of RQ1

Given that RC is an inevitable occurrence in any development project, it is beneficial to

identify which factors can cause these changes. The knowledge gained through such findings

will enable all stakeholders of a project to better manage the changes when they occur, develop

systems based on the changes, and anticipate certain changes. Based on the discussion

formulated for RQ1, the following are the key findings:

1) The factors that cause RCs can be divided into two categories: change trigger events;

and uncertainties.

20

2) In reality, it is difficult to determine whether change happens as a result of one or both.

In a practical sense, it is not important that the causes of the changes are divided into

these two categories, as long as they are identified.

3) These identified changes can be categorised into five areas: external market; customer

organization; project vision; requirement specification; and solution.

4) These five areas were identified by observing the characteristics of the change events

and the uncertainties discussed in the literature. For example, any change factor that

was part of the external environment of the organization, such as competitors,

government regulations, etc. was categorised as the external market.

5) These five areas can be divided into two categories: essential and accidental. Based

on this division, development teams can be proactive in managing such changes.

6) Based on the location in the life cycle of the software project, the above information

can be meaningful for anticipating what factors may cause change and as a result will

lead to better planning that will ensure a better success rate for the project.

5. Results for RQ2: What processes are used for requirements change

management?

In order to answer RQ2, the following sections discuss various processes suggested for

managing RC and the process models that are dedicated for RCM. We used the search

expressions A3 OR A4 OR A6 OR A9 OR A10 (see Table 1) to extract the relevant literature.

5.1 Semi-formal methods available for requirements change management

Change is considered to be an essential characteristic of software development and successful

software has to be adapted to the requirements of its customers and users [33, 78, 79]. Thus

RCM has become a significant activity, which is undertaken throughout the development of

the software and also during the maintenance phase. Given the significance of this activity, it

is unlikely that change management is undertaken in an ad-hoc manner. According to

Sommerville [3], the process of RCM “is a workflow process whose stages can be defined and

information flow between these stages partially automated”. Having a proper process for RCM

is linked with both improvement in the organizational processes and the success of software

21

projects [33, 34, 80]. We have identified four (i - vii) academic works that refer to establishing

semi-formal methods for managing change.

(i) Proposal: Leffingwell and Widrig [81]

This is a five-step process for managing change. The process is as follows:

1. Recognize that change is inevitable, and plan for it.

2. Baseline the requirements.

3. Establish a single channel to control change.

4. Use a change control system to capture changes.

5. Manage change hierarchically.

The process begins with a change management plan which recognizes that change is

unavoidable. Requirements are therefore baselined for change control and any proposed RC is

then compared with the baseline for any conflicts. In the third step, a change authority or

change decision maker is established. For small projects, this would be a project manager

while for larger systems, the responsibility would be handed to a change control board. In both

cases, the decision is based on impact analysis. In the decision-making process, it is

recommended that input from various stakeholders, such as customers, end-user, developers,

testers, etc. should be taken into consideration. To be able to make an informed decision, the

impact analysis should capture the effect of the change on cost, functionality, customers and

external stakeholders. Also to be considered is the destabilization of the system, which can

occur due to the implementation of the change. The decision which is taken should be

communicated to all the concerned parties. The fourth step refers to establishing a system that

can be used to capture the changes effectively. This could be either paper-based or electronic.

The ripple effects of the change are to be managed in a top-down order.

Limitations of the proposal:

According to [81], this process should enable software practitioners to identify changes that

are “both necessary and acceptable”. However, it is not mentioned in this work what steps are

to be taken to decide if a particular change is both necessary and acceptable. Similarly, no

specific details are given as to how to calculate the impact on cost, functionality, customers

22

and external stakeholders. In this sense, these steps only form a basic understanding of what

needs to occur in handling a change.

(ii) Proposal: El Emam et al. [80]

This process focuses on the preliminary analysis of change management. Two inputs are

considered in order to conduct this process, the technical baseline and any comments made by

stakeholders, such as customers, end-users, the development team, etc. The decision-making

process involves a change control board as this change management process is prescribed for

large systems. The technical baseline is essentially the system requirement specification

document. The change management process has the following four phases:

1. Initial issue evaluation

2. Preliminary analysis

3. Detailed change analysis

4. Implementation

In the first step, the comments gathered from the stakeholders are validated and entered into a

database as change requests. If a change request addresses a problem that is within the scope

of the technical baseline, and has not been addressed before, a change proposal will be

generated. In the second step, an analysis plan is formulated which describes the problem of

the change proposal in detail. If this plan is approved by a change control board, then many

potential solutions will be developed, from which one will be selected for implementation.

This solution then needs to undergo further approval. In the third step, the solution approved

by the preliminary analysis report is further analysed against the technical baseline to

determine the impact on the system in detail and the changes required. In the last step, the

technical baseline is modified according to the change proposal and the change request is

closed.

Limitations in the proposal:

The use of these steps is limited to large projects. Furthermore, it is not clear on what basis the

different alternative solutions are assessed and what exactly is the decision-making process in

the second step. Given that this process is conducted at an initial stage of the development

23

process, there is no access to the code. Therefore, a possibility exists that these changes may

cause issues at a code level.

(iii) Proposal: Kotonya and Sommerville [82]

The authors emphasize the importance of having a formal process for change management to

ensure the proposed changes continue to support the fundamental business goals. They [82]

indicate that such a process ensures that similar information is collected for each proposed

change and that overall judgements are made about the costs and benefits of such changes. A

three-step change management process is proposed in [82] as follows:

1. Problem analysis and change specification

2. Change analysis and costing

3. Change implementation

In the first step, a problem related to a requirement or a set of requirements is identified. These

requirements are then analysed using the problem information and as a result, requirements

changes are proposed. In the second step, the proposed changes are analysed to determine the

impact on the requirements as well as a rough estimation of the cost in terms of money and

time that is required to make the changes. Finally, once the change is implemented, the

requirement document should be amended to reflect these changes and should be validated

using a quality checking procedure.

Limitations in the proposal:

The cost estimation carried out in the second step has a component of seeking customer

approval. The information which is lacking at this stage is the decision factors that are

considered by the software practitioners and the customers in order to approve or disapprove

a proposed change. The negotiation process with customers in relation to accepting or rejecting

a proposed change as indicated in [82] is based on cost and there is no indication that the risks

associated with implementing the change were considered.

24

(iv) Proposal: Strens and R. Sugden [35]

The change analysis process introduced in [35] is based on two analysis methods, namely

sensitivity analysis and impact analysis. According to [35], sensitivity analysis is used to

predict which requirements and design areas have the highest sensitivity to changes in

requirements while impact analysis is used to predict the consequences of these changes on

the system. The main outcome of this analysis is to reduce the associated risks in accepting

and implementing RCs. The process is as follows:

1. Identify the factors which are the cause of change.

2. Identify those requirements which are highly affected by the change (this information is

acquired from the previous history of requirements or intuition).

3. Identify the consequences of these changes - impact analysis

4. Undertake change analysis on other requirements, design, cost, schedule, safety,

performance, reliability, maintainability, adoptability, size and human factors.

5. Decide on and manage changes.

Limitations in the proposal:

It is important to perform change analysis, however there is no clear explanation as to how the

impact analysis is to be carried out for the elements mentioned in step four and how these

factors will be "equated". It is also difficult to determine the ripple effect of the changes, given

that there is no identification of the implementation part and the test documents to be modified.

(v) Proposal: Pandey et al. [83]

The authors propose a model for software development and requirements managements. There

are four phases in this process model: requirement elicitation and development, documentation

of requirements, validation and verification of requirements and requirements management

and planning [83]. The management of RCs are controlled by the requirement management

and planning phase. However, according to the full process model, the activities of this phase

are interrelated with the other phases. The process is as follows:

1. Track the changes of the agreed requirements.

25

2. Identify the relationship between the changing requirements with respect to the rest of

the systems.

3. Identify the dependencies between the requirements document and other documents

of the system.

4. Decision on the acceptance of the change(s).

5. Validation of change request.

6. Maintain an audit trail of changes.

Limitations in the proposal:

Although a comprehensive set of steps is described, the paper does not discuss specific

schematics in executing these steps. Dependencies are considered but there is no indication of

further impact analysis. It is not clear how decisions will be made in terms of accepting or

rejecting a change as the impact analysis phase is not clearly discussed. There is also no

indication of consideration of the cost or risks associated with implementing the change.

(vi) Proposal: Tomyim & Pohthong [36]

The method introduced by [36] for RCM uses UML for object-oriented development. The

authors justify the use of UML due to the complexity of the many views and diagrams it

produces, thereby adding more complexity in managing change. Therefore, a need arises for a

process to manage the changes better using UML. The business model used in this method

consists of two procedures: systems procedure (SP) and work instructions (WI). The SP

explains the business operation from the beginning of a task until the end of the business

process. The WI explain the way to operate any single task step by step. The method comprises

the following steps:

1. Identify the change request.

2. Identify the related SP and WI.

3. Analyse the impact on the system and report on the impacted artefacts.

4. Make a decision based on the impact.

26

Limitations in the proposal:

The paper provides several sets of diagrams that represent the activities carried out but does

not provide details of the execution of the steps. A decision on the implementation of the

change is solely based on the impact analysis. This may be problematic if change priorities

and costs/effort elements are not taken into consideration.

(vii) Proposal: Hussain et al. [84]

The method proposed by [84] is based on the need to manage informal requirements changes.

Such requirements are internally focused, potentially subversive to the development process

and therefore harder to manage [84]. According to the authors, there are many reasons for

informal changes, some of which are: prematurely ending requirement engineering activities

[85]; attempting a requirements ‘freeze’ earlier than usual in a project [81]; as a consequence

of work hidden by managers to get something developed by making ad hoc decisions and

bypassing time consuming formalities [86]; additions made without the consideration of delay

in the schedule and project cost [87]; and failure to create a practical process to help manage

changes [81]. Therefore, the authors suggest that there is as much a need for a method for

managing informal requirement changes as for formal requirement changes. The method

comprises the following steps:

1. Identify informal requirement change.

2. Analyse the impact of change.

3. Negotiate the change with stakeholders.

4. If accepted, decide on whether to include in current phase or next.

Limitations in the proposal:

The process is not very different from formal change management techniques. The negotiation

component after the impact analysis is a slight variation from the norm, however it does not

explicitly explain how the negotiation is done. The main component considered for negotiation

is the impact analysis. However, the proposed method does not disclose how the impact

analysis is conducted and what is considered for the impact analysis i.e. affected components,

cost, effort, etc.

27

5.2 Formal process models available for requirements change management

The processes introduced above are not formalized models for managing RC. This section

introduces several RCM process models. These models facilitate communication,

understanding, improvement and management of RCs. Typically, a process model includes

activities, who is involved (roles) and what artifacts are to be used [37, 88].

The activities of a change management process model are the actions performed during the

RCM process that have a clearly defined objective, such as determining the change type which

is a part of change identification [3, 89, 90]. The identification of the roles in these process

models define the responsibilities attached to each role. For example, if the role of the customer

is defined by the process model, this means the responsibilities need to be shared with the

customer’s organization and its representatives. The artifacts are documents and parts of the

product created, used and/or modified during the process [3, 89, 90]. By identifying these

artifacts as part of the RCM process, this makes the management of change more efficient due

to the early detection of what documentation is going to be affected by the change.

Based on the information given in [42] and by individually studying several change

management process models, ten such models [1, 45, 81, 91-95] were selected from the

literature. Table 6 compares these models based on their activities, roles and the artifacts used.

There are certain limitations to these models, which are detailed in Table 7.

5.3 Agile methods available for requirements change management

One of the most important aspects of agile methods is that change is a built-in aspect of the

process [96]. Since software development is done in small releases, agile methods tend to

absorb RCM into these small iterations. The processes for managing change can neither be

categorised as semi-formal nor formal. Because of the frequent face-to-face communication

between the development team and the client, the main reported changes in requirements are

to add or to drop features [97, 98]. The clarity gained by clients helps development teams to

refine their requirements, which results in less need for rework and fewer changes in

subsequent stages [98]. There are several agile development models used, the most popular

being Extreme Programming, Scrum, RUP, Lean, Plan-driven methods, Iterative &

28

Incremental model and the General Agile model [99]. Regardless of the agile style of

development used, the underlying processes have an inbuilt capacity to manage requirement

change. We were able to extract 10 such processes that deal with RCM as follows:

1. Face-to-face communication [97, 98, 100-102]:

This is a frequent characteristic activity between the client and the development team

[97, 100, 101]. There is minimal documentation using user stories which does not

require long and complex specification documents. The frequency of this activity

helps clients to steer the project in their own direction as the understanding of needs

tend to develop and requirements evolve [98, 102]. Therefore, the possibility of

dramatic and constant changes is reduced and the changes that do arise are easily

communicated due to the frequent communication between all the stakeholders.

2. Customer involvement and interaction [96-98, 101, 103]:

In relation to some of the change cause factors listed in RQ1, there are several

elements to the involvement of the customer organization. In agile methods, there is a

need to identify customers or representatives from the client organization for frequent

collaboration to ensure that requirements are appropriately defined [103] [101]. As

discussed above, this leads to a better understanding of the system requirements and

makes the inclusion of changes less complicated.

3. Iterative requirements [97, 101, 102]:

Unlike traditional software development, requirements are identified over time

through frequent interactions with the stakeholders (face-to-face communication)

[101]. The frequent interactions make this an iterative process. This allows the

requirements to evolve over time with less volatility [97]. This gradual growth of

requirements leads to less requirement changes and far less time spent managing such

changes.

4. Requirement prioritisation [98, 101-103]:

This is a part of each iteration in agile methods [98]. In each iteration, requirements

are prioritised by customers who focus on business value or on risk [101, 103]. In

comparison, traditional requirements engineering is performed once before

development commences. Iterative requirement prioritisation helps in RCM by

29

comparing the need for the change with the existing requirements and then placing it

an appropriate priority location for implementation. As this is done frequently,

understanding the need for the change and its priority becomes a much easier process.

5. Prototyping [97, 101, 104]:

This is a simple and straightforward way to review the requirements specification with

clients, so that timely feedback is obtained before moving to subsequent iterations

[104]. This assists in RCM by identifying what new additions are required and what

existing requirements are to be changed or removed. This reduces complex and/or

frequent RCs in subsequent iterations.

6. Requirements modelling [105, 106]:

One technique used in requirement modelling in agile methods is goal-sketching,

which provides goal graphs that are easy to understand [106]. This activity is also

iterative and the goals are refined during each iteration [105]. This helps in RCM by

creating unambiguous requirements that have a clear purpose, reducing the need for

change during subsequent iterations.

7. Review meetings and acceptance tests [101, 107]:

During review meetings, the developed requirements and product backlogs are

reviewed to ensure user stories are completed. Acceptance tests are similar to a unit

test, resulting in a “pass” or a “fail” for a user story. These tests increase the

collaboration of all the stakeholders as well as reduce the severity of defects. One of

the reasons for RC is defects in the end product. This practice effectively reduces the

need for changes due to such defects.

8. Code refactoring [108]:

This process is used for revisiting developed code structures and modifying them to

improve structure and to accommodate change [109]. This practice deals with

requirement volatility in subsequent stages of agile development [108]. Therefore, in

terms of RCM, the method allows flexibility in handling dynamically changing

requirements.

30

9. Retrospective [101, 102, 110]:

This process comprises meetings which are held after the completion of an iteration

[110]. These meetings often review the work completed so far and determine future

steps and rework. In terms of RCM, this provides an opportunity to identify changes.

10. Continuous planning [102]

This is a routine task for agile teams where the team never adheres to fixed plans but

rather adapts to upcoming changes from customers. In RCM, this facilitates changing

requirements in the later stages of the project.

Agile development, different to traditional software development encourages change in every

iteration. The iterative and dynamic nature of this development method promotes constant

feedback and communication between the stakeholders. Therefore, the management of

changes is continuous during the iterations. We have identified some of the challenges that are

inherent in traditional methods of RCM that can be resolved by agile methods. This is

discussed in Table 8. Whilst agile methods seem to have a very efficient way of managing

change, we were able to identify some practical challenges in some of the techniques discussed

above. The challenges are presented in Table 9.

31

Table 6: Comparison of RCM process models

Areas of

change

management

Model elements Process models

Activities Leffingwell &

Widrig [81]

Olsen

[91]

V-Like [92] Ince’s [92] Spiral [92] NRM

[1]

Bohner

[95]

CHAM [93] Ajila

[94]

Lock &

Kotonya [45]

Change

identification

Plan of change Y Y

Problem

understanding

 Y Y Y

Determine type of

change

 Y

Change

analysis

Change impact on

functionality

Y Y Y Y

Manage change

hierarchy

Y

Solution analysis Y Y Y Y

Change effort

estimation

Change impact on

cost

Y Y Y

Estimate effort Y

Cost benefit

analysis

 Y

Other

Negotiation

process

Y Y Y

Update document Y Y Y

Change

implementation

 Y Y Y Y Y Y Y

Verification Y Y Y Y

Validation Y Y Y Y Y

Document impact,

cost and decisions

 Y

Artifacts

Baseline, Vision
document, Use case

model, software

requirement
specification

N/A Modification
report, Problem

statement

Problem
statement,

Change

authorization
note, Test

record

Implementation
plan, Release plan

N/A N/A N/A N/A Vision document,
Use case model,

software

requirement
specification,

problem

statement, change

request form

Roles

Customer,

developer, end user,
change control

board

N/A Maintenance

organization

Customer,

Developer,
Change control

board

N/A N/A N/A Customer,

Developer,
End user

N/A Customer,

Developer, End
user

32

Model Limitations

Leffingwell &

Widrig [81]

Implementation of change is missing. Verification is not available and

therefore not able to ensure the stability of the system post-change.

Documentation in the form of change requests and decisions are also missing

which contributes to poor management and future decision making.

Olsen [91] Does not explicitly mention if there is any update to documents to keep track

of the changes and also, there is no indication of the artifacts used and who

is involved in the management process.

V-Like [92] Two key elements are missing, cost estimation and impact analysis.

Ince’s [92] The decision-making process is unclear. Verification is not done.

Spiral [92] Similar to Ince’s model, there is a lack of decision making and no

verification. Does not mention who needs to be involved in this process.

NRM [1] Activities are at a very abstract level. Given that no artifacts and roles are

mentioned, it is difficult to make use of this model in practice.

Bohner [95] A key element that is missing is the analysis of impact, which is a major part

of the decision-making process.

CHAM [93] Although cost and effort is estimated, there is no analysis of impact on

functionality which is an important factor for decision making. The artifacts

to be used are also not mentioned.

Ajila [94] There is no estimation of cost or effort. Artifacts and roles are also not

mentioned.

Lock & Kotonya

[45]

No aspect of change identification, which is critical in understanding the

change.
Table 7: Limitations of RCM process models

Challenges in traditional RCM approaches Solutions provided by Agile approaches

Communication gaps and lack of customer

involvement causing ambiguous requirements

Frequent face-to-face communication, customer

involvement, and iterative requirements

Changes that occur due to over scoping which

is a result of communication gaps and changes

after finalizing project scope

Continuous customer involvement, iterative

requirements, and prototyping

Change validations Requirement prioritisation through iterative

processes, prototyping, and review meetings and

acceptance tests
Table 8: Challenges in traditional RCM resolved by Agile approaches

Agile technique Challenges

Face-to-face

communication

The frequency of the communication depends on the availability and

willingness of the team members. Customers may not be familiar with

this agile technique and could be wary of it.

Customer involvement Failure to identify needed/correct customer representatives can lead to

disagreements and changing viewpoints.

Requirement

prioritisation

A focus only on business value when prioritising requirements/changes

can be problematic as there can be other factors to consider.

Prototyping Problems may occur if there a high influx in client requirements at a

particular iteration.

Code refactoring Can generate code wastage, which increases the project cost.

User stories and

product backlog

This is the only documentation used in agile methods as minimal

documentation is a characteristic. This becomes a problem when there is

a communication lapse or project representatives are unavailable. It is

also problematic when requirements must be communicated to

stakeholders in distributed geographical locations.

33

Budget and schedule

estimation

Due to the nature of incorporating RCs in subsequent iterations, it is not

possible to make upfront estimations, which can result in budget and

schedule overruns.
Table 9: Challenges in Agile RCM

Key findings of RQ2

Similar to any other activity in the software development process, RCM has also been

described in related work as an activity that needs to be carried out in defined steps. Based on

the discussion that formulates the answer for RQ2, the following are the key findings:

1) Academic work has identified that it is important to establish a process for managing

change where establishing and practicing a defined process for RCM is attached with

benefits, such as the improvement of organizational processes and an increase in the

predictability of projects.

2) In terms of traditional software development, two different approaches were

investigated, namely: 1) recommendations for semi-formal methods of managing

change; and 2) the formal process models available for RCM.

3) With semi-formal methods, it became evident that different academic work took

different approaches and elements, and recommended different steps for managing

change, which resulted in no consensus on the elements.

4) However, based on the activities on which the elements focused, we were able to

identify three areas of management: change identification; change analysis; and

change effort estimation.

5) These three areas were then applied to the ten formal process models of RCM found

in the literature. Using this classification, we were able to identify certain

commonalities between the process models, as illustrated in Table 6.

6) The formal process models have three distinct sections: activities – the actions / steps

taken in managing change; roles – the stakeholders involved in carrying out the

activities; and artifacts – the documents needed in some of the activities (see Table 6).

7) We were also able to identify the limitations in both the semi-formal methods as well

as the formal models.

8) Given the popularity of agile development in the recent past and present, several

processes were identified that deal with RCM. Through this identification, we were

able to discuss how agile methods can address some challenges in traditional RCM

and also the challenges in agile RCM.

34

6. Results for RQ3: What techniques are used for requirements change

management?

The information gathered in RQ2 will be used to formulate a framework to answer this

question. Examining the processes introduced in RQ2 as a whole, we have identified three key

areas of a practical approach to managing change. Figure 1 illustrates these areas i.e. change

identification, change analysis and change cost estimation. It is important to understand how

these areas can be practically implemented and what best practices are available in an

organizational setting. As shown in Figure 1, none of these areas are standalone. They need to

communicate with each other in terms of updates and verifications. The reason for this is that

each area has the ability to feed information to another area. For example, although change

analysis can be undertaken once the change has been identified, the cost estimation may

provide additional information for the analysis step that may not have been identified

previously. A good RCM process does not have steps that are stand alone, rather they are

interconnected with information following to and fro from the steps. We used the search

expressions A4 OR A5 OR A6 OR A7 OR A8 OR A9 OR A10 OR A11 (see Table 1) to extract

relevant literature.

Figure 1: Change management process

6.1 Change Identification

Change identification stems from several processes identified in RQ2 [80-82]. This step is

important for the rest of the management process as the steps to follow will be based on the

correct identification of the problem space as well as the change requirement. According to

Figure 1, the change management process starts with change identification. Within this

identification, there are two major activities, i.e. change elicitation and change representation.

Stakeholders
Volatile requirements

Change Identification
• Elicitation
• Representation

Change Analysis
• Impact
• Priority

Change Cost/Effort Estimation
• Cost
• Time

Verification
Update

Verification

Verification

Verification
Update

Verification

Verification

Update

35

In order to ensure the correct elicitation of changes, the change requirements need to be

identified.

The correct elicitation should then lead to identifying further details of the change and if

possible, where in the system the change has to be made. This signifies the representation part

of the identification step. In most situations, the personnel involved in this step will need to

have continuous communication with the stakeholders in order to verify that identification is

done correctly, as illustrated in Figure 1. Through the literature, we identified two methods of

change identification: taxonomies and classification. The following sections describe these

two methods and several other methods that do not fall under these categories.

a) Through taxonomies

1) Research analysing change uses a plethora of techniques in order to build a taxonomy

that can be used to identify changes as well as their impact. One such mechanism is

the use of requirement engineering artifacts, such as use cases. The research done by

Basirati et al. [14] establishes a taxonomy of common changes based on their

observation of changing use cases that can then be used in other projects to predict

and understand RCs. They also contribute to this research space by identifying which

parts of use cases are prone to change as well as what changes would create difficulty

in application, contributing also to the impact analysis of change.

2) The taxonomy developed by Buckley et al. [15] proposes a software change taxonomy

based on characterizing the mechanisms of change and the factors that influence

software change. This research emphasizes the underlying mechanism of change by

focusing on the technical aspects (i.e. how, when, what and where) rather than the

purpose of change (i.e. the why) or the stakeholders of change (i.e. who) as other

taxonomies have done. This taxonomy provides assistance in selecting tools for

change management that assist in identifying the changes correctly.

3) McGee and Greer [16] developed a taxonomy based on the source of RC and their

classification according to the change source domain. The taxonomy allows software

practitioners to make distinctions between factors that contribute to requirements

uncertainty, leading to the better visibility of change identification. This taxonomy

36

also facilitates better recording of change data, which can be used in future projects or

the maintenance phase of the existing project to anticipate the future volatility of

requirements.

4) Gosh et al. [17] emphasize the importance of having the ability to proactively identify

potentially volatile requirements and being able to estimate their impact at an early

stage is useful in minimizing the risks and cost overruns. To this effect, they developed

a taxonomy that is based on four RC attributes i.e. phases (design, development and

testing), actions (add, modify and delete), sources (emergent, consequential, adaptive

and organizational) and categories of requirements (functional, non-functional, user

interface and deliverable).

5) The taxonomy established by Briand et al. [18] is the initial step in a full-scale change

management process of UML models. In their research, they establish that change

identification is the first step in the better management of RCs. The classification of

the change taxonomy is based on the types of changes that occur in UML models.

They then use this taxonomy to identify changes between two different versions of

UML models and finally to determine the impact of such changes.

b) Through classification

There are many benefits of using a classification, the main benefits being to manage change

to enable change implementers to identify and understand the requirements of change without

ambiguity [19, 111]. The classification of RC has been studied in various directions. Table 10

lists the different directions that have been the subject of academic studies.

Direction Parameters Comment

Type [17,

19-23]

Add, Delete, Modify The most common way of

classifying change.

Origin [10,

17, 112]

Mutable, Emergent, Consequential,

Adaptive, Migration

Derived from the places

where the changes originated

from.

Reason [12,

19, 20]

Defect fixing, Missing requirements,

Functionality enhancement, Product

strategy, Design improvement,

Scope reduction, Redundant

functionality, Obsolete functionality,

Erroneous requirements, Resolving

Helps determine the causes

of change and understand

change process and related

activities.

37

conflicts, Clarifying requirements,

Improve, Maintain, Cease, Extend,

Introduce

Drivers

[113]

Environmental change, RC,

Viewpoint change, Design change

Helps change estimation and

reuse of requirements.
Table 10: Direction is change classification

c) Other change identification methods

1) Kobayashi and Maekawa [1] proposed a model that defines the change requirements

using the aspects where, who, why and what. This allows the system analyst to identify

the change in more detail, resulting in better impact identification as well as risk and

effort estimation. This method consists of verification and validation and can be used

to observe the RCs throughout the whole lifecycle of the system.

2) The change identification method usually has a pre-established base upon which its

semantics are built. Ecklund’s [114] approach to change management is a good

example of this. The approach utilizes use cases (change cases) to specify and predict

future changes to a system. The methodology attempts to identify and incorporate the

anticipated future changes into a system design in order to ensure the consistency of

the design.

d) Change identification through agile methods

Unlike traditional requirement engineering methods, agile software development welcomes

changes in various stages [98]. As discussed in RQ2, changes can be identified in several

different phases of the development process. Table 11 presents the different phases of agile

development that contribute to the identification of RCs, the challenges faced and solutions

suggested by literature. The techniques given in the table have been described in detail in RQ2

(see section 5.3).

Agile technique Challenge(s) Solutions

Face-to-face

communication

[97, 98, 100-102]

The success rate of the change

identification at this stage is

dependent on customer availability.

However, this dependency is often

unrealistic and a challenge as

confirmed by studies [101, 115]

In practice, teams have surrogates or

proxy customers to play the role of

real customers [103] or use the

“onsite developer” by moving a

developer representative to the

customer site [116].

38

Iterative

requirements

[97, 101, 102]

Can create budget and schedule

overruns as initial estimations will

always change when requirements are

added or removed during the

iterations [101].

Inayat et al. [98] suggest frequent

communication to identify as many

requirements as possible at early

iterations to keep these overruns to a

minimum.

Prototyping [97,

101, 104]

Given that this is a review phase of

development, the client may have a

large number of changes to be

included based on the prototype. This

can create schedule overruns [98].

This can be mitigated somewhat,

through frequent communication and

high customer involvement and

interaction in stages prior to

prototyping [98].

Review meetings

and acceptance

tests [101, 107]

Similar to the challenges of

prototyping where there could be an

influx of changes [107]. Also, if the

product backlog is not maintained in

detail, finding information related to

changes made during the iterations

will also be challenging.

Denva et al. [103] suggest

maintaining a detailed artefact called

delivery stories, in addition to user

stories. These help developers make

the right implementation choices in

the coding stage of a sprint.

Retrospective

[101, 102, 107]

If there are many changes identified in

completed user story at this stage,

there will be a considerable amount of

rework to be done, causing budget

and schedule overruns [98].

Increased customer involvement and

interaction in the stages prior to

completion of a user stories is

essential [98].

Table 11: Change identification through agile methods

6.2 Change Analysis

Once a change has been identified, it needs to be further analysed to understand its impact on

the software system so that informed decisions can be made. One of the key issues is that

seemingly small changes can ripple throughout the system and cause substantial impact

elsewhere [117]. As stated in the literature, the reason for such a significant impact is that the

requirements of a system have very complex relationships [24-28]. Therefore, the way to

realise this is to undertake change impact analysis, which according to [118] is defined as “the

activity of identifying the potential consequences, including side effects and ripple effects, of

a change, or estimating what needs to be modified to accomplish a change before it has been

made”. Change impact analysis provides visibility into the potential effects of the proposed

changes before the actual changes are implemented [117, 118]. The ability to identify the

change impact or potential effect will help decision makers to determine the appropriate

actions to take with respect to change decisions, schedule plans, cost and resource estimates.

39

a) Traceability issues and solutions

Given that the complex relationships between requirements are the key reason for impact

analysis, most methods for impact analysis use requirement traceability as their focal point.

Requirement traceability is defined as “the ability to describe and follow the life of a

requirement in both a forward and backward direction (i.e. from its origins, through its

development and specification to its subsequent deployment and use, and through periods of

ongoing refinement and iteration in any of these phases)" [119]. Although traceability has been

defined by many scholarly articles, the above definition was selected as the most

comprehensive because it describes both pre- and post-traceability and is used by many other

scholarly articles [120-129] for the same purpose.

Although traceability is one of the best ways to track the impact of RCs, many scholarly works

discuss the challenges in maintaining traceability. Tables 6 and 7 detail the issues in

traceability and the solutions that have been provided. The solutions in Table 12 have not been

verified by industry while the solutions in Table 13 have.

Scholarly work Issues in traceability Solution (Not verified by

industry)

Arkley & Riddle

[130]

Requirement traceability does not offer

immediate benefit to the development process.

Traceable development

contract.

Cleland-Huang,

Chang,

Christiensen [131]

Informal development methods, insufficient

resources, time and cost for traceability, lack of

coordination between people and failure to

follow standards.

Event-based traceability

Cleland-Huang,

Zemont & Luasik

[132]

Lack of coordination between team members.

Developers think that traceability costs more

than it delivers. Excessive use of traceability

generates more links which are not easy to

manage.

Traceability for complex

systems frameworks.

Cleland-Huang,

Settimi, Duan &

Zou [133]

Manual construction of a requirement

traceability matrix is costly.

Dynamic retrieval methods

are used to automate the

generation of traceability

links

Gotel & Morris

[134]

Requirements change by user. Less appropriate

information is available for making decision

with requirements.

Media recording

framework.

Ravichandar,

Arthur & Pérez-

Quiñones [127]

Problems associated with tracing back to their

sources.

Pre-requirements

traceability technique.

Table 12: Traceability issues and their solutions (not verified)

40

Scholarly work Issues in traceability Solution (Verified by

industry)

Blaauboer, Sikkel

& Aydin [135]

Adopting requirement traceability into

projects.

Increase awareness and adapt

organizations to include

requirement traceability.

Cleland-Huang

[136]

Failure to trace non-functional requirements

e.g. security, performance and usability

Goal centric traceability

evaluated by an experiment

Gotel &

Finkelstein [119]

Some problematic questions are identified as

challenges: Who identifies a requirement

and how? Who was responsible for the

requirement to start with and who is

currently responsible? Who is responsible

for change(s) in requirements? What will be

the effect on the project in terms of

knowledge loss if key employees quit?

Framework of contribution

structure.

Heindl & Biffl

[124]

Cost related to requirement traceability. Value-based requirements

tracing tested through a case

study.

Ramesh [137] Organizational, environmental and technical

factors.

Best practice given.

Verhanneman,

Piessens, De Win

&

Joosen [129]

Requirement management challenges in

industry projects e.g. inadequate impact

analysis and lack of information transfer.

Requirement management

tools like DOORS and

RequisitePro.

Table 13: Traceability issues and their solutions (verified)

It is important to note that the solutions proposed might not be suitable for all types of

organizations, however, some basic guidelines can be outlined.

i. The identified issues can act as a guideline to understand the challenges that might

arise when creating and maintaining traceability and therefore improve the

predictability of the traceability issues.

ii. The cost of traceability for a specific project will be concentrated on that project whilst

its benefits (value) will span over and beyond the said project. The downside of this

outcome is that it may hinder the motivation of a project team to work with traceability

as the benefits are not realized immediately and therefore could be the cause of many

of the challenges identified in Table 6 and 7.

b) Use of Traceability and other methods for impact analysis

According to Figure 2, there are three sets of objects that can be impacted by a change: starting

impact set (SIS), estimated impact set (EIS) and actual impact set (AIS).

• SIS is the set of objects that are thought to be initially impacted by the change

• EIS is the set of objects estimated to be impacted after further analysis

41

• AIS is the set of objects that are actually modified as a result of the change

Figure 2: Change impact object sets

This is a concept introduced by Arnold and Bohner [138]. We identified in the literature

several impact analysis techniques that use traceability and non-traceability methods. These

methods were subject to the concept introduced by [138] to identify which set of objects are

analyzed and are detailed in Tables 14 and 15. This finding benefits software practitioners in

selecting a potential method for change analysis based on the set of objects on which they want

to focus. Table 14 details solutions that use traceability techniques to analyse RC while Table

15 details solutions that use other techniques.

Scholarly

work
Title of work Solution (Using Traceability)

Impacted

objects

Antoniol

et al. [139]

Identifying the impact

set of a maintenance

request

The tracing is done at a coding level where

the text in the maintenance request is mapped

to development code components

corresponding to the change request.

SIS

Li et al.

[140]

Requirements-centric

traceability for change

impact analysis

The method uses an interdependency graph

and traceability matrix to assess the impact at

a requirement specification level.

SIS, EIS

and AIS

Ibrahim et

al. [141]

Integrating software

traceability for change

impact analysis

The method provides a holistic traceability

solution that involves both high level and

low level software models ranging from

requirements to code.

AIS

Göknil et

al. [142]

Change impact analysis

based on formalization

of trace relations for

requirements

The method deals with a requirements

metamodel with well-defined types of

requirements relations, which are used to

define change impact rules for requirements.

These rules help identify the impacted

requirements.

EIS and

AIS

Von

Knethen

[143]

Change-oriented

requirements

traceability. Support for

evolution of embedded

systems

The approach consists of three parts, a

conceptual trace model for embedded

systems, rules to establish traces and analyse

impact and a tool for semi-automatic impact

analysis and consistency checking.

SIS and

AIS

Table 14: Techniques used for impact analysis – Traceability methods

Change

Impact

Starting Impact
Set (SIS)

Estimated Impact
Set (EIS)

Actual Impact
Set (AIS)

42

Scholarly

work
Title of work Solution (Using Non-Traceability methods)

Impacted

objects

Kobayashi

&

Maekawa

[1]

Need-based

requirements change

management

The method captures RC using the 4Ws:

where, who, why and what. The solution

mainly consists of verification and validation

activities.

SIS

Ali & Lai

[144]

A method of

requirements change

management for global

software development

The method consists of three stages:

understanding change, analyzing these

changes and finally making decisions

regarding the change based on the analysis.

SIS

Hassine et

al. [145]

Change impact analysis

for requirements

evolution using use case

maps

Method uses slicing and dependency analysis

at the use case map specification level to

identify the potential impact of RCs on the

overall system.

SIS

Briand et

al. [18]

Impact analysis and

change management of

UML models

The method uses a UML model-based

approach where the UML diagrams are first

checked for consistency. The impact analysis

is carried out using a change taxonomy and

model elements that are directly or indirectly

impacted by the changes.

SIS and

EIS

Hewitt &

Rilling

[146]

A Light-Weight

Proactive Software

Change Impact

Analysis Using Use

Case Maps

The method seeks to predict impact of

changes at a specification level. The method

focus on extracting information from Use

Case Maps (UMC) that can be used for

proactive change impact analysis at the

specification level.

SIS

Table 15: Techniques used for impact analysis – Non-Traceability methods

c) Predicting requirements changes

Another aspect of analysing change is to proceed beyond the existing change impact and to

use historical data, design diagrams, codes, etc. to predict where change may occur and

identify their impact. Based on this concept, we were able to extract literature that discusses

the prediction of RCs, their possible impact on the systems and how the change may propagate

through the system. These findings are important in order for development teams to foresee

how to be prepared for RCs, make better decisions and better implement such changes. We

present the prediction methods and their limitations in Table 16.

Title Solution Limitations

1. Learning from

Evolution History

to Predict Future

Requirement

Changes [147]

Method uses historic information to

develop a metrics that measures the

evolution history of a requirement. Based

on the metrics, the method proposes to

reduce the impact of requirements

evolution by attempting to predict

requirements that are prone to change in

the future.

Can only be applied to

projects that have historic

data. Some important

requirements changes may

be neglected by the

prediction method.

43

2. Managing

Changing

Compliance

Requirements by

Predicting

Regulatory

Evolution [148]

Method uses an adaptability framework

which helps requirements engineers to

identify: why requirements change

(rationale); how requirements change

(classifications); and which portions of a

proposed rule are most likely to change

when the final rule is issued (heuristics).

The framework allows engineers to focus

primarily on analysing and specifying

compliance requirements from the more

stable areas of the laws, while the less

stable areas of the laws are clarified

during the final rulemaking.

The study uses two case

studies from the healthcare

industry and therefore the

findings and applicability

remain limited to the

healthcare industry.

3. Mining the

Impact of Object-

Oriented Metrics

for Change

Prediction using

Machine

Learning (ML)

and Search-based

Techniques

(SBT) [149]

This method is used to identify the

probability of classes that would change

(change proneness of a class) in the

subsequent release of software. The

study develops a relationship between

Object- Oriented metrics and the change

proneness of a class.

The method evaluates the effectiveness

of six SBT, four ML techniques and the

statistical technique - Logistic

Regression (LR) on change proneness

prediction data and compares their

results.

Findings and applicability

limited to object-oriented

environments.

4. Using Early

Stage Project

Data to Predict

Change-

Proneness [150]

This paper presents a feasibility study

undertaken to test the validity of a

hypothesis that data from requirements

and design activities may also prove to

be useful in predicting change proneness.

A metrics is developed for quantifying

requirements and design activities. Next,

values are generated for these metrics

from a real-world case study and finally

a comparison is made with the actual

number of changes detected.

Method can only be applied

if the project has

requirements and/or design

information available.

Clearly, this creates a

limitation for approaches

such as agile methods that

have limited documentation.

5. Predicting the

Probability of

Change in

Object-Oriented

Systems [151]

This is a probabilistic approach to

estimate the change proneness of an

object-oriented design by evaluating the

probability that each class of the system

will be affected when new functionality

is added or when existing functionality is

modified. The goal is to assess the

probability of how each class will change

in a future generation.

Previous versions of a

system must be analyzed to

acquire internal probability

values creating scalability

problems for large systems.

Cannot be applied in the

initial stages of the

development process (e.g. at

the design level).

6. Using Bayesian

Belief Networks

to Predict Change

Propagation in

Software Systems

[152]

The approach seeks to predict the

possible affected system modules, given

a change in the system. The method is

composed of two steps: extracting

information and predicting changes. In

the first step, the authors extract the

system elements’ dependencies and

change history. In the second step, the

Bayesian Belief Networks are built using

Can only be applied to

methods that have historic

data and documentation.

44

the extracted information and then

predictions are produced using

probabilistic inference.
Table 16: Methods of predicting requirements changes

d) Change analysis using agile techniques

In agile development, requirements engineering activities are not explicit. Partially, this is due

to the fact that there are less distinct boundaries in agile development than in traditional

software development [153]. Therefore, similar to change identification, the analysis of RCs

in agile development is not restricted to a particular phase of the development but a mixture

of techniques is used that occur iteratively. The agile techniques discussed in RQ2 (section

5.3) are detailed in Table 17 to show how change analysis is carried out in agile development.

Agile technique How change analysis is done

Iterative requirements [97,

101, 102]

The requirements related to a user story are not identified at the

beginning of a project. Requirements are built on iterations, which

allow stakeholders to gain a better understanding of what is required,

therefore analyse, and understand the need for changes.

Requirement prioritisation

[98, 101-103]

In each of the iteration, the identified requirements are prioritised.

This means that any changes that occur during the iterations will be

compared to existing requirements and will be assigned a place in the

hierarchy of implementation. The iterative nature of this activity

ensures the priority of requirements remain current.

Prototyping [97, 101, 104] This allows the agile team to review the requirement specifications

with clients to obtain feedback. The process will highlight issues with

the changes identified so far and will prompt the development team to

find better solutions.

Testing before coding [97,

101, 102, 154]

The development team writes tests prior to writing functional codes

for requirements. This promotes identification test failure, which can

be a form of validation of the changes that have been applied during

the iterations.

Requirement modelling

[105, 106]

A technique used in modelling in agile approaches is goal-sketching

[106]. The outcome is an easy-to-read goal graph, which allows all

stakeholders to refine the goals, making them well defined. Changes

that are introduced in the iterations can be mapped to goals and this

can help with decision making in the implementation of changes.

Review meetings and

acceptance tests [101,

107]

The developed requirements and product backlogs are reviewed to

identify if user stories have been completed. In terms of change

analysis, this evaluates if changes have been implemented correctly

and satisfy the end goal.

Regression testing [155] Regression testing is done in agile methods to make sure that the

newly incorporated changes do not have side effects on the existing

functionalities and thereby finds the other related bugs. This is a form

of change validation in terms of change analysis.
Table 17: Change analysis using agile methods

45

Two of the documents used in agile development that are worth mentioning are user stories

and product backlog, which form a critical part of the change analysis process. User stories

are created as the specification of the customer requirements. They facilitate better

communication and unambiguous understanding between all stakeholders [103]. User stories

are made up of three components: a written description, conversations, and tests [156]. They

are meant to reduce the need for constant requirement change and also act as a reference point

to check if changes are implemented to satisfy the client requirements. Product backlog keeps

track of the details of all the developed requirements. This is one of the documents that can be

used to keep track of all the requirements changes [101].

6.3 Change Cost/Effort Estimation

Software cost/effort estimation is referred to as the process of predicting the effort required to

develop a software system [157, 158]. It is noteworthy that although effort and cost are closely

related, they are not a simple transformation of each other [157]. Effort is often measured in

person-months of the development team whilst cost (dollars) can be estimated by calculating

payment per unit time for the required staff and then multiplying this by the estimated effort

[157]. Cost estimation is usually carried out at the beginning of a project but as we have

demonstrated, changes to the system can occur at any stage of the project. Therefore, there is

a need to estimate the additional cost for implementation of the change.

There are some basic factors to be considered when estimating, regardless as to whether it is

for the entire project or just for a change. The first step in cost/effort calculation is the

calculation of the size of the software, which is considered to be the most important factor

affecting estimation [157]. Therefore, it is essential to understand the popular software sizing

methods used and their suitability for estimating the cost/effort of implementing requirements

changes, as shown in Table 18.

Sizing

Technique

Feature Suitability for change cost/effort

calculation

Lines of Code

(LOC) [157,

159]

Based on the number of lines

of the delivered source code of

software.

Programming language

dependent.

Widely used sizing method.

Exact LOC can only be obtained after the

completion of the project and is therefore not

suitable for changes at the early stage of the

design.

Also depends on expert judgement and can

compromise reliability.

46

Can be used for changes that occur towards

the latter part of the development process.

Software science

[160]

Based on code length and

volume metrics.

Code length is the

measurement of the source

code program length and

volume is the amount of

storage space required.

There have been disagreements over the

underlying theory and therefore reliability is

questionable [161, 162].

Not suitable for changes in the early phase

(reason as above).

Possibility of using this in the latter stages,

yet the measure has received decreasing

support [157].

Function points

[163]

Working from the

specification, systems

functions are counted (inputs,

outputs, files, inquiries,

interfaces)

These points are then

multiplied by their degree of

complexity.

Use of the specification makes it suitable to

analyse changes in the early phase of

development.

Equally suitable for changes in the latter

stages.

Feature point

[164]

Extension of function points to

include algorithms as a new

class.

Similar usability as function points and

suitable systems with little input/output and

high algorithmic complexity.

Table 18: Popular software sizing techniques

Figure 3: Costing Techniques

There are many methods described in the literature that are popular techniques for estimating

cost/effort. As presented in Figure 3, we considered the more frequently used estimation

methods in traditional software development and they can be classified into two categories:

Estimation
Technique

Algorithmic Non-Algorithmic

COCOMO

Putnam’s model
and SLIM

Price S

Expert Judgement

Parkinson

Price to win

Bottom-up

Top-down

47

algorithmic and non-algorithmic [157, 165]. Algorithmic models can be quite diverse in the

mathematical expressions used. It is important to remember that these algorithmic models need

to be adjusted to suit the local environment. Regardless of the technique used, none of the

methods discussed in this section can be used off-the-shelf.

One of the key findings in this section is to identify the appropriateness of these methods for

estimating the cost/effort of implementing RCs. Tables 19 and 20 describe several popular

estimation techniques that belong to these two categories and their suitability for change cost

estimation.

Table 19: Popular estimating techniques – Non-Algorithmic

Category Non-Algorithmic

Technique Features Challenges Suitability for change

cost/effort estimation

Expert

judgment

Based on one or more

experts using their

experience and techniques

such as PERT or Delphi

for estimation.

Dependency on experts,

where human error is a

major risk and there can be

bias.

Can be suitable since the

method is fast and can

easily adapt to diverse

circumstances. But the

limitation carries a lot of

risk.

Parkinson Cost is determined (not

estimated) by the available

resources rather than an

assessment of the entire

situation.

Can provide unrealistic

estimations and does not

promote good software

engineering practice.

Given the limitations far

exceed its functionality,

it cannot be

recommended.

Price to

win

Estimated to be the best

price to win a project.

Estimate is based on

customer budget.

Not good software practice

as software functionality is

not considered. Can

produce large overruns.

Software functionality is

a key factor in change

cost estimation and

therefore is not suitable.

Bottom-up Each component of the

system is estimated

separately and the result is

combined to produce the

overall estimate. Based on

initial design.

Requires more effort and

can be time consuming.

Can be suitable for

changes in the latter

phase. Not suitable for

changes in the early

phases as it requires

detailed system

information.

Top-down The opposite of the

bottom-up approach. This

is an overall estimation

based on global properties.

Total cost can be split

among the various

components.

Less stable as the

estimation does not

consider different

components.

Useful for changes in the

early stages. Changes in

the latter phases require

more detailed costing

and therefore it is not

suitable.

48

Category Algorithmic

Technique Features Challenges Suitability for change

cost/effort estimation

COCOMO Uses power function models

where 𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑎 × 𝑆𝑏

S is the code size and a, b are

functions of other cost factors.

Not suitable for small

systems.

Exact code size can

only be obtained at the

completion of a project

and therefore may not

be suitable for changes

at early stages.

Putnam’s

model and

SLIM

Equation used

𝑆 = 𝐸 × (𝐸𝑓𝑓𝑜𝑟𝑡)1/3𝑡𝑑
4/3

where S is LOC, td is delivery

time, E is environment factor

(based on historical data)

Based on information from

past projects and may not

be suitable for the current

environment.

Although generally

suitable for changes in

cost estimation,

dependency on

historical data can make

the accuracy

questionable.

Price-S This is a proprietary estimation

model. Uses an estimate of

project size, type and difficulty

and computes cost and schedule.

Because it is company

specific, it may not

suitable for all

environments.

Not suitable for change

cost estimations due to

limitations.

Table 20: Popular estimating techniques – Algorithmic

Effort estimation is more challenging in the agile context as requirement changes are embraced

through multiple iterations of development. In line with the previous two sections, we consider

the techniques used in agile development for effort estimation. Table 21 details the techniques,

the challenges and the suitability for change cost/effort estimation.

Category Agile

Technique Features Challenges Suitability for change

cost/effort estimation

Expert

judgment

[166, 167]

Developers look to past

projects or iterations, and

draw on their own

experiences to produce

estimates for the user

stories.

Dependency on experts,

where human error is a

major risk and there can

be bias.

Can be suitable since

the method is fast and

can easily adapt to

diverse circumstances.

But the limitation

carries a lot of risk.

Planning

poker

[168, 169]

Once the user stories have

been understood, all the

team members of the agile

team make independent

estimates and reveal their

estimates simultaneously.

The lowest and highest

estimates need to be justified

by their estimator. The

group continues the

discussion in order to decide

on a collective estimate,

possibly by conducting one

or more additional rounds of

individual estimating.

If the estimation process is

unstructured, factors such

as company politics, group

pressure, anchoring, and

dominant personalities,

may reduce estimation

performance.

Similar suitability as

expert judgment but is

still dependent on the

skill and experience of

the team members.

49

Table 21: Popular estimating techniques – Agile

Key findings of RQ3

The majority of the academic work on RC is focused on devising solutions for the different

areas of RCM. Based on the discussion that formulated the answer for RQ3, the following are

the key findings:

1) Change identification methods do not seem to have much consensus on how the

identification should be done nor are many of the methods formal.

2) Most change identification methods found are based on two techniques: through

taxonomies and through classifications.

3) The change taxonomies tend to be based on larger concepts such as use cases and

UML models whilst change classifications use more simplified mechanisms such as

change directions and parameters.

4) Change identification usually leads to understanding of the need for the change, which

also relates to further analysis of the change.

5) Traceability techniques have been the more popular choice when analysing change as

requirement traceability facilitates the identification of the impact of change more

Use Case

Points

(UCP)

[170, 171]

Once the use cases are

identified based on the user

stories, UCPs are calculated

based on the number and

complexity of use cases and

actors of the system, non-

functional requirements and

characteristics of the

development environment.

The UCP for a project can

then be used to calculate the

estimated effort for a

project.

UCP method can be used

only when the design is

done using UML or RUP.

Can be suitable for an

early stage change

estimation of the

development process.

Changes in the latter

phases require more

detailed costing and

therefore it is not

suitable.

Story

points

[172-174]

Story point is a measure for

relatively expressing the

overall size of a user story or

a feature. A point is assigned

to each user story. The value

of the story point is

dependent on development

complexity, the effort

involved, the inherent risk

and so on.

Story points create lots of

vagueness to the agile

process. For every team,

story size could mean

different things, depending

on what baseline they

chose. If two teams are

given the same stories, one

team can say their velocity

is 46 and the other can say

14, depending on what

numbers they chose. Story

points do not relate to

hours.

May only be suitable for

teams that are

collocated, based on the

challenges of the

method. Also, it may

not be suitable for effort

calculation in hours as it

will take additional

calculations to convert

story points to hours.

50

efficiently. However, this seems to be a theoretical concept as requirement traceability

has many limitations.

6) The main idea of change analysis is to identify how the requested change impacts the

existing design or system. To this effect, methods of change impact analysis found in

literature can be grouped based on objects that are impacted: starting impact set,

estimated impact set and actual impact set.

7) In terms of the agile context, changes in requirements are expected and welcome

aspects of development. As we discovered in the literature, change identification and

analysis tend to happen at almost all parts of the iterative process in development.

8) Due to the change-susceptive nature of agile development, unlike traditional

development, in most cases change identification and analysis does not require special

processes but are embedded into the processes that are part of the development cycle.

9) Costing techniques dedicated for estimating the cost of RC seem to be rare. In most

cases, existing costing techniques such as COCOMO, expert judgement, etc. are used

for this purpose.

10) It is possible to divide existing costing techniques into two categories: algorithmic and

non-algorithmic.

11) Depending on which point of the lifecycle the software project is and what artefacts

are used for the cost estimation, each estimation can be judged for suitability to be

used for cost estimation of RCs.

12) Some methods can be used but with many risks (i.e. expert judgement), some methods

can be used for changes introduced in the latter phase of the project life cycle (i.e.

bottom-up, COCOMO, etc.), some methods can be used for changes introduced in the

early phase of the project life cycle (i.e. top-down) and some other methods are not

suitable for change cost estimation (i.e. price to win, Price-S, etc.).

13) Unlike change identification and analysis, cost/effort estimation in agile development

requires special attention. The nature of agile development tends to discover

requirements through several iterations and therefore, any estimations at the beginning

of a project change significantly along the development cycle. Given this criterion,

special techniques are required for the estimation of cost and effort, which, we

discovered in the literature, are mostly dependent on expert judgement and team

collaboration.

51

7. Results for RQ4: How do organizations make decisions regarding

requirements changes?

An organization has a harmonious existence when coordination and integration between

business objectives and IT services and infrastructure in realizing the common business goals

are in alignment [175-177]. However, when managing RCs of system software or software

projects, stakeholders may perceive different end goals at different levels of the organization

[178]. In other words, change management and analysis plans and strategies vary with

organisational level, where each strategy tends to have different goals and objectives. An

organization can be categorized into two parts: business organization and IT organization and

each of these two categories can be split into three levels, as illustrated in Figure 4. We used

the search expressions A3 OR A6 OR A8 (see Table 1) to extract the relevant literature.

(i) Executive level

Once the need for a change in a software process or requirement arises, the top level

management (CEO, CIO, etc.), which is the executive level, formulates very broad strategies

for managing the said change. The tendency to create broad plans is usually due to the

responsibilities of the top level executives in terms of what the organization as a whole stands

to gain by implementing these changes [178]. In some instances, business and IT tend to have

a contradictory understanding of the need for change. Decisions by the IT side for obtaining

new technology that is required for implementation of the change may not always be agreed

upon by the business counterparts of an executive level [82, 178]. Research has demonstrated

that when business and IT top management fail to understand the need for the change and the

IT capabilities that are required for its realization, these software projects tend to have

unsatisfactory outcomes in the form of cost overruns and failure [44, 176, 178, 179].

(ii) Tactical level

The tactical level in Figure 2 corresponds to the change management plans and strategies

formulated by the middle management of an organization. These strategies can be referred to

as functional strategies. The main concern at this level is to assess the change with respect to

cost and benefits and find ways to introduce the change without adversely affecting the project

52

[3, 46, 82, 178]. The broad strategies at an executive level may not always match with the

strategies formulated at a tactical level. For example, the end goal of a change at an executive

level could be to improve quality while at a tactical level, the goal would be to complete the

project successfully and therefore, may consider the change intrusive [82, 178]. It is also

noteworthy that the notion of business vs. IT mindset exists at this level too. One of the key

barriers in creating a cohesive change strategy between business and IT at this level is due to

interpretation and communication barriers that stem from the lack of a common change

specification technique [10-13].

(iii) Operational level

As the strategies flow down the organizational structure, they tend to become less complicated

and less abstract. At this stage, it becomes a process of understanding the strategies laid down

by the tactical level and formulate plans as to how to best implement them. The goals at this

level are more short-term due to the fact that development teams are dealing with simpler

strategies. Provided that business and IT change strategies at this level are aligned, the

combination of such short term strategies could be linked back to the business objectives set

at the executive level [180]. Moreover, it is essential at this level that development teams are

able to cope with the changes in the business strategies originating at a higher level. Therefore,

strategies formulated at an operational level should incorporate a mechanism to deal with such

changes that will ensure the final product is what is expected by the executive level.

53

Figure 4: RCM with respect to organization level

(iv) Different viewpoints based on structure

Change analysis can be observed from two main viewpoints: one from a developer point of

view at a code level and the second from a decision-maker’s point of view at a higher

abstraction level. The executive and the tactical levels can be considered as the decision-maker

point of view while the operational level represents the developer point of view. There has

been debate over which of these levels is more important in change management. Some of the

literature emphasizes the importance of managing change at a program modification level

where such analysis would be helpful to a programmer to effectively implement the change

Change Identification

Business

Organization

Business

Organization
IT

Organization

IT

Organization

Analysis

Plan

Analysis

Plan
Analysis

Plan

Analysis

Plan

Solution

Strategy

Solution

Strategy
Solution

Strategy

Solution

Strategy

Align End

Goal

Align End

Goal

Communication

Analysis Plan

at Department Level

Analysis Plan

at Department Level

Business Solution

Strategy

Business Solution

Strategy
IT Solution

Strategy

IT Solution

Strategy
Align End

Goal

Align End

Goal

Business Action

Plan

Business Action

Plan
IT Action

Plan

IT Action

Plan
Align End

Goal

Align End

Goal

New

Process

New

Process
Redevelopment

Process

Redevelopment

Process
Existing

Process

Existing

Process
Change in

Process

Change in

Process

Executive
Level

Tactical
Level

Operational
Level

54

[181-183]. In support of a higher level of decision making to effectively manage change, many

studies argue that it is inaccurate to realize change at the code level, where in fact the source

of the change is at a requirement level and therefore should be managed at a higher abstraction

level [140, 144, 145].

(v) Decision making and organizational culture in agile development

The primary goal of all agile methods is to deliver software products quickly, and to adapt to

changes in the process, product, environment, or other project contingencies [184]. While

evidence suggests that agile methods have been adopted in a wide variety of organizational

settings [185-187], such methods are assumed to be more suited to certain organizational

environments than others. According to [185-188], agile development is more suited to smaller

organizations as development is carried out in small teams. There are scalability issues when

it comes to large organizations or large projects [186, 187]. In smaller organizations, there is

a strong positive correlation in some aspects of organizational culture with that of agile

development; the organization values feedback and learning; social interaction in the

organization is trustful, collaborative, and competent; the project manager acts as a facilitator;

the management style is that of leadership and collaboration; the organization values

teamwork, is flexible and participative and encourages social interaction; the organization

enables the empowerment of people; the organization is results-oriented; leadership in the

organization is entrepreneurial, innovative, and risk taking; and the organization is based on

loyalty and mutual trust and commitment [189].

There are certain characteristics of agile development, such as cross-functional teams and

customer involvement that create harmonious interaction between various levels of the

organization in decision making. Cross-functional teams include members from different

functional groups who have similar goals [98, 190]. Such a practice combined with customer

involvement helps reduce challenges such as over scoping of requirements and communication

gaps, which are some of the key causes of requirement change. According to these studies,

agile development has the ability to create harmony within the organizational culture and

within the structure of the organization that will positively contribute to the reduction of the

number of changes required and will be able to gain better clarity in decision making and the

development of software projects.

55

Key findings of RQ4

Not many studies in the literature used for this survey discuss how decision making at various

levels of the organization may differ. We feel that this is an important concept to investigate

as such differences in decisions can create difficulties in coming to a consensus on accepting

the change and also moving forward by executing the change. Based on the discussion that

formulated the answer for RQ4, the key findings are as follows:

1) It is important to realize that based on the level of the organizational structure,

decision-making concepts differ and this can be detrimental to the success of a project

when dealing with RCs.

2) An organization can be divided into two parts i.e. the business organization and the IT

organization.

3) Each of these two parts can then be divided into three levels of structure: Executive,

Tactical and Operational. The differing levels of decision making between these

structural levels have been identified to be a challenging factor in RCM.

4) Not only can decision making be contradictory at each level, it can also cause a

contradictory understanding of the change between the business and IT counterparts.

5) There are also two viewpoints to consider: the developer and the decision maker. The

literature seems to be divided on which viewpoint is more important, providing cause

and effect for merit for both viewpoints.

6) Agile techniques tend to be a better way of development when it comes to creating

better harmony within the organizational culture and decision making. However, this

comes with the constraints of scalability and therefore is better recommended for

development using smaller teams or for smaller organizations.

8. Comparison with related work

There is a plethora of work which has been evaluated in various areas of RCM, such as change

impact analysis, change complexity analysis, change decision support, change identification,

etc. A number of literature reviews related to change management have been conducted on

research topics such as identifying change causes [61], change taxonomies [57] and

requirement change process models [42]. These reviews deal with only one aspect of RCM,

as detailed in Table 22.

56

Research work Findings and contributions

Towards an understanding of

the causes and effects of

software requirements change:

two case studies [57]

The study identifies various causes of requirement change and

uses a simple taxonomy to group these causes for better

understanding and future identification.

Causes of requirement change-a

systematic literature review [61]
Similar to the previous study, identifies the causes of

requirement change and groups these cause into two categories;

essential and accidental. The main difference from [57] is that

the study is done as a systematic review.

Requirement change

management process models:

Activities, artifacts and roles

[42]

The study brings together various requirement management

models, identifying their key features.

Table 22: Comparison with related work

In comparison, the work presented in our systematic review investigates the causes of

requirement change and the processes/models used for RCM, it explores in-depth the

techniques used in RCM and the decision making in managing change and provides a critical

analysis of the methods extracted by identifying research gaps. The methods extracted

comprise both traditional and agile techniques in RCM. In summary, this review provides

information related to many aspects of RCM in more detail, giving a more holistic view for its

readers.

9. Threats to validity

The findings presented in this review study have the following threats to validity.

(i) Construct validity: this is primarily related to obtaining the right information by

defining the right scope. At this stage, the biggest challenge is to decide what should

be included in the review. To address this issue, we considered all the studies which

provided empirical, case study, experimental, industrial and survey-related

information about RCM.

(ii) External validity: the findings of this review cannot be generalized because the results

are based on a specific set of keywords and the research repositories that have been

used for the data collection. Therefore, our results could be limited and cannot be

applied to every organizational setup.

(iii) Results validity: the concept of RCM has a very long history dating back to the early

1980s. The area is still evolving and a large set of keywords are available which can

be used to represent the concept of RCM. In this review, we considered 12 different

57

keywords which are mostly used in the context of RCM in software development, and

used six research repositories to conduct an initial search in the study selection

process. Thus, our findings are only based on the selected set of keywords and from

six research repositories.

(iv) Internal validity: this is mainly related to the capability of replicating similar findings.

We addressed this aspect by defining and later following the systematic review

procedure, described in section 3. Two researchers were involved in the review

process, who, over a period of time, worked together to avoid duplications and

achieved consensus in the acceptance of the identified studies. However, it could be

possible that if this study is replicated by other researchers, minor variations in the

identified studies will be observed due to differences in personal aptitude and thinking.

Regardless of this fact, the findings presented in this review will enable readers to

obtain a clear picture of RCM.

(v) Conclusion validity: The number of research articles presented in this study does not

indicate the actual number of RCM practices being undertaken in reality. Thus, the

number could only be used to make inferences as to how practical and applicable RCM

methods are.

10. Conclusions and Future Work

It is evident that changes in requirements occur for many reasons and can be caused by

multiple stakeholders. Regardless of who or what cause these changes, the need for appropriate

management is great due to the undesirable consequences if left unattended. However, through

this review, it was discovered that change management is an elusive target to achieve and that

there are many ways to tackle it. The main objective of this review was to collate information

and techniques related to RCM and critically analyse the functionality of such techniques in

managing change. This also led to identifying strengths and limitations of these techniques,

which signifies the need to enhance the existing change management approaches. This review

is also a guide for future researchers on change management in terms of what major work has

been undertaken thus far.

In the review, the section on factors that cause change in requirements provides an

understanding on how vast and constant these changes can be. There is no one root cause for

58

changes which makes change management a challenging task. Therefore, even with an

abundance of research on change management, there is still room for improvement. Given the

complexity of changes, it is important to identify the processes in place to manage them. It is

clear from the available literature that there is no consensus on how to manage change. In some

instances, it is based on the type of organization and the environment and in many cases, it is

based on the type of changes. Through the available process steps, three common processes

were identified; identification, analysis and cost estimation of change. Significant work has

been done in each of these areas and several models that encompass these steps have been

developed in an effort to provide a full-scale solution for change management. It is also

important to understand that the approaches vary depending on the level of the organisation

managing the change.

When identifying future work in RCM, we deemed it useful to focus on the three areas of

RQ3 where the majority of the techniques have been discussed. We do not directly suggest

future work but identify the research gaps in the areas of change identification, analysis and

cost estimation where the possibility for new research lies.

10.1 Research gaps in change identification

Accurate change identification not only leads to a better understanding of the required change

but also the impact it can cause on the entire system and project. The techniques discussed in

change identification can be divided into two categories: change taxonomies and change

classification as discussed in the previous section. Given the existence of these methods, their

still remains several major gaps that need to be addressed:

1) The parties involved in the elicitation and identification process of changes are from

a variety of backgrounds and experience levels. Common knowledge for one group

may be completely foreign for another. This is especially true in the case of

communication between the analyst and the stakeholder(s).

2) The language and terminology used to communicate the changes to and from the

stakeholder to the analyst and then to software practitioners (designers, developers,

testers, etc.) may be either too formal or informal to meet the needs of each party

involved.

59

3) There will be a large amount of information gathered that is part of one single change.

Not having a common structure to categorize this information may lead to

misinterpretation of the need for the change and the change itself.

4) Information gathered at one level of the organization could be biased based on the

parties involved if one form of structure is not used to capture the changes at all levels.

5) The methods already in existence provide minimal guidance in terms of applying them

to identify changes.

10.2 Research gaps in change analysis

As seen in the previous section on change analysis, it is clear that traceability is one of the

most popular techniques to analyse the impact of changes on a system, either in existence or

in the design phase. Several other non-conventional methods were also identified that

contribute to change analysis. Through these methods and the existing knowledge on the

volatility of requirements, several gaps in the research are identified:

1) Although traceability is a common method of identifying impact, it can be costly and

time consuming, and in most cases, the benefits (of traceability) are realized

immediately. This gives rise to a need for another method that addresses these

limitations.

2) In most existing methods of change impact analysis, the priority of changes is not

established. Understanding priority benefits the decision-making process by allowing

software practitioners to establish which change to implement first and also how

critical the change is to the existing system and hence, resources can be allocated

accordingly.

3) The existing literature is unclear on ways to identify the difficulty of implementing a

change in an early phase of the change request process. Understanding the difficulty

associated with a change leads to better decision making in two ways: firstly, if the

difficulty of implementing the change is too high and the delivery of the product is

time sensitive, the change could be held back for a consecutive version; secondly, the

difficulty can be used as a gauge of the effort required to implement the change.

60

10.3 Research gaps in change cost estimation

The cost estimation methods discussed in the previous section were not explicit for the

estimation of implementing changes. In practice, these methods can still be applied for this

purpose yet there is still much room for improvement. Based on the information discussed

earlier and in the other related literature, several gaps in the research were identified:

1) No significant work in the existing literature caters explicitly for estimating the cost

of implementing RCs. As demonstrated in the previous sections, changes occur for a

plethora of reasons and can occur during any phase of the software development life

cycle. Therefore, it would be beneficial if there was a dedicated method by which to

estimate the cost of such changes as the implication of these changes based on the

project’s timeline results in different outcomes.

2) Estimation done at an early stage of the development process is usually based on

expert judgement with less precise input and less detailed design specification. In

some cases, this may result in effort estimation which is too low which leads to issues

such as delayed delivery, budget overrun and poor quality while high estimates may

lead to loss of business opportunities and the inefficient use of resources.

3) Estimating the cost in the early stages of development depends on expert judgment

and historical data, which can be biased and inconsistent. There needs to be ways to

eliminate these ambiguities in change cost estimation.

The research gaps identified indicate the importance of having a full- scale model that

increases the efficiency of managing change with better accuracy. The review highlights that

although the concept of change management has been in existence for many years, the

applicability of the available methods has many limitations and has room for improvement.

With challenges such as poor communication, impact identification issues and no dedicated

method for change cost calculation, the avenues for future research is promising.

61

Chapter 3

Managing Software Requirements

Changes through Change Specification

and Classification

3.1 Preface

Based on the systematic review, we discovered that communication ambiguities during

elicitation and negotiation periods of requirements changes lead to quite a number of negative

outcomes in terms of managing and implementing these changes. As a result, some projects

experience budget/time overruns and/or poor quality end products. We also discovered that

change identification is a main activity in the process of change management. In order to clearly

identify a change, it is imperative that there is clear communication between the business and IT

staff involved in the change elicitation process. The main purpose of this chapter is to introduce

a way to communicate and understand requirements changes without any ambiguities. To this

end, we propose two methods as part of the change management process where the change

specification method deals with the communication part and the change classification method

deals with the identification of the change.

This chapter consists of a paper that investigates the research space on requirements change

communication and taxonomies in order to produce the aforementioned methods. A preliminary

version of this paper was presented at the 2013 Australian Software Engineering Conference.

The findings of this chapter not only satisfy the requirements of a clear communication medium

but this is also the first phase of the requirements change management process and these findings

are used in the successive methods of this thesis.

62

3.2 Publications

S. Jayatilleke, R. Lai, and K. Reed, "Managing Software Requirements Changes through

Change Specification and Classification," To appear in Computer Science and Information

Systems, 2018. DOI: 10.2298/CSIS161130041J.

A preliminary version of this paper was presented at the 2013 Australian Software Engineering

Conference (S. Jayatilleke and R. Lai, "A method of specifying and classifying requirements

change," in Software Engineering Conference (ASWEC), 2013 22nd Australian, 2013, pp. 175-

180: IEEE.)

Signed : Date : 12/02/18

 (S. Jayatilleke)

Signed : Date : 12/02/18

 (R. Lai) (on behalf of co-authors)

Manuscript title Publication status Nature and extent

of candidate’s

contribution

Nature and extent

of co-authors’

contribution

S. Jayatilleke, R.

Lai, and K. Reed

"Managing Software

Requirements

Changes through

Change

Specification and

Classification".

Computer Science

and Information

Systems

Published online in

accordance with

Computer Science

and Information

Systems author

guidelines.

Eighty percent

contribution by

candidate. This

included gathering

information,

drafting and

revisions of the

manuscript.

Twenty percent

contribution by co-

authors. This

included discussions

of ideas expressed

in the paper, critical

review and

submission to the

journal.

63

Managing Software Requirements Changes through Change

Specification and Classification1

Abstract — Software requirements changes are often inevitable due to the changing nature of

running a business and operating the Information Technology (IT) system which supports the

business. As such, managing software requirements changes is an important part of software

development. Past research has shown that failing to manage software requirements changes

effectively is a main contributor to project failure. One of the difficulties in managing

requirements changes is the lack of effective methods for communicating changes from the

business to the IT professionals. In this paper, we present an approach to managing

requirements change by improving the change communication and elicitation through a

method of change specification and a method of classification. Change specification provides

a way such that communication ambiguities can be avoided between business and IT staff.

The change classification mechanism identifies the type of the changes to be made and

preliminary identification of the actions to be taken. We illustrate the usefulness of the

methods by applying them to a case study of course management system.

Keywords—Requirements change, change specification, change classification, ontology,

terminology.

1. Introduction

The inevitable development of globalization, service-oriented environments and continuous

technological advances compel organizations to change their strategies and business processes

to meet customer demand. In addition, there is the impact of software evolution and

maintenance. Although change is an evident factor in today’s highly competitive business

environment, many organizations find themselves at the losing end of this game. Volatile

nature of business requirements usually increases the cost of development [1, 16, 32, 55, 191,

192] and also poses a threat to the project schedule [16]. Changing requirements are considered

one of the main contributors to project failure [45, 46, 193]. The real problem is not the

1 A preliminary version of this paper was presented at the 2013 Australian Software Engineering

Conference.

64

changing nature of requirements, but the lack of understanding of this volatility. Change

management, therefore, is a critical task for organizations.

Requirements engineering consists of a set of core activities that are in reality interleaved and

iterative [38]. Requirements change is part of this requirements engineering process and it is

not a standalone activity but consists of several core activities that can be described as a

process. This process begins with communicating the requirements change (change request).

Successfully completing this step will result in the elicitation of the correct goals in relation to

the changes (change goals), which is the next step in the process. . Understanding the change

goals leads to the proper execution of the third step, which is representing the change in the

system design. The second and third steps effectively assist the analysis of the requirements

change to assess its appropriateness and whether it should be accepted. The final step in the

process is based on the results of the analysis. Depending on the outcome, a change can be

accepted or rejected. Therefore, the final outcome of the change request depends heavily on

the first step. This process is iterative, usually due to the inability of management to agree to

the change request and due to insufficient information. It is further hindered due to poor change

communication, misinterpretation of change goals, incorrect representation of changes in the

system design, discrepancies in analysing the changes, and inaccurate decision making in

relation to the requested changes.

One of the key reasons for difficulty in managing change occurs at its initiation. Effective

interpretation and communication change, from the customer to the development level has

proved to be a challenging task [10-13]. Some literature suggests that this is due to the lack of

a formal process specifying change [10, 13]. The specification method used by change

originators should be understood by both business and IT personnel since it is the bridge

between the change originators (users, customers, etc.) and the change implementers (system

analysts, designers, developers, etc.) [194-196]. Therefore, being able to specify and

understand the requirements change should make in the process of incorporating the change

into the existing design or system more seamless.

In this paper, we present an approach to managing requirements change by improving the

change communication and elicitation through a method of change specification and a method

of classification. Change specification provides a way such that communication ambiguities

can be avoided between business and IT staff. This is the first step towards better and effective

65

management of requirements change in rapidly changing business environments. The change

specification process is incomplete without classifying the changes. The change classification

mechanism identifies the type of the changes to be made and preliminary identification of the

actions to be taken. To aim readers to have a better understanding of the change specification

and classification methods, we use a simple mail order system as a running example. Finally,

we illustrate their usefulness by applying them to a case study of course management system.

A preliminary version of this paper was presented at the 2013 Australian Software

Engineering Conference [76]. The following items are contained in this paper but not in [76]:

(i) a discussion on the related work to give better understanding of our methods;

(ii) a description of the overview of the methods;

(iii) a justification of the use of Goal Question Metrics (GQM) and Resource Development

Framework (RDF) approach; and

(iv) to illustrate the usefulness of our methods, the results of applying them to a running

example and a case study.

2. Overview of the methods

In this section, we present an overview of our approach to managing requirements change

through a method of change specification and a method of classification. Managing change

begins with an understanding of what is involved in this phenomenon. But as previous

studies have proven, there is no real consensus on the nature of change, rather there are

disparate multifaceted views and approaches. We therefore see the need for a versatile,

consolidated, solution that brings these together. Based on previous research work and

also through industrial interviews described later, we were able to pinpoint the gap in

change identification. There is an inadequacy in applying change identification in the

practical context. Figure 1 using the IDEF0 notation shows the broad layout of the methods

aiming to overcome this limitation. Once a change is requested, the layout follows two

steps;

1) Change specification

2) Change classification

66

Figure 1: Layout of overview of the methods

Change specification denotes a way of specifying a change so that communication ambiguities

can be avoided between business and IT staff. Once a requirement change has been initiated

from the client side, this method will use the system design diagram as an input to map out the

location of the change. In order to create the specification template we will use two established

methods, i.e. Goal Question Metrics (GQM) [197] and Resource Description Framework

(RDF) [198]. We will also use a set of additional questions to enable better identification when

using the speciation template output. The purpose of using GQM and RDF is to establish

terminology and ontology (respectively) concepts in the specification method. The use of

terminology will enable the specification template to have standardized terms whilst ontology

will ensure a logical connection between the terms used in the specification template. The

purpose of using both terminology and ontology is further discussed in section 3.2.1. The

outcome of the specification template will be the identification of the location, purpose and

focus of the change.

GQM approach, which was developed by Basili and Weiss and expanded by Rombach [197],

is the most widely known goal-focused approach for measurement in software. One of the

reasons for its success is that it is adaptable to many different organizations (e.g. Philips,

Siemens, NASA) [197]. Another reason for the success of GQM is that it aligns with

organizational directions and goals. Rather than using a bottom-up method (generally

problematic) [199], metrics are defined top-down. This way the measurements are linked to

organizational goals [199-201]. This same concept can be applied in describing change. If the

changes described are linked to goals, then understanding and application of such changes

could be far more efficient [202].

Change
Specification

System Design Diagram

Requirement Change

GQM RDF

Additional Questions

Specification Template

Change
Classification

Taxonomy

Change Type

Change Action

67

Introduced by Tim Berners-Lee in 1998, RDF is an ontology language for making statements

about resources [198]. It was designed for describing Web resources such as Web pages.

However, RDF does not require that resources be retrievable on the Web. RDF resources may

be physical objects, abstract concepts, in fact anything that has an identity. Thus, RDF defines

a language for describing just about anything. Furthermore software modeling languages and

methodologies can benefit from the integration with ontology languages such as RDF in

various ways, e.g. by reducing language ambiguity, enabling validation and automated

consistency checking [203]. Given the benefits of both GQM and RDF, it was deemed

appropriate to use these methods for specifying requirements changes. With these being the

general benefits of GQM and RDF, their specific purpose and use in the specification method

are described in detail below.

The change classification method uses the outcome of the specification template to expand on

the type of change along with preliminary guidance for action to be taken in managing the

change. The classification itself is based on the concepts of change taxonomy that was found

in existing change management literature and refined using unstructured interviews of

practitioners in the field of change management. The outcome of the change classification will

provide software developers with a better understanding of what the change is and the

preliminary guidance on how to incorporate the change into the existing system. We believe

the combination of change specification and classification leads to a better realisation of

changes requested.

2.1 A running example

To aim readers to have a better understanding of the change specification and classification

methods, we will use a simple mail order system for CDs and DVDs as a running example

which is described below.

Diskwiz is a company which sells CDs and DVDs by mail order. Customer orders are received

by the sales team, which checks that customer details are completed properly on the order form

(for example, delivery address and method of payment). If they are not, a member of the sales

team contacts the customer to get the correct details. Once the correct details are confirmed,

the sales team passes a copy of the order through to the warehouse team to pick and pack, and

a copy to the finance team to raise an invoice. Finance raises an invoice and sends it to the

68

customer within 48 hours of the order being received. When a member of the warehouse team

receives the order, they check the real-time inventory system to make sure the discs ordered

are in stock. If they are, they are collected from the shelves, packed and sent to the customer

within 48 hours of the order being received, so that the customer receives the goods at the

same time as the invoice. If the goods are not in stock, the order is held in a pending file in the

warehouse until the stock is replenished, whereupon the order is filled. This process can be

illustrated by the following system design diagram.

Figure 2: Diskwiz customer order fulfillment process diagram

The example consists of a scenario where the specification method is applied in specifying the

change and the change classification method is used to identify change type and corresponding

action. The scenario is as follows:

The management is not satisfied with some parts of the process and point out that the following

issue should be rectified: “It is identified, due to a design error, there is no communication

between finance and the warehouse to confirm discs are in stock so that the order can be

shipped. Therefore finance could be raising invoices when the order has not been sent.”

3. The change specification method

Figure 3, represents collaboration of the different entities of the change specification method.

The change specification consists of three key elements: a system design diagram, a

specification template and additional questions. The foundation of specification component is

made up of GQM and RDF. The GQM-RDF combination is a result of amalgamating ontology

and terminology which in this paper, we refer to as onto-terminology. A detailed description

of the onto-terminological concept and the interaction of the three elements in specifying

Place

order A1

Receive

order A2
Review

order A3

Check

stock A4

Receive

goods

Receive

invoice Customer

Sales
Team

Ship

order A6 Warehouse

Order incomplete

Order

accepted Out of

stock

Send

invoice A5
Finance

In

stock

69

changes are explained in the following sections. We point out that in fact, or method is “system

description technique agnostic”, and, could be used in any environment where a systematic

system description methodology has been used, reducing the adoption casts.

Figure 3: Layout of the change Specification

According to Figure 3, an important input is the use of system design diagrams. In this cases

where the initiation of the change takes place on the business side. Therefore, the initial part

of the change specification should be familiar to the business personnel involved. To achieve

this, system design diagrams are used as part of the change specifying process where the

notations and the language used are more business related. Any business analyst

communicating a requirement change to the IT side should be capable of understanding and

interpreting a system design diagram.

The successful application of the change specification calls for a few key assumptions. First,

the specification of changes may take place at the operational level of the organization. We

believe that as changes flow from an executive level (top) to the operational level (bottom),

they become less abstract, making it easier to feed the change into the specification and

classification methods. Second, in reality, for a system to be stable, the changes being made

are proportionately small (5% – 10%) in comparison to the complete system [65]. On the other

hand, if the change requires more than a 50% change to the system, it is usually implemented

in a successive release of the current system. Finally, a design diagram (preferably the system

design diagram) should be available for mapping the change to the system.

3.1. Specification prerequisites

Although there is a plethora of ways to describe change, most fall into ad-hoc methods of

communication. In the authors’ view, a void exists which could be filled by a more effective

and efficient template and a set of guidelines that can be used to communicate requirements

Change
Specification

System Design Diagram

Requirement Change

Additional Questions

Specification Template

GQM RDF

70

change. Given the current trend of business being more service-oriented, the change

specification should be a bridge between customer requirements and the final product [204].

The new specification template introduced in this paper will reflect this. The following two

key properties are essential for a specification method to be both functional and constructive

[204].

A primary objective for the specification method is user friendliness to ensure ease of adoption.

It is important to recognize that the process of specifying either requirements or changes to

requirements is a human activity process [204-206]. Therefore, the method used for such

specifications should be human friendly [204]. The initial response to a new method is

generally resistance and an unwillingness to use it [204, 207]. This is usually because the

difficulty level of the new method is unknown to the users. Also, both businesses and IT

stakeholders involved in the change management process tend to trust tried and tested methods

of specifying change simply because there are no “surprises” in store. For these reasons, rather

than inventing an entirely new method, we have opted to use a combination of existing

methods which we believe has the most desirable qualities of a specification method and with

which the users are familiar. This, in our view, will minimize the short-term productivity losses

associated with learning new process, and also reduce the likelihood of opposition.

The second property is the method style. Text-based specification methods are formed using

either natural language or formal language [204]. Although easier to understand, the drawback

in using natural language is that it may be interpreted in different ways, resulting in

ambiguities. Whereas a mathematically influenced formal language may be ideal for a

computer, it may not be human friendly. Therefore, it is important to find a balance in textual

illustration. Also equally important is that both business and IT stakeholders involved in the

process understand the specification method. To achieve this, we introduce a semi-formal

method which is aided by system design diagrams.

3.2. Onto-terminology framework

3.2.1. The purpose of ontology and terminology

The specification method introduced in this work is a means of semi-formal communication

of requirements change. And for this method to be both informative and useful, it needs to

71

satisfy several conditions. A specification method should take into consideration: standardised

terms, the usage of the terms, connotative information and linguistic relationships as well as a

logical and philosophical point of view of the standardised terms [208]. We point out that these

features stem from two different concepts i.e. terminology and ontology. The relationship

between terminologies and ontologies has been the subject of analysis by others, as we see

from the following discussions.

Terminology is a “set of designations belonging to one special language” [209]. The main

purpose of using terminology in a specification method is to eliminate ambiguity and ensure

the use of standard terms [208]. International standards state that the goal of terminology is to

clarify and standardize concepts for communication between humans [209]. This is a crucial

property of our proposals as this is a method of conveying changes in requirements from

business personnel to IT personnel. However, terminology generally lacks computational

representation as well as logic [210]. Of these, our concern with regard to change specification

is logic. Logical accuracy will ensure that the action taken to implement the change is correct.

Therefore terminology, on its own, cannot be considered for the semi-formal framework of

the change specification method.

Ontologies are similar to terminologies in that both the communication of concepts. According

to Gruber [211], ontology describes a concept and its relationships in a way that can be

manipulated logically. The way ontology defines a concept depends entirely on the formal

language used for the communication of the concept. Ontology is not a terminology [208]. In

fact, ontology lacks the standardized terms and linguistic relationships of a concept which are

key features in terminology [208]. These features are imperative to change specification as

they build the actual form of communication terms to be used in the specification.

The conceptualization of the change specification method needs to be guided by both linguistic

and logical principles. Given the strengths and weaknesses of terminology and ontology, the

combination of these two concepts will provide a better framework for the specification. Onto-

terminology, which results from this combination, formally defines the concept (ontology

logic) as well as explains the term and its usage from a linguistic point of view (terminology).

72

3.2.2. Building the relationship between GQM and RDF

To ensure the correct combination of logic and terminology, we have selected two well-known

methods where one represents terminology and the other represents ontology. A generalization

of GQM is used as the linguistic function of the specification method representing

terminology. It is important to note that the abstraction of GQM relates to the goal specification

and not to the questions or the metrics. The purpose of using GQM is that it enables the

extraction of specific terms that define the requirements change. Since these terms have been

successfully utilized to extract business goals [199, 200], we found it’s use satisfactory in

change specification. The logical connections for the terms are sourced from RDF representing

the ontology component specification. However, it can also be used to link information stored

in any information source that can be ontologically defined [210].

Three terms are extracted from the goal specification of GQM that can best describe a

requirement change; Object, Purpose and Focus (of change). The meanings of these three

elements have been adjusted for the purpose of describing change. The Object needs to be

changed due to the Purpose using the Focus. The terms extracted from RDF are Object,

Attribute and Value, which is referred to as the RDF triplet [210]. The logical relationship of

the RDF triplet can be stated as Object O has an Attribute A with a Value V (Professor; Reads;

a Book). The rationale behind the correspondence between RDF triplet and to the GQM terms

is due to the similarity and the meanings of the terms, which is described in Table 1.

RDF term GQM term Correspondence Rationale

Object Object One-to-one Same concept

Attribute Purpose One-to-one Both terms are activities. Purpose is an
activity that is generated due to various
business requirements.

Value Focus One-to-one Value of RDF creates the significance for
Attribute (of RDF). Focus of GQM creates the
significance for Object (of GQM) by
activating the term Purpose of GQM.

Table 1: Rationale of RDF and GQM relationship

GQM terms alone could have been used if the three terms have a logical connection; and we

have explained above as to why it is important to have this logical connection in a specification

language. The main reason for using RDF is hence to create the logical relationship between

GQM terms. Figure 4 represents the relationship mapping between RDF and GQM. As such,

73

the logical relationships between GQM terms can be stated as Object O needs Purpose P by

using Focus F. Given the logical connection established, any change specified (regardless of

the application of the system) using the GQM terms will satisfy the requirements of a semi-

formal method of communication as stipulated above (see 4.2.1). From now, we shall use these

three terms in the specification method.

Figure 4: RDF-GQM Relationship

The framework presented in Figure 5 is based on the above relationship and is the foundation

of the specification method. The three elements OBJECT, PURPOSE and FOCUS are used to

capture the requirement change. The OBJECT of change is any activity in the system design

which needs a PURPOSE to change. This purpose is created as a result of changing business

goals, customer requirements, etc. The object is changed by the FOCUS of change, where any

change type can denote the focus. Therefore, each activity in the system design is an object,

each changing business goal and customer requirement is a purpose and each change type is a

focus.

Figure 5: Onto-terminology Framework

Object

Attribute Value

Object

Focus Purpose

RDF GQM

corresponds

corresponds

corresponds

activity

end value

System
Activity

OBJECT PURPOSE

FOCUS

Business goals
Customer requirements

Change type

is an creates

denotes

by using

needs

74

3.3. Text-based specification tool

During the preliminary studies we examined several different types of change request forms

from industry to understand what information is vital for understanding a requirement change

and how it was presented. We discovered two common denominators that should be included

in our specification tool. First, the type of change which assists the system designers to

understand the action they need to take in order to accomplish the change. Second, the reason

for change which gives a better insight as to why the change was requested.

The template designed for the change specification based on the framework in Figure 4 is

given in Table 2. By selecting the object of change using the system design diagram, designers

and decision makers can accurately locate the main target of change, resulting in a clarification

of the location of change. Knowing the reason for the change through the purpose ensures that

change implementers are able to clarify the need for the change. The focus of change acts as

advice on the basic implementation needed to execute the change, resulting in the clarification

of the action of change. It indicates to the designers what to do instead of how to do the change.

We believe that clearly describing the location, need and action of a change request using this

template will resolve much of the existing miscommunication issues.

Table 2: Template for change specification

An additional question (see Table 3) is used along with the above template based on the focus

of change that investigates additional inputs and/or outputs required for the change. Answer

to this question will be used as input for the change classification method, which is discussed

below.

 Description

OBJECT
The activity name according to the system design

diagram

PURPOSE The reason for the change (can be descriptive)

FOCUS

Select from Add, Delete, Modify or Activity

Relocation

(description given in table 6)

75

Table 3: List of addition questions

3.4 Results of applying it to the running example

By applying the change specification method to the running example, we obtain the

following results.

 Description

OBJECT A4 and A5

PURPOSE Resolution of design error

FOCUS Add

Additional

Question
Need addition Input/output? Y

Table 4: Application of the Change specification method

We have used the templates given in Tables 2 and 3 in order to populate the information in

Table 4. It is mentioned in the change scenario that this change is required due to a design

error. Therefore, the purpose of this change is listed as a resolution for a design error. The

activities that are affected by the change are identified through the design diagram to be Check

Stock (A4) and Send Invoice (A5). This is again based on the change scenario. The analyst then

needs to decide with which focus this change will be executed. In this particular case, it is

determined that a new activity needs to be added to handle the change. The next step is to

identify if the addition of the new activity would cause new input/output between the existing

activities (A4 and A5) and the new activity. As we are trying to bridge the communication

between A4 and A5, based on Table 3 it is most likely that such input/output would be

generated and therefore the answer to the additional question is ‘Yes’.

Focus of change Additional question

Add Need addition Input/output?

Delete Connected to neighbor activity with input/output?

Modify

Input/output modification?

If Yes;

Input modification?

Output modification?

Activity Relocation Relocation requires input /output?

76

4. The change classification method

The main purpose of change classification method is to ensure that change implementers are

able to identify and understand unambiguously the requirement change [10, 31]. Therefore it

is essential that the classification itself is not complex. The change specification method is

incomplete without having to classify the change as it provides a further understanding of the

underlying causes of requirements change [31, 212]. This is the first step towards better and

effective management of requirements change in this rapidly changing environment. Other

studies [10, 213] also suggests that a classification of change is a scientific step to improve our

ability in understanding requirements evolution.

4.1. Preliminary studies

To explore the scope and complexity of the existing change classifications and determine the

criteria for our change classification, two key investigative methods were undertaken. Firstly,

a literature review of existing research on change management with a focus on change

classification was undertaken. Keyword searches included change management, change

classification, change types, change taxonomy, and change specification. The total result of

43 included journal papers and text books. This was filtered using selection criteria which were

limited to articles referring to classification, type and taxonomy which yielded in 12 academic

works [10, 12, 16, 18, 23, 31, 32, 75, 114, 212-214]. These papers allowed us to extract the

most common and regular change types used in the industry.

Secondly, unstructured interviews of 15 practitioners in the field of change management were

conducted. Table 5 summarizes the important questions discussed and how they are related to

this study. Respondents included project managers, business analysts, IT analysts, and

software architects. Since these practitioners were from several software development

organizations, the methods followed in change management was quite diverse. One of the key

findings was the difficulty in relaying the business requirement change down the IT

development line. A secondary related problem which arouse was the misinterpretation of the

requirement change and business goal. There were many cases where parts of the final product

did not meet the customer satisfaction as the changes requested had not been implemented

appropriately. This justified our efforts in creating a change classification that facilitated better

understanding of the requested change. We used these interviews to further confirm the change

77

types identified through the literature survey and were able to gain better insight to improve

the change classification.

Question Purpose

How often are changes requested and

where do they originate from?

To understand the frequency of change request and

where they are usually generated from

What are the types of changes that are

often requested?

To identify the different types of changes

Is there a process for requesting change?

If so, what are the details?

To identify the steps involved in a change request and

what vital information needs to be captured

What are the difficulties in

communicating change?

To understand the existing problems in the industry

and what is lacking in their process of change

communication

Is unambiguous communication of change

important? If so, why?

To identify if there is a need for a new method of

specification and classification of change
Table 5: Key question of the interview

4.2. Taxonomy development

Our classification is based on previous work-see [16, 32, 75, 214]. Table 6, demonstrates how

each previous work has influenced the creation of taxonomy. However, further adjustment was

made to improve the classification as mentioned above. The focus of change represents the

most common forms of changes found in requirement change requests. Table 7 lists the

detailed description of these basic changes. Changes Add, Modify and Delete were identified

initially as the classification as a result of both previous literature and practitioner interviews.

Change, Activity Relocation was included as a result of information gathered through the

interviews as we discovered, is a frequent form of change requested. In normal circumstances,

combinations of these basic change types can be used to represent more complicated change

scenarios. These same change focuses were used in the specification method in-order to create

a clear connection between the two methods.

Previous work Concepts extracted Application to the classification

Nurmuliani, Zowghi

& Williams [32]

Common types of changes used (add,

delete, modify) and classification of

changes

Helped in creation of the most

common focus types

McGee & Greer [16] Change causes and use of experts in

defining a taxonomy

Leading to different change

activities and the use of change

practitioners

Nurmuliani, Zowghi

& Williams [75]

Categories of change Helped in creation of the most

common focus types

Xiao, Quo & Zou

[214]

Primitive changes in business

functions

Further expression of change

types

Table 6: Key literature used in creation of classification

78

Table 7: Detailed change description

Application of Table 7 in the classification method can be described as follows. The change

focus and the answer to the additional question of the specification method will be used in the

classification method as follows. For example, if ‘Add’ was selected as the change focus and

the answer was ‘Yes’ to the question ‘Need additional input and/or output?’, then according

to Table 4 the linking interface(s) of the new activity and the neighboring activities will

mismatch. Therefore the change will be categorised under ‘Add’ change focus with

‘Mismatched links’. The 4th column in Table 6 represents the necessary action to be executed

for each change type.

‘Modification’ change focus is divided into three types of change. Inner property modification

will deal with modifications done to the variables and operation of an activity that does not

affect its external links (input/output) to neighboring activities. Input and output data

modification will respectfully affect neighboring activities linked to the input/output of the

target activity as well as the internal properties of the target activity depending on the input

and/or output added to it.

Change

focus

Answer to

Additional

Question

Change type Action

Add No Matched links Add new activity without changing the

current activity or any connected links

Yes Mismatched links Add new activity by changing the

activity and/or connected links

Modification No Inner property

modification

Modify the implementation of an

activity without changing the

connected links

Yes Input data modification Modify the input link and internal

properties of an activity

Yes Output data modification Modify the output link and internal

properties of an activity

Delete No Matched links Delete activity without changing

connected activities

Yes Mismatched links Delete activity by changing connected

activities and links

Activity

Relocation

No Relocation with matched

links

Relocate existing activity without

changing the activity or connected links

Yes Relocation with

mismatched links

Relocate new activity by changing the

activity and/or connected links

79

In ‘Delete’ change focus with ‘Matched links’, no modification is needed once the target

activity has been removed. The rationale behind this action is that the deleted activity does not

provide any output or take in any input from its neighbors. In contrast, with ‘Mismatched

links’, once the target activity is deleted, the neighboring activities have to be modified

depending on the input/output connection(s) to the deleted activity.

Activity relocation will involve moving an activity from its current location and linking it into

a new location in the system design. This can be achieved in two ways. One, the activity being

relocated is not linked to its neighbors through input/output and able to relocate to the new

position without any modifications to the neighboring activity. Two, the target activity in the

current location and the new location are affected through input/output and needs to be

modified.

At implementation time, the key elements of the two methods (specification and classification)

are incorporated into a single table (see Table 8). In the table, change number refers to the

number given to each change as they are requested. The object, purpose and focus in Table 8

correspond to the information given in Table 2 i.e. activity name according to the system

design diagram (this is the activity affected by the change), reason for change and select from

Add, Delete, Modify or Activity relocation respectively. The additional question selected from

Table 3 will be based on what has been selected for the focus and the information provided

through the content of Table 2. Change type and action can be sourced from Table 7 based on

the information provided for object, focus and additional question respectively. The possibility

columns represent how each change may be described using different focuses. This may not

apply to all changes. The ability to create multiple possibilities which will be based on the

experience of the analyst and complexity of the change. This feature was added to the

implementation template to provide more diversity and flexibility of communicating a change.

Having multiple possibilities also provides flexibility of how the change can be implemented.

80

Table 8: Template for implementation

4.4 Results of applying it to the running example

By applying the template for implementation for the above scenario, we obtain the following

result as given in Table 9:

Table 9: Application of the implementation template

In Table 9, we describe the two possibilities for the scenario provided in the running example.

For both possibilities, the object and the purpose remains the same and coincide with what has

been discussed in Table 4. We are of the opinion that there are two ways this change can be

described and the focus of each possibility demonstrates this fact. Possibility 1 was introduced

in Table 4. The sections above the Results row of Table 9 is based on applying Tables 2 and 3

of change specification and were discussed in section 3.4. Based on the information provided

for the Focus and Additional question, change type and action can be extracted from Table 7.

Change No. Possibility 01 Possibility 02 Possibility n

OBJECT

PURPOSE

FOCUS

Additional
Question

RESULT

CHANGE
TYPE

ACTION

Change 01 Possibility 01 Possibility 02

OBJECT A4 and A5 A4 and A5

PURPOSE Resolution of design error Resolution of design error

FOCUS Add Modify

Additional

Question

Need addition Input/output?

Y

Input/output modification?

Y

Result

Change

Type

Add new activity between A4

and A5 (Mismatched links)

Inner property modification

and Output data

modification A4 and input

data modification of A5

Action

Add new activity by changing

the activity and/or connected

links of A4 & A5

Modify A4 to send message

to A5

Specification

Method

Classification

Method

81

This extraction is shown in Table 9, for each possibility based on the different change Focus

which has been identified. In the case of Possibility 1, the Focus identified is ‘Add’ and the

Additional question has been given an answer ‘yes’. When this information is mapped to Table

7, it provides a Change type of ‘Mismatched links’, which requires a change Action of ‘Add

new activity by changing the activity and/or connected links’. When adding the new activity

between A4 and A5, connections need to be made with both activities. Therefore, both A4 and

A5 will be directly affected by this addition. The modification possibility of A4 will directly

affect A5 as there will be link input from A4 to A5. In both possibilities, all activities that are

connected to A4 and A5 will be indirectly affected by the alterations.

5. An application of the methods

Yin [215, 216] explained the usefulness of using case studies to explore the merits of an

application of a research idea/ hypothesis. We therefore demonstrate the usefulness of the

change specification and classification methods by applying them to a software project case

study. We make two key assumptions with the case study that the project is in a state where

the requirements elicitation has occurred and the process diagram has been established. We

have already used a simple case study as a running example. The case study introduced in this

section enable us to illustrate the versatility of the methods by way of using various change

focus, various change types and how the outcome of the change classification differs with the

need for input/output modifications.

5.1. The case Study

Figure 6 represents a partial system design diagram of a course management system adopted

from [142]. The diagram illustrates the relationships and some dependencies the activities have

with each other. The relationships denoted in the diagram can be defined as follows:

• Requires (Req): An activity A1 requires an activity A2 if A1 is fulfilled only when A2

is fulfilled. A2 can be treated as a pre-condition for A1 [142].

• Refines (Ref): An activity A1 refines an activity A2 if A2 is derived from A1 by adding

more details to it [142].

• Contains (Con): An activity A1 contains information from A2...An if A1 is the

conjunction of the contained information from A2...An [142].

82

The identification of these relationships is beneficial in determining the impact of change when

applying our methods to the case study.

The detailed purpose of each activity is described as follows:

A1. The system allows end-users to provide profile and context information for

registration.

A2. The system provides functionality to search for other people registered in the system.

A3. The system provides functionality to allow end-users to log into the system with their

password.

A4. The system supports three types of end-users (administrator, lecturer and student).

A5. The system allows lecturers to set an alert on an event.

A6. The system maintains a list of events about which the students can be notified.

A7. The system notifies the students about the occurrence of an event as soon as the event

occurs.

A8. The system actively monitors all events.

A9. The system notifies students about the events in the lectures in which they are enrolled.

A10. The system allows students to enroll in lecturers.

A11. The system allows lecturers to send e-mail to students enrolled in the lecture given

by that lecturer.

A12. The system allows students to be assigned to teams for each lecture.

A13. The system allows lecturers to send e-mail to students in the same group.

A14. The system allows lecturers to modify the content of the lectures.

A15. The system gives different access rights to different types of end-users.

A16. The system supports two types of end-users (lecturer and student) and it will provide

functionality to allow end-users to log into the system with their password.

83

Figure 6: Partial system design diagram of a course management system

5.2. Applying them to the case study

The example consists of two scenarios, where we apply the specification and classification

methods. These scenarios are based on our observations as university academics who use

similar course management systems. The following hypothetical new requirements are

identified:

1. In an emergency, it would be more effective to send an SMS notification to students

as well as an email.

2. Marking attendance manually tends to be rather ineffective, especially when a census

needs to be carried out. It would be better to mark attendance electronically.

The application of the implementation template yields the following results.

Change 01 Possibility 01 Possibility 02

Object Enrol for lectures A10 Send email to all students A11

Purpose Functionality enhancement Functionality enhancement

Focus Add Modify

Additional

Question

Need additional Input / Output?

Y
Input/output modification? Y

Result

Modify course

content 14

Create different

access rights 15

Lecturer 16-1 Student 16-2

Registration

Information 1

Search registered

users 2

Systems support

for end-user 4

Set alert on an

event 5

Login 3

Maintain list of

events 6

Systems notification

of event 7

Monitor all

events 8

Notify lecture

events 9

Enrol for

lectures 10

Assign students

into teams 12

Req

Send email to

student teams 13

Send email to all

students in class 11

Req

Con

Con Con

Req

Req

Req

Req

Req

Ref

Req

Req

Req

Req

Ref

Req

84

Table 10: Change 01 result

Table 11: Change 02 result

5.3. Discussion of the results

Tables 10 and 11 demonstrate how the specification and classification methods can be applied

to this case study. The template given in Table 8 has been used for obtaining the result for each

change.

Multiple possibilities can be created for each change event, depending on the event,

availability of existing activities and various combinations that could be incorporated to realize

the change. Such an instance has been provided for the 1st change event. In this change, the

need to send SMS to students can be accomplished by either creating a new activity or

modifying an existing activity (A11). As such, when creating a new activity, it requires

information from A10. Therefore, the activity directly affected by the event is A10. Rest of the

table for the case study follows the process as explained through the simple stock control

example.

In the second change event, we considered only one possibility. The requirement is to allow

lecturers to mark attendance electronically. There doesn’t seem to be any existing activity that

can be modified to serve this purpose, therefore the only option is to create a new activity. As

such a new activity is created that requires student information, which is provided by A10.

Change Type Add new activity
Inner property + Output interface

modification

Action
Add new activity by using

information from A10

Modify A11 internally and the

output interface

Change 02 Possibility 01

Object Enrol for lectures A10

Purpose Identification of new requirement

Focus Add

Additional

Question
Need additional Input / Output? Y

Result

Change Type Add new activity

Action
Add new activity by using information from

A10

85

Therefore, the activity directly affected by the event is A10 and the rest of the table also follows

the same principle as explained through the simple stock control example.

This example demonstrates how the specification and classification methods can be used to

generate multiple possibilities for a single change. This outcome provides decision makers

with the option of choosing the most appropriate way of implementing the change. The

example above illustrates the way these methods can help both business and IT personnel

involved, analyse business changes and thereby assist in the change management process. At

the business level, the business analyst can use Tables 1 and 2 to define and describe the

requirements change without any ambiguities. As a result of this IT personnel are able to not

only understand the change but also understand the need for change and identify the location

of change.

6. Comparison with related work

We shall describe what the literature has said about the related work and concepts like

taxonomies and classification which are important concepts in studying change identification

and classification.

6.1. Taxonomies

1) Research analysing change uses a plethora of techniques in order to build a taxonomy

that can be used to identify changes as well as their impact. One such mechanism is

the use of requirement engineering artifacts, such as use cases. The research done by

Basirati et al. [14] establishes a taxonomy of common changes based on their

observation of changing use cases that can then be used in other projects to predict

and understand RCs. They also contribute to this research space by identifying which

parts of use cases are prone to change as well as what changes would create difficulty

in application, contributing also to the impact analysis of change.

2) The taxonomy developed by Buckley et al. [15] proposes a software change taxonomy

based on characterizing the mechanisms of change and the factors that influence

software change. This research emphasizes the underlying mechanism of change by

86

focusing on the technical aspects (i.e. how, when, what and where) rather than the

purpose of change (i.e. the why) or the stakeholders of change (i.e. who) as other

taxonomies have done. This taxonomy provides assistance in selecting tools for

change management that assist in identifying the changes correctly.

3) McGee and Greer [16] developed a taxonomy based on the source of Requirements

Change (RC) and their classification according to the change source domain. The

taxonomy allows change practitioners to make distinctions between factors that

contribute to requirements uncertainty, leading to the better visibility of change

identification. This taxonomy also facilitates better recording of change data which

can be used in future projects or the maintenance phase of the existing project to

anticipate the future volatility of requirements.

4) Gosh et al. [17] emphasize the importance of having the ability to proactively identify

potentially volatile requirements and being able to estimate their impact at an early

stage is useful in minimizing the risks and cost overruns. To this effect, they developed

a taxonomy that is based on four RC attributes i.e. phases (design, development and

testing), actions (add, modify and delete), sources (emergent, consequential, adaptive

and organizational) and categories of requirements (functional, non-functional, user

interface and deliverable).

5) The taxonomy established by Briand et al. [18] is the initial step in a full-scale change

management process of UML models. In their research, they establish that change

identification is the first step in the better management of RCs. The classification of

the change taxonomy is based on the types of changes that occur in UML models.

They then use this taxonomy to identify changes between two different versions of

UML models and finally to determine the impact of such changes.

6.2. Classifications

There are many benefits of using a classification, the main benefits being to manage change

to enable change implementers to identify and understand the requirements of change without

ambiguity [19, 111]. The classification of RC has been studied in various directions. Table 12

lists the different directions which have been the subjects of studies.

87

Direction Parameters Comment

Type [17,

19-23]

Add, Delete, Modify The most common way of

classifying change.

Origin [10,

17, 112]

Mutable, Emergent, Consequential,

Adaptive, Migration

Derived from the places where

the changes originated from.

Reason [12,

19, 20]

Defect fixing, Missing requirements,

Functionality enhancement, Product

strategy, Design improvement, Scope

reduction, Redundant functionality,

Obsolete functionality, Erroneous

requirements, Resolving conflicts,

Clarifying requirements, Improve,

Maintain, Cease, Extend, Introduce

Helps determine the causes of

change and understand change

process and related activities.

Drivers

[113]

Environmental change, RC,

Viewpoint change, Design change

Helps change estimation and

reuse of requirements.
Table 12: Direction is change classification

6.3. Other change identification methods

1) Kobayashi and Maekawa [1] proposed a model that defines the change requirements

using the aspects where, who, why and what. This allows the system analyst to identify

the change in more detail, resulting in better impact identification as well as risk and

effort estimation. This method consists of verification and validation and can be used

to observe the RCs throughout the whole lifecycle of the system.

2) The change identification method usually has a pre-established base upon which its

semantics are built. Ecklund’s [114] approach to change management is a good

example of this. The approach utilizes use cases (change cases) to specify and predict

future changes to a system. The methodology attempts to identify and incorporate the

anticipated future changes into a system design in order to ensure the consistency of

the design.

6.4. Identifying limitations and comparison

We use the work listed in Table 13 (discussed above) to describe the limitations of the existing

work and compare our methods to define what has been achieved.

88

Table 13: Comparison with the related work

An examination of the work reported above leads to the identification of four key limitations:

1. There is little agreement and commonality between the studies;

2. For the process of specification and classification of change to be used successfully,

in our view it needs to be a part of the same process (change request); they

complement each other by providing a better understanding of the requirements

change;

3. There has been little emphasis on designing specification methods related to change;

and

4. A common limitation of the above classifications is the lack of guidance in applying

them to change management activities.

As a result, we believe that a void exists in the practical application of change specification

and classification and our methods address this research gap.

Technique Limitations What our methods can address

Basirati et al. [14] and

Ecklund [114]

Can only be applied if use cases

are available or used in the

development process.

They are applied at a design

phase, which enables the

identification of changes at an

early stage. Can be used as long

as there is a form of design

diagram of the system.

Buckley et al. [15] It did not directly address issues

arising from miscommunication of

change.

They can be directly used for

managing changes for the

purpose of identifying changes.

McGee and Greer [16]

and Ecklund [114]

They are limited to providing

assistance in predicting change.

They provide a way of

communicating change as well

identifying them in an early

stage as to where and how the

change should be applied.

Gosh et al. [17] Only used for identification of

change.

Provide preliminary guidance on

how to manage the changes.

Briand et al. [18] Can be used only if UML models

are available.

Can be used as long as there is a

form of design diagram for the

system.

Kobayashi and Maekawa

[1]

This is a complex method for

verifying changes.

They address change

management issues arising from

miscommunication.

89

7. Conclusions and future work

The purpose of the change specification and classification methods presented in this paper is

to manage requirements change by improving change communication and elicitation. Under

normal circumstances, business changes flow from the business side to the IT side. Therefore,

the impact of this study belongs to both these categories i.e. business and IT. First, considering

the business side, we ensure a requirements change has been clearly communicated to the IT

side. As mentioned earlier, there is often difficulty in promoting effective dialogue about the

nature of the change between these two parties. Therefore, a change specification method

would be essential for business analysts in communicating change.

Second, on the IT side, it is critical that change enablers have a mutual understanding of not

only the precise nature of the change but also the reason for its existence, i.e. its purpose. This

insight translates into a better realization of the requirements change. Equally important is a

quick response from IT in redesigning the system to suit the requirements change. The three

main categories: object, purpose and focus of the change specification method enhance

understanding while the classification of the change type and the resulting action assists

system designers to incorporate the change into the system design much faster.

Given the above impact of our methods, we believe that there are substantial benefits of

specification and classification methods that will lead to improvements in the change

management process. In our view, the benefits of these methods are:

• Promotes a mutual understanding of requirements change between business and IT

through the templates provided by Tables 2 and 3.

• Supports the decision-making process by helping to determine the need for the change.

• Assists in determining the best course of action in implementing the requirements

change through Table 7.

In future work, we plan to use the multiple change identification possibilities to evaluate the

best course of action to enable system designers to respond quickly to change requests.

Furthermore, we suggest it will be useful in evaluating the interdependencies of these change

requests as they relate to interdependencies of the system requirements and its implementation.

Identification of interdependencies between changes can lead to identification of conflicts

between requirement changes. Also, it would be valuable if it were possible identify the

90

difficulty level and priority of the changes so that resources such as time and effort can be

allocated more effectively. Identifying the difficult level of the change would further result in

assisting the decision of the plausibility of implementing the change.

91

Chapter 4

A Method of Requirements Change

Analysis

4.1 Preface

In order to assess whether a requirements change should be implemented, it is important to

evaluate its impact on the existing system. This is due to the fact that requirements are not

independent entities and can have very complex relationships. Therefore, a change made to one

requirement can have a ripple effect on other requirements. Traceability is a popular technique

used in many change analysis methods to trace the impact of a change through the existing

software system. However, traceability techniques have a few drawbacks that can potentially

outnumber their benefits. The main purpose of this chapter is to introduce a change analysis

method that uses a different technique to identify the impact of change. We use the changes

themselves to identify the interconnections they may create at implementation time. The idea is

to be able to map the changes to the system activities, which eliminates the need for traceability.

This chapter consists of a paper that investigates the research space on requirements change

analysis with an emphasis on impact analysis in order to produce the proposed method, which is

a continuation of the specification and classification methods presented in chapter 3. This can be

considered as the second phase of the requirements change management process introduced in

this thesis. The outcome of this method is used for the final stage of the RCMP presented in

chapter 5.

92

4.2 Publication

S. Jayatilleke, R. Lai, and K. Reed, "A method of requirements change analysis,"

Requirements Engineering, pp. 1-16, 2017, DOI: 10.1007/s00766-017-0277-7.

Signed : Date : 12/02/18

 (S. Jayatilleke)

Signed : Date : 12/02/18

 (R. Lai) (on behalf of co-authors)

Manuscript title Publication status Nature and extent

of candidate’s

contribution

Nature and extent

of co-authors’

contribution

S. Jayatilleke, R. Lai,

K. Reed "A Method

of Requirement

Change Analysis".

Requirements

Engineering

Published online in

accordance with

Requirement

Engineering and

Springer guidelines.

Eighty percent

contribution by the

candidate. This

included gathering

information, drafting

and revisions of the

manuscript.

Twenty percent

contribution by co-

authors. This

included discussions

of ideas expressed in

the paper, critical

review and

submission to the

journal.

93

A Method of Requirements Change Analysis

Abstract – Software requirements are often not set in concrete at the start of a software

development project; and requirement changes become necessary and sometimes inevitable

due to changes in customer requirements and changes in business rules and operating

environment; hence, requirements development, which includes requirements changes, is a

part of a software process. Previous research reports that correcting requirements errors late

costs many times more than correcting them during the requirements development phase.

There is, hence, a need to manage them well and to analyze them in order to identify the

impacts, difficulties and potential conflicts with existing requirements. Most studies on

requirements change analysis are done at the source code level while paying less attention to

the initiation of changes at a higher level. In this paper, we present a method of requirements

change analysis based on the changes themselves which are initiated at higher levels. This

method consists of three steps: namely, (1) analyzing the change using functions, (2)

identifying the change difficulty; and (3) identifying the dependencies using a matrix. We

illustrate the usefulness of our method by applying it to a course management system of a

university.

Keywords—Requirements change, dependency matrix, change interdependencies, change

prioritization, impact analysis

1. Introduction

Currently, software systems are becoming increasingly complex with system requirements

being inherently changeable during all stages of the development life cycle. According to

Bohem [217], “correcting requirements errors late can cost up to 200 times as much as

correcting the errors during the requirements phase”. The size and complexity of software

systems make change management costly and time consuming. The application of change

management at the earliest possible point in the software development cycle has the potential

to improve cost control. The complexity of the system further hinders the process of

identifying the impact of changes on the existing system [131].

94

When addressing a change, most requirements cannot be treated as independent as very

complex relationships can exist between them. As a result, an action performed on one

requirement may have unexpected impacts on another [24-28]. Therefore, there is a need to

identify requirement interdependencies. One of the most popular mechanisms for dealing with

this is requirements traceability. Traceability is the ability to describe and follow the life of

software artefacts [218] and is largely achieved by manually documenting different aspects of

transformations of software development artefacts. As in any manual process, it is difficult,

expensive and error prone. There are tools and approaches that automate change impact

analysis, such as IBM Rational RequisitePro and DOORS and change impact analysis is

implicit in model-driven development. In most of these, traces produced by these tools are

only simple relations and their semantics is not considered. As a result, all requirements and

architectural elements directly traced from the changed requirement are considered to be

impacted. The requirements engineer then has to inspect all these candidate impacted

requirements and architectural elements to identify changes, if there are any.

Although traceability is one of the best ways to identify the impact of change on the system,

the greatest challenge of maintaining traceability is that the artifacts under consideration

continue to change as the system evolves [35, 131, 219, 220]. A study conducted by Gotel and

Finkelstein [131, 221] further elaborates on the difficulties of maintaining a traceability

scheme. Among these difficulties (see[221]) are informal development methods, insufficient

resources, time and cost for traceability, lack of coordination between people responsible for

different traceable artifacts, lack of training in requirement traceability practices, imbalance

between benefits obtained and effort spent implementing traceability practices, and failure to

follow standards. Further, studies have also confirmed that the construction and maintenance

of a traceability scheme proves to be costly for various reasons and commonly considered non-

feasible from a financial point of view [124, 133, 222].

Based on above findings, we are motivated to propose a more efficient way to analyse the

impact of requirement changes at an initial phase of the development process. One aspect of

analysing changes would be to understand the dependencies between system activities and

changes. Given the drawbacks of using requirement traceability (mentioned above), we are of

the opinion that requirements changes themselves could be used to form part of the solution.

The requirements changes will be mapped to the multiple activities of a system and as a result,

95

dependencies and/or conflicts between these changes can be obtained. This analysis enables

system developers to better manage requirements changes.

In this paper, we present a method of requirements change analysis based on the changes

themselves which are initiated at higher levels, consisting of three steps: namely, (1) analyzing

the change using functions, (2) identifying the change difficulty; and (3) identifying the

dependencies using a matrix. These three steps give system analysts a better insight into which

part(s) of the existing design, that will be affected. In step 1, the change analysis functions will

expand the requested changes into more detailed steps enabling better insight to which part(s)

of the existing design will be affected. The result(s) of step 1 will be used to identify the

difficulty of implementation of the change(s), which is step 2. Finally, in step 3, the result(s)

from steps 1 and 2 will be mapped to a matrix, which enables practitioners to identify the

dependencies and/or the conflicts between the changes. When making a decision on the

changes in terms of approval, setting priorities and understanding the implications, the results

of all three steps will be taken into consideration. We demonstrate the usefulness of our method

by applying it to a course management system of a university.

2. Rationale of the research approach

In order to establish a baseline for the current work, it is important that this is effectively an

extension of the work done in [76]. It is important to correctly identify the required changes

before they can be analysed. This identification requires the change to be communicated

clearly and be identified with respect to what type it is. This is the reason why this piece of

work is based on [76], which describes a technique to specify and classify requirement

changes. The outcome of this specification and classification technique results in a clearer

communication of changes between business and IT professionals and their identification of

the changes. The specification and classification method [76] is only the initial phase of change

requirement analysis. The natural flow is to extend this method to analyze further the impact

of changes. Therefore, the identification of changes as proposed in [76] has been deemed

necessary as the preliminary step for the current method.

We designed our work based on previous work done in the same area [18, 76, 140, 144, 145,

223]. Our method takes a decision-maker point of view in analysing changes, and is based on

past research conducted using the same concept where the importance of this point of view

96

has been established [76, 140, 145]. Our method establishes both direct and indirect impact

analysis which is where the concept originated [18, 144]. As described in the following

section, the proposed method employs a number steps to analyse impact due to the ease of

both applying the method and understanding the outcome, which is a similar concept to that

used in [144]. The method itself takes into consideration several different techniques that stem

from other research. Work done in [140, 223-228] inspired us to use a matrix to represent the

change conflicts in a more visual capacity while further analysis was carried out using change

analysis functions, which is similar to parts of the work done in [144]. The initiation of further

analysis is based on identifying the changes correctly using a change taxonomy that is adopted

from [18, 76]. The method also attempts to prioritize changes based on a identification of the

impact caused by the change2. The basis for this identification and prioritization was formed

using [144] and [18].

Previous work Concepts extracted Application to the analysis method

Jayatilleke &

Lai [76]

Change specification and

classification method, decision

makers point of view

This is the initial phase of the analysis

method and is used as the baseline of the

current method.

Li et al. [140] Impact analysis algorithm,

Interdependency graph and

traceability matrix, decision

makers point of view

The algorithm provided the idea for the

implementation of functions in step 1 and

the graph and matrix influenced the matrix

in step 3.

Hassine et al.

[145]

Use case map (UCM) slicing

algorithm for dependency

analysis, UCM diagrams,

decision makers point of view

The slicing algorithm influenced the

functions in step 1 and the UCM diagrams

provided the idea of having change

diagrams for aiding description also in step

1.

Briand et al.

[18]

Use of change taxonomy, Change

impact analysis rule algorithm

Justification of using the specification and

classification method of [76] was based on

this change taxonomy concept and some

parts of the algorithm formed parts of the

functions in step 1.

Brynjolfsson et

al. [223]

Matrix of change The conceptualization of including a matrix

in step 3 was based on this work as well as

ways and means of identifying the

interactions between activities of the system

design diagram. The design of the matrix

was also influenced by this.

Ali & Lai [144] Use of several steps to identify

the impact, change analysis

algorithms

The use of several steps in the analysis

method was influenced by this research as

2 We point out that requirements changes may also be prioritised by client need, however, for

the purpose of this work, we assume we are dealing with changes of nominally equal to client

priority. In practice, the results of the analysis of the type described here may be used to

influence client priorities.

97

well as the functions in step 1 was largely

influenced by this algorithm.

Wang &

Capretz [224]

Service dependency matrix Used to establish and justify the concept of

the matrix in step 3.

Zhang et al.

[225]

Dependency matrix Used to establish and justify the concept of

the matrix in step 3.

Omer & Schill

[226]

Web services dependency matrix Used to establish and justify the concept of

the matrix in step 3.

van den Berg

[227]

Dependency matrix and

crosscutting matrix

Provided the main design concept for the

matrix in step 3.

Li [228] Component dependency matrix Used to establish and justify the concept of

the matrix in step 3.
Table 1: Use of literature in creating analysis method

In conclusion, the preliminary concepts for the requirements analysis method are based on our

previous work [76], traceability techniques, dependency / change functions and the

dependency matrix. How these elements correspond with each other and provide an analysis

of the changes is discussed in the following sections.

3. The method

3.1 An overview

Change impact analysis techniques can be divided into two categories: those based on

traceability analysis and those based on dependency analysis [144]. In most of these methods,

we observe that conflicts and dependencies between the changes themselves have not been

identified. Furthermore, the prioritization of these changes is either not undertaken or occurs

at a separate level. To overcome these limitations, we propose the following:

1) A way of identifying dependencies between changes

2) A way of assigning priority through difficulty identification

An overview of the method is given in Figure 1. Using this method, change practitioners will

be able to achieve the following:

1. Identify conflicts and/or dependencies between multiple changes.

2. Identify which system activities (herein after referred to as activities) are most affected

by the changes and thereby determine the suitability of the changes.

3. Calculate the difficulty level of each change.

4. Depending on the difficulty level, assign an implementation priority to each of the

changes.

98

Figure 1: Change analysis method

Once a change has been identified through the Change Event Manager (CEM), the method

follows three steps:

Figure 2: Three step analysis process

According to Figure 1, the CEM is the main system needed for the initiation of step 1 of the

change analysis process. The CEM is responsible for the identification of the nature of the

requested change which will be accomplished through the specification and classification

method [76]. As explained in section 2 (above), further analysis of the change is difficult

without this identification. The change analysis process is implemented using three steps for

better clarity and ease of use. For each change identified by the CEM;

• Step 1 (S1) is for expanding the identified changes and for discovering the more

detailed information for the implementation as a result of the changes. As shown in

Figure 2, the two categories of change analysis functions (herein after referred to as

functions) described in section 3.2 are employed for carrying out this step.

• Step 2 (S2) identifies the difficulty of implementing the change. The result of this will

be used later for assigning a priority to each of the requested changes.

Change Event
Manager

Change Type
Identification

Change Event Log

Store

Change Dependency
Manager (S3)

System Design
Diagram

Change Dependency
Matrix

Create

Change Analysis
Functions (S1)

Change Difficulty
(S2)

Unresolved change event

Requirement
Change

Unresolved
dependency

log

(S1) Step 1:
Analyse the changes
using functions

(S2) Step 2:
Identify the change
difficulty

(S3) Step 3:
Identify the dependencies
using a matrix and
System Design Diagram

Result

Result

Result

99

• Step 3 (S3) identifies the conflicts and/or dependencies between the required changes.

As shown in in Figure 2, the key elements involved are the Change Dependency

Matrix (CDM) and the System Design Diagram (SDD). The conflicts and/or

dependencies between the changes are identified once the changes have been mapped

to the matrix. The dependencies, which have been identified, can be between the

changes themselves and/or between the changes and the activities of the system. The

matrix will also be used for identifying the activities (of SDD) which have been most

affected by the changes.

Detailed explanation of the three steps are given in the following sections.

3.2 The steps

Step 1 (S1): Analysing the changes

As shown in Figure 3, change initiated through a change request form is subject to the change

specification and classification process [76], which completes the change type identification3.

All change events that are identified are stored in a change event log. The change event log

will have the dual role of being a repository for identified changes and a storage facility for

unresolved changes. In this step, the changes that are stored in the change event log will be

expanded using the functions. Once expanded, each change will have detailed information as

to how the change is to be implemented. This will provide an idea for change practitioners to

partially understand what activities of the existing system is going to be affected. Any change

that cannot be evaluated using the functions is stored in the change event log for later

resolution.

In [76], change focuses - add, delete, modify and relocation – are reported. Our functions are

based on these change focuses, due to the fact that, each change identified using the CEM will

be described using one of these change focuses. There are two categories of functions, namely

primary and secondary;

3 Please refer to [76] S. Jayatilleke and R. Lai, "A method of specifying and classifying

requirements change," in Software Engineering Conference (ASWEC), 2013 22nd

Australian, 2013, pp. 175-180: IEEE. for full details of the specification and classification

method.

100

• The category of primary functions can be used for building a block of more complex

functions. The need to do this is due to the facts that it is hard to project every possible

way of implementing the changes and that practitioners can use this type of block to

help them facilitate the changes.

• The category of secondary functions consists of more complex functions built by using

a block of primary functions. These functions represent the change focuses and types

described in [76].

Figure 3: Step 1

The following terminologies are used for the functions:

AN – New activity, AO – Old activity, V – Value, AT - Target activity, AS - Input Sender, L –

Link, Pt – Pointer, AR – Relocating activity, AC – Connected activity

The primary category consist of the following set of functions:

1. Function to create a new activity

CreateFunc(String, V) →AN

2. Function to link a new activity with existing activities

CreateLink(AN, AO, V)

3. Function to link existing activities

CreateLink(AX-O, AY-O, V)

4. Function to delete an activity

DeleteFunc(AO)

5. Function to delete links between activities

DeleteLink(AX-O, AY-O)

Change Event
Manager

Change Type
Identification

Change Event Log

Store

Change Analysis
Functions (S1)

Unresolved change event

Requirement
Change

101

6. Function to modify inner property of an activity

ModifyInner(AT,V)

7. Function to modify input data of an activity

ModifyIn(AS, AT, V)

8. Function to modify output data of an activity

ModifyOut(AS, AT, V)

9. Function to create a pointer to an existing activity

CreatePointer(Pt, AT)

10. Function to delete a pointer

DeletePointer(Pt)

The secondary category consist of the following set of functions:

The secondary functions are explained in Table 2. A function diagram is used for aiding the

explanation of a secondary function. In each diagram, the roman numbers refer to the step

numbers of the function. Each diagram is placed next to its corresponding function. In most

diagrams, the function before the implementation of the change (left of the equal sign) and the

function after the implementation of the change (right of the equal sign) are illustrated.

Table 2: Description of secondary functions

Note: Matched interfaced means that whatever the changes being made, the connected

function interfaces do not have to be modified. With mismatched interfaces, the connected

function interfaces need to be modified to implement the change. Explained in detail in [76].

Function Description

Add new

activity

This function will be used to add a new activity to the system. This can be

either with matched or mismatched interfaces.

Delete an

activity

This function will be used to delete an existing activity of the system.

Deleting an activity may have matched or mismatched interfaces.

Activity

relocation

This function will be used to relocate an existing activity of the system from

its current location to a new location. This may have matched or

mismatched interfaces.

Merge

activities

This function will be used to merge existing activities of the system. It could

be any number of functions of the system.

Replace

activities

This function will be used to replace an existing activity of the system. The

replacement can be done by adding a new activity as well as using an

existing activity of the system.

102

Figure 3.2: Add new activity (mismatched interfaces)

Figure 3.3: Delete activity (matched interfaces)

Figure 3.5: Activity relocation (matched interfaces)

1. Add new activity (AN) Function (with matched interfaces)
i.CreateFunc(String, V) →AN

ii.CreateLink(AN, AO, V)

2. Add new activity (AN) Function (with mismatched interfaces)

i.CreateFunc(String, V) →AN

ii.CreateLink(AN, AT, V)

{

i. ModifyInner(AT,V) *If inner property modification is needed in target activity*

ii. ModifyIn(AN, AT, V) *If input data modification is needed in target activity*

iii. ModifyOut(AN, AT, V) *If output data modification is needed in target activity*

}

3. Delete an activity (AO) Function (with matched interfaces)

i. CreatePointer(Pt, AO)
ii. DeleteLink(A2-O, AO-O)

iii. DeleteFunc(AO)

iv. DeletePointer(Pt)

4. Delete an activity (AO) Function (with mismatched interfaces)

i. CreatePointer(Pt, AO)

ii. ModifyInner(AC,V) *If inner property modification is needed in connected activity*

iii. ModifyIn(AO, AC, V) *If input data modification is needed in connected activity*

iv. ModifyOut(AO, AC, V)*If output data modification is needed in connected activity*

v. DeleteLink(AX-O, AY-O)
vi. DeleteFunc(AO)

vii. DeletePointer(Pt)

5. Activity relocation (AR) Function (with matched interfaces)
i. CreateLink(AR-O, AT-O, V)

ii. DeleteLink(AR-O, AC-O)

6. Activity relocation (AR) Function (with mismatched interfaces)

i. CreateLink(AR-O, AT-O, V)

{ *If modification is needed at target activity*

ii. ModifyInner(AT,V)

iii. ModifyIn(AS, AT, V)

iv. ModifyOut(AS,AT, V)

}

{ * If modification is needed at current connected activity*

A1 AC AO

A2 A3

(v) Pt(i)

(vi) (vii)

(ii, iii, iv)

A1 AC

A2 A3

A1 A2 AO

A3 A4

(ii) Pt(i)

(iii) (iv)

A1 A2

A3 A4

A1 A2 A3

A4 AT AN(ii)

(i)(iii, iv, v)

A1 A2 A3

A4 AO AN(ii)

(i)

A1 A2 AT

A3 AC AR(ii)

(i) A1 A2 AT

A3 AC

AR

Figure 3.1: Add new activity (matched interfaces)

Figure 3.4: Delete activity (mismatched interfaces)

103

Figure 3.6: Activity relocation (mismatched interfaces)

Figure 3.7: Merge activities

v. ModifyInner(AC,V)

vi. ModifyIn(AO, AC, V)

vii. ModifyOut(AO, AC, V)

}

viii. DeleteLink(AR-O, AC-O)

7. Merge activities Function (Merge A5 and A6)

i. CreateFunc(String, V) →AN

for X=1 to no. of functions to merge
ii. CreateLink(AN,AX-O ,V) v.

iii. CreateLink(AN, AC,V) vi.

iv. MergeFunc(AN, AX-O, L) vii.

viii. DeleteLink(AX-O, AC-O) x.

ix. DeleteFunc(AX-O) xi.

end for

*For merging two activities (A5 and A6) as shown in diagram, the loop will run twice

and will produce the resulting diagram*

8. Replace activities Function (Replace AO with New activity AN)

a) Replacing with new activity:

i. CreateFunc(String, V) →AN

ii. CreateLink(AN, AO, V)

iii. CreateLink(AN, AC, V)

iv. CreatePointer(Pt, AO)

v. DeleteLink(AO-O, AC-O)

vi. DeleteLink(AN-O, AO-O)

vii. DeleteFunc(AO)

viii. DeletePointer(Pt)

b) Replacing with existing activity

(Replace AR with existing activity AY)

c)

i.CreatePointer(Pt, AR)

For X = 1 to no. of links in the replaced activity

ii.CreateLink(AX-O, AY-O, V)

end for

For X = 1 to no. of links in the replaced activity

iii.DeleteLink(AR-O, AT-O)

end for

iv.DeleteFunc(AR)

v.DeletePointer(Pt)

A1 A2 AT

A3 AC AR(viii)

(i)

(v, vi, vii)

(ii, iii, iv)

A1 A2 AT

A3 AC

AR

A1 A2 A3

AR AY

(iii)

(iii)

A4

(iii)(I, v)

(ii)

(ii)

Pt

A1 A2 A3

AY

A4

(iv)

A1 A2 A3

A4 A6(Xi)

A5 AN

(Viii)

(i)
(ii)

(iv)

(v)

(vii)

(iii, vi)

(ix)

(xi)

A1 A2 A3

A4

AN

A1 A2 A3

AC AO(v)

A4
AN (i)

Pt

(ii, vi)
(iii)

A1 A2 A3

AC

A4

AN

(iv, viii)

(vii)

Figure 3.8: Replace activity with new activity

Figure 3.9: Replace activity with existing activity

104

Step 2: Identifying the change difficulty

The functions has a secondary purpose of assisting with the identification of the difficulty of

the change. The difficulty here refers to an identification of how complex the implementation

of the change will be. The expanded steps of each change are assigned a weight according to

the rules given below. The total of these weights together with the number of activities affected

by the change (also obtained from the functions) are used to determine the difficulty of the

change. The activities affected directly are identified by expanding the changes through the

functions. Indirectly affected activities are those connected to the directly affected activities.

This can be identified through the SDD. It is also important to consider other artifacts such as

databases which are affected by the administration of changes [229, 230]. The databases can

be identified in the SDD. The identification rule would be if an activity is identified to be

affected either directly or indirectly by a change, then check if the activity is associated with

a database in terms of populating, updating and/or receiving information. If this condition is

true, then the associated database is also deemed affected. The weights for the change

categories are assigned based on [140] and [231]. In both these academic works, assigning

change weight is based on their experience and in both studies the change weights are

incorporated into calculations that calculate change complexity.

The rules of allocating weights for the steps in the function are as follows:

• All create functions will have the Add weight of 3

• All delete functions will have the Delete weight of 2

• All modify functions will have the Modify weight of 1

• All other functions are the combination of the main three functions i.e. create, modify

and delete.

Table 3 will be populated with the above information in order to identify the change difficulty.

The population of Table 3 is carried out as follows:

1. Identify the change focus for each step of the function of the change action.

2. Assign weight according to above rule for each identified change focus. And total

these weights each change action.

3. Identify the activities affected (both directly and indirectly) by each change action

based on the function steps using the SDD.

105

4. Identify the connected databases for each activity identified in the above step using

the SDD.

Change

action &

Possibility

Function

steps

Change

focus

Change

weight

Total Activities

affected

(directly)

Activities

affected

(indirectly)

Affected

databases

Table 3: Change difficulty identification

When identifying the difficulty of the calculation the following needs to be considered;

1. For each change action and its possibility, the change weight total, number of

activities affected and the number of databases affected need to be considered.

2. When considering the activities, the number of directly affected activities take

precedence over the indirectly affected activities.

3. Considering the databases, from experience we know that there are two main

interactions between activities and databases; population of database and retrieval of

information from a database.

4. When an activity is connected to the database in terms of population, the

implications are higher as the activity can alter the data in the database. With

retrieval alone, the consequences on the database is not as high due to the fact that in

most cases the data manipulation occurs within the activity and does not update the

database.

5. The difficulty of implementation of the change is a combination of the above four

elements.

It is noteworthy that estimation of time to implement the change will also a play an

important role on the decision of identifying change implementation difficulty. However,

this estimation is outside the scope of this paper.

Step 3: Identifying the dependencies using a matrix

Dependency matrices have been used in several research work [224-228, 232] to identify

conflicts and overlaps between requirements [233]. According to [233], this dependency

identification technique is especially effective when there is a relatively small number of

requirements. When this is not the case, the technique can still be applied by grouping

requirements into smaller categories. Although this technique may be relatively simple, it is

106

still quite versatile. The versatility of this concept allows the matrix method to be applied to

many areas of analysis. In [224], the dependency matrix is applied to understand the evolution

of web services. In [225], it is used to detect quality of service violations and to identify the

cause of failures at the process level in service-oriented architecture. In [232], the technique is

used to identify the interdependencies between projects, so that an organization can select the

optimal projects to upgrade their technology. These various uses of dependency matrices prove

that they are not only able to be used in many different areas but also for varying purposes.

Dependency can be represented as a graph or matrix-based model [226]. In our approach, we

use the latter. The dependencies considered are between the changes and the activities. We

established above that dependency matrices can be utilized in many ways. Therefore, in our

method, the matrix is used to understand the dependencies and conflicts between changes. In

addition, the matrix is used to visualize the impact of changes on activities.

According to Figure 3, the main element used to create the CDM is the SDD. The requirements

for the SDD should be a design diagram, typically a UML [234] diagram which shows the

relationships between different objects and activities. These relationships will assist in

identifying the activities which are impacted by the requested changes. A dependency matrix

(source × target) represents the dependency relation between source elements and target

elements (inter-level relationship) [227]. Adopting the same concept, source elements (rows)

are made up of the change focus [76] and the target elements (columns) are made up of all the

activities affected directly and indirectly as identified in Table 2. In this matrix, a cell with a

value denotes that the source element is mapped to the target element. Reciprocally, this means

that the target element is impacted by the source element. Therefore as mentioned earlier, the

dependencies identified can be between the activities due to changes and/or between changes

themselves.

107

Figure 4: Step 3

The result of application of functions will be applied to the CDM. As shown in Figure 4, any

unresolved dependency events will be stored in a dependency log for later human-supported

resolution. A change step identified though the function will be displayed in the matrix using

the following rule:

• Change Focus Weight(Change No., Possibility No.)

o Change Focus Weight – numerical value assigned to each change focus as

described in step 2

o Change No. – A number given to each change that has been classified at the

very beginning of the process

o Possibility No. – If there is more than one possibility for the change to be

implemented

• e.g.: Assuming this is the first change identified by the CEM with only one possibility

and the change step considered is Add, then the change focus weight is 3. The change

step therefore is represented in the matrix as 3(1,1)

The representation of the dependency matrix used for this step is given in Figure 5. The

conventional appearance of the matrix has been slightly modified to suit the needs of our

method. The triangular section in Figure 5 is used to visualize the conflicts and/or

dependencies between changes. The dependencies are identified through observing activities

that are affected by multiple changes to the system. If an activity is affected by more than one

change, then the corresponding triangle is marked by a “+” symbol (see example in blue in

Figure 5). The process of identifying the dependency is further explained in an application of

the method to a case study. The total change weight produces a number that identifies

(numerically) how each activity is impacted by the changes (see example in blue in Figure 5).

Change Dependency
Manager (S3)

System Design
Diagram

Change Dependency
Matrix

Create

Change Analysis
Functions Unresolved

dependency
log

108

The purpose of calculating this value is to give change practitioners an idea of which activities

in the system are most impacted by the changes and as a result, the need to give prioritized

attention to such activities. The following rules are applied when calculating the total change

weight:

a) If there is only one possibility of change, add all.

b) If there are changes with multiple possibilities, add each change with the same

possibility number individually and then pick the possibility with the highest value.

c) If there are different changes, add all.

d) If there is a combination of the above two, first apply (a) followed by (b) and then (c).

Figure 5: Change dependency matrix

4. A case study

We demonstrate the usefulness of our method in the following case study. Figure 6 represents

a partial system design diagram of a course management system adopted from [142]. The

Change

focus

Change type

A
ct

iv
it

y
 1

A
ct

iv
it

y

2

A
ct

iv
it

y

3

A
ct

iv
it

y

n

Add

Matched

interfaces (MI)

Mismatched

interfaces

(MisMI)

Delete

Matched

interfaces

 2(1,1)

Mismatched

interfaces

2(2,1)

Modify

Inner property

modification

Input data

modification

Output data

modification

Function

Relocate

Relocation with

matched

interfaces

Relocation with

mismatched

interfaces

Total Change Weight 4

Change interdependencies /

Interactions

+

109

diagram illustrates the relationships and some dependencies the activities have with each other.

The relationships denoted in the diagram can be defined as follows:

• Requires (Req): An activity A1 requires an activity A 2 if A1 is fulfilled only when A2

is fulfilled. A2 can be treated as a pre-condition for A1 [142].

• Refines (Ref): An activity A 1 refines an activity A2 if A2 is derived from A1 by adding

more details to it [142].

• Contains (Con): An activity A 1 contains information from A2...An if A1 is the

conjunction of the contained information from A2...An [142].

One of the main reasons for using this case study is the identification of the relationships. This

identification is beneficial in determining the impact of change when applying our method to

the case study. We have also included a table (Table 4) to describe the association of databases

of this system to the activities given in the diagram.

Figure 6: Partial system design diagram of a course management system

The detailed purpose of each activity is described as follows:

1. The system allows end-users to provide profile and context information for

registration.

2. The system provides functionality to search for other people registered in the system.

3. The system provides functionality to allow end-users to log into the system with their

password.

Modify course

content 14

Create different

access rights 15

Lecturer 16-1 Student 16-2

Registration

Information 1

Search registered

users 2

Systems support

for end-user 4

Set alert on an

event 5

Login 3

Maintain list of

events 6

Systems notification

of event 7

Monitor all

events 8

Notify lecture

events 9

Enrol for

lectures 10

Assign students

into teams 12

Req

Send email to

student teams 13

Send email to all

students in class 11

Req

Con

Con Con

Req

Req

Req

Req

Req

Ref

Req

Req

Req

Req

Ref

Req

110

4. The system supports three types of end-users (administrator, lecturer and student).

5. The system allows lecturers to set an alert on an event.

6. The system maintains a list of events about which the students can be notified.

7. The system notifies the students about the occurrence of an event as soon as the event

occurs.

8. The system actively monitors all events.

9. The system notifies students about the events in the lectures in which they are enrolled.

10. The system allows students to enroll in lecturers.

11. The system allows lecturers to send e-mail to students enrolled in the lecture given by

that lecturer.

12. The system allows students to be assigned to teams for each lecture.

13. The system allows lecturers to send e-mail to students in the same group.

14. The system allows lecturers to modify the content of the lectures.

15. The system gives different access rights to different types of end-users.

16. The system supports two types of end-users (lecturer and student) and it will provide

functionality to allow end-users to log into the system with their password.

Database Associated

activities

Purpose of association

User Registration (staff

and student) (D1)

A1 Populate and update database files

A2 Retrieve information

A3 Retrieve information of login details

A7 Retrieve information of student contact details

A10 Retrieve information for authentication

A11 Retrieve information of student emails

A12 Retrieve information of student contact details

A15 Retrieve information of user details

A16 Retrieve information of user details

Events (D2) A5 Retrieve information

A6 Populate and update database files

A7 Retrieve information of event

A8 Retrieve and update of information

A9 Retrieve information of event

Student Enrolment (D3) A9 Retrieve information of enrolled students

A10 Populate and update database files

A11 Retrieve information of enrolled students

A12 Retrieve and update information of enrolled students

A13 Retrieve information of enrolled students

Student Allocation (D4) A12 Populate and update database files

A13 Retrieve information of allocated students

Course (D5) A14 Populate and update database files
Table 4: Databases associated with the activities

111

5. Application of the method to the case study

The example consists of two scenarios, where we use the result from the specification and

classification method [76] to obtain the output required for implementation of functions and

the change dependency matrix. These scenarios are based on our observations as university

academics who use similar course management systems. The following hypothetical new

requirements are identified:

1. In an emergency, it would be more effective to send an SMS notification to students

as well as an email.

2. Marking attendance manually tends to be rather ineffective, especially when a

census needs to be carried out. It would be better to mark attendance electronically.

The change identification of the change analysis method yields the following specification and

classification for the changes mentioned above.

Figure 7: Specification & classification of change 01

Figure 8: Specification & classification of change 02

Change 01 Possibility 01 Possibility 02

Object Enrol for lectures A10 Send email to all students A11

Purpose Functionality enhancement Functionality enhancement

Focus Add Modify

Additional

Question

Need additional Input / Output?

Y
Input/output modification? Y

Result

Change Type Add new function
Inner property + Output interface

modification

Action
Add new function by using

information from A10

Modify A11 internally and the output

interface

Change 02 Possibility 01

Object Enrol for lectures A10

Purpose Identification of new requirement

Focus Add

Additional Question Need additional Input / Output? Y

Result

Change Type Add new function

Action Add new function by using information from A10

112

The results given in Figures 7 and 8 are stored in the change event log and are then subjected

to the three steps of the change analysis method.

Step 1:

The specified changes are expanded using the functions as follows:

Change action 1 – Possibility 1:

Add new activity (SendSMS) Function (with mismatched interfaces)

1. CreateFunc(String, V) →SendSMS

2. CreateLink(SendSMS, A10, V)

{

3. ModifyInner(SendSMS,V)

4. ModifyIn(SendSMS, A10, V)

5. ModifyOut(A10,Null,V)

}

Change action 1 – Possibility 2

1. ModifyInner(A11,V)

2. ModifyOut(A11,Null,V)

Change action 2 – Possibility 1

Add new activity (eAttend) Function (with mismatched interfaces)

1. CreateFunc(String, V) → eAttend

2. CreateLink(eAttend, A10, V)

{

3. ModifyInner(eAttend,V)

4. ModifyIn(eAttend, A10, V)

5. ModifyOut(A10,Null,V)

}

Step 2:

The results of step 1 can now be used to identify the change difficulty using the rules

mentioned in the description of step 2. Table 5 shows the total change weight for each change

and the number of activities affected (directly and indirectly) by each change.

113

Table 5: Change difficulty identification-populated

It would also be beneficial to identify how each database is affected. We use Figure 9 illustrates

the connectivity and relationship between the identified activities and the databases in Table

4. Based on the rules introduced in step 2 on determining the difficulty, the connection between

A10 and D3 has a higher implication as oppose to all the other connections, because A10 is

connected to D3 in terms of both population and retrieval. These implications will be discussed

in section 6.

Figure 9: Activity-Database connectivity

Step 3:

The final step of the method is to apply the results of the functions for each change into the

CDM. In this step, the change focus mentioned in Table 5 for each change (and possibility)

can be mapped into the dependency matrix easily. The rules mentioned in the description of

step 3 in section 4 are incorporated in the change focus and the function steps when completing

the matrix. Only the activities identified in the functions are mapped to the matrix. Table 6

D1F9

D2

D3

D4

F10

F11

F13

Populate
Retrieve

Change

action &

Possibility

Function

steps

Change

focus

Change

weight

Total No of

activities

affected

(directly)

No of

activities

affected

(indirectly)

Affected

databases

Change

action 1 –

Pos 1

1 Add 3 9 1 (A10) 2 (A9 & A11) D1, D2, D3

2 Add 3

3 Modify 1

4 Modify 1

5 Modify 1

Change

action 1 –

Pos 2

1 Modify 1 2 1 (A11) 2 (A10 &

A13)

D1, D3, D4

1 Modify 1

Change

action 2

1 Add 3 9 1 (A10) 2 (A9 & A11) D1, D2, D3

2 Add 3

3 Modify 1

4 Modify 1

5 Modify 1

114

shows how the matrix representations are obtained. The steps marked N/A correspond to the

fact that it has no affiliation to the existing activities in the system and are therefore not

represented in the matrix.

Change Possibility Function steps Matrix representation

1

1

1. CreateFunc(String, V) →SendSMS N/A

2. CreateLink(SendSMS, A10, V) 3(1,1)

3. ModifyInner(SendSMS,V) N/A

4. ModifyIn(SendSMS, A10, V) N/A

5. ModifyOut(A10,Null,V) 1(1,1)

2
1. ModifyInner(A11,V) 1(1,2)

2. ModifyOut(A11,Null,V) 1(1,2)

2 1

1. CreateFunc(String, V) →eAttend N/A

2. CreateLink(eAttend, A10, V) 3(2,1)

3. ModifyInner(eAttend,V) N/A

4. ModifyIn(eAttend, A10, V) N/A

5. ModifyOut(A10,Null,V) 1(2,1)

Table 6: Matrix representation

The finalized matrix is given as follows:
Change focus Change type A9 A10 A11 A13

Add

Matched interfaces

Mismatched

interfaces

 3(1,1)

3(2,1)

Delete

Matched interfaces

Mismatched

interfaces

Modification

Inner property

modification

1(1,2)

Input data

modification

Output data

modification

 1(1,1)

1(2,1)

1(1,2)

Function

Relocation

Relocation with MI

Relocation MisMI

Change Weight 4 2

Figure 10: CDM

6. Discussion of the results

The following section provides an explanation of the use of the results of the CDM (Figure

10) and the change difficulty identification (Table 5 and Figure 9) obtained above to further

analyze the requirements change.

Change interdependencies /

Interactions

+

+

115

According to Figure 10;

1. For A10 change No. 2 has a possible conflict or dependency with the first possibility

of Change No. 1, therefore the + mark on the dependency section for both ‘Add’ and

‘Modification’ functions. The realization of this conflict is such that when applying

these two changes, the change implementers need to be mindful of the possible ripple

effect it might have on the activity and connecting activities.

2. A11 is not identified as impacted (with a + sign) as the steps are for the same change.

Therefore, there are no dependency conflicts in applying this change.

3. Change weights in the dependency matrix are calculated (using rules of step 3) as

follows :

• A10: Follows rule (b)

• A11: Follows rule (a)

• A10 has the highest change weight due to the changes and requires special

consideration at the implementation level. This further clarifies the impact identified

in the first finding.

According to Table 5 and Figure 9;

4. To identify the difficulty of change, the total change weight, the number of affected

activities and databases need to be considered in unison. Therefore:

a. Change 1 – Pos 1 and Change 2 have similar change weights and affect the

same number of activities and databases both directly and indirectly.

b. Referring to Figure 9, A10 is connected to D3 in terms of population. Therefore

the implication is higher. This condition is same in both Change 1 – Pos 1 and

Change 2 and therefore will have similar implementation difficulty levels.

c. A secondary observation is that out of the databases affected, D3 has the

highest connectivity level as well as the highest implication and therefore will

need prioritized attention.

d. Given that change 1 – Pos 1 and Change 2 have similar high difficulty levels,

the same priority can be assigned. In addition, it should be kept in mind that

these two changes have a conflict as demonstrated through the matrix. The

second priority can be assigned to change 1 – pos 2.

e. Change 1 has two possibilities of which possibility 1 has a higher difficulty

level than possibility 2 and also possibility 1 has a conflict with Change 2.

Based on these conditions, if possibility 2 of Change 1 is selected for

116

implementation along with Change 2, the conflict can be avoided and the

implementation becomes less difficult.

In the overview of the research (section 3), we introduced four benefits that can be achieved

by change practitioners using this method. As such, through our case study application

outcome, we can demonstrate that we have achieved these benefits as follows:

1. Visual representation of the conflict that can occur between changes through the

conflict inflicted on A10 activity by two different changes.

2. The most affected activity due to these changes (A10) is identified through the change

weight calculation in the matrix.

3. The difficulty level of each change is realized through the difficulty identification

table, which used the total change weights, number of activities and databases affected

by the change. We are able to determine the difficulty level of both changes, including

the different possibilities.

4. The difficulty level is then used to compare the changes to determine the priority level

of implementation as well as recommendations on choosing different possibilities of

changes.

7. Comparison with the related work

Most research in requirement change management focuses on full-scale solutions that

encompass requirements identification, impact analysis, change prioritisation and change

measurement. According to Kilpinen [235], there are three main groups of impact analysis

relative to the technique used i.e. traceability impact analysis, dependency impact analysis and

experimental impact analysis. Following is a brief overview of the related work and a

comparison to our work.

 Li [140] elaborates the importance of understanding the impact of change from a decision-

maker’s point of view. The traceability techniques used in [140] involve an interdependency

graph and traceability matrix. According to Goknil [142], the lack of semantics in trace links

causes imprecise results in change impact analysis and further derails the impact problem. As

a solution, the method proposed in [142] deals with a requirements metamodel with well-

defined types of requirements relations. These relations are formalized and are then used to

117

define change impact rules for requirements. In both of these studies, change prioritization and

an understanding of the difficulty of applying the change is missing.

Ali and Lai [144] propose a method for impact analysis for a global software development

(GSD) environment. The method consists of three stages, starting with understanding change,

analyzing these changes against different GSD sites and finally making decisions regarding

the change based on the analysis. Understanding the change is carried out with respect to the

requirements. The impact is calculated as an estimate of the extent of changes that either could

directly or indirectly affect development work at different GSD sites. The method however

lacks a mechanism to prioritize changes.

The method in [145] uses slicing and dependency analysis at the use case map specification

level to identify the potential impact of requirement changes on the overall system. The

approach establishes the importance of understanding the impact of change at a higher level

of abstraction given the disadvantages of code level analysis. Similar to [140] and [142], the

method lacks prioritization and has difficulty measuring the changes. Similar to [145], the

work done by Briand et al. [18] uses a UML model-based approach where the UML diagrams

are first checked for consistency. This check ensures further analysis based on the diagrams is

fault proof. The impact analysis is carried out using a change taxonomy and model elements

that are directly or indirectly impacted by the changes. Though this method provides a

prioritization technique, an understanding of the difficulty of applying the change is missing.

Analysing the above methods of analyzing requirements change, the following conclusions

can be made:

• Most, if not all, methods mentioned with the exception of [18] focus predominantly

on understanding which requirements are impacted by a change.

• Mechanisms for prioritizing the requested changes depending on their impact in order

to facilitate better decision making are not presented.

• The level of difficulty in applying the change has not been discussed in any of these

methods, which can be a major deciding factor in choosing to accept or reject the

change and also possibly leading to cost and effort calculation.

118

8. Conclusions and Future Work

In this paper, we have presented a method of requirements change analysis based on changes

initiated at higher levels. It consists of three steps: namely, (1) analyzing the change using

functions, (2) identifying the change difficulty; and (3) identifying the dependencies using a

matrix; and we illustrate the usefulness of our method by applying it to a university course

management system. In order to explore the requirement change in greater depth, the method

introduces two set of functions. These functions can be used to further expand changes

identified through the method developed in [76]. The expanded changes provide an initial

means of identifying which activities of the existing system may be affected by the change. In

terms of understanding the impact on the system due to these changes, the method introduces

two steps; namely, the identification of the difficulty level of the change and the CDM. The

difficulty level of the change corresponds to the complexities involved in applying the change

while the CDM provides a visual representation showing how each change affects the existing

activities.

Through the application of our method to a case study as well as comparing our work with

others, it can be concluded that the merits of our method include: (i) identification of conflicts

and dependencies between requirement changes; (ii) allocation of priority to changes so that

change practitioners are able to make informed decisions; (iii) understanding the difficulty of

change so that early decisions can be made on the suitability of carrying out the change.

Though our method has only been applied to a University system, we believe that it still can

be applied to a more complex system. Given that most real-world systems are complex, one

possible way of applying our method and still achieving satisfactory results would be to

categorize a complex system into smaller functional areas. Categorization of complex systems

into smaller functional areas when analysing dependencies is supported by [233].

In future work, we plan to extend this approach in order to identify the effort that is needed to

implement a requirement change, and to apply it to a more complex case study. The current

work can be extended to look in-depth at the databases to identify exactly which database

objects are impacted by the change. It would also be beneficial for the decision making process

to estimate the time required to implement the change.

119

Chapter 5

A Method of Assessing Rework for

Implementing Software Requirements

Changes

5.1 Preface

Literature suggest the volatile nature of requirements to be an important cost driver. Such

volatility can have a major impact on development efforts and project duration. In order to

implement a requirements change, the existing system needs to be reworked. Prior to

implementation of a change, change effort estimation should be carried out and in most

situations, there are usually more than one-way to implement a change. In such situation

estimations have to be carried out for all possible implementation options and this can be both

tedious and time consuming. Therefore, prior to estimation, it would be beneficial to understand

to which extent the system would be reworked for each implementation option so that the option

with lesser rework can be used for estimation. It became evident through a review of related

work that the term “Rework” has not been uniformly and clearly defined. The main purpose of

this chapter is to define rework in the context of requirements change management and present

a method of assessing rework for implementing software requirements changes. Based on the

assessment we are able to identify the change implementation option with lesser rework.

The chapter includes a paper that investigates the research space on rework and change

cost/effort estimation in order to produce the above method. The method is a continuation of the

methods introduced in chapter 3 and 4. This is the third and last phase of the RCMP introduced

in this thesis.

120

5.2 Publication

S. Jayatilleke and R. Lai (2018) “A method of assessing rework for implementing software

requirements changes”, Requirements Engineering.

Manuscript title Publication status Nature and extent

of candidate’s

contribution

Nature and extent

of co-author’s

contribution

S. Jayatilleke and R.

Lai, "A Method of

Assessing Rework

for Implementing

Software

Requirements

Changes".

Requirements

Engineering

Submitted

manuscript prepared

in accordance with

Requirements

Engineering author

guidelines.

Eighty percent

contribution by

candidate. This

included gathering

information, drafting

and revisions of the

manuscript.

Twenty percent

contribution by co-

author. This

included discussions

of ideas expressed in

the paper, critical

review and

submission to the

journal.

Signed : Date : 12/02/18

 (S. Jayatilleke)

Signed : Date : 12/02/18

 (R. Lai)

121

A Method of Assessing Rework for Implementing Software

Requirements Changes

Abstract

Software development is often affected by user/system requirements changes. To implement

requirements changes, a system which is being developed needs to be reworked. However the

term “Rework” has not been clearly defined in the literature. Depending on the complexity of

the changes, the amount of rework required varies from some software module modifications

to a non-trivial alteration to the software design of a system. The effort associated with such a

rework obviously will vary too. To date, there has been scant research on rework assessment,

and the relationship between it and change effort estimation is hardly understood. In this paper,

we present a definition for rework, and describe a method of assessing rework for

implementing software requirements changes. Our method consists of three steps: namely (i)

change identification; (ii) change analysis; and (iii) rework assessment. To demonstrate the

practicality that it enables developers to compare the rework between the different options

available for implementing a requirements change and to identify the one which is less

invasive and requires lesser amount of modifications to the software system design, we apply

it to a course management system, where multiple options of implementation exist for one

requirements change.

Keywords - Rework, Rework assessment, Requirements changes, Requirements change

management, Software System Design Document

1. Introduction

Software development is often affected by changes in user/system requirements. Rapid

changes in requirements are found to be one of the main cost drivers [5]; and they have a

significant impact on development efforts and project duration [29, 30]. To implement

requirements changes, a system in design phase or later (but not yet deployed) needs to be

reworked on. However in the literature, the term “Rework” has not been uniformly and clearly

defined as past practitioners and researchers considered terms like “reconsideration”, “re-

instantiation”, “redoing” and “revision” as synonymous with rework, while the Oxford

122

Dictionary defines “Rework” as “making changes to the original version of something”.

Depending on the complexity of the changes, the amount of rework required varies from some

software module modifications to a non-trivial alteration to software design of a system. The

cost associated with such a rework obviously will vary too.

According to our systematic review on Requirements Change Management (RCM) [236],

there are three main components in managing requirements changes: change identification,

change impact analysis and change cost/effort estimation. Effort estimation is about

calculating and predicting the effort of a set of activities before they are actually performed

[157, 237]; and effort is a value usually expressed in terms of time and/or dollars.

Subsequently, change effort estimations are to predict the cost and time required for

implementing a change. Such estimations are important as underestimation can result in

budget overrun, poor quality and delay in project completion; whereas overestimation may

result in the allocation of too many resources which will cause inefficiency [157]. Accurate

estimation can also help assess the feasibility of implementing a change, prioritize the

implementation of the requested changes and determine the cost of the implementation of a

change.

Prior to conducting a change effort estimation, we need to have a better understanding of the

extent to which and how a system would be reworked as it is possible to have more than one

option for implementing a change and different options require different amounts of rework

to be made to a system. In such a situation, estimation might need to be done for each option

in order to determine its suitability. It should be noted that with the complexity of the changes

requested and the number of implementation options available, change effort estimation can

be a tedious and time consuming task. It would therefore be beneficial to have a method which

can identify the implementation option which involves the lesser amount of rework, before

any estimation is carried out; and a lot of time will be saved by not having to conduct the

unnecessary estimations. Given the importance of rework for estimation, the relationship

between them is hardly understood.

In our systematic review [236], we explained how existing estimation methods and models

can be applied to effort estimation related to implementing requirements changes and pointed

out the fact that general effort estimation models may not be suitable for estimating the effort

of implementing a requirements change. There are a few models that deal specifically with

123

requirements change effort/cost estimation as discussed in the related work section of our

systematic review paper [236]. Most existing methods use expert judgment which is based on

the experience of the estimator which is not a consistent component and expert judgement also

relies on past project data which may not be applicable to a particular case where there is no

historical data. It is therefore important that the interrelations and dependencies between

systems functions are identified for estimating the effort/cost of changes as the dependencies

will have an impact on an implementation. An inherent drawback in most existing estimation

methods is that these dependencies are not well understood [157].

To date, there is limited research on the concept of rework for software development and

assessing rework for implementing requirements changes. In this paper, we first present our

definition of rework and then describe a method of assessing rework for implementing

software requirements changes in the context of its definition. Our method consists of three

steps: (i) identification of the change; (ii) identification of the activities within the software

system design which are affected by the change; and (iii) assessing the rework required. Steps

1 and 2 are based on the concepts and ideas described in our two previously published papers

and the results of applying Steps 1 and 2 enable Step 3 to be carried out. Step 3 involves the

computations of: (i) Interaction Comparison (IC); (ii) Interaction Weight (IW); and (iii)

Rework which is based on IC and IW. To demonstrate the practicality that it enables

developers to compare the rework between the different options available for implementing a

requirements change and to identify the one which is less invasive and requires lesser amount

of modifications to the software system design, we apply the method to a course management

system, where multiple options of implementation exist for one requirements change.

2. The concept of rework and our proposed definition

The concept of rework exists in fields outside software development. In the field of medicine,

doctors may need to rework treatment plans for patients who have developed unexpected

reactions; in the building industry, civil engineers may need to rework plans for the load

bearing of a bridge depending on future traffic conditions; academics will need to rework

course and/or subject material depending on assessment outcomes or feedback by students.

Several studies in civil engineering defined rework as “the unnecessary effort of redoing a

process or activity that was incorrectly implemented the first time” [238, 239].

124

Rework is common in software development due to changes emanating from clients,

development environment, and laws of the government and society. We discussed the causes

of these changes extensively in our systematic review [236]. A key activity in RCM is to

identify the amount of rework required for the proposed changes, as this will have a significant

impact on the time and cost of a project. Studies show that normally rework leads to additional

effort and cost [240-245] of a project. However, a clear relationship between rework and effort

estimation has not been understood/established. Some studies proposed methods for reducing

the amount of rework [241, 246], yet the fact remains that there will still be a considerable

amount of rework to deal with. In the agile software development environment, it encourages

rework instead of attempting to eliminate it [236, 247]. Rework is often unavoidable as the

understanding of a problem and its possible solutions evolve over time.

Rework is a central activity in the development of software. The cost of rework is said to reach

or even exceed 50% of the total project cost [240-242, 248]. These costs are one of the main

concerns in software development since it is an important parameter defining the success of

software projects [243, 244]. According to Charrette [245], software developers spend 40-50%

of their time on rework activities. Based on the above facts, rework is generally considered as

an important software development activity. In software development, Zhao and Osterweil

[246] define rework as “the re-instantiation of tasks previously carried out in earlier

development phases in a richer context that is provided by the activities and artifacts that had

been performed and created during subsequent phases”. In a simpler manner, Ghezzi et al.

[248] suggest that rework consists of “going back to a previous phase” of software

development to redo decisions made or work carried out in that previous phase”. It is clear that

the concept of rework has been subject to different interpretations. In short, rework has not

been uniformly and well defined [241, 246, 249].

Based on the discussion above and our systematic review findings, we are of the opinion that

the concept of rework needs to be more narrowly focussed on the following items:

• Requirements changes are the reasons for doing it;

• Instead of being broadly considered as a software development activity, it is one which

falls in the area of RCM; and

• It is closely related to change cost/effort estimation, which is also a RCM activity.

Our proposed definition of rework is therefore as follows:

125

“Rework in the field of software engineering is an activity within the area of Requirements

Change Management (RCM), which makes modifications/alternations to a system which has

a software design document and is being developed (pre-delivery) for implementing certain

requirements changes, with the alternations/modifications normally introducing extra work

and increasing the total amount of cost/effort for completing the software project; and

assessing rework, a preliminary step to change cost/effort estimation which is another RCM

activity, is about studying how a system needs to be modified/altered for implementing the

changes.”

According to this definition, we establish that rework is an activity conducted prior to the

delivery of a system. Given that a software design document is necessary, rework assessment

can be applied to any stage of software development as long as a software system design

document is available; and it is independent of the type of software development methodology

(be it waterfall or agile). With Agile Software Development, a design document becomes

available as the development progresses and therefore rework assessment becomes plausible.

Another noteworthy point is that there is a key difference between our definition of rework

and maintenance. According to IEEE standard 1219, software maintenance is defined as “the

process of modifying a software system or component after delivery to correct faults, improve

performances or other attributes, or adapt to a changed environment”[250, 251]. The post-

delivery nature of maintenance is also emphasised similarly in the ISO/IEC [ISO95] definition

[251, 252]. The modifications to a system during the maintenance phase will always preserve

the integrity of the software product [251, 253]. If the software design of a system needs to be

altered substantially, the alternation will not be done as a piece of maintenance work but

rework which will lead to new version of the software product. An example is that Microsoft

usually release a newer version of its Windows operating system every period of say 3-4 years,

or sometimes shorter.

3. Overview of the method of assessing rework

We anticipate that our method of assessing rework enable us to understand to what extent a

system needs to be altered for implementing the required changes. Based on our previously

developed methods of specification and classification [76, 254], we have identified that some

126

requirements changes can be implemented in more than one way, which we refer to as change

implementation possibilities/options. We aim to realize the following:

1. A numerical representation of the assessment of rework required to implement a

requirements change for all possible implementation options.

2. Selection of the option which requires a lesser invasive to the software design of the

system, ergo is of lesser rework.

3. Comparison of the assessment of rework between multiple requirements changes.

This method is a continuation of the findings of the specification and classifications methods

[76, 254] and change analysis methods [255] previously established by the authors. The use

of these methods in the rework method is detailed in Figure 1.

Figure 1: Overview of the method

According to Figure 1, the method will use as input the requirements changes and the system

design diagram (SDD). The output of the method is executed in three steps:

Step 1: Identification of the change

The change is identified and categorised using the methods which we have developed

and reported in [76, 254].

Step 2: Identification of the system activities affected due to the change

Once the change is identified, we apply the change analysis functions of the change

analysis method which we have developed and reported in [255]. As a result, the

change is further exposed, enabling us to identify the activities that are directly

affected by the change. Using the SDD, we then map the directly affected activities

(DAA) to identify the indirectly affected activities (IdAA). The IdAA are the activities

that are connected to DAA through input and/or output. IdAAs are considered in this

assessment as modifications to a DAA which may have a direct impact on the

Assessment of
Rework

System Design Diagram

Requirements Change

Change Analysis

Functions

Selection of

implementation option

Change Specification

& Classification

127

activities associated with the DAA via the input-output links. The SDD is a design

diagram. This can be any design diagram that shows the relationships between

different objects and activities. Typically various forms of UML [234] diagrams such

as activity diagrams, class diagrams, etc. can be used for this purpose.

Step 3: Assessing the rework required

Once all the activities related to the change are identified, we can assess the rework.

In order to do this, we adopt the methods that are introduced in [256-258]. From [256]

and [257], the concept we adopt is referred to as interaction frequency. This frequency

refers to the ratio of the number of interactions (input-output) performed by the

affected operations (of a change) and the number of interactions performed by all

operations of the interface. A similar concept is used in [258] where instead, the

number of interfaces are used. Given that the interactions between the activities are

identified and indicated in the system diagram, we can use this concept to assess the

rework and thereafter make a selection of the implementation option with a lesser

rework.

4. The details of the Method

In this section, we describe the details of the method which consists of three steps.

4.1 Identification of the changes – Step 1

To identify a requested requirements change, we use the change specification and

classification methods which we have developed and reported in [76, 254]; and a summary of

them can be found in Appendix 1. Change specification denotes a way of specifying a change

so that communication ambiguities between business and IT staff can be avoided. Once a

requirements change has been initiated from the client side, this method will use the system

design diagram as input to map the location of the change. In order to create the specification

template, we use two established methods, i.e. Goal Question Metrics (GQM) [197] and the

Resource Description Framework (RDF) [198]. We also use a set of additional questions to

enable better identification when using the specification template output.

The change classification method uses the outcome of the specification template to expand on

the type of change along with preliminary guidance on the action to be taken in managing the

change. The classification itself is based on the concepts of the change taxonomy found in the

128

existing change management literature [16, 32, 75, 214] and is refined using the unstructured

interviews of practitioners in the field of change management. The outcome of the change

classification will provide software developers with a better understanding of what the change

is and offers preliminary guidance on how the change implementation can be carried out. The

detailed change classification is shown in Table 1. The term link mentioned in Table 1 refers

to the input-output connection between the activities. The term activity refers to the process

activities in a design diagram.

Table 1: Detailed change description

At implementation time, the key elements of the two methods (specification and classification)

are incorporated into a single table (see Table 2). In the table, change number refers to the

number given to each change as they are requested. The object, purpose and focus in Table 2

correspond to the specification method i.e. activity name according to the system design

diagram (this is the activity affected by the change), the reason for the change and select from

the Add, Delete, Modify or Activity relocation, respectively. Change type and action can be

sourced from Table 1 based on the information provided for the object, focus and additional

question, respectively. The option columns represent how each change may be described using

Change

focus

Answer to

Additional

Question

Change type Action

Add No Matched links Add new activity without changing the

current activity or any connected links

Yes Mismatched links Add new activity by changing the

activity and/or connected links

Modification No Inner property

modification

Modify the implementation of an

activity without changing the

connected links

Yes Input data

modification

Modify the input link and internal

properties of an activity

Yes Output data

modification

Modify the output link and internal

properties of an activity

Delete No Matched links Delete activity without changing

connected activities

Yes Mismatched links Delete activity by changing connected

activities and links

Activity

Relocation

No Relocation with

matched links

Relocate existing activity without

changing the activity or connected

links

Yes Relocation with

mismatched links

Relocate new activity by changing the

activity and/or connected links

129

different foci. This may not apply to all changes. This feature was added to the implementation

template to provide more diversity and flexibility for communicating a change. Having

multiple options also provides flexibility as to how the change can be implemented.

Table 2: Template for implementation

4.2 Identification of the system activities affected by the change(s) – Step 2

We use a part of the change analysis method which we have developed and reported in [255]

for expanding further the change identified; and a summary of this analysis method can be

found in Appendix 2. Using this expansion, both DAAs and IdAAs are identified using the

system design diagram. The change analysis functions are based on the change foci identified

in [76, 254]: add, delete, modify and relocation. We use the category of primary change

analysis functions to expand the changes. The category of primary functions can be used for

building a block of more complex functions. The need to do this is due to the fact that it is

hard to project every possible way of implementing the changes so practitioners can use this

type of block to help them facilitate the changes.

The following terminologies are used for the functions:

The term activity in this method is used to represent process activities in the design diagram.

AN – New activity, AO – Old activity, AT - Target activity, Pt – Pointer, AR – Relocating

activity, AC – Connected activity

V – Value: the value passed onto the function for data manipulation

L – Link: the connection between two activities

The primary category consists of the following set of functions:

1) Function to create a new activity

Change No. Option 01 Option 02 Option n

OBJECT

PURPOSE

FOCUS

Additional

Question

RESULT

CHANGE

TYPE

ACTION

Specification Method

Classification Method

130

CreateFunc(String, V) →AN

2) Function to link a new activity with existing activities

CreateLink(AN, AO, V)

3) Function to link existing activities

CreateLink(AX-O, AY-O, V)

4) Function to delete an activity

DeleteFunc(AO)

5) Function to delete links between activities

DeleteLink(AX-O, AY-O)

6) Function to modify inner property of an activity

ModifyInner(AT,V)

7) Function to modify input data of an activity

ModifyIn(AS, AT, V)

8) Function to modify output data of an activity

ModifyOut(AS, AT, V)

9) Function to create a pointer to an existing activity

CreatePointer(Pt, AT)

10) Function to delete a pointer

DeletePointer(Pt)

Once the change has been expanded, the activities identified in the functions are mapped to

the SDD. These are the DAAs. In the SDD, any activity connected as the input and/or output

of a DAA is considered an IdAA.

In order to explain these steps, we consider the following running example.

Diskwiz is a company which sells CDs and DVDs by mail order. Customer orders are received

by the sales team, which checks that the customer details have been completed properly on the

order form (for example, delivery address and method of payment). If they are not, a member

of the sales team contacts the customer to obtain the correct details. Once the correct details

are confirmed, the sales team passes a copy of the order to the warehouse team to pick and

pack, and a copy to the Finance team to raise an invoice. Finance raises an invoice and sends

it to the customer within 48 hours of the order being received. When a member of the

warehouse team receives the order, they check the real-time inventory system to make sure

131

the discs ordered are in stock. If they are, they are collected from the shelves, packed and sent

to the customer within 48 hours of the order being received, so that the customer receives the

goods at the same time as the invoice. If the goods are not in stock, the order is held in a

pending file in the warehouse until the stock is replenished, whereupon the order is filled. This

process is illustrated in the following system design diagram.

Figure 2: Diskwiz customer order fulfilment process diagram

The example consists of a scenario where the specification method is applied to specify the

change and the change classification method is used to identify the change type and

corresponding action. The scenario is as follows:

The management is not satisfied with some parts of the process and points out that the

following issue should be rectified: “It is identified, due to a design error, there is no

communication between Finance and the Warehouse to confirm discs are in stock so that the

order can be shipped. Therefore Finance could be raising invoices when the order has not been

sent.”

One of the reasons for having no communication between Finance and Warehouse is because

there is no communication between A4 and A5, where A4 represent one activity of the

Warehouse and A5 represents Finance. Another way to view this would be that there is no

communication between A5 and A6, where A6 is another activity of the Warehouse. Based on

these and the template of the specification and classification methods [76, 254], we obtain the

following results for the identification of the change by applying step 1.

Table 3: Change classification outcome

Place

order A1

Receive
order A2

Review

order A3

Check
stock A4

Receive
goods

Receive
invoice Customer

Sales

Team

Ship

order A6 Warehouse

Order incomplete

Order

accepted Out of

stock

Send

invoice A5
Finance

In

stock

132

In accordance to this example and Table 3, the change can be implemented using one of the

three options. In step 2, we apply the preliminary functions from the change analysis method

for the 3 options and we generate the following expansions of the change:

Option 1 Option 2 Option 3

CreateFunc(String, V) →AN

CreateLink(AN, A4, V)

{

 ModifyInner(A4,V)

 ModifyIn(AN, A4, V)

 ModifyOut(AN, A4, V)

}

CreateLink(AN, A5, V)

{

 ModifyInner(A5,V)

 ModifyIn(AN, A5, V)

 ModifyOut(AN, A5, V)

}

ModifyInner(A4,V)

CreateLink(A4, A5, V)

ModifyOut(A4, A5, V)

ModifyIn(A4, A5, V)

ModifyInner(A6,V)

CreateLink(A5, A6, V)

ModifyOut(A6, A5, V)

ModifyIn(A6, A5, V)

Table 4: Expansion of change options

Based on Table 4, we are able to identify the DAAs for each option. Then by mapping the

DAAs to the SDD, we are able to identify the IdAAs for each DAA. In this paper when

selecting the IdAAs, we consider only the first impact level. Investigation of further levels can

be considered as a future enhancement, which is outside the scope of this paper.

Options DAAs IdAAs

1 A4 A3, A6

Change 01 Option 01 Option 02 Option 03

OBJECT A4 and A5 A4 and A5 A5 and A6

PURPOSE
Resolution of design

error
Resolution of design error Resolution of design error

FOCUS Add Modify Modify

Additional

Question

Need addition

input/output? Y

Input/output modification?

Y

Input/output

modification? Y

Result

Change

Type

Add new function

between A4 and A5

(Mismatched links)

Inner property modification

and output data

modification A4 and input

data modification of A5

Inner property

modification and output

data modification A6 and

input data modification of

A5

Action

Add new function by

changing the function

and/or connected links

of A4 & A5

Modify A4 to send message

to A5

Modify A6 to send

message to A5

133

 A5 A3

2 A4 A3, A6

 A5 A3

3 A5 A3

 A6 A4
Table 5: Identification of DAAs and IdAAs

4.3 Assessing the rework required – Step 3

Through the numerical values generated, we are able to assess the rework to be carried out as

a result of the change. In order to ensure the assessment of the rework is based on both the

total interactions of the activities to be reworked as well as the difficulty level of implementing

the change action, we use the number of affected interactions as well as the change weights

introduced in the change analysis method [255]. The values for the weights are adopted from

[140]. It has been established that in the change analysis method, each change action / type

has a different difficulty level. Therefore, this difficulty level needs to be represented in the

rework.

The assessment of the work required to implement a change involves the following

calculations:

1. The interaction comparison (IC) of the affected activities (direct and indirect)

2. The interaction weight (IW) using the change weights of the affected activities (direct)

3. The rework based on IC and IW

As a result of the values generated from IC and IW, developers will have a numerical view of

the assessment of the rework for implementing a change. If there are more than one option of

implementation, then based on the combination of IC and IW, the developer can choose the

lesser invasive option, which would result in the option with lesser rework.

When choosing the lesser invasive option, first preference is given to the lesser value of IC as

this denotes lesser number of connections in the software design of the system will need to be

altered. In the event that the IC value is the same for two or more options, IW will be

considered. Use of IW is explained in the following sections.

134

4.3.1 Interaction comparison (IC) Calculation

Interaction comparison is the identification of the percentage of interactions that need to be

altered in order to accomplish the required change. An interaction is a connection between two

or more process activities (input-output links) in a SDD. This is in comparison to the total

number of interactions identified in the SDD. Using the SDD, the following steps are used to

calculate IC:

• For each activity (DAAs and IDAAs) involved in the change, identify the number of

interactions. These interactions will be the number of connections each activity has with

the other activities of the system.

• Identify the total number of interactions in the entire system.

• Calculate IC.

Using the above example, we show how the value of IC is calculated for all the options.

IC calculation for option 1:

The number of interactions for each identified activity based on Table 5 is as follows:

A4 – has 2 interactions (Connected to A3 and A6)

A5 – has 1 interaction (Connected to A3)

A3 – has 4 interactions (Connected to A1, A2, A4 and A5)

A6 – has 1 interaction (Connected to A4)

Considering all the interactions, the system design contains six activities. The interaction

count for each activity is as follows:

A1 – has 2 interactions (Connected to A2 and A3)

A2 – has 2 interactions (Connected to A1 and A3)

A3 – has 4 interactions (Connected to A1, A2, A4 and A5)

A4 – has 2 interactions (Connected to A3 and A6)

A5 – has 1 interaction (Connected to A3)

A6 – has 1 interaction (Connected to A4)

The way of calculating the value of IC is adopted from [256].

𝐼𝐶𝐶𝑂 =
𝑁𝐼

𝑁𝑇𝐼

where CO is the Change Option number, NI is the

number of interactions per change action and NTI is the

total number of interactions for the system according to

the SDD.

135

𝑁𝐼 = ∑ 𝑁𝐼𝑥

𝑛

𝑥=1

𝑁𝑇𝐼 = ∑ 𝑁𝑇𝐼𝑥

𝑛

𝑥=1

Applying to the example option 1:

When calculating NI we consider the interaction of all the activities (DAAs and IdAAs) of

option 1 which include: A4, A5, A3 and A6 (extracted from Table5). Based on the interactions

identified for these activities, NI is;

NI = 2 + 1 + 4 + 1 = 8

When calculating NTI interactions of all the activities are considered. Based on the

interactions identified for all activities, NTI is;

NTI = 2+2+4+2+1+1 = 12

𝐼𝐶1 =
8

12
= 67%

According to this value, when considering option 1 for change implementation, 67% of all the

interactions have to be altered in order to implement the required change.

IC calculation for option 2:

The number of interactions for each identified activity based on Table 5 is as follows:

A4 – has 2 interactions (Connected to A3 and A6)

A5 – has 1 interaction (Connected to A3)

A3 – has 4 interactions (Connected to A1, A2, A4 and A5)

A6 – has 1 interaction (Connected to A4)

The total number of interactions is the same as that of option 1

Therefore;

𝐼𝐶2 =
𝑁𝐼

𝑁𝑇𝐼

Applying the same principles as option 1;

where x is the number of activities affected by the

change action and NIx is the interactions for each

affected activity.

where x is the total number of activities of the

system and NTIx is the interactions for each activity.

136

NI = 2 + 1 + 4 + 1 = 8

NTI = 2+2+4+2+1+1 = 12

𝐼𝐶2 =
8

12
= 67%

According to this value, when considering option 2 for change implementation, 67% of all

the interactions have to be altered for implementing the required change.

IC calculation for option 3:

The number of interactions for each identified activity based on Table 5 is as follows:

A5 – has 1 interaction (Connected to A3)

A6 – has 1 interaction (Connected to A4)

A4 – has 2 interactions (Connected to A3 and A6)

The total number of interactions is the same as that of option 1

Therefore;

𝐼𝐶3 =
𝑁𝐼

𝑁𝑇𝐼

Applying the same principles as option 1;

NI = 1 + 1 + 2 = 4

NTI = 2+2+4+2+1+1 = 12

𝐼𝐶3 =
4

12
= 33%

According to this value, when considering option 3 for change implementation, 33% of all the

interactions have to be altered for implementing the required change.

4.3.2 Interaction weight (IW) Calculation

The interaction weight is the change weight corresponding to the directly affected interactions

due to the requirements change. The change weight concept was established in the change

analysis method [255]. The weights for the change categories are assigned, using the principles

described in [140] and [231] and based on the knowledge they have gained in working in the

industry as well as extensive research on requirements change management. In both studies

the change weights are incorporated in mathematical formulas which compute a change

complexity. IW adds depth to the IC value by providing a numerical representation of the

137

difficulty level of implementing the change and how this relates to the interactions. The value

of IW becomes further important in assessment and selection, when the value for IC can be

the same for different options of a given change, as we demonstrated in the running example.

We establish that the lower the IW, the less difficult it would be to implement a change. In

order to calculate IW, the following steps are used:

• Identify the change types using the expanded change action steps (Step 2).

• Calculate the total change weight based on the change analysis method.

• Use the interactions and the total change weight to calculate IW.

In order to calculate IW, we consider only the activities directly affected by the change. This

is because the identification of change types are acquired from step 2 where it only contains

DAAs.

From the change expansion in step 2, we consider the change functions Create, Modify and

Delete when calculating IW.

Using the same running example, we use the outcome of Table 4 to identify the change types

as follows:

Option 1 Option 2 Option 3

CreateFunc(String, V) →AN

CreateLink(AN, A4, V)

{

 ModifyInner(A4,V)

 ModifyIn(AN, A4, V)

 ModifyOut(AN, A4, V)

}

CreateLink(AN, A5, V)

{

 ModifyInner(A5,V)

 ModifyIn(AN, A5, V)

 ModifyOut(AN, A5, V)

}

ModifyInner(A4,V)

CreateLink(A4, A5, V)

ModifyOut(A4, A5, V)

ModifyIn(A4, A5, V)

ModifyInner(A6,V)

CreateLink(A5, A6, V)

ModifyOut(A6, A5, V)

ModifyIn(A6, A5, V)

Create Functions – 3

Modify Functions – 6

Delete Functions – 0

Create Functions – 1

Modify Functions – 3

Delete Functions – 0

Create Functions – 1

Modify Functions – 3

Delete Functions – 0
Table 6: Change weight identification

Using the weighting system introduced in the change analysis method, we develop Table 5 to

calculate the change weight (CW):

138

• All create functions will have the Add weight of 3

• All modify functions will have the Modify weight of 2

• All delete functions will have the Delete weight of 1

• All other functions are a combination of the main three functions i.e. create, modify

and delete

Change

Type

Option 1 Option 2 Option n

Add No. of functions × CW

Add

No. of functions × CW

Add

…. × ….

Modify No. of functions × CW

Mod

No. of functions × CW

Mod

…. × ….

Delete No. of functions × CW

Del

No. of functions × CW

Del

…. × ….

Total CW
Table 7: Change weight calculation

Applying the findings of the running example of Table 6:

Change Type Option 1 Option 2 Option 3

Add 3 × 3 = 9 1 × 3 = 3 1 × 3 = 3

Modify 6 × 2 = 12 3 × 2 = 6 3 × 2 = 6

Delete N/A N/A N/A

Total CW 21 9 9
Table 8: Calculated change weights

𝐼𝑊𝐶𝑂 = (∑ 𝑁𝐶𝑂

𝑛

𝑋=1

) × ∑ 𝐶𝑊𝐶𝑂

where CO is the Change Option number and NCO is the number of interactions per change

action where only interactions of the DAAs are considered. We reiterate the reason for only

considering DAAs is they are directly attached to the change actions (as seen in Table 4) and

IdAAs are not. The number of interactions for the DAAs was identified when calculating the

IC value. CWCO is the total change weight for that option as shown in Table 8.

Applying the equation to the running example:

For option 1:

The directly affected activities are A4 and A5. Therefore,

N1 = 2+1

CW1 = 21

139

IW1 = (2 + 1) × 21 = 63

For option 2:

The directly affected activities are A4 and A5. Therefore,

N2 = 2+1

CW2 = 9

IW2 = (2 + 1) × 9 = 27

For option 3:

The directly affected activities are A5 and A6. Therefore,

N3 = 1+1

CW3 = 9

IW3 = (1 + 1) × 9 = 18

4.3.3 Rework calculation based on IC and IW

In section 4.3.1, IC was established to be the percentage of interactions that need to be altered

in order to facilitate the required change and in section 4.3.2, IW was established to be the

change weight corresponding to the directly affected interactions due to the requirements

change. Based on these two values, the assessment of rework is a combined look at both the

interactions that need to be altered in comparison to the full system depicted in the SDD and

the difficulty of implementing the change action on those interactions. In order to display the

comparison between the rework required for the changes requested and their multiple options,

we use Table 9 as a template.

 Change 1 Change 2 Change n

 Opt 1 Opt 2 Opt n

IC

IW
Table 9: Template of comparison between rework

To better understand this template, we populate it with the outcome of the running example:

 Change 1

 Opt 1 Opt 2 Opt 3

IC 67% 67% 33%

IW 63 27 18
Table 10: Outcome of comparison

140

According to this example, one change was requested with three possible actions that can be

taken to implement it. According to the above table, the value of IC is the same for options 1

and 2. Option 3 has a lower IC value than that of options 1 and 2. This is a good indication

that option 3 is the lesser invasive option for implementing the change as a lesser number of

interactions has to be altered. This fact is further validated by the IW value where option 3 has

the lowest IW value corresponding to a lower difficulty level of implementing the change.

Based on the above results, it can be said that:

• option 1 and 2 require 67% of the interactions to be altered while option 3 requires

only 33% alterations;

• based on IW, option 3 has a lesser difficulty level of implementation as compared to

the other options; and

• therefore, the lesser invasive change implementation is option 3, based on both the IC

and IW values.

5. A case study

The usefulness of our method can be illustrated by applying it to a software project case study.

Figure 3 represents a partial system design diagram of a course management system adopted

from [142]. The same case study has been used in the specification and classification methods

as well as the change analysis method [76, 254, 255]. The use of the same case study provides

a holistic view as to how all these methods can be used to manage requirements changes. This

is a typical real-life system which we work on as academics at a University. The diagram

illustrates the relationships and some dependencies the activities have with each other. The

relationships denoted in the diagram can be defined as follows:

• Requires (Req): An activity A1 requires an activity A 2 if A1 is fulfilled only when A2

is fulfilled. A2 can be treated as a pre-condition for A1 [142].

• Refines (Ref): An activity A 1 refines an activity A2 if A2 is derived from A1 by adding

more details to it [142].

• Contains (Con): An activity A 1 contains information from A2...An if A1 is the

conjunction of the contained information from A2...An [142].

141

The detailed purpose of each activity in the diagram is described as follows:

1) The system allows end-users to provide profile and context information for

registration.

2) The system provides functionality to search for other people registered in the

system.

3) The system provides functionality to allow end-users to log into the system with

their password.

4) The system supports three types of end-users (administrator, lecturer and student).

5) The system allows lecturers to set an alert on an event.

6) The system maintains a list of events about which the students can be notified.

7) The system notifies the students about the occurrence of an event as soon as the

event occurs.

8) The system actively monitors all events.

9) The system notifies students about the events in the lectures in which they are

enrolled.

10) The system allows students to enroll in lectures.

11) The system allows lecturers to send e-mail to students enrolled in the lecture given

by that lecturer.

12) The system allows students to be assigned to teams for each lecture.

13) The system allows lecturers to send e-mail to students in the same group.

14) The system allows lecturers to modify the content of the lectures.

15) The system gives different access rights to different types of end-users.

16) The system supports two types of end-users (lecturer and student) and it provides

functionality to allow end-users to log into the system with their password.

142

Figure 3: Partial system design diagram of a course management system

The example consists of two scenarios. These scenarios are based on our observations as

university academics who use similar course management systems. The following

hypothetical new requirements are identified:

1) In an emergency, it would be more effective to send an SMS notification to students as

well as an email.

2) An academic who is part of the project suggests that it would be beneficial to send an

alert of the event to the students in the class before the event occurs.

5.1 Identification of the changes – Step 1

Applying the change identification of the rework method yields the following specifications

and classification for the aforementioned changes.

Change 01 Option 01 Option 02

Object A10 A11

Purpose Functionality enhancement Functionality enhancement

Focus Add Modify

Additional

Question

Need additional Input /

Output? Y

Input/output modification?

Y

Result

Modify course

content 14

Create different

access rights 15

Lecturer 16-1 Student 16-2

Registration

Information 1

Search registered

users 2

Systems support

for end-user 4

Set alert on an

event 5

Login 3

Maintain list of

events 6

Systems notification

of event 7

Monitor all

events 8

Notify lecture

events 9

Enrol for

lectures 10

Assign students

into teams 12

Req

Send email to

student teams 13

Send email to all

students in class 11

Req

Con

Con Con

Req

Req

Req

Req

Req

Ref

Req

Req

Req

Req

Ref

Req

143

Table 11: Identification of Change 01

Table 12: Identification of Change 02

5.2 Identification of the system activities affected by the change – Step 2

The outcome of Tables 11 and 12 is then expanded using the change analysis functions (Step

2) as follows:

Change action 1 – Option 1:

Add new activity (SendSMS) Function (with mismatched interfaces)

1. CreateFunc(String, V) →SendSMS

2. CreateLink(SendSMS, A10, V)

{

3. ModifyInner(SendSMS,V)

4. ModifyIn(SendSMS, A10, V)

5. ModifyOut(A10,Null,V)

}

Change action 1 – Option 2:

1. ModifyInner(A11,V)

2. ModifyOut(A11,Null,V)

Change Type Add new function
Inner property + Output

interface modification

Action
Add new function by using

information from A10

Modify A11 internally and the

output interface

Change 02 Option 01 Option 02

Object A5 & A7 A7

Purpose New requirement New requirement

Focus Add & Modify Modify

Additional

Question

Need additional Input / Output? Y

Input/output modification? Y
Input/output modification? Y

Result

Change Type

Add new link

Inner property + Output interface

modification

Inner property + Output interface

modification

Action

Link A5 with A7 by modifying A5

internally and externally. Then

modify A7 internally and externally

to send alert

Modify A7 internally and externally

to send alert before event

144

Change action 2 – Option 1:

Modify A5 and link with A7

1. ModifyInner(A5, V)

2. CreateLink(A5, A7, V)

3. ModifyInner(A7, V)

4. ModifyOut(A7,Null,V)

Change action 2 – Option 2:

Modify A5 and link with A11

1. ModifyInner(A7, Null)

2. ModifyOut(A7, Null, V)

In order to assess the rework for the above changes, the activities affected by the change need

to be identified. Based on the above functions, the affected activities for each change and

option are as follows:

Change 1:

Option 1: A10 (direct); A9 and A11 (indirect)

Option 2: A11 (direct); A10 and A13 (indirect)

Change 2:

Option 1: A5 and A7 (direct); A4, A6, A8 and A9 (indirect)

Option 2: A7 (direct); A6 and A9 (indirect)

5.3 Assessing the rework required – Step 3

Based on the outcome of step 2, IC and IW needs to be calculated before the rework can be

assessed. In order to calculate IC, the number of interactions of both directly and indirectly

affected activities needs to be identified.

5.3.1 IC calculation

Using the outcome of step 2, the interactions and the calculation of IC for both changes are as

follows:

145

Change 1:

Following are the number of interactions for each activity based on the system diagram:

A9 – has 2 connections

A10 – has 2 connections

A11 – has 2 connections

A13 – has 2 connections

Considering all the interactions, the entire system design contains 16 activities. The interaction

count for each activity is as follows:

A1 – 4, A2 – 1, A3 – 1, A4 – 5, A5 – 2, A6 – 3, A7 – 3, A8 – 1, A9 – 2, A10 – 2, A11 – 2, A12 – 1, A13

– 2, A14 – 1, A15 – 1, and A16 – 2

Calculating IC for option 1 of change 1

𝐼𝐶1 𝑜𝑓 1 =
𝑁𝐼

𝑁𝑇𝐼

𝑁𝐼 = ∑ 𝑁𝐼𝑥 = 𝑛
𝑥=1 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (A10 + A9 + A11) = 2+2+2 = 6

𝑁𝑇𝐼 = ∑ 𝑁𝑇𝐼𝑥 = 𝐴𝑙𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑛

𝑥=1

= 4 + 1 + 1 + 5 + 2 + 3 + 3 + 1 + 2 + 2 + 2 + 1 + 2 + 1 + 1 + 2 = 33

𝑰𝑪𝟏 𝒐𝒇 𝟏 =
𝟔

𝟑𝟑
= 𝟏𝟖%

Calculating IC for option 2 of change 1

𝐼𝐶2 𝑜𝑓 1 =
𝑁𝐼

𝑁𝑇𝐼

𝑁𝐼 = ∑ 𝑁𝐼𝑥 = 𝑛
𝑥=1 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (A11 + A10 + A13) = 2+2+2 = 6

𝑰𝑪𝟐 𝒐𝒇 𝟏 =
𝟔

𝟑𝟑
= 𝟏𝟖%

Change 2:

Following are the number of interactions for each of the above activities based on the system

diagram:

A4 – has 5 connections

A5 – has 2 connections

146

A6 – has 3 connections

A7 – has 3 connections

A8 – has 1 connection

A9 – has 2 connections

Calculating IC for option 1 of change 2

𝐼𝐶1 𝑜𝑓 2 =
𝑁𝐼

𝑁𝑇𝐼

𝑁𝐼 = ∑ 𝑁𝐼𝑥 = 𝑛
𝑥=1 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (A5 + A7 + A4 + A6 + A8 + A9) = 2+3+5+3+1+2 = 16

𝑰𝑪𝑰 𝒐𝒇 𝟐 =
𝟏𝟔

𝟑𝟑
= 𝟒𝟖. 𝟓%

Calculating IC for option 2 of change 1

𝐼𝐶2 𝑜𝑓 1 =
𝑁𝐼

𝑁𝑇𝐼

𝑁𝐼 = ∑ 𝑁𝐼𝑥 = 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (A7 + A6 + A9) = 𝑛

𝑥=1 3+3+2 = 8

𝑰𝑪𝟐 𝒐𝒇 𝟐 =
𝟖

𝟑𝟑
= 𝟐𝟒. 𝟐%

5.3.2 IW calculation

Using the outcome of step 2, we first identify the change types for each change. The results

are as follows:

Change 1 Change 2

Opt 1 Opt 2 Opt 1 Opt 2

Create functions –

2

Modify functions –

3 Delete functions

– 0

Create functions –

0

Modify functions

– 2 Delete

functions – 0

Create functions – 1

Modify functions – 3

Delete functions – 0

Create functions – 0

Modify functions – 2

Delete functions – 0

Using the weight system of the change analysis method given in section 5.2, we obtain the

following table:

 Change 1 Change 2

Change type Opt 1 Opt 2 Opt 1 Opt 2

Add 2 × 3 = 6 N/A 1 × 3 = 3 N/A

147

Modify 3 × 2 = 6 2 × 2 = 4 3 × 2 = 6 2 × 2 = 4

Delete N/A N/A N/A N/A

Total CW 12 4 9 4
Table 13: Change Weight calculation for Change 1 and 2

Using the outcome of Table 13, we calculate the IW for Change 1 and 2 as follows:

Considering only the DAAs: A10 = 2 interactions

𝑰𝑾𝑰 𝒐𝒇 𝟏 = (𝟐) × 𝟏𝟐 = 𝟐𝟒

Option 2 of Change 1:

𝐼𝑊2 𝑜𝑓 1 = (∑ 𝑁2 𝑜𝑓 1

𝑛

𝑋=1

) × ∑ 𝐶𝑊2 𝑜𝑓 1

Considering only the DAAs: A11 = 2 interactions

𝑰𝑾𝟐 𝒐𝒇 𝟏 = (𝟐) × 𝟒 = 𝟖

Option 1 of Change 2:

𝐼𝑊1 𝑜𝑓 2 = (∑ 𝑁1 𝑜𝑓 2

𝑛

𝑋=1

) × ∑ 𝐶𝑊1 𝑜𝑓 2

Considering only the DAAs: A5 and A7 = 2 and 3 interactions respectively

𝑰𝑾𝟏 𝒐𝒇 𝟐 = (𝟐 + 𝟑) × 𝟗 = 𝟒𝟓

Option 2 of Change 2:

𝐼𝑊2 𝑜𝑓 2 = (∑ 𝑁2 𝑜𝑓 2

𝑛

𝑋=1

) × ∑ 𝐶𝑊2 𝑜𝑓 2

Considering only the DAAs: A7 = 3 interactions

𝑰𝑾𝟐 𝒐𝒇 𝟐 = (𝟑) × 𝟒 = 𝟏𝟐

148

5.4 Rework calculation

The rework calculation results for the changes are as follows:

 Change 1 Change 2

 Opt 1 Opt 2 Opt 1 Opt 2

IC 18% 18% 48.5% 24.2%

IW 24 8 45 12
Table 14: Rework assessment for changes 1 and 2

Based on the outcomes, the following section provides an explanation of the use of the results

of the method in assessing the rework and identifying the implementation option for rework

minimization. The above values provide a numeric view for developers for selecting the

implementation option which is lesser invasive to the software design of the system. These

values do not represent cost and effort estimates. A method for estimating them would be

another piece of research work within the area of RCM and is beyond the scope of this paper.

Interpretation of Table 14:

• Change 01 can be implemented using two options, where both options have the same

IC of 18%. This indicates that in order to implement change 01 using either one of the

options, 18% of the interactions of the software design of the system need to be altered.

• Given that both options of change 01 have the same IC percentage, the value of IW

needs to be considered in establishing which option requires a lesser amount of

rework.

• Based on the IW calculation for the two options, option 2 has a lower value, which

translates into lower difficulty of implementation and therefore, lesser rework in

comparison to option 1.

• Based on the IC, of the two options of Change 02, it is an indication that option 2 will

alter fewer interconnections compared to option 1.

• This is further clarified by the fact that IW is less for option 2, which denotes that it

has a lesser difficulty level of implementation and would require lesser rework.

Based on the above results, the following observations can be made:

149

• Between the two options for the implementation of change 01, option 2 should be

chosen as it is lesser invasive to the software design of the system and requiring lesser

rework, with 18% of the interactions to be altered.

• Between the two options for the implementation of change 02, option 2 should be

chosen as it is lesser invasive to the software design of the system and requiring lesser

rework, with 24% of the interactions to be altered.

• When comparing the two chosen change implementation options, change 02 will

require more rework as its IC shows a higher number of interactions to be altered than

change 01 as well as its higher IW denotes a higher difficulty level of implementation.

6. Related work

To the best of our knowledge, in the literature there has been no paper published on assessment

of rework in the area of RCM. However, we are able to find two papers in the literature which

focus on effort estimation related to implementation of requirements changes. Although these

methods do not assess rework, they use requirements changes and their impact in the

calculation process in a similar manner to our method. We shall discuss below a comparison

with these two pieces of work.

Requirements changes can occur at any phase of the development process and even after

deployment. There are few estimation methods dedicated to change effort/cost estimation and

the importance of such methods were established in the introduction. The following discussion

elaborates on two methods that deal specifically with change effort/cost estimation that use a

similar rationale to the method introduced in this paper.

The estimation method introduced by Jeziorek [258] attempts to estimate the cost of the impact

of a design change to development. The author emphasises the importance of identifying the

functional requirements and design parameters that are impacted by the change, before

attempting to estimate the cost of change. He uses this identification in the form of a matrix to

detect the physical interactions between components. These physical interactions are used to

determine how the change propagates through the system. The model developed in [258]

outputs the affected components, how they are affected and what the cost of impact will be. In

150

this particular method, the use of interactions between components and the mapping of the

propagation of the change through the system are similar activities as used in our method.

In the method established by Lavazza and Valetto [259], several different artifacts are used to

calculate the change costs. The key feature of this method is the use of requirements instead

of lines of code to calculate the cost. Therefore, the method utilizes the design document and

traceability techniques for estimation. The estimation is carried out in two steps: 1)

characteristics such as the size and the complexity of the code are estimated on the basis of the

size of the complexity of the requirements and the skill and experience of the implementation

team; 2) effort is estimated based on the knowledge of the relations that link the inputs, outputs

and the resources required. Most parts of the estimation are based on historic data. The use of

requirements to establish the complexity and the linking of inputs and outputs resonate with

the rework method introduced in this paper.

We use the aforementioned work to describe the limitations of the existing work and compare

our methods to define what has been achieved. The limitations focus only on the techniques

comparable with our method.

Technique Limitations What our method addresses

Jeziorek [258] Initially, a lot of time needs to be

spent in developing the matrices

needed to identify the impact.

These matrices are non-

transferable and therefore for

every project, new matrices need

to be established.

New diagrams are not needed. The

method uses the system diagram

which a software project would

usually have.

Lavazza and

Valetto [259]

The use of historical data which

may not be available for some

projects and is therefore limited

to systems development that has

such data. The use of traceability

methods that have inherent

limitations such as informal

development methods,

insufficient resources, time and

cost for traceability, lack of

coordination between people

responsible for different

traceable artifacts, imbalance

between benefits obtained and

effort spent implementing

The method uses data only from the

current project. The change

identification and analysis

techniques used in this method do not

use traceability techniques and

therefore do not have the drawbacks

associated with traceability

techniques.

151

traceability practices, and

construction and maintenance of

a traceability scheme proves to

be costly [35, 124, 131, 133, 219-

222]
Table 15: Comparison with related work

7. Conclusions and future work

In this paper, we have presented a definition of rework – “Rework in the field of software

engineering is an activity within the area of Requirements Change Management (RCM), which

makes modifications/alternations to a system which has a software design document and is

being developed (pre-delivery) for implementing certain requirements changes, with the

alternations/modifications normally introducing extra work and increasing the total amount

of cost/effort for completing the software project; and assessing rework, a preliminary step to

change cost/effort estimation which is another RCM activity, is about studying how a system

needs to be modified/altered for implementing the changes.” We have also described a method

of assessing rework for implementing software requirements changes. Once a change has been

proposed, our method identifies the paths of implementation, which lead to the identification

of the impacted activities of the system through the SDD. Using these activities, two values

(IC and IW) are computed to help assess the rework required for all the possible options. Based

on the IC and IW values, a developer can choose the lesser invasive option which requires

lesser rework.

To demonstrate the practicality of our method, we have applied it to a course management

system. For the two requested requirements changes, we generated multiple implementation

options and for each option, IC and IW were calculated. Based on the course management case

study and the running example, we demonstrated that when multiple options of

implementation exist for one change, IC alone is not sufficient to make an assessment and

selection. In both applications, a change resulted in IC to produce the same value for possible

implementation. In such instances, IW plays an important role in the assessment process.

Based on the values of IC and IW, rework was assessed and comparisons were then made

between the implementation options of a change and we were able to identify which

implementation option was the less invasive option which requires a lesser amount of rework.

152

The assessment of rework was also used for comparing the different changes in order to

determine which change would require more rework.

The results of applying our method to this case study show that it is useful in the area of RCM

as it enables developers to have a better understanding of the rework required and to be able

to compare the rework between the different options available for implementing a change and

to identify the one which is less invasive to the software system design. Given that the

implementation path is extracted from the SDD, our method can be applied during any phase

of the software development provided that its design document is available.

As our method is able to provide a better understanding of the additional work required and to

identify the implementation with a lesser amount of rework, we can thus conclude that it can

serve as a precursor to change effort estimation, whereby it is not necessary to carry out

estimation for all the possible implementation options but the one which has been assessed to

involve lesser rework. With the results derived from using our method, a directly related future

work would be to develop a change effort estimation method for estimating the time and cost

expected for implementing a change for the selected implementation option.

153

Appendix 1

The change specification method:

The specification method is made up of GQM and RDF. The GQM-RDF combination is a result of

amalgamating ontology and terminology which in this paper, we refer to as onto-terminology. The

method has both linguistic and logical principles. To ensure the correct combination of logic and

terminology, we have selected two well-known methods where GQM represents terminology and the

other RDF ontology. Three terms are extracted from GQM that can best describe a requirement change;

Object, Purpose and Focus (of change). The terms extracted from RDF are Object, Attribute and Value,

which is referred to as the RDF triplet. The logical relationship of the RDF triplet can be stated as Object

O has an Attribute A with a Value V (Professor; Reads; a Book). The rationale behind the

correspondence between RDF triplet and to the GQM terms is due to the similarity and the meanings of

the terms, which is described in table below.

RDF term GQM term Correspondence Rationale

Object Object One-to-one Same concept

Attribute Purpose One-to-one Both terms are activities. Purpose is an
activity that is generated due to various
business requirements.

Value Focus One-to-one Value of RDF creates the significance for
Attribute (of RDF). Focus of GQM creates the
significance for Object (of GQM) by
activating the term Purpose of GQM.

System
Activity

OBJECT PURPOSE

FOCUS

Business goals
Customer requirements

Change type

is an creates

denotes

by using

needs

Onto-terminology Framework

 Description

OBJECT The activity name according to the system design diagram

PURPOSE The reason for the change (can be descriptive)

FOCUS Select from Add, Delete, Modify or Activity Relocation

The template designed for the change

specification based on the framework above is

given in the table below. By selecting the object

of change using the system design diagram,

designers and decision makers can accurately

locate the main target of change, resulting in a

clarification of the location of change. Knowing

the reason for the change through the purpose

ensures that change implementers are able to

clarify the need for the change. The focus of

change acts as advice on the basic

implementation needed to execute the change,

resulting in the clarification of the action of

change. It indicates to the designers what to do

instead of how to do the change. We believe that

clearly describing the location, need and action

of a change request using this template will

resolve much of the existing miscommunication

issues.

154

The change classification method:

The main purpose of change classification method is to ensure that change implementers are able to

identify and understand unambiguously the requirement change. The classification is based on previous

literature on the same and unstructured interviews of 15 practitioners in the field of change management.

The result of this investigation is given in section 4.1 Table 1.

Appendix 2

The Method of Requirements Change Analysis

The method consists of three steps: namely, (1) analyzing the change using functions, (2) identifying

the change difficulty; and (3) identifying the dependencies using a matrix. We have used step 1 in the

rework method introduced in this paper.

Change Event
Manager

Change Type
Identification

Change Event Log

Store

Change Dependency
Manager (S3)

System Design
Diagram

Change Dependency
Matrix

Create

Change Analysis
Functions (S1)

Change Difficulty
(S2)

Unresolved change event

Requirement
Change

Unresolved
dependency

log

 Change analysis method

Once a change has been identified through the Change Event Manager (CEM), the method follows three

steps:

Three step analysis process

• Step 1 (S1) is for expanding the identified changes and for discovering the more detailed

information for the implementation as a result of the changes. As shown in Figure 2, the two

categories of change analysis functions (herein after referred to as functions) described in

section 3.2 are employed for carrying out this step.

• Step 2 (S2) identifies the difficulty of implementing the change. The result of this will be used

later for assigning a priority to each of the requested changes.

• Step 3 (S3) identifies the conflicts and/or dependencies between the required changes. As

shown in in Figure 2, the key elements involved are the Change Dependency Matrix (CDM)

and the System Design Diagram (SDD). The conflicts and/or dependencies between the

changes are identified once the changes have been mapped to the matrix.

(S1) Step 1:
Analyse the changes
using functions

(S2) Step 2:
Identify the change
difficulty

(S3) Step 3:
Identify the
dependencies using a
matrix and
System Design Diagram

Result

Result

Result

155

Chapter 6

Conclusions and Future work

This chapter concludes the work presented in this thesis. It discusses the research work

conducted to achieve the aims and objectives of the thesis and provides a critical appraisal of

the work done. In addition, this chapter also outlines the remaining challenges in the discipline

and the potential areas of our work which have opened for future research.

6.1 Research work conducted

This research has achieved its goals with respect to the aims and objectives set out in chapter

one. The following subsections summarise the work that was carried out to achieve these aims

and objectives.

6.1.1 A systematic review of requirements change management

An extensive survey of the literature was conducted in this research area, and the findings

created a clear path for the rest of the research work carried out in this thesis. The amount of

research carried out in the area was quite extensive and was in a variety of directions. These

directions were categorised using four research questions: RQ1: causes of requirements

change; RQ2: processes required to manage requirements changes; RQ3: techniques used in

RCM; and RQ4: decision making when dealing with RCs. All four research questions were

investigated from the perspective of both traditional and agile development.

Based on the findings of RQ1, it was clear that requirements changes originate from several

different sources, which include the customer organization, the development organization and

the external environment. These causes of change were categorised into five areas based on

their origin: external market, customer organization, project vision, requirements specification

and solution. Based on the findings of RQ2, there are two main categories suggested in the

literature for managing change: semi-formal processes and formal processes. There are three

key areas that are common to both types of processes: change identification, change analysis

156

and change cost/effort estimation. The identification of these three areas formed the basis of

RQ3.

In RQ3, the techniques of RCM were discussed in detail within the categories mentioned

above. According to the literature, change identification methods did not have much agreement

on how to identify requirements changes. In most of the above studies, two techniques were

prominent: taxonomies and classification. One of the main activities of change analysis is to

analyse the impact of change on the existing system or design. According to the literature,

traceability techniques are the most common way to identify the impact of change. There were

a limited number of methods dedicated for change cost/effort estimation. In the methods that

deal with RCM, change cost estimation was executed using existing costing techniques such

as COCOMO, expert judgement, etc.

The literature relevant to RQ4 makes it clear that an organization can be divided into two parts:

the business organization and the IT organization and that furthermore, there are differences

in the decisions made concerning RCM in the two different parts of an organisation and there

are also two differing viewpoints, these being of the developer and the manager.

6.1.2 Managing requirements changes through change specification

and classification

As a result of the inadequacy of current knowledge in relation to in change identification, as

revealed by our systematic review, we presented the methods of change specification and

classification in chapter 3. Using these methods, business and IT staff are able to communicate

and identify requirements changes using a set of common terminology.

The change specification method provides a way to state the change so that the business part

of the organisation and the IT part of the organisation can avoid communication ambiguities.

The specification method is able to identify the key activities of the system design where the

change needs to be implemented, the reason for the change request and the basic focus of the

change. The outcome of the classification method is to elaborate further on the change focus

and indicate in more detail what type of change is required as well as provide initial guidelines

157

on how to implement the change. To assist in this process, we were able to identify four main

types of changes; add, delete, modify and relocate.

6.1.3 A method of requirements change analysis

Within the area of change analysis, change impact analysis is a popular topic due to its level

of importance. In order to analyse this impact, it is essential that the propagation of a change

can be traced within the existing system. This allows the development team to understand how

the change “travels” within the system and to identify the activities are affected as a result.

Based on the available methods, the most common technique used to identify the change

propagation path is traceability methods. However, we have uncovered several drawbacks

with traceability based approaches.

Based on these findings, we introduced the method of requirements change analysis. This

method provides a way to identify the propagation of a requirements change through alternate

techniques that do not use traceability. Based on this analysis, we are able to identify the

system activities that are affected both directly and indirectly by the change. We use the change

analysis functions introduced in this method to further expand the changes, which provides the

development team with more detailed implementation directions. We are also able to comment

on how difficult the implementation of a change is, identify conflicts and/or dependencies

between changes and based on the difficulty and dependency level, assign a propriety to the

changes.

6.1.4 A method of assessing rework for implementing software

requirements changes

It is possible that changes can be implemented in more than one way. As a result the rework

required for each of these options will vary. In such scenarios, it would be beneficial to assess

the rework for each implementation option and identify which option requires lesser rework

prior to change effort estimation.

The research work presented in chapter 5 contains two key objectives: to define rework in the

context of RCM and to present a method of assessing rework for all possible implementation

options of a RC. The main outcome of the method is to compare the rework between the

158

multiple options of implementing one change and between different changes. As a result,

developers are able to choose the implementation option with lesser rework. Because one

option is selected, change effort estimation needs only to be calculated for this option and

therefore, the rework method acts as a precursor to change effort estimation.

6.2 Evaluation of the research work conducted

In this section, a critical appraisal of the research work conducted is presented based on the

experience gained and results obtained during the research.

6.2.1 A systematic review of requirements change management

Strengths

Research on RCM has a very rich history with a plethora of work carried out in various

directions. One of the key strengths of this review is that it is the first of its kind. We have not

been able to find any other systematic review that brings together the vast amount of

knowledge on RCM into one location. This is further enhanced by the fact that we identify

how RCM varies between traditional and agile development. Another benefit of the review is

that it forms a guide for all parties interested in dealing with RCM to be able to clearly

understand the research space of RCM and to choose the state-of-the-art techniques to manage

change based on their needs. This is further strengthened by the critical analysis carried out on

various techniques used in RCM, describing their strengths, limitations and their potential for

improvement. Another merit of this work is that it provides directions for future work in the

form of research gaps, which is very beneficial for those interested in improving the techniques

in RCM.

Limitations

The main limitation is due to the set of specific keywords used for data collection. As a result,

the findings of this review could not be generalized. The findings of this review are limited to

the key words and the six research repositories used. Although we took several precautions,

159

there could be minor variations to the findings if carried out by another researcher based on

their personal apptitude and thinking.

6.2.2 Managing requirements changes through change specification

and classification

Strengths

One of the key contributors to the difficulty of managing RCs is the ambiguity in the

communication between business and IT staff. To address this issue, this method provides a

semi-formal medium to promote the mutual understanding of RCs between stakeholders,

which is its main strength. The methods introduced promote the mutual understanding of RCs

between business and IT staff. Another merit is the initial identification of what activities

might be impacted by the change and through the multiple possibilities generated, developers

will have a general sense of which direction to proceed in, in terms of executing the change.

Limitations

The methods introduced require human intervention, hence they draw on the experience and

the expertise of the individuals involved in the process. Therefore, the possibility of

inconsistencies based on experience is to be expected. Because this method was evaluated

using a case study, the findings reflect a typical situation and cannot be generalised to every

possible scenario or type of development.

6.2.3 A method of requirements change analysis

Strengths

Analysing a change and understanding its impact on the existing system is an imperative

activity in RCM. One of the challenges presented by the existing work is the need to use

traceability techniques to map the impact of change on the system design and these techniques

came with a few inherent drawbacks. The core strength of this method is that traceability

160

techniques are replaced by the changes themselves. Instead of using requirements to trace the

impact of change, the RCs are used to work out the connections and conflicts that may arise

in the system if the changes are implemented. This means that by using the method, we were

able to address the key drawbacks of traceability techniques. The ability to allocate priority to

changes and to assess the difficulty of changes were secondary strengths that assist in making

decisions relating to the suitability of carrying out a change.

Limitations

We have postulated that the change analysis functions are based on the most commonly used

change types and we have anticipated, to the best of our knowledge, the possible variations

that may arise from these common types. However, the list is not exhaustive and therefore

there may be certain scenarios of changes that might be outside the range of the functions

described in this thesis. The application of the method is evaluated through a case study that

limits its applicability in all possible development techniques, in which case, we recognize the

importance of conducting experiments in an industrial environment.

6.2.4 A method of assessing rework for implementing software

requirements changes

Strengths

One of the main strengths of the work presented in chapter 5 is to create clarity regarding the

term rework by defining it in the context of RCM. Based on this definition, the method allows

for the assessment of the rework required to implement a change without complex calculations

and consequently, it is able to address the limitations of the existing methods. The versatility

of this method enables the assessment of the rework to be carried out at any stage of the

development process, not just at the beginning. One of the key benefits is that the method is

able to compare rework between multiple possibilities of a single change and between multiple

changes. It is also a precursor to change cost estimation as the identification of the

implementation option with minimal rework reduces the number of times the estimation has

to be carried out. The method is not dependent on the development technique and therefore

can be applied to both traditional and agile development techniques.

161

Limitations

The rework assessed is an initial look at how much the system needs to be changed to

accommodate the change. It does not calculate the cost or time required to implement the

change. The method is ideally suited to collocated development and would need some

adjustments to be considered for global software development projects.

6.3 Future work

In this section, the remaining challenges in the discipline and the possible dimensions of work

that have opened up for future investigation are discussed.

6.3.1 Change cost/effort estimation

The systematic review revealed a lack of methods dedicated to change estimation. The

literature also bears evidence that the cost and time related to implementing a change can be a

significant factor affecting the budget as well as the successful completion of a project. The

rework method introduced in chapter 5 is a precursor to change cost/effort estimation.

However, we have not established a direct conversion of the assessment rework to represent

change cost/effort estimation. It would therefore be beneficial to extend the rework method to

be able to estimate the cost and effort of implementing a change.

6.3.2 Requirements change validation

Requirements change validation was included in some of the RCM processes identified in the

literature review. The main intension of change validation is to ensure that the existing system

is stable and functions as required after the implementation of the change. However, we

believe that change validation should not be executed as testing after actual implementation

but through mock implementation to avoid additional defect fixing. It wasn’t evident from the

literature found that much work has been done in the area of change validation. It would be

ideal for change validation to occur after impact analysis and prior to change cost estimation,

the rationale being that any change that cannot be validated can be rejected before any

estimation is carried out.

162

6.3.3 Applying the methods in an industry case study

The findings presented in the thesis on all the methods are based on a case study related to

academia and have the limitation of not being applicable to all possible development scenarios.

We aim to apply the methods to a broader case study in industry that will test the merits of

each method in a broader spectrum.

163

References

[1] A. Kobayashi and M. Maekawa, "Need-based requirements change management," in

Engineering of Computer Based Systems, 2001. ECBS 2001. Proceedings. Eighth

Annual IEEE International Conference and Workshop on the, 2001, pp. 171-178:

IEEE.

[2] K. El Emam, D. Höltje, and N. H. Madhavji, "Causal analysis of the requirements

change process for a large system," in Software Maintenance, 1997. Proceedings,

International Conference, 1997, pp. 214-221: IEEE.

[3] I. Sommerville, "Software Engineering. International computer science series," ed:

Addison Wesley, 2004.

[4] H. M. Sneed, "A cost model for software maintenance & evolution," in Software

Maintenance, 2004. Proceedings, 20th IEEE International Conference on, 2004, pp.

264-273.

[5] B. W. Boehm, "Software engineering economics," in Pioneers and Their

Contributions to Software Engineering: Springer, 2001, pp. 99-150.

[6] F. Brooks Jr, "No Silver Bullet Essence and Accidents of Software Engineering,"

Computer, no. 4, pp. 10-19, 1987.

[7] J. D. Procaccino, J. M. Verner, S. P. Overmyer, and M. E. Darter, "Case study:

factors for early prediction of software development success," Information and

Software Technology, vol. 44, no. 1, pp. 53-62, 2002.

[8] J. Dominguez, "The curious case of the chaos report 2009," Project Smart, 2009.

[9] I. Sommerville and G. Kotonya, Requirements engineering: processes and

techniques. John Wiley & Sons, Inc., 1998.

[10] S. D. Harker, K. D. Eason, and J. E. Dobson, "The change and evolution of

requirements as a challenge to the practice of software engineering," in

Requirements Engineering, 1993., Proceedings of IEEE International Symposium,

1993, pp. 266-272: IEEE.

[11] S. Bohner, "Impact analysis in the software change process: A year 2000

perspective," in Software Maintenance 1996, Proceedings, International

Conference, 1996, pp. 42-51: IEEE.

164

[12] S. Nurcan, J. Barrios, G. Grosz, and C. Rolland, "Change process modelling using

the EKD-Change Management Method," in European Conference on Information

Systems, 1999, pp. 513-529.

[13] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters, "Semantics-based composition

for aspect-oriented requirements engineering," in Proceedings of the 6th

international conference on Aspect-oriented software development, 2007, pp. 36-48:

ACM.

[14] M. R. Basirati, H. Femmer, S. Eder, M. Fritzsche, and A. Widera, "Understanding

Changes in Use Cases: A Case Study," in Requirements Engineering, 2015.,

Proceedings of IEEE International Symposium on, 2015, pp. 352-361.

[15] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, "Towards a taxonomy

of software change," Journal of Software Maintenance and Evolution: Research and

Practice, vol. 17, no. 5, pp. 309-332, 2005.

[16] S. McGee and D. Greer, "A software requirements change source taxonomy," in

Software Engineering Advances, 2009. ICSEA'09. Fourth International Conference,

2009, pp. 51-58: IEEE.

[17] S. Ghosh, S. Ramaswamy, and R. P. Jetley, "Towards requirements change decision

support," in 2013 20th Asia-Pacific Software Engineering Conference (APSEC),

2013, vol. 1, pp. 148-155: IEEE.

[18] L. C. Briand, Y. Labiche, and L. Sullivan, "Impact analysis and change management

of UML models," in Software Maintenance, 2003. ICSM 2003. Proceedings.

International Conference, 2003, pp. 256-265: IEEE.

[19] N. Nurmuliani, D. Zowghi, and S. Fowell, "Analysis of Requirements Volatility

during Software Development Life Cycle," in Australian Software Engineering

Conference, 2004, p. 28.

[20] N. Nurmuliani, D. Zowghi, and S. P. Williams, "Using card sorting technique to

classify requirements change," in Requirements Engineering Conference, 2004, pp.

240-248.

[21] X. Hua, Q. Jin, and Z. Ying, "Supporting Change Impact Analysis for Service

Oriented Business Applications," in Systems Development in SOA Environments,

2007. SDSOA '07: ICSE Workshops 2007, 2007, pp. 6-6.

[22] G. E. Stark, P. Oman, A. Skillicorn, and A. Ameele, "An examination of the effects

of requirements changes on software maintenance releases," Journal of Software

Maintenance, vol. 11, no. 5, pp. 293-309, 1999.

165

[23] C. Gupta, Y. Singh, and D. S. Chauhan, "A Dynamic Approach to Estimate Change

Impact using Type of Change Propagation," Journal of Information Processing, vol.

6, no. 4, pp. 597-608, 2010.

[24] Å. Dahlstedt and A. Persson, "Requirements Interdependencies: State of the Art and

Future Challenges," in Engineering and Managing Software Requirements, A.

Aurum and C. Wohlin, Eds.: Springer Berlin Heidelberg, 2005, pp. 95-116.

[25] B. Regnell, B. Paech, A. Aurum, C. Wohlin, A. Dutoit, and Johan, "Requirements

Mean Decisions! - Research issues for understanding and supporting decision-

making in Requirements Engineering," Proceedings, First Swedish Conference on

Software Engineering Research and Practise, 2001, pp.49-59.

[26] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag, "An

industrial survey of requirements interdependencies in software product release

planning," in Requirements Engineering, 2001. Proceedings, Fifth IEEE

International Symposium, 2001, pp. 84-91.

[27] I. Sommerville and G. Kotonya, Requirements Engineering: Processes and

Techniques. John Wiley \& Sons, Inc., 1998, p. 282.

[28] K. Pohl, Process-Centered Requirements Engineering. John Wiley & Sons, Inc.,

1996, p. 342.

[29] S. Ferreira, J. Collofello, D. Shunk, G. Mackulak, and P. Wolfe, "Utilization of

process modeling and simulation in understanding the effects of requirements

volatility in software development," in International Workshop on Software Process

Simulation and Modeling, Portland, Oregon, 2003.

[30] D. Pfahl and K. Lebsanft, "Using simulation to analyse the impact of software

requirement volatility on project performance," Information and Software

Technology, vol. 42, no. 14, pp. 1001-1008, 2000.

[31] N. Nurmuliani, D. Zowghi, and S. Powell, "Analysis of requirements volatility

during software development life cycle," in Software Engineering Conference, 2004.

Proceedings, 2004 Australian, 2004, pp. 28-37: IEEE.

[32] N. Nurmuliani, D. Zowghi, and S. P. Williams, "Requirements volatility and its

impact on change effort: Evidence-based research in software development

projects," in Proceedings of the Eleventh Australian Workshop on Requirements

Engineering, 2006.

166

[33] S. Ramzan and N. Ikram, "Making decision in requirement change management," in

2005 International Conference on Information and Communication Technologies,

2005, pp. 309-312: IEEE.

[34] W. Lam and V. Shankararaman, "Requirements change: a dissection of management

issues," in 25th EUROMICRO Conference, 1999. Proceedings. 1999, vol. 2, pp. 244-

251: IEEE.

[35] M. Strens and R. Sugden, "Change analysis: a step towards meeting the challenge of

changing requirements," in Engineering of Computer-Based Systems, 1996.

Proceedings, IEEE Symposium and Workshopn, 1996, pp. 278-283: IEEE.

[36] J. Tomyim and A. Pohthong, "Requirements change management based on object-

oriented software engineering with unified modeling language," in Software

Engineering and Service Science (ICSESS), 2016 7th IEEE International

Conference, 2016, pp. 7-10: IEEE.

[37] L. Lavazza and G. Valetto, "Enhancing requirements and change management

through process modelling and measurement," in Requirements engineering, 2000.

Proceedings, 4th International Conference, 2000, pp. 106-115: IEEE.

[38] B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap," in

Proceedings of the Conference on the Future of Software Engineering, 2000, pp. 35-

46: ACM.

[39] N. Ikram, "The management of risk in information systems development," Diss.

2000.

[40] B. R. Butler, P. K. Blair, A. J. Fox, I. A. Hall, K. N. Henry, J. A. McDermid, J.

Parnaby, H. Sillem, and M. Rodd, "The challenges of complex IT projects,"

Relatório técnico, Royal Academy of Engineering. British Computer Society, 2004.

[41] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the software design process for

large systems," Communications of the ACM, vol. 31, no. 11, pp. 1268-1287, 1988.

[42] S. Ramzan and N. Ikram, "Requirement change management process models:

Activities, artifacts and roles," in 2006 IEEE International Multitopic Conference,

2006, pp. 219-223: IEEE.

[43] B. W. Boehm, "Understanding and controlling software costs," Journal of

Parametrics, vol. 8, no. 1, pp. 32-68, 1988.

[44] D. Firesmith, "Common Requirements Problems, Their Negative Consequences, and

the Industry Best Practices to Help Solve Them," Journal of Object Technology, vol.

6, no. 1, pp. 17-33, 2007.

167

[45] S. Lock and G. Kotonya, "An integrated framework for requirement change impact

analysis," Proceedings, Fourth Australian Conference on Requirements Engineering,

1999, pp. 29–42.

[46] I. Sommerville and P. Sawyer, Requirements engineering: a good practice guide.

John Wiley & Sons, Inc., 1997.

[47] A. Taylor, "IT projects: sink or swim," The Computer Bulletin, vol. 42, no. 1, pp. 24-

26, 2000.

[48] E. Oz, "When professional standards are lax: the CONFIRM failure and its lessons,"

Communications of the ACM, vol. 37, no. 10, pp. 29-43, 1994.

[49] S. Lock and G. Kotonya, "Requirement level change management and impact

analysis," Cooperative Systems Engineering Group, Technical Report

Ref:CSEG/21/1998.

[50] B. Kitchenham, "Procedures for performing systematic reviews," Keele, UK, Keele

University, vol. 33, no. 2004, pp. 1-26, 2004.

[51] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,

"Systematic literature reviews in software engineering–a systematic literature

review," Information and software technology, vol. 51, no. 1, pp. 7-15, 2009.

[52] A. Ullah and R. Lai, "A systematic review of business and information technology

alignment," ACM Transactions on Management Information Systems (TMIS), vol. 4,

no. 1, p. 4-30, 2013.

[53] D. Wickramaarachchi and R. Lai, "Effort Estimation in Global Software

Development - A systematic Review," Computer Science and Information Systems,

vol. 14, no. 2, pp. 393-421, 2017.

[54] M. B. Miles and A. M. Huberman, Qualitative data analysis: An expanded

sourcebook. sage, 1994.

[55] B. J. Williams, J. Carver, and R. B. Vaughn, "Change Risk Assessment:

Understanding Risks Involved in Changing Software Requirements," in Software

Engineering Research and Practice, 2006, pp. 966-971: Citeseer.

[56] S. McGee and D. Greer, "Software requirements change taxonomy: Evaluation by

case study," in Requirements Engineering Conference (RE), 2011 19th IEEE

International, 2011, pp. 25-34: IEEE.

[57] S. McGee and D. Greer, "Towards an understanding of the causes and effects of

software requirements change: two case studies," Requirements Engineering, vol.

17, no. 2, pp. 133-155, 2012.

168

[58] B. Boehm, "Industrial software metrics top 10 list," IEEE Software, vol. 4, no. 5,

1987, pp. 84-85.

[59] S. L. Pfleeger, "Software metrics: progress after 25 years?," IEEE Software, vol. 25,

no. 6, 2008, pp. 32-34.

[60] D. M. Weiss and V. R. Basili, "Evaluating software development by analysis of

changes: Some data from the software engineering laboratory," IEEE Transactions

on Software Engineering, no. 2, pp. 157-168, 1985.

[61] M. Bano, S. Imtiaz, N. Ikram, M. Niazi, and M. Usman, "Causes of requirement

change-a systematic literature review," in Evaluation & Assessment in Software

Engineering (EASE 2012), 16th International Conference, 2012, pp. 22-31: IET.

[62] A. Van Lamsweerde, Requirements engineering: from system goals to UML models

to software specifications. Wiley Publishing, 2009.

[63] K. Wiegers and J. Beatty, Software requirements. Pearson Education, 2013.

[64] R. S. Pressman, Software engineering: a practitioner's approach. Palgrave

Macmillan, 2005.

[65] C. Rolland, C. Salinesi, and A. Etien, "Eliciting gaps in requirements change,"

Requirements Engineering, vol. 9, no. 1, pp. 1-15, 2004.

[66] E. Fricke, B. Gebhard, H. Negele, and E. Igenbergs, "Coping with changes: causes,

findings, and strategies," Systems Engineering, vol. 3, no. 4, pp. 169-179, 2000.

[67] A. M. Davis and K. V. Nori, "Requirements, Plato's Cave, and Perceptions of

Reality," in Computer Software and Applications Conference, 2007. COMPSAC

2007. 31st Annual International, 2007, vol. 2, pp. 487-492: IEEE.

[68] B. Boehm, "Requirements that handle IKIWISI, COTS, and rapid change,"

Computer, vol. 33, no. 7, pp. 99-102, 2000.

[69] M. G. Christel and K. C. Kang, "Issues in requirements elicitation," Carnegie Mellon

University Technical report, CMU/SEI-92-TR-012, 1992.

[70] C. Ebert and J. De Man, "Requirements uncertainty: influencing factors and concrete

improvements," in Proceedings of the 27th international conference on Software

engineering, 2005, pp. 553-560: ACM.

[71] T. Moynihan, "How experienced project managers assess risk," IEEE software, vol.

14, no. 3, pp. 35-41, 1997.

[72] T. Moynihan, "Requirements-uncertainty': should it be a latent, aggregate or profile

construct?," in Software Engineering Conference, 2000. Proceedings, 2000

Australian, 2000, pp. 181-188: IEEE.

169

[73] L. Mathiassen, T. Saarinen, T. Tuunanen, and M. Rossi, "Managing requirements

engineering risks: an analysis and synthesis of the literature," Helsinki School of

Economics, p. 63, 2004.

[74] C. Jones, "Strategies for managing requirements creep," Computer, vol. 29, no. 6,

pp. 92-94, 1996.

[75] N. Nurmuliani, D. Zowghi, and S. P. Williams, "Using card sorting technique to

classify requirements change," in Requirements Engineering Conference, 2004.

Proceedings. 12th IEEE International, 2004, pp. 240-248: IEEE.

[76] S. Jayatilleke and R. Lai, "A Method of Specifying and Classifying Requirements

Change," in Software Engineering Conference (ASWEC), 2013 22nd Australian,

2013, pp. 175-180: IEEE.

[77] J. Kramer and J. Magee, "The evolving philosophers problem: Dynamic change

management," IEEE Transactions on software engineering, vol. 16, no. 11, pp.

1293-1306, 1990.

[78] J. S. O’Neal, "Analyzing the impact of changing software requirements: A

traceability-based methodology," Ph.D. dissertation of Louisiana State University,

2003.

[79] S. Lock and G. Kotonya, "Tool support for requirement level change management

and impact analysis," in Doctoral Symposium Proceedings, 1998: Citeseer.

[80] K. El Emam, D. Holtje, and N. H. Madhavji, "Causal analysis of the requirements

change process for a large system," in Software Maintenance, 1997. Proceedings,

International Conference, 1997, pp. 214-221: IEEE.

[81] D. Leffingwell and D. Widrig, Managing software requirements: a unified

approach. Addison-Wesley Professional, 2003.

[82] G. Kotonya and I. Sommerville, Requirements engineering: processes and

techniques. Wiley Publishing, 1998.

[83] D. Pandey, U. Suman, and A. K. Ramani, "An Effective Requirement Engineering

Process Model for Software Development and Requirements Management," in 2010

International Conference on Advances in Recent Technologies in Communication

and Computing, 2010, pp. 287-291.

[84] W. Hussain, D. Zowghi, T. Clear, S. MacDonell, and K. Blincoe, "Managing

Requirements Change the Informal Way: When Saying ‘No’is Not an Option," in

Requirements Engineering Conference (RE), 2016 IEEE 24th International, 2016,

pp. 126-135: IEEE.

170

[85] D. M. Berry, K. Czarnecki, M. Antkiewicz, and M. AbdElRazik, "Requirements

determination is unstoppable: an experience report," in Requirements Engineering

Conference (RE), 2010 18th IEEE International, 2010, pp. 311-316: IEEE.

[86] M. Bommer, R. DeLaPorte, and J. Higgins, "Skunkworks approach to project

management," Journal of Management in Engineering, vol. 18, no. 1, pp. 21-28,

2002.

[87] K. Skytte, "Engineering a small system," IEEE Spectrum, vol. 31, no. 3, pp. 63-65,

1994.

[88] B. Curtis, M. I. Kellner, and J. Over, "Process modeling," Communications of the

ACM, vol. 35, no. 9, pp. 75-90, 1992.

[89] S. T. Acuña and X. Ferré, "Software Process Modelling," in ISAS-SCI (1), 2001, pp.

237-242.

[90] J. Lonchamp, "A structured conceptual and terminological framework for software

process engineering," in Software Process, 1993. Continuous Software Process

Improvement, Second International Conference, 1993, pp. 41-53: IEEE.

[91] N. C. Olsen, "The software rush hour (software engineering)," IEEE Software, vol.

10, no. 5, pp. 29-37, 1993.

[92] M. Makarainen, "Software change management processes in the development of

embedded software," VTT PUBLICATIONS, vol. 4, no. 1, p. 6, 2000.

[93] W. Lam, V. Shankararaman, S. Jones, J. Hewitt, and C. Britton, "Change analysis

and management: a process model and its application within a commercial setting,"

in Application-Specific Software Engineering Technology, 1998. ASSET-98.

Proceedings, 1998 IEEE Workshop, 1998, pp. 34-39: IEEE.

[94] S. A. Ajila, "Change management: Modeling software product lines evolution," in

Proceedings of the 6th World Multiconference on Systemics, Cybernetics and

Informatics, Orlando, Florida, 2002, pp. 492-497.

[95] S. A. Bohner, "Impact analysis in the software change process: a year 2000

perspective," in International Conference on Software Maintenance, 1996, vol. 96,

pp. 42-51.

[96] A. Eberlein and J. Leite, "Agile requirements definition: A view from requirements

engineering," in Proceedings of the International Workshop on Time-Constrained

Requirements Engineering (TCRE’02), 2002, pp. 4-8.

[97] L. Cao and B. Ramesh, "Agile requirements engineering practices: An empirical

study," IEEE Software, vol. 25, no. 1, 2008, pp. 60-67.

171

[98] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, "A systematic

literature review on agile requirements engineering practices and challenges,"

Computers in Human Behavior, vol. 51, pp. 915-929, 2015.

[99] S. Bilgaiyan, S. Mishra, and M. Das, "A review of software cost estimation in agile

software development using soft computing techniques," in Computational

Intelligence and Networks (CINE), 2016 2nd International Conference on, 2016, pp.

112-117: IEEE.

[100] Y. Zhu, "Requirements engineering in an agile environment. Uppsala University J.

Inayat et al," Computers in Human Behavior, vol. 30, no. 2014, p. 15, 2009.

[101] B. Ramesh, L. Cao, and R. Baskerville, "Agile requirements engineering practices

and challenges: an empirical study," Information Systems Journal, vol. 20, no. 5, pp.

449-480, 2010.

[102] L. Jun, W. Qiuzhen, and G. Lin, "Application of agile requirement engineering in

modest-sized information systems development," in Software Engineering (WCSE),

2010 Second World Congress, 2010, vol. 2, pp. 207-210: IEEE.

[103] M. Daneva et al., "Agile requirements prioritization in large-scale outsourced system

projects: An empirical study," Journal of Systems and Software, vol. 86, no. 5, pp.

1333-1353, 2013.

[104] A. De Lucia and A. Qusef, "Requirements engineering in agile software

development," Journal of Emerging Technologies in Web Intelligence, vol. 2, no. 3,

pp. 212-220, 2010.

[105] N. A. Ernst, A. Borgida, I. J. Jureta, and J. Mylopoulos, "Agile requirements

engineering via paraconsistent reasoning," Information Systems, vol. 43, pp. 100-

116, 2014.

[106] K. Boness and R. Harrison, "Goal sketching: Towards agile requirements

engineering," in Software Engineering Advances, 2007. ICSEA 2007. International

Conference on, 2007, pp. 1-6: IEEE.

[107] D. Carlson and P. Matuzic, "Practical agile requirements engineering," in

Proceedings of the 13th Annual Systems Engineering Conference, 2010.

[108] D. M. Berry, "The inevitable pain of software development, including of extreme

programming, caused by requirements volatility," Eberlein and Leite, 2002, pp. 1-

11.

[109] M. Fowler, "Refactoring: Improving the Design of Existing Code. 2000," DOI=

http://www. martinfowler. com/books. html/refactoring, 2003.

http://www/

172

[110] R. Carlson, P. Matuzic, and R. Simons, "Applying scrum to stabilize systems

engineering execution," CrossTalk, pp. 1-6, 2012.

[111] S. D. P. Harker, K. D. Eason, and J. E. Dobson, "The change and evolution of

requirements as a challenge to the practice of software engineering," in IEEE

International Symposium on Requirements Engineering, 1993, pp. 266-272.

[112] B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap," presented

at the Proceedings of the Conference on The Future of Software Engineering,

Limerick, Ireland, 2000, pp. 35-46.

[113] W. Lam and M. Loomes, "Requirements evolution in the midst of environmental

change: a managed approach," in Proceedings of the Second Euromicro Conference

on Software Maintenance and Reengineering, 1998, pp. 121-127.

[114] E. F. Ecklund Jr, L. M. Delcambre, and M. J. Freiling, "Change cases: use cases that

identify future requirements," in ACM SIGPLAN Notices, 1996, vol. 31, no. 10, pp.

342-358: ACM.

[115] M. Pichler, H. Rumetshofer, and W. Wahler, "Agile requirements engineering for a

social insurance for occupational risks organization: A case study," in Requirements

Engineering, 14th IEEE International Conference, 2006, pp. 251-256: IEEE.

[116] Z. Racheva, M. Daneva, and A. Herrmann, "A conceptual model of client-driven

agile requirements prioritization: Results of a case study," in Proceedings of the

2010 acm-ieee international symposium on empirical software engineering and

measurement, 2010, p. 39: ACM.

[117] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, "A requirements traceability to

support change impact analysis," Asian Journal of Information Technology, vol. 4,

no. 4, pp. 345-355, 2005.

[118] S. A. Bohner and R. S. Arnold, "An introduction to software change impact

analysis," in Software Change Impact Analysis, 1996, pp. 1-26: IEEE Computer

Society Press.

[119] O. Gotel and A. Finkelstein, "Extended requirements traceability: results of an

industrial case study," in Requirements Engineering, 1997., Proceedings of the Third

IEEE International Symposium on, 1997, pp. 169-178: IEEE.

[120] M. F. Bashir and M. A. Qadir, "Traceability techniques: A critical study," in 2006

IEEE International Multitopic Conference, 2006, pp. 265-268: IEEE.

[121] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux, and M. Utting, "Requirements

traceability in automated test generation: application to smart card software

173

validation," in ACM SIGSOFT Software Engineering Notes, 2005, vol. 30, no. 4, pp.

1-7: ACM.

[122] J. Dick, "Design traceability," IEEE software, vol. 22, no. 6, pp. 14-16, 2005.

[123] A. Egyed and P. Grunbacher, "Automating requirements traceability: Beyond the

record & replay paradigm," in Automated Software Engineering, 2002. Proceedings,

ASE 2002. 17th IEEE International Conference, 2002, pp. 163-171: IEEE.

[124] M. Heindl and S. Biffl, "A case study on value-based requirements tracing," in

Proceedings of the 10th European software engineering conference held jointly with

13th ACM SIGSOFT international symposium on Foundations of software

engineering, 2005, pp. 60-69: ACM.

[125] M. Jarke, "Requirements tracing," Communications of the ACM, vol. 41, no. 12, pp.

32-36, 1998.

[126] B. Ramesh and M. Jarke, "Toward reference models for requirements traceability,"

IEEE Transactions on Software Engineering, vol. 27, no. 1, pp. 58-93, 2001.

[127] R. Ravichandar, J. D. Arthur, and M. Pérez-Quiñones, "Pre-requirement

specification traceability: bridging the complexity gap through capabilities," arXiv

preprint cs/0703012, 2007.

[128] S. Rochimah, W. M. Wan-Kadir, and A. H. Abdullah, "An Evaluation of

Traceability Approaches to Support Software Evolution," in Internationl conference

on Software Engineering Advances (ICSEA), 2007, p. 19.

[129] T. Verhanneman, F. Piessens, B. De Win, and W. Joosen, "Requirements traceability

to support evolution of access control," in ACM SIGSOFT Software Engineering

Notes, 2005, vol. 30, no. 4, pp. 1-7: ACM.

[130] P. Arkley and S. Riddle, "Overcoming the traceability benefit problem," in 13th

IEEE International Conference on Requirements Engineering (RE'05), 2005, pp.

385-389: IEEE.

[131] J. Cleland-Huang, C. K. Chang, and M. Christensen, "Event-based traceability for

managing evolutionary change," IEEE Transactions on Software Engineering, vol.

29, no. 9, pp. 796-810, 2003.

[132] J. Cleland-Huang, G. Zemont, and W. Lukasik, "A heterogeneous solution for

improving the return on investment of requirements traceability," in Requirements

Engineering Conference, 2004. Proceedings, 12th IEEE International, 2004, pp.

230-239: IEEE.

174

[133] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou, "Utilizing supporting evidence

to improve dynamic requirements traceability," in Requirements Engineering, 2005.

Proceedings, 13th IEEE International Conference, 2005, pp. 135-144: IEEE.

[134] O. Gotel and S. Morris, "Crafting the requirements record with the informed use of

media," in Proceedings of the First International Workshop on Multimedia

Requirements Engineering (MeRE'06), 2006, p. 5: Citeseer.

[135] F. Blaauboer, K. Sikkel, and M. N. Aydin, "Deciding to adopt requirements

traceability in practice," in International Conference on Advanced Information

Systems Engineering, 2007, pp. 294-308: Springer.

[136] J. Cleland-Huang, "Toward improved traceability of non-functional requirements,"

in Proceedings of the 3rd international workshop on Traceability in Emerging

Forms of Software Engineering, 2005, pp. 14-19: ACM.

[137] B. Ramesh, "Factors influencing requirements traceability practice,"

Communications of the ACM, vol. 41, no. 12, pp. 37-44, 1998.

[138] R. S. Arnold and S. A. Bohner, "Impact Analysis-Towards a Framework for

Comparison," in Conference on Software Maintenance, 1993, vol. 93, pp. 292-301.

[139] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia, "Identifying the starting

impact set of a maintenance request: A case study," in Software Maintenance and

Reengineering, 2000. Proceedings of the Fourth European, 2000, pp. 227-230:

IEEE.

[140] Y. Li, J. Li, Y. Yang, and M. Li, "Requirement-centric traceability for change

impact analysis: a case study," in Making Globally Distributed Software

Development a Success Story, 2008, pp. 100-111: Springer.

[141] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, "Integrating Software

Traceability for Change Impact Analysis," International Arab Journal of

Information Technology, vol. 2, no. 4, pp. 301-308, 2005.

[142] A. Göknil, I. Kurtev, and K. van den Berg, "Change impact analysis based on

formalization of trace relations for requirements," in ECMDA Traceability

Workshop (ECMDA-TW), SINTEF Report, 2008.

[143] A. Von Knethen, "Change-oriented requirements traceability. Support for evolution

of embedded systems," in Software Maintenance, 2002. Proceedings, International

Conference, 2002, pp. 482-485: IEEE.

175

[144] N. Ali and R. Lai, "A method of requirements change management for global

software development," Information and Software Technology, vol. 70, pp. 49-67,

2016.

[145] J. Hassine, J. Rilling, J. Hewitt, and R. Dssouli, "Change impact analysis for

requirement evolution using use case maps," in Principles of Software Evolution,

Eighth International Workshop, 2005, pp. 81-90: IEEE.

[146] J. Hewitt and J. Rilling, "A light-weight proactive software change impact analysis

using use case maps," in Software Evolvability, 2005. IEEE International Workshop,

2005, pp. 41-46: IEEE.

[147] L. Shi, Q. Wang, and M. Li, "Learning from evolution history to predict future

requirement changes," in Requirements Engineering Conference (RE), 2013 21st

IEEE International, 2013, pp. 135-144: IEEE.

[148] J. C. Maxwell, A. I. Antón, and P. Swire, "Managing changing compliance

requirements by predicting regulatory evolution," in Requirements Engineering

Conference (RE), 2012 20th IEEE International, 2012, pp. 101-110: IEEE.

[149] R. Malhotra and M. Khanna, "Mining the impact of object oriented metrics for

change prediction using Machine Learning and Search-based techniques," in

Advances in Computing, Communications and Informatics (ICACCI), 2015

International Conference, 2015, pp. 228-234: IEEE.

[150] C. Ingram and S. Riddle, "Using early stage project data to predict change-

proneness," in Proceedings of the 3rd International Workshop on Emerging Trends

in Software Metrics, 2012, pp. 42-48: IEEE Press.

[151] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, "Predicting the probability of

change in object-oriented systems," IEEE Transactions on Software Engineering,

vol. 31, no. 7, pp. 601-614, 2005.

[152] S. Mirarab, A. Hassouna, and L. Tahvildari, "Using bayesian belief networks to

predict change propagation in software systems," in Program Comprehension, 2007.

ICPC'07. 15th IEEE International Conference, 2007, pp. 177-188: IEEE.

[153] N. N. B. Abdullah, S. Honiden, H. Sharp, B. Nuseibeh, and D. Notkin,

"Communication patterns of agile requirements engineering," in Proceedings of the

1st workshop on agile requirements engineering, 2011, p. 1: ACM.

[154] B. Haugset and T. Stalhane, "Automated acceptance testing as an agile requirements

engineering practice," in System Science (HICSS), 2012 45th Hawaii International

Conference, 2012, pp. 5289-5298: IEEE.

176

[155] R. Popli, P. Malhotra, and N. Chauhan, "Estimating Regression Effort in Agile

Environment," International Journal of Computer Science and Communication, vol.

5, pp. 23-28, 2014.

[156] M. Cohn, User stories applied: For agile software development. Addison-Wesley

Professional, 2004.

[157] H. Leung and Z. Fan, "Software cost estimation," Handbook of Software

Engineering, Hong Kong Polytechnic University, pp. 1-14, 2002.

[158] S. Rajper and Z. A. Shaikh, "Software Development Cost Estimation: A Survey,"

Indian Journal of Science and Technology, vol. 9, no. 31, 2016, pp.1-5.

[159] N. Fenton and J. Bieman, Software metrics: a rigorous and practical approach.

CRC Press, 2014.

[160] M. H. Halstead, Elements of software science. Elsevier New York, 1977.

[161] P. G. Hamer and G. D. Frewin, "MH Halstead's Software Science-a critical

examination," in Proceedings of the 6th international conference on Software

engineering, 1982, pp. 197-206: IEEE Computer Society Press.

[162] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, "Software science revisited: A critical

analysis of the theory and its empirical support," IEEE Transactions on Software

Engineering, no. 2, pp. 155-165, 1983.

[163] A. J. Albrecht and J. E. Gaffney, "Software function, source lines of code, and

development effort prediction: a software science validation," IEEE Transactions on

Software Engineering, no. 6, pp. 639-648, 1983.

[164] C. Jones, Applied Software Measurement: Assuring Productivity and Quality, 2nd

edn McGraw-Hill, NewYork 1997.

[165] S. Kumari and S. Pushkar, "Performance analysis of the software cost estimation

methods: a review," International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 3, no. 7, pp. 229-238, 2013.

[166] P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko, and W. Pedrycz, "Predicting

development effort from user stories," in Empirical Software Engineering and

Measurement (ESEM), 2011 International Symposium, 2011, pp. 400-403: IEEE.

[167] M. Ceschi, A. Sillitti, G. Succi, and S. De Panfilis, "Project management in plan-

based and agile companies," IEEE software, vol. 22, no. 3, pp. 21-27, 2005.

[168] N. C. Haugen, "An empirical study of using planning poker for user story

estimation," in Agile Conference, 2006, 2006, pp. 9 pp.-34: IEEE.

177

[169] V. Mahnič and T. Hovelja, "On using planning poker for estimating user stories,"

Journal of Systems and Software, vol. 85, no. 9, pp. 2086-2095, 2012.

[170] S. K. Khatri, S. Malhotra, and P. Johri, "Use case point estimation technique in

software development," in Reliability, Infocom Technologies and Optimization

(Trends and Future Directions)(ICRITO), 2016 5th International Conference, 2016,

pp. 123-128: IEEE.

[171] N. Nunes, L. Constantine, and R. Kazman, "IUCP: Estimating interactive-software

project size with enhanced use-case points," IEEE software, vol. 28, no. 4, pp. 64-

73, 2011.

[172] E. Coelho and A. Basu, "Effort estimation in agile software development using story

points," International Journal of Applied Information Systems (IJAIS), vol. 3, no. 7,

pp. 7-10, 2012.

[173] P. R. Hill, Practical project estimation: a toolkit for estimating software

development effort and duration. International Software Benchmarking Standards

Group, 2010.

[174] A. Panda, S. M. Satapathy, and S. K. Rath, "Empirical validation of neural network

models for agile software effort estimation based on story points," Procedia

Computer Science, vol. 57, pp. 772-781, 2015.

[175] A. G. Silvius, "Business & IT Alignment in theory and practice," in System Sciences,

2007. HICSS 2007. 40th Annual Hawaii International Conference on, 2007, pp.

211b-211b: IEEE.

[176] B. Campbell, "Alignment: Resolving ambiguity within bounded choices," in

Proceedings of the Pacific Asia Conference on Information Systems (PACIS), p. 54,

2005.

[177] P. Tallon and K. L. Kraemer, "A process-oriented assessment of the alignment of

information systems and business strategy: implications for IT business value,"

Center for Research on Information Technology and Organizations, 1999.

[178] A. Fuggetta and A. L. Wolf, Software process. John Wiley & Sons, Inc., 1996.

[179] E. J. Barry, T. Mukhopadhyay, and S. A. Slaughter, "Software project duration and

effort: an empirical study," Information Technology and Management, vol. 3, no. 1-

2, pp. 113-136, 2002.

[180] V. Basili, J. Heidrich, M. Lindvall, J. Münch, M. Regardie, D. Rombach, C. Seaman,

and A Trendowicz, "Bridging the gap between business strategy and software

development," ICIS 2007 Proceedings, p. 25, 2007.

178

[181] T. Goradia, "Dynamic impact analysis: A cost-effective technique to enforce error-

propagation," in ACM SIGSOFT Software Engineering Notes, 1993, vol. 18, no. 3,

pp. 171-181: ACM.

[182] J. Law and G. Rothermel, "Whole program path-based dynamic impact analysis," in

Software Engineering, 2003. Proceedings. 25th International Conference, 2003, pp.

308-318: IEEE.

[183] P. Tonella, "Using a concept lattice of decomposition slices for program

understanding and impact analysis," IEEE Transactions on Software Engineering,

vol. 29, no. 6, pp. 495-509, 2003.

[184] M. Aoyama, "Agile software process and its experience," in Software Engineering,

1998. Proceedings of the 1998 International Conference, 1998, pp. 3-12: IEEE.

[185] S. Nerur, R. Mahapatra, and G. Mangalaraj, "Challenges of migrating to agile

methodologies," Communications of the ACM, vol. 48, no. 5, pp. 72-78, 2005.

[186] P. Karesma, "Scaling Agile Methods," Diss 2016.

[187] D. J. Reifer, F. Maurer, and H. Erdogmus, "Scaling agile methods," IEEE software,

vol. 20, no. 4, pp. 12-14, 2003.

[188] F. J. Pino, O. Pedreira, F. García, M. R. Luaces, and M. Piattini, "Using Scrum to

guide the execution of software process improvement in small organizations,"

Journal of Systems and Software, vol. 83, no. 10, pp. 1662-1677, 2010.

[189] D. E. Strode, S. L. Huff, and A. Tretiakov, "The impact of organizational culture on

agile method use," in System Sciences, 2009. HICSS'09. 42nd Hawaii International

Conference, 2009, pp. 1-9: IEEE.

[190] E. Bjarnason, K. Wnuk, and B. Regnell, "A case study on benefits and side-effects

of agile practices in large-scale requirements engineering," in Proceedings of the 1st

Workshop on Agile Requirements Engineering, 2011, p. 3: ACM.

[191] B. A. Rajabi and S. P. Lee, "Change management in business process modeling

survey," in Information Management and Engineering, 2009. ICIME'09.

International Conference, 2009, pp. 37-41: IEEE.

[192] C. André and F. Mallet, "Specification and verification of time requirements with

CCSL and esterel," in ACM Sigplan Notices, 2009, vol. 44, no. 7, pp. 167-176:

ACM.

[193] G. Dillingham, "Air traffic control: evolution and status of FAA’s Automation

Program," Technical Report GAO/T-RCED/AIMD-98-85, Washington, DC: United

States General Accounting Office, 1998.

179

[194] K. Pohl, Requirements engineering: fundamentals, principles, and techniques.

Springer Publishing Company, Incorporated, 2010.

[195] J. V. Guttag and J. J. Horning, Larch: languages and tools for formal specification.

Springer Science & Business Media, 2012.

[196] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, "Techne: Towards a new

generation of requirements modeling languages with goals, preferences, and

inconsistency handling," in 2010 18th IEEE International Requirements Engineering

Conference, 2010, pp. 115-124: IEEE.

[197] R. Van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, "Goal question metric

(gqm) approach," Encyclopedia of Software Engineering, pp. 578-583, 2002.

[198] M. Weiss, "Resource description framework," in Encyclopedia of Database Systems,

2009, pp. 2423-2425: Springer

[199] H. Koziolek, "Goal, question, metric," in Dependability metrics: Springer, 2008, pp.

39-42.

[200] P. Berander and P. Jönsson, "A goal question metric based approach for efficient

measurement framework definition," in Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software engineering, 2006, pp. 316-325:

ACM.

[201] D. V. Subramanian and A. Geetha, "Adaptation of goal question metric technique

for evaluation of knowledge management systems," Review of Knowledge

Management, vol. 1, no. 2, p. 4-11, 2011.

[202] V. Basili, J. Heidrich, M. Lindvall, J. Munch, M. Regardie, and A. Trendowicz,

"GQM+ Strategies - Aligning Business Strategies with Software Measurement," in

Empirical Software Engineering and Measurement, 2007. ESEM 2007. First

International Symposium on, 2007, pp. 488-490.

[203] H.-J. Happel and S. Seedorf, "Applications of ontologies in software engineering," in

Proc. of Workshop on Sematic Web Enabled Software Engineering"(SWESE) on the

ISWC, 2006, pp. 5-9: Citeseer.

[204] T. Tse and L. Pong, "An examination of requirements specification languages," The

Computer Journal, vol. 34, no. 2, pp. 143-152, 1991.

[205] P. B. Checkland, "Information systems and systems thinking: Time to unite?,"

International Journal of Information Management, vol. 8, no. 4, pp. 239-248, 1988.

[206] E. Mumford, Redesigning human systems. IGI Global, 2003.

180

[207] A. M. Davis, "The design of a family of application-oriented requirements

languages," Computer, vol. 5, no. 15, pp. 21-28, 1982.

[208] C. Roche, "Ontoterminology: How to unify terminology and ontology into a single

paradigm," in LREC 2012, Eighth International Conference on Language Resources

and Evaluation, 2012, pp. p. 2626-2630: European Language Resources

Association.

[209] L. Gillam, M. Tariq, and K. Ahmad, "Terminology and the construction of

ontology," Terminology, vol. 11, no. 1, pp. 55-81, 2005.

[210] V. Castañeda, L. Ballejos, M. L. Caliusco, and M. R. Galli, "The use of ontologies in

requirements engineering," Global Journal of Researches in Engineering, vol. 10,

no. 6, pp. 2-8, 2010.

[211] T. R. Gruber, "A translation approach to portable ontology specifications,"

Knowledge Acquisition, vol. 5, no. 2, pp. 199-220, 1993.

[212] W. Lam and M. Loomes, "Requirements evolution in the midst of environmental

change: a managed approach," in Software Maintenance and Reengineering, 1998.

Proceedings of the Second Euromicro Conference on, 1998, pp. 121-127: IEEE.

[213] W. Lam and V. Shankararaman, "Managing change in software development using a

process improvement approach," in 24th Euromicro Conference, 1998. Proceedings,

1998, vol. 2, pp. 779-786: IEEE.

[214] H. Xiao, J. Quo, and Y. Zou, "Supporting change impact analysis for service

oriented business applications," in Systems Development in SOA Environments,

2007. SDSOA'07: ICSE Workshops 2007. International Workshop on, 2007, pp. 6-

12: IEEE.

[215] R. K. Yin, "Discovering the future of the case study method in evaluation research,"

Evaluation practice, vol. 15, no. 3, pp. 283-290, 1994.

[216] R. K. Yin, "Case study methods," in J. L. Green, G. Camilli, & P. B. Elmore (Eds.),

Handbook of complementary methods in education research, 2006, pp. 111-122.

[217] B. W. Boehm, Software Engineering Economics. Prentice Hall PTR, 1981, p. 768.

[218] P. Lago, H. Muccini, and H. v. Vliet, "A scoped approach to traceability

management," J. Syst. Softw., vol. 82, no. 1, pp. 168-182, 2009.

[219] D. Zowghi and R. Offen, "A logical framework for modeling and reasoning about

the evolution of requirements," in Requirements Engineering, 1997., Proceedings of

the Third IEEE International Symposium on, 1997, pp. 247-257: IEEE.

181

[220] R. Sugden and M. Strens, "Strategies, tactics and methods for handling change," in

Engineering of Computer-Based Systems, 1996. Proceedings., IEEE Symposium and

Workshop on, 1996, pp. 457-463: IEEE.

[221] O. C. Gotel and A. C. Finkelstein, "An analysis of the requirements traceability

problem," in Requirements Engineering, 1994., Proceedings of the First

International Conference on, 1994, pp. 94-101: IEEE.

[222] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. A. Raja, and K. Kamran,

"Requirements traceability: a systematic review and industry case study,"

International Journal of Software Engineering and Knowledge Engineering, vol. 22,

no. 03, pp. 385-433, 2012.

[223] E. Brynjolfsson, A. A. Renshaw, and M. van Alstyne, "The Matrix of Change: A

Tool for Business Process Reengineering," Working paper 189, Centre for

Coordinating Sciences, Massachusetts Institute of Technology, 1996.

[224] S. Wang and M. A. M. Capretz, "A Dependency Impact Analysis Model for Web

Services Evolution," in Web Services, 2009. ICWS 2009. IEEE International

Conference, 2009, pp. 359-365.

[225] J. Zhang, Y. C. Chang, and K. J. Lin, "A dependency matrix based framework for

QoS diagnosis in SOA," in Service-Oriented Computing and Applications (SOCA),

2009 IEEE International Conference, 2009, pp. 1-8.

[226] A. M. Omer and A. Schill, "Web service composition using input/output dependency

matrix," in Proceedings of the 3rd Workshop on Agent-oriented Software

Engineering Challenges for Ubiquitous and Pervasive Computing, 2009, pp. 21-26:

ACM.

[227] K. van den Berg, "Change impact analysis of crosscutting in software architectural

design," in Proceedings of Workshop on Architecture-Centric Evolution at 20th

ECOOP, 2006.

[228] B. Li, "Managing dependencies in component-based systems based on matrix

model," in proceedings of Net.objectdays(NODE) 2003 conference, 2003, pp. 22-25.

[229] M. Ruiz, V. Mejia, and A. Kaplan, "Information system comprised of synchronized

software application moduless with individual databases for implementing and

changing business requirements to be automated," ed: Google Patents, Patent

Application 10/633,959, 2005.

182

[230] R. H. Katz and E. E. Chang, Managing change in a computer-aided design

database. in Proceedings of 13th VLDB Conference, 1987, pp. 445-462.

[231] S. Maadawy and A. Salah, "Measuring Change Complexity from Requirements: A

Proposed Methodology," International Magazine on Advances in Computer Science

and Telecommunications, vol. 3, no. 1, 2012.

[232] M. W. Dickinson, A. C. Thornton, and S. Graves, "Technology portfolio

management: optimizing interdependent projects over multiple time periods," IEEE

Transactions on Engineering Management, vol. 48, no. 4, pp. 518-527, 2001.

[233] L. Maciaszek, Requirement analysis and system design. Pearson Education Limited,

Edinburgh Gate, England, 2007.

[234] P. Selonen, K. Koskimies, and M. Sakkinen, "Transformations between UML

diagrams," Journal of Database Management, vol. 14, no. 3, pp. 37-55, 2003.

[235] M. S. Kilpinen, "The Emergence of Change at the Systems Engineering and

Software Design Interface," PhD Diss, University of Cambridge, 2008.

[236] S. Jayatilleke and R. Lai, "A systematic review on Requirement Change

Management," Information and Software Technology, vol. 93, pp. 163-185, 2018.

DOI: 10.1016/j.infsof.2017.09.004.

[237] D. Kiritsis, K.-P. Neuendorf, and P. Xirouchakis, "Petri net techniques for process

planning cost estimation," Advances in Engineering Software, vol. 30, no. 6, pp.

375-387, 1999.

[238] P. E. D. Love, D. J. Edwards, H. Watson, and P. Davis, "Rework in Civil

Infrastructure Projects: Determination of Cost Predictors," Journal of Construction

Engineering and Management, vol. 136, no. 3, pp. 275-282, 2010.

[239] P. E. D. Love, "Influence of Project Type and Procurement Method on Rework

Costs in Building Construction Projects," Journal of Construction Engineering and

Management, vol. 128, no. 1, pp. 18-29, 2002.

[240] K. Butler and W. Lipke, "Software process achievement at tinker air force base,"

Technical Report CMU/SEI-2000-TR-014, Carnegie-Mellon Software Engineering

Institute, 2000.

[241] A. G. Cass, S. M. Sutton, and L. J. Osterweil, "Formalizing rework in software

processes," in Proceedings of European Workshop on Software Process Technology

(EWSPT), 2003, vol. 2786, pp. 16-31: Springer.

183

[242] First CeBASE eWorkshop, "Focusing on the cost and effort due to software defects,"

NSF Center for Empirically Based Software Engineering, 2001.
http://www.cebase.org/www/researchActivities/defectReduction/eworkshop1

[243] V. R. Basili, S. E. Condon, K. E. Emam, R. B. Hendrick, and W. Melo,

"Characterizing and modeling the cost of rework in a library of reusable software

components," in Proceedings of the 19th international conference on Software

Engineering, Boston, Massachusetts, USA, 1997, pp. 282-291: ACM.

[244] U. T. Raja, M.J., "Defining and Evaluating a Measure of Open Source Project

Survivability," IEEE Transactions on Software Engineering, vol. 38, no. 1, pp. 169-

174, 2012.

[245] R. N. Charette, "Why software fails [software failure]," IEEE Spectrum, vol. 42, no.

9, pp. 42-49, 2005.

[246] X. O. Zhao, L.J., "An approach to modeling and supporting the rework process in

refactoring," in International Conference on Software and System Process (ICSSP),

2012, pp. 110-119.

[247] J. Highsmith and A. Cockburn, "Agile software development: The business of

innovation," Computer, vol. 34, no. 9, pp. 120-127, 2001.

[248] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of software engineering.

Prentice Hall PTR, 2002.

[249] P. E. Love and J. Smith, "Benchmarking, benchaction, and benchlearning: rework

mitigation in projects," Journal of Management in Engineering, vol. 19, no. 4, pp.

147-159, 2003.

[250] J. Radatz, A. Geraci, and F. Katki, "IEEE standard glossary of software engineering

terminology," IEEE Standard, vol. 610121990, no. 121990, p. 3, 1990.

[251] K. H. Bennett and V. T. Rajlich, "Software maintenance and evolution: a roadmap,"

in Proceedings of the Conference on the Future of Software Engineering, 2000, pp.

73-87: ACM.

[252] ISO12207 Information technology - Software life cycle processes, 1995.

[253] G. Canfora and A. Cimitile, "Software maintenance," in Handbook of Software

Engineering and Knowledge Engineering: Volume I: Fundamentals: World

Scientific, 2001, pp. 91-120.

[254] S. Jayatilleke, R. Lai, and K. Reed, "Managing Software Requirements Changes

through Change Specification and Classification," To appear in Computer Science

and Information Systems, 2017. DOI: 10.2298/CSIS161130041J.

http://www.cebase.org/www/researchActivities/defectReduction/eworkshop1/

184

[255] S. Jayatilleke, R. Lai, and K. Reed, "A method of requirements change analysis,"

Requirements Engineering, pp. 1-16, 2017. DOI: 10.1007/s00766-017-0277-7.

[256] T. Wijayasiriwardhane and R. Lai, "Component Point: A system-level size measure

for component-based software systems," Journal of Systems and Software, vol. 83,

no. 12, pp. 2456-2470, 2010.

[257] S. Mahmood and R. Lai, "A complexity measure for UML component‐based system

specification," Software: Practice and Experience, vol. 38, no. 2, pp. 117-134, 2008.

[258] P. N. Jeziorek, "Cost estimation of functional and physical changes made to complex

systems," Massachusetts Institute of Technology, PhD Diss, 2005.

[259] L. Lavazza and G. Valetto, "Requirements-based estimation of change costs,"

Empirical Software Engineering, vol. 5, no. 3, pp. 229-243, 2000.

185

Appendix A

Following is the copyright information of the papers published (online)/in press/ submitted in

this thesis:

1. The paper entitled “A Systematic Review of Requirements Change Management” has been

published in Information and Software Technology: As stated at

https://www.elsevier.com/about/company-information/policies/copyright authors have the

right to share their article for personal use, which encompasses inclusion in their theses.

2. The paper entitled “Managing Software Requirements Changes through Change

Specification and Classification” has been published online in ComSIS:

http://www.comsis.org/copyright.php “Authors/employers retain all proprietary rights in

any process, procedure, or article of manufacture described in the Work”.

3. The paper entitled “A Method of Requirements Change Analysis” has been published

online in Requirements Engineering: As stated at

http://www.springernature.com/gp/researchers/sharedit “As part of the Springer Nature

SharedIt initiative, you can now publicly share a full-text view-only version of your paper

by using the link below. If you have selected an Open Access option for your paper, or

where an individual can view content via a personal or institutional subscription, recipients

of the link will also be able to download and print the PDF. All readers of your article via

the shared link will also be able to use Enhanced PDF features such as annotation tools,

one-click supplements, citation file exports and article metrics.” http://rdcu.be/ub4S

4. The paper entitled “A Method of Analysing Rework for Implementing Software

Requirements Changes” has been submitted to Requirements Engineering. Awaiting

outcome of submission.

https://www.elsevier.com/about/company-information/policies/copyright
http://www.comsis.org/copyright.php
http://www.springernature.com/gp/researchers/sharedit
http://em.rdcu.be/wf/click?upn=KP7O1RED-2BlD0F9LDqGVeSAGXj9gJ-2BckETugyTLayooQ-3D_Hgtiw4ZHBJ0hFwqPSG-2BXb04zESQxlWIjWX-2BLcwzayv9r5TQ9MrUxS0ptmfJnIgBNNiOShO64xDLUKX6ngIDOlWSFx02kLqIgS-2BYwBdd8Yi9DVuBoeqgi-2BebhllBkTiLym8djN3aCX6qN98H0Wf2TVY3oSYUYoSi7LlrsybXvwZWMoumKvTdvc2xS90ulUbM5jhSeeimyKEdm96CVK5jeHfvZZZHS4ynNvTVghGJFtQTdU5z-2Bx2K6WCP7-2FNB9SQR9ygcpbbHoFARs9p90m8efKN4l1Edb1NM4DPehuLJBRMI-3D

186

Appendix B

Following is the proof of submission of “A Method of Analysing Rework for Implementing

Software Requirements Changes” in Requirements Engineering:

