
AAITP 1992 TR005 1

Identifying Reusable Components in Software Requirements

Specifications To Develop a Natural Language-Like

SRS Language with a CRNLP

(Compileable Restricted Natural Language Processor)

TR005

Janurary 1992

by Michael Yong and Karl Reed

Amdahl Australian Intelligent Tools Program

Department of Computer Science & Computer Engineering

La Trobe University

Bundoora, Victoria 3083

Australia

AAITP 1992 TR005 2

Table of Contents

 Abstract 4

1. Introduction 5

2. Specification Language 5

3. NL-Like Specification Language 6

4. Reuse 6

5. Development of the Language 7

6. Ultimate Goal: A SRS Language with a
 CRNLP 8

7. Method Adopted 9
7.1 Parsers
7.2 Recognisers 10
7.3 CRNLP

8. Summary of Experiments on CRNLP 12
8.1 A Language for Fortran Library Routines
8.1.1 Design of Language
8.1.2 An Example Demonstration of CRNLP 15
8.1.3 Some Comments 17
8.2 A Language for DOS-M Directives
8.2.1 Design of Language 18
8.2.2 An Example Demonstration of CRNLP 20
8.2.3 Some Comments 22
8.3 A Language for TAME Subsystems Specs 23
8.3.1 Design of Language
8.3.2 An Example Demonstration of CRNLP 30
8.3.3 Some Comments 31

9. More Facilities 32
9.1 Expanding CRNLP
9.2 Statement Identification 33
9.3 Reusable Vocubulary 34

AAITP 1992 TR005 3

10. Higher Level Abstraction of Data 35
10.1 Limitation
10.2 High Level Abstraction 36
10.3 Application of CRNLP for the Language
 Derived from Tame Subsystems Specs

11. Further Development of Language Into
 IEEE Standard Requirements
 Documents Format 38
11.1 Current CRNLP Prototype
11.2 IEEE Standard Documents Format 40
11.3 The SRS Language 43

12. Conclusion 45

13. References 46

AAITP 1992 TR005 4

Abstract

One problem in specifying user's requirements for a new computer
system is the ambiguity in the Software Requirements Specifications
(SRS). Natural Language (NL) is inherently ambiguous and Formal
Specification Language is too difficult for users to understand. This paper
outlines a process to eliminate the ambiguity of SRS written in NL. A
Compileable Restricted Natural Language Processor (CRNLP) develops
a NL-like SRS language that is acceptable to SRS writers. A prototype
has been built to demonstrate this process.

AAITP 1992 TR005 5

1. Introduction

 The Requirements Analysis and Specification Phase of the

Software Development Life Cycle involves analysing the
user's requirements and then specifying a system to satisfy
them. It is important that the Requirements Specification is
correct, complete and unambiguous to ensure the proposed
system meets their requirements.

 The Requirements Specification needs approval from users

and therefore has to be written in a form understandable to
them. RS is traditionally and easily written in Natural
Language, with the assumption that the users are able to
understand English sentences. RS written in NL is inherently
ambiguous, resulting in documents that are ambiguous,
inconsistent and incomplete.

 This paper reports on a project that looked at some SRSs,

trying to identify reusable components, and developed a
compileable restricted NL-like SRS language with a
CRNLP.

2. Specification Language

 It is suggested that the language used to write RS should be

restricted or formalised so that the problem of inherent
ambiguity can be reduced or even solved [1]. Various
methods have been developed to help solve the problem,
such as system specification language and graphical tools
[2]. This paper will examine the use of a development of
system specification language.

 The use of formal system specification language can help

ensure ambiguity-free and consistency, but not correctness
of the RS. The system might be correctly specified but it
may not be what the users want [3]. Users who have to
approve the RS may find it extremely difficult to determine
whether a RS written in a formal language does indeed
satisfy them. Our approach will avoid this problem.

AAITP 1992 TR005 6

3. NL-Like Specification Language

 A solution to the problem associated with use of formal

specification is to have a language that is formalised or
restricted but still remains NL-like. It should look very much
like NL (English), but not exactly so. There should be some
restrictions on how a specification statement is to be written,
using a restricted vocabulary. The language should be
acceptable to Software Requirements Specification writers,
who agree to deliberately choose their dialect accordingly.
I.e. instead of some undefined domain specific dialect of an
NL, the language is a restriction of software engineering
implementation domain.

 One way to develop such a language is by examining

samples of text from the software engineering
implementation domain to first discover the nature of the
restricted dialect of NL that is used. While doing this, we
would hope to identify a vocabulary for software engineering
and a grammar governing its use. Moreover, we see
similarities among RS statements, and statements which are
used repeatedly throughout the system specification. Hence
we can propose a 'compileable' NL-like language as a tool
for writing SRS.

4. Reuse

 The creation of a CRNL based specification system may

enable us to achieve some degree of reuse in writing SRS,
where statements specifying same requirements need not be
written over and over again. Instead, user can reuse the one
already existing, where appropriate. This is one of the main
objectives of AAITP.

 To provide a short-term deliverable, we need a very

restricted approach, which is to further restrict the dialect, ie.
to start with very simple SRS statements.

AAITP 1992 TR005 7

5. Development of the Language

 A Language is a collection of Sentences generated from a 4-

tuple of Terminals, Non-Terminals, Grammatical Rules and
a Start Symbol. In order to develop a language, we need to
be able to specify the four components, firstly the Terminals
and the Grammatical Rules, in which Terminals will be the
Vocabulary, and Grammatical Rules the Grammar of the
language.

 In order to identify the vocabulary of a language, instances

of the language ought to be examined. We need to look at
some typical sentences of the language. As suggested by
Jacob Cybulski and Jane Philcox, we would need to examine
samples of free text from the software engineering
implementation domain to first discover the nature of the
restricted dialect of NL that is used.

 Meanwhile, as we need to be able to achieve some aspect of

reuse in design in fairly short order, Karl Reed suggested
that we need an attack on a more restricted approach, which,
while providing short-term deliverable, will address one
phase of the NLP issues to be handled.

 Reed pointed out that NLP could be used to process

restricted, NL-like documents for content. It has been
suggested that use of NL in specifications in which the
language used can be assumed to be even more restricted
than the dialect that would be used in free text system design
documents.

 The four areas are:
 1. Module Interface Specification,
 2. IEEE Standard Requirements Documents,
 3. Psuedo-Code Descriptions of a System Structure,
 4. Annotations for Diagrams.

 Reed's proposal is that, rather than assume that some domain

specific dialect of an NL as may be used during
development, we deliberately restrict the language even
further [1].

AAITP 1992 TR005 8

 The basis of the restriction would be as follows:

 Choose a 'compileable' NL-like language that would be

acceptable to a user who was performing any of the
above tasks, and who was deliberately choosing their
dialect so that some later (possibly automatic) analysis
would allow similarities and dissimilarities to be
identified.

6. Ultimate Goal: A SRS Language with a
 CRNLP

 There is no easy way to develop a language that is applicable

to all the possible SRS. We first have to look at some
particular statements of some system (technical, perhaps) so
that some similarities could be identified.

 We will then be able to develop some parsers or perhaps

compilers for each systems looked at. The more systems
being looked at, the wider the language would be. The
language could easily be expanded by adding more terminals
(ie. expanding the vocabulary) and further developing and
generalising the grammar.

 However, we still need to firstly look at some SRS

statements to get started. By looking at the specification of a
system, we are able to identify the degree of similarity
among the statements of the specifications. A language can
be proposed where all the statements in the specification can
be represented by sentences written in the language, with all
important information being captured. At the same time, a
slightly formalised way to write these statements reduces
ambiguity and inconsistency.

 Our ultimate goal is to design a language that is capable of

capturing all SRSs. This is almost impossible considering the
fact that a system can be implemented almost everywhere for
anything. There are so many possibilities of what a SRS
could look like. Therefore, we need to start from looking at
some simple system.

AAITP 1992 TR005 9

 While examining the SRS statements of a system, we can

somehow rewrite them without changing their meaning, to a
more restricted way, ie. by applying some grammatical rules
and limitations on vocabulary. Then similar sentences can be
grouped together, according to their nature, behaviour,
function or implication. Further study can be done for each
group of sentences and similarities or dissimilarities can be
identified.

 For a group of similar sentences (by similar, we mean they

have something in common, may be their format, the object
or operation they specify, etc.) a grammatical rule can be
written to parse their sentences. With appropriate semantic
actions, a compileable language can be generated.

 Accordingly, a study was made of a number of specifications

to attempt to identify such CRNLP's.

7. Method Adopted

 There were a few constraints that had affected the method

adopted and the approach in carrying out the study.

 Given time, long-term difficulties, and some minor

constraints, the following method was adopted:

 1. Study a few series of SRSs and identify the possible

 ways to develop languages from them.

 2. Build prototype of CRNLP for each SRS.
 - first a parser,
 - a sentence recognisor with statements in database,
 - a processor that interacts with user.

 3. The tool used to build prototype is Prolog.

7.1 Parsers

 There were a few systems being studied. They are:

AAITP 1992 TR005 10

 1. UNIX Commands Specifications,
 2. Fortran Library Routines Specifications,
 3. DOS-M Directives Specifications,
 4. TAME Subsystem Requirements Specifications,
 (TAME - Tools for an Ada Measurement Environment)

 When a set of SRS statements are examined, definitely there

would be ways similarities can be identified. For example,
some sentences might be talking about a type of operation on
different operands in each sentence; or an object being
discussed in a few sentences.

 Steps in Grouping and Classification of Sentences:

 1. Group sentences that allow similarities to be

 identified, in another word, sentences that look alike in
certain ways.

 2. Rewrite the sentences, eg. re-arrange sentence

 structure, use common words, etc, so that there is a
 rule in writing the sentences.

 3. Draw Syntax Diagrams for each groups of sentences.

 Derive Grammatical Rules from the syntax diagrams
 and decide the Vocabulary of what is allowed to be
 associated with the grammar.

 4. Propose a language provided a parser is available.

7.2 Recognisors

 After a parser has been written, valid sentences will be

recognised by the system. The statements already in SRS
were stored in a table in the system. When we have a new
parseable sentence, the system would be able to tell if any
sentence in the database is reusable to represent the new
sentence, or perhaps some similarities or dissimilarities
could be identified between the new sentence and the
sentences in the table.

AAITP 1992 TR005 11

 The way to do this is to store the compiled sentences in the
database, and each being distinguished by an id. If a new
sentence is identified to be the same, equivalent, or having
similar characteristics with any statement in the table, the
system would advise the user.

 The detailed interaction method will be fully explained in the

next section.

7.3 CRNLP

 Our first goal is to design a compiler-like processor,

CRNLP, that given a sentence, will determine if it is
parseable and generates a representation of its content
semantic. At the same time, the processor would have a
number of sentences in the database, perhaps some of the
statements in the specification. These are a few possible
outcomes:

 1. sentence is parseable, and recognised as something

 having exactly the same information as one in the
 database.

 2. sentence is parseable, and recognised as something

 equivalent to one in the database. System will ask
 user whether they mean the same thing or if it is
 another way to specify the same thing.

 3. sentence is parseable, and recognised as something

 similar to one in the database. By similar, we mean it
 specifies similar task, or different task on same
 object, or same task on different object, etc,
 depending to the system. The system will then ask
 whether they mean the same, or the new one has
 some additional information or alteration to the one
 already in the database, or whether it is a new
 statement all together.

 4. sentence is parseable, but not recognised by the

 system identical or similar to those in the database.
 The user may then add the new statement into the
 database.

AAITP 1992 TR005 12

 5. sentence unparseable, due to syntax error. The
 system would print error message and advise user
 what was wrong.

 6. sentence unparseable, due to unknown, or

 unrecognised word. The system would advise the
 user and suggest some alternative words from the
 database that would be legal. The user may choose to
 use alternative suggestion, or may add the new word
 into the database, making the sentence parseable. This
 enables the database to expand and number of
 terminals increase.

 7. sentence unparseable, in the last case, where the

 input sentence is complete nonsense.

 We will now describe the examples of CRNLP examined in

this experience.

8. Summary of Experiments on CRNLP

 This section describes three CRNLP prototypes that have

been built in Prolog that enable us to experiment on the
development of CRNLP.

 The series of SRS that had been studied are:

 1. Fortran Library Routines Specifications
 (Mathematical Functions).

 2. HP2100 Moving-Head Disc Operating System
 (DOS-M) User's Guide (Directives Command
 Specifications).

 3. Tools for an Ada Measurement Environment
 (TAME) Requirements Document (Subsystem
 Specifications).

8.1 A Language for Fortran Library Routines

AAITP 1992 TR005 13

 31/32/3300 Computer systems Library Routines is a manual
that contains descriptions of FORTRAN library subroutines
for the 3100, 3200, and 3300 computer. The purpose of each
function is listed, along with the calling sequence,
FORTRAN function, return, and error code.

 To develop a language to write the specification for the

routines, the purpose of each function is studied.

8.1.1 Design of Language

 Step 1.

 Grouping sentences where similarity can be
 identified.

 1. ABS: to compute the floating point absolute value for

 a floating point number.

 2. ALOG: to compute the natural algorithm of a

 floating point argument.

 3. ATAN: to compute the floating point arctangent in

 radians of a floating point number.

 4. AND: to find the logical product of the integer

 operands, A and B.

 5. ITOX: to compute the result of an integer raised to a

 floating point power.

 Step 2.

 After rewriting the sentences:

 1. ABS takes a floating point number and returns

 floating point absolute value.

 2. ALOG takes a floating point number and returns

 natural algorithm.

 3. ATAN takes a floating point number and returns

 floating point arctangent in radians.

AAITP 1992 TR005 14

 4. AND takes integer, integer and returns logical product.

 5. ITOX takes integer, floating point number returns

 floating point number raised to power.

 Step 3.

 Grammatical Rules:

 Sentence --> take-part return-part
 return-part take-part

 take-part --> takes type {, type}

 return-part --> returns type [result] [unit]
 return-part --> returns [type] result [unit]
 return-part --> returns [type] [result] unit

 takes --> takes
 | converts
 | finds
 | from
 | ...
 returns --> returns
 | computes
 | calculates
 | to
 | ...
 type --> floatpn
 | fixedpn
 | integer
 | ...
 output --> absolute-value
 | natural-algorithm
 | arctangent
 | logical-product
 | raised-to-power
 | ...
 unit --> in-radians
 | ...

AAITP 1992 TR005 15

 Acceptable sentences are:

 1. ABS: takes floatpn returns floatpn absolute-value
 2. ALOG: takes floatpn returns natural-algorithm
 3. ATAN: takes floatpn returns floatpn arctangent in-

 radians
 4. AND: takes integer, integer returns logical-product
 5. ITOX: takes integer, floatpn returns floatpn raised-to

 power.

 Step 4.

 A parser can be easily written in Prolog. We are more

interested in a CRNLP rather than just a parser so that some
semantics can be extracted from the input sentences.

 The compiler extracts the relevant information from the

sentences and uses this in interacting with user.

 For each input sentence, its compilation will be in the form

of input declaration, and output declaration.

 [input-type], [output-type, output, unit]

 inapplicable attribute is represented by null.

 For examples:

 1. takes floatpn returns floatpn absolute-value

 compilation:
 [floatpn], [floatpn, absolute-value, null]

 4. takes integer, integer returns logical-product

 compilation:
 [integer, integer], [null, logical-product, null]

 The sentences in database are stored in a list form, consisting

of three components, ie. statement id, input declaration,
and output declaration. In the format of:

AAITP 1992 TR005 16

 srs (srs-id, [input-type], [output-type, output, unit]).

8.1.2 An Example Demonstration of CRNLP

 Suppose we have the following statements already in the

database, as Prolog clauses.

 srs(abs, [floatpn], [floatpn,absolute-value,null]).
 srs(alog, [floatpn], [null,natural-logarithm,null]).
 srs(atan, [floatpn], [floatpn,arctangent,inradians]).
 srs(not, [integer], [null,complement,null]).
 srs(sqrt, [floatpn], [floatpn,squareroot,null]).
 srs(and, [integer,integer], [null,logical-product,null]).
 srs(itox, [integer,floatpn], [floatpn,raised-to-power,null]).

 where

 abs means 'takes floating-point number, returns floating-point

number absolute-value',

 and will be compiled as 'takes integer and integer, returns

logical-product'.

 Program is invoked by calling 'parser'.

 ?- parser.

 statement: takes integer returns complement.
 *** input type is integer
 *** output is complement
 statement is already in database: not

 statement: computes complement from integer.
 *** input type is integer
 *** output is complement
 statement is already in database: not

 statement: takes integer calculates integer complement.
 *** input type is integer
 *** output type is integer
 *** output is complement
 statement looks like not in database
 not takes integer returns complement
 you might like to update database
 or add into database as new function
 type <m.> to modify database, or
 type <a.> to add new function, or
 type <q.> to quit: m.

AAITP 1992 TR005 17

 not modified in database as:
 not takes integer returns integer complement

 statement: takes integer returns integer square.
 statement uncompileable
 --> We would like to be able to handle this.

 statement: takes integer returns squareroot.
 *** input type is integer
 *** output is squareroot
 statement compileable but not in database
 do you want to add it into database? (y./n.) y.
 name of new function: sqrti.
 sqrti added into database

 statement: takes integer returns squareroot.
 *** input type is integer
 *** output is squareroot
 statement is already in database: sqrti

 statement: converts integer to integer squareroot.
 *** input type is integer
 *** output type is integer
 *** output is squareroot
 statement looks like sqrti in database
 sqrti takes integer returns squareroot
 you might like to update database
 or add into database as new function
 type <m.> to modify database, or
 type <a.> to add new function, or
 type <q.> to quit: a.
 name of new function: sqrti2.
 sqrti2 added into database
 statement:

8.1.3 Some Comments

 1. This CRNLP is doing what we desired as a first step. It

 enables the user to know if a new statement can be
 written as one already in the database, to achieve some
 reuse.

 2. The current construction of the system allows
 mathematical computation with some input parameter
 and only one output parameter.

AAITP 1992 TR005 18

 The language can easily be enlarged by adding more
terminals. It could be a language for all Functional
Specifications which have the following format:

 takes some-input and produce some-output.

 3. This CRNLP stops and prints error message when it
 encounters some unknown word. We need a CRNLP
 that handles error-recovery.

8.2 A Language for DOS-M Directives

 The Moving-Head Disc Operating System (DOS-M)

(HP2100) User's Guide provides a list of function
specifications of the directives. Directives are the direct line
of communication between the keyboard or batch input
device and the DOS-M.

 The specification statements of the directives' functions were

examined and a language is developed to write SRS for
DOS-M directives.

8.2.1 Design of Language

 Step 1.

 Grouping sentences where similarity can be identified.

 1. ABORT: terminate the current job.

 2. DD: dump the entire current disc onto a disc.

 3. LISTS: list all or part of a source statement file.

 4. PDUMP: dump a program after normal completion.

 Step 2.

 After rewriting the sentences:

 1. ABORT: terminate current job.

 2. DD: dump entire current disc onto another disc.

AAITP 1992 TR005 19

 3. LISTS: list all or part of source statement file.

 4. PDUMP: dump program after normal completion.

 Step 3.

 Grammatical Rules.

 Sentence --> Action [Quantity] Object [Description].

 Description --> Conj Device [Condition]
 | Condition

 Action --> terminate
 | print
 | dump
 | list
 | ...
 Quantity --> entire
 | part_of
 | all_or_part_of
 | ...
 Object --> current_job
 | program
 | current_disc
 | ...
 Conj --> to
 | on
 | from
 | onto
 | ...
 Device --> disc
 | magnetic_tape
 | subchannels
 | ...
 Condition --> after_normal_completion
 | normally
 | ...

 Acceptable sentences are:

AAITP 1992 TR005 20

 1. ABORT: terminate current_job.

 2. DD: dump entire current_disc onto another_disc.

 3. LISTS: list all_or_part_of source_statement_file.

 4. PDUMP: dump program after_normal_completion.

 Step 4.

 The sentences in database are stored in a list, consisting of

two components, ie. statement id and statement information.
In the format of:

 srs (srs-id, [action, quantity, object, device, condition]).

 For each input sentence, its compilation will be in the form

of the second component.

 [action, quantity, object, device, condition]

 inapplicable attributes represented by null.

 For examples:

 1. terminate current_job.
 [terminate, null, current_job, null, null]

 2. dump entire current_disc onto another_disc.
 [dump, entire, current_disc, another_disc, null]

 3. list all_or_part_of source_statement_file.
 [list, all_or_part_of, source_statement_file
 null, null]

 We realise the fact that NL is ambiguous. The ultimate goal

of this project is to reduce the ambiguity in NL. Before we
can solve the problem, we first need to identify the situation
when two different statements actually mean the same thing.

In order to do this, we have a table of synonyms, where
multiple words in the same category can be used to mean the

AAITP 1992 TR005 21

same thing. For example, terminate and kill mean the same
thing as far as job is concerned.

 Use of a limited synonym table has allowed a simple

prototype to demonstrate the CRNLP.

8.2.2 An Example Demonstration of CRNLP

 Suppose we have the following statements already in the

database, as Prolog clauses.

 srs(abort, [terminate,null,current_job,null,null]).
 srs(dd, [dump,entire,current_disc,another_disc,null]).
 srs(lists, [list,all_or_part_of,source_statement_file,null,null]).
 srs(pdump, [dump,null,program,null,after_normal_completion])
 srs(rname, [rename,null,file,null,null]).
 srs(sa, [dump,null,disc_in_ascii,standard_list_device,null]).
 srs(sa, [dump,null,disc_in_octal,standard_list_device,null]).

 ?- parser.

 statement: terminate current_job.
 *** action is terminate
 *** object is current_job
 statement already in database: abort

 statement: kill current_job.
 *** action is kill
 *** object is current_job
 statement equivalent to abort in database
 abort terminate current_job

 statement: abort job.
 *** action is abort
 *** object is job
 statement equivalent to abort in database
 abort terminate current_job

 statement: rename file.
 *** action is rename
 *** object is file
 statement already in database: rname

AAITP 1992 TR005 22

 statement: dump entire current_disc onto another_disc.
 *** action is dump
 *** object is entire current_disc
 *** device is another_disc
 statement already in database: dd

 statement: dump current_disc to disc.
 *** action is dump
 *** object is current_disc
 *** device is disc
 statement looks like dd in database
 dd dump entire current_disc, device another_disc
 you might like to update database
 or add into database as new function
 type <m.> to modify database, or
 type <a.> to add new function, or
 type <q.> to quit: q.
 statement not added into database

 statement: dump all_or_part_of disc to disc.
 *** action is dump
 *** object is all_or_part_of disc
 *** device is disc
 statement compileable but not in database
 do you want to add it into database? (y./n.) n.
 statement not added into database

 statement: dump disc_in_ascii to standard_list_device.
 *** action is dump
 *** object is disc_in_ascii
 *** device is standard_list_device
 statement already in database: sa

 statement: dump disc_in_octal to standard_list_device
 normally.
 *** action is dump
 *** object is disc_in_octal
 *** device is standard_list_device
 *** condition is normally
 statement looks like sa in database
 sa dump disc_in_octal, device standard_list_device
 you might like to update database

AAITP 1992 TR005 23

 or add into database as new function
 type <m.> to modify database, or
 type <a.> to add new function, or
 type <q.> to quit: a.
 name of new function: san.
 san added into database

 statement:

8.2.3 Some Comments

 1. There is a problem associated with the structure of

 database. The quantity and condition parts do not seem to
fit in very well. This problem is due to the non-
 uniformity of the statements. This is something that we
 have to take into consideration. In real life, SRS can be
 anything, and it is really hard to develop a language that
 could satisfy all kind of SRS.

 2. One feature of the CRNLP is that it is able to look at an
 input statement and tell if there is any statement in the
 database which is associated to the statement. They could
 be talking about the same operation, or same type of
 operand or similar task on different object or maybe the
 new statement has more information than one in the
 database, or may be less, but still consists the essential
 details, etc.

 In order to do this, the CRNLP, after compiling a statement,

will go through the whole database of statements, matching
them with the new one, and try to identify any similarity.

 This seems like pure pattern-matching and is actually how

the basic idea works. But there will be problems in
identifying or justifying how to decide if two statements are
similar enough. There should be some higher level of
abstraction. This will be discussed in Section 10.

8.3 A Language for TAME Subsystems Specs

 TAME, 'Tools for an ADA Measurement Environment', is a

systems requirement document that was written in a standard
IEEE SRS format. This, by the way, was produced by Karl

AAITP 1992 TR005 24

Reed, and stimulated the original SODA concept. It was the
section of 'Subsystem Requirements' where many similar
statements appears at many places in the SRS that was used
to produce this CRNLP.

 In fact, this CRNLP was obtained by taking the SRS for all

subsystems and examining them manually. Common
operations and operands were identified, and then propagated
across all specifications.

 The 'objectives' part of each 'Specific Functional

Requirement' of the 'Subsystem Requirements' were studied
and a language was the result of the study.

8.3.1 Design of Language

 Step 1.

 Grouping sentences where similarity can be
 identified.

 Group A.

 1. to allow user to create, edit, maintain and display
 evaluation models which will be held in the TAME DBS.

 2. to allow user to create, edit, maintain and display result
 of analysis which will be held in the TAME DBS.

 3. to allow user to create, edit, maintain and display
 scheduling information which will be held in the TAME
 DBS.

 4. to allow user to create, edit, maintain and display
 security profiles which will be held in the TAME DBS.

 5. to allow user to create, edit, maintain and display forms
 which will be held in the TAME DBS.

 Group B.

 1. to produce intermediate output capable of being
 processed by the g/q/m/A to evaluate the model.

AAITP 1992 TR005 25

 2. to produce output which can be stored in the TAME
 database subsystem with appropriate links to current
 source code so that suitable configuration management
 can be achieved.

 3. to produce output in a form that can be used by the
 Report Generator.

 4. to place result in DBS in a form suitable for use by other
 tools and Report Generator.

 5. to present data in a form that can be used by the
 g/q/m/A.

 6. to produce output capable of being presented to the
 g/q/m subsystem for display and for further analysis.

 Some Comment:

 The repetitive feature is obvious and clear, and yet there is

an appropriate richness in the forms of expression used. Our
view is that this may be suitable for the CRNLP
specification.

 Step 2.

 After rewriting the sentences:

 Group A.

 1. to allow user to create, edit, maintain and display
 evaluation models which will be held in tame dbs.

 2. to allow user to create, edit, maintain and display result
 of analysis which will be held in tame dbs.

 3. to allow user to create, edit, maintain and display
 scheduling information which will be held in tame dbs.

 4. to allow user to create, edit, maintain and display
 security profiles which will be held in tame dbs.

AAITP 1992 TR005 26

 5. to allow user to create, edit, maintain and display forms
 which will be held in tame dbs.

 Group B.

 1. to produce intermediate output capable of being
 processed by gqma to evaluate model.

 2. to produce output which can be stored in tame dbs with
 appropriate links to current source code so that suitable
 configuration management can be achieved.

 3. to produce output in a form that can be used by the
 report generator.

 4. to place result in dbs in a form suitable for used by other
 tools and report generator.

 5. to present data in a form that can be used by gqma.

 6. to produce output capable of being presented to gqm
 subsystem for display and for further analysis.

AAITP 1992 TR005 27

 Step 3.

 Grammar A.

 Sentence --> to Allow Agent to Actions Object

 [Optional].

 Actions --> Action {, Action}
 | Action {and Action}

 Optional --> which will be held in Place

 Allow --> allow
 | ...

 Agent --> user
 | operator
 | ...
 Action --> create
 | edit
 | maintain
 | display
 | ...
 Object --> evaluation_model
 | result_of_analysis
 | scheduling_information
 | security_profiles
 | forms
 | ...
 Place --> tame_dbs
 | ...

 Acceptable sentences are:

 1. to allow user to create, edit, maintain and display

 evaluation_models which will be held in tame_dbs.

 2. to allow user to create, edit, maintain and display

 result_of_analysis which will be held in tame_dbs.

 3. to allow user to create, edit, maintain and display

 scheduling_ information which will be held in tame_dbs.

AAITP 1992 TR005 28

 4. to allow user to create, edit, maintain and display

 security_profiles which will be held in tame_dbs.

 Grammar B.

 Sentence --> to Produce-Part Pipe Process-Part

 [Extra-Part].

 Produce-Part --> Produce Output
 Process-Part --> Processed Objects

 Objects --> Object {and Object}

 Extra-Part --> to Eval Model
 | with Link to Code so that Mgt

 can be Act
 | for Function {and Extra-Part}
 | ...

 Produce --> produce
 | present
 | place
 | ...
 Output --> output
 | intermediate_output
 | result_in_dbs
 | data
 | ...
 Processed --> processed_by
 | stored_in
 | used_by
 | presented_to
 | ...
 Object --> gqma
 | tame_dbs
 | report_generator
 | gqm_subsystem
 | other_tools
 | ...
 Pipe --> capable of being
 | which can be

AAITP 1992 TR005 29

 | in a form that can be
 | in a form suitable for
 | ...
 Eval --> evaluation
 | ...
 Model --> model
 | ...
 Link --> appropriate_links
 | ...

 Code --> current_source_code
 | ...
 Mgt --> suitable_configuration_management
 | ...
 Act --> achieved
 | ...
 Function --> display
 | further_analysis
 | ...

Acceptable sentences are:

1. to produce intermediate_output capable of being
 processed_by gqma to evaluate model.

2. to produce output which can be stored_in tame_dbs with
 appropriate_ link to current_source_code so that
 suitable_configuration_management can be achieved.

3. to produce output in a form that can be used_by the
 report_ generator.

4. to place result in dbs in a form suitable for used_by
 other_tools and report_generator.

5. to present data in a form that can be used by gqma.

6. to produce output capable of being presented_to
 gqm_subsystem for display and for further_analysis.

AAITP 1992 TR005 30

Step 4.

The first CRNLP built to illustrate the analysis of this small
system was not satisfactory however it raised a number of
important issues concerning the approach being taken. This
will be discussed further in Section 11.3.

For Group A, the typical statement compilation format is:

[user, action, ..., object, place]

For example:

'to allow user to create, edit, maintain and display
evaluation_model which will be held in tame_dbs.'

will be compiled as

[user, create, edit, maintain, display,
evaluation_model, tame_dbs]

It will then be matched against the database of existing
statements to see if similarities could be identified.

The concept of similarity is based upon the object a
statement is specifying. Therefore, any compileable sentence
with the word 'evaluation_models' will be detected by the
above statement.

For Group B, the typical statement compilation format is:

[produce, output, processed, object, etc]

where etc is a list of other extra information, with arbitrary
length.

For example,

'to produce intermediate_output capable of being
processed_ by gqma to evaluate the model'

will be compiled as

AAITP 1992 TR005 31

[produce, intermediate_output, processed_by, gqma,
evaluate, model]

In this case, similarity will be based on the 'processed' and
'object' parts of the statements.

8.3.2 An Example Demonstration of CRNLP

Suppose we have the following statement already in the
database, as Prolog clause.

srs(a1,[user,create,edit,maintain,display,evaluation_models,
tame_dbs],[evaluation_models]).

which means:

statement 'a1' specifies: to allow user to create, edit, maintain
and display evaluation_models which will be held in the
tame_dbs.
and the important key word in 'a1' is 'evaluation_models'.

?- parser.

tame: to allow user to create, edit, maintain and display
evaluation_model which will be held in tame_dbs.

*** user create edit maintain display evaluation_model
tame_dbs.
statement is already in database: srs1.

tame: to allow user to create, edit, maintain
evaluation_model which will be held in tame_dbs.

*** user create edit maintain evaluation_model tame_ dbs.
statement looks like srs1 in database.
srs1: user create edit maintain display evaluation_model
tame_dbs.
if they are different, do you want to update database? <y./n.>
y.
<n.> for new statement or <m.> to modify database: m.
srs1 modified in database as:
srs1: user create edit maintain evaluation_model tame_ dbs.

AAITP 1992 TR005 32

tame: to allow user to create, edit, maintain
result_of_analysis which will be held in tame_dbs.

*** user create edit maintain result_of_analysis tame_dbs.
statement compileable but not in database,
do you want to add it into database? <y./n.> y.
id of sentence: srs2.
statement srs2 added into database.

tame: to allow user edit evaluation_model.
statement unparseable.
*** syntax error: to expected

8.3.3 Some Comments

 Writing the parser was not difficult, provided the grammar
 is given and well defined. There were, however, some
 problems encountered.

 1. This CRNLP reads in a statement, extracts the relevant
 information and stores it into the database, if the
 statement is acceptable as far as the language is
 concerned

 For example:

 'to allow user to create, edit, maintain and
 display evaluation_model which will be held in
tame_dbs. '

 will be compiled as

 [user, create, edit, maintain, display,
 evaluation_model, tame_dbs]

 which is a Prolog list that contains all the essence of the
 sentence.

 However, we need a way to 'properly' specify the class
 of the elements in the statement. For instance, 'user' is
 an agent, 'create, edit, maintain, display' are operators
 and 'evaluation_model' is operand, and 'tame_ dbs' a
 place.

AAITP 1992 TR005 33

2. The compiler should be able to identify the reusable
 components in statements in database. The method
 employed in developing this CRNLP is to have an
 extra attribute for each statement. This attribute
 contains the key element in the statement. During a
 new statement reusable component search, the
 statement with the key word will be identified if the
 it exists in the new statement

 s1 -- [user, create, edit, maintain,
 display, evaluation_ model, tame_dbs]

 and a new statement after compilation,

 s2 -- [user, edit, display, evaluation_models,
 tame_dbs]

 The extra attribute of 's1' is [evaluation_models] as specified

in the database. The new statement consists of the word
'evaluation_models' and hence the two must be related, even
though they are not identical. The system is able to do this
automatically, but the method adopted was not desired.

9. More Facilities

9.1 Expanding CRNLP

 This is what the above-mentioned compiler would do:

 /*
 tame: to allow user to edit picture.
 statement unparseable.
 unknown word: picture
 */

 This was our next goal, and was achieved:

 /*
 tame: to allow user to edit picture.
 statement unparseable.
 unknown word: picture

AAITP 1992 TR005 34

 try one of the following:
 evaluation_model
 result_of_analysis

 add new word picture <y.> or use alternative <n.> y.
 picture added into database.

 *** allow user edit picture

 statement compileable but not in database,
 do you want to add it into database? <y./n.> y.
 id of sentence: srs3.
 statement srs3 added into database.

 tame:
 */

 This is how the database dictionary grows, and so does the

language. Besides, this is also the error-recovery function of
the CRNLP.

 Method:

 1. When a sentence is not parseable due to an unrecognised
 word, the system will provide the user with a list of
 synonyms and related words.

 2. The user can choose whether to use an alternative or add
 the word into the system dictionary, so that the sentence
 becomes compileable, and hence expanding the database.

 This is very important because our main objective of this
 project is to develop a restricted language, we need to
 restrict and limit the dictionary of the system, as to reduce
 ambiguity.

 By providing alternative choice to the user, the user can
 make use of the words in the database to write the
 statements, hence achieving some aspect of reuse.

9.2 Statement Identification

AAITP 1992 TR005 35

 The system is to identify the reusable components in an SRS
and therefore an appropriate way to identify statements in
database, as well as new statements, this is an important
issue.

 In the previous processors, naming of statements is simply

arbitrary, and names of new statements were to be provided
by user. It is realised that user has nothing to do with the
identification of statements.

 Statement id should be system-generated. Reason being the

statement ids only tell where the statement appears in which
SRS.

 As we shall see in Section 9.3 and Section 11, each

statement is recognised by a SRS-ID and a line number
specifying which SRS it is in and which line in SRS it
appears.

9.3 Reusable Vocubulary

 Periodically, the system implementor needs or would like to

know where some words or statements have already
appeared in the system specification. The CRNLP provides a
facility to take word or words from the user to let the user
know where the words have occurred in the SRS in the
database.

 Method:

 1. Each statement in an SRS is identified by its line position
 in the SRS (where a sentence takes a line), and each SRS
 is identified by its SRS-ID.

 2. When a statement is stored into the database table, the
 first two attributes of the statement will have to be the
 SRS-ID and its line number to ensure each statements are
 distinct from each other.

 3. When user queries the system with one or more words,
 the system will search through the whole database
 looking for the words. Then all the statements with those

AAITP 1992 TR005 36

 words will be identified and their ids will be printed for
 user.

 An illustration:

 srs(sa,1,[user,create,...,evaluation_models,...]).
 srs(sa,2,[user, edit,...,data,...]).
 srs(sa,3,[user,create,edit,display,forms,...]).

 words: edit.
 statement #sa line #1
 statement #sa line #2
 statement #sa line #3

 words: evaluation_models.
 statement #sa line #1

 This enables the user to know if he may use a word that he
 has in mind before he uses it. One way to reduce ambiguity
 in SRS is to have only one way to say one thing, and if user
 uses the same word in two places or more, he must mean
 exactly the same thing.

 When the user thinks of using a word in a statement, he
 may query the system to see where the word has been used,
 and whether the meaning of that word is the same as what
 he is having in mind. If not, he would have to think of
 another word to specify his thought, or add it to the
 database.

10. Higher Level Abstraction Of Data

10.1 Limitation

 The prototypes of CRNLP so far were built in Prolog. The

table used for storing statements in the database is a set of
lists containing information of statements. The CRNLP was
able to identify similar statements with the simple statements
we were looking at. However, this simple data structure
would not be able to handle a more complicated SRS, and a
more complicated data structure would then be required.

AAITP 1992 TR005 37

 Despite the fact that only a few types of similarities in SRS
sentences are recognised, we have a SRS language which
has quite a high degree of nature feel, and is fairly effective.

 There are all kinds of sentences, though they are all in the

specific domain of Software Engineering. The types of
similar sentences the CRNLP is able to recognise are:

 1. sentences with the same object, or same class of object.
 2. sentences with same operations on different objects.
 3. sentences with same operation on different operands, but
 of same class.
 4. sentences with same type of operands but different types
 of operations.
 5. command type sentences.
 6. mathematical functional sentences.
 7. others

 The way the earlier CRNLP was written was a very simple-

minded pattern matching method that allowed only a very
small subset of statements of some small SRSs. It was to
produce a short-term illustration and in a long-term project,
proper level of data abstraction would be required.

10.2 High Level Abstraction

 We need to classify words in database to a higher order of

abstraction as well as statements that are to be stored in the
table. That means, instead of compiling the statements for
important words (that reflect the relevant information of the
statements), we should be looking at compiling the structure
and then the words of each statement. Instead of storing the
lists of words of statements, we should be storing the
abstraction of the essence of the statements into the database
[8].

 During the procedure of looking for similar statements from

the database, the system should first look for the generic
structure that matches the frame of the statement. If that is
not successful, then there is no similar statement. Otherwise,
the system then looks for similarities by identifying the same
words used in statements [9].

AAITP 1992 TR005 38

 This is the appropriate approach that should be employed,
and another CRNLP was written to check its feasibility (this
will be discussed in the next section.)

10.3 Application of CRNLP for the Language Derived
 from Tame Subsystems Specs

 The idea of high level abstraction of elements in a
 statement was put onto trial on a portion of the language
 derived from the Tame Subsystems Specifications.

 Some sentential examples of the language:

 1. to allow user to create, edit, maintain and display
 evaluation_models which will be held in tame_dbs.

 2. to allow user to create, edit, maintain and display
 result_of_analysis which will be held in tame_dbs.

 The old compiler would produce:

 1. user create edit maintain display
 evaluation_models tame_dbs

 2. user create edit maintain display
 result_of_analysis tame_dbs

 A CRNLP with higher level of abstraction would produce:

 1. [agent([user]), action([create,edit,maintain,display]),
 object([evaluation_models]), place([tame_dbs])]

 2. [agent([user]), action([create,edit,maintain,display]),
 object [result_of_analysis]), place([tame_dbs])]

 This is made possible by having all the words in the

dictionary classified according to their appearances in the
sentences. During the parsing procedure, words will be
categorised accordingly, producing the above format of
compilation.

 This is also the way a statement is stored into the table.

Given the compilation of a new statement, identifying
similarity will be easier and correct. Two sentences will be

AAITP 1992 TR005 39

matched for identical (with some appropriate constraints)
structure, then for same words in the frames.

 In some cases, two sentences could be considered as being

associated to each other for some significant similarity but
having different generic structures. This is one of the aspects
this project should look into. Two 'similar' statements should
be written to 'look alike', or at least have the same format.
Otherwise, appropriate constraints will be needed in
identifying similarities and dissimilarities.

 This CRNLP first parses the sentence, classifies and

identifies each word. If the parsing is successful, it then
searches the database for similarities. For each statement in
the database, it tries to pattern match them with the new
compiled statement. By doing this, it is like another parsing
procedure, where the compilation is parsed against the
database. This is not desired, and we need a better way of
identifying similarity between statement and statements in
database.

 We realised that a good parser will be able to handle this

with a good parsing procedure. It would be good to re-write
the whole CRNLP in Lex and Yacc. The reason being that
the compiler written in Prolog is a recursive descent parser,
and a deterministic parser is needed.

 However, due to time constraint, it was wise to push on by

compromising this situation. The next goal was of course to
come up with language that enables a format of standard
SRS to be proposed. This will be further discussed in the
next section.

11. Further Development of Language Into
 IEEE Standard Requirements Documents
 Format

11.1 Current CRNLP Prototype

AAITP 1992 TR005 40

 The current prototype is able to read a SRS that contains a
number of statements and perform semantics accordingly to
each statements. Each of these statements will be recognised
by the system as statements in that particular SRS. Therefore
the SRS will have a identification or name.

 The current prototype has the following Grammatical Rule:

 Statement --> start statement-id
 Sentences
 end statement-id.

 Sentences --> { Sentence; }

 Sentence --> the sentences specified above, not ended
 with '.'

 For example:

 start spec1

 to allow user to create, edit, maintain and display
 evaluation_models which will be held in tame_dbs;

 to allow user to edit, maintain and display
 result_of_analysis;

 to allow user to create, edit and display scheduling_
 information which will be held in tame_dbs;

 end spec1.

 An Example of CRNLP Process

 - a.?

statement <s.> or query <q.> s.
tame statements:

start srs
to allow user to edit picture;
to allow user to draw picture;
to allow user to draw and display picture;

AAITP 1992 TR005 41

end srs.

specification: srs

line #2
statement not parseable
*** unknown word: picture
try one of the following:
evaluation_models
result_of_analysis
security_profiles
scheduling_information
forms
add new word <n.> or use alternative <a.> n.

*** agent([user])
action([edit])
object([picture])

statement compileable but not in database
add into database? <y./n.> y.
srs2 added into database

line #3
statement not parseable
*** unknown word: draw
try one of the following:
create
make
edit
change
maintain
update
display
report
add new word <n.> or use alternative <a.> n.

*** agent([user])
action([draw])
object([picture])

associated statement identified:
srs2: agent([user])

AAITP 1992 TR005 42

action([edit])
object([picture])

update database? <y./n.> y.
new statement <n.> or modify statement <m.> n.
srs3 added into database

line #4
*** agent([user])
action([draw,display])
object([picture])

associated statement identified:
srs2: agent([user])
action([edit])
object([picture])

update database? <y./n.> y.
new statement <n.> or modify statement <m.> m.
srs2 deleted from database
srs4 added into database

statement <s.> or query <q.> q.
words: picture.
statement #srs line #3
statement #srs line #4

11.2 IEEE Standard Documents Format

 An American National Standard
 IEEE Guide to Software Requirements
 Specifications [10]

 Prototype SRS Outline:

Table of Contents
1. Introduction
 1.1 Purpose
 1.2 Scope
 1.3 Definitions, Acronyms, and Abbreviations
 1.4 References

AAITP 1992 TR005 43

 1.5 Overview
2. General Description
 2.1 Product Perspective
 2.2 Product Functions
 2.3 User Characteristics
 2.4 General Constraints
 2.5 Assumptions and Dependencies
3. Specific Requirements
 ...
Appendixes
Index

Prototype Outline 4 For SRS Section 3 [10]

3. Specific Requirements
 3.1 Functional Requirements 1
 3.1.1 Introduction
 3.1.2 Inputs
 3.1.3 Processing
 3.1.4 Outputs
 3.1.5 External Interfaces
 3.1.5.1 User Interfaces
 3.1.5.2 Hardware Interfaces
 3.1.5.3 Software Interfaces
 3.1.5.4 Communication Interfaces
 3.1.6 Performance Requirements
 3.1.7 Design Constraints
 3.1.8 Attributes
 3.1.8.1 Security
 3.1.8.2 Maintainability

 3.1.9 Other Requirements
 3.1.9.1 Data Base
 3.1.9.2 Operations
 3.1.9.3 Site Adaption

 3.2 Functional Requirement 2

 3.n Functional Requirement n

The proposed SRS language would be guided by the above
outline.

AAITP 1992 TR005 44

11.3 The SRS Language

 Our ultimate goal is to develop an SRS language that has the

format of a Standard IEEE SRS Document. In order to do
this, nested SRS structure would be required, and SRS-id's
would be the section numbers used in the above Outline.

 This is the proposed Grammatical Rule for the 'Specific

Requirements' section of an SRS.

 SP --> { FR-ID Functional Requirements FR-NO
 FR-ID Introduction STATS
 FR-ID Inputs STATS
 FR-ID Processing STATS
 FR-ID Outputs STATS
 FR-ID External Interfaces
 FR-ID User Interfaces STATS
 FR-ID Hardware Interfaces STATS
 FR-ID Software Interfaces STATS
 FR-ID Communication Interfaces
 STATS
 FR-ID Performance Requirements
 STATS
 FR-ID Design Constraints STATS
 FR-ID Attributes
 FR-ID Security STATS
 FR-ID Maintainability STATS
 { MORE-ATTR}
 FR-ID Other Requirements
 FR-ID Data Base STATS
 FR-ID Operations STATS
 FR-ID Site Adaption STATS
 { MORE-OREQ }
 }

 MORE-ATTR --> FR-ID NAME STATS

 MORE-OREQ --> FR-ID NAME STATS

 STATS --> { SENTENCE }

AAITP 1992 TR005 45

 SENTENCE --> Sentence as in Section 8

 FR-ID, FR-NO : number or some alphanumeric identifier

 NAME : string of characters as title name

 Similarly, the Grammatical Rule of SRS would look
 something like this:

 SRS --> Table of Contents TEXT
 SEC-ID Introduction
 SEC-ID Purpose TEXT
 SEC-ID Scope TEXT
 SEC-ID Definitions, Acronyms and
 Abbreviations TEXT
 SEC-ID References TEXT
 SEC-ID Overview TEXT
 SEC-ID General Description
 SEC-ID Product Perspective TEXT
 SEC-ID Product Functions TEXT
 SEC-ID User Characteristics TEXT
 SEC-ID General Constraints TEXT
 SEC-ID Assumptions and Dependencies
 TEXT
 SEC-ID Specific Requirements
 SP
 Appendixes TEXT
 Index TEXT

 SEC-ID: alphanumeric identifier

 TEXT: some sentences, tables, diagrams, or index, format

not discussed in this paper, where we are mainly interested
in the section of Specific Requirements Specifications
Statements.

AAITP 1992 TR005 46

12. Conclusion

 From the research and implementation of CRNLP

prototypes, we can conclude that a compileable restricted
NL-like language for writing SRS is possible.

 However, this is only a starting point, with prototypes

illustrating a portion of the language. For a real CRNLP, it
should be general enough to be applicable to any kind of
SRS, regardless the nature of Software Requirements.

AAITP 1992 TR005 47

13. References

 [REED'91] Reed, K. (1991) "Some Aspect of the

Possible Automation of the Use of Natural
Language in Software Development".
AAITP Technical Note 01/91 Australia.

 [GOMA'81] Gomaa, H, Scott, D B H. (1981)

"Prototyping as a Tool in the Specification
of User Requirements". The Preceeding of
the 5th International Conference on
Software Engineering, pp 333-342, 1981.

 [BELL'76] Bell, T, Thayer, T. (1976) "Software

Requirements: Are They Really a
Problem"? Proceedings of the 5th
International Software Engineering
Conference, Oct 1976.

 [BELL'79] Bell Telephone Laboratories, (1979)

"Unix Programmer's Manual, 4.2BSD"
Section 1 & 2. RMIT Computer Centre,
1979.

 [CONT'64] Control Data Corporation, (1964)

31/32/3300 Computer System (Fortran)
Library Routines, USA 1964.

 [HEWL'76] Hewlett Packard 2100A, (1976). "Moving

Head Disc Operating System (DOS-M)
User's Guide". Department of Computer
Science, 1976.

 [ROMB'86] Rombach, H D, Turner, J, Reed, K, (1986)

"Requirements Document for TAME
(Tools for an ADA Measurement
Environment)", University of Maryland,
USA, 1986.

AAITP 1992 TR005 48

 [COAD'91] Coad, P, Yourdan, E, (1991). "Object
Oriented Analysis", Prentice-Hall, USA,
1991.

 [MATS'84] Matsumoto, Y. (1984) "Some Experiences

in Promoting Reusable Software:
Presentation in Higher Abstract Levels",
IEEE Transactions on Software
Engineering, pp 502-513, Vol. SE-10,
No.5, Sept 1984.

 [IEEE'84] IEEE, (1984). "An American National

Standard, IEEE Guide to Software
Requirements Specifications", ANSI/IEEE
Std 830-1984, IEEE, 1984.

 [ACM'88] ACM, (1988). "A Comparison of

Techniques for the Specification of
External System Behaviour".
Communication of the ACM, pp 1098-
1115, Vol. 31, No.9, 1988.

 [MYNA'90] Mynatt, B T, (1990) "Software

Engineering with Student Project
Guidance", Prentice-Hall, pp 170-173,
1990.

 [FREE'87] Freeman, P. (1987) "Tutorial: Software

Reusability", IEEE, USA, 1987.

 [TRAC'88] Tracz, W. (1988) "Tutorial: Software

Reuse: Emerging Technology", IEEE USA,
1988.

 [AGRE'86] Agresti, W. (1986) "Tutorial: New

Paradigms for Software Development",
IEEE, USA, 1986.

 [COOP'85] Cooper, D, Clancy, M. (1985) "Oh!

Pascal!", Second Edition, pp 561-566,
Nortan & Company, Inc. USA, 1985.

AAITP 1992 TR005 49

 [CLOC'81] Clocksin, W, Mellish, C, (1981)
"Programming in Prolog". Springer-
Verlag Berlin Heidelberg,Germany, 1981.

 [MARC'86] Marcus, C. (1986) "Prolog Programming:

Applications for Database Systems, Expert
Systems and Natural Language Systems,
Arity Corporation, USA, 1986.

