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Abstract 
 
 
 

This paper argues that the relative levels of skills or "knowledge" 
available at the beginning of a software project, and the skills needed to 
perform the tasks constituting the project rather than some pre-ordained 
"software process" model should be used to generate a Project Plan.  
These approaches in turn should also influence the design and use of 
software development  tools. 
 
The paper identifies and describes a series of Knowledge or Skill 
Domains which can be used to develop a Software Project Plan.
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1. Introduction 
 
 Unless the factors which determine software productivity are 

understood and influence the design of software development 
tools, then the impact of those tools will be limited.  In addition, 
the factors which determine the evolution of a software project 
should influence Tool design. 

 
 Equally importantly, these factors, rather than some fixed 

software process model, should determine the way a software 
project is actually planned. 

 
 It is now widely accepted that a variety of "Software Process 

Models" are necessary.  (eg. The Waterfall Model [Royc70], 
Boehm's spiral model [Boeh87] and various prototyping models 
([Agre86], Part III).  There have also been proposals ([Oste87], 
the "Process Programming" approach of Arcadia, and the 
contract model proposed for ISTAR [Dows86] which lead to 
infinitely variable process models.  Considerable debate has 
occurred on the relative merits of these proposals.  However 
there is almost no advice available on how to choose between 
them or on how to tailor the process model. 

 
 We shall use the term "Software Project Plan", to imply that a 

particular plan is an instantiation of a more general software 
process model. 

 
2. Knowledge and Software Engineering 
 
 The process of moving from some concept of an artefact to the 

realization of the artefact itself can be considered to consist of 
two parts:- 

 
 a)   The acquisition of the skill necessary to carry out the 

 various tasks necessary to fabricate the artefact, and 
 
 b) The actual performance of the tasks themselves once the 

 skill is acquired. 
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 I have argued that the major difficulties with project planning 
and estimating occur because this fact is not generally 
recognized.  [Reed76]. 

 
 We can take this into account when planning a Software Project 

by ensuring that the necessary skill is available at the point in 
time when a particular task is to be commenced. 

 
 This is a knowledge or skill acquisition process of a more 

general kind, involving training or problem analysis as 
necessary. 

 
 An examination of the steps taken during, and of the techniques 

and tools used, in a software project, suggests that there are a 
small number of (relatively) distinct knowledge domains. 

 
 So far, the only software development knowledge domain 

explicitly dealt with in the literature is what we will call the 
Application Domain.  This is the Domain Analysis process.  
([Pret90], [Aran89], [Simo87] for example). 

 
 These ideas by others (see for example [Most87] and [Aran89]), 

and discussed in embryonic form by Brooks [Broo75] in his 
answer to the so-called "siren song" of software development 
(ibid. pp. 47-50). 

 
 The skill is also implicitly recognized in most estimating 

techniques (See [Boeh81]). 
 
 First, however, we describe the five software knowledge and 

skill domains.
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3. The KABASPP 
 
3.1 The KABASPP Domains 
 
 The five domains are: 
 
 a) Application Domain: the physical laws, organizational 

 structures, procedures etc. which govern the software 
 artefact to be produced. 

 
 b) Application Solution Domain: the collection of machine 

 executable descriptions (algorithms) which make it possible 
 to realise the application as software. 

 
 c) Development Environment Domain: the complete set of 

 tools, techniques and methods used to both develop 
 elements of a) and b), and to realise them as software. 

 
 d) Run Time Environment Domain:  the set of 

 characteristics, relating to the particular machine 
 environment under which the software must run. 

 
 e) Managerial Domain: the techniques necessary to plan, 

 estimate and manage the project. 
 
 These "domains" are not mutually exclusive. 
 Their existence is hinted or implied at, but not elaborated in 

other work. 
 
 The contents of each domain are summarised in the list below:-- 
 
3.2 The Domain Contents 
 
 KABASPP Domains and Components are not equivalence 

classes.  The lists are given are not necessarily complete.  
However, they provide a clear indication of the categories of 
skill in the use of or knowledge about subsystems, techniques or 
tools required in each case. 

 
 APPLICATIONS DOMAIN 
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 Examples 
 
 - Acceleration characteristic of a train 
 - Organizational structure of business 
 - Rules for issuing air-line tickets or degrees 
 - Procedures for organizing work flow  
 - Procedures for design of pressure vessel etc. 
 
 Discipline Responsible 
 
 - Commercial systems analysis 
 - Engineering 
 - Engineering Design Analysis 
 - "Knowledge" Engineering 
 
 APPLICATIONS SOLUTION DOMAIN 
 
 Examples 
 
 - Algorithms for searching lists 
 - Approximate method for calculating acceleration of train 
 - Procedure for allocating seats on a vehicle given multiple 

  access 
 - Path optimization's procedure for routeing of information 
 - Algorithm for rotating graphic images 
 - Procedure for recovering disc-space 
 - Sort procedures 
 
 Discipline Responsible 
 
 - Computer Science 
 - Graphics 
 - Artificial Intelligence 
 - Software Engineering, etc. 
 
 DEVELOPMENT ENVIRONMENT DOMAIN 
 
 Examples 
 
 - Programming languages 
 - Methodologies {JSD, SD, Modular Design} 
 - Tools - CASE, other development aids, Test tools 
 - O.S. and control language - shell, MCP, DOS, JCL etc. 
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 - Utilities - loaders, file manipulation, editors, configuration 
  managers 

 - File structure, Database management systems. 
 
 Disciplines Responsible 
 
 - Computer Science 
 - Software Engineering 
 
 RUN-TIME DOMAIN 
 
 Examples 
 
 - Operating Systems interfaces 
 - Database management systems calls 
 - Instruction set, external interfaces 
 - Resource constraints (ie. profile of available cpu time,  

  input/output, mem for the system) 
 - Response time 
 - Device peculiarities 
 - Hardware Reliability's Design goal 
 
 Disciplines Responsible 
 
 - Computer Science 
 - Computer Engineering 
 - Software  Engineering 
 
 and finally 
 
 PROJECT MANAGEMENT DOMAIN 
 
 Examples 
 
 - Estimating 
 - Project Planning 
 - Project Organization 
 - Resource acquisition 
 - Selection of people and development and run-time  

  domains! 
 - Project Tracking 
 - Customer Liaison 
 - Quality Assurance 
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 - System Delivery 
 - Maintenance Planning 
 
 Disciplines Responsible 
 
 Commercial EDP and Software Engineering and KABA. 
 
 
 
 
 
3.3 Use of KABASPP 
 
 The following  general procedure can be used to develop a 

software project plan, using an existing software process model 
as a base. 

 
 a) Identify the components of the KABASPP domains 

 required for the project, 
 
 b) Specify the times at which they must be available, based 

 upon the software system being produced, 
 
 c) Assess their current availability, in terms of skills and 

 specific "solutions" etc., 
 
 d) Using a, b and c above, construct a plan which ensures that 

 the necessary skills are available when required. 
 
 Further work is needed to clarify the precise manner in which a 

complete methodology should function, and to specify tools 
capable of simplifying its use.
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4. Conclusion 
 
 We have outlined the beginnings of an approach to Software 

Project Planning. 
 
 Additional work is required to develop a complete 

methodology. 
 
 However, the technique has the capacity to allow managers to 

choose between conflicting process models.  It provides a basis 
for understanding the failure modes in the Waterfall model, and 
the characteristics of other process models. 
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