
AAITP 1991 TR002 1

An Outline of a

Knowledge

Acquisition Based Approach

to

Software Project Planning

TR002 (1991)1

by Karl Reed, MSc, FACS
Rev 1.0 20062

Amdahl Australian Intelligent Tools Program

Department of Computer Science and Computer Engineering

La Trobe University

Bundoora, Victoria 3083

Australia

1 .Originally a Position Paper for CASE90, Irvine CA, Dec 1990.
2 A PDF version of the original document (TR002kr) was created 22/4/2006, with
some adjustment to layout of the index. Otherwise, the word version
(TR002kr.complete.r1.doc) and the corresponding pdf version
(TR002kr.complete.r1.pdf) are identical to the original.

AAITP 1991 TR002 2

Abstract

This paper argues that the relative levels of skills or "knowledge"
available at the beginning of a software project, and the skills needed to
perform the tasks constituting the project rather than some pre-ordained
"software process" model should be used to generate a Project Plan.
These approaches in turn should also influence the design and use of
software development tools.

The paper identifies and describes a series of Knowledge or Skill
Domains which can be used to develop a Software Project Plan.

AAITP 1991 TR002 3

Acknowledgments

Discussions with Professor R Jeffrey of UNSW, and Mr J Cybulski of
AAITP and Mr N Stern of RMIT have proved helpful.

Any errors are entirely the responsibility of the author.

AAITP 1991 TR002 4

Table of Contents

1. Introduction 5

2. Knowledge and Software Engineering 5

3. The KABASPP 7
3.1 The KABASPP Domains 7
3.2 The Domain Contents 7
3.3 Use of KABASPP 10

4. Conclusion 11

5. References 12

AAITP 1991 TR002 5

1. Introduction

 Unless the factors which determine software productivity are

understood and influence the design of software development
tools, then the impact of those tools will be limited. In addition,
the factors which determine the evolution of a software project
should influence Tool design.

 Equally importantly, these factors, rather than some fixed

software process model, should determine the way a software
project is actually planned.

 It is now widely accepted that a variety of "Software Process

Models" are necessary. (eg. The Waterfall Model [Royc70],
Boehm's spiral model [Boeh87] and various prototyping models
([Agre86], Part III). There have also been proposals ([Oste87],
the "Process Programming" approach of Arcadia, and the
contract model proposed for ISTAR [Dows86] which lead to
infinitely variable process models. Considerable debate has
occurred on the relative merits of these proposals. However
there is almost no advice available on how to choose between
them or on how to tailor the process model.

 We shall use the term "Software Project Plan", to imply that a

particular plan is an instantiation of a more general software
process model.

2. Knowledge and Software Engineering

 The process of moving from some concept of an artefact to the

realization of the artefact itself can be considered to consist of
two parts:-

 a) The acquisition of the skill necessary to carry out the

 various tasks necessary to fabricate the artefact, and

 b) The actual performance of the tasks themselves once the

 skill is acquired.

AAITP 1991 TR002 6

 I have argued that the major difficulties with project planning
and estimating occur because this fact is not generally
recognized. [Reed76].

 We can take this into account when planning a Software Project

by ensuring that the necessary skill is available at the point in
time when a particular task is to be commenced.

 This is a knowledge or skill acquisition process of a more

general kind, involving training or problem analysis as
necessary.

 An examination of the steps taken during, and of the techniques

and tools used, in a software project, suggests that there are a
small number of (relatively) distinct knowledge domains.

 So far, the only software development knowledge domain

explicitly dealt with in the literature is what we will call the
Application Domain. This is the Domain Analysis process.
([Pret90], [Aran89], [Simo87] for example).

 These ideas by others (see for example [Most87] and [Aran89]),

and discussed in embryonic form by Brooks [Broo75] in his
answer to the so-called "siren song" of software development
(ibid. pp. 47-50).

 The skill is also implicitly recognized in most estimating

techniques (See [Boeh81]).

 First, however, we describe the five software knowledge and

skill domains.

AAITP 1991 TR002 7

3. The KABASPP

3.1 The KABASPP Domains

 The five domains are:

 a) Application Domain: the physical laws, organizational

 structures, procedures etc. which govern the software
 artefact to be produced.

 b) Application Solution Domain: the collection of machine

 executable descriptions (algorithms) which make it possible
 to realise the application as software.

 c) Development Environment Domain: the complete set of

 tools, techniques and methods used to both develop
 elements of a) and b), and to realise them as software.

 d) Run Time Environment Domain: the set of

 characteristics, relating to the particular machine
 environment under which the software must run.

 e) Managerial Domain: the techniques necessary to plan,

 estimate and manage the project.

 These "domains" are not mutually exclusive.
 Their existence is hinted or implied at, but not elaborated in

other work.

 The contents of each domain are summarised in the list below:--

3.2 The Domain Contents

 KABASPP Domains and Components are not equivalence

classes. The lists are given are not necessarily complete.
However, they provide a clear indication of the categories of
skill in the use of or knowledge about subsystems, techniques or
tools required in each case.

 APPLICATIONS DOMAIN

AAITP 1991 TR002 8

 Examples

 - Acceleration characteristic of a train
 - Organizational structure of business
 - Rules for issuing air-line tickets or degrees
 - Procedures for organizing work flow
 - Procedures for design of pressure vessel etc.

 Discipline Responsible

 - Commercial systems analysis
 - Engineering
 - Engineering Design Analysis
 - "Knowledge" Engineering

 APPLICATIONS SOLUTION DOMAIN

 Examples

 - Algorithms for searching lists
 - Approximate method for calculating acceleration of train
 - Procedure for allocating seats on a vehicle given multiple

 access
 - Path optimization's procedure for routeing of information
 - Algorithm for rotating graphic images
 - Procedure for recovering disc-space
 - Sort procedures

 Discipline Responsible

 - Computer Science
 - Graphics
 - Artificial Intelligence
 - Software Engineering, etc.

 DEVELOPMENT ENVIRONMENT DOMAIN

 Examples

 - Programming languages
 - Methodologies {JSD, SD, Modular Design}
 - Tools - CASE, other development aids, Test tools
 - O.S. and control language - shell, MCP, DOS, JCL etc.

AAITP 1991 TR002 9

 - Utilities - loaders, file manipulation, editors, configuration
 managers

 - File structure, Database management systems.

 Disciplines Responsible

 - Computer Science
 - Software Engineering

 RUN-TIME DOMAIN

 Examples

 - Operating Systems interfaces
 - Database management systems calls
 - Instruction set, external interfaces
 - Resource constraints (ie. profile of available cpu time,

 input/output, mem for the system)
 - Response time
 - Device peculiarities
 - Hardware Reliability's Design goal

 Disciplines Responsible

 - Computer Science
 - Computer Engineering
 - Software Engineering

 and finally

 PROJECT MANAGEMENT DOMAIN

 Examples

 - Estimating
 - Project Planning
 - Project Organization
 - Resource acquisition
 - Selection of people and development and run-time

 domains!
 - Project Tracking
 - Customer Liaison
 - Quality Assurance

AAITP 1991 TR002 10

 - System Delivery
 - Maintenance Planning

 Disciplines Responsible

 Commercial EDP and Software Engineering and KABA.

3.3 Use of KABASPP

 The following general procedure can be used to develop a

software project plan, using an existing software process model
as a base.

 a) Identify the components of the KABASPP domains

 required for the project,

 b) Specify the times at which they must be available, based

 upon the software system being produced,

 c) Assess their current availability, in terms of skills and

 specific "solutions" etc.,

 d) Using a, b and c above, construct a plan which ensures that

 the necessary skills are available when required.

 Further work is needed to clarify the precise manner in which a

complete methodology should function, and to specify tools
capable of simplifying its use.

AAITP 1991 TR002 11

4. Conclusion

 We have outlined the beginnings of an approach to Software

Project Planning.

 Additional work is required to develop a complete

methodology.

 However, the technique has the capacity to allow managers to

choose between conflicting process models. It provides a basis
for understanding the failure modes in the Waterfall model, and
the characteristics of other process models.

AAITP 1991 TR002 12

5. References

 [Agre86] Agresti, W.W., (1986), "New Paradigms For

Software Development Tutorial" IEEE Computer Society
Press.

 [Aran89] Arango, G., (1989), "Domain Analysis - From Art

Form to Engineering Discipline" Proc, Fifth International
workshop on Software Specification and Design, pp 152-159.

 [Boeh81] Boehm, B.W., (1981), "Software Engineering

Economics" Prentice-Hall.

 [Boeh87] Boehm, B.W., (1971), "A Spiral model of Software

Development and Enhancement" in Software Engineering
Project Management pp 128-142, Thoyes, R.H. Ed IEEE
Tutorial.

 [Broo75] Brooks, F.B.J., (1975), "The Mythical Man-Month:

Essays of Software Engineering" Addison-Wesley.

 [Dows86] Dowson, M., (1987), "ISTAR - An Integrated

Project Support Environment" Proc. Second SDE Conference
(1986), Sigplan Notices Vol. 22, No.1, pp 27-33, Jan. 1987.

 [Ibco88] Ibcoe, ., (1988), "Domain-Specific Reuse: AN

Object - Oriented and Knowledge based Approach" in IEEE
Tutorial on Software Reuse.

 [Most85] Mostow, J. "Foreword: What is AI? And What Does It

Have To Do With S.E.". IEEE Transactions on Software
Engineering Vol. SE-11 No.11, Nov. 1985, pp. 1253-1256,
Special issue on AI&SE.

 [Oste87] Osterweil, L., (1987), "Software Processes Are

Software Too", Price. 9th International Conference on Software
Engineering, pp 2-13.

AAITP 1991 TR002 13

 [Pret90] Preto-Diaz, R., (1990), "Domain Analysis: An
Introduction" ACM Software Engineering Notes Vol. 15, No.2
pp 47-54.

 [Reed76] Reed, K., (1976), "Economic Factors in Using Private

Software Services" Proc. Soft-where, Soft-why, Soft-how,
Australian Computer Society SIC Seminar, 1976.

 [Royc70] Royce, W.W., (1970), "Managing the Development of

Large Software Systems" proc. IEEE Wescon pp 1-4.

 [Simo87] Simon, M.A., (19??), "The Domain-Oriented

Software Life Cycle Towards an Extended Process Model for
Re-useability" Proc. Workshop on Software Reliability and
Maintainability, Oct. 1987.

