
AN UNDERGRADUATE SOFTWARE ENGINEERING MAJOR

EMBEDDED IN A

COMPUTER SYSTEMS ENGINEERING DEGREE

by K. Reed, MSc, FACS, MIE(Aust) and T. S. Dillon, PhD, FIE(Aust), SMIEEE

Department of Computer Science
La Trobe University

Bundoora, Melbourne 3001
Victoria

Australia

ABSTRACT

This paper describes an undergraduate major stream in Software Engineering embedded
in a four year Bachelor of Computer Systems Engineering Degree. This major allows
students to specialize in Software Engineering in their third and fourth years, with the
result that some 60% of their time is dedicated to Computer Science and Software
Engineering.

This contrasts with the post graduate Master's programs offered in the US, and the
relatively minor Software Engineering subjects offered in some undergraduate Computer
Science courses.

50

1. INTRODUCTION

The fact that traditional engineering concepts can be applied to software production
is finally being widely recognized. It is now accepted that Software Engineering, a
practicable discipline similar in form to other established engineering disciplines, can be
considered to have come of age.

At the same time, the need for formal education for software engineers is becoming
generally accepted, although there are relatively few degree courses with dedicated to
this subject. The need for specialized courses in Software Engineering arose from the
widely held belief that conventional Computer Science and Business EDP degrees do not
really concentrate on producing practitioners capable of building reliable software to a
given specification and to some predetermined schedule [GIB89al Specifically tailored
programs were first introduced about ten years ago, and were based on Master's degrees
by course work [FRE87], [KEE81] following a series of curriculum proposals by ACM
[FAI87]. Today, some twenty years after the original NATO Conferences on Software

Engineering, serious consideration is only just being given to the introduction of
undergraduate Software Engineering degrees.

Interestingly enough, similar arguments can be applied to Digital Computer
Engineering, and to Computer Network Engineering, bodies of knowledge which are
currently (in Australia at least) taught as minor elements of either Computer Science or
Electronic Engineering degrees.

Recent studies in Australia have provided evidence of a chronic shortage in each of
the above areas. This prompted the Department of Computer Science at La Trobe
University in Melbourne Australia, to develop a four year undergraduate Computer
Systems Engineering Degree, with majors in Software Engineering, Digital Computer
Engineering and Computer Network Engineering.

This paper concentrates upon the Software Engineering major, however, the the
other two majors provide students with an opportunity to acquire a specialized
qualification in courses especially constructed for that purpose, something which is rare
in this country at least.

We begin by summarizing the current state of Software Engineering education, and
relate that to both Digital Computer and Computer Network Engineering. We then
provide an outline of the complete degree structure, and continue by dealing with the
difference between Software Engineering and Computer Science as seen by educators.
We conclude with a detailed description of the Software Engineering major,
summarizing the syllabi, and relating them to the existing undergraduate Computer
Science offerings.

51

2. THE COMPUTER SYSTEMS ENGINEERING DEGREE

2.1. Motivation

Software Engineering education currently falls into approximately two categories:

a) Master's by course work degrees dedicated to the subject, such as those pioneered
by Seattle University [LEES1] and the Wang Institute ([ARD87] and [ARD85], and
[MCK87].

b) A cursory outline of Software Engineering, usually concentrating on project
management and systems analysis, and incorporating a team subject. This would
usually be taught as a final year component in an undergraduate Computer Science
degree.

Both of these approaches are unsatisfactory, although the underlying reasons for
their existence are understandable. The English tradition of "liberal arts" education
which has been adopted in the United States and many other countries (including
Australia) means that the total amount of teaching hours available for vocationally
oriented material is limited. The time available for specialist subjects which could
legitimately be included in a Computer Science major is therefore restricted, preventing
additional space from being made available for Software Engineering.

There has also been a strong view, particularly in the United States that software
engineering should be only taught to people who already have an undergraduate
qualification and significant industrial experience (see [GIB89A] p272). Increasingly
however, the view is being taken that this approach is unsatisfactory because it smacks of
locking the stable door after the horse has bolted.

An alternate view is that proper software engineering habits should be learnt at the
outset of one's career as a software producer. This is to be preferred to the current
approach of trying to correct a lengthy period of inappropriate practices which were
acquired during basic undergraduate training with the full authority of academic staff.
Fortunately, the last few years have seen a gradual increase in the undergraduate
emphasis on Software Engineering, however, the current situation still leaves a lot to be
desired.

A slightly different problem exists with respect m computer systems engineering, an
area, which, in recent times, has seen a rash of offerings in Computer Engineering. These
have frequently been mounted by Electronic Engineering Departments and sometimes
consist of little more than the study of the application of microprocessors in embedded
computer systems for process control or real time applications.

The reality is that computer engineering or computer systems engineering is in fact
a much broader discipline requiring a proper understanding of the engineering of an
entire computer system. A detailed knowledge of computer architecture, computer
communication systems, software systems and lastly of multi-processor computer
systems must be acquired before one can be considered a Digital Computer Engineer.

52

Recognition of this fact is leading to a reappraisal of the notion of computer systems
engineering as is illustrated by the recent move of Computer Engineering from the
Electronic Engineering Department to the Department of Computer Science and
Engineering at the University of Washington. Recognition that Digital Computer
Engineering is a discipline in its own right, much in the manner of Civil Engineering,
Mechanical Engineering, Electrical or Electronic Engineering, rather than a sub-branch
of Electronic Engineering is likely to grow. At the same time, practitioners and educators
are becoming increasingly aware that the the principles underlying this discipline are
somewhat different from those that underly the enabling technologies of rnicroelectronics
and digital design.

Similar remarks apply to Computer Network Engineering.

The authors' view is that all three bodies of knowledge have matured to a point
where they can be regarded as a set of related but separate disciplines.

This had led the Department of Computer Science at La Trobe University to
develop a four year undergraduate degree in Engineering providing for major studies in
each of the above disciplines. This paper will provide an outline of the degree but will
focus on the Software Engineering component in some detail.

2.2. Aims of the Course

The aims and objectives of the course are to produce qualified professional
personnel in the fields of:

1. Software Engineering

2. Computer Architecture and Systems

3. Computer Networks

These personnel should be capable of participating effectively in the design,
construction and management of each of the relevant systems. The best graduates should
also be well equipped to carry out research in each of the above areas. The course has,
however, been designed to be vocational in intent and has been designated as an
engineering rather than a science course.

We have chosen this approach since we believe that science is essentially
concerned with the understanding of the phenomena under study and the development of
new knowledge, whether these phenomena are natural or manmade.

Engineering on the other hand is distinguished by the need not only for an
understanding or an analysis of systems but also a strong emphasis on synthesis, and
design and construction of systems. It is felt that these processes play a primary role in
engineering activities, and that they are best taught within the context of an engineering
framework. Amongst other things, it is our belief that recognition of the above has a

53

significant impact on the practical work prescribed as well as the choices that are made
with respect to course content.

In the latter context we regard traditional Computer Science and Electronics as
enabling technologies which have the same relationship to Software Engineering, Digital
Computer Engineering and Network Engineering as do Physics and Mathematics to
Mechanical and Civil Engineering and Chemistry to Chemical Engineering. In particular
there is, in Software Engineering, a body of experimental evidence which suggests that
the natural problem solving processes used by programmers and system developers
require a substantial knowledge of a large number of basic concepts and techniques. This
is a matter which we have attempted to address in this course.

2.3. Course Structure

The first two years of the Degree are common to all streams with students being
able to select one or the three major streams after the third and fourth year. Common
core material is necessary in the basic sciences and Mathematics, and in the enabling
technologies of Computer Science and Electronics. This is included in the first two
years. (See figure 1 below).

First Year
Second Year
Third Year
Fourth Year

SE

/

DCE
CNE
SE

ONE

Figure 1. BCSE Degree Structure

Specialization in the principles of Computer Systems Engineering begins in the
second year. This reflects our view that Computer Systems Engineers should, irrespective
of chosen specialization, be well educated in the basic technologies and the basic
sciences concerned. In the third year there is an opportunity to specialize in each of the
three streams, while still taking some units from the other two. For example Digital
Computer Enginee•ng majors will undertake more computer architecture and related
material than related Software Engineering majors. Software Engineering majors will
focus very heavily on their chosen filed, while still taking some material in relation to
computer architecture and networks. This specialization increases considerably in the
fourth year of the course, and allows the individual disciplines to be given adequate
weight, a situation that is not possible in traditional educational systems.

54

There is an emphasis throughout the course in understanding both the software and
hardware implication of each of the major streams.

The belief that an engineering education should involve a strong theme of "learning
by doing" is reflected in a strong component of practical work in each of the second,
third and fourth years. This is achieved through the medium of laboratory classes which
are closely supervised, whilst a considerable component is in the form of project work.
The emphasis in Software Engineering will be on the acquisition of practical experience
in applying techniques in second and third year within the framework of group projects.
A major team project in fourth year would be conducted in a simulated software house
environment, Horning's famous "software hut" [HOR77].

3. SOFTWARE ENGINEERING AND COMPUTER SCIENCE EDUCATION

3.1. What is Software Engineering?

Software Engineering is the result of bringing traditional engineering discipline to
bear on the process of building software systems. Software Engineering is a discipline
dependent on a number of technologies. It uses managerial techniques to control and
manage projects, systems analysis techniques to capture a series of descriptions of a
system that is capable of being converted, by programming, into a machine executable
form, as has been pointed out by Reed [REE871 in 1987.

It was further suggested that in broad terms [ibid], that one would expect, for any
discipline to be described as "engineering" that it should allow the:

a) Design of a system capable of performing a specified "function".

b) Design of a system to a specified performance given certain available run-time and
implementation resources.

c) Implemention of a system to a required time-cost schedule.

d) Maintainence and enhancement of the system during its life.

These goals can be achieved through...

A) Component re-use, both code, module and design,

C) Tool use, to control and lend power to the process of system description, code
production, testing and quality control,

C) Design iteration, to meet both performance and functional goals,

and

55

D) Management techniques to describe the system development process, estimate
resource requirements, and monitor resource usage.

The above constitutes an extension of the definitions given in Richard Fairley's
book [FAI85] in that we explicitly recognize the element of performance as a possible
design criteria, and add the design iteration requirement. Interestingly enough, otherwise
excellent Software Engineering textbooks do not attempt a compact definition of the
field. See for example Pressman [PREg8].

These goals cannot be met without a large number of techniques and methodologies
many of which we currently associate with Systems Analysis and Design [HAW88] and
with programming.

Requirements b) & c) cannot be achieved without iteration in the design process,
since both the system performance and implementation cost will depend upon aspects of
the design.

It should be kept in mind that requirements b) & c) are the keys to effective software
projects and products - without them we produce system that will not run on available
hardware. The fact is that run-time resource utilization, performance and implementation
are affected by the design itself, making design iteration and perhaps prototyping
essential. (We should point out that design iteration may also be necessary to determine
the functionality of a system cf. prototyping etc. [CAR83]).

It is possible to consider an engineering design process to be one in which a set of
parameters are successively altered until a set of target relationships between all of them
is obtained, while another set of relationships (constraints), is maintained. The design
process may include back-tracking as well as iteration [REE87].

3.2. The Educational Implications of Two Differing Disciplines

Computer Science has as its goal the systematic development of knowledge about
all aspects of computing systems, and their use. In other words, the Computer Scientist is
primarily engaged in the discovery of new knowledge about computing, while the
Software Engineer is interested in applying that and other knowledge.

There is, in this context, a fundamental difference between the prime objectives of
Computer Science and Software Engineering education. In particular Software
Engineering education must be concerned with the acquisition of practical skills relating
to the use of existing techniques and technologies coupled with the development of
managerial skills.

Computer Science education, on the other hand, tends to be biased towards the
theoretical issues and the study of existing systems with a view to the development of
new concepts and knowledge (See Sommerville pp302-303 [SOM85]).

As an example, one would expect to find the formal study of algorithm and module
re-use at a practical level in a Software Eiagineering course, but one would not be

56

surprised to find such a topic omitted from an undergraduate Computer Science offering.

Further differences are apparent when considering practical assignments offered in
each case. Assignments in Computer Science tend to exhibit the following features, as
was recently noted by Ciesielski et. al [CIE881. They tend to be:

a) small individual assignments designed to test ingenuity, or familarise the student
with some new technique or language feature,

b) large individual projects,

c) team projects, such as the implementation of a compiler, or a modest commercial
system.

Assignments are frequently artificially constructed to meet narrow pedagogic goals,
and the results are not used by those other than the developers. However, in DP
departments and software houses programmers are required to work as teams, to generate
programs and documentation that will be used by others and to define and satisfy the the
needs of users, often working from poor specifications. There is frequently a large gap
between the educational experience of students and the situation in the work place, as
has been noted by other software engineering educators [MCK87], [BUR87], and [FRE87].

In addition, it is not always the case that there are sufficient resources available for
detailed verification of a student's submission's correctness. Issues such as modular
design, and elementary module reuse are also unlikely to be used as the basis for
designing assignments.

The result is that students in a traditional Computer Science degree tend to see a
satisfactory program as one which will pass a cursory assessment procedure when tested
using selected data.

A Software Engineering programming assignment, on the other hand, may be set to
provide experience in some particular technique. In addition, the standard of testing and
documentation required may be significantly higher. Ideally, sufficient staff resources
should be available to allow incorrect code and poor design to be detected - with
students being asked to correct deficiencies for a passing grade.

Software Engineering practical work may also contain a "maintenance experience",
that is, the discovery and correction of errors in some large piece of software (see
[TOM87]), some modifications involving the addition of functionality to some previously

developed piece of software may be required.

3.3. A Philosophical Basis for Software Engineering Education

The authors of this course proposal have extensive experience as both Computer
Science and Software Engineering educators. Both are qualified engineers, and believe
that their approaches have been influenced by their respective basic educations. The

57

proposed degree, which will be offered beginning in 1990, is based upon a particular
philosophical view of both engineering and Software Engineering 1.

In addition, the syllabus designers, had, as a primary goal, the training of graduates
capable of producing high quality software. They were substantially influenced by
Parnas' papers [PAR72], by work on both State Transition Diagrams ([DAYT0I and
[WAS85]) and Petri Net techniques as system design and program implementation
techniques [STO891, by Basili's approach to metrics and quality evaluation [BAS85], by
Beohm's work on estimating [BEO82] and by Belady's general approach to Software
Engineering. Other techniques emphasized include modular programming 2 and
interpretive and table-driven systems.

The philosophical underpinning of our syllabi can be summarized as follows,
although the priority is not necessarily absolute:

We assume that product and design re-use are the fundamental means of
achieving effective software development (see [SIL85]). This leads us to promote
modular design, data-driven programming techniques and the acquisition of a wide
range of algorithmic techniques.

We assume that Software Engineers require an extensive knowledge of
traditional system description techniques. This leads us to include the study of a
variety of description and development methodologies usually associated with
commercial systems analysis.

We assume that quantative measures of product and project quality and
behavior are important. This leads us to treat software metrics, project structure
and organization, software testing [MYE79], and reliability.

We assume that tools are essential means of increasing software productivity.
This leads us to study their design and use.

We assume that effective specification of software is a prerequisite to good
design. This leads to the study of formal and informal analysis and specification
techniques, and to the study of prototyping techniques(see [CAR83]).

We assume that effective project management is necessary. This leads us to the
study of estimating techniques, estimating, project management and the software
process.

1 The first author has nine years experience in conducting a three subject undergraduate major in SE in a prior incarnation,
while the second author has extensive experience with the use of protocol engineering and reliability engineering techniques in
large scale software development.

2 The first author was substantially influeaced by early experience with the KDF9 K Autocode and IBM Fortran 4-E
subroutine libraries in the mid 1960's.

58

We assume that a wide knowledge of programming languages and utilities such
as database and operating system interfaces is required. This leads us to the
study of database and operating systems,

and finally,

We assume that a Software Engineer should have a good general Computer
Science education. Which means that the course contains a complete

undergraduate major on Computer Science 3.

This material is spread throughout the course in a manner intended to develop both
practical and theoretical skills.

4. THE D E G R E E S T R U C T U R E

All students undertake a common first and second year, which includes Software
Engineering related material in Computer Science I (about 10%), and in Computer
Systems Engineering II (about 50%).

Students specialize in third and fourth year, with all candidates taking Computer
Science 11I and components of Computer Systems Engineering III in third year. Fourth
year Software Engineering majors take only Computer Science and Software
Engineering. This is shown in a little meore detail in Table I.

As already discussed, all students other than the Software Engineering majors take
a Software Engineering team project in third year. The latter under take their project in
fourth year as part of Software Engineering IV, and operate in a Software Hut mode.

5. THE SOFTWARE ENGINEERING MAJOR STREAM

5.1. First Year

First year students are introduced to some basic Software Engineering topics. These
include an introduction to

a) the Waterfall model of the software process [AGR86],

b) modular design, information hiding concepts, and the use of existing modules,

c) simple prescriptive testing procedures [MYE79],

The normal undergraduate major offered by LTU would occupy about 30% of the students total load over three years. As
such, it is used as the basis for the BSE degree.

59

T A B L E I. S U B J E C T S IN T H E BCSE D E G R E E

First Year (4.5 UNITS) (COMMON)

Electronics I (I.0)
Physics ICS* (0.5)
Computer Science I (1.0)
Computer Systems I (0.5)
Mathematics IA (1.0)
Mathematics IDM (0.5)

Second Year (3.5 UNITS) (COMMON)

Electronics II (1.0)
Applied Maths II (0.5)
Computer Systems Engineering H* (1.0)
Computer Science II (1.0)

M A J O R S T R E A M S

Third Year (2.4 Units)

Software Engineering Digital Computer Engineering Network Engineering

Computer Sci. IIIA* (0.8)
Comp. Sys. Eng. HI]3 (0.5)
Software Eng. III* (0.7)
Statistics IIICS* (0.2)
Soc. Imp. of Eng. * (0.2)

Computer Sci. HI (1.0) Computer Sci. III (1.0)
Comp. Sys. Eng. IIIB (0.5) Comp. Sys. Eng. IIIA* (0.5)
Comp. Sys. Eng IIIB* (0.5) Comp. Sys. Eng. I]IC* (0.5)
Statistics IIICS* (0.2) Statistics IIICS* (0.2)
Soc. Imp. of Eng. * (0.2) Soc. Imp. of Eng. * (0.2)

Fourth Year (1.25 Units)

Software Engineering Digital Computer Engineering Network Engineering

Comp. Sci. IVA* (0.50)
Software Eng. IV (0.50)
Comp. Sys. Proj. IV* (0.25)

Comp. Sci. IVA* (0.50)
C¢~-np. Sys. Eng. IVA* (0.25)
Comp. Sys. Eng. IVB* (0.25)
Comp. Sys. Pmj. W* (0.25)

Comp. Sci. IVA* (0.50)
Comp. Sys. Eng. IVA* (0.25)
Comp. Net. Eng. IV* (0.25)
Comp. Sys. Proj. IV* (0.25)

* New Subjects

60

d) informal specification techniques,

and

e) an analysis-synthesis approach to program design which maximizes simple module
re-use.

It should be kept in mind that ALL Computer Science students take Computer
Science I, and therefore take some basic Software Engineering.

The subject Computer Systems I contains material on graphics, human interfaces, C
and other topics.

5.2. Second Year

Computer Systems Engineering II is, as already mentioned, roughly 50% Software
Engineering, allowing 4 hours of lectures per week for two semesters. The course focuses
on the following topics, building on earlier material:

a) System description techniques, such as Data Flow Diagrams, Jackson's
methodology [JAC831, structure charts etc.,

b) Modular programming,

c) Object Oriented approaches,

d) Macrogenerators,

e)

f)

g)

Database systems and their interfaces,

Operating System interfaces,

Transportability and practical algorithm reuse.

Students also take Computer Science II which is a fairly conventional second year
course.

5.3. Third Year

Students majoring in Software Engineering take Software Engineering III,
Computer Science IIIA, Statistics IIICS and Social Implications of Engineering, as well
as Computer Systems Engineering IIIB, which is an advanced computer architecture
unit.

61

Software Engineering III deals in depth with a substantial body of the discipline,
supporting lectures with practical assignments designed to demonstrate the value of the
techniques presented. A total of four hours of lectures are available each week, for two
semesters.

Topics presented include:

a) Software metrics, both structure and quality,

b) System description techniques, such as State Transition Diagrams, the NEC SPD
and others [AZU85],

c) Interpretive and table-driven programming techniques, and co-routines

d) Productivity issues, software and process re-use, fourth generation and special
purpose languages, application generators,

e) Software Security and Reliability,

f) Transportability, "virtual" systems, operating system interfaces,

g) System partitioning issues, eg IBM SAA

h) Test coverage metrics, software maintenance and modifiability

Computer Science IlI contains a wide range of components which complement the
Software Engineering material. Students taking the Software Engineering major must
take Computer Science IIIA, which consists of units in Fourth Generation Languages and
in Business Management, as well as six other components from the rest of that offering.
Available topics include Parallel CompUting, Formal languages, Graphics, Artificial
Intelligence 4, and Workload Analysis.

Statistics IIICS deals with queuing theory and related material, and is one hour per
week for the whole year, while Social Implications of Engineering addresses ethics,
environmental and other issues relevant to the relationship between Engineering and
society.

5.4. Four th Year

The final Software Engineering subject serves two purposes, and runs for two
semesters at four hours per week. The first is to introduce the student to advanced topics
likely to be influencing the future directions of the field, while the second is to provide

4 .hi is also introduced in first year.

62

practical knowledge of estimating and project management techniques.

Again, students must take Computer Science IVA, which is a selection of the
standard Honours year offering, including the Advanced Software Engineering
component therein.

Software Engineering IV proposes to deal with:

a)

b)

c)

d)

e)

f)

g)

h)

i)

J)

k)

1)

on Software Hut lines.

Formal Methods,

CASE tools and their history,

Impact of system structure on functionality and performance,

Software reliability,

Software quality control and measurement, including the TAME concept (see Basili
and Rombach [BASSS]),

Computer resource usage, monitoring and estimation,

Contractual and project management issues,

Configuration management and version control,

Information and Data Engineering,

System testing

Application of A.I. to software engineering,

Experimental methods and data collection.

Final year students also complete a major project which will be a team project, run

6. CONCLUSION

The Software Engineering course outlined above will produce graduates able to
make a substantial contribution to solving the Software crisis. We see no real difficulty in
mounting the Degree, and are confident that students will be able to cope with the subject
matter. We also believe we have demonstrated that an undegraduate program in
Software Engineering is readily achievable.

63

In addition, we submit that the ease with which we were able to identify material for
our syllabi is ample proof that we have a discipline mature enough to warrant such a
c o u r s e .

7. ACKNOWLEDGEMENTS

The author's would like to acknowledge those members of the Department of
Computer Science who assisted in the design and construction of the Degree. Special
thanks are due to Dr. Rhys Francis and Dr. Ian Robinson for assisting in ensuring that the
proposal met the requirements of the University's various committees. Our thanks also go
Ms. Kit Martin, Ms. Colleen Pearce and Ms. M. Clamp who prepared the various
documents that were needed. Thanks are also due to our colleagues in the Electronic
Engineering Department for their stimulating comments and advice.

In the end, however, the views expressed in this paper are the authors, and any
errors or omissions are their responsibility.

64

REFERENCES

[AGR86]

[ARD851

[ARD871

[AZU85]

[BAS851

[BAS881

[BEO821

[BUR87J

[CAR83]

[CIE88]

Agresti, W.W. "The Conventional Software Life-cycle Model: Its
Evolution and Assumptions", in IEEE Tutorial on New Paradigms for
Software Development, Agretsi, W. W. (ed) 1986 pp. 2-6

Ardis, M., Brouhana, J., Fairley, R., Gerhardt, S., Martin, N., and
McKeeman, W. "Core Course Documentation: Master's Degree
Program in Software Engineering". School of Information
Technology, Wang Inst. Graduate Studies Tech. Report TR-65-17
Sept. 1985

Ardis, M. "The Evolution of the Wang Institute's Master of Software
Engineering Program", IEEE Trans. on Software Engineering vol.
SE-13 no. 11 1987

Azuma, M., Tabata, T., Old, Y. and Kamiya, S. "SPD: A Humanized
Documentation Technology", IEEE Trans. on Software Engineering
vol. SE- 11 no. 9 Sep. 1985 pp. 945-953

Basili, V.R. "Quantitative Evaluation of S.E. Methodology", (Keynote
Address) ProC. First Pan Pacific Computer Conference, Melbourne
Australia, Sep. 1985

Basili, V.R. and Rombach, H.D. "The TAME Project: Towards
Improvement-Oriented Software Environments", IEEE Trans. on
Software Engineering vol. SE-14 no. 6 Jun 1988 pp. 758-773

Boehm, B.W~ "Software Engineering Economics", Prentice-Hall 1982

Burns, J.E. and Robertson, E.L. "Tow Complementary Course
Sequences on the Design and Implementation of Software Products",
IEEE Trans. on Software Engineering vol. SE-13 no.11 1987

Carey, T.T., and Mason, R.E.A. "Information System Prototyping:
Techniques, Tools, Methodologies", INFOR - Canadian Journal of
Computational Research and Information Processing Vol. 21 No. 3
May 1983 pp. 177-191

Ciesielski, V.R., Reed, K. and Cybulski, J.L, "Experience with a
Project Oriented Course in Software Engineering", Proc. of the
Australian Software Engineering Conference (ASWEC), May 1988
pp. 125-131

[DAY70]

[FAI85]

[FAI87]

[FOR89]

[FRE87]

[GIB89a]

[GIB89b]

[HAW881

[HOR77]

[JAC83]

[LEE81]

[MCK87]

[MYE79]

[PAR72]

[PRE88]

65

Day, A.C. "The use of symbol-state tables", Computer Journal Vol. 13
No. 4, Nov 1970

Fairley, R.E. "Software Engineering Concepts", McGraw-Hill 1985

FaMey, R.E. "Guest Editor's Introduction", IEEE Trans. on Software
Engineering vol. SE-13 No. 11 Nov. 1987 pp. 1141-1142, Special
Issues on Software Engineering Education

Ford, G.A. and Gibbs, N.E. "A Master of Software Engineering
Curriculum", IEEE Computer, vol. 22 no. 9, Sep. 1989 pp. 59-71

Freeman, P. "Essential Elements of Software Engineering Education
Revisited", IEEE Trans. on Software Engineering vol. SE-13 no. 11
Nov 1987 pp.1143-1148

Gibbs, N.E. "The SEI Education Program: The ChalIenge of
Teaching Future Software Engineers", Cornm ACM, Vol. 32 No. 5,
May 1989 pp. 594-605

Gibbs, N.E. "Is the Time Right for an Undergraduate Software
Engineering Degree?" in Proc. Software Engineering Education
Conference July 1989, Springer-Verlag LCNS 376, Gibbs, N. E. (ed)

Hawryszkiewycz, I.T. "Introduction to Systems Analysis and
Design", Prentice-Hall 1988

Homing, J.J. and Wortman, D.B. "Software Hut: A computer
program engineering project in the form of a game", IEEE Trans. on
Software Engineering vol. SE-3 No. 4 Jul 1977 pp325-330

Jackson, M.A. "System Development", Prentice-Hall 1983

Lee, K.Y. "Status of Graduate Software Engineering Education",
Proc. ACM81

McKeeman, W.M. "Experience with a software engineering project
course", IEEE Trans. on Software Engineering vot. SE-13 no. 11 Nov
1987 pp. 1182-1192

Myers, G.J. "The Art of Software Testing", Wiley, 1979

Parnas, D.L. "On the criteria to used in decomposing systems into
modules", Comm ACM, vol. 15 no. 2 1972

Pressman, R.S. "Software Engineering, A Practitioners Approach",
McGraw-Hill,1988

66

[REE871

[SIL851

[SOM851

[TOM87]

[WAS85]

Reed, K. "Commercial Software Engineering, the Way Forward",
Keynote Address to the Australian Software Engineering Conference
(ASWEC) Cnaberra, May 1987

Siverman, B.C. "Software Cost and Productivity Improvements: An
Analogical View" IEEE Computer Vol. 18 No. 5 May 1985 pp. 86-96

Sommerville, I. "Software Engineering", 2nd ed. Addison-Wesley,
1985

Tomayko, J.E. "Teaching Maintenance Using Large Software
Artifacts", Proc. Software Education Conference Pittsburgh July
1989 Springer Verlag LNCS 376 pp. 3-15

Wasserman, A.I. "Extended State Transitions diagrams for the
Specification of Human Computer interfaces", IEEE Trans. on
Software Engineering vol. SE-11 no. 8 1985

