C_$4 SE — S uoare Eﬁj«\eef}f\s

MODULARITY - PROCESSING ON LINKED LIST ORDERED

Our purpose is to analyze the functions needed to maintain and use
a linked list whose nodes are ordered by some key, and, which is

~held on a random access file (i.e., a relative file, in COBOL parlance).

We will, for the beginning, ignore the way the list is stored.

In a way it does not matter. See Fig. 1 below.
et

| STAKT |

Kl

I3

fec 4 £ecd- Lec ! | fec3 =

Figure I. A linked list on a random access file

Note that the list is to be ordered,
j.e. for all i, 1<1i<n where n (D
is the number nodes in the list, it must always be true that

K. p K, (2)

where p is any binary relation which is a total order.
ﬁl/—, s

We begin by examining the operations to be performed on the list.

They are tabulated below : (Table 1)

Table 1 - Operations On A Linked List

Name Description

INSERT puts a record in it's correct place

DELETE removes a record

FIND prints a record

CHANGE alters either the_key or data or both
of a record

PRINTALL prints the file in kéy order

Other functions might also be useful, e.g.

CREATE

DUMP

creates the file if it does not exist

dumps the file in record order so that it
can be examined visually.

However, we will look at those in Table I first.

TECHNIQUE

Examine each function "graphically" if appropriate, to see what it

must do. DO NOT implement one function first.
YOU MAY NOT PICK THE RIGHT ONE !

(You should look at the list in Table 1 and see if you can specify

the right order of implementation).

In any case, we will "build" our solution from the bottom up so even

picking the "right'" function may not help !

The figures below show what will be done to change the list for the
INSERT, DELETE and CHANGE OF KEY commands.

We assume that the node is held in the node pointed to by NEW

-4 -

We now have a clear picture of the way links will be changed, and

can state them verbally.

However, let us refer to Table 1 and ask if we can extend it to include

some simple statement of the error conditions :

In particular, we ought to note that :
Table 2

EQNDITIONS FOR EACH FUNCTION

(a)

)

(e)

(d)

%
We cannot insert K if there is no place§ for it in list
(i.e. there must exist some Ki in the set of keys such that
* .
Ki pK pki+1)

*
We cannot delete K if there is no key Kj in the list such

%
that K., = K.
1

#*
We cannot find K if there is no key K. in the list such that
%
K. = k .
i

* s
We cannot change the key of a record from K to K unless :

*
(i) there exists Kj = K in the list, and

3

‘. ® - - -] *
(ii) there exists Ki such that Ki wh pK pKi+

(i.e. there is a place for Ki)'

§ Note that the concept of place (i.e.

%
BKi : KiihpK pKi+1) is more general than that originally

used, and allows for relations which are satisfied by equal keys.

2!

-5 -

"DISCOVERING" PRIMITIVE FUNCTIONS

2.1 LINKING
We can begin by examining the Figures 2 through 4 and note that :

(a) the insertion process involes :

two "linking" operations

(b) the deletion process involves :

one "linking" operation

(¢) the change of key operation involves a delete followed by

an insert; i.e. three linking operations !

SO, WE CONCLUDE THAT LINKING OPERATIONS ARE PRIMITIVES !

However, we do not know at this stage exactly what they look like.

2.2 FINDPLACE
Examining our list of CONDITIONS FOR EACH FUNCTION, we note that each
is basically interested in the same question, but with a different

answer, i.e.

E3
either Ki pK pKi+1 is to be true

or : Ki = K is to be true.

BOTH OF THESE INVOLVE A SEARCH OF THE LIST ! (OBVIOUSLY)
Hence we need to examine this search function (which is obviously

a primitive) and see what it looks like.

Before we do, let us state each operation verbally :

% #
INSERT K Search for K .
If place found then

begin 1}nk new to Ki+;

end link Ki to new

L3
DELETE K

Search for K* Shith il b2 eb K; I\» i € 5
2
if found then link Kiﬂi to Ki+1
FIND 5
- %
Search for K
#
if found then print K

=1§ =

% ' %X
CHANGE K key to K (tricky)
&

%
Search for K , gsearch for

% wh
if K found and place for
then begin
*
link Kj-i to Kj+1 (remove K from chain)

link K:.| to K,
link K, to X,
1]

¥
change. Kj key to K
end

(Note that CHANGE could be written :

DELETE K ; copy data in K to a NEW
1f successful then INSERT K (from NEW)).

However, we have missed an opportunity for optimization, since we are -

forced to begln our search for the keys from the beginning.

NOTE if K pK holds, then the record with key K occurs beforng

¢

the

This suggests that :
THERE IS NO NEED TO RETURN TO THE START OF THE LIST,
JE CAN SEARCH FORWARD FROM THE POINT WHERE THE SEARCH
FOR K TERMINATED !

We can only do this if the search function commences at a nominated

starting point, not the beginning !

THIS SUGGESTS THAT THE SEARCH FUNCTION MUST BE TOLD WHERE TO START,

i.e., that the starting point is a parameter.

We can now attempt to define the SEARCH function in more detail.

§ Unless p includes equality - in which case it does not matter.

SEARCH FUNCTION

SEARCH {start:in; search key:in; pointers to found node:out}

"pointers to found node" we should consider exactlx.uhat we
mean by this, and how the search is
to be carried out

Let us re-examine the list, and the search procedure.

ARy R
CURRENT<+START; if‘Ngg)(K p CURRENTt+, KEY) then finish.

] STAET]

Ki > > 0 A
Dt By

bes foc 2 Lec 1 L3

FIG. 5 - First step of Search

Notice only one step is considered !
Also the form of the relationship.

; ‘&
ﬁﬁéi\(x p CURRENT4, KEY)" the choice here depends upon the properties
of the relation p , and the "ordering" if p includes equality.

]
(Consider the effect of CURRENT4 KEY pK >~ Thiy wusr Yoz H(as*uﬂ)

However, referring to Figs. 2 through 4, we note that we require two

¥ b
pointers from SEARCH, formally, ; San 36 yhy nodes which satisfy

N &
Ki pK pK1+1, in all cases.

Hence, the search process should, on successive steps, look
like Figs. 6 and 7.

CONSIpDER ACNENDINe XCE¥S

AND /4 s S

re . K| o K3 W L
3 5 7 2,
l(S— NE M/‘\LC‘}’.\‘Z) 5] - \ae\of\3$)Qe_ tween

K2 ¢ Kb

£ we skrary Wik, CORLEMT D& START
L (K¥ f CURRENTH KEY) Fhen Shof

else. <rep o Owne

C et flais for - /9 S > a ~of
NEw,kEY = 10

[s7act]—p ¥\ S W 3 VL
9 W, 5 =2

|

A

forma!

Ploce

ProoC

O~ K*: 7
K3 oL
7 2

For 7

could be develo ped‘l

)&f‘/

o lale NOT(,L /) Cenroa ¥R Yo)

L-:’C‘Z)_Lﬁ____-_

}_L\'\J/h("/"b‘/}} PO!N #/\M.')L~ ~

th 'S)ep - e .
Q_f\g/k B -

-8 -

1 1)) UR ..nf
1ALT lm‘ Jw ey
'S Gl T 'l
FIG.6 - Second Step
PRED - CUREEN T
| siAeT -

T

]

FIG.7 - Third Step

NOTE that the action between steps was

PRED+CURRENT Fragment 1
CURRENT+CURRENT + . PT

AND BEWARNED one should be aware that the operation CURRENT+"may require

a procedure call ! ! We will look at this last !

These two steps, then, combined with Fig. 5, read as @

-9 -

1£ N@F (K p CURRENTAKEY) then PLACE FOUND
else
begin
PRED+CURRENT
CURRENT+CURRENT . PT

Fragment 2

end

The compound statement (between the begin and end) actually

could be described as a "primitive" function STEP, e.g.

STEP {PRED, CURRENT:IN;PRED,CURRENT:OUT}. Fragment 3
Out temptation, at this point, for the INSERT, to just write

while NOT K' p CURRENT#.KEY do
begin

PRED+CURRENT Fragment 4

CURRENT<CURRENT4 . PT

end

(* place found *)

Indeed, this would not be a bad choice.

We see that the search actually locates the Elace for an insertion.

We do not know the exact reason for the search termination

QUESTION
Do we have a useful primitive function ? Consider the requirements
for an INSERT)
ASSUME primitive SEARCH{K*,STARTPT:IN;PRED;CURRENT:OUT}

(* obtain first element, if necessary %)
(* initialize PRED, CURRENT %)

(* but first, check that list is not empty)

Note : SPECIFICATION FOR SEARCH
13
CURRENT POINTS TO THE KEY FOR WHICH K p CURRENT#.KEY IS TRUE.
~

FIAST

- 10 -

if START # "null" then

begin
STARTPT+START

PRED+START Fragment S

CURRENT+START

%
SEARCH{K , STARTPT ;PRED,CURRENT}

(* Assume that a place has been found - we have no warning
at this point %)

(® Assume that the new node is pointed to by NEW #)

(* We now have the situation in Fig. 2 %)

(% Hence : - %)
NEW4 .PT<+PRED+.PT (* or NEW+.PT«CURRENT#)
PRED+4 .PT+<NEW

end

This 1s not really satisfactory. (Why ?)

It would be possible to see from Table 2 that we might have chosen

a better primitive by examining the conditions which are involved.

Table 3 shows the "results" which are needed from the searches for

each function.

TABLE 3¢ - SEARCH RESULTS

FUNCTION RESULTS
INSERT " PLACE FOUND
DELETE KEY FOUND
FIND KEY FOUND

KEY NOT FOUND
CHANGE KEY KEY FOUND
PLACE FOUND

Fragment 6

- 11 -

It is clear then, that we must return a RESULT. However, we
should ask ourselves how we handle the situation for insertions
where key is to be inserted at the end of the list. This does
of coufse, qualify as a "place found", but, how do we set the

pointers and actually terminate the search ? =i

VEW

AT | ¢

FRED

CHEENT

\

',,/
)

—

%
Fig. 8 K to go after K3 - pointers at search termination

NEW
fres /

e | | 79

%
Fig. 9 K inserted after search

—

\

After the search, and the standard linking step

NEW+4 .PT+PRED4.PT

PRED+ .PT+NEW
SO, WE DO NOT NEED A SPECIAL RESULT FOR INSERT IF THERE IS NO
"TRUE" PLACE IN THE LIST !

- 12 -

However, we note that we do need a result "key not found" for FIND
(see Table 3a).

Before considering this, let us consider the "standard linking step”,
and see what happens if we need to INSERT before Ki.

- MEW
|~ AL fheD CUREEN A

l—li___l .
DD

e

*
Fig.10 K to go before K; - pointers at search termination

The standard linking operation will not work in this case, since it
assumes that PRED and CURRENT are distinet, which they are not.

Note that it is START which is to be altered, see Fig. 11.

\ ¢ Eglf"';#" CORLEN T

N K.’ - @—-———-—9

Fig.11 - After Correct Linking

The standard linking operation, as performed will not work because it

assumes that PRED points to a node.

A possible solution

Let start point to start node. (See Fig. 12)

- 13 -

Fig. 12 Use of a Header Node - end of search

Inserting via the standard linking sequence puts NEW after the first

node, and works well.

YOU MAY OF COURSE DO THIS IF PRACTICAL

However, one may not be able to do this because
(a) the first node may not be jdentical to other nodes.
(b) the nodes may be physically large, and therefore it may be
impractical to hold more than a few in memory.
(Objection a) can be overcome by the use of undiscriminated unions

in PASCAL and REDEFINES in COBOL - but care is needed 1

so let us pevert to Fig. 10, i.e. START points to the first real link.

A Linguistic Interlude

It is clear that a procedure

LINKIN(NEWPT ,PREDPT ,NEW)
NEWPT<+PREDPT
PREDPT<+NEW

Fragment 6

end

——

will work if called by

LINKIN(NEW4 .PT ,PRED+.PT ,NEW)

- 14 -

CONSIDER the language statement
"PRED+.PT IS STAR i

Semantics
An assignment to PREDt.PT alters START unless PRED has been altered

since the execution of the £§_statement.
HWe could then write

PRED+.PT IS START;
CURRENT<START

SEARCH{K#, START;PRED,CURRENT} Fragment 7

LINKIN{NEW .PT,PRED+.PT,NEW}

end of interlude

However, we cannot.

Hence we must write, for our insert :

PRED+START
CURRENT+START

SEARCH{ K* ,STARTPT ; PRED,CURRENT} Fragment 8

IF PRED = START THEN
LINKIN{ NEW+.PT;START ;NEW}
ELSE
- LINKIN{NEW+4.PT ,PRED4.PT,NEW}

which is not as bad as all that !

Notice that we have not worried‘about the problem of equality

in the search.

LET US NOW EXAMINE THE OTHER FUNCTIONS

- 15 =

DELETE could be described as :

search for key

link it out.

This translates to :
PRED<START
CURRENT+START

SEARCH{K* ,STARTPT ; PRED ,CURRENT}

IF key is found THEN (* PRED points to KEY *) |Fragment 9

BEGIN
IF PRED=START THEN
START<PRED+ .PT, return(PRED)

ELSE

FIND
Find is basically a delete with a different action.

PRED+START
CURRENT+START

SEARCH{K* ,STARTPT ; PRED ,CURRENT} Fragment 10

IF key is found THEN (* PRED points to Key ®)
DISPLAY (KEY)

% fede
CHANGE Key value K to K

here we would code :

% fik
IF K pK in then
case 1,

ek £
else (* K pK) case 2.
where case 1 is a '"procedure" which does a change in the first case,

£33 £
and K pK does it in the second case.

- 16 -

S0 suppose we invent a procedure "CHANGE-IN-ORDER" with two
parameters, K; and Kj; but, this becomes a real mess !

(try it and see).
(Back out a little !)

We need to ask ourselves -

"What do we need to perform this function 2"

From Fig. 4, we see we need four pointers. e

| K *ACUfe { @-JL
| STHAT 27
¢

NEW

Fig. 13 Pointers for Key Change

These four pointers can be picked up by two calls to search.

The order of these searches depends upon the order of the two keys.

- 17 -

% Rt
IF K pK THEN
BEGIN
%
K PRED*START
K CURR+START
SEARCH(K ,STARTPT; x PRED, K CURR)
K RES=RES
(* NOW FIND THE OTHER PAIR %)
fee ¥
K PRED+K CUR
e L3
K CURR«K CUR

(* start search from the point just reached %)

L % %
SEARCH(K STARTPT;K PRED,K CURR) Fragment 11
'u"
END RES=RES
ELSEM & K (i/)
BEGIN s z
(# repeat atove using K in place of K , and vice versa *)
END
% Kok
IF K RES=FOUND ind K RES=PLACE FOUND THEN
BEGIN

O K DELETE *Hé—BELE?E(K PRED K CURR START)
alter Key of K "CURR to K
OKLINKIN (K CURR*.PT, K pRED$ PT, K CURR,START)
END

(* process errors %).
Note that we have used the section of code from Fragment 8 of beginning
WIF PRED= " as the procedure OKLINKIN.
THERE ARE A NUMBER OF THINGS WHICH STILL NEED TO BE CLEANED UP.

THESE INCLUDE :
(A) clumsy use of procedure SEARCH and its parameters

SEARCH ought to begin from STARTPT - this would save some

initialization.

- 18 -

(B) The result of SEARCH is not a parameter, nor has it been defined.
That is Ok, at least we know what results we require - or do we ?

(C) There is not test for end of list.

otherwise we are in good shape.

LET US EXAMINE THE RESULTS
Consider p is £ .
Then
SEARCH{KEYSOUGHT,IN;STARTPT,IN:PRED,CURR:OUT#Q}
CURR+STARTPT

WHILE NOT CURR=null DO
IF KEYSOUGHT < CURR .KEY THEN

GO TO FOUNDPLACE
ELSE BEGIN
PRED+CURR
CURR+CURR#.PT
END
FOUNDRES<«+NOT-OUND 3
RETURN (* exits procedure #*)

Fragment 12

FOUNDPLACE : IF KEYSOUGHT=CURRt.KEY THEN
FOUNDRES+FOUND
ELSE FOUNDRES+NOTFOUND

we note that there is always a place for the key, in this case -

found or not.
Exactly what we need depends upon the relationship »op .

include equality {e.g. p = €) or 1t may not,

(e.g. p =2>). Clearly, if we stop our search when we have found
the first item for which p is true, then the key of the "gought" item
may or not be equal to that of the stopping point.

- 19 -

It is interesting to note that,

while our external action does not depend on the relation (we. are
interested in three results, key found, key not found, place found).

The action inside SEARCH does indeed.

- 2-

Consider p 1is ¢

then |
SEARCH{KEYSOUGHT,IN:STARTPT,IN:PRED,CURR:OUT;}
CURR+STARTPT

WHILE NOT CURR=null DO
IF KEYSOUGHT < CURR#.KEY THEN
GO TO FOUNDPLACE
ELSE BEGIN
PREDCURR
CURR+CURR# . PT
END
© T FOUNDRES<NOTFOUND;
RETURN (% exits procedure %)
FOUNDPLACE: IF KEYSOUGHT=CURR#.KEY THEN
FOUNDRES<FOUND
ELSE FOUNDRES+NOTFOUND

Fragment 12

We note that there is always a place for the key, in this case -

fouid or not.

Consider p 1is <

then

SEARCH{KEYSOUGHT , STARTPT : IN ; PRED , CURR ;0UT}
CURR+STARTPT
WHILE NOT CURR=null DO
IF KEYSOUGHT<CURRA.KEY THEN GO TO FOUNDPLACE
IF KEYSOUGHT=CURR4.KEY THEN GO TO FOUND
ELSE BEGIN '

PRED+CURR

CURR«CURR*+ . PT

END

FOUNDPLACE: FOUNDRES<FOUNDPLACE RETURN;
FOUND: FOUNDRES«FOUND RETURN;

Fragment 13

- 21 -

Comparing FRAGMENTS 12 and 13 we see that they are equivalent.
(Wwhy ? ~make sure you see why !)

Except that we are calling the result of FRAGMENT 12 "NOTFOUND"
instead of ."PLACE FOUND"

THIS WILL NOT ALWAYS BE TRUE, SO, THE DETAIL OF SEARCH WILL
NEED TO BE RE-WRITTEN FOR EACH CASE.
NOTE this sort of problem can be easily hancile!. when a procedure

can be passed as a parameter (HOW ?)

“Cv \\.\\N.

What is important, however, is that we coneeude that if the
1ist is ordered by 'p" then, when SEARCH STOPS

(a) the target may be found

(b) if it is not found we have the place for an insertion , Ta

SO, WE ARE ONLY INTERESTED IN TWO RESULTS, NOT THREE.
EXCEPT THAT FOUND MAY OR MAY NOT MEAN PLACEFOUND!

NOTE ALSO FROM FRAGMENT 12, we have cleared up’ the problem of the
start and initialization of PRED,CURR.,

We assume the SEARCH commences from STARTPT lets clean

it up finally !

SEARCH
Definition
Seapchs for the list item with key KEYSOUGHT commencing from
the node pointed to by STARTPT.
It stops when either :
(a) the KEYSOUGHT -is found

or (b) it's place is found

and returns separate 1nd1cat10ns for these two.
Note that when SEARCH stops with ev;a STARTPT, PRED is

meaningless,
otherwise PRED points to the successor to CURR+, and
CURR points to the first jtem for which p is true.

CODE FOR SEARCH
procedure SEARCH{KEYSOQUGHT, STARTPT,#IN PRED,CURR ,RESULT: :0UT}

CURR+STARTPT

WHILE NOT CURR=NULL DO{search while}
IF KEYSOUGHT p CURR+.KEY THEN {have we a termination}
‘BEGIN{check for equality}
IF KEYSOUGHT=CURR+.KEY
THEN RESULT<«+FOUND
"RETURN
ELSE GO TO FOUNDPLACE
END {check for equality}
ELSE {have we a terminatioﬂl no, not here}
BEGIN {step forwards one link}
PRED+CURR
CURR+CURR*.PT
END {s:ep forwards one link}
{ENDIF ha''e we a termination, no, we will gc on}

{ENDWHIL! search while}

Ft'UNDPLACE% {we have found a place, :ither by :erminaticn
or by finding a place}

RESULT+«PLACEFOUND
RETURN
END {SEARCH}.

NOW WE CAN CODE OUR PROCEDURES.
START WITH FIND
PROCEDURE FIND(START ,KEYSOUGHT:IN)
SEARCH(KEYSOUGHT ,START ,PRED, CURR ,RESULT)
IF RESULT=FOUND THEN PRINT(CURR)
ELSE LOGERR('KEYSOUGHT")

END

NEXT DELETE
PROCEDURE DELETE(START, KEYSOUGHT 3 IN)

SEARCH(START,KEYSOUGHT,PRED,CURR,RBSULT)
1F RESULT=FOUND THEN
BEGIN {PROCESS THE found record}
IF CURR=START {Bypass first item}
THEN LINK(START,CURR+.PF)
ELSE {all other cases}
 LINK{PRED* .PT ,CURR#.PT}
{end‘of nested if}

RECLAIM(CURR) {put object pointed to by
’ CURR on delete chain}

END
ELSE LOGERR("RECORD NOT FOUND™’

FROCEDURE (NSERT (START ,KEYSOUGHT ,BEG ‘N ,RESULTTAB)
{First , £ind a plac: for insertion}
SEARCH(START ,KEYSC JGHT ,PRED,CURR ,F ISULT)

IF RESULTAB["SEARCH" ,RESULT] = FOUNDPLAC

THEN
BEGIN {perform insertion} GET_FREE_REC(NEW)

IF CURR=START {Bypass first item}
THEN LINKIN(NEW+.PT,START,CURR+.PT)

ELSE'LINKIN(NEW+.PT,PRED+.PT,CURRf.PT)

END -
ELSE LOGERR('"NO PLACE FOR KEY")

END {procedure completel

24
- %0 -

Finally, the most complicated of all, we re-write Fragment 11.

PROCEDURE CHANGE_}N_QRDER(START,OLDKEY,NEHKEY,RESTAB:IN:NEREL;INOUT);

BEGIN
IF OLDKEY p NEWKEY THEN

BEGIN
SEARCH(START , OLDKEY , OLDPRED , OLDCURR ,OLDRES)
IF RESTAB(SEARCH,OLDRES] # FOUND THEN LOGERR("OLD KEY NOT FOUND");
SEARCH(OLDCURR , NEWKEY , NEWPRED , NEWPRED , NEWRES)

(Note we continue from the original found point}

IF RESTAB[SEARCH,NEWRES] # PLACEFOUND
THEN LOGERR("NEWKEY HAS NO PLACE")

END {reverse casel

SEARCH(START,NEWKEY,NEWPRED,NEWCURR,NEWRES)
1F RESTAB[SEARCH,NEWRES] # FOUNDPLACE
THEN LOGERR ("¥OPLACE FCR NEWKEY")

SEARCH(NEhPRED,OLDEEY,OLDPRED,OLDCURR,OLDRES]

Ir REST /B[SEARCH,OLDRES] # FOUND
THEN

FRAGMENT 14

I must then return to the previous definitions and simplify them

(DO this, re-write LINKIN as well).

SECONDLY I ask myself a question -
What am I trying to do ?
ACTUALLY I want to search for the "least" key, then the other

one. THEN I want to make the necessary changes !

o) 1f I can somehow "tag" the keys so that I
(a) search for the least key first, the other key next
and (b) remember which key was which, I will succeed.
HOWEVER, I do have a technique for doing the reverse.
I can set up a key to be the lowest key, and remember whether
{t is the NEW Key or the OLD Key, and vice versa.
The routine "CHANGE IN ORDER" follows :

-
Zy
- M -

PROCEDURE CHANGE_IN_ORDER(START ,OLDKEY, NEWKEY ,RESTAB: IN: NEWREL : INOUT)
BEGIN {SET UP KEYS for correct order of search}

{note we simulate associative memory}

IF OLDKEY ¢ NEWKEY
THEN OLDPT<+FIRST: MEWPT<+SECOND
ELSE OLDPT«SECOND:NEWPT+F IRST

{"remember" keys}

KEY[OLDPT]
KEY[NEWPT]

OLDKEY;
NEWKEY;

SEARCH(START,KEY[FIRST],PRED[FIRST],CURR[FIRST],RES[FIRST])
SEARCH(PRED[FRST] ,¥EY[SECOND] ,PRED[SECOND] ,CURR[SECOND],
RES [SECOND])

NOTICE THIS - WHAT HAVE I DGNE

LOGCHANGE] R(RESTAB , RES ,0LDPT,ERRME’ S ,ERRFLAC)
[OGCHANGE] R(RESTAB, RES ,OLDPT ,ERRME S,ERRFLAC
IF NOT ERI FLAC THEN BEGIN
(FIRST, delete the OLD KEY's record}
LINK(START ,PRED{OLD] ,CURR[OLD])
{alter the keys}
CURR[OLD]+.KEY = KEY[NEWPT]
LINKIN(START,,CURR[OLD] ,PRED[NEW] ,CURR[NEW])
END
END {of change of keyl} .

Note 14 lines of executﬁe code.

KR/MG

