REDE

INTERFACING WITH THE
SOFTWARE INDUSTRY
- PART | -

THE ORGANIZATION OF CONTRACTED SOFTWARE

by
KARL REED
National Chairman,

Software Industry Committee,
Australian Computer Society

ABSTRACT

The questions of project specification, progress monitoring and testing and project
organization are reviewed allowing for the influence upon the conventional wisdom of
the presence of a software contractor. It is argued that many of the views on these
matters presented in the literature do not apply under these circumstances.

In particular, development should be frozen or strictly controlled. Specifications should
include resource statements and, project design should be such that another contractor
should be able to take over.

Project organization should rest control in a manager who has both complete executive
power, and responsibility. The client should not interfere.

Keywords and phrases: software contract, project organization, project
specification, progress verification, Brooks’ Law, separable design.

CR Categories: 2.2, 4.9

Authors Address:
¢/o Computer Centre, Monash University,
Wellington Rd., Clayton, Victoria 3168, Australia.

1439




INTERFACING WITH THE SOFTWARE INDUSTRY - PART |

THE ORGANIZATION OF CONTRACTED SOFTWARE

OVERVIEW

This paper is the part one of a series on 'Interfacing with the Software Industry’. The
second part, also presented at this workshop, is called ‘Some Contractual and Legal
Questions Affecting Coiriracted Software’ (Reed, 1978).

The two papers are seli-contained and are intended as a first reading on thuir
respective subjects, rather than the last word.

1. INTRODUCTION

Australian computer users will be forced to make more extensive use of the software
industry as the expected short-fall in staff takes effect (see Ferranti and Smith). The
relationships between software supplier and customer are similar to those between an
engineering firm and its clients with the difference that there is not the same body
experience, legal precedents and accepted standards which act to regulate the
situation.

This paper deals with the technical and organizational aspects of project organization
as applied to a software project being performed under contract. Much of the material
on project organization is well known, however, the separation of responsibilities that
may occur makes such projects qualitatively different from those undertaken by one
organisation.

The particular aspects of the relationship between a software company and it's client
which have been chosen for consideration are:-

a) The Project Specification
b) Progress Monitoring and Testing, and
c) Project Organization

All of these are treated extensively in the various works referenced later, but only in the
context of a project buing undertaken by an EDP department for it's own users (so
called 'In-house’ development).

The view taken here is that the involvement of another party (the software contractor)
materially alters the situation. The conventional wisdom then does not apply, as will be
seen. More general questions of project management are left to authors such as
Metzger (1973) and Weinberg (1971).

2. THE PROJECT SPECIFICATION

2.1 Producing The Specification

'Plan to throw one away; you will, anyhow’ Brooks (1975 p. 16)

Brooks’ law rings like the knell of doom in designers ears. The unmistakable implication
of this is that system implementation should be a ‘recursive development cycle’
(Podalsky 1977), and that ‘programmer’s will find their debugged programs modified
to acc: ¢ for changes in +.ser requirements’ (Swanson). Figure 1 shows Podalsky’s
view of the developmeri uiocess.

1440



V3§32

Recursive Development Cycle (Exhibit 2) b=
1. Feasibility Study - also ‘jimpact’ study; what changes in the

basic functioning of the department should be (can be)

via the system.
7. External Specification - first cut.

3. Internal specification - key factors - ease of change,
promptness.

4. System construction - key factors - ease of change,
promptness.

5. Implementation - training, begin wish book, plan for
enhancement.

6. Familiarization period - settle in, continue wish book.

7. External specs for next version - requires priority setting
with users.

Fig. 1 podalsky's (1977) version of the development cycle.

This author finds such prenouncements frightening, and suggests that any client faced
with a highly plastic implementation project for which he was paying on 2 time and
materials basis would do also! There is some comfort in the fact that other authorities
recommend that the specification be frozen prior to implementation. (Reid (1978),
Evans & Assoc. (1975), Montgomery (1 970) and Metzger (1 973)).

However, a specification failure, that is, @ situation where the system does not work or
is unacceptable to the users even though it works can be classed as a software contract
crash. Various authors, Podalsky (1977), Keen and Gerson (1977) and Marquet (1977)
would agree that this can occur.

Neither client or contractor wants to be further experimental evidence of Brooks law,
so steps should be taken to ensure that they are not while recognizing the potential
truth of the proposition.

Client - Contractor Interaction And Recursive Design

It is common for clients to ask contractors to quote on a com lete frozen specification.
This tactic is adopted to enable a fixed price and delivery date to be set.

The evidence of the major writers is that this is poor practice, since the one that gets
thrown away might be the oné just paid forl An evolutionar implementation approac
may be accepta le if one wishes to keep 2 large in-house DP department bus but it
would not be advisable to allow the specification to be altered continuously during a
contract, since, as already mentioned, COSts would become uncontrollable.

It would seem therefore that the gods will be placated if there is a design iteration to
produce a frozen specification, and it would also seem ood sense to involve the
contractor. The original specification can then be discarded, havin served its purpose
in helping to select the supplier. It wil Jlso serve as a guide in the urther stages of the
process.

such an approach will be rejected by those clients who have already ‘iterated’ to their
specification but it is suggested that the interests of both parties might be served by
attempting to 'shake’ the specification before implementation begins. The contractors

are surely just the people to assist in this process. Figure 2 shows appropriate
modifications to Podalsky’s cycle.

1441



A Recursive Development Cycle For Contract Software

Phase: Performed By:
1. Feasibility Study Client and User
2. External Specification Client and User
3. Supplier Selection Client
4. Reassess Feasibility Contractor, client, use:
5. Confirm External Specification Contractor, client, user
6. Internal Specification and basic design Contractor, client, user
7. Implementation Contractor
8. Familiarization Contractor
9. Commence new contract if further

development needed Contractor

Fig. 2 Development cycle for contracted software (Reed).

Producing The ‘Final’ Specification

The process of producing the final specification must include the users in the client
department. Modern writers such as Jones (1977) recommend involving the users in
higher level ‘walk through’s’ to enable them to see what is actually being proposed. So
do Keen and Gerson (1977).

There may be some point, if the project is large enough to justify the effort, in creating
a mock-up system which the users pretend to use, (Refer Constantine and Yourdon
(1975) pp. 513-514), so that they can set some feel for the value which the system
might have.

Participation in the conceptual design, at the level at which reports, processes and
basic collections of data are being fixed will give the users confidence in their capacity
to predict their requirements, anc?confidence in the system itself. The supplier will also
have a chance to interact with the end-user.

Above all, however, the specification should be that of a clean architectural entity, as
stressed by Brooks, (1975 pp. 42-43). In other words, it should contain all relevant
information and be readily understood. This is best achieved if it is written by one
person. (Brooks, 1975).

2.2 Factors To Be Included In The Specification

The quality of the specification is critical. It must be precise and show the information
content of terminal dialogues, reports, data layouts and system function. The basic
structure of a specification is described
in such works as Metzger (1973) and the impact of standards upon the specification are
covered in
Reed (1978).
The relationship between the system and it's hardware environment are equally
important and tend to receive less attention in the literature, which is rather short in
descriptions of usable quantitative design techniques in any case. Factors which must
be included are termineﬂ response times, memory usage, external storage requirements,
unit record peripheral utilization and frequency of run. These things are usually not too
difficult to estimate once the system function is decided.
Designers experience greater difficulty in estimating the CPU utilization per transaction.
communication line occupancy, the number of disc accesses per transaction and other
resource requirements which actually determine the performance. Factors such as
virtual memory paging rate attract even less attention.
The items listed above determine both the actual system performance and it's impact
upon the machine upon which they run. Whether or not the existing machine will have
the capacity to accept further systems is determined by these factors. There is also a
case for specifying the existing system load, in terms of available CPU time, channel
and disc accesses. It is just possible that the system will not run on the proposed
installation under normal operating circumstances even if the configuration will support
it.

1442




This author would argue that an attempt should be made to put upper limits on the
resources available to the completed system. A contractor responding to the tender is
then left in no doubt about the real difficulty in achieving the specified end user
performance.

Other obvious factors to be included are languages to be used, standards of
documentation and acceptance testing.

Table |
Information On Resources Utilization To Be Included in Specification

Resources required by:

Proposed System.

Systems with which it will run concurrently.
Installation slack, for future development.

Table Il
Resources To Be Specified For Categories In Table |

Resource Information Specified

CpPU Utilization per transaction
and overhead

Memory Profile of requirements with
transaction types etc.

Unit Record Line printer utilization, card
reader etc.

Communications Line occupancies, transmis-
sion speeds

Virtual Memory Disc access rates (requests-
sec)

Rotating Storage Pack mounts, access rates

Magnet Tape Tape mounts, access rates

2.3 Resolving Errors In The Specification

Correcting an inconsistency in the specification will involve a volume of work which is
an increasing function of the percentge of work completed at the point of discovery.

The problem of deciding the responsibility for such changes is covered elsewhere (see
Reed 1978) and in this paper.

2.4 Separable Design And Incremental Implementation

Separable Design

It has been suggested by Symonds (1977) that it is possible to design and implement a
system in such a way that another project team can take over if the first is dismissed.
This, he argues protects clients against the effect of a contractor defaulting during the
project since moneys outstanding in progress payments may not compensate him for
the delays which will ensue.

The implications of such an approaca need careful analysis.

A close look at Brooks' laws, (‘adding manpower to a late software project makes it
later.” Brooks (1975) page 25) taken by Gordon and Lamb (1 977) suggests that the
cumulative losses might be unbearable. What may come to be known as Marquet’s
Law (‘the maximum recoverable value of incomplete, untested production is zero.'
Marquet (1977) page 48) is even more pessimistic. Reid's analysis of the Western
Australian Library project (Reid, 1978) contains an example of what can happen.

1443



It is clear then that Marquet's Law must be violated and Brook’s Law avoided if
separable design is to work.

Marquet’s Law can only be nullified if the basic design is extremely modular and the
interface testing of very high quality. Interface testing must be carried out at frequent
intervals, and the test data and its results kept on machine readable media for all
milestones in the project. Testing would also need to be extremely well documented
so that the new project team could readily reproduce the earlier tests when necessary.
All of this would mean that test harness software may be needed.

Brook's Law can only be circumvented if the total project information structure is
transparent, and the total project experience can somehow be instantaneously
absorbed by the new project team. This is impossible, so the best which can be
expected is that the specification is clear, that perhaps some design and progress
meetings are well documented or taped and that the existing work is well documented
as recommended by Brooks (1975). The client just might minimise his losses under
these circumstances.

The question which must now be asked is ‘But isn't this how it should be done
anyway?’ The answer is yes. It is not difficult to find recommendations along these lines
in the literature (for example Poole (1973), Yourdon (1975) chapter 6, Herman (1975),
Hetzel (1973), Martin (1967) to name just a few).

This writer suspects, however, that clients who insist upon a system being
implemented in a ‘separable’ fashion will find themselves being quoted a higher price
for the contract, which of course is an interesting commentary on the general state of
systems implementation.

Incremental Implementation

The topic deserves some comment in view of the various authors referenced earlier,
(section 2.1).

This writer's view is that the contract should also be incremental, so that the client is
not committed beyond the current increment, as pointed out by Metzger (1973) page
9.

3. PROGRESS MONITORING, TESTING AND VALIDATION

3.1 Implementation Milestones And System Structure

Statements referring to percentage completion are meaningless unless there is some
means of verifying that the work has been actually done. The ‘90% complete’ scenario
in which software remains 90% complete indefinitely is well known (see Ingrassa,
1978). ;

Attempts therefore to monitor progress become related to system structure. A system
design which is incremental, i.e. involves the construction of a primitive system which
will evolve through defined phases until the final product, perhaps consisting of several
fairly separate but complete systems exists, will be easy to monitor. Various milestones
can be equated to the sub-system level and tests designed to verify that they function
as intended.

This may not be sufficient if the various sections are sufficiently large. The client may
then need to specify that the existence (and correct operation) of system fragments is
to be demonstrated to verify progress. In other words, some of the requirements for
separable design may intrude into the area of progress monitoring.

Some suppliers will again argue that the production of intermediate test results in a
form suitable for analysis by the client constitutes significant additional work, and may
increase their quotation accordingly. It may even be argued that the implementation
will be significantly delayed, made less efficient etc. by such requirements, placing the
prospective purchaser in a difficult position.

The client should also note that a significant amount of work may be needed within his
own organization to specify these milestones in a sensible fashion, and to verify that
they are met. 1444



v v e o o

3.2 How Much Progress Monitoring Is Necessary?

The amount and extent of progress monitoring will depend upon the system being
built and the constructor. It may well be that a contractor who has completed several
similar systems on the same hardware can claim that progress does not need detailed
monitoring. Careful examination of both the systems mentioned as evidence of
competence, and of the design team proposed is then in order.

The last point is important since experience is the property of individuals rather than a
company. One would expect that the implementation team should contain
appropriate numbers of those staff involved in the previous projects, and the client
would be well advised to check this out.

The value of very high levels of experience and competence cannot be
underestimated, since they may mean that much of the previous discussions are not
applicable, and that implementation times, if not costs, are greatly reduced. This should
hea(rjt|en those readers who are beginning to feel that the whole deal is not worth the
candie,

A note of caution must be sounded. One must be extremely confident before basic
safeguards such as progress monitoring are relaxed.

3.3 A Question For Mutual Agreement

The exact nature of milestones and progress monitoring is, as that of progress
payments, a question for negotiation, since, as has been pointed out, these must be
related to the system structure.

4. PROJECT ORGANIZATION

4.1 Chains Of Command

The primary mechanism of project control, from the clients point of view, should be
through the progress monitoring discussed in section 3. Responsibility for the success
of the contract should lie with the project manager, and the client should not interfere
with him unless some catastrophy is impending. This applies even if the project
manager is provided by the client.

It is a good idea, if the project is large enough and uses the clients installation for
development, for the client to provide a senior staff member to assist the project team
in obtaining the physical resources that it needs. This ‘expediator’ should be under the
control of the project manager, and should have enough authority within the client
organization to ensure that the project is not delayed because of physical resource
shortages. ‘

Weinberg (1971) suggests that a devil's advocate is also necessary. This person'’s job is
to attend project meetings and to explore all possible modes of failure and miss-
reporting. Whether or not the clients representative should adopt such a role is
debatable since the project team may close its ranks against him, with the result that
the reporting accuracy may drop.

This author's view is that the chain of command should be clear, and as simple as
possible. As already mentioned elsewhere, this should hold independent of the actual
project team composition. Customers’ staff should attempt to resolve problems within
the project team and only involve their own project supervision when they are unable
to do this, or if a serious problem arises.

4.2 Problems Due To Joint Staffing

The idea of both supplier and customer staffing a project has very significant appeal. It
tends to keep the contract price down and ensures that the customer has staff capable
of maintaining and extending the system. It may also be considered desirable to have
staff directly involved in the project who can assist in monitoring it.

1445



This writer's view on the latter point should be clear by now, so no comment will be
made. Other problems which may arise will be addressed instead.

John Marquet presented an interesting paper in 1977 which related the software
industry to the animated cartoon industry (Marquet 1977, pages 45-48).

Marquet’s comments upon division of responsibility bare direct yuotation. He argues
that a software company is like a cartoon producer.

Table 111

Identity Equivalents Between Cartoon and Software Projects
Cartoon Identity Software Identity
Producer Application Manager
Art Director Programming Leader
Animator Application Programmer
Background Artist System Programmer
Layout Vendor-supplied Software
Scenarist System Analyst
Dubbed Voices User Training
Editor System Integration
Camera Development Computer
Theatre Production Computer
Theatre Owner User Management
Audience User Personnel

'Suppose some corporate tigers wander into one of our cartoon
companies to buy something; it could be a feature, a training cartoon or
an animated commercial. The cartoon company front men try to explain
about Art Direction, Production Values, etc., as well as why Bugs Bunny
is not quite right or otherwise unavailable for the project under
discussion. The cultural shock is often considerable, and leads to a
primary project pitfall.

In our experience cartoon/software buyers frequently fail to recognise
the need for all the identities listed in the above correspondence table.
They may unreasonably assume, for example, that the cartoonists have
access to block time on a camera of the right brand (while the
cartoonists assume nobody could overlook such a detail). They may
expect the Art Director to go about telling future audiences how good it
will be, or they may expect the cartoon company to use in-house
animators (many of whom are actually tracers).

The primary pitfalls of cartoon/software production stem from "loss” of
one or more identities from the project environment. The result is a
dismembered project. For example, many a computer-system has been
developed without analogous dubbed voices; the users are
subsequently unable to tell the funny parts from the sad parts.

A cartoon/software buy can be successiul only if someone is designated
to look after each of the identities listed in the correspondence table
shown above. Individuals can of course cover more than one item, and
occasionally an item can be under the control of a committee. Some
general rules probably apply; e.g. the cartoon/software company should
never constitute its own audience, the Art Director should not be a
committee drawn from vendor and client sources, but there are
exceptions to these rules. There are also degrees of unhappiness for the
project, depending on who or what was left out. It is not unusual for the
following pitfall variants to occur:

1446




REUE

Actual layouts (vendor supplied software) are found to be inadequate
when animation commences.

Animators and/or the Art Director appear late in the project, and fight
thereafter over “production values".

Audience reaction is not measured before or during the project.

So far, | have tried to illustrate the point that a software project teamis a
consortium of talents (regardless of project size). The project is an
aggregate of people and facilities; the provision of the aggregate
environment is a necessary condition for a successful software buy/sell
transaction, but it is not sufficient. If the circumstances described are
pitfalls (bits of the project falling down holes) we had best consider the
consequent traps (nasty things to tread on as we cross the project
terrain).’

t

Marquet's warning is against ‘role blurring’ and ‘missing identities
The author has participated in a jointly staffed project which was rather successful.
One of its salient features was the clarity of the roles, and the chain of command,
despite the presence of senior customer personnel. The supplier took technical
responsibility, and all levels of the project were responsible to the supplier's project
manager, who reported periodically to a committee consisting of the clients senior
manager responsible for the project (not a participant) and the client’s senior man
present on the project. It was known and accepted that this clients senior man present
made reports directly to his management.

‘Role definition’ within the project was extremely clear, and everyone knew where they
stood.

It would be too much to ascribe the project’s success to this factor alone, but it
certainly helped.

Extended arguments will arise due to the kind of interference which occurs when the
client's staff are expected to be technical watch dogs reporting problems to their own
management instead of the project leader. The effect will be delays and some loss of
control, both technical and managerial, by the supplier who could then quite rightly
feel that penalty clauses should be waived and delivery dates altered.

The client would, one expects, be at a severe disadvantage before an arbitrator if it
could be shown that such a situation had occurred on a delayed project. Arguments
about relative responsibilities would become confused since it may no longer be clear
who had executive power on the project.

It should be noted that no supplier should be expected to accept liability without
responsibility and executive power.

4.3 Change Control

The reader will by now have gained (correctly) the impression that this writers view is
that little or no change should be made to the specification, and to the design once it is
complete. All change will cost something, and the cost will tend to increase as the
project progesses. Some change is however unavoidable, and it must therefore be
controlled.

Two types of changes can be identified; specification changes, and design and
implementation changes. The first refers to what shall be done, the second to how.

One satisfactory technique for controlling changes is described by Metzger (1973)
page 89-91. A very formal structure is suggested. Changes are 1O be notified on a
‘Change Form’ and investigated to classify them into two Lypes. Those which effect the
basic documentation or would have a negative cost impact and those which have little
eifect and do not have negative cost impact.

1447



A committee would consider all changes, and decide whether or not they will be
accepted. Someone must also decide who accepts the negative cost impacts as well,
although changes to the specification which benefit the client and are accepted by him
should be funded by him. The implications of this are that either party should have the
right to vetoe changes which they must fund provided they do not effect the projects
successes.

This approach should also be used to control the correction of design errors - with
financial responsibility going to those who provide the design.

5. CONCLUDING REMARKS

The last word hast not been said on this matter, and there is a sense in which the
industry must wait for legal precedents to be established before some questions are
resolved. Good practice in project organization will eventually be determined by the
ease with which parties can prove liability in disputes rather than by practical demands.
The authors view is that the two needs converge (see Reed 1978) and that it should, as
a result, be possible to make recommendations on this matter which could have the
imprimatur of a standard. Such action would mean that much unnecessary pain and
cost will be avoided on both sides, and that the image of the industry increased.

6. ACKNOWLEDGEMENTS

Acknowledgements are due to D. Butchart, J. Marquet, J. Whittle and Dr. C. ). Bellamy
for assistance in clarifying these ideas.

These papers were typed and set by ATL Datatronics Ltd. of Melbourne.

References

Brooks, F. P. (1975) ‘The Mythical Man-Month’
Essays on Software Engineering
Addison-Wesley 1975

Brown, |. R. et al (1973) 'Automated Software Quality Assurance’

in Hetzel (Ed)
‘Program Tested Methods’
Prentice Hall 1973 pp 181-203

Evans, R. W. & Assoc. (1975) ‘Developing EDP Projects Successfully’
EDP in-Depth Reports
R. W. Evans & Assoc. Ltd. (Canada)
Vol. 4, No. 11 July 1975.

Gordon, R. L. and Lamb, J. C. (1977) ‘A Close Look at Brooks' Law’
Datamation June 1977 pp 81-86

Herman, (1975) ‘Data Flow Analysis in Program Testing'
MSc Thesis, Monash University 1975
(Dept. Computer Science)

Hetzel, W. C. (1973) ‘Principles of Program Testing'
in Hetzel, W. C. (Ed)
‘Program Test Methods’
Prentice-Hall 1973.

Ingrassa, F. S. (1978) '‘Combatting the 90% Complete Syndrome’
Datamation Jan. 1978 pp 171-176

Jones, N. M. (1976) 'HIPO for Developing Specifications’
Datamation March 1976 pp112-125

Keen, P. G. W. and Ceerson, E. M. "The Politics of Software Systems Design’

Datamation November 1977 pp81-84
1448



Marquet, }. {1977)

Martin, }. (1967)

Metzger, P. W. (1973)
Montgomery, A. Y. (1970)
Podalsky, J. L. (1977)

Poole, P. C. (1973)

Reed, K. (1978)

Reid, T. A. (1978)

Smith, B. W. and de Ferranti, B. Z.

Swanson, E. B. (1976)

Symonds, R. (1 977)

Weinberg, G. M. {1971)

Yourdon, E. (1975)

Yourdon, E.
and Constantine, L L {1975

REDE

‘Traps and Pitfalls in Software Dealing/,
in ‘Soft-where, Soft-why, Soft-how’
Proceedings of the ACS-SIC Seminar
june 1st 1977 pp 43-50

‘Design of Real-Time Computer Systems’
Prentice-Hall 1967
(chapter 37, ‘System Testing’)

‘Managing A Programming Project’
Prentice-Hall 1973.

‘Aspects of Data Processing Management’
ACJ Vol. 2, No. 2. May 1970 pp 71-88

‘Horace Builds A Cycle’
Datamation, November 1977 pp 162-168

Testing and Debugging'

in 'Advanced Course on Software
Engineering’

Lecture Notes ift Economic

and Mathematical Systems

Vol. 81 pp 278-317
Springer-Verlag

'Interfacing With the Software Industry

- Part 2 - Some Contractual and Legal
Questions Affecting Contracted Software’
Proceedings of the Eighth Australian
Computer Conference

Canberra, 1978.

‘The Trials and Tribulations of an On-Line
Computer Project’

Australian Computer Bulletin

Feb 1978 Vol. 2, No. 1 pp 6-14

‘Computers and the Future of Education’
and ‘The Present and Future Use of
Computers in Australia and

Employment Implications’

‘Computer Application System
Development: Some Implications for
Programming Practice’

Data Management Vol. 4 No. 5 May 1976

‘Development of Large-Scale Commercial
Systems Without In-house Programmers'’
in ‘Soft-where, Soft-why, Soft-how’
Proceedings of the ACS-SIC seminar
june 1st 1977 pp 43-50

The Psychology of Computer Programming’
van Nostrand, Reinhardt & Co. 1971,

“Techniques of Program Structure
Drentice-Hall 1875

“Structured Desagy
Yourdon bxc. 33 TS
1133 Avenue of the Amencas
New York NUY., LUSA






